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ABSTRACT

No phenotypic trait evolves independently of all other traits, but the cause of trait-trait
coevolution is poorly understood. While the coevolution could arise simply from pleiotropic
mutations that simultaneously affect the traits concerned, it could also result from multivariate
natural selection favoring certain trait relationships. To gain a general mechanistic
understanding of trait-trait coevolution, we examine the evolution of 220 cell morphology traits
across 16 natural strains of the yeast Saccharomyces cerevisiae and the evolution of 24 wing
morphology traits across 110 fly species of the family Drosophilidae, along with the variations of
these traits among gene deletion or mutation accumulation lines (a.k.a. mutants). For numerous
trait pairs, the phenotypic correlation among evolutionary lineages differs significantly from that
among mutants. Specifically, we find hundreds of cases where the evolutionary correlation
between traits is strengthened or reversed relative to the mutational correlation, which, according
to our population genetic simulation, is likely caused by multivariate selection. Furthermore, we
detect selection for enhanced modularity of the yeast traits analyzed. Together, these results
demonstrate that trait-trait coevolution is shaped by natural selection and suggest that the
pleiotropic structure of mutation is not optimal. Because the morphological traits analyzed here
are chosen largely because of their measurability and thereby are not expected to be biased with

regard to natural selection, our conclusion is likely general.
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BACKGROUND

Many phenotypic traits covary during evolution. For example, the logarithm of brain
weight and that of body weight show a nearly perfect linear relationship across mammals [1, 2].
In theory, four processes may explain such trait-trait coevolution. First, it could arise simply
from pleiotropic mutations that simultaneously influence these traits with a more or less constant
ratio of effects [3-5], as has been previously shown empirically [6-10]. Second, trait covariation
could arise from the linkage disequilibrium between genes controlling these traits [5, 11-13], but
such trait covariation is expected to be restricted to closely related individuals due to the
deterioration of linkage disequilibrium as a result of recombination. If the linkage disequilibrium
is stably maintained due to, for example, chromosomal inversion, the involved linked genes can
be regarded as a supergene with mutational pleiotropy [13]. For this reason, linkage
disequilibrium is negligible except for trait covariation among closely related individuals. Third,
shared ancestry can also create apparent trait correlations across lineages, which, however, can
be explained away when the phylogenetic relationships are taken into account in correlation
analysis [14]. Finally, trait covariation could be a result of natural selection for particular trait
relationships that are advantageous, a phenomenon known as correlational selection or
multivariate selection [2, 15-20].

Despite a long-standing interest in trait correlation in evolution [2, 13, 21], which is also
referred to as phenotypic integration in the literature [22, 23], our understanding of the roles of
mutation and selection in trait-trait coevolution remains limited. Most studies on the subject
focused on a small number of traits that are physiologically or ecologically important [24], such
as skull anatomy characters [25-30], behavioral syndrome (i.e., sets of correlated behavioral
traits) [31, 32], and ecological or organismal traits correlated with the metabolic rate [33-37];
hence, they may not provide a general, unbiased picture of trait-trait coevolution. Additionally,
it is the trait correlation resulting from standing genetic variation and its effect on adaptation that
have received the most attention [38-44]. But, because standing genetic variation could have
been influenced by selection [40], the resulting trait correlation may not inform the correlation
produced by mutation. Not knowing the mutational correlation hinders a full understanding of
the contribution of selection.

Related to trait-trait correlation is the concept of modularity. It has been hypothesized

that it is beneficial for organisms to have a modular organization such that functionally related
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90 traits belonging to the same module covary and genotypes and/or phenotypes that lead to low
91 fitness are less likely to occur [21, 25, 45-47]. Although modularity is a well-recognized feature
92  of many trait correlation networks, the relative contribution of selection and mutational
93  pleiotropy to modularity has not been assessed at the phenome scale [46-48].
94 To gain a general mechanistic understanding of trait-trait coevolution, we study the
95  phenotypic correlations for a large number of trait pairs at the levels of mutation and long-term
96  evolution; natural selection is inferred when the evolutionary correlation between traits cannot be
97  fully explained by the mutational correlation. We also ask if the overall pattern of trait
98  correlation (i.e., phenotypic integration) differ at the two levels. Our primary data include 220
99  cell morphology traits of the budding yeast Saccharomyces cerevisiae that have been measured
100  in 4817 single-gene deletion lines [49], 89 mutation accumulation (MA) lines (for a subset of
101 187 traits) [50], and 16 natural strains with clear phylogenetic relationships [49, 51]. These traits
102 were quantified from fluorescent microscopic images of triple-stained cells and were originally
103 chosen for study because of their measurability regardless of potential roles in evolution and
104  adaptation [49]. Subsequent studies found that these cell morphological traits are correlated with
105  the yeast mitotic growth rate (i.e., a proxy for fitness) to varying degrees [7]. Hence, these traits
106  may be considered representatives of phenotypic traits that have different contributions to
107  fitness. Previous analyses of these traits among natural strains unveiled signals of positive
108  selection on individual traits [52], but their potential coevolution has not been studied. While
109  studying these trait pairs can offer a general picture of trait-trait coevolution, we recognize that
110 the selective agent would be hard to identify should selection be detected, because the biological
111 functions of these traits (other than correlations with the growth rate) are generally unknown
112 [52]. To verify the generality of the findings from the yeast traits, we analyze another dataset
113 that includes 12 landmark vein intersections on the fly wings that have been measured in 150
114 MA lines of Drosophila melanogaster [9] and 110 Drosophilid species [53]. At last, using
115  computer simulations, we demonstrate how certain regimes of selection could explain the
116  observed differences between mutational and evolutionary correlations.
117
118 RESULTS

119  Evolutionary correlations differ from mutational correlations for many trait pairs
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120 To investigate if trait correlations in evolution can be fully accounted for by the

121 correlations generated by mutation, we examined all pairs of the 220 yeast cell morphology traits
122 previously measured. For each pair of traits, we computed the mutational correlation CORw,
123 defined as Pearson’s correlation coefficient across 4,817 gene deletion lines (upper triangle in
124 Fig. 1A, Data S1), and evolutionary correlation CORE, defined as Pearson’s correlation

125  coefficient across 16 natural strains (lower triangle in Fig. 1A, Data S1) with their phylogenetic
126  relationships (Fig. S1) taken into account (see Materials and Methods). Note that the original
127  data contained 37 natural strains [51], of which 21 belong to the “mosaic” group [54, 55]—their
128  phylogenetic relationships with other S. cereviase strains vary among genomic regions—so

129  cannot be included in our analysis that requires considering phylogenetic relationships.

130 We found that the frequency distribution of CORE across all trait pairs differs

131  significantly from that of CORwm (Fig. 1B), suggesting the action of selection. For each pair of
132 traits, we transformed the CORwm and CORE to Z-scores using Fisher’s r-to-Z transformation and
133 conducted Z-test to determine whether the two correlations are significantly different. Of the
134 24,090 trait pairs examined, 6743 pairs (or 28.0%) have a CORE that deviates significantly from
135  CORw at the false discovery rate (FDR) of 5% (Table 1, Data S1), suggesting that natural

136  selection has shaped the coevolution of many trait pairs. To investigate whether the above result
137  is biased because of the use of each trait in many trait pairs, we randomly arranged the 220 traits
138  into 110 non-overlapping pairs and counted the number of pairs with CORE significantly

139  different from CORwm. This was repeated 1,000 times to yield 1,000 estimates of the proportion
140  of trait pairs with significantly different CORg and CORwm. The middle 95% of these estimates
141  ranged from 14.5% to 40.1%, with the median estimate being 28.2%, almost identical to the

142 result (28.0%) from all pairwise comparisons. Hence, there is no indication that using

143 overlapping trait pairs has biased the estimate of the fraction of trait pairs with significantly

144 different CORg and CORwm.

145 To further test selection, we simulated neutral evolution along the yeast tree 1000 times
146  under a Brownian motion model with the observed mutational covariance matrix M used as the
147  mutational input, generating 1,000 simulated datasets. Before the simulation, we confirmed that
148  the sampling error of our estimated M is negligible, likely because of the large number of

149  mutants used in M estimation (Table S1; see Materials and Methods). From each simulated

150  dataset, we calculated the number of trait pairs with CORE significantly different from CORwm.

5
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Only in 0.7% of the simulated data did we find this number equal to or greater than that from the
actual data (Table 1), indicating that the observed evolutionary correlations between traits
cannot be explained by the neutral Brownian motion model. The distribution of mutational
effects can be asymmetric and skewed [56] while it is assumed normal in the Brownian motion
model. Nevertheless, simulations showed that mutational bias will not render CORE deviate
from CORw in the absence of selection and will not enlarge the variance of CORE (Table S2; see
Materials and Methods).

We divided the 6743 cases of significantly different CORg and CORw into three
categories. In the first category, the trait correlation generated by mutation is strengthened by
natural selection during evolution. A total of 2,727 trait pairs are considered to belong to this
“strengthened” category (Table 1) because they satisfy the following criteria: CORg and CORwm
have the same sign and |CORg| > |COR,,|, or CORr and CORwm have different signs but only
CORE is significantly different from O (at the nominal P-value of 0.05) (Fig. 2A). In the second
category, the trait correlation generated by mutation is weakened by natural selection during
evolution. A total of 1,221 trait pairs satisfying the following criteria are classified into this
“weakened” category (Table 1): CORg and CORw have the same sign and |CORg| < |CORy,|, or
CORg and CORw have different signs but only CORw is significantly different from 0 (Fig. 2B).
In the last category, the trait correlation generated by mutation is reversed in sign by natural
selection during evolution. A total of 2,795 trait pairs satisfying the following criteria are in this
“reversed” category (Table 1): CORg and CORMm have different signs and are both significantly
different from 0 (Fig. 2C).

To assess the robustness of the selection signals detected, we repeated the above analysis
using CORwm estimated from 89 mutation accumulation (MA) lines [43] (Fig. S2A, Data S1).
Again, the overall frequency distribution across all trait pairs differs significantly between CORj
and COR,, (Fig. S2B). We found that 5,146 trait pairs exhibit a significantly different CORE
from the corresponding COR,, (Table 1, Data S1), supporting a role of selection in the
coevolution of many trait pairs. When comparing the analysis using CORwm from gene deletion
lines and that using CORwm from MA lines, we found 990 trait pairs to exhibit selection signals
and fall into the same category in both analyses, including 275 pairs in the “strengthened”
category, 223 pairs in the “weakened” category, and 574 pairs in the “reversed” category. All of

these numbers substantially exceed the corresponding expected random overlaps (P < 0.001
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182  based on 1,000 random draws in each case; the medians across the 1,000 draws are 271, 68 and
183 163, respectively), suggesting the reliability of both analyses. Although mutations in MA lines
184  are more natural than those in gene deletion lines, the number of MA lines is much smaller than
185  the number of gene deletion lines and only 187 of the original 220 traits were measured in the
186  MA lines. For these reasons, we focused on the CORwm estimated from the gene deletion lines in
187  subsequent analyses.

188 To examine the generality of the above yeast-based findings, we analyzed the 24 wing
189  morphology traits of Drosophilid flies. The CORwm and CORE have been previously estimated
190  from 150 MA lines [9] and 110 Drosophilid species, respectively (Fig. S3A, Data S1). The

191  overall frequency distribution across all trait pairs differs significantly between CORg and CORy,
192 (Fig. S3B). Of the 276 pairs of traits, 144 (52.2%) showed a significant difference between

193  CORg and CORwm (Table 1, Data S1), indicating widespread actions of selection in the

194  coevolution of fly wing morphology traits.

195 Together, these results demonstrate that, for many trait pairs, mutational and evolutionary
196  correlations between morphological traits are more different than expected under neutrality.

197  This observation suggests an important role of selection in shaping the strength and/or direction
198  of trait correlation in evolution.

199

200  Effects of different selection regimes on trait-trait coevolution

201 The strengthened, weakened, and reversed trait correlations in evolution may have

202  resulted from different selection regimes. Below we consider various selection regimes that

203 could potentially explain these types of difference between CORm and CORE (Fig. 3). First,

204  when a specific allometric relationship between two traits is selectively favored, the population
205  mean trait values are expected to be concentrated near the fitness ridge or the optimal allometric
206 line, resulting in a strong evolutionary correlation between the traits (i.e., a high | CORg|) (Fig.
207  3A). Unless CORw is already similar to CORg, we expect to see strengthened or reversed CORg
208  depending on CORm. Second, if there is a single fitness peak for an optimal combination of trait
209  values and if there is sufficiently strong stabilizing selection on the optimal phenotype, the

210  population mean phenotype should be restricted within a small range of the optimal phenotype in
211  all directions in the phenotypic space regardless of the mutational variance. Consequently,

212 CORg is expected to be close to 0, which could account for a weakened evolutionary correlation
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213 relative to the mutational correlation (Fig. 3B). Finally, if the fitness optimum varies across

214  lineages in a random fashion, the steady-state CORg will be close to zero, potentially leading to
215  the weakening of the evolutionary correlation relative to the mutational correlation (Fig. 3C).
216 To verify these predictions, we simulated the evolution of two traits. Under each

217  parameter set, we simulated 50 independent replicate lineages and computed the correlation

218  coefficient, or CORE, between the traits across the replicate lineages at the end of the simulated
219  evolution. This was repeated 200 times to obtain an empirical distribution of CORg. To evaluate
220  the difference between CORwm and CORE, we examined the location of CORw in the distribution
221  of CORg; a significant (P < 0.05) difference is inferred if CORw is in the left or right 2.5% tail of
222 the CORg distribution.

223 As expected, in the absence of selection, the distribution of CORE is centered around

224 CORw (first block in Table 2). When a specific allometric relationship is selectively favored, a
225  high |CORg| always emerges regardless of the CORwm used, resulting in either strengthened or
226  reversed evolutionary correlations (P < 0.005 for all parameter sets examined; the second to fifth
227  blocks in Table 2). By contrast, stabilizing selection of an optimal phenotype leads to weakened
228  correlation across replicate lineages when |[COR,,| is not small (sixth block in Table 2). Finally,
229  when different lineages have different phenotypic optima that are randomly picked from the

230  standard bivariate normal distribution, weakened evolutionary correlations are generally

231  observed except when CORw is close to zero (bottom block in Table 2). These results suggest
232 that the strengthened and reversed evolutionary correlations of yeast and fly morphological traits
233 are likely caused by selections of allometric relationships, while the weakened correlations are
234 likely caused by selections of individual traits either when there is a single optimal phenotype or
235  when the optimal phenotype randomly varies among lineages.

236

237  Selection for enhanced modularity of yeast morphological traits

238 While all of the above analyses focused on individual trait pairs, here we ask whether the
239  overall trait correlation across divergent lineages is stronger or weaker than that created by

240  mutation. As a measure of the overall level of trait correlation (i.e., overall integration), we

241  calculated the variance of eigenvalues (Veigen) of the correlation matrix from divergent lineages
242  and mutants, respectively. A greater Veigen corresponds to a stronger overall correlation between

243 traits because the eigenvalues become less evenly distributed as the absolute values of the
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244  correlation coefficients become larger [57]. However, the sample size (i.e., the number of

245  strains) in the estimation of the correlation matrix also influences Veigen; @ matrix estimated from
246  asmaller sample naturally tends to have fewer positive eigenvalues and greater Veigen. TO

247  exclude the influence of this factor, we randomly sampled the mutant strains to obtain 5000

248  control datasets. Because the rank number of the evolutionary correlation matrix is 15 for the
249  yeast data (i.e., 15 positive eigenvalues), each control dataset also consists of 15 randomly drawn
250  strains such that the corresponding mutational correlation matrix also has 15 positive

251  eigenvalues. We examined the location of the observed Veigen in this distribution and computed a
252 P-value based on this location (see Materials and Methods). For the yeast traits, Veigen 0f the

253  observed evolutionary correlation matrix exceeds that in 96% of control datasets (P = 0.08 in a
254  two-tailed test; Table 3). Furthermore, only two of the 5000 control datasets have Veigen

255  significantly different from that of the observed evolutionary correlation matrix (Fligner-Kileen
256  test). Hence, there is little evidence for a difference between the overall evolutionary correlation
257  and the overall mutational correlation in yeast. For the fly data, the number of positive

258  eigenvalues is unlimited by the sample size for both the evolutionary and mutational correlation
259  matrices, hence we directly compared Veigen between the two matrices, but found them to be

260  similar (P = 0.459, Figner-Kileen test; Table 3). We also compared the overall integration

261  between yeast and flies using Veigen/(n-1), where n is the number of traits examined. Veigen/(n-1)
262  equals 0.157 and 0.268 for the yeast mutational and evolutionary matrices, respectively, whereas
263  the corresponding values in flies are 0.153 and 0.190, respectively.

264 In addition to the overall level of trait correlation, we asked whether the correlational
265  structure of traits exhibits different levels of modularity among divergent lineages when

266  compared with that among mutants. To this end, we used a covariance ratio (CR) test [58] that
267  compares covariance within and between pre-defined modules (see Materials and Methods).

268  Specifically, we calculated CR for the evolutionary covariance matrix and compared it to the CR
269  distribution based on 5000 mutational covariance matrices estimated from the randomly drawn
270  subsets of mutants aforementioned. We treated the three non-overlapping categories of the yeast
271  morphological traits—actin traits, nucleus traits, and cell wall traits [49]—as three modules

272  (Data S1). We found that the CR of the evolutionary covariance matrix exceeded that of every
273  control dataset (P < 0.001; Table 3), suggesting natural selection for increased modularity in

274  evolution.
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275

276  DISCUSSION

277 By comparing the trait-trait correlation across mutants (CORwm) with that across divergent
278  lineages (CORE) for 24,090 pairs of yeast cell morphology traits and 276 pairs of fly wing

279  morphology traits, we detected the action of natural selection in trait-trait coevolution. The

280  fraction of trait pairs showing evidence for selection is substantially higher in the fly (52%) than
281  yeast (28%) data (P < 104, chi-squared test). This is at least in part caused by a difference in
282  statistical power, because the number of strains/species used for estimating CORE is much

283  greater for the fly (110) than yeast (16) data. It is likely that a higher fraction than 28% of the
284  yeast trait pairs are subject to selection in their coevolution. Furthermore, our comparison

285  between CORg and COR\ intends to test selection on trait correlations common among the

286  evolutionary lineages considered. If different evolutionary lineages have different trait

287  correlations, the CORE estimated from all lineages may not be significantly different from CORm
288  even when selection occurs in some or all of the lineages. In other words, our test is expected to
289  underestimate the proportion of trait pairs subject to selection.

290 One potential biological explanation of the yeast-fly disparity in the prevalence of

291  correlational selection is divergence time: the fly species represent a group that is tens of

292  millions of years old while the yeast strains diverged from each other much more recently [53-
293 55]. It is known that genetic correlations predict evolutionary correlations better over shorter
294  timescales [38]. Similarly, selection might have had more time to decouple the pattern of

295  evolutionary divergence from the mutational input in the flies but not yet in the yeast strains.
296 While we assumed that the mutants used carry all designed or natural mutations,

297  extremely deleterious mutations such as lethal mutations are not represented. However, because
298  such mutations are quickly selectively purged in natural populations, they should only be present
299  transiently and are presumably unlikely to contribute to long-term evolution. Hence, their

300 absence from our mutant data should not qualitatively alter our results.

301 We demonstrated by simulations that various selection regimes can explain differences
302  between CORm and CORE. In particular, strengthened or reversed CORE relative to CORwm can
303  occur when a specific allometric relationship is preferred, while weakened CORE can occur

304  under directional or stabilizing selection of individual traits. A notable difference between the

305  simulation results and empirical observations is that the simulations tend to end up with extreme

10
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306  values of |CORg| (i.e., close to either 1 or 0) except in the case of neutrality, whereas the

307  empirically observed |CORg| is usually less extreme even when CORwm and CORE are

308  significantly different. This is due to the fact that the simulation results usually represent steady-
309 state correlations across lineages. That is, the mean phenotype of each lineage is at or near the
310  corresponding optimum (if any); consequently, | CORg| is close to 1 when the optimum is a line
311  and close to 0 when the optimum is a single combination of two trait values. However, the

312 population mean phenotypes may not be close to their optima in some strains because of recent
313 changes of the optima or the sparsity of mutations toward the optima, the latter of which is well
314  known as a potential hindrance to adaptation [38, 42, 43, 59]. Another possibility is the

315 existence of a wide range of preferred allometry such that there is no strong selection for extreme
316  |CORg]|. Finally, selection may not result in the preferred allometry between two traits because
317  ofthe constraints from unconsidered traits [60].

318 It is worth noting that the yeast natural strains had been cultured in synthetic media

319  before phenotyping [51] while the mutant strains were all grown in the rich medium YPD [49,
320  50]. Hence, it remains a possibility that the difference between CORg and CORwm reported here
321  contains a component caused by the environmental difference in phenotyping. Notwithstanding,
322 our analysis suggests that this component is small (see Materials and Methods), which is

323  expected because both media are meant to provide an ideal, stress-free environment for yeast
324  growth. This said, future phenotyping in the same medium will be needed to validate our

325  findings.

326 While selection was detected for many trait pairs, a large fraction of trait pairs, especially
327  in the yeast data, do not show a significant difference between CORg and CORm. These trait
328  pairs may be divided into two groups. In the first group, CORg and CORw are actually different,
329  but the difference is not found significant due to the limited statistical power. As mentioned, we
330 believe that a substantial fraction of yeast trait pairs belong to this category due to the relatively
331 low statistical power in detecting the difference between CORg and CORw in the yeast data. In
332 the second group, CORE truly equals CORwm, which could result from one of the following three
333 scenarios. First, the specific trait-trait correlation does not impact fitness so evolves neutrally.
334 Second, the two traits have an intrinsic, immutable relationship (such as the hypothetical traits of
335  body size and twice the body size), so will yield equal CORg and COR\; this possibility can be

336  tested by examining the correlation of the two traits across isogenic individuals that show non-

11
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337  heritable phenotypic variations [61]. The last and perhaps the most interesting scenario is that
338 the trait-trait correlation impacts fitness and hence has driven the optimization of CORwm via a
339  second-order selection [52, 59, 62, 63] such that the first-order selection of mutations that affect
340 the two traits is no longer needed. However, the relative frequencies of these three scenarios are
341  unknown.

342 In addition to pairwise trait correlations, we tested hypotheses regarding the evolution of
343  overall phenotypic integration and modularity. In the yeast data, we observed a higher

344  modularity across natural strains than across mutants but did not find evidence for a change of
345  overall phenotypic integration in evolution. These results support the view of increasing

346  modularity during evolution [21, 25, 45, 46, 64] but also suggest that modularity is enhanced by
347  both strengthening trait-trait correlations within modules and weakening trait-trait correlations
348  across modules. We found the overall integration lower for the fly than yeast traits, but whether
349 this observation indicates a difference between different types of traits (i.e., cellular traits and
350  multicellular organisms’ morphological traits) or between multicellular and unicellular

351  organisms requires analyzing more species and traits.

352 Our analysis compared CORwm estimated from one yeast strain (BY) with COREg estimated
353  from 16 different strains, under the assumption of a constant CORw across different strains.

354  While it is a common practice to assume that the mutational architecture is more or less constant
355  during evolution and to study phenotypic evolution by comparing mutational or genetic

356  (co)variances in one species with those among different species [53, 65, 66], genetic variations
357  affecting the genetic (co)variances of phenotypic traits have been reported [67-69]. As discussed
358 earlier, such genetic variations may allow second-order selection of CORm. For instance, it has
359  been hypothesized that the optimization of mutational (co)variances driven by selection for

360  mutational robustness and/or adaptability can lead to modularity [21, 46]. It has indeed been

361  found in the study of Drosophila gene expression traits that variational modules identified from
362  mutants can be predicted to some extent by functional grouping of genes (i.e., Gene Ontology
363  terms), although there is still much difference between functional modules and modules resulting
364  from mutational pleiotropy, suggesting that optimization of the mutational architecture is far

365  from complete even if it did take place [47]. Even without second-order selection, CORwm could
366  still vary across strains because the pleiotropic effects of a mutation can vary by the environment

367  and genetic background [19, 70, 71]. Regardless, in the future, it would be desirable to measure
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mutant phenotypes from multiple lineages to investigate whether CORwm evolves, how rapidly it
evolves, and whether its evolution is largely neutral or adaptive.

Our analysis of the yeast dataset is subject to a major limitation resulting from the
structure of the dataset. As many yeast strains are mosaic, only a small number of strains (16)
were used in our study. Most of the remaining strains fall in one clade (Fig. S1), which is the
Wine/European clade [54, 55]. That is, a substantial fraction of evolution along the yeast tree
took place on internal branch(es), which would further reduce the effective sample size [72]. As
a result, the CORE estimate may not be very accurate, and the selection test suffers from low
statistical power. It would be desirable if more non-mosaic strains from non-Wine/European
clades are included. Another caveat regarding the calculation of CORE is that correction
methods like independent contrast do not always sufficiently account for the tree structure and
can be susceptible to singular evolutionary events (e.g., shift of evolutionary rate in a clade) [73];
in our case, such a singular event could have taken place in the Wine/European clade after it had
split from other yeast strains.

In summary, we detected the action of natural selection in shaping trait-trait coevolution.
Because the traits analyzed here, especially the yeast traits, were chosen almost exclusively due
to their measurability, our results likely reflect a general picture of trait-trait coevolution.
Measuring these yeast traits in additional divergent natural strains with clear phylogenetic
positions could improve the statistical power and clarify whether the fraction of trait pairs whose
coevolution is shaped by selection is much greater than detected here. Finally, the detection of
selection for enhanced modularity of the yeast traits analyzed supports the hypothesis that
modularity is beneficial [21, 25]. The detection of selection in trait-trait coevolution and
selection for enhanced modularity suggests that the current pleiotropic structure of mutation is
not optimal. This nonoptimality could be due to the weakness of the second-order selection on
mutational structure and/or a high dependence of the optimal mutational structure on the
environment, which presumably changes frequently. Future studies on how the mutational

structure evolves will likely further enlighten the mechanism of trait-trait coevolution.

CONCLUSION
In this study, we analyzed morphological traits of yeast and flies and compared patterns

of trait-trait correlation at the levels of mutation and long-term evolution. In both datasets, we
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399  discover that the evolutionary correlation differs significantly from the mutational correlation for
400  numerous trait pairs, revealing a role of natural selection in trait-trait coevolution. We also
401  provide evidence for selection for enhanced modularity of the yeast traits. Insights gained in this

402  study can be summarized as follows:

403 1) Can trait-trait correlations in long-term evolution be explained by mutations? Our
404 analyses showed that some correlations observed across divergent lineages differ
405 significantly from correlations created by mutations. In addition, the pattern of

406 phenotypic covariance among natural yeast strains has stronger modularity (i.e.,

407 stronger within-module correlations and/or weaker between-module correlations)
408 than among mutants. These observations together indicate that selection likely played
409 a role in shaping trait correlations in long-term evolution.

410 2) What evolutionary forces drive trait-trait correlation during evolution? Our

411 simulations show how various selection regimes render the pattern of correlation

412 during evolution different from that caused by mutation. Some types of differences,
413 including strengthening and reversal of correlations, are explained by selection for an
414 optimal allometric relationship, but not selection on individual traits.

415

416 MATERIALS AND METHODS

417  Phenotypic data

418 The S. cerevisiae cell morphology traits were previously measured by analyzing

419  fluorescent microscopic images. Three phenotypic datasets were compiled and analyzed in this
420  study, including (i) 220 traits measured in 4,718 gene deletion lines that each lack an

421  nonessential gene [49], (ii) the same 220 traits measured in 37 natural strains [51], and (iii) 187
422 of the 220 traits measured in 89 mutation accumulation (MA) lines [50]. When comparing

423  patterns of trait correlation between two datasets, we used traits available in both datasets. For
424  each deletion strain, many cells (95 on average) were phenotyped, and the average trait value of
425  all these cells were used to represent the strain in our analyses.

426 Three types of traits were measured in the deletion strains and the natural strains,

427  including actin traits (i.e., measurements based on dyed actin cytoskeleton), cell wall traits (i.e.,
428  measurements based on dyed mannoprotein and cell wall markers), and nucleus traits (i.e.,

429  measurements based on dyed nuclear DNA) [49, 51]. These three categories were treated as
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430  three modules in our analysis of modularity. Only the cell membrane traits and nucleus traits
431  were measured in the MA lines [50].

432 Before the analyses, we first standardized all trait values by converting each trait value to
433  the natural log of the ratio of the original trait value to a reference such that the distributions

434  become approximately normal and suitable for the Z-test. The standardized value of the ith trait

. ) ..o Xij : .. : : :
435 in the jth strainis X; ; =In X—” , where X; ; is the original trait value and X; ,- is the trait value of

ir
436  the reference. For the gene deletion lines, the reference is the wild-type BY strain. For the MA
437  lines, the reference is the progenitor strain used in MA. For natural strains, the reference is the
438  same as the reference of the mutant strains to be compared with (i.e., wild-type BY or progenitor
439  of the MA lines).

440 The locations of 12 vein intersections on the fly wing were previously measured in 150
441  MA lines of Drosophila melanogaster and a mutational covariance matrix was estimated [9].
442  Because each intersection is described by two coordinates, which are counted as two traits, there
443 are 24 traits in this dataset. These traits were also measured in 110 Drosophilid species and an
444  evolutionary covariance matrix was estimated with species phylogeny taken into account [53].
445  Both matrices are based on log-scale trait values.

446

447  Influence of the sampling error on the correlational structure

448 To evaluate the influence of sampling error on the estimated mutational covariance

449  matrix (i.e., the M matrix) of yeast or fly, we took samples (vectors of phenotypes) from the

450  multivariate distribution of M (4,817 samples for yeast gene deletion data and 150 samples for
451  fly MA data), estimated a covariance matrix (M) from these samples, and calculated Pearson’s
452  correlation coefficient between the eigenvalues of M and M. For instance, for the yeast data, M
453  and M each has 220 eigenvalues, and we calculated the correlation between these two sets of
454  eigenvalues as a measurement of similarity between M and M. This was repeated 1,000 times
455  and the distribution of the correlation coefficient was used to evaluate the potential impact of
456  sampling error on M.

457

458  Impact of the environmental difference on the correlational structure of the yeast traits
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459 Because the natural strains of yeast had been grown in synthetic media before

460  phenotyping [51] while the mutant strains were all grown in the rich medium YPD [49, 50], we
461  tested whether this environmental difference affected the correlational structure of the yeast

462  morphological traits under consideration. Specifically, we examined whether the phenotype of
463  the BY strain grown in synthetic media (referred to as “synthetic phenotype” for short) falls in
464  the distribution of 123 biological replicates of BY grown in YPD (referred to as “YPD

465  phenotypes” for short). The phenotypes were normalized in the way described earlier with the
466  mean phenotype of the YPD replicates used as the reference. We decomposed YPD phenotypes
467  into principal components (PCs) and focused on the first three PCs, which together explained
468  67.5% of the variance among the 123 YPD phenotypes. We then calculated the values of the
469  three PC traits of the synthetic phenotype. The synthetic phenotype is in the central 95% of the
470  distribution of the YPD phenotypes for each of the three PC traits, indicating a lack of major
471  effect of the difference between synthetic and YPD media on the correlational structure of the
472  yeast traits concerned.

473

474  Comparison between mutational and evolutionary correlations

475 To take into account the phylogenetic relationships among yeast strains in estimating
476  CORg, we utilized a distance-based tree previously inferred [55] (Fig. S1). Strains with mosaic
477  origins inferred in the same study [55] were removed before analysis, resulting in 16 remaining
478  natural strains. Because the BY strain was not included in the data file in that study [55], W303,
479  alaboratory strain closely related to BY, was chosen to represent BY. We obtained the

480  evolutionary covariance matrix using the ratematrix function from the R package geiger [74,
481  75], which calculates evolutionary covariances using the independent contrast method [14]. The
482  evolutionary covariance matrix was then converted to the corresponding correlation matrix.

483 To test whether the observed pairwise trait correlation at the level of evolutionary

484  divergence is significantly different from that expected by mutation alone for each pair of traits,

485  we first converted both correlations to Z-scores by Z = % [[n(1+71) =In(1—71)], where ris

Zg—Zpy

1 + 1
ng—-3 npy-—3

487  and Zm are Z-scores converted from CORg and CORw, respectively, ng is the number of

486  the correlation coefficient. The testing statistic was then computed by Z = , where Zg

488  independent contrasts, which equals the number of natural strains minus one, and nv is the
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489  number of mutant strains. Two-sided P-value was calculated from each Z and converted to

490  adjusted P-value following the Benjamini-Hochberg procedure [76]. An adjusted P-value below
491  0.05 indicates selection.

492 To see how many trait pairs would show a significant difference between CORE and

493  CORwm under neutrality, we simulated neutral evolution along the phylogenetic tree that had been
494  used in estimating CORg. A Brownian motion model was used to simulate neutral phenotypic
495  evolution such that the amount of evolution in branch i is M;l, where M; is a vector sampled

496  from the multivariate normal distribution of the mutational covariance matrix M and [ is the

497  branch length. Sampling was performed using the rmvnorm function in the R package mvtnorm
498  [77]. The starting value of each trait is 0 in all simulations. The phenotypic value of each strain
499  was obtained by adding up the amount of evolution on all branches ancestral to the strain. This
500  was repeated 1,000 times to generate 1,000 datasets.

501 To account for the difference in Veigen caused by different sample sizes in estimating the
502  correlation matrices, we randomly sampled subsets of the gene deletion strains. Because the

503  evolutionary correlation matrix has a rank number of 15 and has 15 positive eigenvalues, each
504  subset consists of 15 strains randomly drawn from the 4718 gene deletion strains such that the
505  mutational correlation matrix computed from each subset of mutants also has 15 positive

506  eigenvalues. From each subset of strains, we computed Veigen, leading to a null distribution of
507  Veigen. The observed Viigen from the evolutionary correlation matrix is then compared with the
508  null distribution; a significant difference is inferred if the observed value falls in either the left or
509  right 2.5% tail.

510 To test whether there exists a significant modular structure among traits, we performed
511  the covariance ratio (CR) test. For each pair of predefined modules, traits were first re-ordered

512 such that traits belonging to each module were located in the upper-left and lower-right corners

tTaCe(M12M21)
Jtrace(Mi M} +trace(M;,M;,)’

513  ofthe covariance matrix, respectively, and CR = where M;, and

514 M, are the upper-right and lower-left sections of the original covariance matrix, respectively,
515  containing all between-module covariances, My, is the upper-left section with diagonal elements
516  replaced by zeros, M5, is the lower-right section with diagonal elements replaced by zeros, and
517  trace(M) denotes the trace, or the sum of diagonal elements, of matrix M [58]. Because three

518  modules were defined in the yeast data, the average of all pairwise CR values was used to
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519  represent the overall modularity. A test for selection on CR was performed following the test of
520  selection on Veigen.

521

522 Computer simulation of trait-trait coevolution under selection

523 In each simulation, we considered a pair of traits with equal amounts of mutational

524  wvariance Vm, which is set to be 0.01. The mutational covariance matrix is thus M =

Vu co VM Vy C OR M]
525 cov,, ] [VM COR,, where COVy is the mutational covariance. The number

526  of mutations is a random Poisson variable with the mean equal to 1. The phenotypic effect of a
527  mutation is drawn from the multivariate normal distribution of M using the rmvnorm function in

528  the R package mvtnorm [77]. The starting phenotype is (0, 0) in all simulations.
2
529 We considered a Gaussian fitness function of f = exp (— D?), where f'is the fitness and

530 D is the distance between the current phenotype and the optimal phenotype. When there is a

531  single fitness peak (i.e., the fitness optimum is a single point), D is the Euclidean distance

532  defined by /dlz + d,?%, where di and d are the distances between the current phenotypic values

533 ofthe two traits and their corresponding optima, respectively. When there is a fitness ridge (i.e.,

534 the fitness optimum is a line), D is the shortest distance from the current phenotype to the fitness

535  ridge. The selection coefficient s equals fL — 1, where fand fwr are the fitness values of the
wT

536  mutant and wild type, respectively. The fixation probability of a newly arisen mutant is Py =

1—exp (—25)
1—exp (—2Ngs)

537 in a haploid population [78], where the effective population size Ne was set at 10%.

538  After each unit time, the phenotypic effect of each mutation is added to the population mean with

539  aprobability of N, Pf; this probability is treated as 1 when N.Pr > 1 or when there is no

540  selection as in the latter case Py = Ni Combinations of parameters used in the simulations are
e

541  listed in Table 2.

542 In simulations where different lineages were assigned different optima, each lineage’s
543  optimum was obtained by independently drawing the optimal values of the two traits from the
544  standard normal distribution. Before conducting simulations, we confirmed that the optima of
545  the two traits are not correlated (correlation coefficient = 0.0882, P = 0.54, t-test).

546
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547  Computer simulation of trait-trait coevolution under mutational bias

548 To investigate the effect of mutational bias on trait correlation, we introduced the bias
549  coefficient B. Each mutation, after being sampled from a multivariate normal distribution

550  described above, was rescaled using B. Let the mutational effect be m = (m1, mz), where m and
551  my are the effects on trait 1 and trait 2, respectively. The rescaled mutational effect, M, is

552 obtained by

mB (m; > 0)
. = m
553 m ™ my < 0)
B
554 Because mutational effects are first drawn from a pre-set multivariate normal distribution

555  and then rescaled, we examined if CORw estimated from the rescaled effects (CORy,) is different
556  from the pre-set value of CORwm. For each pre-set value of CORwm, we obtained

557 CT)?TM from 5,000 rescaled mutations. This was repeated 200 times with different random

558  mutations, yielding 200 COR,, estimates. A series of different B values were used in the

559  simulation (Table S2). For comparison, we also estimated B from yeast gene deletion lines and
560  found the maximal B of any trait to be 1.503. To estimate B for a trait from the yeast gene

561  deletion lines, we respectively calculated the mean trait value of all deletion lines with positive
562 trait values and mean trait value of all deletion lines with negative values. We then computed the
563  ratio of their absolute values with the greater absolute value used as the numerator. The square
564  root of the ratio is B. We found that COR\ is always near the center of the distribution of these
565 200 COR,, estimates (Table S2). Hence, mutational bias will not bias our test.

566 All analyses in this study were conducted in R [79].

567
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Table 1. Numbers of trait pairs with significantly different CORe and CORwm in the yeast and fly data.
Yeast Fly (276 trait pairs)
CORwM from gene CORwm from MA lines

deletion lines (24,090
trait pairs)

(17,391 trait pairs)

Obse Expe Fracti

Obse Expe Fracti Obse Expe Fracti

rved® cted® on® rved cted on rved cted on
Strengthened 2727 145 3% 2395 17 3.5% 68 0 0%
Weakened 1221 78 1.4% 1348 6 0.1% 48 0 0%
Reversed 2795 51 0% 1403 2 0% 28 0 0%
Total 6743 302.5 0.7% 5146 31 0.7% 144 0 0%

*Number of trait pairs with significantly different CORm and CORE inferred by a Z-test.
"Number of trait pairs that show a significant difference between CORm and CORe derived from neutral Brownian

motion simulations. The median from 1000 simulations is shown.

°Fraction of the 1000 Brownian motion simulations where the number of trait pairs with significantly different

CORwM and CORE exceeds the number under the “observed” column.
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798 Table 2. Parameters and results of simulations of trait-trait coevolution.

Optimum CORMm Median CORE at the  Fraction of CORE compared
end of simulation simulations with with CORwm
CORE > CORMm
No optimum 0.9 0.900 49.5% No difference
0.5 0.495 47.5% No difference
0.1 0.113 55.5% No difference
y=x" 0.9 1.000 100% Strengthened
0.5 1.000 100% Strengthened
0.1 1.000 100% Strengthened
y=0.5x 0.9 1.000 100% Strengthened
0.5 1.000 100% Strengthened
0.1 1.000 100% Strengthened
y=-0.5x 0.9 -0.995 0% Reversed
0.5 -0.999 0% Reversed
0.1 -1.000 0% Reversed
y=-x 0.9 -0.997 0% Reversed
0.5 -0.999 0% Reversed
0.1 -1.000 0% Reversed
(0, 0) 0.9 0.0213 0% Weakened
0.5 0.00142 0.5% Weakened
0.1 -0.0109 24% No difference
Drawn from N(0,1) 0.9 0.0895 0% Weakened
0.5 0.0874 0% Weakened
0.1 0.0866 6% No difference
799 “x and y respectively represent the values of the two traits considered.
800
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802
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803 Table 3. Overall phenotypic integration (Veigen) and modularity (CR) at the levels of mutation
804 and evolutionary divergence. Values at the level of mutation for yeast are medians of 1,000
805 control datasets. P-values for yeast are computed from locations of the observed values in the
806 corresponding distributions of 5000 control datasets, while the P-value for fly is from a

807  Fligner-Killeen test.

Statistic Taxon Mutation Divergence P-value
Veigen Yeast 34.414 58.656 0.0788
Fly 3.530 4.359 0.459
CR Yeast 0.649 0.997 <0.001
808
809
810
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Figure legends

Figure 1. Mutational (CORw) and evolutionary (CORE) correlations for all pairs of the 220 yeast
morphological traits. CORw is based on yeast gene deletion lines. (A) CORwm (upper triangle)
and CORE (lower triangle) for all pairs of traits ordered according to their IDs. (B) Frequency
distributions of CORwm and CORE across all trait pairs. The two distributions are significantly

different (P < 10"'°, Kolmogorov—Smirnov test).

Figure 2. Examples of yeast trait pairs with CORE significantly different from the corresponding
CORwMm. (A) An example of evolutionarily strengthened correlation. (B) An example of
evolutionarily weakened correlation. (C) An example of evolutionarily reversed correlation.
Each blue dot represents a gene deletion line (a.k.a. mutant) while each red dot represents an
independent contrast derived from natural strains. Blue and red lines are linear regressions
between the standardized values of the two traits in mutants and independent contrasts,
respectively, while the dotted blackline shows the diagonal (y = x). Trait IDs are shown along
the axes. All CORv and CORg values shown are significantly different from 0 except when

indicated by “NS” in the parentheses.

Figure 3. Schematic illustration of predictions made by models of trait-trait coevolution. Each
circle represents the equilibrium mean phenotype of two hypothetical traits (trait 1 and trait 2) of
a diverging lineage. (A) When a specific allometric relationship is selectively favored, the
population mean phenotypes are distributed along the fitness ridge (i.e., the optimal allometric
line shown in red), resulting in a strong trait correlation across lineages. (B) When a specific
value is selectively favored for each trait, the population mean phenotypes are concentrated near
the optimal phenotype (marked by the red cross) and the trait correlation across lineages is weak.
(C) When different lineages have different optimal phenotypes (marked by red crosses) that are

randomly distributed, the trait correlation across lineages is weak.
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