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ABSTRACT 40 

No phenotypic trait evolves independently of all other traits, but the cause of trait-trait 41 

coevolution is poorly understood.  While the coevolution could arise simply from pleiotropic 42 

mutations that simultaneously affect the traits concerned, it could also result from multivariate 43 

natural selection favoring certain trait relationships.  To gain a general mechanistic 44 

understanding of trait-trait coevolution, we examine the evolution of 220 cell morphology traits 45 

across 16 natural strains of the yeast Saccharomyces cerevisiae and the evolution of 24 wing 46 

morphology traits across 110 fly species of the family Drosophilidae, along with the variations of 47 

these traits among gene deletion or mutation accumulation lines (a.k.a. mutants).  For numerous 48 

trait pairs, the phenotypic correlation among evolutionary lineages differs significantly from that 49 

among mutants.  Specifically, we find hundreds of cases where the evolutionary correlation 50 

between traits is strengthened or reversed relative to the mutational correlation, which, according 51 

to our population genetic simulation, is likely caused by multivariate selection.  Furthermore, we 52 

detect selection for enhanced modularity of the yeast traits analyzed.  Together, these results 53 

demonstrate that trait-trait coevolution is shaped by natural selection and suggest that the 54 

pleiotropic structure of mutation is not optimal.  Because the morphological traits analyzed here 55 

are chosen largely because of their measurability and thereby are not expected to be biased with 56 

regard to natural selection, our conclusion is likely general. 57 

  58 
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BACKGROUND 59 

Many phenotypic traits covary during evolution.  For example, the logarithm of brain 60 

weight and that of body weight show a nearly perfect linear relationship across mammals [1, 2].  61 

In theory, four processes may explain such trait-trait coevolution.  First, it could arise simply 62 

from pleiotropic mutations that simultaneously influence these traits with a more or less constant 63 

ratio of effects [3-5], as has been previously shown empirically [6-10].  Second, trait covariation 64 

could arise from the linkage disequilibrium between genes controlling these traits [5, 11-13], but 65 

such trait covariation is expected to be restricted to closely related individuals due to the 66 

deterioration of linkage disequilibrium as a result of recombination.  If the linkage disequilibrium 67 

is stably maintained due to, for example, chromosomal inversion, the involved linked genes can 68 

be regarded as a supergene with mutational pleiotropy [13].  For this reason, linkage 69 

disequilibrium is negligible except for trait covariation among closely related individuals.  Third, 70 

shared ancestry can also create apparent trait correlations across lineages, which, however, can 71 

be explained away when the phylogenetic relationships are taken into account in correlation 72 

analysis [14].  Finally, trait covariation could be a result of natural selection for particular trait 73 

relationships that are advantageous, a phenomenon known as correlational selection or 74 

multivariate selection [2, 15-20].   75 

Despite a long-standing interest in trait correlation in evolution [2, 13, 21], which is also 76 

referred to as phenotypic integration in the literature [22, 23], our understanding of the roles of 77 

mutation and selection in trait-trait coevolution remains limited.  Most studies on the subject 78 

focused on a small number of traits that are physiologically or ecologically important [24], such 79 

as skull anatomy characters [25-30], behavioral syndrome (i.e., sets of correlated behavioral 80 

traits) [31, 32], and ecological or organismal traits correlated with the metabolic rate [33-37]; 81 

hence, they may not provide a general, unbiased picture of trait-trait coevolution.  Additionally, 82 

it is the trait correlation resulting from standing genetic variation and its effect on adaptation that 83 

have received the most attention [38-44].  But, because standing genetic variation could have 84 

been influenced by selection [40], the resulting trait correlation may not inform the correlation 85 

produced by mutation.  Not knowing the mutational correlation hinders a full understanding of 86 

the contribution of selection.  87 

Related to trait-trait correlation is the concept of modularity.  It has been hypothesized 88 

that it is beneficial for organisms to have a modular organization such that functionally related 89 
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traits belonging to the same module covary and genotypes and/or phenotypes that lead to low 90 

fitness are less likely to occur [21, 25, 45-47].  Although modularity is a well-recognized feature 91 

of many trait correlation networks, the relative contribution of selection and mutational 92 

pleiotropy to modularity has not been assessed at the phenome scale [46-48].  93 

To gain a general mechanistic understanding of trait-trait coevolution, we study the 94 

phenotypic correlations for a large number of trait pairs at the levels of mutation and long-term 95 

evolution; natural selection is inferred when the evolutionary correlation between traits cannot be 96 

fully explained by the mutational correlation.  We also ask if the overall pattern of trait 97 

correlation (i.e., phenotypic integration) differ at the two levels.  Our primary data include 220 98 

cell morphology traits of the budding yeast Saccharomyces cerevisiae that have been measured 99 

in 4817 single-gene deletion lines [49], 89 mutation accumulation (MA) lines (for a subset of 100 

187 traits) [50], and 16 natural strains with clear phylogenetic relationships [49, 51].  These traits 101 

were quantified from fluorescent microscopic images of triple-stained cells and were originally 102 

chosen for study because of their measurability regardless of potential roles in evolution and 103 

adaptation [49].  Subsequent studies found that these cell morphological traits are correlated with 104 

the yeast mitotic growth rate (i.e., a proxy for fitness) to varying degrees [7].  Hence, these traits 105 

may be considered representatives of phenotypic traits that have different contributions to 106 

fitness.  Previous analyses of these traits among natural strains unveiled signals of positive 107 

selection on individual traits [52], but their potential coevolution has not been studied.  While 108 

studying these trait pairs can offer a general picture of trait-trait coevolution, we recognize that 109 

the selective agent would be hard to identify should selection be detected, because the biological 110 

functions of these traits (other than correlations with the growth rate) are generally unknown 111 

[52].  To verify the generality of the findings from the yeast traits, we analyze another dataset 112 

that includes 12 landmark vein intersections on the fly wings that have been measured in 150 113 

MA lines of Drosophila melanogaster [9] and 110 Drosophilid species [53].  At last, using 114 

computer simulations, we demonstrate how certain regimes of selection could explain the 115 

observed differences between mutational and evolutionary correlations.  116 

    117 

RESULTS 118 

Evolutionary correlations differ from mutational correlations for many trait pairs 119 
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To investigate if trait correlations in evolution can be fully accounted for by the 120 

correlations generated by mutation, we examined all pairs of the 220 yeast cell morphology traits 121 

previously measured.  For each pair of traits, we computed the mutational correlation CORM, 122 

defined as Pearson’s correlation coefficient across 4,817 gene deletion lines (upper triangle in 123 

Fig. 1A, Data S1), and evolutionary correlation CORE, defined as Pearson’s correlation 124 

coefficient across 16 natural strains (lower triangle in Fig. 1A, Data S1) with their phylogenetic 125 

relationships (Fig. S1) taken into account (see Materials and Methods).  Note that the original 126 

data contained 37 natural strains [51], of which 21 belong to the “mosaic” group [54, 55]—their 127 

phylogenetic relationships with other S. cereviase strains vary among genomic regions—so 128 

cannot be included in our analysis that requires considering phylogenetic relationships. 129 

We found that the frequency distribution of CORE across all trait pairs differs 130 

significantly from that of CORM (Fig. 1B), suggesting the action of selection.  For each pair of 131 

traits, we transformed the CORM and CORE to Z-scores using Fisher’s r-to-Z transformation and 132 

conducted Z-test to determine whether the two correlations are significantly different.  Of the 133 

24,090 trait pairs examined, 6743 pairs (or 28.0%) have a CORE that deviates significantly from 134 

CORM at the false discovery rate (FDR) of 5% (Table 1, Data S1), suggesting that natural 135 

selection has shaped the coevolution of many trait pairs.  To investigate whether the above result 136 

is biased because of the use of each trait in many trait pairs, we randomly arranged the 220 traits 137 

into 110 non-overlapping pairs and counted the number of pairs with CORE significantly 138 

different from CORM.  This was repeated 1,000 times to yield 1,000 estimates of the proportion 139 

of trait pairs with significantly different CORE and CORM.  The middle 95% of these estimates 140 

ranged from 14.5% to 40.1%, with the median estimate being 28.2%, almost identical to the 141 

result (28.0%) from all pairwise comparisons.  Hence, there is no indication that using 142 

overlapping trait pairs has biased the estimate of the fraction of trait pairs with significantly 143 

different CORE and CORM.      144 

To further test selection, we simulated neutral evolution along the yeast tree 1000 times 145 

under a Brownian motion model with the observed mutational covariance matrix M used as the 146 

mutational input, generating 1,000 simulated datasets.  Before the simulation, we confirmed that 147 

the sampling error of our estimated M is negligible, likely because of the large number of 148 

mutants used in M estimation (Table S1; see Materials and Methods).  From each simulated 149 

dataset, we calculated the number of trait pairs with CORE significantly different from CORM.  150 
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Only in 0.7% of the simulated data did we find this number equal to or greater than that from the 151 

actual data (Table 1), indicating that the observed evolutionary correlations between traits 152 

cannot be explained by the neutral Brownian motion model.  The distribution of mutational 153 

effects can be asymmetric and skewed [56] while it is assumed normal in the Brownian motion 154 

model.  Nevertheless, simulations showed that mutational bias will not render CORE deviate 155 

from CORM in the absence of selection and will not enlarge the variance of CORE (Table S2; see 156 

Materials and Methods).   157 

We divided the 6743 cases of significantly different CORE and CORM into three 158 

categories.  In the first category, the trait correlation generated by mutation is strengthened by 159 

natural selection during evolution.  A total of 2,727 trait pairs are considered to belong to this 160 

“strengthened” category (Table 1) because they satisfy the following criteria: CORE and CORM 161 

have the same sign and |𝐶𝑂𝑅!| > |𝐶𝑂𝑅"|, or CORE and CORM have different signs but only 162 

CORE is significantly different from 0 (at the nominal P-value of 0.05) (Fig. 2A).  In the second 163 

category, the trait correlation generated by mutation is weakened by natural selection during 164 

evolution.  A total of 1,221 trait pairs satisfying the following criteria are classified into this 165 

“weakened” category (Table 1): CORE and CORM have the same sign and |𝐶𝑂𝑅!| < |𝐶𝑂𝑅"|, or 166 

CORE and CORM have different signs but only CORM is significantly different from 0 (Fig. 2B).  167 

In the last category, the trait correlation generated by mutation is reversed in sign by natural 168 

selection during evolution.  A total of 2,795 trait pairs satisfying the following criteria are in this 169 

“reversed” category (Table 1): CORE and CORM have different signs and are both significantly 170 

different from 0 (Fig. 2C). 171 

To assess the robustness of the selection signals detected, we repeated the above analysis 172 

using CORM estimated from 89 mutation accumulation (MA) lines [43] (Fig. S2A, Data S1).  173 

Again, the overall frequency distribution across all trait pairs differs significantly between 𝐶𝑂𝑅! 174 

and 𝐶𝑂𝑅" (Fig. S2B).  We found that 5,146 trait pairs exhibit a significantly different CORE 175 

from the corresponding 𝐶𝑂𝑅" (Table 1, Data S1), supporting a role of selection in the 176 

coevolution of many trait pairs.  When comparing the analysis using CORM from gene deletion 177 

lines and that using CORM from MA lines, we found 990 trait pairs to exhibit selection signals 178 

and fall into the same category in both analyses, including 275 pairs in the “strengthened” 179 

category, 223 pairs in the “weakened” category, and 574 pairs in the “reversed” category.  All of 180 

these numbers substantially exceed the corresponding expected random overlaps (P < 0.001 181 
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based on 1,000 random draws in each case; the medians across the 1,000 draws are 271, 68 and 182 

163, respectively), suggesting the reliability of both analyses.  Although mutations in MA lines 183 

are more natural than those in gene deletion lines, the number of MA lines is much smaller than 184 

the number of gene deletion lines and only 187 of the original 220 traits were measured in the 185 

MA lines.  For these reasons, we focused on the CORM estimated from the gene deletion lines in 186 

subsequent analyses.  187 

To examine the generality of the above yeast-based findings, we analyzed the 24 wing 188 

morphology traits of Drosophilid flies.  The CORM and CORE have been previously estimated 189 

from 150 MA lines [9] and 110 Drosophilid species, respectively (Fig. S3A, Data S1).  The 190 

overall frequency distribution across all trait pairs differs significantly between 𝐶𝑂𝑅! and 𝐶𝑂𝑅" 191 

(Fig. S3B).  Of the 276 pairs of traits, 144 (52.2%) showed a significant difference between 192 

CORE and CORM (Table 1, Data S1), indicating widespread actions of selection in the 193 

coevolution of fly wing morphology traits.  194 

Together, these results demonstrate that, for many trait pairs, mutational and evolutionary 195 

correlations between morphological traits are more different than expected under neutrality.  196 

This observation suggests an important role of selection in shaping the strength and/or direction 197 

of trait correlation in evolution. 198 

 199 

Effects of different selection regimes on trait-trait coevolution 200 

The strengthened, weakened, and reversed trait correlations in evolution may have 201 

resulted from different selection regimes.  Below we consider various selection regimes that 202 

could potentially explain these types of difference between CORM and CORE (Fig. 3).  First, 203 

when a specific allometric relationship between two traits is selectively favored, the population 204 

mean trait values are expected to be concentrated near the fitness ridge or the optimal allometric 205 

line, resulting in a strong evolutionary correlation between the traits (i.e., a high |𝐶𝑂𝑅!|) (Fig. 206 

3A).  Unless CORM is already similar to CORE, we expect to see strengthened or reversed CORE 207 

depending on CORM.  Second, if there is a single fitness peak for an optimal combination of trait 208 

values and if there is sufficiently strong stabilizing selection on the optimal phenotype, the 209 

population mean phenotype should be restricted within a small range of the optimal phenotype in 210 

all directions in the phenotypic space regardless of the mutational variance.  Consequently, 211 

CORE is expected to be close to 0, which could account for a weakened evolutionary correlation 212 
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relative to the mutational correlation (Fig. 3B).  Finally, if the fitness optimum varies across 213 

lineages in a random fashion, the steady-state CORE	will be close to zero, potentially leading to 214 

the weakening of the evolutionary correlation relative to the mutational correlation (Fig. 3C). 215 

To verify these predictions, we simulated the evolution of two traits.  Under each 216 

parameter set, we simulated 50 independent replicate lineages and computed the correlation 217 

coefficient, or CORE, between the traits across the replicate lineages at the end of the simulated 218 

evolution.  This was repeated 200 times to obtain an empirical distribution of CORE.  To evaluate 219 

the difference between CORM and CORE, we examined the location of CORM in the distribution 220 

of CORE; a significant (P < 0.05) difference is inferred if CORM is in the left or right 2.5% tail of 221 

the CORE distribution. 222 

As expected, in the absence of selection, the distribution of CORE is centered around 223 

CORM (first block in Table 2).  When a specific allometric relationship is selectively favored, a 224 

high |CORE| always emerges regardless of the CORM used, resulting in either strengthened or 225 

reversed evolutionary correlations (P < 0.005 for all parameter sets examined; the second to fifth 226 

blocks in Table 2).  By contrast, stabilizing selection of an optimal phenotype leads to weakened 227 

correlation across replicate lineages when |𝐶𝑂𝑅"| is not small (sixth block in Table 2).  Finally, 228 

when different lineages have different phenotypic optima that are randomly picked from the 229 

standard bivariate normal distribution, weakened evolutionary correlations are generally 230 

observed except when CORM is close to zero (bottom block in Table 2).  These results suggest 231 

that the strengthened and reversed evolutionary correlations of yeast and fly morphological traits 232 

are likely caused by selections of allometric relationships, while the weakened correlations are 233 

likely caused by selections of individual traits either when there is a single optimal phenotype or 234 

when the optimal phenotype randomly varies among lineages.  235 

 236 

Selection for enhanced modularity of yeast morphological traits 237 

While all of the above analyses focused on individual trait pairs, here we ask whether the 238 

overall trait correlation across divergent lineages is stronger or weaker than that created by 239 

mutation.  As a measure of the overall level of trait correlation (i.e., overall integration), we 240 

calculated the variance of eigenvalues (Veigen) of the correlation matrix from divergent lineages 241 

and mutants, respectively.  A greater Veigen corresponds to a stronger overall correlation between 242 

traits because the eigenvalues become less evenly distributed as the absolute values of the 243 
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correlation coefficients become larger [57].  However, the sample size (i.e., the number of 244 

strains) in the estimation of the correlation matrix also influences Veigen; a matrix estimated from 245 

a smaller sample naturally tends to have fewer positive eigenvalues and greater Veigen.  To 246 

exclude the influence of this factor, we randomly sampled the mutant strains to obtain 5000 247 

control datasets.  Because the rank number of the evolutionary correlation matrix is 15 for the 248 

yeast data (i.e., 15 positive eigenvalues), each control dataset also consists of 15 randomly drawn 249 

strains such that the corresponding mutational correlation matrix also has 15 positive 250 

eigenvalues.  We examined the location of the observed Veigen in this distribution and computed a 251 

P-value based on this location (see Materials and Methods).  For the yeast traits, Veigen of the 252 

observed evolutionary correlation matrix exceeds that in 96% of control datasets (P = 0.08 in a 253 

two-tailed test; Table 3).  Furthermore, only two of the 5000 control datasets have Veigen 254 

significantly different from that of the observed evolutionary correlation matrix (Fligner-Kileen 255 

test).  Hence, there is little evidence for a difference between the overall evolutionary correlation 256 

and the overall mutational correlation in yeast.  For the fly data, the number of positive 257 

eigenvalues is unlimited by the sample size for both the evolutionary and mutational correlation 258 

matrices, hence we directly compared Veigen between the two matrices, but found them to be 259 

similar (P = 0.459, Figner-Kileen test; Table 3).  We also compared the overall integration 260 

between yeast and flies using Veigen/(n-1), where n is the number of traits examined.  Veigen/(n-1) 261 

equals 0.157 and 0.268 for the yeast mutational and evolutionary matrices, respectively, whereas 262 

the corresponding values in flies are 0.153 and 0.190, respectively. 263 

In addition to the overall level of trait correlation, we asked whether the correlational 264 

structure of traits exhibits different levels of modularity among divergent lineages when 265 

compared with that among mutants.  To this end, we used a covariance ratio (CR) test [58] that 266 

compares covariance within and between pre-defined modules (see Materials and Methods).  267 

Specifically, we calculated CR for the evolutionary covariance matrix and compared it to the CR 268 

distribution based on 5000 mutational covariance matrices estimated from the randomly drawn 269 

subsets of mutants aforementioned.  We treated the three non-overlapping categories of the yeast 270 

morphological traits—actin traits, nucleus traits, and cell wall traits [49]—as three modules 271 

(Data S1).  We found that the CR of the evolutionary covariance matrix exceeded that of every 272 

control dataset (P < 0.001; Table 3), suggesting natural selection for increased modularity in 273 

evolution. 274 
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 275 

DISCUSSION 276 

By comparing the trait-trait correlation across mutants (CORM) with that across divergent 277 

lineages (CORE) for 24,090 pairs of yeast cell morphology traits and 276 pairs of fly wing 278 

morphology traits, we detected the action of natural selection in trait-trait coevolution.  The 279 

fraction of trait pairs showing evidence for selection is substantially higher in the fly (52%) than 280 

yeast (28%) data (P < 10-4, chi-squared test).  This is at least in part caused by a difference in 281 

statistical power, because the number of strains/species used for estimating CORE is much 282 

greater for the fly (110) than yeast (16) data.  It is likely that a higher fraction than 28% of the 283 

yeast trait pairs are subject to selection in their coevolution.  Furthermore, our comparison 284 

between CORE and CORM intends to test selection on trait correlations common among the 285 

evolutionary lineages considered.  If different evolutionary lineages have different trait 286 

correlations, the CORE estimated from all lineages may not be significantly different from CORM 287 

even when selection occurs in some or all of the lineages.  In other words, our test is expected to 288 

underestimate the proportion of trait pairs subject to selection.   289 

One potential biological explanation of the yeast-fly disparity in the prevalence of 290 

correlational selection is divergence time: the fly species represent a group that is tens of 291 

millions of years old while the yeast strains diverged from each other much more recently [53-292 

55].  It is known that genetic correlations predict evolutionary correlations better over shorter 293 

timescales [38].  Similarly, selection might have had more time to decouple the pattern of 294 

evolutionary divergence from the mutational input in the flies but not yet in the yeast strains.  295 

While we assumed that the mutants used carry all designed or natural mutations, 296 

extremely deleterious mutations such as lethal mutations are not represented.  However, because 297 

such mutations are quickly selectively purged in natural populations, they should only be present 298 

transiently and are presumably unlikely to contribute to long-term evolution.  Hence, their 299 

absence from our mutant data should not qualitatively alter our results. 300 

We demonstrated by simulations that various selection regimes can explain differences 301 

between CORM and CORE.  In particular, strengthened or reversed CORE relative to CORM can 302 

occur when a specific allometric relationship is preferred, while weakened CORE can occur 303 

under directional or stabilizing selection of individual traits.  A notable difference between the 304 

simulation results and empirical observations is that the simulations tend to end up with extreme 305 
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values of |𝐶𝑂𝑅!| (i.e., close to either 1 or 0) except in the case of neutrality, whereas the 306 

empirically observed |𝐶𝑂𝑅!| is usually less extreme even when CORM and CORE are 307 

significantly different.  This is due to the fact that the simulation results usually represent steady-308 

state correlations across lineages.  That is, the mean phenotype of each lineage is at or near the 309 

corresponding optimum (if any); consequently, |𝐶𝑂𝑅!| is close to 1 when the optimum is a line 310 

and close to 0 when the optimum is a single combination of two trait values.  However, the 311 

population mean phenotypes may not be close to their optima in some strains because of recent 312 

changes of the optima or the sparsity of mutations toward the optima, the latter of which is well 313 

known as a potential hindrance to adaptation [38, 42, 43, 59].  Another possibility is the 314 

existence of a wide range of preferred allometry such that there is no strong selection for extreme 315 

|𝐶𝑂𝑅!|.  Finally, selection may not result in the preferred allometry between two traits because 316 

of the constraints from unconsidered traits [60].    317 

It is worth noting that the yeast natural strains had been cultured in synthetic media 318 

before phenotyping [51] while the mutant strains were all grown in the rich medium YPD [49, 319 

50].  Hence, it remains a possibility that the difference between CORE and CORM reported here 320 

contains a component caused by the environmental difference in phenotyping.  Notwithstanding, 321 

our analysis suggests that this component is small (see Materials and Methods), which is 322 

expected because both media are meant to provide an ideal, stress-free environment for yeast 323 

growth.  This said, future phenotyping in the same medium will be needed to validate our 324 

findings. 325 

While selection was detected for many trait pairs, a large fraction of trait pairs, especially 326 

in the yeast data, do not show a significant difference between CORE and CORM.  These trait 327 

pairs may be divided into two groups.  In the first group, CORE and CORM are actually different, 328 

but the difference is not found significant due to the limited statistical power.  As mentioned, we 329 

believe that a substantial fraction of yeast trait pairs belong to this category due to the relatively 330 

low statistical power in detecting the difference between CORE and CORM in the yeast data.  In 331 

the second group, CORE truly equals CORM, which could result from one of the following three 332 

scenarios.  First, the specific trait-trait correlation does not impact fitness so evolves neutrally.  333 

Second, the two traits have an intrinsic, immutable relationship (such as the hypothetical traits of 334 

body size and twice the body size), so will yield equal CORE and CORM; this possibility can be 335 

tested by examining the correlation of the two traits across isogenic individuals that show non-336 
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heritable phenotypic variations [61].  The last and perhaps the most interesting scenario is that 337 

the trait-trait correlation impacts fitness and hence has driven the optimization of CORM via a 338 

second-order selection [52, 59, 62, 63] such that the first-order selection of mutations that affect 339 

the two traits is no longer needed.  However, the relative frequencies of these three scenarios are 340 

unknown.   341 

In addition to pairwise trait correlations, we tested hypotheses regarding the evolution of 342 

overall phenotypic integration and modularity.  In the yeast data, we observed a higher 343 

modularity across natural strains than across mutants but did not find evidence for a change of 344 

overall phenotypic integration in evolution.  These results support the view of increasing 345 

modularity during evolution [21, 25, 45, 46, 64] but also suggest that modularity is enhanced by 346 

both strengthening trait-trait correlations within modules and weakening trait-trait correlations 347 

across modules.  We found the overall integration lower for the fly than yeast traits, but whether 348 

this observation indicates a difference between different types of traits (i.e., cellular traits and 349 

multicellular organisms’ morphological traits) or between multicellular and unicellular 350 

organisms requires analyzing more species and traits.  351 

Our analysis compared CORM estimated from one yeast strain (BY) with CORE estimated 352 

from 16 different strains, under the assumption of a constant CORM across different strains.  353 

While it is a common practice to assume that the mutational architecture is more or less constant 354 

during evolution and to study phenotypic evolution by comparing mutational or genetic 355 

(co)variances in one species with those among different species [53, 65, 66], genetic variations 356 

affecting the genetic (co)variances of phenotypic traits have been reported [67-69].  As discussed 357 

earlier, such genetic variations may allow second-order selection of CORM.  For instance, it has 358 

been hypothesized that the optimization of mutational (co)variances driven by selection for 359 

mutational robustness and/or adaptability can lead to modularity [21, 46].  It has indeed been 360 

found in the study of Drosophila gene expression traits that variational modules identified from 361 

mutants can be predicted to some extent by functional grouping of genes (i.e., Gene Ontology 362 

terms), although there is still much difference between functional modules and modules resulting 363 

from mutational pleiotropy, suggesting that optimization of the mutational architecture is far 364 

from complete even if it did take place [47].  Even without second-order selection, CORM could 365 

still vary across strains because the pleiotropic effects of a mutation can vary by the environment 366 

and genetic background [19, 70, 71].  Regardless, in the future, it would be desirable to measure 367 
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mutant phenotypes from multiple lineages to investigate whether CORM evolves, how rapidly it 368 

evolves, and whether its evolution is largely neutral or adaptive.  369 

Our analysis of the yeast dataset is subject to a major limitation resulting from the 370 

structure of the dataset.  As many yeast strains are mosaic, only a small number of strains (16) 371 

were used in our study.  Most of the remaining strains fall in one clade (Fig. S1), which is the 372 

Wine/European clade [54, 55].  That is, a substantial fraction of evolution along the yeast tree 373 

took place on internal branch(es), which would further reduce the effective sample size [72].  As 374 

a result, the CORE estimate may not be very accurate, and the selection test suffers from low 375 

statistical power.  It would be desirable if more non-mosaic strains from non-Wine/European 376 

clades are included.  Another caveat regarding the calculation of CORE is that correction 377 

methods like independent contrast do not always sufficiently account for the tree structure and 378 

can be susceptible to singular evolutionary events (e.g., shift of evolutionary rate in a clade) [73]; 379 

in our case, such a singular event could have taken place in the Wine/European clade after it had 380 

split from other yeast strains.  381 

In summary, we detected the action of natural selection in shaping trait-trait coevolution.  382 

Because the traits analyzed here, especially the yeast traits, were chosen almost exclusively due 383 

to their measurability, our results likely reflect a general picture of trait-trait coevolution.  384 

Measuring these yeast traits in additional divergent natural strains with clear phylogenetic 385 

positions could improve the statistical power and clarify whether the fraction of trait pairs whose 386 

coevolution is shaped by selection is much greater than detected here.  Finally, the detection of 387 

selection for enhanced modularity of the yeast traits analyzed supports the hypothesis that 388 

modularity is beneficial [21, 25].  The detection of selection in trait-trait coevolution and 389 

selection for enhanced modularity suggests that the current pleiotropic structure of mutation is 390 

not optimal.  This nonoptimality could be due to the weakness of the second-order selection on 391 

mutational structure and/or a high dependence of the optimal mutational structure on the 392 

environment, which presumably changes frequently.  Future studies on how the mutational 393 

structure evolves will likely further enlighten the mechanism of trait-trait coevolution.  394 

 395 

CONCLUSION 396 

In this study, we analyzed morphological traits of yeast and flies and compared patterns 397 

of trait-trait correlation at the levels of mutation and long-term evolution.  In both datasets, we 398 
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discover that the evolutionary correlation differs significantly from the mutational correlation for 399 

numerous trait pairs, revealing a role of natural selection in trait-trait coevolution.  We also 400 

provide evidence for selection for enhanced modularity of the yeast traits.  Insights gained in this 401 

study can be summarized as follows: 402 

1) Can trait-trait correlations in long-term evolution be explained by mutations?  Our 403 

analyses showed that some correlations observed across divergent lineages differ 404 

significantly from correlations created by mutations.  In addition, the pattern of 405 

phenotypic covariance among natural yeast strains has stronger modularity (i.e., 406 

stronger within-module correlations and/or weaker between-module correlations) 407 

than among mutants.  These observations together indicate that selection likely played 408 

a role in shaping trait correlations in long-term evolution.   409 

2) What evolutionary forces drive trait-trait correlation during evolution?  Our 410 

simulations show how various selection regimes render the pattern of correlation 411 

during evolution different from that caused by mutation.  Some types of differences, 412 

including strengthening and reversal of correlations, are explained by selection for an 413 

optimal allometric relationship, but not selection on individual traits. 414 

 415 

MATERIALS AND METHODS 416 

Phenotypic data 417 

The S. cerevisiae cell morphology traits were previously measured by analyzing 418 

fluorescent microscopic images.  Three phenotypic datasets were compiled and analyzed in this 419 

study, including (i) 220 traits measured in 4,718 gene deletion lines that each lack an 420 

nonessential gene [49], (ii) the same 220 traits measured in 37 natural strains [51], and (iii) 187 421 

of the 220 traits measured in 89 mutation accumulation (MA) lines [50].  When comparing 422 

patterns of trait correlation between two datasets, we used traits available in both datasets.  For 423 

each deletion strain, many cells (95 on average) were phenotyped, and the average trait value of 424 

all these cells were used to represent the strain in our analyses.   425 

Three types of traits were measured in the deletion strains and the natural strains, 426 

including actin traits (i.e., measurements based on dyed actin cytoskeleton), cell wall traits (i.e., 427 

measurements based on dyed mannoprotein and cell wall markers), and nucleus traits (i.e., 428 

measurements based on dyed nuclear DNA) [49, 51].  These three categories were treated as 429 
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three modules in our analysis of modularity.  Only the cell membrane traits and nucleus traits 430 

were measured in the MA lines [50]. 431 

Before the analyses, we first standardized all trait values by converting each trait value to 432 

the natural log of the ratio of the original trait value to a reference such that the distributions 433 

become approximately normal and suitable for the Z-test.  The standardized value of the ith trait 434 

in the jth strain is 𝑋)#,% =𝑙𝑛
&!,#
&!,$
	, where 𝑋#,% is the original trait value and 𝑋#,' is the trait value of 435 

the reference.  For the gene deletion lines, the reference is the wild-type BY strain.  For the MA 436 

lines, the reference is the progenitor strain used in MA.  For natural strains, the reference is the 437 

same as the reference of the mutant strains to be compared with (i.e., wild-type BY or progenitor 438 

of the MA lines). 439 

The locations of 12 vein intersections on the fly wing were previously measured in 150 440 

MA lines of Drosophila melanogaster and a mutational covariance matrix was estimated [9].  441 

Because each intersection is described by two coordinates, which are counted as two traits, there 442 

are 24 traits in this dataset.  These traits were also measured in 110 Drosophilid species and an 443 

evolutionary covariance matrix was estimated with species phylogeny taken into account [53].  444 

Both matrices are based on log-scale trait values. 445 

 446 

Influence of the sampling error on the correlational structure 447 

To evaluate the influence of sampling error on the estimated mutational covariance 448 

matrix (i.e., the M matrix) of yeast or fly, we took samples (vectors of phenotypes) from the 449 

multivariate distribution of M (4,817 samples for yeast gene deletion data and 150 samples for 450 

fly MA data), estimated a covariance matrix (𝑀.) from these samples, and calculated Pearson’s 451 

correlation coefficient between the eigenvalues of M and 𝑀. .  For instance, for the yeast data, M 452 

and 𝑀.  each has 220 eigenvalues, and we calculated the correlation between these two sets of 453 

eigenvalues as a measurement of similarity between M and 𝑀. .  This was repeated 1,000 times 454 

and the distribution of the correlation coefficient was used to evaluate the potential impact of 455 

sampling error on M. 456 

 457 

Impact of the environmental difference on the correlational structure of the yeast traits  458 
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Because the natural strains of yeast had been grown in synthetic media before 459 

phenotyping [51] while the mutant strains were all grown in the rich medium YPD [49, 50], we 460 

tested whether this environmental difference affected the correlational structure of the yeast 461 

morphological traits under consideration.  Specifically, we examined whether the phenotype of 462 

the BY strain grown in synthetic media (referred to as “synthetic phenotype” for short) falls in 463 

the distribution of 123 biological replicates of BY grown in YPD (referred to as “YPD 464 

phenotypes” for short).  The phenotypes were normalized in the way described earlier with the 465 

mean phenotype of the YPD replicates used as the reference.  We decomposed YPD phenotypes 466 

into principal components (PCs) and focused on the first three PCs, which together explained 467 

67.5% of the variance among the 123 YPD phenotypes.  We then calculated the values of the 468 

three PC traits of the synthetic phenotype.  The synthetic phenotype is in the central 95% of the 469 

distribution of the YPD phenotypes for each of the three PC traits, indicating a lack of major 470 

effect of the difference between synthetic and YPD media on the correlational structure of the 471 

yeast traits concerned. 472 

 473 

Comparison between mutational and evolutionary correlations 474 

To take into account the phylogenetic relationships among yeast strains in estimating 475 

CORE, we utilized a distance-based tree previously inferred [55] (Fig. S1).  Strains with mosaic 476 

origins inferred in the same study [55] were removed before analysis, resulting in 16 remaining 477 

natural strains.  Because the BY strain was not included in the data file in that study [55], W303, 478 

a laboratory strain closely related to BY, was chosen to represent BY.  We obtained the 479 

evolutionary covariance matrix using the ratematrix function from the R package geiger [74, 480 

75], which calculates evolutionary covariances using the independent contrast method [14].  The 481 

evolutionary covariance matrix was then converted to the corresponding correlation matrix. 482 

To test whether the observed pairwise trait correlation at the level of evolutionary 483 

divergence is significantly different from that expected by mutation alone for each pair of traits, 484 

we first converted both correlations to Z-scores by 𝑍 = (
)
[𝑙𝑛 (1 + 𝑟) 	−𝑙𝑛 (1 − 𝑟)]	, where r is 485 

the correlation coefficient.  The testing statistic was then computed by 𝑍 = *%+*&

, '
(%)*

- '
(&)*

, where ZE 486 

and ZM are Z-scores converted from CORE and CORM, respectively, nE is the number of 487 

independent contrasts, which equals the number of natural strains minus one, and nM is the 488 
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number of mutant strains.  Two-sided P-value was calculated from each Z and converted to 489 

adjusted P-value following the Benjamini-Hochberg procedure [76].  An adjusted P-value below 490 

0.05 indicates selection. 491 

To see how many trait pairs would show a significant difference between CORE and 492 

CORM under neutrality, we simulated neutral evolution along the phylogenetic tree that had been 493 

used in estimating CORE.  A Brownian motion model was used to simulate neutral phenotypic 494 

evolution such that the amount of evolution in branch i is 𝑀#𝑙, where 𝑀# is a vector sampled 495 

from the multivariate normal distribution of the mutational covariance matrix M and 𝑙 is the 496 

branch length.  Sampling was performed using the rmvnorm function in the R package mvtnorm 497 

[77].  The starting value of each trait is 0 in all simulations.  The phenotypic value of each strain 498 

was obtained by adding up the amount of evolution on all branches ancestral to the strain.  This 499 

was repeated 1,000 times to generate 1,000 datasets. 500 

To account for the difference in Veigen caused by different sample sizes in estimating the 501 

correlation matrices, we randomly sampled subsets of the gene deletion strains.  Because the 502 

evolutionary correlation matrix has a rank number of 15 and has 15 positive eigenvalues, each 503 

subset consists of 15 strains randomly drawn from the 4718 gene deletion strains such that the 504 

mutational correlation matrix computed from each subset of mutants also has 15 positive 505 

eigenvalues.  From each subset of strains, we computed Veigen, leading to a null distribution of 506 

Veigen.  The observed Veigen from the evolutionary correlation matrix is then compared with the 507 

null distribution; a significant difference is inferred if the observed value falls in either the left or 508 

right 2.5% tail.  509 

To test whether there exists a significant modular structure among traits, we performed 510 

the covariance ratio (CR) test.  For each pair of predefined modules, traits were first re-ordered 511 

such that traits belonging to each module were located in the upper-left and lower-right corners 512 

of the covariance matrix, respectively, and  𝐶𝑅 = 	8 .'/01("'+"+')
4.'/01("''∗ "''∗ )-.'/01("++∗ "++∗ )

, where 𝑀() and 513 

𝑀)( are the upper-right and lower-left sections of the original covariance matrix, respectively, 514 

containing all between-module covariances, 𝑀((
∗  is the upper-left section with diagonal elements 515 

replaced by zeros, 𝑀))
∗  is the lower-right section with diagonal elements replaced by zeros, and 516 

𝑡𝑟𝑎𝑐𝑒(𝑀) denotes the trace, or the sum of diagonal elements, of matrix M [58].  Because three 517 

modules were defined in the yeast data, the average of all pairwise CR values was used to 518 
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represent the overall modularity.  A test for selection on CR was performed following the test of 519 

selection on Veigen. 520 

 521 

Computer simulation of trait-trait coevolution under selection  522 

In each simulation, we considered a pair of traits with equal amounts of mutational 523 

variance VM, which is set to be 0.01.  The mutational covariance matrix is thus 𝑀 =524 

= 𝑉" 𝐶𝑂𝑉"
𝐶𝑂𝑉" 𝑉"

? = 𝑉" 𝑉"𝐶𝑂𝑅"
𝑉"𝐶𝑂𝑅" 𝑉"

?, where COVM is the mutational covariance.  The number 525 

of mutations is a random Poisson variable with the mean equal to 1.  The phenotypic effect of a 526 

mutation is drawn from the multivariate normal distribution of M using the rmvnorm function in 527 

the R package mvtnorm [77].  The starting phenotype is (0, 0) in all simulations. 528 

We considered a Gaussian fitness function of 𝑓 = 𝑒𝑥𝑝	(− 6+

)
), where f is the fitness and 529 

D is the distance between the current phenotype and the optimal phenotype.  When there is a 530 

single fitness peak (i.e., the fitness optimum is a single point), D is the Euclidean distance 531 

defined by 8𝑑(
) + 𝑑)

), where d1 and d2 are the distances between the current phenotypic values 532 

of the two traits and their corresponding optima, respectively.  When there is a fitness ridge (i.e., 533 

the fitness optimum is a line), D is the shortest distance from the current phenotype to the fitness 534 

ridge.  The selection coefficient s equals 7
7-.

− 1, where f and 𝑓WT are the fitness values of the 535 

mutant and wild type, respectively.  The fixation probability of a newly arisen mutant is 𝑃7 =536 
(+189	(+);)
(+189	(+)</;)

 in a haploid population [78], where the effective population size Ne was set at 104.  537 

After each unit time, the phenotypic effect of each mutation is added to the population mean with 538 

a probability of 𝑁1𝑃7; this probability is treated as 1 when 𝑁1𝑃7 > 1 or when there is no 539 

selection as in the latter case 𝑃7 =
(
</

.  Combinations of parameters used in the simulations are 540 

listed in Table 2. 541 

In simulations where different lineages were assigned different optima, each lineage’s 542 

optimum was obtained by independently drawing the optimal values of the two traits from the 543 

standard normal distribution.  Before conducting simulations, we confirmed that the optima of 544 

the two traits are not correlated (correlation coefficient = 0.0882, P = 0.54, t-test). 545 

 546 
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Computer simulation of trait-trait coevolution under mutational bias  547 

To investigate the effect of mutational bias on trait correlation, we introduced the bias 548 

coefficient B.  Each mutation, after being sampled from a multivariate normal distribution 549 

described above, was rescaled using B.  Let the mutational effect be m = (m1, m2), where m1 and 550 

m2 are the effects on trait 1 and trait 2, respectively.  The rescaled mutational effect, 𝑚G , is 551 

obtained by 552 

𝑚G = H
𝑚𝐵			(𝑚( > 0)
𝑚
𝐵 (𝑚( < 0)  553 

Because mutational effects are first drawn from a pre-set multivariate normal distribution 554 

and then rescaled, we examined if CORM estimated from the rescaled effects (𝐶𝑂𝑅"K ) is different 555 

from the pre-set value of CORM.  For each pre-set value of CORM, we obtained 556 

𝐶𝑂𝑅"K  from 5,000 rescaled mutations.  This was repeated 200 times with different random 557 

mutations, yielding 200 𝐶𝑂𝑅"K  estimates.  A series of different B values were used in the 558 

simulation (Table S2).  For comparison, we also estimated B from yeast gene deletion lines and 559 

found the maximal B of any trait to be 1.503.  To estimate B for a trait from the yeast gene 560 

deletion lines, we respectively calculated the mean trait value of all deletion lines with positive 561 

trait values and mean trait value of all deletion lines with negative values.  We then computed the 562 

ratio of their absolute values with the greater absolute value used as the numerator.  The square 563 

root of the ratio is B.  We found that CORM is always near the center of the distribution of these 564 

200 𝐶𝑂𝑅"K  estimates (Table S2).  Hence, mutational bias will not bias our test.  565 

All analyses in this study were conducted in R [79]. 566 

 567 

LIST OF ABBREVIATIONS 568 

MA: mutation accumulation. 569 

CR: covariance ratio. 570 
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Table 1. Numbers of trait pairs with significantly different CORE and CORM in the yeast and fly data. 790 
 Yeast Fly (276 trait pairs) 

CORM from gene 
deletion lines (24,090 
trait pairs) 

CORM from MA lines 
(17,391 trait pairs) 

Obse
rveda 

Expe
ctedb 

Fracti
onc 

Obse
rved 

Expe
cted 

Fracti
on 

Obse
rved 

Expe
cted 

Fracti
on 

Strengthened 2727 145 3% 2395 17 3.5% 68 0 0% 
Weakened 1221 78 1.4% 1348 6 0.1% 48 0 0% 
Reversed 2795 51 0% 1403 2 0% 28 0 0% 
Total 6743 302.5 0.7% 5146 31 0.7% 144 0 0% 

aNumber of trait pairs with significantly different CORM and CORE inferred by a Z-test.  791 
bNumber of trait pairs that show a significant difference between CORM and CORE derived from neutral Brownian 792 
motion simulations. The median from 1000 simulations is shown.   793 
cFraction of the 1000 Brownian motion simulations where the number of trait pairs with significantly different 794 
CORM and CORE exceeds the number under the “observed” column.  795 
 796 
  797 
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Table 2. Parameters and results of simulations of trait-trait coevolution. 798 
Optimum CORM Median CORE at the 

end of simulation 
Fraction of 
simulations with 
CORE > CORM 

CORE compared 
with CORM 

No optimum 0.9 0.900 49.5% No difference 
0.5 0.495 47.5% No difference 
0.1 0.113 55.5% No difference 

     
y = x * 0.9 1.000 100% Strengthened 

0.5 1.000 100% Strengthened 
0.1 1.000 100% Strengthened 

     
y = 0.5x 0.9 1.000 100% Strengthened 

0.5 1.000 100% Strengthened 
0.1 1.000 100% Strengthened 

     
y = -0.5x 0.9 -0.995 0% Reversed 

0.5 -0.999 0% Reversed 
0.1 -1.000 0% Reversed 

     
y = - x 0.9 -0.997 0% Reversed 

0.5 -0.999 0% Reversed 
0.1 -1.000 0% Reversed 

     
(0, 0) 0.9 0.0213 0% Weakened 
 0.5 0.00142 0.5% Weakened 
 0.1 -0.0109 24% No difference 
     
Drawn from 𝑵(𝟎, 𝟏) 0.9 0.0895 0% Weakened 

0.5 0.0874 0% Weakened 
0.1 0.0866 6% No difference 

*x and y respectively represent the values of the two traits considered.  799 
 800 
 801 
  802 
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Table 3. Overall phenotypic integration (Veigen) and modularity (CR) at the levels of mutation 803 
and evolutionary divergence. Values at the level of mutation for yeast are medians of 1,000 804 
control datasets. P-values for yeast are computed from locations of the observed values in the 805 
corresponding distributions of 5000 control datasets, while the P-value for fly is from a 806 
Fligner-Killeen test. 807 

Statistic Taxon Mutation Divergence P-value 
Veigen Yeast 34.414  58.656  0.0788 

Fly 3.530 4.359 0.459 
CR Yeast 0.649  0.997  < 0.001 

 808 
 809 
  810 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2023. ; https://doi.org/10.1101/2021.05.05.442737doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442737
http://creativecommons.org/licenses/by/4.0/


28 
 

Figure legends 811 

Figure 1.  Mutational (CORM) and evolutionary (CORE) correlations for all pairs of the 220 yeast 812 

morphological traits.  CORM is based on yeast gene deletion lines.  (A) CORM (upper triangle) 813 

and CORE (lower triangle) for all pairs of traits ordered according to their IDs.  (B) Frequency 814 

distributions of CORM and CORE across all trait pairs.  The two distributions are significantly 815 

different (P < 10-10, Kolmogorov–Smirnov test). 816 

 817 

Figure 2.  Examples of yeast trait pairs with CORE significantly different from the corresponding 818 

CORM.  (A) An example of evolutionarily strengthened correlation.  (B) An example of 819 

evolutionarily weakened correlation.  (C) An example of evolutionarily reversed correlation.  820 

Each blue dot represents a gene deletion line (a.k.a. mutant) while each red dot represents an 821 

independent contrast derived from natural strains.  Blue and red lines are linear regressions 822 

between the standardized values of the two traits in mutants and independent contrasts, 823 

respectively, while the dotted blackline shows the diagonal (y = x).  Trait IDs are shown along 824 

the axes.  All CORM and CORE values shown are significantly different from 0 except when 825 

indicated by “NS” in the parentheses.  826 

 827 

Figure 3.  Schematic illustration of predictions made by models of trait-trait coevolution.  Each 828 

circle represents the equilibrium mean phenotype of two hypothetical traits (trait 1 and trait 2) of 829 

a diverging lineage.  (A) When a specific allometric relationship is selectively favored, the 830 

population mean phenotypes are distributed along the fitness ridge (i.e., the optimal allometric 831 

line shown in red), resulting in a strong trait correlation across lineages.  (B) When a specific 832 

value is selectively favored for each trait, the population mean phenotypes are concentrated near 833 

the optimal phenotype (marked by the red cross) and the trait correlation across lineages is weak.  834 

(C) When different lineages have different optimal phenotypes (marked by red crosses) that are 835 

randomly distributed, the trait correlation across lineages is weak. 836 

 837 
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Figure 2 848 
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Figure 3 856 
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