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Abstract

Motivation: Gene regulatory networks define regulatory relationships
between transcription factors and target genes within a biological system,
and reconstructing them is essential for understanding cellular growth and
function. Methods for inferring and reconstructing networks from genomics
data have evolved rapidly over the last decade in response to advances in
sequencing technology and machine learning. The scale of data collection has
increased dramatically; the largest genome-wide gene expression datasets
have grown from thousands of measurements to millions of single cells, and
new technologies are on the horizon to increase to tens of millions of cells
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and above.

Results: In this work, we present the Inferelator 3.0, which has been
significantly updated to integrate data from distinct cell types to learn
context-specific regulatory networks and aggregate them into a shared reg-
ulatory network, while retaining the functionality of the previous versions.
The Inferelator is able to integrate the largest single-cell datasets and learn
cell-type specific gene regulatory networks. Compared to other network in-
ference methods, the Inferelator learns new and informative Saccharomyces
cerevisiae networks from single-cell gene expression data, measured by re-
covery of a known gold standard. We demonstrate its scaling capabilities by
learning networks for multiple distinct neuronal and glial cell types in the
developing Mus musculus brain at E18 from a large (1.3 million) single-cell
gene expression dataset with paired single-cell chromatin accessibility data.

Availability: The inferelator software is available on GitHub (https:
//github.com/flatironinstitute/inferelator) under the MIT license
and has been released as python packages with associated documentation
(https://inferelator.readthedocs.io/).

1. Background

Gene expression is tightly regulated at multiple levels in order to control
cell growth, development, and response to environmental conditions (Fig-
ure 1A). Transcriptional regulation is principally controlled by Transcription
Factors (TFs) that bind to DNA and effect chromatin remodeling (Zaret,
2020) or directly modulate the output of RNA polymerases (Kadonaga,
2004). Three percent of Saccharomyces cerevisiae genes are TFs (Hahn and
Young, 2011), and more than six percent of human genes are believed to
be TFs or cofactors (Lambert et al., 2018). Connections between TFs and
genes combine to form a transcriptional Gene Regulatory Network (GRN)
that can be represented as a directed graph (Figure 1B). Learning the true
regulatory network that connects regulatory TFs to target genes is a key
problem in biology (Thompson et al., 2015; Chasman et al., 2016). Deter-
mining the valid GRN is necessary to explain how mutations that cause gene
dysregulation lead to complex disease states (Hu et al., 2016), how varia-
tion at the genetic level leads to phenotypic variation (Mehta et al., 2021;
Peter and Davidson, 2011), and how to re-engineer organisms to efficiently
produce industrial chemicals and enzymes (Huang et al., 2017).

Learning genome-scale networks relies on genome-wide expression mea-
surements, initially captured with microarray technology (DeRisi et al.,
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1997), but today typically measured by RNA-sequencing (RNA-seq) (Na-
galakshmi et al., 2008). A major difficulty is that biological systems have
large numbers of both regulators and targets, and many regulators are re-
dundant or interdependent. Many plausible networks can explain observed
expression data and the regulation of gene expression (Szederkényi et al.,
2011), which makes identifying the correct network challenging. Designing
experiments to produce data that increases network identifiability is possi-
ble (Ud-Dean and Gunawan, 2016), but most data is collected for specific
projects and repurposed for network inference as a consequence of the cost
of data collection. Large-scale experiments in which a perturbation is made
and dynamic data is collected over time is exceptionally useful for learning
GRNs but systematic studies that collect this data are rare (Hackett et al.,
2020).

Measuring the expression of single cells using single-cell RN A-sequencing
(scRNAseq) is an emerging and highly scalable technology. Microfluidic-
based single-cell techniques (Macosko et al., 2015; Zilionis et al., 2017; Zheng
et al., 2017) allow for thousands of measurements in a single experiment.
Split-pool barcoding techniques (Rosenberg et al., 2018) are poised to in-
crease single-cell throughput by an order of magnitude. These techniques
have been successfully applied to generate multiplexed gene expression data
from pools of barcoded cell lines with loss-of-function TF mutants (Dixit
et al., 2016; Jackson et al., 2020), enhancer perturbations (Schraivogel et al.,
2020), and disease-causing oncogene variants (Ursu et al., 2020). Individual
cell measurements are sparser and noisier than measurements generated us-
ing traditional RNA-seq, although in aggregate the gene expression profiles
of single-cell data match RNA-seq data well (Svensson, 2020), and tech-
niques to denoise single-cell data have been developed (Arisdakessian et al.,
2019; Tjérnberg et al., 2021).

The seurat (Stuart et al., 2019) and scanpy (Wolf et al., 2018) bioin-
formatics toolkits are established tools for single-cell data analysis, but
pipelines for inferring GRNs from single-cell data are still nascent, although
many are under development (Zappia and Theis, 2021). Recent work has be-
gun to systematically benchmarking network inference tools, and the BEE-
LINE (Pratapa et al., 2020) and other (Nguyen et al., 2021; Chen and Mar,
2018) benchmarks have identified promising methods. Testing on real-world
data has proved difficult, as reliable gold standard networks for higher eu-
karyotes do not exist. scRNAseq data for microbes which have some known
ground truth networks (like Saccharomyces cerevisiae and Bacillus subtilis)
was not collected until recently. As a consequence, most computational
method benchmarking has been done using simulated data. Finally, GRN
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inference is computationally challenging, and the most scalable currently-
published GRN pipeline has learned GRNs from 50,000 cells of gene expres-
sion data (Van de Sande et al., 2020).

Here we describe the Inferelator 3.0 pipeline for single-cell GRN infer-
ence, based on regularized regression (Bonneau et al., 2006). This pipeline
calculates TF activity (Ma and Brent, 2021) using a prior knowledge net-
work and regresses scRNAseq expression data against that activity estimate
to learn new regulatory edges. We compare it directly to two other network
inference methods that also utilize prior network information and scRNAseq
data, benchmarking using real-world Saccharomyces cerevisiae scRNAseq
data and comparing to a high-quality gold standard network. The first
comparable method, SCENIC (Van de Sande et al., 2020), is GRN inference
pipeline that estimates the importance of TFs in explaining gene expres-
sion profiles and then constrains this correlative measure with prior network
information to identify regulons. The second comparable method, CellOr-
acle (Kamimoto et al., 2020), has been recently proposed as a pipeline to
integrate single-cell ATAC and expression data using a motif-based search
for potential regulators, followed by bagging Bayesian ridge regression to
enforce sparsity in the output GRN.

Older versions of the Inferelator (Madar et al., 2009) have performed well
inferring networks for Bacillus subtilis (Arrieta-Ortiz et al., 2015), human
Th17 cells (Ciofani et al., 2012; Miraldi et al., 2019), mouse lymphocytes
(Pokrovskii et al., 2019), Saccharomyces cerevisiae (Tchourine et al., 2018),
and Oryza sativa (Wilkins et al., 2016). We have implemented the Infere-
lator 3.0 with new functionality in python to learn GRNs from scRNAseq
data. Three different model selection methods have been implemented: a
Bayesian best-subset regression method (Greenfield et al., 2013), a StARS-
LASSO (Miraldi et al., 2019) regression method in which the regularization
parameter is set by stability selection (Liu et al., 2010), and a multitask-
learning regression method (Castro et al., 2019). This new package provides
scalability, allowing millions of cells to be analyzed together, as well as in-
tegrated support for multi-task GRN inference, while retaining the ability
to utilize bulk gene expression data. We show that the Inferelator 3.0 is a
state-of-the-art method by testing against SCENIC and CellOracle on model
organisms with reliable ground truth networks, and show that the Inferelator
3.0 can generate a mouse neuronal GRN from a publicly available dataset
containing 1.3 million cells.
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2. Results

2.1. The Inferelator 3.0

In the 12 years since the last major release of the Inferelator (Madar
et al., 2009), the scale of data collection in biology has accelerated enor-
mously. We have therefore rewritten the Inferelator as a python package to
take advantage of the concurrent advances in data processing. For inference
from small scale gene expression datasets (< 10* observations), the Inferela-
tor 3.0 uses native python multiprocessing to run on individual computers.
For inference from extremely large scale gene expression datasets (> 10* ob-
servations) that are increasingly available from scRNAseq experiments, the
Inferelator 3.0 takes advantage of the Dask analytic engine (Rocklin, 2015)
for deployment to high-performance clusters (Figure 1C), or for deployment
as a kubernetes image to the Google cloud computing infrastructure.

2.2. Network Inference using Bulk RNA-Seq Expression Data

We incorporated several network inference model selection methods into
the Inferelator 3.0 (Figure 2A) and evaluate their performance on the prokary-
otic model Bacillus subtilis and the eukaryotic model Saccharomyces cere-
visiae. Both B. subtilis (Arrieta-Ortiz et al., 2015; Nicolas et al., 2012) and
S. cerevisiae (Tchourine et al., 2018; Hackett et al., 2020) have large bulk
RNA-seq and microarray gene expression datasets, in addition to a relatively
large number of experimentally determined TF-target gene interactions that
can be used as a gold standard for assessing network inference. Using two in-
dependent datasets for each organism, we find that the model selection meth-
ods Bayesian Best Subset Regression (BBSR) (Greenfield et al., 2010) and
Stability Approach to Regularization Selection for Least Absolute Shrink-
age and Selection Operator (StARS-LASSO) (Miraldi et al., 2019) perform
equivalently (Figure 2B). The Inferelator performs substantially better than
a network inference method (GRNBOOST?2) that does not use prior network
information (Figure 2B; dashed blue lines).

The two independent data sets show clear batch effects (Supplemental
Figure 1A), and combining them for network inference is difficult; concep-
tually, each dataset is in a separate space, and must be mapped into a
shared space. We take a different approach to addressing the batch effects
between datasets by treating them as separate learning tasks (Castro et al.,
2019) and then combining network information into a unified GRN. This re-
sults in a considerable improvement in network inference performance over
either dataset individually (Figure 2C). The best performance is obtained
with Adaptive Multiple Sparse Regression (AMuSR) (Castro et al., 2019),
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a multi-task learning method that shares information between tasks during
regression. The GRN learned with AMuSR explains the variance in the
expression data better than learning networks from each dataset individu-
ally with BBSR or StARS-LASSO and then combining them (Supplemental
Figure 1B), and retains a common network core across different tasks (Sup-
plemental Figure 1C).

2.8. Generating Prior Networks from Chromatin Data and Transcription
Factor Motifs

The Inferelator 3.0 produces an inferred network from a combination of
gene expression data and a prior knowledge GRN constructed from existing
knowledge about known gene regulation. Curated databases of regulator-
gene interactions culled from domain-specific literature are an excellent
source for prior networks. While some model systems have excellent databases
of known interactions, these resources are unavailable for most organisms or
cell types. In these cases, using chromatin accessibility determined by a
standard Assay for Transposase-Accessible Chromatin (ATAC) in combina-
tion with the known DNA-binding preferences for TF's to identify putative
target genes is a viable alternative (Miraldi et al., 2019).

To generate these prior networks we have developed the inferelator-prior
accessory package that uses TF motif position-weight matrices to score TF
binding within gene regulatory regions and build sparse prior networks (Fig-
ure 3A). These gene regulatory regions can be identified by ATAC, by ex-
isting knowledge from TF Chromatin Immunoprecipitation (ChIP) experi-
ments, or from known databases (e.g. ENCODE (ENCODE Project Con-
sortium et al., 2020)). Here, we compare the inferelator-prior tool to the
CellOracle package (Kamimoto et al., 2020) that also constructs motif-based
networks that can be constrained to regulatory regions, in Saccharomyces
cerevisiae by using sequences 200bp upstream and 50bp downstream of each
gene T'SS as the gene regulatory region. The inferelator-prior and CellOracle
methods produce networks that are similar when measured by Jaccard index
but are dissimilar to the YEASTRACT literature-derived network (Figure
3B). These motif-derived prior networks from both the inferelator-prior and
CellOracle methods perform well as prior knowledge for GRN inference us-
ing the Inferelator 3.0 pipeline (Figure 3C). The source of the motif library
has a significant effect on network output, as can be seen with the well-
characterized TF GAL4. GAL4 has a canonical CGGN1;CGG binding site;
different motif libraries have different annotated binding sites (Supplemental
Figure 2A) and yield different motif-derived networks with the inferelator-
prior pipeline (Supplemental Figure 2B-C).
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2.4. Network Inference using Single-Cell Fxpression Data

Single-cell data is undersampled and noisy, but large numbers of obser-
vations are collected in parallel. As network inference is a population-level
analysis which must already be robust against noise, we reason that data
preprocessing that improves per-cell analyses (like imputation) is unneces-
sary. We test this by quantitatively evaluating networks learned from Sac-
charomyces cerevisiae scRNAseq data (Jackson et al., 2020; Jariani et al.,
2020) with a previously-defined yeast gold standard (Tchourine et al., 2018).
This expression data is split into 15 separate tasks, based on labels that cor-
respond to experimental conditions from the original works (Figure 4A).
A network is learned for each task separately using the YEASTRACT
literature-derived prior network, from which a subset of genes are with-
held, and aggregated into a final network for scoring on held-out genes from
the gold standard. We test a combination of several preprocessing options
with three network inference model selection methods (Figure 4B-D).

We find that network inference is generally sensitive to the preprocessing
options chosen, and that this effect outweighs the differences between differ-
ent model selection methods (Figure 4B-D). A standard Freeman-Tukey or
logs pseudocount transformation on raw count data yields the best perfor-
mance, with notable decreases in recovery of the gold standard when count
data is count depth-normalized (such that each cell has the same total tran-
script counts). The performance of the randomly generated Noise control
(N) is higher than the performance of the shuffled (S) control when counts
per cell are not normalized, suggesting that total counts per cell provides
additional information during inference.

Different model performance metrics, like AUPR, Matthews Correlation
Coefficient (MCC), and F1 score correlate very well and identify the same
optimal hyperparameters (Supplemental Figure 4). We apply AMuSR to
data that has been Freeman-Tukey transformed to generate a final network
without holding out genes for cross-validation (Figure 4E). While we use
AUPR as a metric for evaluating model performance, selecting a threshold
for including edges in a GRN by precision or recall requires a target precision
or recall to be chosen arbitrarily. Choosing the Inferelator confidence score
threshold to include the edges in a final network that maximize MCC is a
simple heuristic to select the size of a learned network that maximizes overlap
with another network (e.g. a prior knowledge GRN or gold standard GRN)
while minimizing links not in that network (Figure 4F). Maximum F1 score
gives a less conservative GRN as true negatives are not considered and will
not diminish the score. Both metrics balance similarity to the test network
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with overall network size, and therefore represent straightforward heuristics
that do not rely on arbitrary thresholds.

In order to determine how the Inferelator 3.0 compares to similar network
inference tools, we apply both CellOracle and SCENIC to the same network
inference problem, where a set of genes are held out of the prior knowledge
GRN and used for scoring. We see that the Inferelator 3.0 can make predic-
tions on genes for which no prior information is known, but CellOracle and
SCENIC cannot (Figure 4G). When provided with a complete prior knowl-
edge GRN, testing on genes which are not held out, CellOracle outperforms
the Inferelator, although the Inferelator is more robust to noise in the prior
knowledge GRN (Figure 4H). This is a key advantage, as motif-generated
prior knowledge GRNs are expected to be noisy.

2.5. Large-scale Single-Cell Mouse Neuron Network Inference

The Inferelator 3.0 is able to distribute work across multiple compu-
tational nodes, allowing networks to be rapidly learned from > 10° cells
(Supplemental Figure 5A). We show this by applying the Inferelator to
a large (1.3 million cells of scRNAseq data), publicly available dataset of
mouse brain cells (10x genomics) that is accompanied by 15,000 single-cell
ATAC (scATAC) measurements. We separate the expression and scATAC
data into broad categories; Excitatory neurons, Interneurons, Glial cells and
Vascular cells (Figure 5A-E). After initial quality control, filtering, and cell
type assignment, 766,402 scRNAseq and 7,751 scATAC observations remain
(Figure 5F, Supplemental Figure 5B-D).

scRNAseq data is further clustered within broad categories into clusters
(Figure 5B) that are assigned to specific cell types based on marker expres-
sion (Figure 5C, Supplemental Figure 6). scATAC data is aggregated into
chromatin accessibility profiles for Excitatory neurons, Interneurons, and
Glial cells (Figure 5D) based on accessibility profiles (Figure 5E), which are
then used with the TRANSFAC mouse motif position-weight matrices to
construct prior knowledge GRNs with the inferelator-prior pipeline. Most
scRNAseq cell type clusters have thousands of cells, however rare cell type
clusters are smaller (Figure 5G)

After processing scRNAseq into 36 cell type clusters and scATAC data
into 3 broad (Excitatory neurons, Interneurons, and Glial) prior GRNs, we
used the Inferelator 3.0 to learn an aggregate mouse brain GRN. Each of
the 36 clusters was assigned the most appropriate of the three prior GRNs
and learned as a separate task using the AMuSR model selection framework.
The resulting aggregate network contains 20,991 TF - gene regulatory edges,
selected from the highest confidence predictions to maximize MCC (Figure
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6A-B). A common regulatory core of 1,909 network edges is present in every
task-specific network (Figure 6C). Task-specific networks from similar cell
types tend to be highly similar, as measured by Jaccard index (Figure 6D).
We learn very similar GRNs from each excitatory neuron task, and very
similar GRNs from each interneuron task, although each of these broad cat-
egories yields different regulatory networks. There are also notable examples
where glial and vascular tasks produce GRNs that are distinctively different
from other glial and vascular GRNs.

Finally, we can examine specific TFs and compare networks between
cell type categories (Supplemental Figure 7). The TFs Egrl and Atf4 are
expressed in all cell types and Egrl is known to have an active role at
embryonic day 18 (E18) (Sun et al., 2019). In our learned network, Egrl
targets 103 genes, of which 20 are other TFs (Figure 6E-G). Half of these
targets (49) are common to both neurons and glial cells, while 38 target
genes are specific to neuronal GRNs and 16 target genes are specific to glial
GRNs. We identify 14 targets for Atf4 (Figure 6H), the majority of which
(8) are common to both neurons and glial cells, with only 1 target gene
specific only to neuronal GRNs and 5 targets specific only to glial GRNs.

3. Discussion

We have developed the Inferelator 3.0 software package to scale to match
the size of any network inference problem, with no organism-specific require-
ments that preclude easy application to non-mammalian organisms. Model
baselines can be easily established by shuffling labels or generating noised
data sets, and cross-validation and scoring on holdout genes is built directly
into the pipeline. We believe this is particularly important as evaluation of
single-cell network inference tools on real-world problems has lagged behind
the development of inference methods themselves. Single-cell data collection
has focused on complex higher eukaryotes and left the single-cell network
inference field bereft of reliable standards to test against. Recent collection
of scRNAseq data from traditional model organisms provides an opportu-
nity to identify successful and unsuccessful strategies for network inference.
For example, we find that performance differences between our methods of
model selection may be smaller than differences caused by data cleaning and
preprocessing. Benchmarking using model organism data should be incor-
porated in all single-cell method development, as it mitigates cherry-picking
from complex network results and can prevent use of flawed performance
metrics which are the only option when no reliable gold standard exists. In
organisms without a reliable gold standard, network inference predictions
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should not be assumed correct and must be validated experimentally (All-
away et al., 2021).

Unlike traditional RNA-seq that effectively measures the average gene
expression of large number of cells, scRNAseq can yield individual measure-
ments for many different cell types that are implementing distinct regula-
tory programs. Learning GRNs from each of these cell types as a separate
learning task in a multi-task framework allows cell type differences to be
retained, while still taking advantage of the common regulatory programs.
We demonstrate the use of this multi-task approach to simultaneously learn
regulatory GRNs for a variety of mouse neuronal cell types from a very
large (10°) single-cell data set. This includes learning GRNs for rare cell
types; by sharing information between cell types during regression, we are
able to learn a core regulatory network while also retaining cell type specific
interactions. As the GRNs that have been learned for each cell type are
sparse and consist of the highest-confidence regulatory edges, they are very
amenable to exploration and experimental validation.

A number of limitations remain that impact our ability to accurately pre-
dict gene expression and cell states. Most important is a disconnect between
the linear modeling that we use to learn GRNs and the non-linear biophys-
ical models that incorporate both transcription and RNA decay. Modeling
strategies that more accurately reflect the underlying biology will improve
GRN inference directly, and will also allow prediction of useful latent pa-
rameters (e.g. RNA half-life) that are experimentally difficult to access. It
is also difficult to determine if regulators are activating or repressing specific
genes (Kamimoto et al., 2020), complicated further by biological complexity
that allows TFs to switch between activation and repression (Papatsenko
and Levine, 2008). Improving prediction of the directionality of network
edges, and if directionality is stable in different contexts would also be a
major advance. Many TFs bind cooperatively as protein complexes, or an-
tagonistically via competitive binding, and explicit modeling of these TF-TF
interactions would also improve GRN inference and make novel biological
predictions. The modular Inferelator 3.0 framework will allow us to further
explore these open problems in regulatory network inference without having
to repeatedly reinvent and reimplement existing work. We expect this to be
a valuable tool to build biologically-relevant GRNs for experimental follow-
up, as well as a baseline for further development of computational methods
in the network inference field.

10


https://doi.org/10.1101/2021.05.03.442499
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.03.442499; this version posted February 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

4. Methods

Additional methods available in Supplemental Methods

4.1. Network Inference in Bacillus subtilis

Microarray expression data for Bacillus subtilis was obtained from NCBI
GEO; GSE67023 (Arrieta-Ortiz et al., 2015) (n=268) and GSE27219 (Nico-
las et al., 2012) (n=266). GRNs were learned using each expression dataset
separately in conjunction with a known prior network (Arrieta-Ortiz et al.,
2015) (Supplemental Data 1). Performance was evaluated by AUPR on
ten replicates by holding 20% of the genes in the known prior network out,
learning the GRN, and then scoring based on the held-out genes. Baseline
shuffled controls were performed by randomly shuffling the labels on the
known prior network.

Multi-task network inference uses the same B. subtilis prior for both
tasks, with 20% of genes held out for scoring. Individual task networks are
learned and rank-combined into an aggregate network. Performance was
evaluated by AUPR on the held-out genes.

4.2. Network Inference in Saccharomyces cerevisiae

A large microarray dataset was obtained from NCBI GEO and normal-
ized for a previous publication (Tchourine et al., 2018) (n=2,577; 10.5281 /zen-
0d0.3247754). 1In short, this data was preprocessed with limma (Ritchie
et al., 2015) and quantile normalized. A second microarray dataset con-
sisting of a large dynamic perturbation screen (Hackett et al., 2020) was
obtained from NCBI GEO accession GSE142864 (n=1,693). This dataset is
the median of three replicate logy fold changes of an experimental channel
over a control channel (which is the same for all observations). The logs fold
change is further corrected for each time course by subtracting the logs fold
change observed at time 0. GRNs were learned using each expression dataset
separately in conjunction with a known YEASTRACT prior network (Teix-
eira et al., 2018; Monteiro et al., 2020) (Supplemental Data 1). Performance
was evaluated by AUPR on ten replicates by holding 20% of the genes in
the known prior network out, learning the GRN, and then scoring based
on the held-out genes in a separate gold standard (Tchourine et al., 2018).
Baseline shuffled controls were performed by randomly shuffling the labels
on the known prior network.

Multi-task network inference uses the same YEASTRACT prior for both
tasks, with 20% of genes held out for scoring. Individual task networks
are learned and rank-combined into an aggregate network, which is then
evaluated by AUPR on the held-out genes in the separate gold standard.
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4.8. Single-Cell Network Inference in Saccharomyces cerevisiae

Single-cell expression data for Saccharomyces cerevisiae was obtained
from NCBI GEO (GSE125162 (Jackson et al., 2020) and GSE144820 (Jariani
et al., 2020)). Individual cells (n=44,343) are organized into one of 14 groups
based on experimental metadata and used as separate tasks in network infer-
ence. Genes were filtered such that any gene with fewer than than 2217 total
counts in all cells (1 count per 20 cells) was removed. Data was used as raw,
unmodified counts, was Freeman-Tukey transformed (vz+ 1+ /z — 1),
or was log, pseudocount transformed (logy(z + 1)). Data was either not
normalized, or depth normalized by scaling so that the sum of all counts
for each cell is equal to the median of the sum of counts of all cells. For
each set of parameters, network inference is run 10 times, using the YEAS-
TRACT network as prior knowledge with 20% of genes held out for scoring.
For noise-only controls, gene expression counts are simulated randomly such
that for each gene i, x; ~ N(us,,04,) and the sum for each cell is equal to
the sum in the observed data. For shuffled controls, the gene labels on the
prior knowledge network are randomly shuffled.

4.4. Single-Cell Network Inference in Mus musculus neurons

GRNs were learned using AMuSR on loge pseudocount transformed
count data for each of 36 cell type specific clusters as separate tasks with the
appropriate prior knowledge network. An aggregate network was created by
rank-summing each cell type GRN. MCC was calculated for this aggregate
network based on a comparison to the union of the three prior knowledge
networks, and the confidence score which maximized MCC was selected as
a threshold to determine the size of the final network. Neuron specific edges
were identified by aggregating filtered individual task networks with their
respective confidence score to maximize MCC. Each edge that was shared
with a glial or vascular network was excluded. The remaining neuron specific
edges are interneuron specific, excitatory specific or shared.
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Figure 1: Learning Gene Regulatory Networks with the Inferelator (A) The response
to the sugar galactose in Saccharomyces cerevisiae is mediated by the Gal4 and Gal80
TFs, a prototypical mechanism for altering cellular gene expression in response to stimuli.
(B) Gal4 and Gal80 regulation represented as an unsigned directed graph connecting
regulatory TFs to target genes. (C) Genome-wide Gene Regulatory Networks (GRNs)
are inferred from gene expression data and prior knowledge about network connections
using the Inferelator, and the resulting networks are scored by comparison with a gold
standard of known interactions. A subset of genes are held out of the prior knowledge and
used for evaluating performance.

1. Supplemental Methods

1.1. BEELINE Benchmarks

Test data and networks for the BEELINE panel were obtained from
Zenodo (DOI: 10.5281/zenodo.3378975). For tests without any prior net-
work information, the Inferelator was provided with expression data and
scored against the entire gold-standard network. For tests with prior in-
formation, the Inferelator was provided with expression data and half the
genes from the gold-standard network as a prior knowledge network. Scor-
ing was performed on genes which were not provided in the prior knowledge
network. Network inference was performed on each of expression data sets
10 times, with different random seeds each time. The median AUPR of the
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10 network inference runs is reported as the performance for that specific
expression data set. AUPR ratios are calculated using the baseline AUPR
as defined in the BEELINE benchmarks. Scores for other methods are taken
from supplemental data of the previously published BEELINE benchmark.

1.2. Benchmarking CellOracle € Scenic

CellOracle (v 0.7.5) was obtained from GitHub (https://github.com/
morris-lab/CellOracle commit: cda023a) and installed into a new Ana-
conda environment. pySCENIC (v0.11.2) was obtained from the python
package manager pypi and installed into a new Anaconda environment. A
benchmarking module was written for the Inferelator to run CellOracle
and pySCENIC from the inferelator workflow. Data loading, crossvali-
dation, simulation, and scoring functions are identical between all meth-
ods. CellOracle was provided the prior knowledge network as a binary
dataframe. pySCENIC was provided the prior knowledge network as a
ranked-interaction feather database and TF lookup table, in accordance
with the pySCENIC pipeline for generating prior knowledge databases for
new organisms. Expression data for pySCENIC was log pseudocount trans-
formed and scaled. Expression data for CellOracle was provided as raw
counts, which was then log pseudocount transformed and scaled during Cel-
10racle run.

1.3. Inferelator 3.0 Single-Cell Computational Speed Profiling

144,682 mouse cells from the mouse neuronal subcluster EXC_IT_1 were
used with the mouse excitatory neuron prior knowledge network to deter-
mine Inferelator 3.0 runtime. To benchmark the python-based multiprocess-
ing engine, the Inferelator was deployed to a single 28-core (Intel® Xeon®
E5-2690) node. The Dask implementations of the Inferelator and pySCENIC
were deployed to 5 28-core (Intel® Xeon® E5-2690) nodes for a total of
140 cpu cores. Either all 144,682 mouse cells were used, or a subset was
randomly selected for each run, and used to learn a single GRN. Runtime
was determined by the length of workflow execution, which includes loading
data, running all regressions, and producing output files. We were unable
to run the full 144k cell data set with pySCENIC due to runtime limitations
(with GENIE3) or cryptic memory-related errors (with GRNBOOST?2).

1.4. Preprocessing Mus musculus single-cell data

Single-cell expression data from Mus musculus brain samples taken at
E18 was obtained from 10x genomics (10x Genomics, 2017). SCANPY was
used to preprocess and cluster the scRNAseq dataset. Genes present in fewer
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than 2% of cells were removed. Cells were filtered out when fewer than 1000
genes were detected, the cell had more than 20,000 total gene counts, or the
cell had more than 7% of gene counts assigned to mitochondrial transcripts.
Transcript counts were then log transformed and normalized and scaled.
Cells were assigned to mitotic or post mitotic phase based on cell cycle
marker genes using score_genes_cell_cycle (Satija et al., 2015). In order to
focus on neuronal cells, all 374,369 mitotic cells were removed. Remaining
cells were clustered by Leiden clustering (Resolution = 0.5) using the first
300 principal components of the 2000 most highly variable genes. Broad cell
types were assigned to each cluster based on the expression of marker genes
Neurod6 for Excitatory neurons, Gadl for Interneurons, and Apoe for glial
cells. Cells from each broad cell type were then re-clustered into clusters
based on the 2000 most highly variable genes within the cluster. Specific cell
types were assigned to each subcluster based on the expression of marker
genes(Di Bella et al., 2020). Ambiguous clusters were discarded, removing
151,765 cells, leaving resulting in 36 specific cell type clusters that consist
of 766,402 total cells.

Single-cell ATAC data from Mus musculus brain samples taken at E18
was obtained from 10x genomics; datasets are from samples prepared fresh
(10x Genomics, 2019¢), samples dissociated and cryopreserved (10x Ge-
nomics, 2019a), and samples flash-frozen (10x Genomics, 2019b). ChromA
(Gabitto et al., 2020) and SnapATAC (Fang et al., 2021) were used to pro-
cess the scATACseq datasets. Consensus peaks were called on the 3 datasets
using ChromA. Each dataset was then run through the SnapATAC pipeline
using the consensus peaks. Cells were clustered and labels from the scR-
NAseq object were transferred to the scATAC data. Cells that did not
have an assignment score > .5 were discarded. Assigned barcodes were split
by cell class( EXC, IN or GL). ChromA was run again for each cell class
generating 3 sets of cell class specific peaks.

Aggregated chromatin accessibility profiles were used with TRANSFAC
v2020.1 motifs and the inferelator-prior (v0.3.0) pipeline to create prior
knowledge connectivity matrices between TFs and target genes for exci-
tatory neurons, interneurons, and glial cells. Vascular cells were not present
in the scATAC data sufficiently to allow construction of a vascular cell prior
with this method, and so vascular cells were assigned the glial prior for
network inference.

1.5. Saccharomyces cerevisiae prior knowledge networks

A prior knowledge matrix consists of a signed or unsigned connectiv-
ity matrix between regulatory transcription factors (TFs) and target genes.
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This matrix can be obtained experimentally or by mining regulatory databases.
For a TF - gene relationships to be directly causal, the TF must localize to
the gene, and gene expression must change in response to perturbations in
the TF. However, these criteria do not have to be met at all times. It is
reasonable to expect that in many (or most) cell states, a TF may not lo-
calize to a target gene, or expression of the gene may not be affected by
perturbations in the TF.

Prior knowledge and gold standard networks are selected with these cri-
teria in mind. The YEASTRACT prior knowledge network was obtained
from the YEASTRACT database (Teixeira et al., 2018; Monteiro et al.,
2020) (http://www.yeastract.com/; Downloaded 07/13/2019) which is
constructed from published yeast TF localization and gene expression data.
This prior knowledge network has 11,486 TF - gene edges from the YEAS-
TRACT database for which evidence exists that the TF localizes to the
target gene, and that the target gene expression changes upon TF pertur-
bation. The yeast gold standard network was constructed in an earlier work
(Tchourine et al., 2018) and consists of 1,403 edges, which have multiple
pieces of both DNA localization and target gene perturbation evidence.

1.6. TF Motif-Based Connectivity Matriz (inferelator-prior)

Scanning genomic sequence near promoter regions for TF motifs allows
for the construction of motif-derived priors which can be further constrained
experimentally by incorporating information about chromatin accessibility
(Miraldi et al., 2019). We have further refined the generation of prior knowl-
edge matrices with the python inferelator-prior package, which takes as in-
put a gene annotation GTF file, a genomic FASTA file, and a TF motif file,
and generates an unsigned connectivity matrix. It has dependencies on the
common scientific computing packages NumPy (Harris et al., 2020), SciPy
(Virtanen et al., 2020), and scikit-learn (Pedregosa et al., 2011). In addition,
it uses the BEDTools kit (Quinlan and Hall, 2010) and associated python in-
terface pybedtools (Dale et al., 2011). The inferelator-prior package (v0.3.0
was used to generate the networks in this manuscript) is available on github
(https://github.com/flatironinstitute/inferelator-prior) and can
be installed through the python package manager pip.

1.6.1. Motif Databases

DNA binding motifs were obtained from published databases. CISBP
(Lambert et al., 2019) motifs were obtained from CIS-BP (http://cisbp.
ccbr.utoronto.ca/; Build 2.00; Downloaded 11/25/2020) and processed
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into a MEME-format file with the PWMtoMEME module of inferelator-
prior. JASPAR (Fornes et al., 2020) motifs were obtained as MEME files
from JASPAR (http://jaspar.genereg.net/; 8th Release; Downloaded
11/25/2020) . TRANSFAC (Matys et al., 2006) motifs were licensed from
geneXplain (http://genexplain.com/transfac/; Version 2020.1; Down-
loaded 09/13/2020) and processed into a MEME-format file with the inferelator-
prior motif parsing tools.

1.6.2. Motif Scanning

Genomic regions of interest are identified by locating annotated Tran-
scription Start Sites (T'SS) and opening a window that is appropriate for
the organism. For microbial species with a compact genome (e.g. yeast),
regions of interest are defined as 1000bp upstream and 100bp downstream
of the T'SS. For complex eukaryotes with large intergenic regions (e.g. mam-
mals), regions of interest are defined as 50000bp upstream and 2500bp down-
stream of the TSS. This is further constrained by intersecting the genomic
regions of interest with a user-provided BED file, which can be derived from
a chromatin accessibility experiment (ATAC-seq) or any other method of
identifying chromatin of interest. Within these regions of interest, motif
locations are identified using the Find Original Motif Occurrences (FIMO)
(Grant et al., 2011) tool from the MEME suite (Bailey et al., 2009), called
in parallel on motif chunks to speed up processing. Each motif hit identified
by FIMO is then scored for information content (IC) (Kim et al., 2003). 1C;,
ranging between 0 and 2 bits, is calculated for each base ¢ in the binding
site, where py,; is the probability of the base b at position ¢ of the motif and
Db,bg is the background probability of base b in the genome (Equation 1).
Effective information content (EIC) (Equation 2) is the sum of all motif at
position ¢ is IC; penalized with the fo-norm of the hit IC; and the consensus
motif base at position 4, IC; consensus-

Pu,i
IC; = pe,ilog,y ( w ) (1)
DPbv,bg
EIC = E IC; —|1C; — IC; consensus % (2)

1

1.6.3. Connectivity Matrix

A TF-gene binding score is calculated separately for each TF and gene.
Each motif hit for a TF within the region of interest around the gene is
identified. Overlapping motif hits are resolved by taking the maximum IC
for each overlapping base, penalized with the f>-norm of differences from the
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motif consensus sequence. To account for cooperative TF binding effects,
any motif hits within 100 bases (25 bases for yeast) are combined, and their
EIC scores are summed. The TF-gene binding score is the maximum TF
EIC after accounting for overlapping and adjacent TF motifs, and all TF-
gene scores are assembled into a Genes x TFs score matrix.

This unfiltered TF-gene score matrix is not sparse as motifs for many
TF's are expected to occur often by chance, and TF-gene scores for each TF
are not comparable to scores for other TFs as motif position-weight matri-
ces have differing information content. Scores for each TF are clustered us-
ing the density-based k-nearest neighbors algorithm DBSCAN (Ester et al.,
1996) (MinPts = 0.001 * number of genes, eps = 1). The cluster of TF-gene
edges with the highest score values, and any high-score outliers, are retained
in the connectivity matrix, and other TF-gene edges are discarded.

1.6.4. CellOracle Connectivity Matriz

CellOracle (Kamimoto et al., 2020) was cloned from github (v0.6.5;
https://github.com/morris-1lab/CellOracle; a0da790). CellOracle was
provided a BED file with promoter locations for each gene (200bp upstream
of transcription start site to 50bp downstream of transcription start site) and
the appropriate MEME file for each motif database. Connectivity matrices
were predicted using a false positive rate of 0.02 and a motif score thresh-
old of 6. The inferelator-prior pipeline was run using the same promoter
locations and MEME files so that the resulting networks are directly com-
parable, and the Jaccard index between each network and the YEASTRACT
network was calculated. Each motif-based network was used as a prior for
inferelator network inference on Saccharomyces cerevisiae, with the same
2577 genome-wide expression microarray measurements (Tchourine et al.,
2018). 20% of the genes were held out of the prior networks and used for
scoring the resulting network inference. The motif-based network files have
been included in Supplemental Data 1.

1.7. Network Inference (The Inferelator)

The Inferelator modeling of gene regulatory networks relies on three main
modeling assumptions. First, because many transcription factors (TFs) are
post transcriptionally controlled and their expression level may not reflect
their underlying biological activity, we assume that the activity of a TF can
be estimated using expression levels of known targets from prior interactions
data (Arrieta-Ortiz et al., 2015; Fu et al., 2011). Second, we assume that
gene expression can be modeled as a weighted sum of the activities of TF's
(Bonneau et al., 2006; Castro et al., 2019). Finally, we assume that each
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gene is regulated by a small subset of TFs and regularize the linear model
to enforce sparsity.

The Inferelator was initially developed and distributed as an R package
(Bonneau et al., 2006; Greenfield et al., 2010; Madar et al., 2010; Greenfield
et al., 2013). We have rewritten it as a python package with dependen-
cies on the common scientific computing packages NumPy (Harris et al.,
2020), SciPy (Virtanen et al., 2020), pandas (Wes McKinney, 2010), Ann-
Data (Wolf et al., 2018), and scikit-learn (Pedregosa et al., 2011). Scaling is
implemented either locally through python or as a distributed computation
with the Dask (Rocklin, 2015) parallelization library. The inferelator pack-
age (v0.5.6 was used to generate the networks in this manuscript) is avail-
able on github (https://github.com/flatironinstitute/inferelator)
and can be installed through the python package manager pip. The Infere-
lator takes as input gene expression data and prior information on network
structure, and outputs ranked regulatory hypotheses of the relative strength
and direction of each interaction with an associated confidence score.

1.8. Transcription Factor Activity

The expression level of a TF is often not suitable to describe its activity
(Schacht et al., 2014). Transcription factor activity (TFA) is an estimate of
the latent activity of a TF that is inducing or repressing transcription of its
targets in a sample. A gene expression dataset (X) is a Samples x Genes
matrix where X; ; is the observed mRNA expression level (i € Samples and
j € Genes), measured either by microarray, RNA-seq, or single cell RNA
sequencing (scRNA-seq).

Xij =Y AP, (3)
k

We estimate TFA by solving (Equation 3) for activity (A; x), where k €
TFs, and P is a TFs x Genes prior connectivity matrix. P ; is non-zero if
gene j is regulated by TF k and 0 if it is not. In matrix notation, X = AP,
and A is estimated by minimizing | AP — X ||2. This is calculated by the
pseudoinverse P and solving A = XPt. The resulting A is a Samples x TF
activities matrix where fli’k is the estimated latent TFA for sample i and
TF k. In cases where all values in P for a TF are 0, that TF is removed
from P and the expression X of that TF is used in place of activity.

1.9. Inferelator Network Inference

Linear models (Equation 4) are separately constructed for each gene j.
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Xi=> Aippr (4)
k

In addition to the model selection methods described here, we have imple-
mented a module which takes any scikit-learn regression object (for example,
elastic net (Zou and Hastie, 2005)). Model selection and regularization tech-
niques are applied to enforce the biological property of sparsity. If the co-
efficient 3, is non-zero, it is evidence for a regulatory relationship between
TF k and gene j.

o2

Sip =1 - elTEs o)
UTFkleaveout

For each gene j, the amount of variance explained by each regulatory TF

k is calculated as the ratio between the variance of the residuals in the full

model and the variance of the residuals when the linear model is refit by

ordinary least squares (OLS) and k is left out (Equation 5).

In order to mitigate the effect of outliers and sampling error, model se-
lection is repeated multiple times using input expression data X that has
been bootstrapped (resampled with replacement). Predicted TF-gene inter-
actions are ranked for each bootstrap by amount of variance explained and
then rank-combined into a unified network prediction. Confidence scores are
assigned based on the combined rank for each interaction, and the overall
network is compared to a gold standard and performance is evaluated by
area under the precision-recall curve.

The effects of setting hyperparameters can be tested by cross-validation
on the prior and gold standard networks. This strategy holds out a subset
of genes (rows) from the prior knowledge network P. Network inference
performance is then evaluated on only those held-out genes, using the gold
standard network.

1.9.1. Model Selection: Bayesian Best Subset Regression

Bayesian Best Subset Regression (BBSR) is a model selection method de-
scribed in detail in (Greenfield et al., 2013). Initial feature selection for this
method is necessary as best subset regression on all possible combinations of
hundreds of TF features is computationally intractible. We therefore select
ten TF features with the highest context likelihood of relatedness between
expression of each gene and activity of each TF. This method is described
in detail in (Madar et al., 2010).

First, gene expression and TF activity are discretized into equal-width
bins (n=10) and mutual information is calculated based on their discrete
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probability distributions (Equation 6) to create a mutual information matrix
Mdyn,

p(Xj, Ak)
p(X;)p(A)

p(Akl ) Akz)
p(Ak1 )p(AkQ)

Mutual information is also calculated between activity of each TF (Equation
7) to create a mutual information matrix MStat,

MY = p(X;, Ay) log (6)

Mt = p(Ag,, Ax,) log

(7)

. : .dyn
]\4‘]7 kdyn . Zj Mj.k

dyn __ Lz
Zig = (8)
Jik d
O'kyn
. d Mj,k}Stat
stat __ Mj’ R — Zj ng 9
Zj,k - O.stat ( )
k
ixed d
el = S + (gl (10)

A mixed context likelihood of relatedness score is then calculated as a
pseudo-zscore by calculating Z9Y™ (Equation 8) and Z5tat (Equation 9). Any
values less than 0 in Z9Y™ or ZSt2t are set to 0, and then they are combined
into a mixed context likelihood of relatedness matrix Z™*ed (Equation 10).
For each gene j, the 10 TFs with the highest mixed context likelihood of
relatedness values are selected for regression.

For best subset regression, a linear model is fit with OLS for every com-
bination of the selected predictor variables.

p(B,0%X;) = p(B1X;,0%)p(c?| X;) (11)
o(021X;) IG(%, SgR n (Bo — BOLS)GX;XG(ﬁo - /BOLS)) (12)

We define fj as our null prior for the model parameters (zeros), Sors as the
model coefficients from OLS, SSR as the sum of squared residuals, and G
as a g-prior diagonal matrix where the diagonal values represent a weight
for each predictor variable. g-prior weights in G close to 0 favor g values
close to By. Large g-prior weights favor 3 values close to Sors. By default,
we select g-prior weights of 1 for all predictor variables. From the joint
posterior distribution (Equation 11) we can calculate the marginal posterior
distribution of 0 (Equation 12), where IG is the inverse gamma distribution.
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The Bayesian information criterion (BIC) is calculated for each model, where
n is the number of observations and k is the number of predictors (Equation

13).
BIC =nln(0?) — kln(n) (13)
SSE (Bo—BoLs)GX'XG(Bo—BoLs)
E[o*] = -2 T (14)
5 - 1
E[BIC] =n(ln (SgR + (Bo = BOLS)GX;XG(ﬁO — bovs) )—Digamma(g))—kln(n)
(15)

We calculate the expected posterior distribution of 0 (Equation 14) for each
subset of predictors, and use it to determine the model BIC (Equation 15).
We then select the model with the smallest E[BIC]. The predictors in the
selected subset model for gene j are TFs which regulate its expression.

1.9.2. Model Selection: StARS-LASSO

Least absolute shrinkage and selection operator (LASSO) (Zou, 2006)
combined with the Stability Approach to Regularization Selection (StARS)
(Liu et al., 2010) is a model selection method described in detail in (Miraldi
et al., 2019). In short, the StARS-LASSO approach is to select the optimal
A parameter for (Equation 16). N random subsamples of X and A without
replacement subnetworks S, ) are defined as the non-zero coefficients [, »
after LASSO regression. Initially, A is set large, so that each subnetwork
Sy is highly sparse, and is then decreased, resulting in increasingly dense
networks. Edge instability is calculated as the fraction of times subnetworks
disagree about the presence of an network edge. As A decreases, the sub-
networks are expected to have increasing edge instability initially and then
decreasing edge instability as A approaches 0, as (Equation 16) reduces to
OLS and each subnetwork becomes dense.

1 A
HEH%W—AM%—)\WH (16)

We choose the largest value of A\ such that the edge instability is less than
0.05, which is interpretable as all subnetworks share > 95% of edges. This
selection represents a balance between increasing the network size and min-
imizing the instability that occurs when data is sampled.
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1.10. Multiple Task Network Inference

We separate biological samples which represent different states into sep-
arate tasks, learn networks from these tasks, and then combine task-specific
networks into an ensemble network. One method of solving these states is
to sequentially apply a single-task method for network inference (i.e. 1.9.1
or 1.9.2). The networks generated for each task are then rank-combined
into a unified network. The Adaptive Multiple Sparse Regression (AMuSR)
method, described in detail in (Castro et al., 2019), uses a multi-task learn-
ing framework, where each task is solved together.

1 ;
argmin o~ Xq; — (Sa + B)Adll3 + s S
B,Sq 4N

l11+ Xl Bll1,0o (17)

Wd =B + §d (18)

In (Equation 17), B is a block-sparse weight matrix in which the weights for
any feature are the same across all tasks. Sy is a sparse weight matrix for
task d, allowing weights for features to vary between tasks. The combination
Wy of B and Sy (Equation 18) are model weights representing regulatory
interactions between TFs and genes for task d. In short, this method uses
adaptive penalties to favor regulatory interactions shared across multiple
tasks in B, while recognizing dataset specific interactions in Sy. Model hy-
perparameters As and A, are identified by grid search, selecting the model
that minimizes the extended Bayesian Information Criterion (eBIC) (Equa-
tion 19), where D is the number of task datasets, and for dataset d, ng is
the number of observations, Xi(d) is gene expression for gene 1, A@ i TF
activity estimates, W 4 is model weights, k4 is the number of non-zero pre-
dictors, and pg is the total number of predictors. For this work, we choose
to set the eBIC paramater v to 1.

1 1 d 3 Dd
¢BIC = 5 nagln er”Xi( )~ ADTW, 413 + kglnng + 2v1n (kd> (19)

1.11. Network Performance Metrics

Prior work has used the area under the Precision (Equation 20) - Re-
call (Equation 21) curve to determine performance, by comparing to some
known, gold-standard network. Here we add two metrics; Matthews cor-
relation coefficient (Matthews, 1975) (MCC) (Equation 22) and F1 score
(Equation 23). MCC can be calculated directly from the confusion matrix
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True Positive (TP), False Positive (FP), True Negative (TN), and False
Negative (FN) values.

TP
Precision = ————— 2
recision = 7o s (20)
TP
Recall = m (21)
TPxTN —FPxFN
MCC = - - (22)

V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Precision * Recall
F1=2 23
* Precision + Recall (23)

We compute an MCC and F1 score for each cutoff along ranked interac-
tions in order to generate MCC and F1 scores for all possible networks in
growing ranked order. The maximum MCC along ranked interactions gives
the subnetwork that has maximum similarity to the comparison network,
accounting for TP, FP, TN, and FN. The maximum F1 along ranked inter-
actions gives the subnetwork that has maximum similarity to the comparison
network accounting for TP, FP, and FN.

1.12. Visualization

Figures were generated with R (R Core Team, 2020) and the common
ggplot2 (Wickham, 2016), umap (McInnes et al., 2018), and tidyverse pack-
ages (Wickham et al., 2019). Additional figures were generated with python
using scanpy (Wolf et al., 2018), matplotlib (Hunter, 2007), and seaborn
(Waskom, 2021). Network diagrams were created with the python package
jp-gene_viz (Watters, 2019). Schematic figures were created in Adobe Illus-
trator, and other figures were adjusted in Illustrator to improve panelling
and layout.

Availability of Data and Materials

The datasets supporting the conclusions of this article are available in
the NCBI GEO repository with accession IDs: GSE125162, GSE144820,
GSEG67023, GSE27219, GSE142864. A large number of GEO records were
compiled and normalized in a previous work Tchourine et al. (2018) into a
combined dataset which is available on Zenodo (DOI: 10.5281/zenodo.3247754).
The scRNAseq expression matrix, metadata, prior knowledge network, and
gold standard network for the yeast network inference benchmarking is avail-
able on Zenodo (DOI: 10.5281/zenodo.5272314). Single-cell mouse datasets
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are publicly available from 10x genomics 10x Genomics (2017, 2019¢,a,b) un-

der a Creative Commons Attribution (CC-BY 4.0) license. Software pack-

ages developed for this article are available on github (https://github.
com/flatironinstitute/inferelator and https://github.com/flatironinstitute/
inferelator-prior) and have been released as python packages through

PyPi (https://pypi.org/project/inferelator/ and https://pypi.org/
project/inferelator-prior/). Specific analysis scripts for this work have

been included in Supplemental Data 1.
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e Supplemental Data 1 is a .tar.gz file containing the prior knowledge
networks used in this work, the gold standard networks used in this
work, and the python scripts used to generate the learned networks in
this work

e Supplemental Data 2 is a .tar.gz file containing the mouse E18 neuronal
network learned in Figure 6 of this work

e Supplemental Table 1 is a .tsv file containing the crossvalidation per-
formance results from Figure 2

e Supplemental Table 2 is a .tsv file containing the crossvalidation per-
formance results from Figure 3
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e Supplemental Table 3 is a .tsv file containing the crossvalidation per-
formance results from Figure 4B-D

e Supplemental Table 4 is a .tsv file containing the crossvalidation per-
formance results from Figure 4G

e Supplemental Table 5 is a .tsv file containing the crossvalidation per-
formance results from Supplemental Figure 5A

e Supplemental Table 6 is a .tsv file containing the crossvalidation per-
formance results from Figure 4H

e Supplemental Table 7 is a .tsv file containing the crossvalidation per-
formance results from Supplemental Figure 3
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Figure 2: Network Inference Performance on Multiple Model Organism Datasets (A)
Schematic of Inferelator workflow and a brief summary of the differences between GRN
model selection methods (B) Results from 10 replicates of GRN inference for each model-
ing method on (i) Bacillus subtilis GSE67023 (B1), GSE27219 (B2) and (ii) Saccharomyces
cerevisiae GSE142864 (S1), and Tchourine et al. (2018) (S2). Precision-recall curves are
shown for replicates where 20% of genes are held out of the prior and used for evalu-
ation, with a smoothed consensus curve. The black dashed line on the precision-recall
curve is the expected random performance based on random sampling from the gold stan-
dard. AUPR is plotted for each cross-validation result in gray, with mean + standard
deviation in color. Experiments labeled with (S) are shuffled controls, where the labels
on the prior adjacency matrix have been randomly shuffled. 10 shuffled replicates are
shown as gray dots, with mean 4 standard deviation in black. The blue dashed line is the
the performance of the GRNBOOST2 network inference algorithm, which does not use
prior network information, scored against the entire gold standard network. (C) Results
from 10 replicates of GRN inference using two datasets as two network inference tasks on
(i) Bacillus subtilis and (ii) Saccharomyces cerevisiae. AMuSR is a multi-task learning
method; BBSR and StARS-LASSO are run on each task separately and then combined
into a unified GRN. AUPR is plotted as in B.
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Figure 3: Construction and Performance of Network Connectivity Priors Using TF Mo-
tif Scanning (A) Schematic of inferelator-prior workflow, scanning identified regulatory
regions (e.g. by ATAC) for TF motifs to construct adjacency matrices (B) Jaccard simi-
larity index between Saccharomyces cerevisiae prior adjacency matrices generated by the
inferelator-prior package, by the CellOracle package, and obtained from the YEASTRACT
database. Prior matrices were generated using TF motifs from the CIS-BP, JASPAR, and
TRANSFAC databases with each pipeline (n is the number of edges in each prior adjacency
matrix). (C) The performance of Inferelator network inference using each motif-derived
prior. Performance is evaluated by AUPR, scoring against genes held out of the prior
adjacency matrix, based on inference using 2577 genome-wide microarray experiments.
Experiments labeled with (S) are shuffled controls, where the labels on the prior adja-
cency matrix have been randomly shuffled. The black dashed line is the performance of
the GRNBOOST?2 algorithm, which does not incorporate prior knowledge, scored against
the entire gold standard network.
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Figure 4: Network Inference Performance Using Saccharomyces cerevisiae Single-Cell

Data (A) Uniform Manifold Approximation and Projection (UMAP) plot of yeast scR-
NAseq data, colored by the experimental grouping of individual cells (tasks). (B) The
effect of preprocessing methods on network inference using BBSR model selection on 14
task-specific expression datasets, as measured by AUPR. Colored dots represent mean =+
standard deviation of all replicates. Data is either untransformed (raw counts), trans-
formed by Freeman-Tukey Transform (FTT), or transformed by logz(x1) pseudocount.
Non-normalized data is compared to data normalized so that all cells have identical count
depth. Network inference performance is compared to two baseline controls; data which
has been replaced by Gaussian noise (N) and network inference using shuffled labels in the
prior network (S). (C) Performance evaluated as in B on StARS-LASSO model selection.
(D) Performance evaluated as in B on AMuSR model selection. (E) Precision-recall of
a network constructed using FTT-transformed, non-normalized AMuSR model selection,
as determined by the recovery of the prior network. Dashed red line is the retention
threshold identified by Matthews Correlation Coefficient. (F) Matthews Correlation Co-
efficient (MCC) of the same network as in E. Dashed red line is the confidence score of
the maximum MCC. (G) Performance evaluated as in B comparing the Inferelator (FTT-
transformed, non-normalized AMuSR) against the SCENIC and CellOracle network in-
ference pipelines. (H) Performance of the Inferelator (FTT-transformed, non-normalized
AMuSR) compared to SCENIC and CellOracle without holding genes out of the prior
knowledge network. Additional edges are added randomly to the prior knowledge network
as a percentage of the true edges in the prior. Colored dashed lines represent controls for
each method where the labels on the prior knowledge network are randomly shuffled. The
black dashed line represents performance of the GRNBOOST?2 algorithm, which identifies
gene adjacencies as the first part of the SCENIC pipeline without using prior knowledge.
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Figure 5: Processing Large Single-Cell Mouse Brain Data for Network Inference (A)
UMAP plot of all mouse brain scRNAseq data with Excitatory neurons, Interneurons,
Glial cells and Vascular cells colored. (B) UMAP plot of cells from each broad category
colored by louvain clusters and labeled by cell type. (C) Heatmap of normalized gene
expression for marker genes that distinguish cluster cell types within broad categories.
(D) UMAP plot of mouse brain scATAC data with Excitatory neurons, Interneurons, and
Glial cells colored. (E) Heatmap of normalized mean gene accessibility for marker genes
that distinguish broad categories of cells. (F) The number of scRNA-seq and scATAC
cells in each of the broad categories. (G) The number of scRNA-seq cells in each cell type
specific cluster.
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Figure 6: Learned GRN For The Mouse Brain (A) MCC for the aggregate network based
on Inferelator prediction confidence. The dashed line shows the confidence score which
maximizes MCC. Network edges at and above this line are retained in the final network.
(B) Aggregate GRN learned. (C) Network edges which are present in every individual
task. (D) Jaccard similarity index between each task network (E) Network targets of the
EGR1 TF in neurons. (F) Network targets of the EGR! TF in both neurons and glial
cells. (G) Network targets of the EGRI TF in glial cells. (H) Network of the ATF4 TF
where blue edges are neuron specific, orange edges are glial specific, and black edges are
present in both categories.
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Supplemental Figure 1: Learning Bacillus subtilis and Saccharomyces cerevisiae networks
by tasks. (A) PCA depicts batch effects between datasets for both (i) Bacillus subtilis and
(ii) Saccharomyces cerevisiae. Learning networks by treating the independently collected
datasets as separate tasks allows for sharing regulatory commonalities while respecting
experimental variance. (B) The number of shared edges between the two datasets, for both
model organisms (i) and (ii), shows a high number of overlapping edges. Edges are ranked
by their corresponding variance explained for each of the three different model selection
approaches: AMuSR, BBSR, and StARS-LASSO. (C) Across the three different model
selection approaches, AMuSR learns the highest number of overlapping edges between the
respective datasets for model organisms (i) and (ii).
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Network construction using TF motifs in Saccharomyces cere-
visiae. (A) Motifs annotated for GAL4 in the CIS-BP motif database. (B) Histogram
of scores linking GAL4 to target genes. Genes in black have been omitted from the final
connectivity matrix, and genes in red have been included. (C) Network connecting GAL4
and target genes. Green edges are present in the YEASTRACT database. (D) Histogram
of out degree for each TF in the complete network. (E-H) Network analysis as A-D for
the JASPAR motif database. (I-L) Network analysis as A-D for the TRANSFAC PRO
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Supplemental Figure 3: Inferelator performance on BEELINE simulated network data.
(A) Network inference performance of the Inferelator with BBSR model selection as mea-
sured by AUPR against the ground truth with no prior network information provided.
Dashed lines are the expected baseline of a random predictor. (B) Network inference
performance of the Inferelator with BBSR model selection as measured by AUPR against
half of the ground truth with the other half of the ground truth provided as prior network
information. Each point is the median performance of 10 differently-seeded splits. (C)
Comparison of the AUPR ratio over the baseline for the Inferelator to each of the network
inference methods used in the original BEELINE benchmark.
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Supplemental Figure 4: Extended single-cell yeast network performance metrics as mea-
sured by (i) AUPR, (ii) Matthews Correlation Coefficient (MCC), and (iii) F1 score. Each
gray dot represents performance of one network inference run. Colored dots represent the
mean and standard deviation. (A) Single-cell yeast network inference performance of
BBSR model selection Plots with a gray background are the same plots as used in main-
text Figure 4. (B) Performance of StARS-LASSO model selection. (C) Performance
of AMuSR model selection. (D) Performance of BBSR model selection where all cells
are used without splitting into multiple tasks. (E) Performance of StARS-LASSO model
selection where all cells are used without splitting into multiple tasks.
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Supplemental Figure 5: (A) Computational performance as measured by runtime in
seconds using the Dask engine (140 cpu cores) for the Inferelator 3.0 (BBSR or StARS-
LASSO), and for SCENIC (GENIE3 or GRNBOOST?2). Performance is also measured for
the Inferelator 3.0 or using the python-based multprocessing (MP) engine (28 cpu cores).
Expression data is sampled from 144,000 mouse cells and 9,782 genes are modeled for
network inference. Runtime is shown for 10 replicate runs for each quantity of cells. (B)
Number of cells removed during preprocessing for Quality Control (QC), as Mitotic, and
as Ambiguous by neuronal marker. Post-mitotic, non-ambiguous cells are retained and
clustered. (C) Number of single-cell counts per cell in each of 36 cell type-specific groups,
and in the groups removed during preprocessing. (D) Number of genes per cell in each of
36 cell type-specific groups, and in the groups removed during preprocessing
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Supplemental Figure 6: (A) Cell class marker expression for each annotated subcluster
in mouse single-cell brain data. (B) UMAP of 766,402 mouse brain cells colored by cell
class marker expression. (C) UMAP of 1.3M mouse brain cells colored by the assigned cell
cycle phase. (D) UMAP of 766,402 mouse brain cells colored by 36 assigned subcluster.
(E) Cell type marker expression by assigned subcluster.
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Supplemental Figure 7: (A) List of TFs that have identical target genes in GRNs for both
Excitatory neurons (EXC) and Interneurons (IN), that have only target genes in Excita-
tory neurons, and that have only target genes in Interneurons. (B) List of TFs that have
no shared target genes in GRNs for Excitatory neurons and in GRNs for interneurons. (C)
TF's that have some shared target genes in GRNs for Excitatory neurons and interneurons,
but also have some target genes specific to Excitatory neurons or interneurons.
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2. Response to Reviewers

We’d like to thank all of the reviewers for the time that they’ve spent
evaluating this manuscript. We believe that the revised manuscript is sub-
stantially improved thanks to these comments. To summarize, the most
important concern raised by reviewers 1, 3, and 4 is that there is no ade-
quate benchmark against other network inference algorithms. Reviewer 1
has also raised several textual concerns, suggested tests for robustness, and
requested clarification on two points related to model design. Reviewer 2
has raised a mathematical argument suggesting that this method is flawed
in concept. Reviewer 3 has also raised several specific concerns about the
prior and testing networks and the interpretation of inferred networks. Fi-
nally, Reviewer 4 has raised several interesting points related to some subtle
observations in our model performance.

2.1. Summary of Changes

As the most general concern, we address benchmarking first. We initially
chose not to include competitive benchmarks against other network inference
methods. A neutral benchmarking panel (as recommended by Reviewer 1)
is an excellent suggestion and we have included an evaluation of the Inferela-
tor on the BEELINE standard as a new supplemental figure (Supplemental
Figure 3). We note that the BEELINE benchmarking is not designed for
network inference tools which utilize prior network knowledge during infer-
ence (it is a benchmark built around pseudotime). While the Inferelator is
adequate to that benchmark, additional benchmarking is necessary.

We have additionally tested two other single-cell network inference tools
which utilize prior network knowledge (SCENIC and CellOracle) on the
yeast single-cell network inference problem as a benchmark. Yeast is a
model organism with real-world single-cell data and which has a reliable
gold standard that we can use for performance quantification. We report
these results in figure 4, panels G-H. We also report the performance of the
GRNBOOST?2 network inference method which does not utilize prior data
(one component of the SCENIC pipeline) in figure 4H.

In short, the Inferelator is the only method which can learn edges for
genes which no prior knowledge is known, and is robust to noise in the prior
knowledge network. CellOracle performs very well when given a prior knowl-
edge network and asked to make predictions within that network, although
it is more sensitive to noise in the prior knowledge network. We have revised
our runtime benchmark in Supplemental Figure 5A to include SCENIC. We
have also revised the discussion to include the comparative results and to
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emphasize the importance of the model organism benchmark we’ve chosen
for this work.

In accordance with Reviewer 1’s suggestions, we have revised the in-
troduction to cover prior work and community benchmarks. We have also
revised the discussion to better justify the modeling strategy in the context
of the results we show. Supplemental Figure 4 now includes performance
metrics for the yeast benchmark when networks are learned on all cells to-
gether, instead of by task group. We have modified figure 1 to emphasize
that we are scoring on information held out of the modeling.

We have predominantly responded to Reviewer 2 in this document, pro-
viding specific theoretical and experimental results to contradict the asser-
tion that our modeling strategy is fatally flawed. We have added a prior
knowledge network experiment where false positive edges are added prior to
modeling in Figure 4H in part to specifically refute the reviewer’s assertions.

We have added a section to our methods to answer Reviewer 3’s questions
about the selection of our prior knowledge and gold standard networks.
Reviewer 4 requested interpretation of several subtle observations in our
results. We have modified Figure 4B-D and added runtime benchmarks for
SCENIC to Supplemental Figure 5.

We also note that during this revision, we identified a minor error in
the construction of the yeast single-cell expression data (several genes were
inadvertently dropped when different data sets were merged). We have fixed
that error and repeated all analyses that used that data set; no conclusions
have changed.

Point by point responses to the reviewer comments follow.
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2.2. Reviewer 1

Comments to the Author Inferelator 3.0 is a new version of the Inferela-
tor that provides a workflow for five different regression and model selection
modules. This version supports single-cell gene expression data and has
better scalability, as shown through experiments with the 10x 1.3 million
cell mouse neuronal dataset. The authors highlight their method for select-
ing regulatory edges to retain in a GRN - ranking regulatory edges by the
amount of target gene variance explained, and selecting a threshold that
maximizes MCC against a known gold standard. The Inferelator tool seems
to be well-documented and available through PyPi and Github.

Some major comments suggested for revision:

1. Introduction needs a lot of work. Lacks comprehensive discussion of
previous work and of many related methods (such as those in this
benchmarking paper https://www.nature.com/articles/s41592-019-
0690-6) and further explanation of 3 model selection methods used in

paper.

e We have revised the introduction to give a clearer description of
the inferelator, as well as the two most comparable other meth-
ods (CellOracle and SCENIC). We note that in the interest of
space, we now rely on the excellent work of three benchmarking
papers, including the BEELINE benchmarking paper, to describe
the many other extant methods for network inference.

2. The paper does no comparison (of performance, time, memory, or
other measures) of Inferelator to other existing methods, including
SCENIC and others mentioned. Please see benchmarking paper here
for ideas on metrics: https://www.nature.com/articles/s41592-
019-0690-6

e This is an excellent suggestion. We have chosen to apply the
inferelator to the simulated BEELINE benchmarks, and report
those results in Supplemental Figure 3. Only the BBSR method
for model selection was tested, as there are no separable tasks for
AMuSR in the BEELINE simulated data, and the overall net-
work size is too small to use a stability-based model selection
method like StARS-LASSO. We do note however, that the BEE-
LINE framework was not developed for network inference meth-
ods which utilize prior network knowledge (this is why the BEE-
LINE benchmark evaluates the GENIE3 and GRNBOOST2 com-
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ponents of SCENIC without running the full SCENIC pipeline;
SCENIC requires prior knowledge).

We have therefore chosen to also benchmark SCENIC and Cel-
10racle on the yeast single-cell network inference problem which
has a reliable gold standard. We report those results in Figure
4G-H. In summary, CellOracle has a number of desirable char-
acteristics in a network inference method, and performs well at
evaluating a prior network for edges to retain. However, it is not
capable of making predictions outside the prior network. The
inferelator performance is somewhat lower than CellOracle when
scored against a gold standard which was not held out of the prior
network, but is capable of making novel predictions outside of the
prior network (and therefore performs well when scored against
a gold standard held out of the prior network). SCENIC is not
capable of making predictions outside of a prior network, and
performs poorly when making predictions within a prior network.
We have also added a set of runtime benchmarks for SCENIC to
Supplemental Figure 5 (CellOracle has not reached a develop-
ment stage where it would be fair to include in a benchmark for
runtime).

3. The paper more or less proposes to port their existing regression meth-
ods to single cell data without assessing how peculiarities of single cell
data are affected by their approaches. For example, the authors dis-
cuss the noise inherent in single cell data, robustness of their regression
methods to varying levels of dropout noise (as these can vary from ex-
periment to experiment) can be shown on known ground truth data
generated artificially or using benchmarks from the DREAM GRN
challenge.

e This is largely correct - we believe that single-cell data is under-
sampled, but the increased scale of data collection makes that
drawback less critical. We have found Svensson 2020 (https://
doi.org/10.1038/s41587-019-0379-5) to be generally correct
in all aspects when it comes to interpreting single-cell count data.
We note that the most successful methods for single-cell network
inference generally do not use models which include single-cell
peculiarities (like zero-inflation), but instead rely on models that
are robust to noise (CellOracle, for example, uses bagging regres-
sion, which is in our opinion an elegant choice to minimize the
influence of noise, and that method performs quite well).
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We have added several sentences to the results to explain this:
Single-cell data is undersampled and noisy, but large numbers of
observations are collected in parallel. As network inference is a
population-level analysis which must already be robust against
noise, we reason that data preprocessing techniques that improve
per-cell analyses (like imputation) are unnecessary. We demon-
strate that this is valid by quantitatively evaluating networks
learned from Saccharomyces cerevisiae scRNAseq data with a
previously-defined yeast gold standard.”

4. Another interesting experiment is to assess the robustness of networks
using subsampling of the single cell data, networks should be robust
between subsampling strategies.

e This is an excellent suggestion, and the reviewer’s point related

to noise is something we have considered at length. We have per-
formed the suggested subsampling experiment in prior work and
found that performance increases as a function of cell count up
to a point where it plateaus (https://doi.org/10.7554/eLife.
51254 Fig 5B). This is consistent with our expectation is that
sampling noise in single-cell expression data is manageable via
increasing N.
We therefore choose instead to investigate the effect of noise on
the prior knowledge network, which is noise that we cannot com-
pensate for experimentally (the effect of noise in the prior was a
question raised by Reviewer 4). We have tested the performance
of the Inferelator on yeast single-cell network inference when the
prior network has random noise added and reported the results in
Figure 4H. We find that addition of spurious, false edges to the
prior knowledge network does decrease performance, but only
modestly, indicating that the Inferelator is robust to noise in the
prior knowledge network. A comparison to SCENIC and CellOr-
acle has been provided, in addition to negative controls.

5. Another single-cell specific concern I have is the time lag between TF
activity and target expression within a cell. Due to mixing in bulk
samples this seems to be less of a concern, but within a single cell
sample simultaneous observation of both activities may be sparse.

e We are unfortunately unable to directly observe TF activity (di-
rect measurement of activity would be exceptionally useful, and
we hope to have that data someday). Instead, we estimate TF
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activity based on the expression of known gene targets. This
estimate is done per-cell and depends on the current cell gene
expression, and not the TF expression in the past. We there-
fore do not expect there to be a 'time lag’ between TF activity
and target expression, as we do not currently incorporate time
or pseudotime information in our single-cell network modeling.
Applying an explicitly dynamic model to network inference is an
area we are actively exploring, but represents an entirely different
modeling approach and would not be suitable for addition to this
work.

6. Finally, what is the justification of doing the inference ”per cell type”,
clustering or partitioning data to some arbitrary level using Leiden or
Louvain does not necessarily define regulatory program-specific cells.
Indeed other approaches such as SCENIC are more local in their learn-
ing of regulatory networks. What effect does the resolution of this
clustering or the neighborhood have on their inference?

e SCENIC does not locally estimate GRNs. SCENIC is explicitly a
global method, using prior network knowledge to identify regula-
tory units in a provisional draft network created from global gene
"adjacencies”. This global GRN is then applied to each cell (with
the AUCell function) to determine how well each regulatory unit
explains gene expression in that cell as a metric, not as part of
the learning process.

We propose (as does CellOracle, which clusters as part of its core
workflow) that using a neighborhood-based clustering approach
allows us to identify groups of cells which are running different
gene regulatory programs. This is of particular value when we are
unable to directly observe chromatin state in complex eukaryotes,
as TF - gene relationships are likely to be dependent on having the
ability to access specific enhancer or promoter regions. Treating
these cells with different chromatin states as separate learning
tasks allows our method to learn common regulatory network
components which are active in multiple tasks as well as cluster-
specific network components which are active in a limited number
of clusters.

To illustrate the value of task-wise learning, we have added per-
formance metrics for network inference on the yeast single-cell
data without task separation to Supplemental Figure 4. We see
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that overall performance is substantially diminished when learn-
ing a network on all cells together, without tasks.

Minor comments:

1. The authors state in the introduction ”a major difficulty is that bi-
ological systems have large numbers of both regulators and targets;
there is poor network identifiability because many plausible networks
can explain observed expression data and the regulation of gene ex-
pression in an organism” It is unclear if the difficulty is due to the
large numbers of regulators and targets (as it was previously stated
that only 6% of the human genomes are TFs) or due to redundancy
of networks/pathways.

e Network size is a difficulty but many large problems exist in ma-
chine learning, and so is not insurmountable. Many pathways are
redundant or interdependent in ways that simply cannot be de-
convoluted computationally (instead requiring careful biological
perturbation, which may or may not be possible). We can realis-
tically generate thousands of networks which offer approximately
equal explanatory power, and determining which network is cor-
rect is an unsolved problem. We have revised the introduction to
make this point clearer.

2. The claim in the discussion that "many of the performance differences
between gene regulatory network inference methods are not due to
clever methods for model selection, but are instead the result of differ-
ences in data cleaning and preprocessing” is a strong one and requires
further citation or evidence.

o We refer to Figure 4, where preprocessing differences dwarf the
differences between model selection methods (despite using three
model selection methods which have very different characteris-
tics). This statement is intended to emphasize the importance of
using common preprocessing and scoring techniques when com-
paring network inference methods, as these techniques can in-
troduce or obscure correlations in both predictable and unpre-
dictable ways. We understand this to be commonly accepted
wisdom in the statistical learning field (An early warning about
data preprocessing from the 19th century is an interesting read:
https://doi.org/10.1098/rspl.1896.0076). We have revised
the statement to be more specific: ”"For example, we find that
performance differences between our methods of model selection
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may be smaller than differences caused by data cleaning and pre-
processing.”

3. Please report AUPRC ratio (to the random baseline) instead of AUPRC
for better understanding of model performance.

e We have reported an AUPRC ratio in addition to AUC for the
BEELINE comparison in Supplemental Figure 3. However, we
respectfully decline to do so for other analysis in this work. Re-
porting AUC as a ratio to baseline is a practice that we do not
feel is advisable. We can generate several model baselines - for
example, a model baseline from shuffling labels and a model base-
line from replacing data are not identical, and may not be equal
to a model baseline calculated based on the gold standard den-
sity. It is a best practice to generate multiple baselines to control
for different things and report them separately. Furthermore, the
interpretation of a model that reports an AUPR of 0.5 over a
baseline of 0.05 would differ from a model that reports an AUPR
of 0.01 over a baseline of 0.001 and this substantial difference
would be lost with ratios.

4. List as a limitation that model is not able to add or learn edges that
do not exist in prior networks

e This is not a limitation of this modeling strategy. A key advan-
tage of our work is that we are able to add or learn edges, even
when there is no information about a gene in the prior. Model
performance as reported in figures 2-4 is based on holding genes
out of the prior networks entirely and scoring on these genes for
which the model has no prior information. We have modified
Figure 1 to clarify this.
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2.3. Reviewer 2

This manuscript discusses an update to Inferelator (version 3.0). This
manuscript builds on several other work by the authors (e.g. Inferelator-
Amusr) and utilizes these methods that are previously developed as part of
the study.

Due to this reliance on previous methods, the issues present in the au-
thors’ previous work (PMID: 30677040, Catro et al 2019) is also inherited
in this work and has tainted the results. Consequently, unless theses major
issues are addressed, there is not much point in reviewing other aspects of
the manuscript. As a result, I focus on detailing these issues and hope that
the authors would address and rectify them before moving forward.

The main issue is with the algorithm Inferelator-AMuSr. From the algo-
rithmic side, this method (PMID: 30677040) is quite interesting and utilizes
block sparsity and different regularization techniques to learn gene regula-
tory networks. Unfortunately, the problem formulation is flawed and fol-
lows a circular logic. This method uses gene (and TF) expression values
across different conditions + a prior network of gene-TF associations (e.g.
from ChIP-seq data) as its input. It first uses these datasets to learn TF
activity and then uses TF activities (in place of TF expression) to recon-
struct the network. However, it is relatively easy to show that in the best
case scenario, this algorithm recovers the prior network (without discov-
ering anything new). While in the practical case in which the algorithms
themselves rely on various assumptions and add errors, it finds the original
prior network + added errors, but treats the added errors as new discoveries
(which is quite dangerous to the research community). I have provided a
two-page document attached, focusing on the single-task learning version of
the method, describing and showing this flaw. The same problem also exists
in the multi-task version of it, but for simplicity I focused here on the single
task version.

e For the sake of brevity, we will focus our response on the
specific claims in the accessory PDF without reproducing it
in its entirety

1. The issue here, however, is that W = PT is trivially a solution to the
two-step procedure above. We can see that by replacing this choice of
W in Eq 3 to have X = PA’. But remembering that A’ was found by
solving X = PA (matrix A that satisfies this equation), we can see
that X = PA’ is trivially satisfied. This implies that W = P7T is the
solution to the AMUSR two-step procedure.
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e The reviewer has identified a very valid concern; overfitting is a
very real danger for any machine or statistical learning method.
In this work, we explore the use of several regularization methods
that produce sparse model coefficients (BBSR, StARS-LASSO,
and AMuSR) to mitigate overfitting risks. Model selection meth-
ods which regularize W will result in recovery of a sparse W
where W may or may not have the same structure as P.

As a trivial conceptual counterexample to illustrate this point,
allow P to be a TFs by genes prior matrix where every value is
1. The activity estimate A’ will then have a rank of 1, where all
TF activities are co-linear. As additional predictors provide no
additional information, regularization should result in a matrix W
which has at most one non-zero entry for each gene, and W # P.

As a second conceptual counterexample to illustrate this point,
allow P to be a TFs by genes prior matrix where for half of the
columns, every value is 0 (as a note, every value is 0 for 43% of
the genes in our YEASTRACT prior knowledge network P). The
corresponding rows of the pseudoinverse P will then also be all
zeros. A’ will be entirely independent of gene g which has no
non-zero values in the prior matrix, as the gene ¢ row in P is
all zeros. A’ will still be a valid predictor matrix, and we can
regress expression of gene g against A’ to select TF activities
which predict expression of g. These selected predictors will be
represented as non-zero entries in weight matrix W for this gene
g, and W # P.

As a real-world counterexample, we have performed a number
of tests where the expression matrix X is replaced with noise
(the Noise controls, labeled 'N” in Figure 4 and Supplemental
Figure 4), and we see that performance on held-out genes drops
as expected. To further explore this, we have performed a test
where we take prior matrix P and randomly add false positive
edges (reported in Figure 4H), evaluating performance against
the gold standard network without holding out any genes from
the prior network. If the reviewer’s assertion of circularity is
correct, we would expect that W would also be filled with false
positive edges, and performance would drop dramatically as noise
increases. We see that this is not the case.

2. In the best-case scenario, when the algorithms used to solve the two-
step procedure above do not use any approximation and do not add


https://doi.org/10.1101/2021.05.03.442499
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.03.442499; this version posted February 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

errors, one simply recovers matrix P, which we already knew. In the
more dangerous practical case, algorithms (those that use different
regularization terms with block sparsity, etc.), add errors and find W
that is PT + added error. Then, this focuses the attention to the
difference of W and PT as new discoveries, while in reality these are
simply added errors by algorithms

e While some connections added by network inference are undoubt-
edly spurious, it is not the case that all must be. As a trivial
counterexample, imagine three genes (A, B, and C) where genes
A and B are strongly positively correlated and genes A and C are
strongly negatively correlated. If the prior network contains an
edge linking TF-1 to gene A, the activity of TF-1 will correlate
with expression of gene A. The activity of TF-1 is then likely to
be a useful predictor for the expression of genes B and C, able
to explain a substantial amount of the variance observed in the
data. An output network W where TF-1 is connected to genes
A, B, and C is therefore a perfectly reasonable learned network
which has new edges which are not present in the prior P.

As a real-world counterexample, we note that the results reported
in Figures 2-4 are reported on genes for which no prior informa-
tion was provided. If the reviewer’s assertion that all learned
edges are errors by the algorithm is correct, we would expect this
to perform no better than the negative controls where labels have
been shuffled which are presented in figure 4 (the Shuffled con-
trol, labeled 'S’ in Figure 4 and Supplemental Figure 4). We see
that this is not the case.

e We have shown that the specific mathematical concerns here are ad-
dressed in our modeling, but would also like to emphasize that the over-
all point that this reviewer is making is VERY valid. In the absence
of some constraints, which invariably take the form of prior knowledge
related to the network structure, the only information available from
expression is correlative in nature, yielding networks edge that rep-
resent co-expression and have no association with causality. For this
reason, the other methods we have benchmarked both incorporate the
same prior information - SCENIC requires a prior TF-Gene ranking
file and TF-Gene binary motif connection file, and CellOracle requires
a genes by TFs prior matrix of the same type as the prior we use. We
explicitly embed our prior information into a latent TF activity layer.
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We believe that it is very important to be clear about this inclusion,
as it does create risks (as the reviewer has intuited). The modeling
may recover the existing network information that we put in, and lit-
tle else. This is a systemic problem for the network inference field
and highlights the importance of the negative controls which we have
included in this work (and which are sadly not ubiquitous when eval-
uating network inference tools). A comprehensive examination of the
circularity problems in the current state of the art for network infer-
ence would be a very interesting paper that would add substantially
to the literature, but would effectively be an entirely new manuscript
and therefore would not fit into this work (I would love to read it if
the reviewer were interested in writing it).
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2.4. Reviewer 8

INTRODUCTION This paper describes Inferelator 3.0, the latest itera-
tion of the Inferelator family of GRN inference algorithms. The latest version
differs from the previous version in that it is a Python implementation that
uses large-scale parallelization to enable processing of single-cell RNA-Seq
(scRNA-Seq) data from up to 10° cells. Otherwise, its basic pipeline and
gene-expression modeling methodology are similar to those previously re-
ported in Castro (et al., 2019) from the same lab. The paper does not make
any claims about how accurate this new algorithm is compared to Inferelator
2.0, compared to any of the other leading algorithms that are available, or
on any absolute scale. Primarily, it describes and evaluates several variants
the authors tried before settling on the final Inferelator 3.0 algorithm.

INTEREST TO POTENTIAL READERS It is not clear who the in-
tended audience for this paper is. Logical possibilities would be other re-
searchers working on network inference, potential users of network inference
algorithms, and possibly those interested in the biology of the networks pro-
duced. The first two groups will be interested only if the paper provides
rigorous performance comparisons to other algorithms, including Inferelator
2 and many or most of the leading competitors. Those interested in the bio-
logical implications of the networks themselves would require a much deeper
analysis of the resulting networks than is currently provided.

MAJOR CLAIMS I was not able to identify any claims other than
that certain alternative ways of implementing components of Inferelator 3.0
worked better than others. Looking at the subsections of Results:

1. 2.1 The natural claim here would be that the new Python implemen-
tation runs faster than the previous implementation. However, no
statements regarding speed or other desirable qualities are made.

2. 2.2. This section compares two expression modeling algorithms the
authors considered using, BBSR and StARS-LASSO, and concludes
that there is no difference. It also describes AMuSR, published by
many of the same authors in 2019, as being better than either of BBSR
or StARS-LASSO at dealing with batch effects, so they use AMuSR
in Inferelator 3.0. This reports on the authors’ thought process during
the design of Inferelator 3.0, but it does not make any claims about
Inferelator 3.0 itself.

3. 2.3. This section compares different ways the authors considered
putting together a prior network for Inferelator. They observe that
two of the methods produce networks that are similar to each other
but not similar to the network obtained from the Yeastract database.
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This raises questions about the status of Yeastract as a gold standard
(see below), but it does not make any specific claims. For example, it
does not claim that the Inferelator-prior accessory package they im-
plemented is any better than the existing CellOracle package.

4. 2.4 This section reports on various preprocessing approaches the au-
thors considered when implementing Inferelator 3.0, but it does not
make any claims about Inferelator 3.0 itself.

5. 2.5 This section describes how Inferelator 3.0 was run on large datasets
comprising mouse single-cell RNA-Seq and ATAC-Seq data. There is
no validation of the network. A few sentences are devoted to describ-
ing the targets of TFs Egrl and Atf4. While some readers may be
interested in these two TF's, there is little introduction or explanation
of why they are of particular interest, among 1500 other TFs.

e We thank the reviewer for these comments. The manuscript has
been revised to clarify the major claims related to performance in
our manuscript, and we have added a number of benchmarks against
comparable network inference tools. The reviewer will find this re-
vised manuscript greatly improved by their suggestions for explicit
comparisons to other network inference leading methods. Based on
this high-quality benchmarking, we claim several specific advantages
over other extant network inference methods related to discovering in-
formation not present in the prior knowledge network and robustness
to noise in that network.

We would like to note that CellOracle is a contemporaneously de-
veloped method (it is currently in an alpha state with an associated
preprint). Both the inferelator-prior and CellOracle methods for gen-
erating prior knowledge networks from motif data are functional, al-
though they generate different prior knowledge networks using dif-
ferent selection criteria. We do not claim that our method for gen-
erating prior knowledge networks is superior (their methodology is
quite sound). We do claim that our benchmarking (using real-world
model-organism data, and testing on a reliable gold standard using
information held out of the modeling process) is superior to other net-
work inference benchmarks which do not adhere to good practices for
machine learning.

The reviewer’s note that we have not validated the large mouse neu-
ronal network in this work is correct; unfortunately, no rigorous gold
standard exists or can be reasonably constructed (a systematic prob-
lem which afflicts all work on mammalian network inference). Several
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network-wide analyses for the mouse neuronal network are provided
in Supplemental Figure 7, but the most appropriate validation for this
network is experimental. We will add a reference to our manuscript
currently in-press which learns new biology by experimentally validat-
ing an inferred network.

RIGOROUS EVIDENCE TO SUPPORT THE CLAIMS

1. Both the Inferelator-internal claims that are made in the current ver-
sion of the paper and the comparative claims that might be made
in a revision require rigorous evaluation of network accuracy. That
starts with a clear definition of what it means for a network edge to
be correct. For instance, is the binding of the TF in the regulatory
DNA of the target gene necessary for correctness? Is it sufficient for
correctness? What about if the predicted target changes in expression
level when the TF is perturbed? Such a change could be caused by
many mechanisms, including mechanisms that are mediated by cell
states such as growth rate or metabolic state rather than regulatory
networks. Would such changes be considered sufficient for an edge
to be correct? Is a change in expression necessary for an edge to be
correct?

e The reviewer has identified a subtle, but very important point.
In the Inferelator framework, an edge is an hypothesis supported
by the input data, for which we report summary statistics such as
variance explained, and ranked confidence over bootstraps. Our
statistical learning explanation is that the framework does not
make any assumptions about the interpretation of an edge; this
is the purview of the user, who should select a prior knowledge
network and a gold standard based on how they expect their
biological system to function.

As biologists, we argue that binding to DNA is not necessary,
which is fortunate - even in a well studied model organism like
Saccharomyces cerevisiae, the number of TFs which have been
conclusively shown to bind DNA is very limited (most in vivo
studies of TF binding are, strictly speaking, studies of localiza-
tion only). We do expect that a TF which causally regulates a
gene will localize to that gene in some cellular states. Differen-
tial expression of a target gene after a TF is perturbed is also
not strictly necessary, although we expect that it will occur in
some cellular states. The most accurate answer to the reviewer’s


https://doi.org/10.1101/2021.05.03.442499
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.03.442499; this version posted February 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

question is that both localization and expression changes are con-
ditionally necessary for a TF - gene regulatory edge, but in any
arbitrary cellular state it is not necessary that they occur. We
have added a clarification on this point to the methods section.

2. Once the intended meaning of the network is made clear, the gold
standard for evaluation must match the intended meaning. If binding
is considered necessary for correctness, the network should be eval-
uated against evidence of binding. If functional effect is considered
necessary, it should be evaluated against perturbation-response data.

e We have selected a prior knowledge network based on criteria
that match our biological interpretation. The YEASTRACT
prior knowledge network is consists of TF - gene edges for which
some evidence exists for both localization and for gene expression
changes upon TF perturbation. The yeast gold standard which
we use was selected for the same criteria, although with a more
rigorous requirement for experimental support.

Unfortunately, rigorous celltype-specific genome-scale TF pertur-
bation data is still unavailable for many mammalian systems,
and consequently the prior knowledge networks we use from the
inferelator-prior pipeline represent predicted TF - gene localiza-
tion. This highlights why we consider experimental validation
to be important, as expression changes when we perturb the TF
provides strong supporting evidence.

The gold standards the authors use for B. subtilis and S. cerevisiae
are described as being curated and/or literature derived. Most edges
in Yeastract are derived from a small number of large scale, high-
throughput datasets. To the best of my knowledge, no judgments are
made as to the quality of the data or the conclusions. Thus, Yeas-
tract is better described as a compilation of (mostly) high-throughput
datasets with references, rather than a curated network. While it is
literature derived in the sense that there are papers associated with
the high-throughput datasets, one should not conclude from this that
these literature-derived edges are in any sense more accurate or reliable
than high-throughput datasets typically are. And Yeastract includes
datasets that are quite old and generally believed to be less reliable
than more some more recent datasets.

e The reviewer is correct about the YEASTRACT database. While
the YEASTRACT prior knowledge network is useful, we do agree
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that it is not ideally suited for use as a gold standard (largely for
the reasons that the reviewer has identified). We therefore use
a curated S. cerevisiae curated gold standard, as described in
https://doi.org/10.1016/j.celrep.2018.03.048.

This gold standard has edges which have evidence from at least
three experiments, and which have evidence of both TF local-
ization and gene expression changes after perturbation. We note
that this results in a relatively small gold standard network, but
as these are (we believe) the highest confidence edges, it is still
a valid way to benchmark using ranked measures (e.g. AUPR).
We are careful not to use unranked metrics (like Jaccard) when
evaluating network performance against this gold standard. We
have clarified this in the methods section.

3. Potential readers who are interested in using network inference algo-
rithms need to know which algorithm they should choose, based on
accuracy comparison and possibly resource requirements. They also
need to know what level of performance they should expect if choose
Inferelator 3.0. For example, if they take all edges scoring above some
threshold, what fraction of those edges can they expect to be supported
by evidence from the gold standard?

e A key aspect of this work is how to properly threshold a regu-
latory network. Metrics like the F1 score or the matthews cor-
relation coefficient proposed here use information from the gold
standard or prior knowledge network to identify optimal thresh-
olds for retaining edges. We argue that this principled method
of choosing thresholds is superior to selection of some threshold,
provided that the network used for scoring is of useful quality.
These metrics are valuable as they take into account true posi-
tives, false positives, and false negatives in a way that an accuracy
measure would not - particularly as biological networks are highly
imbalanced in positive and negative edges, a situation where an
accuracy metric is generally unwise.

To directly address the concern of the reviewer, we have chosen
to compare our work to SCENIC and CellOracle as they are the
most comparable alternatives for single-cell network inference.
The preprocessing (e.g. TF activity) and model selection meth-
ods built for older versions of the Inferelator developed in R (e.g.
the BBSR model selection method) have been reimplemented in
the python-based package which we present here. Based on our
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extensive software testing framework, we are confident that the
output of these reimplemented methods are valid and equiva-
lent to those in the Inferelator 2.0. Our expectation is that the
performance of the original R package and the current python
package would be very similar when using the same preprocess-
ing and model selection methods, if the out-of-date R package
were capable of handling data at this scale (it is not able to han-
dle the staggering number of observations present in single-cell
data sets).
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2.5. Reviewer 4
Major:

1. Using the prior network reconstruction from both CellOracle and Inferelator-
prior results in lower AUPR than using one from YEASTRACT. Do
the authors have an explanation for this? How accurate/complete does
this prior need to be?

e This is a very interesting observation on a topic that we’ve con-
sidered at some length. To put it simply - the strategy of using
TF motifs to scan regulatory regions for potential binding will re-
sult in poor results for many (or perhaps most) TFs. We suspect
the reasons for this are twofold - first is that TF motifs them-
selves are of highly variable reliability. Some TFs (e.g. GAL4)
have been extensively studied and the DNA binding has been
directly measured, but most TF motifs are derived from ChIP
data, which is more indirect. Lower quality motifs will just give
poorer estimates of regulation.

The second reason is that both motif-scanning pipelines treat TFs
as discrete units that can be modeled in isolation, and that’s just
not reflective of the underlying biology in many cases. Some TFs
bind cooperatively with other TFs or chromatin readers, and we
are unable to account for these types of interaction effects. We
also suspect that motifs derived only from ChIP localization data
for TFs are less likely to be reliable, as localization is driven by
factors other than DNA sequence, but we have not directly tested
that hypothesis.

That said, we do not believe that the prior for the inferelator
needs to be particularly accurate or complete. TF's for which no
accurate predictions have been made in the prior network will
unfortunately likely be poorly modeled in the final network, but
so long as there is some signal in the noise we believe that mod-
eling performance will be reasonable. We’ve tested this in Figure
4H by taking a the YEASTRACT prior network (which we be-
lieve to be the most accurate prior knowledge network we have
available) and filling it with randomly generated edges. The re-
sulting network inference performance is quite stable, given that
the true prior network edges are outnumbered (up to 10:1) by
false positive edges.

2. Interestingly, in applying Inferelator 3.0 to single-cell yeast data, the
authors found decreases in performance associated with depth-normalized
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data, suggesting total counts per cell carries some information in in-
ference. This doesn’t seem to be the case when using BBSR model
selection. Can the authors speculate on why this is the case?

e This is also a very interesting observation of a subtle effect. As a
best-subset regression method that uses the Bayesian Information
Criterion, BBSR model selection favors simpler models. There is
an initial feature selection based on mutual information which
greatly restricts the number of considered features prior to best-
subset regression (this is unfortunately necessary as best-subset
regression scales exponentially with the number of predictors).
Predictor variables (TFs) which are only weakly linked to gene
expression through correlation from total count depth are likely
to be excluded in this intial filter and not considered during re-
gression. We note that the performance of AMuSR and BBSR
are very similar when cell count depth is normalized - the dif-
ference is that AMuSR performs better on non-depth-normalized
expression data, and BBSR performance does not change. Inter-
pretation of the original Figure 4 was needlessly difficult as the
y-axis was scaled differently in panels B, C, and D. We have fixed
the y-axis scaling in panels B, C, and D in the revised Figure 4
so that they are identical.

3. I'd be interested to understand the limits of Inferelator 3.0 in terms
of scalability, which seems to be the main draw of this tool. Recon-
struction on 1.3 million single-cells seems impressive (even if divided
into 36 clusters), I wonder how long that took, and how scalability
compares to previous versions and other single-cell based methods.

e This is an excellent question, as this is a lot of data. Our in-
ference approach uses bootstrapping networks (internally rank-
ing network edges by variance explained), and the full network
reported in figures 5 & 6 took approximately 3350 cpu-hours to
calculate each bootstrap network (around 10 minutes per cpu per
gene). We tested this again on the newest version of the Infere-
lator (which has some additional optimizations) and the newest
version of Dask and found it decreased to 1400 cpu-hours (the
output is identical). We're fortunate to have excellent computa-
tional resources, but this is a lot of computational time.

We have included a runtime benchmark (without task learning)
as Supplemental Figure 5A that compares runtime between the
Inferelator and SCENIC, the most scalable of the existing net-
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work inference tools. At 140k cells, the Inferelator can complete
network runs in around an hour, but with equal resources the run-
time of SCENIC using GENIE3 is out of a testable range, and
SCENIC using GRNBOOST?2 dies with cryptic memory errors.
Prior iterations of the Inferelator were written for bulk RNA-seq
data at a much lower scale. We are quite confident, based on
how much of it had to be rewritten to efficiently utilize memory,
that earlier versions of the Inferelator are not able to handle 140k
cells either. That having been said, we intend to continue devel-
oping the Inferelator, as every time we catch up to the size of
large single-cell data sets, someone publishes something 10 times
larger. There are a number of techniques for scalability that we
think we can take advantage of, now that we are built around a
powerful (dask) parallelization library.

4. Benchmarking: it would be useful to put this tool in context of others
in terms of AUPR, runtime, etc. (i.e. some of the ones mentioned in
the background section)

e This is a suggestion raised by (all) other reviewers, and we have
added several benchmarks. We have included performance bench-
marks against the synthetic data in BEELINE (Supplemental
Figure 4), and added SCENIC and CellOracle to the yeast single-
cell benchmarking in Figure 4. We have also contextualized the
advantage of task-based learning by adding the non-task per-
formance against the yeast single-cell benchmark to Supplemen-
tal Figure 4. Finally, we have added a runtime benchmark of
SCENIC to our runtime benchmarking in Supplemental Figure
5.

Minor

1. missing pointer in line 193
2. References seem to be garbled in lines 284-7

e We have corrected these errors.
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3. Response to Reviewers 2

For consistency, we number the reviewers as they were labeled during
the first round of peer review. We’d like to thank Reviewer 1 for their useful
suggestions, and have incorporated the changes they advise into Figures 2
and 3. Reviewers 3 and 4 have no new questions or suggestions.

Reviewer 2’s comments restate their first round comments, without con-
sidering our response in any meaningful way or providing any new criticism
of substance. There are no comments on the manuscript under review,
which we note that they have explicitly declined to read, and there are no
suggestions for improvements or alternatives. The issues raised by Reviewer
2 are contradicted by the careful tests we have performed and included in
the manuscript, both initially and added in response to the first round of
peer review. Reviewer 2’s comments comprise an expression of concern by
the reviewer regarding an earlier work that was reviewed and published in
PLoS Computational Biology.

In response to these concerns, we have edited Figure 2 to improve read-
ability. We have added the performance of the GRNBOOST?2 algorithm on
bulk B. subtilis and S. cerevisiae data to Figures 2 and 3 to provide a direct
comparison to the results from this method. We have also made minor text
edits to clarify methodology.

3.1. Reviewer 1
1. Figure 2A: Type is too small to be read, even at high magnification.

e We apologize, this figure was poorly scaled. We have reformatted
the figure to be easier to read; it is effectively identical content-
wise.

2. Figure 2B,C PR curves: Lines for many different methods and datasets
are heavily overlapping, making it impossible to compare most of the
methods to each other. Rather than plotting all the different holdout
sets, it would be more useful to just plot the mean precision as a
function of the recall for each method. The fact that the scales on the
two axes are different also makes it hard to read. I suggest making the
plots square, with both axes being the length of the current vertical
axis. The horizontal axis can be cut off at the point where all methods
read essentially 0, to save horizontal space if needed.

e We have made the aggregate result lines clearer by increasing the
alpha transparency on the individual replicates. We have also
made these plots square, so that the axes are easier to interpret.
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3. All PR plots: Please show a baseline for selecting edges at random
(this should be a horizontal line in which precision is independent of
recall).

e We have added a dashed line that reflects the number of positive

network edges out of the total in the gold standard that is used for
testing as a convenience. We caution that we would not interpret
this as a model baseline. The shuffled controls (labeled ”S” in
figures 2-4 and supplements) should be interpreted as a baseline
for selecting edges at random. Calculating the AUPR baseline
as the density of the gold standard (the ratio of positive to total
edges) is a suboptimal practice for statistical learning in general
and network inference in particular. It is generally accurate where
the gold standard for testing is uniform in density, or where the
model selects edges entirely at random. That is often not the
case in biological systems where one TF may have many known
target genes and others may have very few, and network inference
methods often enforce sparsity in ways that bias edge selection.
As an example, consider a gold-standard network of 1000 genes
and 100 TFs, where 20 TF's have 100 targets and 80 TF's have 5
targets. The density of this network is 0.024, and the expected
number of correct edges if 100 are selected at random is 2.4.
However, if the model randomly selects one ”top” target for each
TF, the expected number of correct edges is 6. Even though this
random model has no predictive ability, it would still perform
250% better than a density baseline.
The density of our yeast gold standard, for example is 0.01442,
but the median AUPR of our shuffled controls is 0.01884 (30%
higher), and we attribute the difference to non-uniform density
within the gold standard. In this work the model AUPR is many
times the baseline AUPR and small differences in the baseline
AUPR do not meaningfully change the interpretation of our re-
sults. There are cases where using density in place of negative
controls would suggest that a model has performed over baseline
when it has not. The baseline strategy via label shuffling that we
use is a best practice which avoids this risk.

4. Also, it is hard to know how good these results are. It would be helpful
to have some external point of comparison in this figure.
“These motif-derived prior networks from both the inferelator-prior
and CellOracle methods perform well as prior knowledge for GRN
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inference using the Inferelator pipeline (Figure 3C).” In what sense
is an AUPR between 0.1 and 0.15 performing well? Please explain
the basis for describing this performance as good. Best would be
comparison to other methods.

e This is an excellent suggestion. We have added results from the
GRNBOOST?2 algorithm, which does not use prior information,
to Figures 2 and 3. In figure 2, the GRNBOOST2 method perfor-
mance is above the random change baseline, but is substantially
lower than the inferelator performance on held-out genes for 3 of
the 4 data sets. We do note that performance on the heavily pre-
processed yeast data set 1 (the change over time of the median of
three replicates of log2 FC between an experimental and a control
channel in a microarray) is much closer to the inferelator than the
other data sets. This does suggest that very careful experimental
design which minimizes noise may significantly improve the re-
sults of correlative network inference methods, although the other
three data sets cannot be processed in the same way to test this
theory.

In figure 3, The GRNBOOST2 method performance is above the
random chance baseline, but only modestly (AUPR of 0.03818
for the GRNBOOST2 method compared to 0.01884 for base-
line). Using motif-derived prior networks in the inferelator is
therefore significantly better than a correlative network inference
method, when scored against genes for which no prior knowl-
edge was provided (hold-outs). Motif-derived prior networks are
not as good as using literature database derived prior knowledge

(YEASTRACT).

5. Figure 4, legend “...two baseline controls; data which has been re-
placed by Gaussian noise (N) and network inference using shuffled la-
bels in the prior network (S).” Why does Gaussian noise data without
count normalization consistently outperform shuffled prior? Shouldn’t
both N and S be information-free and thus yield similar results? Is
information from the held out portion of the prior network somehow
leaking, yielding better-than-random performance even when the gene
expression data contain no information?

e This is an excellent question (Reviewer 4 asked a related ques-
tion during the first round of review). The method by which we
replace the data with white noise was chosen to retain the mean
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and standard deviation of each gene, and the total count depth
for each cell. There is some information remaining in this control
as a result (mean and SD of each gene and count depth of each
cell).

We note that when the count depth for each cell is normalized
(the right half of Figure 4B-D), the performance of the Noise
control (N) drops to equal that of the shuffled control (S). No
information about the tested genes was provided to the model
(they are true hold-outs; all processing occurs after the split, to
ensure that there is no information leakage). Our interpretation
is: ”The performance of the randomly generated Noise control
(N) is higher than the performance of the shuffled (S) control
when counts per cell are not normalized, suggesting that total
counts per cell provides additional information during inference.”

8.2. Reviewer 2

1. I thank the authors for engaging in this discussion. Below, I have
provided my points to their rebuttal, hoping that it helps to improve
the methodology.

e We are always happy to have discussions about our published
work, and we appreciate that the reviewer is clear that they are
engaged in a post-publication discussion and not in peer review of
the manuscript under consideration. We do think it adds greatly
to the scientific literature when existing work can be refined. We
strongly encourage the reviewer to submit their concerns about
Castro 2019 to the PLoS editorial office at ploscompbiol@plos.
org. We think that they would be well-received; the underlying
issue of model circularity when prior knowledge is embedded is a
field-wide problem which would benefit from additional scrutiny.

2. First, I believe the authors agree with my point that W = PT is
one of the solutions (if not the only possible solution) of the two-step
procedure of the AMUSR.

e The reviewer is correct that recovering the prior is a possible
solution. It is not clear how the reviewer is defining 'the only
possible solution’ to this overdetermined system. We balance
model error against sparsity and determine model performance
on genes which are not included in P.
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The reviewer’s assertion that we must only recover the prior
knowledge in P would mean that the genes which we test on
would not be incorporated into our final learned network. We
see from the results in the manuscript, our model performance
is considerably above the control baselines. This contradicts the
reviewer’s claim.

3. The authors have mentioned two pathological examples for the choice
of P (the prior network): first an all-One matrix and second a low-rank
matrix of Os and ones. Then they have argued that in these cases, W
is not equal to P (or to be consistent with my document, W is not
equal to PT).

e We offered a number of careful controls in the original manuscript,
and added additional relevant testing in the revised manuscript.
The thought experiments referred to here were only offered in the
response to reviewer section as a complement to our manuscript
results. They are conceptually easy to grasp counterexamples to
specific claims of this reviewer.

With the exception of Figure 4H, which does not score on genes
held out of the prior knowledge P (the methods we compare to
are not capable of identifying edges not in P, as shown in Figure
4G), all results in Figures 2-4 are shown on genes held out of
the prior knowledge P. These results directly show that, when
there is no prior knowledge for a gene (every edge for that gene
in the prior network is zero), we are still able to identify correct
regulators, scored against a gold standard network.

This directly contradicts the concerns of the reviewer, who repeat-
edly states that the the model output weights W will be equal
to the input prior matrix P. If this were true, the model output
weights for all genes scored in Figures 2-4 would be zero, and
performance would be equal to the model baselines. No sugges-
tion has been made as to how to reconcile the reviewer’s concerns
with these results, which are not considered in these comments.

We also note that, in response to this concern (and to comments
from other reviewers), we have added an experiment (Figure 4H)
where a large number of random edges are added to the prior
matrix P, and performance is evaluated based on the ability to
recover correct, gold standard edges. While we do see a decrease
in the Inferelator-AMuSR performance as noise is added to P, the
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decrease is modest (AUPR decreases from 0.42 to 0.32 when 10
random noise edges are added for every valid edge in P).

If the reviewer’s concerns are valid, we would expect performance
to drop dramatically as the noise in P increases, as W would be
equal to P and therefore valid edges would be greatly outnum-
bered by spurious edges. No suggestion has been made as to
how to reconcile the reviewer’s concerns with these results, which
are not considered in these comments, despite being explicitly
referenced in our first response to this reviewer.

4. To answer this, I should first mention that I agree that if one solves
the regularization problem that the authors have proposed to
solve the two-step procedure of the AMUSR, W will not be
equal to PT. This however does not mean that PT is not one (maybe
out of several) solutions to the problem. To see this, no matter what
the properties of P are, one can replace PT in the equations and see
a trivially true statement. For example, consider P to be an all-one
matrix (first example). To show this, we only need to show that the
choice of W = PT, independent of the nature and structure of PT, is
a solution. From my previous document, recall that W is the solution
to X = WT A’, where A’ is a matrix that satisfies X = P A’. We
only need to show that the choice of W = PT satisfies the equations
above. By doing so, we obtain X = PA’ where X =PA’, which is
trivially satisfied by definition of A’. So it really does not matter what
structure P has. It could be an all-0 matrix or an all-one matrix or
any type of example. W = PT is ALWAYS a solution to the two-step
procedure of the AMUSR (even though other solutions may exist).

e We appreciate that the reviewer sees that their principal concern
does not apply to the model which we use in this work (bolded
above). Their argument that follows is based on a model formula-
tion that we do not use, for reasons that the reviewer points out,
although they incorrectly refer to their toy model as AMUSR.
We agree that the toy model that the reviewer is describing is
not useful.

5. I am not claiming that W = PT is the only solution as in the case of
pathological examples above, there may be infinitely many solutions.
The authors may argue that their regularization allows them to find
one of the OTHER solutions of the equations above (which I would
agree with). However, given that the W = PT is ALWAYS one of the
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solutions, and P was obtained from prior information (and is treated
as gold standard to guide the rest of inference), why a variation of that
(a regularized version of that) is a better solution?

e As clearly noted in our work, we have no expectation that the
prior information is complete or noise-free. We discuss at length
the difficulties in generating prior knowledge networks (it is the
topic of several figures and a considerable portion of the results
section in this manuscript). There are also specific tests shown
that measure the impact of spurious noise in the prior knowledge
network on the inference performance.

For the yeast single-cell benchmarking in this manuscript, we do
not use the prior knowledge network as a gold standard. The gold
standard is a carefully hand-curated set of the highest-confidence
interactions, and is not used as the prior knowledge network.

6. Also, I should add that the coefficients of regularization terms influ-
ence how strongly the sparsity of S and block sparsity of B (where
B + S = W) are imposed. By changing the coefficients, a user can
ARTIFICIALLY ensure that the solution W will not be equal to PT.
This is what I was referring to in my previous document as the more
dangerous case, since an algorithmic artifact will be treated as new
discoveries. To make this point more clear, if the sparsity constraints
of B and S are not too strict, one can always find a decomposition for
P such that S + B = P, where B is “block-sparse” and S is “sparse”.
In such a case, W = PT will still be a solution not only to the non-
regularized problem, but also to the regularized version of the problem.
Depending on how strict these sparsity constraints are, however, such
decomposition may or may not be possible. In other words, one can
make them so strict to ensure that W found by solving the regular-
ized problem is not equal to PT. This however, is an artifact of how
one chooses the regularization coefficients and does not mean that the
regularized version of P is more biologically relevant than the non-
regularized version of it. In my opinion, the only place that AMUSER
can potentially claim usefulness is if P cannot be decomposed as a
block sparse matrix B 4 sparse matrix S (e.g., the pathological all-one
example), though again, this depends on some arbitrary definition of
sparsity which is imposed by the user through coeflicients.

e These concerns are specific to the AMuSR multi-task learning
method. The coefficients of regularization are set using a prin-
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cipled model selection method, as detailed in this manuscript.
They are not chosen arbitrarily by the user. In the case of
AMuSR, coefficients are chosen that minimize a variant of the
Bayesian information criterion.

We also note that the prior information network P does not have
to be the same in each task, as noted and performed in this
manuscript. It is not clear how the reviewer’s concerns would be
extended to multiple different versions of P with different struc-
tures, as well as different expression matrices X with different
structures. When applied to joint regression problems, the model
weights are not W = B + S, but are as follows, where n is the
number of regression tasks:

Wi =B+5;
Wy =B+ 5 (24)
W,=B+5,

Decomposing model weights into B and .S would be an ill-posed
problem if this method were applied to a single regression prob-
lem. However, it is explicitly a method for joint regression, where
P and X can both vary in each joint regression task, and each task
n is optimized with different model weights W,,. We have clarified
this in Figure 2 and in the supplemental methods section.

7. Also, even in that case, the authors MUST show that 1) it is often the
case that the real-world prior matrices P are not sparse and cannot be
written as B4+S (however, in my experience most biologically driven
prior TRNs are sparse and hence can be written that way)

e It is not clear on why the reviewer would suggest that this is a
requirement. The basis for all network inference modeling is that
biological networks are sparse.

8. 2) the solution of their algorithm is NOT INDEPENDENT of matrix
X (mathematically needs to be shown)

e We have specifically tested the dependence of our model on ma-
trix X by replacing matrix X with white noise. These results are
included in Figure 4 and associated supplements. We do not be-
lieve that the standard in this field requires a formalized proof.
We note that this standard, applied broadly, would preclude the
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publication of almost every work that uses iterative optimization
instead of a closed-form model solution.

9. 3) a regularized solution that modifies P (given that P itself is a so-
lution) is more biologically relevant than P itself. Again, to reiterate,
P is a solution and it comes from prior information (which we are to
trust), so why seek a regularized version?

e The prior information network should not be trusted. It is in-

complete and noisy. A complete and error-free gene regulatory
network has not been constructed in any organism.
We do agree that if the prior information network was complete,
the modeling that we perform would be superfluous. However,
the technology to experimentally determine a complete gene reg-
ulatory network does not exist. This is a core motivation for the
method presented in our manuscript and is directly covered in
the introduction, results, and discussion sections.

10. Given the issues above, I am not convinced that this narrow case of
a matrix P that cannot be written as a sparse + bock-sparse matrix
situation is common enough that even if item 2 and 3 is shown to be
correct would make AMUSER useful.

e We agree that this method would not be appropriate to decom-
pose a single task into a block-sparse and a sparse weight matrix.
This is a method not suited to learning from a single prior ma-
trix P and expression matrix X. As such, we do not use it on
single-task regression problems.

11. Response: I agree that the solution to the regularized problem will
be different IF the coefficients of the regularization term are selected
strict enough to make sure P cannot be written as S + B. However,
it does not answer why we need to modify P anyways and also does
not answer why we should trust a regularized version of P more than
P that was our original prior information.

e This point has been raised and answered above, and is a core topic
of this manuscript. The prior knowledge is incomplete and noisy.
The goal is to identify new edges which explain gene expression
and to eliminate edges from our prior knowledge that do not
explain gene expression.

We quantify 'why we should trust’ the proposed model by hold-
ing gene information out of the prior knowledge network and then
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evaluating our ability to identify regulatory edges for those genes
from a hand-curated gold standard. This hold-out testing is a
standard in the field of supervised learning. We also include sev-
eral baseline tests, which are detailed in the manuscript.

In response to the reviewer comments from the first round of re-
vision, we have added a comparison to two other single-cell net-
work inference methods which incorporate prior network knowl-
edge, and ten other single-cell network inference methods which
do not. We believe that this method is sufficiently described and
tested in this manuscript that a reader can make an informed
judgement about its utility.
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