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Abstract 

How concepts are coded in the brain is a core issue in cognitive neuroscience. Studies have 

focused on how individual concepts are processed, but the way in which conceptual 

representation changes to suit the context is unclear. We parametrically manipulated the 

association strength between words, presented in pairs one word at a time using a slow event-

related fMRI design. We combined representational similarity analysis and computational 

linguistics to probe the neurocomputational content of these trials. Individual word meaning was 

maintained in supramarginal gyrus (associated with verbal short-term memory) when items 

were judged to be unrelated, but not when a linking context was retrieved. Context-dependent 

meaning was instead represented in left lateral prefrontal gyrus (associated with controlled 

retrieval), angular gyrus and ventral temporal lobe (regions associated with integrative aspects 

of memory). Analyses of informational connectivity, examining the similarity of activation 

patterns across trials between sites, showed that control network regions had more similar 

multivariate responses across trials when association strength was weak, reflecting a common 

controlled retrieval state when the task required more unusual associations. These findings 

indicate that semantic control and representational sites amplify contextually-relevant meanings 

in trials judged to be related. 
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Introduction 

The question of how concepts are coded in the brain is a core issue in cognitive 

neuroscience. Neuropsychological, neuroimaging and neuromodulation studies have provided 

information about how individual concepts are represented in the brain (Martin 2007; Patterson 

et al. 2007; Binder and Desai 2011; Pulvermüller 2013; Yee et al. 2014; Lambon Ralph et al. 

2017; Jefferies et al. 2020) – yet the brain produces diverse patterns of semantic retrieval for the 

same inputs to suit the context. For example, APPLE is associated with CAKE when it occurs 

together with KITCHEN, but also with LAPTOP when we encounter it with KEYBOARD. Even 

though concepts are thought to be constructed in this dynamic fashion, empirical studies have, 

until recently, largely focused on invariant conceptual representation – i.e. the features of 

concepts that do not vary across contexts (Yee and Thompson-Schill 2016). We therefore 

presented thematically related word-pairs which varied from weak to strong associations to 

instantiate context-dependent representations of concepts, to investigate the neural basis of 

flexible semantic cognition (Yee and Thompson-Schill 2016). 

The controlled semantic cognition (CSC) framework suggests that distributed modality-

specific features (e.g. visual, auditory, motor and valence features) in ‘spoke’ systems are 

integrated within a semantic ‘hub’ or ‘convergence zone’ in the anterior temporal lobes (ATL), 

giving rise to heteromodal concepts (Patterson et al. 2007; Lambon Ralph et al. 2017). An 

additional distributed semantic control network manipulates activation within this conceptual 

representation system to generate appropriate patterns of semantic retrieval that suit the 

circumstances in which they occur. In well-practiced contexts, left angular gyrus (AG) and ATL 

are thought to support conceptual combination, with the strongest responses observed when 

conceptual retrieval is highly coherent and control demands are minimized (Bemis and 

Pylkkänen 2013; Davey et al. 2015; Teige et al. 2019; Lanzoni et al. 2020). In other situations, 
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when retrieval must be focused on non-dominant features or unusual conceptual combinations, 

there is greater engagement of the ‘semantic control network’, which includes left inferior frontal 

gyrus (IFG) (Thompson-Schill et al. 1997; Wagner et al. 2001; Whitney et al. 2011; Hallam et al. 

2016; Hallam et al. 2018; Gonzalez Alam et al. 2019; Lanzoni et al. 2020; Jackson 2021). These 

semantic control processes can shape the interaction between hub and spokes to focus on the 

features required by a task (Davey et al. 2016; Lambon Ralph et al. 2017; Chiou et al. 2018; 

Zhang et al. 2021). Stronger connectivity between left IFG and the semantic ‘hub’ region in left 

ventral ATL is associated with better semantic controlled semantic cognition (Chiou and 

Lambon Ralph 2019; Jung et al. 2021). Therefore, we reasoned that the semantic control 

network is a neural candidate underlying context-dependent meaning.  

In some situations, there is an explicit goal for semantic retrieval specified by the task 

demands: for example, for the concept ‘PIANO’, if we want to play this instrument, our retrieval 

is focused on the motor features that allow us to move our fingers in an appropriate way, while if 

we have the goal of finding this instrument in a warehouse, we will retrieve visual information 

about its shape and size. In these situations, semantic control processes might be able to bias 

the pattern of semantic retrieval in task-appropriate ways by facilitating or inhibiting connections 

between the heteromodal hub in ATL and task-relevant and task-irrelevant spokes. Multivoxel 

pattern analysis (MVPA) provides us with a powerful tool to probe how the representation of 

semantic information in the brain varies according to the context; these studies have started to 

explore how features combine to construct concepts and how word meaning is modified 

syntactically (Allen et al. 2012; Coutanche and Thompson-Schill 2014; Boylan et al. 2015; 

Hoffman and Tamm 2020; Solomon and Thompson-Schill 2020). For example, a recent 

magnetoencephalography study showed that neural representations of the noun were modified 

across temporal, inferior frontal and inferior parietal regions according to the verb it was 

combined with (Lyu et al. 2019). Yet in many other situations requiring semantic control – for 
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example, when weak as opposed to strong thematic associations must be identified – 

participants are not required to focus on specific types of features, but instead to identify a 

context in which concepts co-occur. Given that there is no explicit goal or instruction guiding 

semantic retrieval, this might require participants to create an event representation to simulate 

or construct a scenario, which can then bias retrieval towards features of the concept that are 

consistent with this event, and away from other potentially dominant features which are 

inconsistent (Mirman et al. 2017). An understanding of the neurobiological mechanisms that 

underpin this process remains elusive. 

In the current study, we used fMRI to identify where in the brain non-contextualized 

meanings of words are represented as well as to determine how words are integrated to form 

context-dependent conceptual representations. We varied the strength of thematic relationships 

between two words presented successively, from very strong (dog with leash), through 

intermediate trials (dog with beach) to very weak pairs (dog with keyboard). We leveraged word 

embeddings of natural language processing (NLP) to establish vectors of similarity for our word 

stimuli which were either (i) focused on context-invariant meaning using word2vec (Mikolov et 

al. 2013) or (ii) captured vectors of similarity for words based on the ongoing context (i.e. taking 

into account the preceding/following words) using ELMo (Peters et al. 2018). We combined 

these computational linguistic approaches with a slow-event related fMRI design and 

representational similarity analysis (RSA) (Kriegeskorte et al. 2006; Kriegeskorte et al. 2008), 

implemented using a searchlight approach, to determine where in the brain similarity in multi-

voxel activity patterns could be predicted by context-free and context-sensitive conceptual 

similarities. Specifically, we asked whether networks implicated in more automatic and 

controlled aspects of semantic cognition in previous studies (Fedorenko et al. 2013; Humphreys 

and Lambon Ralph 2015; Davey et al. 2016; Wang et al. 2020; Gao et al. 2021; Jackson 2021) 

would show differential representation of context-independent and context-dependent meaning, 
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or alternatively whether semantic regions across these networks would commonly support the 

construction of context-dependent meanings but in different ways (via more automatic vs. 

controlled integrative processes, giving rise to context-dependent meanings of strong and weak 

associations respectively).  
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Materials and Methods 

Participants 

A group of 32 healthy participants aged 19 to 35 years (mean age = 21.97 ± 3.47 years; 

19 females) was recruited from the University of York. They were all right-handed, native 

English speakers, with normal or corrected-to-normal vision and no history of psychiatric or 

neurological illness. The study was approved by the Research Ethics Committee of the York 

Neuroimaging Centre. All volunteers provided informed written consent and received monetary 

compensation or course credit for their participation. Data from four participants was excluded 

due to head motion (translational displacement was greater than 2mm), resulting in a final 

sample of 28 participants for the semantic task. This study provides a novel analysis of a 

dataset first reported by (Gao et al. 2021).  

Semantic Task  

The experimental stimuli were 192 English concrete noun word pairs. We excluded any 

abstract nouns and pairs of items drawn from the same taxonomic category, so that only 

thematic links were evaluated. The strength of the thematic link between the items varied 

parametrically from trials with no clear link to highly related trials; in this way, participants were 

free to decide based on their own experience if the words had a discernible semantic link. There 

were no ‘correct’ and ‘incorrect’ responses: instead, we expected slower response times and 

less convergence across participants for items judged to be ‘related’ when the associative 

strength between the items was weak, and for items judged to be ‘unrelated’ when the 

associative strength between the items was strong. Overall, there were roughly equal numbers 

of ‘related’ and ‘unrelated’ responses across participants. 

Each trial began with a visually presented word (WORD-1) which lasted 1.5s, followed 

by a fixation cross presented at the centre of the screen for 1.5s. Then, the second word 
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(WORD-2) was presented for 1.5s, followed by a blank screen for 1.5s. Participants had 3s from 

the onset of WORD-2 to judge whether this word pair was semantically associated or not by 

pressing one of two buttons with their right hand (using their index and middle fingers). During 

the inter-trial interval (3s), a red fixation cross was presented until the next trial began. Both 

response time (RT) and response choice were recorded. Participants finished 4 runs of the 

semantic task, each lasting 7.3 min. Before the scan, they completed a practice session to 

familiarise themselves with the task and key responses. 

Neuroimaging Data Acquisition 

Imaging data were acquired on a 3.0 T GE HDx Excite Magnetic Resonance Imaging 

(MRI) scanner using an eight-channel phased array head coil at the York Neuroimaging Centre. 

A single-shot T2*-weighted gradient-echo, EPI sequence was used for functional imaging 

acquisition with the following parameters: TR/TE/θ = 1500 ms/15 ms/90°, FOV = 192 × 192 mm, 

matrix = 64 × 64, and slice thickness = 4 mm. Thirty-two contiguous axial slices, tilted upper to 

the eye, were obtained to decrease distortion in the anterior temporal lobe and prefrontal cortex. 

Anatomical MRI was acquired using a T1-weighted, 3D, gradient-echo pulse-sequence 

(MPRAGE). The parameters for this sequence were as follows: TR/TE/θ = 7.8s/2.3 ms/20°, 

FOV = 256 × 256 mm, matrix = 256 × 256, and slice thickness = 1 mm. A total of 176 sagittal 

slices were acquired to provide high-resolution structural images of the whole brain. 

Semantic Similarity Matrices 

Using natural language processing tools, two semantic similarity matrices were 

constructed based on two types of word embedding to investigate different types of semantic 

information in neural activity patterns. Embedding vectors extracted from word2vec and ELMo 

for all word pairs are available online: https://osf.io/hwfdp/. 
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word2vec: The word2vec model represents words as fixed high-dimensional vectors of 

embeddings. The vectors of word embeddings were generated by training the network on the 

100-billion-word Google News corpus. Each time the network was presented with a word from 

the corpus, it was trained to predict the context in which it appeared, where context was defined 

as the two words preceding and following it in the corpus. The model learns to represent words 

used in similar contexts with similar patterns; each word’s vector had 300 dimensions, with 

similarity across two words’ vectors indicating that they appear in similar contexts, and thus 

have related meanings. Word2vec embeddings are fixed and unique for each word; for 

example, irrespective of whether ‘apple’ was followed by ‘bread’ or ‘keyboard’, its word 

embeddings were the same. Therefore, using word2vec, we constructed semantic similarity 

matrices (word2vec-based RSM), separately for WORD1 and WORD2; these reflected the 

meaning of single words, unmodified by the context in which these items appeared, by 

calculating cosine similarity between words drawn from different trials.   

ELMo: Given that context can change the meaning of individual words in sentences and 

phrases, Peters et al. (2018a) proposed a deep contextualized word embedding model called 

ELMo (Embeddings from Language Models) to capture the context-dependent semantic 

representation of words. Rather than providing a dictionary of words and their corresponding 

vectors, ELMo analyses words within their linguistic context, with each token assigned a 

representation that is a function of the entire input sentence. ELMo representations are deep in 

the sense that they are a function of all the internal layers of a deep bidirectional language 

model: there is a context-independent fixed input vector for the word in the lowest layer, with 

two higher layers capturing backward and forward context-sensitive aspects of word meaning. 

We used the pretrained model released by Allennlp (Gardner et al. 2018), which was trained on 

a large test corpus of 5.5B tokens from Wikipedia and the English news data from the workshop 

of machine translation (WMT) 2008-2012. We selected the top layer in ELMo to generate 
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context-sensitive embeddings for WORD2. Each vector representing word meaning had 1024 

dimensions. We calculated a context-sensitive semantic similarity matrix (ELMo-based RSM) for 

WORD-2 by correlating the top embedding vectors across words taken from different trials, 

regressing out the lowest layer’s embedding vectors to control the contribution of more context-

independent patterns of representation (see Xu et al. (2018) for a similar approach), to search 

for brain regions where the pattern of responses across voxels was associated with 

contextually-constrained semantic cognition.  

To further validate this approach, we searched for sentences that included the word 

pairs used in the current study (within widely used NLP datasets, such as Google News) and 

estimated the context-dependent meaning of WORD-2 stimuli within these sentence contexts 

(see Supplementary Materials). Following the procedure described above, we constructed a 

sentence-based context-dependent meaning similarity matrix. The two similarity matrices for 

context-dependent meaning were strongly correlated; r = 0.81 (p < 0.001) and the neuroimaging 

results are also highly consistent (see Supplementary Materials).  

fMRI Data Preprocessing Analysis 

Image preprocessing and statistical analysis were performed using FEAT (FMRI Expert 

Analysis Tool) version 6.00, part of FSL (FMRIB software library, version 5.0.9, 

www.fmrib.ox.ac.uk/fsl). The first 4 volumes before the task were discarded to allow for T1 

equilibrium. The remaining images were then realigned to correct for head movement. 

Translational movement parameters never exceeded 1 voxel in any direction for any participant 

or session. No spatial smoothing was performed. The data were filtered in the temporal domain 

using a nonlinear high-pass filter with a 100s cutoff. Following Deuker et al. (2016); Bellmund et 

al. (2019), six motion parameters were used as predictors in a GLM. The residuals from this 

model (which could not be explained by motion) were then taken into the next analysis step. A 

two-step registration procedure was used whereby EPI images were first registered to the 
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MPRAGE structural image (Jenkinson and Smith 2001). Registration from MPRAGE structural 

image to standard space was further refined using FNIRT nonlinear registration (Andersson et 

al. 2007, 2007). The denoised time series were transformed to standard space for the 

multivariate analyses.  

Univariate Parametric Analysis 

We examined the effects of semantic control demands via a parametric manipulation of 

strength of association at the network level, following the approach reported by Gao et al. 

(2021). We predicted that it would be harder for participants to decide that items were 

semantically related when they were weakly associated (with lower word2vec values), and it 

would also be harder for them to decide that items were semantically unrelated when in trials 

with higher word2vec values. Therefore, we extracted the parametric effect of word2vec on the 

BOLD response separately for trials judged to be related and unrelated. Since association 

strength was negatively correlated with control demands for trials judged to be related, we 

means-centered and reversed the sign of word2vec values for these trials in each run before the 

next analysis step. This allowed us to compare the effects of semantic control demands across 

related and unrelated trials. We performed this analysis within four functional networks involved 

in more automatic or more controlled aspects of semantic cognition or executive control. The 

networks were taken from previous meta-analytic studies of the semantic control network (SCN) 

and multiple-demand network (MDN) (Fedorenko et al. 2013; Jackson 2021). Within these 

networks, we selected 1) semantic control specific areas, which did not overlap with MDN; 2) 

multiple-demand specific regions, which did not overlap with SCN; 3) shared control regions, 

identified from the overlap between MDN and SCN; and 4) semantic regions not implicated in 

control; these were identified using Neurosynth (search term ‘semantic’; 1031 contributing 

studies; http://www.neurosynth.org/analyses/terms/), removing regions that overlapped with the 

two control networks to identify regions associated with semantic representation or more 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2022. ; https://doi.org/10.1101/2021.05.03.442424doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442424
http://creativecommons.org/licenses/by-nc-nd/4.0/


automatic aspects of semantic retrieval, mostly within DMN (e.g. in lateral temporal cortex and 

angular gyrus). This process defined thirty ROIs; four in semantic non-control areas, three in 

SCN, six in the overlap of MDN and SCN, and seventeen in MDN specific areas. These thirty 

ROIs are available online: https://osf.io/hwfdp/ and were previously used by Gao et al. (2021). 

The ROIs within each network were averaged across all relevant sites for the network-based 

analyses presented below.  

Pattern Similarity Analysis  

In order to examine how the characteristics of semantic representation were influenced 

by the context, we focused on the decision phase of the task. This period corresponded to TR 6 

and 7 after WORD-1 onset. Second-order representational similarity analysis (RSA) was 

performed using a searchlight approach; semantic RSMs (i.e., the word2vec-based RSM and 

ELMo-based RSM) were compared with neural pattern similarity matrices (brain-based RSM) to 

test what semantic information was represented in different brain regions. Neural pattern 

similarity was estimated for cubic regions of interest (ROIs) containing 125 voxels surrounding a 

central voxel, as many previous studies examining semantic representation used this approach 

successfully (Fairhall and Caramazza 2013; Malone et al. 2016; Stolier and Freeman 2016; 

Leshinskaya et al. 2017; Wang et al. 2017; Viganò and Piazza 2020). In each of these ROIs, we 

compared patterns of brain activity to derive a neural RSM from the pairwise Pearson 

correlations of each pair of trials. We excluded any pairs presented in the same run from the 

calculation of pattern similarity to avoid any auto-correlation issues. Spearman’s rank correlation 

was used to measure the alignment between semantic and brain-based models during the 

decision phase. Of note, both semantic models (word2vec and ELMo-based RSMs) were 

correlated to the same neural similarity matrices, which allows us to examine where and how 

context-dependent and context-free meanings of concepts were represented in the brain, 

depending on the decision participants reached (i.e., related versus unrelated) during the 
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decision phase. The resulting coefficients were Fisher’s z transformed and statistically inferred 

across participants. The searchlight analysis was conducted in standard space. A random-

effects model was used for group analysis. Since no first-level variance was available, an 

ordinary least square (OLS) model was used.  

We also examined neural representations of context-free and context-dependent 

meaning within regions of interest (ROIs). As for the univariate analysis of parametric effects of 

word2vec, we focused on four sets of regions: 1) semantic control specific (SCN specific) areas, 

which did not overlap with MDN; 2) multiple-demand specific (MDN specific) regions, which did 

not overlap with SCN; 3) shared control regions identified from the overlap between MDN and 

SCN; and 4) regions within the semantic network not implicated in control. The same thirty ROIs 

were used for both univariate and multivariate analyses, with individual ROIs within each 

network averaged for network-based analyses. 

Informational Connectivity between Networks as a Function of Association Strength 

Even when multiple networks show similar representation of context-dependent 

meanings based on second-order RSA (ELMo to neural alignment), this does not establish that 

they represent similar information across trials. In order to examine whether neural activity 

patterns between regions belonging to specific functional networks capture similar semantic 

representations, and to investigate how this similarity in the multivariate response across trials 

might change as a function of the strength of association between the words being linked, we 

performed a novel informational connectivity analysis. In contrast to functional connectivity 

analysis using global BOLD signals averaged across voxels in each region, this analysis 

assessed the similarity of the multivariate patterns between pairs of brain regions across trials 

(Aly and Turk-Browne 2016; Xiao et al. 2017; Anzellotti and Coutanche 2018), within sliding 

windows capturing trials of different associative strengths. First, we sorted all the word-pairs 

from weakly to strongly associated according to their semantic association strength (word2vec 
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value) for the related and unrelated conditions separately. Next, we grouped every 16 trials into 

one window; adjacent windows partially overlapped with each other by 4 trials. We then 

computed second-order RSAs by correlating the neural similarity matrices between ROIs within 

each window. The next step of this analysis established how this informational connectivity 

metric changed as a function of the association strength of the words being linked, using 

Spearman correlation. The resulting correlation coefficients were transformed into Fisher’s z-

scores and then averaged across ROIs within each network. We performed several variants of 

this analysis, using window sizes and overlapping step sizes of 16,4; 12,4; 20,4, respectively, 

(window sizes, i.e., the number of trials in each window varying in associative strength; step 

sizes, i.e., the number of overlapping trials across adjacent windows), to ensure the robustness 

of our conclusions.  

Mixed-Effects Modelling Analysis of Behavioural Performance 

Since participants judged different numbers of items to be semantically related and 

unrelated, mixed-effects modelling was used for the analysis of the behavioural data. This 

approach is particularly suitable when the number of trials in each condition differs across 

participants (Mumford and Poldrack 2007; Ward et al. 2013). Mixed-effects modelling was 

implemented with lme4 in R (Bates et al. 2014). We used the likelihood ratio test (i.e., Chi-

Square test) to compare models, in order to determine whether the inclusion of predictor 

variables significantly improved the model fit. Semantic association strength was used as a 

predictor of the decision participants made (judgements about whether the words were related 

or unrelated) and, in a separate model, the reaction time this decision took. Participant identity 

was included as a random effect. By comparing models with and without the association 

strength predictor, we were able to establish whether semantic association strength predicted 

semantic performance. 
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Results 

Behavioural Results  

 Since we used a continuous manipulation of associative strength, and there is no 

categorical boundary of word2vec values which can capture the trials reliably judged to be 

related and unrelated, traditional error scores were not calculated.  Chi-square was conducted 

to examine whether equal numbers of word pairs were judged to be related or unrelated by the 

participants (mean ratio for the related and unrelated trials: 0.491 vs. 0.495, χ2(1) = 0.00021, 

p > 0.995). Linear mixed-effects model analysis revealed that the strength of the semantic 

association (word2vec value for each pair) was positively associated with a higher probability 

that participants would identify a semantic relationship between the words (χ2(1) = 2505.4, p < 

0.001). The percentage of trials judged to be related varied from 34.9% to 60.9% with a 

standard deviation of 6.16%, while the percentage of trials judged to unrelated ranged from 39.1 

to 63.5% with a standard deviation of 6.16%. There were no outliers in these judgements of 

relatedness (no participants were more than 3 standard deviations from the mean). 

Linear mixed-effects models also examined how association strength modulated 

reaction time (RT) for trials judged to be related and unrelated. There was a significant effect of 

strength of semantic association (word2vec) for both related and unrelated decisions: 

association strength was negatively associated with RT for related trials (χ2(1) = 156.55, p = 

2.2e-16), and positively associated with RT for trials judged to be unrelated (χ2(1) = 52.415, p 

=4.5e-13); Figure 1B. It was more difficult for participants to retrieve a semantic connection 

between two words when the strength of association was lower; on the contrary, it was easier 

for them to decide there was no semantic connection between word pairs with when word2vec 

was low. The average reaction time for trials judged to be related was 1.12s (standard deviation 

= 0.48s), while the average time for unrelated judgements was 1.17s (standard deviation = 
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0.47s). 0.9% and 0.7% of related and unrelated decisions respectively were outliers (more than 

3 standard deviations from the mean). 

 

Figure 1. Experiment paradigm and behavioural results. A. Left-hand panel: Semantic 

association task; participants were asked to decide if word pairs were semantically related or 

not. Right-hand panel: Word pair examples for both related and unrelated decisions from one 

participant, with association strength increasing from weak to strong. Trials were assigned to 

related and unrelated sets on an individual basis for each participant, depending on their 

decisions. B. The semantic association strength (word2vec) was negatively associated with 

reaction times for related trials and positively associated with reaction time for trials judged to be 
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unrelated. People were faster to discern a relationship between words when they had high 

semantic overlap, and slower to decide that the words were unrelated when they had high 

semantic overlap. 

 

fMRI Results 

Neural Representation of Context-Free Meaning  

Whole-brain analysis was performed using a searchlight approach. First, we examined 

context-free semantic representation of the original or unmodified meaning of individual words 

during the decision phase, using the word2vec model to assess semantic similarity across trials 

– since word similarity in this model is fixed, and not dependent on the context in which words 

are presented. The strongest responses reflecting context-free meaning are expected for 

WORD-1, since retrieval of the meaning of this item commenced in the absence of any 

semantic context (while for WORD-2, the context established by the first word in the pair is likely 

to influence the pattern of retrieval). We also expect context-free meaning to be most relevant 

during trials judged to be unrelated, since on these trials, participants did not identify a linking 

context.  

For WORD-1, on those trials judged to be semantically unrelated (i.e., when no linking 

context was retrieved), a significant positive association between neural pattern similarity and 

semantic similarity based on word2vec was seen in the left supramarginal gyrus; see Figure 3A 

(left-hand panel). This site showed more similar neural patterns during semantic decision-

making when the context-free meaning of WORD-1 was more similar. For word pairs that were 

judged to be semantically related, there was no relationship between neural pattern similarity 

and semantic similarity for WORD-1.  
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Figure 2. A. Example association strength values produced by ELMo and word2vec. The 

word2vec value between word-pairs was fixed and not dependent on the context the words 

were presented in, in contrast to ELMo. B. Semantic-to-neural similarity computed via second-

order RSAs: these analyses characterized the semantic similarity between words on different 

trials and examined the association with neural pattern similarity across trials. Left-hand panel: 

word2vec-based RSM for unmodified word meanings across trials – this matrix captured the 

semantic similarity of individual words used across trials; right-hand panel: ELMo-based RSM 

for context-dependent meaning – this matrix captured the semantic similarity of contextually-

modified meanings across trials.  

 

Next, we examined the representation of original word meaning for WORD-2. The 

meaning of this item was retrieved in a semantic context established by the presentation of 

WORD-1, and consequently, we did not expect to see an association between neural pattern 

similarity and context-free meaning across trials. In line with our expectations, there were no 

positive correlations between the word2vec and neural models for WORD-2; instead, there were 
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negative correlations between these models in visual cortex; see Figure 3B. These negative 

associations suggest that the prior presentation of WORD-1 pushed the visual representations 

of semantically similar WORD-2 items further apart. Semantically similar items often have 

similar visual features – for example, animals typically have legs and eyes; vehicles often have 

wheels; fruits are often brightly coloured. Our results suggest that when participants retrieve 

word meaning in a context established by the presentation of a previous item, they focus less on 

these shared visual features of semantically similar concepts.  

In summary, evidence for the neural representation of context-free word meaning was 

only found for WORD-1 in unrelated trials. There was no evidence that participants represented 

context-free meanings either for WORD-2 (when participants were attempting to retrieve a 

semantic link with the previous word) or for trials in which the words were judged to be related in 

meaning, indicating that a linking context was retrieved. 
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Figure 3. A. Positive correlation was found for the neural representation of original meaning of 

WORD-1 (before context is presented) on trials judged to be unrelated (Z > 2.6, corrected). B. 

Decoding of this cluster-corrected spatial map (A) using Neurosynth revealed terms linked to 

attention control and task demands. C. Negative correlations were found for the neural 

representation of original meaning of WORD-1 (before context is presented) and WORD-2 (after 

context is presented) for items judged to be related. D. Positive correlation was found for the 

neural representation of context-dependent meaning of WORD-2 for trials judged to be related 
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(Z > 2.6, corrected). E. Decoding of this cluster-corrected spatial map (D) using Neurosynth 

revealed terms linked to semantic and language processing. F. Negative correlation was found 

for the neural representation of context-dependent meaning of WORD-2 for the trials judged to 

be unrelated (Z > 2.6, corrected). G. Region of interest analysis: A spherical ROI (117 voxels, 

right top panel) was created for the left ventral anterior temporal lobe (lvATL) around the peak 

voxel at MNI coordinate (x = -36, y = -18, z = -30) reported by Binney et al. (2016). Significant 

positive correlation was found for the neural representation of context-dependent meaning of 

WORD-2 in trials judged to be related. * p < 0.05. 

 

Neural Representation of Context-Dependent Meaning 

The preceding results demonstrated that activity patterns in the brain represented the 

original or unmodified meaning of words presented in the absence of a context, but not when a 

linking context was retrieved. Motivated by the theory that a concept cannot be meaningfully 

separated from the context in which it occurs (Yee and Thompson-Schill 2016), we next tested 

whether neural similarity across trials was related to contextually-derived word meaning, 

especially for word pairs judged to be related. We focused this analysis on WORD-2, since the 

meaning of this item was processed in the context of the preceding item (in contrast, no 

semantic context was available when the meaning of WORD-1 was first retrieved). We used 

ELMo to estimate the context-dependent semantic similarity between the WORD-2 items across 

trials, separately for words presented in trials judged to be related and unrelated. For trials 

judged to be semantically related, a positive correlation between neural similarity and ELMo-

based semantic similarity was found in left lateral frontal cortex and angular gyrus; see Figure 

4A (right-hand panel). No correlations between context-dependent semantic similarity and 

neural similarity were found for trials judged to be unrelated. Additional analyses were 

conducted using a sentences-based context-dependent meaning estimation, which produced 
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highly similar results showing a positive correlation between neural similarity and ELMo-based 

semantic similarity in left lateral frontal cortex and angular gyrus, see Supplementary Materials 

Figure S1A. 

Left ventral anterior temporal lobe (lvATL) has been suggested to be a semantic ‘hub’ 

(Binney et al. 2016; Lambon Ralph et al. 2017), playing a crucial role in representing strong 

associations and semantic combinations in long-term memory (Bemis and Pylkkänen 2013; 

Teige et al. 2019). However, distortion and signal loss occur in this area due to magnetic 

inhomogeneities close to air-tissue boundaries, causing a lower signal-to-noise ratio and weaker 

effects of interest (Weiskopf et al. 2006; Binney et al. 2010); see Supplementary Materials 

Figure S4. Given we did not observe effects in ventral ATL in whole-brain analyses, the neural 

representation of context-free and context-dependent meaning at this site was assessed using 

ROI-based analysis. We created a sphere ROI (117 voxels) for lvATL around the peak voxel 

implicated in semantic cognition at MNI coordinate (x = -36, y = -18, z = -30) (Binney et al. 

2016). Only neural representation of context-dependent meaning for related trials was found, 

see Figure 3F. To check the robustness of our results, additional analyses were conducted 

using both larger (179 voxels) and smaller spheres (81 voxels) centered on lvATL; highly similar 

results were found, see Supplementary Materials Figure S1B. 

What dominates the semantic response within functional networks? 

To examine how context-free and context-dependent meaning is represented in 

functional networks relevant to semantic representation and control, we conducted second-

order RSA analyses for each ROI within four networks, reporting averages across the ROIs for 

each network. These functional networks included semantic not control areas (which are 

implicated in semantic processing but not in semantic or domain-general control), semantic 

control areas (i.e. cortical regions specifically implicated in semantic control and not domain-

general control) and areas shared by semantic control and multiple-demand network (MDN) 
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areas as well as areas specific to MDN that are not typically activated by semantic tasks (see 

more details in Methods). The results showed that there was no significant neural 

representation of context-free meaning in any of these networks, but there was significant 

representation of context-dependent meaning for WORD-2 for those trials judged to be related 

in all four networks. Moreover, there was no significant difference between networks in the 

representation of context-dependent meaning and context-free meaning for WORD-1 and 

WORD-2 for trials either judged to be related or unrelated (student’s T test between any two 

pairs, all Ps > 0.45, after Bonferroni correction), suggesting all four functional networks track the 

way that words are being used, instead of long-term invariant semantic knowledge.  

We further examined whether the representation of context-dependent meaning was 

dependent on association strength across networks. We sorted trials by strength of association 

and grouped those trials judged to be related into small analysis ‘windows’ containing 16 trials 

(window length). Adjacent windows were overlapping by 4 trials (step size). We measured 

neural representations of context-dependent meaning in each window and correlated the neural 

representation with association strength using spearman correlation. The above procedure was 

conducted for each ROI and averaged across ROIs within each network. No significant linear 

relationship between association strength and the neural representation of context-dependent 

meaning was found in any of these functional networks (all Ps > 0.85, after Bonferroni 

correction).  

Even though context-dependent meaning was represented irrespective of associative 

strength across these different networks, previous studies suggest that they are differently 

sensitive to semantic control demands (Fedorenko et al. 2013; Humphreys and Lambon Ralph 

2015; Davey et al. 2016; Jackson 2021). To confirm this pattern in the current dataset, we 

characterised the parametric effects of associative strength (inverted for related trials such that 

higher scores denote greater activation for more difficult decisions, for both related and 
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unrelated judgments). We conducted a two-way repeated ANOVA, with the factors of network (4 

levels) and trial type (related vs. unrelated) as within-participant variables. We found a 

significant main effect of network (F(1.429, 38.591) = 30.737, p < 0.001) but no main effect of 

trial type (F(1, 27) = 0.477, p = 0.496) and no interaction (F(1.995, 53.861) = 0.877, p = 0.422); 

see Figure 4C. Direct comparisons between networks using t-tests revealed significantly 

stronger responses to the semantic difficulty manipulation in SCN than in both ‘semantic not 

control’ regions (p < 0.001) and MDN regions that were outside those areas activated by 

semantic control manipulations (p < 0.001). There was no significant difference between SCN 

and SCN+MDN regions (p = 0.47); SCN+MDN areas also showed significantly stronger 

responses to difficulty than ‘semantic not control’ regions (p < 0.001) and MDN (p < 0.001). All p 

values were Bonferroni corrected. These results suggest that different brain networks play 

distinct roles in semantic retrieval.  

 

Figure 4. A: Functional networks: (i) semantic not control, (ii) within the semantic control network 

(SCN) but outside multiple-demand cortex (DMN), (iii) within both SCN and MDN, and (iv) falling 
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in MDN regions not implicated in semantic cognition. B. Neural representation of context-free 

and context-dependent meaning in functional networks. Positive correlations were found for 

context-dependent meaning of WORD-2 for trials judged to be related in all four networks. C. 

Univariate parametric effects in four functional networks showing modulation of the BOLD 

response according to control demands: the weaker associative strength for trials judged to be 

related were associated with the higher activation; while the stronger associative strength for 

trials judged to be unrelated were associated higher activation. SCN and regions falling within 

both SCN and MDN showed significantly higher activation for those trials with weaker 

associations and consequently higher controlled retrieval demands. * p < 0.05; ** p < 0.01; *** p 

< 0.001. Bonferroni correction was applied.  

 

Neural representation between networks was more differentiated as association strength 

increased for related trials 

While there were no differences between networks in the neural representation of 

context-dependent meaning and context-free meaning in the analysis above, this does not 

demonstrate that these networks represent conceptual information in the same way, especially 

given that our univariate analysis shows different responses across these networks to the 

parametric manipulation of association strength. In order to assess the degree to which neural 

representation was similar across networks, and how this similarity in neural patterns changed 

as a function of association strength, we conducted a novel ‘sliding window’ analysis of 

informational connectivity. We firstly measured the overall informational connectivity between 

networks when all trials were included for related and unrelated decisions separately. No 

significant differences were found overall for informational connectivity between related and 

unrelated trials (all Ps > 0.5 after FDR correction; see Supplementary Materials Figure S2A). 

Next, we sorted trials judged to be related according to their associative strength, from weak to 
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strong (based on word2vec between the words in each pair) and grouped every 16 trials into 

one window; we then constructed neural similarity matrices in each window by calculating the 

Spearman’s correlation of neural similarity matrices between pairs of ROIs, taking an average 

across ROIs belonging to each network. This allowed us to calculate Spearman correlation 

between association strength and informational connectivity at the network level. All correlation 

values were Fisher’s Z transformed. There was a significant effect of associative strength on 

informational connectivity between networks for related trials; the multivariate pattern similarity 

between related trials was increased when strength of association was low for the SCN+MDN 

regions (Figure 5B). This finding suggests that these regions take on a pattern of connectivity 

that supports controlled semantic retrieval; these connections are more similar across trials that 

are weakly related. No such effects were found for those trials judged to be unrelated. Further 

direct comparisons of the influence of associative strength on informational connectivity 

between related and unrelated trials revealed significantly faster decreases in informational 

connectivity for related trials as association strength increased: this pattern was observed when 

SCN+MDN regions were compared with SCN (p = 0.004), MDN (p = 0.008), and other 

SCN+MDN parcels (p = 0.005), this effect was not significant within or between any other 

networks. All p values were Bonferroni corrected.  

To check the robustness of these results, we generated different window sizes 

containing different numbers of trials along the continuous dimension of association strength, 

and changed the extent to which adjacent windows overlapped with each other (i.e. the overlap 

step size). We confirmed the results were robust across a range of window sizes and overlap 

step sizes (window sizes and overlapping step sizes of 16,4; 12,4; 20,4, respectively). 

Informational connectivity between SCN+MDN regions and other networks was negatively 

correlated with association strength in related trials across these analyses (see Supplementary 

Figure S2B~C).  
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Figure 5. A. Schematic of sliding window analysis of informational connectivity. Trials were 

sorted according to their association strength from weak to strong associations (based on a 

word2vec score for each word-pair) and every 16 trials were grouped into one window. We then 

constructed a neural similarity matrix in each ROI and each window. We measured the 

informational connectivity within each window by calculating Spearman’s correlation for the 

neural similarity matrices between ROIs, then averaged across ROIs according to which 

functional network each site belonged to. Lastly, we calculated a Spearman correlation between 

association strength and informational connectivity at the network level. B. There was a 

significant effect of associative strength on informational connectivity between networks for 
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related trials; the multivariate pattern similarity between related trials was increased when 

strength of association is low for the SCN+MDN regions (left panel); but not for unrelated trials 

(right panel). * p < 0.05; ** p < 0.01; *** p < 0.001. Bonferroni correction was applied. 

Discussion 

This study parametrically modulated the association strength between pairs of words to 

delineate the neural representation of context-free and context-dependent meanings. We 

related the multivariate neural responses on these trials to two classes of computational 

linguistic models, representing concepts as either independent or dependent on their linguistic 

context. Using representational similarity analysis, we found brain activity patterns in the left 

supramarginal gyrus reflected context-independent conceptual information – but only for the first 

word that was presented and for trials judged to be semantically unrelated, when there was no 

linking context to modify the meanings of words. For the second word presented in each pair, 

there were negative correlations between context-independent semantic models and neural 

similarity in visual cortex, suggesting that less similar visual features were retrieved for words 

with similar meanings when participants attempted to retrieve meanings in context. At the same 

time, context-dependent meanings were represented in regions implicated in semantic control 

and semantic representation, including left lateral prefrontal cortex and angular gyrus as well as 

lvATL, on trials judged to be thematically related, when a linking context was retrieved. All large-

scale networks implicated in semantic cognition showed this pattern, confirming that the neural 

response during semantic retrieval tracks the way that words are being interpreted currently 

(irrespective of associative strength). Despite this network-level similarity, informational 

connectivity analyses examining multivariate neural similarity across trials found that semantic 

control regions (defined by the overlap of SCN and MDN) showed more similar patterns across 

trials to other networks when the words being related were weakly associated. For weak 
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thematic relations, networks were more aligned with control regions, while for strong thematic 

relations, the responses across networks were more divergent. 

Past studies have often compared activation patterns elicited by stimuli from different 

categories, for instance, faces, objects, places and tools; these studies have significantly 

advanced our understanding of the neural substrates of ‘individual’ (i.e. static) concepts (Binder 

et al. 2009; Price 2012). Nevertheless, previous behavioural work on conceptual integration has 

revealed conceptual representation of word meaning is context sensitive; for instance, when 

‘red’ is paired with fire, apple or sky, the magnitude of the representation of ‘red’ is modulated by 

the following noun (Halff et al. 1976; Coutanche et al. 2019). Previous investigations of dynamic 

conceptual representation are limited because it is challenging to know how representations of 

meaning will change between contexts – this information cannot be easily gleaned from 

participants’ reports. However, ELMo, a recently developed natural language processing 

algorithm (Peters et al. 2018), allows contextualised conceptual representations to be 

investigated in the brain. We found context-dependent meaning in all the networks implicated in 

semantic cognition. Whole-brain analyses also identified distinct clusters in left inferior frontal 

gyrus within the semantic control network (implicated in controlled semantic retrieval) and left 

angular gyrus within the default mode network (implicated in more integrative or automatic 

aspects of semantic retrieval). These effects were only found when semantic links were 

identified by participants and not when trials were judged to be unrelated. Three recent studies 

that also employed ELMo and topic modelling techniques to study context-dependent semantic 

cognition similarly identified left inferior prefrontal and lateral anterior temporal cortex in context-

dependent conceptual representation (Lyu et al. 2019; Lopopolo et al. 2020; Toneva et al. 

2020). These studies examined the brain’s response to stories and sentences, while our study 

used a more constrained experimental context which has advantages in terms of experimental 

control, allowing us to compare neural representations of different decision types and to assess 
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the parametric modulation effect of associative strength on neural representations in a direct 

and well-controlled fashion.  

In a meta-analysis (Binder et al. 2009), left inferior parietal cortex was the region most 

consistently activated by semantic tasks, but its precise role in semantic cognition is still elusive: 

it comprises several functionally dissociable areas (Ruschel et al. 2014) and may contribute to 

both semantic representation and control (Noonan et al. 2013; Humphreys and Lambon Ralph 

2015). Our searchlight analysis revealed two clusters in left anterior and posterior lateral parietal 

cortex, representing context-free and context-dependent meaning respectively. Left SMG 

showed a positive correlation between neural similarity and context-independent meaning 

estimated from computational linguistic models. Similarly, a recent RSA study observed that 

activation patterns in left SMG reflected the semantic similarities of inferred objects (Kivisaari et 

al. 2019). The anterior cluster within the supramarginal gyrus largely fell within salience and 

ventral attention networks, which support bottom-up attentional processes (Vossel et al. 2014), 

and respond to unexpected but salient stimuli (Menon and Uddin 2010; Cai et al. 2019). 

Decoding using Neurosynth revealed terms linked to attention and cognitive demands. Since left 

SMG is associated with verbal short-term memory (Buchsbaum and D'Esposito 2009; Baldo et 

al. 2012), our findings might reflect participants’ need to maintain information about WORD-1 to 

support the subsequent semantic decision. In contrast, the posterior AG cluster implicated in 

context-dependent meaning fell within DMN. Decoding using Neurosynth revealed terms linked 

to semantic memory and language. AG has been linked to the retrieval of thematic knowledge; 

moreover, this site consistently shows stronger activation to strong than weak associations, 

implying that it might support more automatic (as well as potentially more controlled) aspects of 

retrieval (Binder et al. 2009; Humphreys and Lambon Ralph 2015; Jefferies et al. 2020; 

Humphreys et al. 2021). In line with this, Humphreys and Lambon Ralph (2015) proposed that 

the inferior parietal lobe (IPL) buffers inputs and learns relations over time, supporting retrieval 
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and integration; however; the time-scales over which it operates may vary from relatively short 

in anterior IPL (SMG) to longer in posterior IPL (AG). This account might provide an explanation 

of the functional dissociation we observed in IPL, since SMG might buffer single word inputs 

(drawing on familiar sequences of phonemes or letters over time), while AG can track semantic 

contexts given its buffering of more extensive inputs over a long time-period (Lerner et al. 2011; 

Baldassano et al. 2017). 

The control demands of context-dependent meaning retrieval are variable: when words 

are strongly associated in long-term memory, little control is needed to recover a relevant 

relationship, since this information is highly accessible. For weak associations, however, 

recovering a linking context requires controlled retrieval since dominant features and 

associations not relevant to the linking context must be inhibited. This may help to explain why 

we observed context-dependent meaning in both left IFG (a control site) and AG/lvATL (sites 

which support more automatic as well as controlled patterns of retrieval). These automatic and 

controlled aspects of conceptual integration were outside the scope of previous studies using 

naturalistic stimuli to explore context-dependent meaning (Lyu et al. 2019; Lopopolo et al. 2020; 

Toneva et al. 2020). Although RSA showed that both control and DMN networks could 

represent context-dependent meaning irrespective of associative strength, this analysis was 

blind to potential similarities and differences in the way that context-dependent meaning is 

represented across trials. Informational connectivity analysis therefore provided complementary 

evidence. When trials were judged to unrelated, informational connectivity between brain 

networks was not dependent on the strength of association, remaining relatively stable across 

windows. A different pattern was found for trials judged to be related: the informational 

connectivity between networks was more diverse for strong associations as opposed to weak 

associations, providing evidence that semantic representations coded among regions and 

networks were different even for the same concepts. Moreover, the multivariate pattern 
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similarity between related trials was higher for weakly-associated items for the SCN+MDN 

regions, indicating these regions adopt a pattern of connections that supports controlled 

semantic retrieval. Our results are broadly consistent with the Controlled Semantic Cognition 

framework that suggests that while a semantic ‘hub’ in ATL might integrate diverse features to 

form concepts in long-term memory, semantic control regions (both outside and within MDN) 

might be responsible for supporting the retrieval of non-dominant information required by the 

context or task instructions (Lambon Ralph et al. 2017). The informational connectivity analysis 

provided clear evidence that distinct networks played different roles in context-appropriate 

semantic retrieval.  

In previous studies of semantic control, participants have often been asked to focus 

conceptual retrieval on aspects of knowledge required by the task. For instance, task 

requirements can gate the recruitment of ‘spoke’ systems (Zhang et al. 2021); participants can 

retrieve specific unimodal features when they have task instructions providing a clear goal for 

conceptual processing, and/or suppress activation of non-relevant spoke representations 

(Coutanche and Thompson-Schill 2014; Martin et al. 2018). In contrast, in the current study, the 

task instructions did not change between trials: participants were always judging whether two 

words were thematically related. The meaning of the words themselves defined the nature of 

the linking context and established which features should be the focus of subsequent retrieval. 

In this situation, ‘stimulus-driven’ semantic control appears to be supported by the semantic 

control network, which maintains semantic contexts in a controlled fashion, even when these 

are non-dominant, to modulate the flow of activation through semantic space. To our best 

knowledge, this is the first study to compare context-independent and context-dependent 

meaning representation in the brain during this kind of thematic decision task, which requires 

meaning-based contexts to drive retrieval. 
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Left IFG has long been linked to semantic selection and control processes (Thompson-

Schill et al. 1997; Jefferies 2013; Noonan et al. 2013; Jackson 2021), and is activated during the 

retrieval of weak semantic associations (Lambon Ralph et al. 2017; Jefferies et al. 2020). 

Additional univariate analyses of this dataset focusing on control demands also found higher 

activation for harder decisions in left IFG and pMTG as well as preSMA (Gao et al. 2021). All of 

these regions showed successful decoding accuracy of task difficulty, providing strong evidence 

for their roles in controlled semantic retrieval; however, the contribution of these sites to the 

representation of conceptual combinations has barely been investigated. One recent study 

found that left IFG is sensitive to feature uncertainty during the comprehension of combined 

concepts, while ATL reflects the integration of conceptual features (Solomon and Thompson-

Schill 2020). Another recent study investigated how the brain resolves semantic ambiguity in 

homonym comprehension and found that IFG supports context-appropriate meaning (Hoffman 

and Tamm 2020). The current study identifies left IFG as one of the sites that supports context-

dependent meaning for trials judged to be related – as opposed to context-free meaning for 

trials judged to be unrelated – implying that left IFG might only represent information suitable for 

the current context, while inputs that are unable to generate coherent conceptual retrieval might 

be stored and manipulated in multiple-demand network regions, such as left SMG in the current 

study.  

One limitation of the current study was that our measure of context-sensitive conceptual 

representation (from ELMo) was derived across trials and participants and was unable to detect 

individual-specific understanding of each word pair. Moreover, the weaker associations are, the 

more variance in semantic representation there is likely to be across participants. Future studies 

could collect subjective reports of context-dependent understanding of word pairs for each 

participant, and then leverage ELMo to create individual-specific semantic models. More 

detailed and precise ELMo-based semantic models might result in further neural-semantic 
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alignment results, extending beyond the regions identified here. In addition, we did not find 

evidence that left ventral ATL represented context-free word meaning in the searchlight 

analysis, even though this region is thought to provide a heteromodal conceptual ‘hub’ that 

extracts invariant semantic features across different learning episodes. This site has been 

shown to decode both the meanings of individual words (Murphy et al. 2017) and context-

dependent meaning in previous studies (Lyu et al. 2019; Lopopolo et al. 2020; Toneva et al. 

2020). However, ventral parts of ATL are affected by magnetic susceptibility artefacts and our 

neuroimaging protocol had poorer signal-to-noise in these regions, which may have impacted 

our ability to resolve neural patterns relating to word meaning. The ROI-based analysis focusing 

on the lvATL provided evidence for a role of this site in the representation of context-dependent 

meaning, suggesting future studies using distortion-corrected fMRI techniques may detect 

stronger effects. 

In conclusion, this study leverages natural language models and representational 

similarity analysis, to compare context-independent and context-dependent meaning 

representation in the brain during sematic decisions for the first time. Our study demonstrates 

that different brain regions support context-independent and context-dependent meaning, with a 

functional dissociation within left IPL between SMG (context-independent representation) and 

AG (context-dependent representation). In addition, while both regions implicated in relatively 

automatic (left AG and vATL) and more controlled (left IFG) patterns of semantic retrieval 

represented context-dependent meaning, the synchronization of neural representation coded in 

brain networks depended on associative strength, with networks more differentiated from each 

other as associative strength increased. These findings clarify the roles of distinct brain 

networks in the computation of coherent meanings across inputs. 
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