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 2 

Abstract 29 

Background: Taxonomic profiling is a fundamental task in microbiome research that aims to detect 30 

and quantify the relative abundance of microorganisms in biological samples. Available methods 31 

using shotgun metagenomic data generally depend on the availability of sequenced and taxonomically 32 

annotated reference genomes. However, the majority of microorganisms have not been cultured yet 33 

and lack such reference genomes. Thus, a substantial fraction of microbial community members 34 

remains unaccounted for during taxonomic profiling of metagenomes, particularly in samples from 35 

underexplored environments. To address this issue, we have developed the mOTU profiler, a tool that 36 

enables reference genome-independent species-level profiling of metagenomes. As such, it supports 37 

the identification and quantification of both “known” and “unknown” species based on a set of select 38 

marker genes. 39 

Results: Here, we present mOTUs3, a command line tool that enables the profiling of metagenomes 40 

for >33,000 species-level operational taxonomic units. To achieve this, we leveraged the 41 

reconstruction and analysis of >600,000 draft genomes, most of which are metagenome assembled 42 

genomes (MAGs), from diverse microbiomes, including soil, freshwater systems, and the 43 

gastrointestinal tract of ruminants and other animals, which we found to be greatly underrepresented 44 

by reference genomes. Overall, two-thirds of all species-level taxa lacked a reference genome. The 45 

cumulative relative abundance of these newly included taxa was low in well-studied microbiomes, 46 

such as the human body sites (6-11%). By contrast, they accounted for substantial proportions (ocean, 47 

freshwater, soil: 43-63%) or even the vast majority (pig, fish, cattle: 60-80%) of the relative 48 

abundance across diverse non-human-associated microbiomes. Using community-developed 49 

benchmarks and datasets, we found mOTUs3 to be more accurate than other methods and to be more 50 

congruent with 16S rRNA gene-based methods for taxonomic profiling. Furthermore, we demonstrate 51 

that mOTUs3 greatly increases the resolution of well-known microbial groups into species-level taxa 52 

and helps identify new differentially abundant taxa in comparative metagenomic studies.  53 

Conclusions: We developed mOTUs3 to enable accurate species-level profiling of metagenomes. 54 

Compared to other methods, it provides a more comprehensive view of prokaryotic community 55 

diversity, in particular for currently underexplored microbiomes. To facilitate comparative analyses 56 

by the research community, it is released with >11,000 precomputed profiles for publicly available 57 

metagenomes and is freely available at: https://github.com/motu-tool/mOTUs. 58 

 59 

Keywords: Metagenomics, microbial community, benchmarking, taxonomic profiling, marker gene, 60 

metagenome-assembled genome, single-cell genome, reference genome 61 
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 3 

Background 63 

Identifying and quantifying the abundance of taxa (i.e., taxonomic profiling) is a critical step in 64 

linking the composition of microbial communities to environmental functions and host health-related 65 

phenotypes [1,2]. Metagenomic sequencing of DNA directly extracted from an environmental or host-66 

derived sample has enabled researchers to taxonomically profile microbial communities in an 67 

unbiased and cultivation-independent manner. The development of tools to generate accurate 68 

taxonomic profiles from metagenomic data has therefore become important to our understanding of 69 

microbial communities [3]. However, existing tools rely on the availability of informative sequences 70 

(such as k-mers or marker genes [4,5]), which are predominantly extracted from taxonomically 71 

annotated reference genomes (RefGs). 72 

In recent years, high-throughput culturing of microorganisms coupled with RefG sequencing (known 73 

as culturomics) [6] has substantially expanded the proportion of microbial taxa with whole genome 74 

sequences in data repositories (e.g., NCBI RefSeq) benefitting taxonomic profiling tools. However, 75 

there is a strong bias toward microorganisms from well-studied habitats (e.g., human body sites) 76 

and/or those that can be readily cultivated using standard laboratory methods. Thus, most microbes on 77 

Earth remain uncultivated and lack a representative RefG [7,8], although they can be both globally 78 

prevalent [9] and numerically dominant in many environments [10, 11, 12, 13]. As a result, the 79 

incorporation of RefGs from newly isolated microbes into taxonomic profiling tools can be slow and 80 

disproportional across environments. This poses an additional challenge for accurate taxonomic 81 

profiling, given that microorganisms that remain undetected bias the abundance estimates of those 82 

that are detected [14,15]. 83 

To close the gap between the detectable and actual diversity present in microbial community samples, 84 

we developed mOTUs [14,16], a software tool that uses universal, protein-coding, single-copy 85 

phylogenetic marker gene (MG) sequences to quantify the taxonomic composition of microbial 86 

communities from metagenomic sequence data (for further applications, see also Ruscheweyh et al. 87 

2021 [17]). As these MGs are present in all organisms, they can be identified not only in RefGs, but 88 

also in metagenomic assemblies. Conceptually, mOTUs is based on clustering sets of MGs 89 
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representing individual organisms by sequence similarity into species-level units. In the absence of a 90 

generalizable species concept for prokaryotes [18,19], we refer to these units as MG-based 91 

operational taxonomic units (abbreviated as ‘mOTUs’). 92 

As an alternative to RefG sequencing, draft genomes are increasingly reconstructed by computational 93 

binning of metagenomic assemblies into metagenome-assembled genomes (MAGs [20]) or by 94 

sequencing amplified DNA from individual cells, resulting in single cell genomes (SAGs [21]). These 95 

cultivation-independent methods have provided genomic access to microbial diversity in previously 96 

underexplored environments. Here, in addition to MGs found in RefG and metagenomic data, we now 97 

incorporate those found in MAGs and SAGs to more than double the number of taxa represented, 98 

adding >20,000 new mOTUs compared to the previous major release [14]. Our evaluations show that 99 

mOTUs3 outperforms other methods as assessed using metrics for taxonomic tool benchmarking 100 

developed independently from our study [3,22]. Furthermore, we found mOTUs3 to provide an 101 

unprecedented view of the species-level diversity within the most dominant heterotrophic bacterial 102 

clade in the ocean and to greatly extend the number of detected and differentially abundant species in 103 

cross-sectional studies, as exemplified in a comparison between rumen microbiomes of high- and 104 

low-level methane-emitting sheep. 105 

 106 

Results 107 

Taxonomic profiling of diverse environments with mOTUs3 108 

We developed mOTUs3 to facilitate the metagenomic profiling of 33,570 mOTUs, which is a 4.3-fold 109 

increase compared to mOTUs2 (Figure 1a). Among all mOTUs, 35% were represented by a RefG 110 

(n=11,915; ref-mOTUs), while an additional 21,655 were derived using MGs from either 111 

metagenomic contigs (n=2,297; meta-mOTUs) or extended sources, such as MAGs (de novo-112 

assembled or imported) and a smaller number of SAGs and isolate genomes (n=19,358; ext-mOTUs), 113 

to substantially extend the database coverage for reference genome-independent taxonomic profiling 114 

of diverse environments. MGs not assigned to any mOTU were additionally added to the database and 115 

merged into a single ‘unassigned’ group to improve the quantification accuracy of taxonomic profiles, 116 

as previously demonstrated [14]. 117 
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 118 

The newly established database allowed us to determine and systematically compare the fraction of 119 

taxa currently not represented by RefGs in various environments. These environments include 120 

extensively studied human-associated ones, for which metagenomic studies are complemented by 121 

several culturomics efforts (e.g., Lagier et al. [23]). Furthermore, we included data from >20 122 

environmental and animal-associated microbiomes (Supplementary Tables 1 and 2) that have been 123 

primarily studied by metagenomic approaches. Overall, we found that more than half (11,882) of all 124 

meta/ext-mOTUs (i.e., mOTUs not represented by any RefG) could not be assigned to any known 125 

family (Supplementary Table 3; Methods), illustrating the taxonomic novelty covered by mOTUs3. 126 

The distribution of the newly included data into ref/meta/ext-mOTUs was highly variable across the 127 

different environments (Supplementary Figure 1). As expected, 97% of the ~400,000 MAGs from 128 

human microbiome samples (Supplementary Table 1) had already been represented by 2,360 pre-129 

existing (i.e., ref/meta-)mOTUs (Supplementary Table 4). Notably, the remaining 3% represented 130 

2,750 new ext-mOTUs, showing that novel species can still be uncovered by studying 131 

underrepresented populations, dietary habits and/or disease states [24,25]. By contrast, we found that 132 

only ~25% of the 6,479 MAGs from mouse gut metagenomes (Supplementary Table 1) corresponded 133 

to pre-existing mOTUs (n=72), despite ongoing cultivation efforts [6]; the remaining 75% were 134 

grouped into 587 ext-mOTUs (Supplementary Table 4). However, the vast majority of ext-mOTUs 135 

(n=16,021) resulted from the inclusion of other animal-associated (e.g., ruminants, fish, chicken, pig, 136 

bee, dog, cat) and environmental (e.g., soil, freshwater, wastewater, ocean, air) microbiomes 137 

(Supplementary Table 1) for which the generation of representative RefGs is lagging. 138 

We used mOTUs3 to profile 10,541 available shotgun metagenomic data sets across the 23 139 

environments covered by its database (Supplementary Table 1). For comparative analyses, we subset 140 

the data to 5,756 high-quality samples (Methods; Supplementary Table 5) from 16 environments and 141 

found the overall number of detected mOTUs to range from 247 (honey bee) to >6,000 (ocean, 142 

wastewater and cattle microbiomes). To illustrate the proportion of quantifying taxa currently not 143 

represented by RefGs (Figure 1b), we summarized the cumulative relative abundances of unassigned 144 

taxa and the different types of mOTUs (ref-mOTUs, meta-mOTUs, ext-mOTUs). The fraction of 145 
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unassigned taxa was highest for soil samples (33%; s.d. 8%), which reflects the high microbial 146 

diversity in soil as well as challenges in reconstructing genomes from this environment [26]. By 147 

contrast, more than 87% (s.d. 0.7%) of the relative abundance was represented by ref-mOTUs in 148 

human skin samples mainly due to the dominance of few taxa with cultivated representatives [27]. 149 

Similarly, the fraction of relative abundance assigned to ext-mOTUs varied considerably between 150 

environments: on average, only ~6% of the bacterial abundance in human-associated samples was 151 

assigned to newly added taxa, while this fraction was as high as ~80% in cattle rumen microbiomes. 152 

 153 

Comparison with other taxonomic profilers 154 

As in other fields of bioinformatics, there is broad consensus that the performance of analysis tools 155 

needs to be carefully evaluated. However, best practices (e.g., balancing precision and recall, 156 

selecting criteria for ‘best’ performance) are often debated [28,29], and in microbiome research, an 157 

agreement on some fundamental concepts (e.g., sequence vs. taxonomic abundance, representation of 158 

unknown taxa in ground truth data) is still lacking [30,31]. In an attempt to address some of these 159 

issues in a community-driven effort, modeled after successful examples in other fields [32,33], the 160 

Critical Assessment of Metagenome Interpretation (CAMI) has provided curated ground truth datasets 161 

along with a tool (OPAL) to reproducibly evaluate metagenomic analysis tools [3,22]. 162 

Using the latest CAMI datasets with disclosed results [34], we compared mOTUs3 to its prior major 163 

release version (mOTUs2) [14] and other selected metagenomic profiling tools (MetaPhlAn3 [5] and 164 

Bracken [4,35], Methods) representing conceptually different, well-performing approaches to 165 

taxonomic profiling [30]. Using the OPAL tool for scoring and evaluation, we first evaluated 166 

presence/absence (F1-score) and relative abundance predictions (L1 norm error) at the species level. 167 

For the different datasets, which represented samples from five human body sites and the mouse gut 168 

microbiome, mOTUs3 and MetaPhlAn3 performed generally better than Bracken and mOTUs2 169 

(Figure 2a/b). At higher taxonomic ranks, mOTUs3 had similar or higher scores than the other tools. 170 

For some datasets, taxonomic ranks and tools, there was little to no room for improvements of the F1-171 

score or L1 norm error. This may be due to the simulated datasets being mainly based on taxa for 172 

which RefGs are available and/or result from incongruencies of taxonomic annotations used by the 173 
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 7 

different profilers compared to the ground truth. In addition to the L1 norm error, OPAL computes 174 

additional metrics for profiling quality (completeness, purity, weighted UniFrac error) and 175 

summarizes them across taxonomic ranks into a composite score. Based on this evaluation criterion, 176 

mOTUs3 outperformed the other tools (Figure 2c), as well as additional tools assessed in the CAMI 177 

challenge (Methods; Supplementary Figure 2).  178 

In the absence of independent ground truth data sets to benchmark taxonomic profiling tools for less 179 

well-studied environments, we correlated taxonomic profiles obtained by mOTUs3 and other tools to 180 

those obtained by analyzing 16S rRNA gene (16S) fragments. This approach leverages both the 181 

availability of comprehensive 16S databases for taxonomic classification [36] and the possibility of 182 

estimating taxonomic abundances based on 16S-based data from metagenomes [37]. Briefly, we 183 

extracted 16S fragments from the same datasets we used for metagenomic profiling and generated 184 

relative abundance profiles for them (Methods). To ensure comparability between 16S and 185 

metagenomic profiles, the analysis was performed at the genus and higher taxonomic ranks (for 186 

discussion, see Salazar et al. [37]). We found that mOTUs3 had consistently higher correlations with 187 

16S profiles than the other tools across all environments, except for the human gut for which 188 

MetaPhlAn3 showed correlation coefficients similar to those of mOTUs3 (Figure 3).  189 

 190 

Resolving the diversity of Pelagibacterales with mOTUs3  191 

In addition to the broader taxonomic coverage by mOTUs3 across environments, we sought to 192 

investigate the capability of mOTUs3 to resolve microbial clades into more fine-grained taxonomic 193 

units. To this end, we focused on Pelagibacterales (also referred to as the SAR11 clade), which is the 194 

most abundant heterotrophic bacterial group in the global oceans [38]. Members of the 195 

Pelagibacterales have previously been shown to display high genomic variability while maintaining 196 

highly conserved 16S sequences [39]. This prompted us to evaluate the species-level resolution of 197 

mOTUs3 and to compare the diversity represented by mOTUs to the diversity represented by 198 

operational taxonomic units (OTUs) defined by 16S sequence similarity. 199 
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For this analysis, we selected from all mOTUs annotated as Pelagibacterales (n=1,029; 2,063 200 

genomes) those that were represented by genomes with complete 16S sequences (n=602; 1,105 201 

genomes). The number of mOTUs was comparable to the number resulting from a 95% average 202 

nucleotide identity (ANI)-based clustering of the 1,105 genome sequences into species-level groups 203 

(n=700; Figure 4a), which is common practice in the field of microbial phylogenomics [7,40]. 204 

Moreover, we found sequence identities of mOTUs-representing MGs to linearly correlate with those 205 

of whole genomes across the whole range of observed values (r2=0.71; Figure 4b). By contrast, 16S 206 

sequence-based OTUs using a 97% or 99% sequence similarity cutoff resulted in a 31.7-fold (n=19) 207 

or 5.8-fold (n=104) lower number of taxonomic units, respectively, compared to mOTUs (Figure 4a). 208 

This discrepancy is also reflected by a weaker correlation (r2=0.45; Figure 4b) of identities between 209 

16S sequences and corresponding whole genome sequences. The minimum 16S identities were ca. 210 

87% and started saturating at approximately 97% at which point genome identities were still as low as 211 

~70-80% (Figure 4b). Similar findings were reported previously albeit on smaller datasets [39]. 212 

Finally, comparing the grouping of genomes by mOTUs and ANI into species-level clusters, we 213 

found almost perfect congruence (Figure 4c, Methods). 214 

 215 

Differential abundance of novel archaea in low/high methane-emitting sheep rumen metagenomes 216 

High-resolution taxonomic profiling of metagenomes from underexplored environments can be 217 

achieved by custom-made marker gene or genome databases selected for the microbial community 218 

under study [12,41]. However, this approach is often labor- and resource-intensive and requires 219 

specialized expertise, and its results cannot easily be compared across studies and communities. To 220 

demonstrate the utility of mOTUs3 to address these challenges, we reanalyzed rumen metagenomes 221 

from high- and low-methane emitting (HME and LME) sheep [41]. Importantly, these data were not 222 

used for the database construction of mOTUs3. 223 

Based on mOTUs3 taxonomic profiles, we identified 131 microbial species that differed significantly 224 

in abundance between HME and LME samples and showed an at least tenfold increase or decrease in 225 

relative abundance (corresponding to a generalized fold change of >= 1 [42]). Among these 226 

differentially abundant species, 92% were represented by ext-mOTUs. These were therefore not 227 
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expected to be detectable by reference-based profilers. To test this, we applied the same workflow 228 

using MetaPhlAn3 and Bracken (see Methods), which yielded only 10 and 30 differentially abundant 229 

species for the respective tools (Figure 5a). 230 

Given the metabolic importance of methanogenic archaea in ruminants as well as previous evidence 231 

of uncharted archaeal diversity in the sheep rumen [12], we further investigated the species-level 232 

diversity of known and unknown archaeal species. To this end, we reconstructed a phylogenetic tree 233 

of the archaeal mOTUs detected in the sheep rumen metagenomes (n=15) and contextualized them 234 

with reference genomes from members of the genera Methanobrevibacter and Methanosphaera 235 

(Figure 5b). This analysis revealed that all six differentially abundant archaea in the sheep rumen 236 

corresponded to ext-mOTUs. Two of them, which were significantly more abundant in high-methane 237 

emitters, were most closely related to Methanobrevibacter gottschalkii, which itself was not detected. 238 

Notably, the MG sequence similarity between these ext-mOTUs and M. gottschalkii was <85% 239 

(Figure 5b), which is well below the species-level cutoff of 96.5% used by mOTUs [16] and therefore 240 

suggests that these ext-mOTUs represent novel Methanobrevibacter spp.  241 

 242 

Discussion 243 

With mOTUs3, we have developed a taxonomic profiler that combines state-of-the-art accuracy, as 244 

demonstrated in competitive benchmarks based on simulated datasets, with an innovative database 245 

construction approach to detect and quantify underrepresented microbes from diverse environments at 246 

high (i.e., species-level) taxonomic resolution. The ability to incorporate MG sequences from any 247 

MAG and SAG to generate mOTUs de novo and independently from the availability of RefGs and/or 248 

prior existence of taxonomic annotations (such as NCBI or GTDB species names) will allow users to 249 

continuously extend the core database of mOTUs to represent microbial diversity from newly 250 

explored microbiomes. Such future extensions could also target eukaryotic microorganisms, as these 251 

are an integral part of many microbial communities, but are not well represented in databases of 252 

existing taxonomic profiling tools. 253 
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However, the flexibility in defining operational taxonomic units de novo comes with a need for 254 

taxonomic annotation, as is also the case for 16S rRNA-based de novo clustered OTUs. Despite the 255 

calibration of MG sequence identity cutoffs to maximize congruence with the NCBI taxonomy [16], 256 

this procedure can lead to conflicts with existing taxonomies. Irrespective of the ongoing debate on 257 

whether prokaryotic species should be consistent with genomic similarity-based criteria, delineating 258 

species by sequence identity puts mOTUs at a disadvantage in benchmarks, such as CAMI, which 259 

rely on rigid matching of taxonomic labels. The high performance of mOTUs [34] despite this 260 

disadvantage is likely due to the higher number of quantified taxa and the resulting reduction in 261 

compositionality-related biases. 262 

 263 

Conclusions 264 

The present work introduces mOTUs3 as a reference-genome independent tool that allows for 265 

charting the taxonomic landscape of many environments at species-level resolution. Its independence 266 

from taxonomically annotated reference genomes, makes it generally applicable also beyond well-267 

studied environments to quantify and reveal yet uncharacterized microbial species of potential 268 

biological relevance. To support the research community, mOTUs3 is documented and available as 269 

open source software at https://github.com/motu-tool/mOTUs. 270 

 271 

Methods 272 

Collection and processing of data to compile the mOTUs3 database 273 

To extend the taxonomic coverage of the mOTUs3 database, 4,531 publicly available metagenomic 274 

datasets from 23 environments (Supplementary Table 1) were processed to generate 150,880 MAGs 275 

as previously described [43]. Briefly, BBMap (v.38.71) was used to quality control sequencing reads 276 

from all samples by removing adapters from the reads, removing reads that mapped to quality control 277 

sequences (PhiX genome) and discarding low-quality reads (trimq=14, maq=20, maxns=1 and 278 

minlength=45). For metagenomic data of human origin, human genome-derived reads were removed 279 

using the masked human reference genome provided by BBMap. Quality-controlled reads were 280 

merged using bbmerge.sh with a minimum overlap of 16 bases, resulting in merged, unmerged paired 281 
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and single reads. The reads were assembled into scaffolded contigs (hereafter scaffolds) using the 282 

SPAdes assembler (v3.14 or v3.12) [44] in metagenomic mode. Genes were predicted on length-283 

filtered (≥ 500 bp) scaffolded contigs (hereafter scaffolds) using Prodigal (v2.6.3) [45]. Universal 284 

single-copy phylogenetic marker genes (MGs) were extracted using fetchMGs (v1.2; -m extraction) 285 

[16].  286 

Scaffolds were length-filtered (≥ 1000 bp) and within each study, quality-controlled reads from each 287 

sample were mapped against the scaffolds of each sample. Mapping was performed using BWA 288 

(v0.7.17-r1188; -a) [46]. Alignments were filtered to be at least 45 bp in length, with an identity of ≥ 289 

97% and a coverage of ≥ 80% of the read sequence. The resulting BAM files were processed using 290 

the jgi_summarize_bam_contig_depths script of MetaBAT2 (v2.12.1) [20] to compute within- and 291 

between-sample coverages for each scaffold. The scaffolds were binned by running MetaBAT2 on all 292 

samples individually (--minContig 2000 and --maxEdges 500 for increased sensitivity). These 293 

metagenomic bins were complemented with 454,773 external draft genomes (~96% MAGs; ~4% 294 

isolate and single-cell genomes) from previous work (Supplementary Table 1). Complete genes in 295 

external draft genomes and metagenomic bins were predicted using Prodigal (v2.6.3; -c -m -g 11 -p 296 

single) and MGs were extracted using fetchMGs (v1.2) (-m extraction -v -i).  297 

Metagenomic bins and draft genomes were annotated with Anvio (v5.5.0) [47], quality controlled 298 

using the CheckM (v1.0.13) [48] lineage workflow (completeness ≥ 50% and contamination < 10%) 299 

and filtered for genomes containing at least six out of the 10 MGs used by mOTUs [16] to produce 300 

the dataset of MGs from a total of 499,512 de novo-generated MAGs (i.e., quality-controlled 301 

metagenomic bins) and external draft genomes used for the construction of the mOTUs3 database.  302 

 303 

Construction of the mOTUs3 database 304 

MGs from 499,512 genomes were mapped against the latest mOTUs database (v2.5.1), which was an 305 

update of version 2.0 to account for a more recent release of the progenomes2 database [49] (Figure 306 

1a) using vsearch [50] (v2.14.1; --usearch_global --strand both --id 0.8 --maxaccepts 10000 --307 

maxrejects 10000). MGs from a total of 283,250 and 136,429 genomes were assigned to existing ref-308 
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mOTUs and meta-mOTUs, respectively. These genomes were removed since they were already 309 

represented. The remaining 79,833 genomes resulted in an extension of the mOTUs database by 310 

19,358 new mOTUs (ext-mOTUs). For consistency with the taxonomic annotation of ref-mOTUs, 311 

ext-mOTUs were annotated using the STAG classifier (https://github.com/zellerlab/stag, version 0.7; 312 

default parameters) trained on genomes in the proGenomes2 database [49] (NCBI taxonomy, version: 313 

8 January 2019). MGs identified on scaffolds that were not binned into MAGs were used to update 314 

the ‘unassigned’ mOTU, which contain unbinned MGs that are used to estimate the quantity of 315 

unknown species, by aligning these MGs against the extended database using vsearch (v2.14.1; 316 

usearch_global --maxaccepts 1000 --maxrejects 1000 --strand both). MGs that did not align within 317 

MG-specific cutoffs [51] were clustered using vsearch (v2.14.1; --cluster_fast) using MG-specific 318 

cutoffs and the representative sequence was added to the unassigned mOTU. 319 

 320 

Computation of mOTUs3 profiles for comparative analyses 321 

A total of 11,164 metagenomic and metatranscriptomic samples (Supplementary Table 1, 322 

Supplementary Table 2) were quality controlled and merged as described above and profiled with 323 

mOTUs3 using default parameters and the -c option to build a community resource of taxonomic 324 

profiles. For comparative analyses across environments, 5,756 of these samples were used after 325 

removing all (n=623) metatranscriptomic samples, metagenomic samples from environments with too 326 

few samples (termite, panda, aerosols and bioreactor) or from studies comprising samples from 327 

different environments and samples with less than 5,000 mapped inserts. To calculate the total 328 

number of detected mOTUs for a given environment, we counted the number of mOTUs with a 329 

prevalence greater than 0.1% (Supplementary Table 5). To compare the median number of detected 330 

mOTUs across different environments, we downsampled the insert counts to 5,000 using the rrarefy 331 

function of the vegan package [52]. 332 

 333 

Comparison of taxonomic profilers using the CAMI framework 334 

The performance of mOTUs3 was evaluated and compared to mOTUs2 and other taxonomic profilers 335 

by analyzing 113 publicly available samples (49 human-associated, 63 mouse gut metagenomes) 336 
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provided by the second CAMI challenge (https://cami-challenge.org/participate). The samples were 337 

profiled with mOTUs3 (v3.0.1; -C precision), mOTUs2 (v2.1.1; -C precision), MetaPhlAn3 (v3.0.7; -338 

-CAMI_format_output --index mpa_v30_CHOCOPhlAn_201901) [5] and Kraken/Bracken (v2.1.2; --339 

db=k2_standard_20201202 --paired / v2.6.1; --db=k2_standard_20201202 -r 100 -l S|G|F|O|C|P|D) 340 

[4,35]. Kraken/Bracken reports were further translated into the CAMI format ed files using the 341 

tocami.py script provided at https://github.com/hzi-bifo/cami2_pipelines. For comparative analyses, 342 

the OPAL framework (v1.0.9) [22] was used with default parameters providing the gold standard with 343 

the parameter --gold_standard_file, the names of the tools with --labels, the description with -d, the 344 

output with --output_dir and the taxonomic profiles files as positional arguments. 345 

 346 

Comparison of metagenomic profiles with 16S rRNA gene-based profiles 347 

The 16S rRNA-based taxonomic profiler mTAGs [37] (v1.0.1; -ma 1000 -mr 1000) was used to 348 

generate relative abundance profiles for metagenomic samples (Supplementary Table 1). The output 349 

of mTAGs was mapped to the NCBI taxonomy to facilitate comparative analysis. The same samples 350 

were profiled with MetaPhlAn3 (v3.0.7; --index mpa_v30_CHOCOPhlAn_201901) and 351 

Kraken/Bracken (v2.1.2; --db=k2_standard_20201202 --paired / v2.6.1; --352 

db=k2_standard_20201202 -r 100 -l S). Samples with small read/insert coverages (mTAGs<10,000, 353 

mOTUs<1,000, Kraken/Bracken<10,000, no filtering was done on MetaPhlAn3 as profiles contain 354 

relative abundances) were removed, leaving 6,119 samples for comparative analysis. Spearman 355 

correlations were calculated for each taxonomic rank based on concatenated relative abundances 356 

between mTAGs and the metagenomic profiling tools. 357 

 358 

Comparison of Pelagibacterales genome clusters with marker gene and 16S rRNA gene sequences 359 

Out of 2,063 genomes belonging to 1,029 mOTUs annotated as Pelagibacterales, 1,105 genomes 360 

(from 602 mOTUs) that contained a complete copy of the 16S rRNA gene were selected. These 361 

genomes were also clustered based on average nucleotide identity using dRep [53] (v2.5.4; -comp 0 -362 

con 1000 -sa 0.95 -nc 0.2) using a 95% cutoff as part of the OMD [43]. In addition, these genomes 363 

were clustered based on their 16S rRNA gene identity (99% and 97%) using vsearch [50] (v2.14.1; --364 
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cluster_smallmem --id 0.97 / 0.99). The consistency between the different clustering approaches was 365 

evaluated using the V-measure, which combines both the homogeneity and completeness metrics 366 

[54]. 367 

To correlate distances of the 1,105 genomes between the different clustering techniques we performed 368 

exhaustive distance calculations at the whole-genome level, the 10 MGs used by mOTUs and the 16S 369 

rRNA gene. Whole genome distances were computed using MASH [55] as implemented in dRep 370 

(v2.5.4). MG- and 16S rRNA gene-based distances were computed using vsearch (v2.14.1; --371 

allpairs_global --id 0.0) and MG distances were averaged across the 10 genes prior to computing 372 

correlations. 373 

 374 

Differential abundance of mOTUs between low/high methane-emitting sheep 375 

Samples from sheep rumen metagenomes (n=16) [41] were profiled with mOTUs3 (v3.0.1; -c), 376 

MetaPhlAn3 (v3.0.7; --index mpa_v30_CHOCOPhlAn_201901) and Kraken/Bracken (v2.1.2; --377 

db=k2_standard_20201202 --paired / v2.6.1; --db=k2_standard_20201202 -r 100 -l S). To test for 378 

differentially abundant species between low methane emitters (LMEs) and high methane emitters 379 

(HMEs), the respective profiles were analyzed using SIAMCAT default workflows [42]. This 380 

workflow includes filtering of species/mOTUs with a relative abundance of >0.1% in at least one 381 

sample [42]. Wilcoxon test results were corrected for multiple testing using the Benjamini–Hochberg 382 

method [56] at 5% FDR. The reported effect size measure is the generalized fold change (gFC), 383 

calculated as the log10 of the geometric mean of quantile differences between groups as defined in 384 

SIAMCAT [42]. 385 

A phylogeny was constructed for all archaeal mOTUs belonging to the Methanobrevibacter and 386 

Methanosphaera genera or the Thermoplasmata class that passed the relative abundance filtering (14 387 

ext-mOTUs, 1 ref-mOTU) together with ref-mOTUs from Methanobrevibacter and Methanosphaera 388 

(n=15) and a randomly selected Thermoplasmata ref-mOTU as an outgroup. Representative genomes 389 

from these 31 mOTUs were selected either by picking the centroid genome (for ext-mOTUs) or the 390 

reference genome (for ref-mOTUs). Marker genes were individually aligned (mafft [57], v7.458), the 391 
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alignments were concatenated and a maximum-likelihood phylogeny was calculated using RAxML 392 

[58] (v8.2.12; raxmlHPC -p 12345 -m PROTGAMMAAUTO). The distance between the 14 ext-393 

mOTUs and their closest ref-mOTU was calculated based on averaged marker gene distances across 394 

the 10 genes (v2.14.1; vsearch --allpairs_global --id 0.0). 395 
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Figure 1. The mOTUs3 database enables species-level profiling across diverse environments.  436 

(a) The database of the previous major release of mOTUs (version 2)[14] was updated to version 2.5 437 

to account for the current release of the progenomes2 database[49]. Based on version 2.5, the 438 

mOTUs3 database was constructed by adding universal, single-copy phylogenetic marker genes 439 

(MGs) from 605,653 genomes (metagenome-assembled genomes (MAGs) and a smaller number of 440 

isolate and single amplified genomes (SAGs)). This addition resulted in the extension of the database 441 

by 19,358 new species-level, MG-based operational taxonomic units (ext-mOTUs). Genomes already 442 

represented by ref- and meta-mOTUs in version 2.5 were not added (gray lines). (b) Breakdown by 443 

the three types of mOTUs shows that mOTUs3 enables the reference genome-independent profiling 444 

of a substantial fraction of microbial diversity across different environments. The numbers below the 445 

ring charts represent the total number of mOTUs that were detected per environment (left) 446 

considering only species with a prevalence of 0.1% and the median number of mOTUs per sample 447 

that were detected after downsampling to 5,000 inserts (right).  448 

  449 
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Figure 2. Comparison of mOTUs to other taxonomic profilers.  450 

The performance of mOTUs3 was compared to other taxonomic profiling tools based on the dataset 451 

from the second Critical Assessment of Metagenome Interpretation (CAMI) challenge (see Methods). 452 

The F1 score (a) and L1 norm error (b) are shown as reported by the OPAL tool[22] for each 453 

taxonomic rank (x-axis). High L1 norm error values at the family and genus levels of GI samples 454 

mostly derive from an updated taxonomy of the highly abundant Oscillospiraceae (previously 455 

Ruminococcaceae)[59]. (c) Each method was ranked across all samples and for each taxonomic rank 456 

using four measures (completeness, purity, L1 norm error and weighted UniFrac error), and the 457 

OPAL sum of scores was calculated as a sum of these ranks (lower rank indicates better 458 

performance). OR: oral cavity, SK: skin, AI: airways, UT: urogenital tract, GI: gastrointestinal tract, 459 

MG: mouse gut. 460 

  461 
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Figure 3. Comparison of metagenomic profiling tools using 16S rRNA-based taxonomic profiles.  462 

Spearman correlations between relative abundances generated by different metagenomic profiling 463 

tools and 16S rRNA gene-based profiles from the same samples. The correlations were calculated at 464 

different taxonomic ranks (x-axis; c: class, o: order, f: family, g: genus) and showed that mOTUs3 465 

generally had the highest values for the different body sites tested, except for human gut samples with 466 

similar values for mOTUs3 and MetaPhlAn3. 467 

  468 
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Figure 4. Species-level diversity of Pelagibacterales as resolved by mOTUs3. 469 

(a) The number of taxonomic units within the Pelagibacterales order varies depending on the 470 

clustering method used, which was based on using marker gene (MG) sequences (used by mOTUs), 471 

Average Nucleotide Identity (ANI) of whole genomes, and full length 16S rRNA gene sequences. (b) 472 

mOTUs marker gene distances better capture whole genome distances compared to full length 16S, 473 

explaining the patterns observed in (a). In particular, 16S rRNA gene sequence identity saturates 474 

while whole genome similarity can be as low as 70-80%. (c) The different clustering approaches vary 475 

in their agreement with each other as determined by the V-measure, which captures both the 476 

completeness and homogeneity of the clusterings. The highest agreement was found between mOTUs 477 

and with whole genome clustering by ANI.  478 

  479 
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Figure 5. Detection of differentially abundant taxa in low/high-level methane-emiting sheep 480 

rumen microbiomes. 481 

(a) A comparison between metagenomic profilers shows that mOTUs3 detected 131 differentially 482 

abundant species (q-value <0.05 and an absolute generalized fold change > 1; indicated by dotted 483 

lines) between low- and high-level methane-emitting sheep, while MetaPhlAn3 and Bracken detected 484 

nine and two species, respectively. Most of the species detected by mOTUs were represented by ext-485 

mOTUs only, demonstrating the added value of reference genome-independent profiling enabled by 486 

mOTUs3. (b) Archaeal mOTUs present in the sheep rumen microbiome (highlighted in gray) were 487 

phylogenetically contextualized with Methanobrevibacter spp. and Methanosphaera spp. represented 488 

by ref-mOTUs. All differentially abundant ext-mOTUs (middle panel) correspond to distinct yet 489 

undescribed Methanobrevibacter spp. as supported by MG sequence identities (right panel) to the 490 

closest known species being below the species-level cutoff of 96.5% (dotted vertical line).  491 

 492 

  493 
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Supplementary Information for this manuscript includes: 

● Legends for Supplementary Figures 1-2 

● Legends for Supplementary Tables 1-5 
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Supplementary Figure 1. Environment-specific membership of genomes in ref-, meta- and 

ext-mOTUs.  

A total of 499,512 genomes derived from 23 environments (environments with few genomes are 

grouped as ‘Other’, see Supplementary Tables 1 and 3) were used for the extension. The number 

of genomes was normalized by environments. The proportions of genomes per environment that 

are either associated with ref- and meta-mOTUs or were used to build ex-mOTUs are shown in 

the colors blue, green or orange, respectively. For example, the majority of genomes from the 

human gut match ref-mOTUs, whereas the vast majority of genomes from the fish environment 

are used to build ext-mOTUs.  
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Supplementary Figure 2. OPAL score broken down to individual metrics for the 63 mouse 

gut metagenomic samples.  

The evaluation was performed using the OPAL tool [1] on 63 simulated mouse gut metagenomes 

[2], which also provided taxonomic profiles for seven different taxonomic profiling tools, and to 

which we have added mOTUs3 profiling results. The OPAL tool ranks the tools for each sample 

and for each taxonomic level. The measures considered are completeness, purity, L1 norm error 

and weighted UniFrac error, shown individually in the bottom 4 plots. Tools with a lower score 

perform better, as the OPAL score is a sum over rank. The top plot represents the OPAL sum of 

scores, which is the sum over the four individual measures. mOTUs3 scored best in all 

categories, including the OPAL sum of scores. 
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Supplementary Table Legends 

Supplementary Table 1: Included studies and associated environments. 

Data from 91 studies from 23 environments were included in the extension and/or profiling of 

the mOTUs database. Of these, 39 studies were selected for in-house MAG reconstruction and 

11,164 sequencing samples from 67 studies were used for taxonomic profiling. 

Supplementary Table 2: Sequencing samples included in the taxonomic profile. 

A total of 11,164 samples were taxonomically profiled. Sample names are connected to public 

repositories by biosample and sequencing run ids. The project name column links the sample 

name to the study name used in Supplementary Table 1. 

Supplementary Table 3: Breakdown of taxonomic novelty in ext-mOTUs. 

Taxonomic novelty increases with higher ranks, i.e., more than 50% of ext-mOTUs were 

assigned to previously unknown families. 

Supplementary Table 4: Contribution of genomes to ref-, meta- or ext-mOTUs. 

Genomes/MAGs from different studies and environments contribute in varying proportions to 

the extension of the database. 

Supplementary Table 5: Data for Figure 1. 

For each sample that passed the filter (total 5,756), we reported the relative abundance for each 

mOTU type. Additionally, we added the total number of detected mOTUs and the habitat. 
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