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Abstract

Background: Taxonomic profiling is a fundamental task in microbiome research that aims to detect
and quantify the relative abundance of microorganisms in biological samples. Available methods
using shotgun metagenomic data generally depend on the availability of sequenced and taxonomically
annotated reference genomes. However, the majority of microorganisms have not been cultured yet
and lack such reference genomes. Thus, a substantial fraction of microbial community members
remains unaccounted for during taxonomic profiling of metagenomes, particularly in samples from
underexplored environments. To address this issue, we have developed the mOTU profiler, a tool that
enables reference genome-independent species-level profiling of metagenomes. As such, it supports
the identification and quantification of both “known” and “unknown” species based on a set of select

marker genes.

Results: Here, we present mOTUs3, a command line tool that enables the profiling of metagenomes
for >33,000 species-level operational taxonomic units. To achieve this, we leveraged the
reconstruction and analysis of >600,000 draft genomes, most of which are metagenome assembled
genomes (MAGs), from diverse microbiomes, including soil, freshwater systems, and the
gastrointestinal tract of ruminants and other animals, which we found to be greatly underrepresented
by reference genomes. Overall, two-thirds of all species-level taxa lacked a reference genome. The
cumulative relative abundance of these newly included taxa was low in well-studied microbiomes,
such as the human body sites (6-11%). By contrast, they accounted for substantial proportions (ocean,
freshwater, soil: 43-63%) or even the vast majority (pig, fish, cattle: 60-80%) of the relative
abundance across diverse non-human-associated microbiomes. Using community-developed
benchmarks and datasets, we found mOTUSs3 to be more accurate than other methods and to be more
congruent with 16S rRNA gene-based methods for taxonomic profiling. Furthermore, we demonstrate
that mOTUs3 greatly increases the resolution of well-known microbial groups into species-level taxa

and helps identify new differentially abundant taxa in comparative metagenomic studies.

Conclusions: We developed mOTUs3 to enable accurate species-level profiling of metagenomes.
Compared to other methods, it provides a more comprehensive view of prokaryotic community
diversity, in particular for currently underexplored microbiomes. To facilitate comparative analyses
by the research community, it is released with >11,000 precomputed profiles for publicly available

metagenomes and is freely available at: https://github.com/motu-tool/mOTUs.

Keywords: Metagenomics, microbial community, benchmarking, taxonomic profiling, marker gene,

metagenome-assembled genome, single-cell genome, reference genome
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Background

Identifying and quantifying the abundance of taxa (i.e., taxonomic profiling) is a critical step in
linking the composition of microbial communities to environmental functions and host health-related
phenotypes [1,2]. Metagenomic sequencing of DNA directly extracted from an environmental or host-
derived sample has enabled researchers to taxonomically profile microbial communities in an
unbiased and cultivation-independent manner. The development of tools to generate accurate
taxonomic profiles from metagenomic data has therefore become important to our understanding of
microbial communities [3]. However, existing tools rely on the availability of informative sequences
(such as k-mers or marker genes [4,5]), which are predominantly extracted from taxonomically

annotated reference genomes (RefGs).

In recent years, high-throughput culturing of microorganisms coupled with RefG sequencing (known
as culturomics) [6] has substantially expanded the proportion of microbial taxa with whole genome
sequences in data repositories (e.g., NCBI RefSeq) benefitting taxonomic profiling tools. However,
there is a strong bias toward microorganisms from well-studied habitats (e.g., human body sites)
and/or those that can be readily cultivated using standard laboratory methods. Thus, most microbes on
Earth remain uncultivated and lack a representative RefG [7,8], although they can be both globally
prevalent [9] and numerically dominant in many environments [10, 11, 12, 13]. As a result, the
incorporation of RefGs from newly isolated microbes into taxonomic profiling tools can be slow and
disproportional across environments. This poses an additional challenge for accurate taxonomic
profiling, given that microorganisms that remain undetected bias the abundance estimates of those

that are detected [14,15].

To close the gap between the detectable and actual diversity present in microbial community samples,
we developed mOTUs [14,16], a software tool that uses universal, protein-coding, single-copy
phylogenetic marker gene (MG) sequences to quantify the taxonomic composition of microbial
communities from metagenomic sequence data (for further applications, see also Ruscheweyh et al.
2021 [17]). As these MGs are present in all organisms, they can be identified not only in RefGs, but

also in metagenomic assemblies. Conceptually, mOTUs is based on clustering sets of MGs


https://doi.org/10.1101/2021.04.20.440600
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.20.440600; this version posted April 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

90  representing individual organisms by sequence similarity into species-level units. In the absence of a
91  generalizable species concept for prokaryotes [18,19], we refer to these units as MG-based

92  operational taxonomic units (abbreviated as ‘mOTUSs”).

93 As an alternative to RefG sequencing, draft genomes are increasingly reconstructed by computational
94 binning of metagenomic assemblies into metagenome-assembled genomes (MAGs [20]) or by
95  sequencing amplified DNA from individual cells, resulting in single cell genomes (SAGs [21]). These
96  cultivation-independent methods have provided genomic access to microbial diversity in previously
97  underexplored environments. Here, in addition to MGs found in RefG and metagenomic data, we now
98  incorporate those found in MAGs and SAGs to more than double the number of taxa represented,
99  adding >20,000 new mOTUs compared to the previous major release [14]. Our evaluations show that
100 mOTUs3 outperforms other methods as assessed using metrics for taxonomic tool benchmarking
101 developed independently from our study [3,22]. Furthermore, we found mOTUs3 to provide an
102 unprecedented view of the species-level diversity within the most dominant heterotrophic bacterial
103 clade in the ocean and to greatly extend the number of detected and differentially abundant species in
104 cross-sectional studies, as exemplified in a comparison between rumen microbiomes of high- and
105  low-level methane-emitting sheep.

106
107 Results

108  Taxonomic profiling of diverse environments with mOTUs3

109  We developed mOTUs3 to facilitate the metagenomic profiling of 33,570 mOTUs, which is a 4.3-fold
110  increase compared to mOTUs2 (Figure 1a). Among all mOTUs, 35% were represented by a RefG

111 (n=11,915; ref-mOTUs), while an additional 21,655 were derived using MGs from either

112 metagenomic contigs (n=2,297; meta-mOTUs) or extended sources, such as MAGs (de novo-

113 assembled or imported) and a smaller number of SAGs and isolate genomes (n=19,358; ext-mOTUs),
114 to substantially extend the database coverage for reference genome-independent taxonomic profiling
115  of diverse environments. MGs not assigned to any mOTU were additionally added to the database and
116  merged into a single ‘unassigned’ group to improve the quantification accuracy of taxonomic profiles,

117  as previously demonstrated [14].
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118

119 The newly established database allowed us to determine and systematically compare the fraction of
120 taxa currently not represented by RefGs in various environments. These environments include

121  extensively studied human-associated ones, for which metagenomic studies are complemented by
122 several culturomics efforts (e.g., Lagier et al. [23]). Furthermore, we included data from >20

123 environmental and animal-associated microbiomes (Supplementary Tables 1 and 2) that have been
124 primarily studied by metagenomic approaches. Overall, we found that more than half (11,882) of all
125  meta/ext-mOTUs (i.e., mOTUs not represented by any RefG) could not be assigned to any known
126 family (Supplementary Table 3; Methods), illustrating the taxonomic novelty covered by mOTUs3.
127  The distribution of the newly included data into ref/meta/ext-mOTUs was highly variable across the
128  different environments (Supplementary Figure 1). As expected, 97% of the ~400,000 MAGs from
129  human microbiome samples (Supplementary Table 1) had already been represented by 2,360 pre-
130  existing (i.e., ref/meta-)mOTUs (Supplementary Table 4). Notably, the remaining 3% represented
131 2,750 new ext-mOTUs, showing that novel species can still be uncovered by studying

132 underrepresented populations, dietary habits and/or disease states [24,25]. By contrast, we found that
133 only ~25% of the 6,479 MAGs from mouse gut metagenomes (Supplementary Table 1) corresponded
134 to pre-existing mOTUs (n=72), despite ongoing cultivation efforts [6]; the remaining 75% were

135 grouped into 587 ext-mOTUs (Supplementary Table 4). However, the vast majority of ext-mOTUs
136 (n=16,021) resulted from the inclusion of other animal-associated (e.g., ruminants, fish, chicken, pig,
137 bee, dog, cat) and environmental (e.g., soil, freshwater, wastewater, ocean, air) microbiomes

138 (Supplementary Table 1) for which the generation of representative RefGs is lagging.

139 We used mOTUs3 to profile 10,541 available shotgun metagenomic data sets across the 23

140  environments covered by its database (Supplementary Table 1). For comparative analyses, we subset
141  the data to 5,756 high-quality samples (Methods; Supplementary Table 5) from 16 environments and
142 found the overall number of detected mOTUs to range from 247 (honey bee) to >6,000 (ocean,

143 wastewater and cattle microbiomes). To illustrate the proportion of quantifying taxa currently not
144 represented by RefGs (Figure 1b), we summarized the cumulative relative abundances of unassigned

145  taxa and the different types of mOTUs (ref-mOTUs, meta-mOTUs, ext-mOTUs). The fraction of
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146  unassigned taxa was highest for soil samples (33%; s.d. 8%), which reflects the high microbial

147  diversity in soil as well as challenges in reconstructing genomes from this environment [26]. By
148  contrast, more than 87% (s.d. 0.7%) of the relative abundance was represented by ref-mOTUs in
149  human skin samples mainly due to the dominance of few taxa with cultivated representatives [27].
150  Similarly, the fraction of relative abundance assigned to ext-mOTUs varied considerably between
151  environments: on average, only ~6% of the bacterial abundance in human-associated samples was
152 assigned to newly added taxa, while this fraction was as high as ~80% in cattle rumen microbiomes.

153

154  Comparison with other taxonomic profilers

155  As in other fields of bioinformatics, there is broad consensus that the performance of analysis tools
156  needs to be carefully evaluated. However, best practices (e.g., balancing precision and recall,

157  selecting criteria for ‘best’ performance) are often debated [28,29], and in microbiome research, an
158  agreement on some fundamental concepts (e.g., sequence vs. taxonomic abundance, representation of
159  unknown taxa in ground truth data) is still lacking [30,31]. In an attempt to address some of these

160  issues in a community-driven effort, modeled after successful examples in other fields [32,33], the

161 Critical Assessment of Metagenome Interpretation (CAMI) has provided curated ground truth datasets

162 along with a tool (OPAL) to reproducibly evaluate metagenomic analysis tools [3,22].

163 Using the latest CAMI datasets with disclosed results [34], we compared mOTUs3 to its prior major
164 release version (mOTUs2) [14] and other selected metagenomic profiling tools (MetaPhlAn3 [5] and
165  Bracken [4,35], Methods) representing conceptually different, well-performing approaches to

166  taxonomic profiling [30]. Using the OPAL tool for scoring and evaluation, we first evaluated

167  presence/absence (Fi-score) and relative abundance predictions (L1 norm error) at the species level.
168  For the different datasets, which represented samples from five human body sites and the mouse gut
169  microbiome, mOTUs3 and MetaPhlAn3 performed generally better than Bracken and mOTUs2

170 (Figure 2a/b). At higher taxonomic ranks, mOTUs3 had similar or higher scores than the other tools.
171  For some datasets, taxonomic ranks and tools, there was little to no room for improvements of the F;-
172 score or L1 norm error. This may be due to the simulated datasets being mainly based on taxa for

173 which RefGs are available and/or result from incongruencies of taxonomic annotations used by the
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174 different profilers compared to the ground truth. In addition to the L1 norm error, OPAL computes
175  additional metrics for profiling quality (completeness, purity, weighted UniFrac error) and

176 summarizes them across taxonomic ranks into a composite score. Based on this evaluation criterion,
177  mOTUs3 outperformed the other tools (Figure 2c), as well as additional tools assessed in the CAMI

178  challenge (Methods; Supplementary Figure 2).

179  In the absence of independent ground truth data sets to benchmark taxonomic profiling tools for less
180  well-studied environments, we correlated taxonomic profiles obtained by mOTUs3 and other tools to
181  those obtained by analyzing 16S rRNA gene (16S) fragments. This approach leverages both the

182  availability of comprehensive 16S databases for taxonomic classification [36] and the possibility of
183  estimating taxonomic abundances based on 16S-based data from metagenomes [37]. Briefly, we

184  extracted 16S fragments from the same datasets we used for metagenomic profiling and generated
185  relative abundance profiles for them (Methods). To ensure comparability between 16S and

186  metagenomic profiles, the analysis was performed at the genus and higher taxonomic ranks (for

187  discussion, see Salazar et al. [37]). We found that mOTUs3 had consistently higher correlations with
188  16S profiles than the other tools across all environments, except for the human gut for which

189  MetaPhlAn3 showed correlation coefficients similar to those of mOTUs3 (Figure 3).

190
191  Resolving the diversity of Pelagibacterales with mOTUs3

192  In addition to the broader taxonomic coverage by mOTUs3 across environments, we sought to

193 investigate the capability of mOTUs3 to resolve microbial clades into more fine-grained taxonomic
194 units. To this end, we focused on Pelagibacterales (also referred to as the SAR11 clade), which is the
195  most abundant heterotrophic bacterial group in the global oceans [38]. Members of the

196  Pelagibacterales have previously been shown to display high genomic variability while maintaining
197  highly conserved 16S sequences [39]. This prompted us to evaluate the species-level resolution of
198  mOTUs3 and to compare the diversity represented by mOTUs to the diversity represented by

199  operational taxonomic units (OTUs) defined by 16S sequence similarity.
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200 For this analysis, we selected from all mOTUs annotated as Pelagibacterales (n=1,029; 2,063

201  genomes) those that were represented by genomes with complete 16S sequences (n=602; 1,105

202  genomes). The number of mOTUs was comparable to the number resulting from a 95% average

203 nucleotide identity (ANI)-based clustering of the 1,105 genome sequences into species-level groups
204  (n=700; Figure 4a), which is common practice in the field of microbial phylogenomics [7,40].

205  Moreover, we found sequence identities of mOTUs-representing MGs to linearly correlate with those
206  of whole genomes across the whole range of observed values (+*=0.71; Figure 4b). By contrast, 16S
207  sequence-based OTUs using a 97% or 99% sequence similarity cutoff resulted in a 31.7-fold (n=19)
208  or 5.8-fold (n=104) lower number of taxonomic units, respectively, compared to mOTUs (Figure 4a).
209  This discrepancy is also reflected by a weaker correlation (*=0.45; Figure 4b) of identities between
210 168 sequences and corresponding whole genome sequences. The minimum 16S identities were ca.
211 87% and started saturating at approximately 97% at which point genome identities were still as low as
212 ~70-80% (Figure 4b). Similar findings were reported previously albeit on smaller datasets [39].

213 Finally, comparing the grouping of genomes by mOTUs and ANI into species-level clusters, we

214  found almost perfect congruence (Figure 4c, Methods).

215

216 Differential abundance of novel archaea in low/high methane-emitting sheep rumen metagenomes
217  High-resolution taxonomic profiling of metagenomes from underexplored environments can be

218  achieved by custom-made marker gene or genome databases selected for the microbial community
219  under study [12,41]. However, this approach is often labor- and resource-intensive and requires

220  specialized expertise, and its results cannot easily be compared across studies and communities. To
221 demonstrate the utility of mOTUSs3 to address these challenges, we reanalyzed rumen metagenomes
222 from high- and low-methane emitting (HME and LME) sheep [41]. Importantly, these data were not

223 used for the database construction of mOTUs3.

224 Based on mOTUs3 taxonomic profiles, we identified 131 microbial species that differed significantly
225  in abundance between HME and LME samples and showed an at least tenfold increase or decrease in
226  relative abundance (corresponding to a generalized fold change of >= 1 [42]). Among these

227  differentially abundant species, 92% were represented by ext-mOTUs. These were therefore not
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228  expected to be detectable by reference-based profilers. To test this, we applied the same workflow
229  using MetaPhlAn3 and Bracken (see Methods), which yielded only 10 and 30 differentially abundant

230  species for the respective tools (Figure 5a).

231  Given the metabolic importance of methanogenic archaea in ruminants as well as previous evidence
232 of uncharted archaeal diversity in the sheep rumen [12], we further investigated the species-level

233 diversity of known and unknown archaeal species. To this end, we reconstructed a phylogenetic tree
234  of the archacal mOTUs detected in the sheep rumen metagenomes (n=15) and contextualized them
235  with reference genomes from members of the genera Methanobrevibacter and Methanosphaera

236  (Figure 5b). This analysis revealed that all six differentially abundant archaea in the sheep rumen
237  corresponded to ext-mOTUs. Two of them, which were significantly more abundant in high-methane
238  emitters, were most closely related to Methanobrevibacter gottschalkii, which itself was not detected.
239  Notably, the MG sequence similarity between these ext-mOTUs and M. gottschalkii was <85%

240  (Figure 5b), which is well below the species-level cutoff of 96.5% used by mOTUs [16] and therefore
241  suggests that these ext-mOTUs represent novel Methanobrevibacter spp.

242

243 Discussion

244 With mOTUs3, we have developed a taxonomic profiler that combines state-of-the-art accuracy, as
245  demonstrated in competitive benchmarks based on simulated datasets, with an innovative database
246  construction approach to detect and quantify underrepresented microbes from diverse environments at
247  high (i.e., species-level) taxonomic resolution. The ability to incorporate MG sequences from any

248  MAG and SAG to generate mOTUs de novo and independently from the availability of RefGs and/or
249  prior existence of taxonomic annotations (such as NCBI or GTDB species names) will allow users to
250  continuously extend the core database of mOTUs to represent microbial diversity from newly

251  explored microbiomes. Such future extensions could also target eukaryotic microorganisms, as these
252 are an integral part of many microbial communities, but are not well represented in databases of

253  existing taxonomic profiling tools.
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254  However, the flexibility in defining operational taxonomic units de novo comes with a need for

255  taxonomic annotation, as is also the case for 16S rRNA-based de novo clustered OTUs. Despite the
256  calibration of MG sequence identity cutoffs to maximize congruence with the NCBI taxonomy [16],
257  this procedure can lead to conflicts with existing taxonomies. Irrespective of the ongoing debate on
258  whether prokaryotic species should be consistent with genomic similarity-based criteria, delineating
259  species by sequence identity puts mOTUs at a disadvantage in benchmarks, such as CAMI, which
260  rely on rigid matching of taxonomic labels. The high performance of mOTUs [34] despite this

261  disadvantage is likely due to the higher number of quantified taxa and the resulting reduction in

262  compositionality-related biases.

263

264  Conclusions

265  The present work introduces mOTUs3 as a reference-genome independent tool that allows for

266  charting the taxonomic landscape of many environments at species-level resolution. Its independence
267  from taxonomically annotated reference genomes, makes it generally applicable also beyond well-
268  studied environments to quantify and reveal yet uncharacterized microbial species of potential

269  Dbiological relevance. To support the research community, mOTUs3 is documented and available as

270  open source software at https://github.com/motu-tool/mOTUs.

271
272 Methods

273 Collection and processing of data to compile the mOTUs3 database

274  To extend the taxonomic coverage of the mOTUs3 database, 4,531 publicly available metagenomic
275  datasets from 23 environments (Supplementary Table 1) were processed to generate 150,880 MAGs
276  as previously described [43]. Briefly, BBMap (v.38.71) was used to quality control sequencing reads
277  from all samples by removing adapters from the reads, removing reads that mapped to quality control
278  sequences (PhiX genome) and discarding low-quality reads (trimg=14, mag=20, maxns=1 and

279  minlength=45). For metagenomic data of human origin, human genome-derived reads were removed
280  using the masked human reference genome provided by BBMap. Quality-controlled reads were

281  merged using bbmerge.sh with a minimum overlap of 16 bases, resulting in merged, unmerged paired

10
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282  and single reads. The reads were assembled into scaffolded contigs (hereafter scaffolds) using the
283  SPAdes assembler (v3.14 or v3.12) [44] in metagenomic mode. Genes were predicted on length-
284  filtered (> 500 bp) scaffolded contigs (hereafter scaffolds) using Prodigal (v2.6.3) [45]. Universal
285  single-copy phylogenetic marker genes (MGs) were extracted using fetchMGs (v1.2; -m extraction)

286 [16].

287  Scaffolds were length-filtered (= 1000 bp) and within each study, quality-controlled reads from each
288  sample were mapped against the scaffolds of each sample. Mapping was performed using BWA

289  (v0.7.17-r1188; -a) [46]. Alignments were filtered to be at least 45 bp in length, with an identity of >
290  97% and a coverage of > 80% of the read sequence. The resulting BAM files were processed using
291  thejgi summarize bam contig depths script of MetaBAT2 (v2.12.1) [20] to compute within- and
292  between-sample coverages for each scaffold. The scaffolds were binned by running MetaBAT2 on all
293 samples individually (--minContig 2000 and --maxEdges 500 for increased sensitivity). These

294  metagenomic bins were complemented with 454,773 external draft genomes (~96% MAGs; ~4%

295  isolate and single-cell genomes) from previous work (Supplementary Table 1). Complete genes in
296  external draft genomes and metagenomic bins were predicted using Prodigal (v2.6.3; -c -m -g 11 -p

297  single) and MGs were extracted using fetchMGs (v1.2) (-m extraction -v -i).

298  Metagenomic bins and draft genomes were annotated with Anvio (v5.5.0) [47], quality controlled
299  using the CheckM (v1.0.13) [48] lineage workflow (completeness > 50% and contamination < 10%)
300  and filtered for genomes containing at least six out of the 10 MGs used by mOTUs [16] to produce
301  the dataset of MGs from a total of 499,512 de novo-generated MAGs (i.e., quality-controlled

302  metagenomic bins) and external draft genomes used for the construction of the mOTUs3 database.

303
304  Construction of the mOTUs3 database

305  MGs from 499,512 genomes were mapped against the latest mOTUs database (v2.5.1), which was an
306  update of version 2.0 to account for a more recent release of the progenomes2 database [49] (Figure
307 la) using vsearch [50] (v2.14.1; --usearch_global --strand both --id 0.8 --maxaccepts 10000 --

308  maxrejects 10000). MGs from a total of 283,250 and 136,429 genomes were assigned to existing ref-
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309  mOTUs and meta-mOTUs, respectively. These genomes were removed since they were already
310  represented. The remaining 79,833 genomes resulted in an extension of the mOTUs database by
311 19,358 new mOTUs (ext-mOTUs). For consistency with the taxonomic annotation of ref-mOTUs,

312 ext-mOTUs were annotated using the STAG classifier (https://github.com/zellerlab/stag, version 0.7;

313 default parameters) trained on genomes in the proGenomes2 database [49] (NCBI taxonomy, version:
314 8 January 2019). MGs identified on scaffolds that were not binned into MAGs were used to update
315  the ‘unassigned’ mOTU, which contain unbinned MGs that are used to estimate the quantity of

316  unknown species, by aligning these MGs against the extended database using vsearch (v2.14.1;

317  wusearch_global --maxaccepts 1000 --maxrejects 1000 --strand both). MGs that did not align within
318  MG-specific cutoffs [51] were clustered using vsearch (v2.14.1; --cluster fast) using MG-specific
319  cutoffs and the representative sequence was added to the unassigned mOTU.

320
321  Computation of mOTUs3 profiles for comparative analyses

322 A total of 11,164 metagenomic and metatranscriptomic samples (Supplementary Table 1,

323 Supplementary Table 2) were quality controlled and merged as described above and profiled with
324 mOTUs3 using default parameters and the -c option to build a community resource of taxonomic
325  profiles. For comparative analyses across environments, 5,756 of these samples were used after

326  removing all (n=623) metatranscriptomic samples, metagenomic samples from environments with too
327  few samples (termite, panda, aerosols and bioreactor) or from studies comprising samples from

328  different environments and samples with less than 5,000 mapped inserts. To calculate the total

329  number of detected mOTUs for a given environment, we counted the number of mOTUs with a

330  prevalence greater than 0.1% (Supplementary Table 5). To compare the median number of detected
331  mOTUs across different environments, we downsampled the insert counts to 5,000 using the rrarefy
332 function of the vegan package [52].

333
334 Comparison of taxonomic profilers using the CAMI framework

335  The performance of mOTUs3 was evaluated and compared to mOTUs2 and other taxonomic profilers

336 by analyzing 113 publicly available samples (49 human-associated, 63 mouse gut metagenomes)
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337  provided by the second CAMI challenge (https://cami-challenge.org/participate). The samples were

338  profiled with mOTUs3 (v3.0.1; -C precision), mOTUs2 (v2.1.1; -C precision), MetaPhlAn3 (v3.0.7; -
339  -CAMI format output --index mpa_v30 CHOCOPhIAn 201901) [5] and Kraken/Bracken (v2.1.2; --
340  db=k2 standard 20201202 --paired /v2.6.1; --db=k2_standard 20201202 -r 100 -1 S|G|F|O|C|P|D)
341 [4,35]. Kraken/Bracken reports were further translated into the CAMI format ed files using the

342 tocami.py script provided at https://github.com/hzi-bifo/cami2 pipelines. For comparative analyses,

343  the OPAL framework (v1.0.9) [22] was used with default parameters providing the gold standard with
344  the parameter --gold_standard_file, the names of the tools with --/abels, the description with -d, the
345  output with --output dir and the taxonomic profiles files as positional arguments.

346
347  Comparison of metagenomic profiles with 16S rRNA gene-based profiles

348  The 16S rRNA-based taxonomic profiler mTAGs [37] (v1.0.1; -ma 1000 -mr 1000) was used to

349  generate relative abundance profiles for metagenomic samples (Supplementary Table 1). The output
350  of mTAGs was mapped to the NCBI taxonomy to facilitate comparative analysis. The same samples
351  were profiled with MetaPhlAn3 (v3.0.7; --index mpa_v30 CHOCOPhIAn 201901) and

352  Kraken/Bracken (v2.1.2; --db=k2_standard 20201202 --paired / v2.6.1; --

353 db=k2 standard 20201202 -r 100 -/ S). Samples with small read/insert coverages (mTAGs<10,000,
354 mOTUs<1,000, Kraken/Bracken<10,000, no filtering was done on MetaPhlAn3 as profiles contain
355  relative abundances) were removed, leaving 6,119 samples for comparative analysis. Spearman

356  correlations were calculated for each taxonomic rank based on concatenated relative abundances
357  between mTAGs and the metagenomic profiling tools.

358

359  Comparison of Pelagibacterales genome clusters with marker gene and 16S rRNA gene sequences
360  Outof 2,063 genomes belonging to 1,029 mOTUs annotated as Pelagibacterales, 1,105 genomes

361  (from 602 mOTUs) that contained a complete copy of the 16S rRNA gene were selected. These

362  genomes were also clustered based on average nucleotide identity using dRep [53] (v2.5.4; -comp 0 -
363 con 1000 -sa 0.95 -nc 0.2) using a 95% cutoft as part of the OMD [43]. In addition, these genomes

364  were clustered based on their 16S rRNA gene identity (99% and 97%) using vsearch [50] (v2.14.1; --
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365  cluster smallmem --id 0.97 / 0.99). The consistency between the different clustering approaches was
366  evaluated using the V-measure, which combines both the homogeneity and completeness metrics

367 [54].

368  To correlate distances of the 1,105 genomes between the different clustering techniques we performed
369  exhaustive distance calculations at the whole-genome level, the 10 MGs used by mOTUs and the 16S
370  rRNA gene. Whole genome distances were computed using MASH [55] as implemented in dRep

371 (v2.5.4). MG- and 16S rRNA gene-based distances were computed using vsearch (v2.14.1; --

372 allpairs_global --id 0.0) and MG distances were averaged across the 10 genes prior to computing

373 correlations.

374
375  Differential abundance of mOTUs between low/high methane-emitting sheep

376  Samples from sheep rumen metagenomes (n=16) [41] were profiled with mOTUs3 (v3.0.1; -¢),

377  MetaPhlAn3 (v3.0.7; --index mpa_v30 CHOCOPhIAn 201901) and Kraken/Bracken (v2.1.2; --

378  db=k2 standard 20201202 --paired |/ v2.6.1; --db=k2 standard 20201202 -r 100 -1 S). To test for
379  differentially abundant species between low methane emitters (LMEs) and high methane emitters
380  (HMEs), the respective profiles were analyzed using SIAMCAT default workflows [42]. This

381  workflow includes filtering of species/mOTUs with a relative abundance of >0.1% in at least one
382  sample [42]. Wilcoxon test results were corrected for multiple testing using the Benjamini-Hochberg
383  method [56] at 5% FDR. The reported effect size measure is the generalized fold change (gFC),

384  calculated as the log10 of the geometric mean of quantile differences between groups as defined in

385  SIAMCAT [42].

386 A phylogeny was constructed for all archaecal mOTUs belonging to the Methanobrevibacter and

387  Methanosphaera genera or the Thermoplasmata class that passed the relative abundance filtering (14
388  ext-mOTUs, 1 ref-mOTU) together with ref-mOTUs from Methanobrevibacter and Methanosphaera
389  (n=15) and a randomly selected Thermoplasmata ref-mOTU as an outgroup. Representative genomes
390  from these 31 mOTUs were selected either by picking the centroid genome (for ext-mOTUs) or the

391  reference genome (for ref-mOTUs). Marker genes were individually aligned (mafft [57], v7.458), the

14


https://doi.org/10.1101/2021.04.20.440600
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.20.440600; this version posted April 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

392 alignments were concatenated and a maximum-likelihood phylogeny was calculated using RAXML
393 [58] (v8.2.12; raxmIHPC -p 12345 -m PROTGAMMAAUTO). The distance between the 14 ext-

394  mOTUs and their closest ref-mOTU was calculated based on averaged marker gene distances across
395  the 10 genes (v2.14.1; vsearch --allpairs_global --id 0.0).

396
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436  Figure 1. The mOTUs3 database enables species-level profiling across diverse environments.
437  (a) The database of the previous major release of mOTUs (version 2)[14] was updated to version 2.5
438  to account for the current release of the progenomes2 database[49]. Based on version 2.5, the

439  mOTUs3 database was constructed by adding universal, single-copy phylogenetic marker genes

440  (MGs) from 605,653 genomes (metagenome-assembled genomes (MAGs) and a smaller number of
441  isolate and single amplified genomes (SAGs)). This addition resulted in the extension of the database
442 by 19,358 new species-level, MG-based operational taxonomic units (ext-mOTUs). Genomes already
443  represented by ref- and meta-mOTUs in version 2.5 were not added (gray lines). (b) Breakdown by
444 the three types of mOTUs shows that mOTUs3 enables the reference genome-independent profiling
445  of a substantial fraction of microbial diversity across different environments. The numbers below the
446  ring charts represent the total number of mOTUs that were detected per environment (left)

447  considering only species with a prevalence of 0.1% and the median number of mOTUs per sample
448  that were detected after downsampling to 5,000 inserts (right).

449
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450  Figure 2. Comparison of mOTUs to other taxonomic profilers.

451  The performance of mOTUs3 was compared to other taxonomic profiling tools based on the dataset
452  from the second Critical Assessment of Metagenome Interpretation (CAMI) challenge (see Methods).
453  The F1 score (a) and L1 norm error (b) are shown as reported by the OPAL tool[22] for each

454  taxonomic rank (x-axis). High L1 norm error values at the family and genus levels of GI samples
455  mostly derive from an updated taxonomy of the highly abundant Oscillospiraceae (previously

456  Ruminococcaceae)[59]. (¢) Each method was ranked across all samples and for each taxonomic rank
457  using four measures (completeness, purity, L1 norm error and weighted UniFrac error), and the

458  OPAL sum of scores was calculated as a sum of these ranks (lower rank indicates better

459  performance). OR: oral cavity, SK: skin, Al: airways, UT: urogenital tract, GI: gastrointestinal tract,
460  MG: mouse gut.

461
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462  Figure 3. Comparison of metagenomic profiling tools using 16S rRNA-based taxonomic profiles.
463  Spearman correlations between relative abundances generated by different metagenomic profiling

464  tools and 16S rRNA gene-based profiles from the same samples. The correlations were calculated at
465  different taxonomic ranks (x-axis; c: class, o: order, f: family, g: genus) and showed that mOTUs3
466  generally had the highest values for the different body sites tested, except for human gut samples with
467  similar values for mOTUs3 and MetaPhlAn3.

468
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469  Figure 4. Species-level diversity of Pelagibacterales as resolved by mOTUs3.

470  (a) The number of taxonomic units within the Pelagibacterales order varies depending on the

471  clustering method used, which was based on using marker gene (MG) sequences (used by mOTUs),
472 Average Nucleotide Identity (ANI) of whole genomes, and full length 16S rRNA gene sequences. (b)
473  mOTUs marker gene distances better capture whole genome distances compared to full length 16S,
474  explaining the patterns observed in (a). In particular, 16S rRNA gene sequence identity saturates

475  while whole genome similarity can be as low as 70-80%. (c) The different clustering approaches vary
476  in their agreement with each other as determined by the V-measure, which captures both the

477  completeness and homogeneity of the clusterings. The highest agreement was found between mOTUs
478  and with whole genome clustering by ANI.

479

20


https://doi.org/10.1101/2021.04.20.440600
http://creativecommons.org/licenses/by/4.0/

Significance [log,(q)]

6 ~0©® [.; 1 o 3
5] He)
................. O S
14 g=00s TS
i Yo
O O
®
o4 O 10 0
1 28 1

Effect size [gFC]

Higher abundance
in LME

Higher abundance
in HME

wl

€snio

uayoeig

b

Taxon type:
O ext-mOTU
© meta-mOTU
@ ref-mOTU
O ref. available

E ................. eXt_mOTU_V3_33278
................. eXt_mOTU_V3_21 41 3
L@ srrsstnaannnnant eXt_mOTU_v3_21 049

LD serrna sy eXt_mOTU_V3_21 372
IR eXt_mOTU_V3_1 6545

Jro s ext_mOTU_v3_21124
I'_OQ' """""""" Methanobrevibacter sp.
""" Methanobrevibacter gottschalkii

ﬁ .................. eXt_mOTU_V3_1 6507
"""""" Methanobrevibacter millerae
[~ --rereeene Methanobrevibacter oralis
O Methanobrevibacter smithii

.................. eXt_mOTU_V3_1 6684
.................. ext_mOTU_v3_1 6680
----------- Methanobrevibacter olleyae
----- Methanobrevibacter ruminantium
.................. eXt_mOTU_V3_29760
.................. ext_mOTU_v3_1 6572
""" Methanobrevibacter boviskoreani
"""""" Methanobrevibacter wolinii
-+ Methanobrevibacter curvatus
""" Methanobrevibacter filiformis

------ Methanobrevibacter cuticularis
-*Methanobrevibacter arboriphilus
-------- Methanosphaera stadtmanae
................... Methanosphaera Sp
.................. eXt_mOTU_V3_23769
.................. eXt_mOTU_V3_33264

—E ----------- methanogenic archaeon
................... eXt_mOTU_V3_1 9943

[Picrophilus oshimae/torridus]

Associations: [l significant [0 non-significant

| *
| .
i .
| *
] *
I_ .
] *
| TS
| *
f .
*
-'. .
*
] :
! .
II;I T T I'I
-2 01 70 80 9010

gFC MG identity [%]


https://doi.org/10.1101/2021.04.20.440600
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.20.440600; this version posted April 8, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

480  Figure S. Detection of differentially abundant taxa in low/high-level methane-emiting sheep

481  rumen microbiomes.

482  (a) A comparison between metagenomic profilers shows that mOTUs3 detected 131 differentially
483  abundant species (¢g-value <0.05 and an absolute generalized fold change > 1; indicated by dotted
484  lines) between low- and high-level methane-emitting sheep, while MetaPhlAn3 and Bracken detected
485  nine and two species, respectively. Most of the species detected by mOTUs were represented by ext-
486  mOTUs only, demonstrating the added value of reference genome-independent profiling enabled by
487  mOTUs3. (b) Archacal mOTUs present in the sheep rumen microbiome (highlighted in gray) were
488  phylogenetically contextualized with Methanobrevibacter spp. and Methanosphaera spp. represented
489 by ref-mOTUs. All differentially abundant ext-mOTUs (middle panel) correspond to distinct yet

490  undescribed Methanobrevibacter spp. as supported by MG sequence identities (right panel) to the
491  closest known species being below the species-level cutoff of 96.5% (dotted vertical line).

492

493
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Supplementary Figure 1. Environment-specific membership of genomes in ref-, meta- and

ext-mOTUs.

A total 0f 499,512 genomes derived from 23 environments (environments with few genomes are
grouped as ‘Other’, see Supplementary Tables 1 and 3) were used for the extension. The number
of genomes was normalized by environments. The proportions of genomes per environment that
are either associated with ref- and meta-mOTUs or were used to build ex-mOTUs are shown in
the colors blue, green or orange, respectively. For example, the majority of genomes from the
human gut match ref-mOTUs, whereas the vast majority of genomes from the fish environment

are used to build ext-mOTUs.
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Supplementary Figure 2. OPAL score broken down to individual metrics for the 63 mouse

gut metagenomic samples.

The evaluation was performed using the OPAL tool [1] on 63 simulated mouse gut metagenomes
[2], which also provided taxonomic profiles for seven different taxonomic profiling tools, and to
which we have added mOTUs3 profiling results. The OPAL tool ranks the tools for each sample
and for each taxonomic level. The measures considered are completeness, purity, L1 norm error
and weighted UniFrac error, shown individually in the bottom 4 plots. Tools with a lower score
perform better, as the OPAL score is a sum over rank. The top plot represents the OPAL sum of
scores, which is the sum over the four individual measures. mOTUs3 scored best in all

categories, including the OPAL sum of scores.
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Supplementary Table Legends

Supplementary Table 1: Included studies and associated environments.

Data from 91 studies from 23 environments were included in the extension and/or profiling of
the mOTUs database. Of these, 39 studies were selected for in-house MAG reconstruction and

11,164 sequencing samples from 67 studies were used for taxonomic profiling.

Supplementary Table 2: Sequencing samples included in the taxonomic profile.

A total of 11,164 samples were taxonomically profiled. Sample names are connected to public
repositories by biosample and sequencing run ids. The project name column links the sample
name to the study name used in Supplementary Table 1.

Supplementary Table 3: Breakdown of taxonomic novelty in ext-mOTUs.

Taxonomic novelty increases with higher ranks, i.e., more than 50% of ext-mOTUs were

assigned to previously unknown families.

Supplementary Table 4: Contribution of genomes to ref-, meta- or ext-mOTUs.
Genomes/MAGs from different studies and environments contribute in varying proportions to
the extension of the database.

Supplementary Table 5: Data for Figure 1.

For each sample that passed the filter (total 5,756), we reported the relative abundance for each

mOTU type. Additionally, we added the total number of detected mOTUs and the habitat.
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