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Abstract

Background: Allogeneic hematopoietic stem cell transplants (allo-HSCTs) dramatically reduce
HIV reservoirs in antiretroviral therapy (ART) suppressed individuals. However, the
mechanism(s) responsible for these post-transplant viral reservoir declines are not fully
understood but may include pre-transplant conditioning regimens, ART-mediated protection of
donor cells, and graft-versus-host (GvH) responses. Therefore, we modeled allo-HSCT in ART-
suppressed simian-human immunodeficiency virus (SHIV)-infected Mauritian cynomolgus
macaques (MCMs) to illuminate factors contributing to transplant-induced viral reservoir decay.
Results: We infected four MCMs with CCR5-tropic SHIV162P3 and started ART 6-16 weeks
post-infection (p.i.) to establish robust viral reservoirs. We maintained the MCMs on continuous
ART during myeloablative conditioning with total body irradiation (TBI) and while transplanting
allogeneic MHC-matched a/f T cell-depleted bone marrow cells. Post-transplant, we
prophylactically treated the MCMs with cyclophosphamide and tacrolimus to prevent GvH
disease (GvHD). The transplants produced ~85% whole blood donor chimerism without causing
high-grade GvHD. Consequently, three MCMs had undetectable SHIV DNA in their peripheral
blood mononuclear cells post-transplant. However, SHIV-harboring cells persisted in various
tissues. We detected viral DNA in lymph node biopsies and terminal analyses of tissues
between 38 and 62 days post-transplant. Further, we removed ART from one MCM at 63 days
post-transplant, resulting in viral rebound within seven days and viral loads nearing 1x108 SHIV
RNA copies/ml of plasma after treatment interruption.

Conclusions: Our results indicate that myeloablative conditioning and maintaining ART through
the peri-transplant period alone are insufficient for eradicating latent viral reservoirs early after
allo-HSCTs. Furthermore, our findings suggest that extended ART and GvH responses may be

necessary to substantially deplete viral reservoirs after allo-HSCTs.
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Background

Allogeneic hematopoietic stem cell transplants (allo-HSCTs) are essential curative
therapies for high-risk hematologic malignancies [1-3], replacing recipient cells of hematopoietic
origin with donor cells. In persons with HIV, allo-HSCTs also dramatically reduce viral
reservoirs, enabling several transplant recipients to prevent or delay viral rebound after stopping
antiretroviral therapy (ART) [4—10]. While allo-HSCTs are potent cellular immunotherapies, they
are not scalable nor relevant to most people living with HIV without underlying hematologic
cancers. Therefore, understanding the mechanism(s) of allo-HSCT-mediated reservoir decay
can aid in designing safer and more efficacious treatment regimens. To this end, allo-HSCT
components postulated to reduce viral reservoirs include pre-transplant conditioning regimens,
protecting donor CD4" T cells from infection with ART, graft-versus-host (GvH) responses, and
donor HSCs lacking functional C-C chemokine receptor type 5 (CCR5) [11, 12].

To enter cells, HIV must sequentially bind to CD4 and a cellular coreceptor, primarily
chemokine receptors CCR5 and CXCR4. These molecular interactions are disrupted in
individuals homozygous for the CCR5A32 gene variant (A32/A32), which prevents functional
CCRS5 from being expressed on cell surfaces, making A32/A32 cells resistant to infection with
CCR5-tropic HIV strains. The protective properties of A32/A32 cells were employed in the
hematologic cancer treatments of two men with HIV. In these men, transplanting A32/A32 HSCs
induced cancer remission and the rapid depletion of HIV reservoirs, allowing the "Berlin" and
"London" patients to stop ART for at least four years without viral rebound [5, 6, 8, 13].
Undoubtedly, the absence of CCR5 on donor cells prevented virus replication and the
reestablishment of viral reservoirs post-transplant, supporting long-term HIV remission.
However, additional transplant-related factors must have cleared pre-existing viral reservoirs.

Transplants with A32 heterozygous or CCR5 wild-type donors in ART-suppressed
recipients provide further insights into eliminating latent HIV [4, 7, 9, 14, 15]. Notably, three

CCRS5 wild-type HSC recipients substantially reduced their viral reservoirs post-transplant and
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delayed HIV rebound up to 9 months after analytical treatment interruption (ATI) [4, 15].
Mathematical modeling suggests that only hundreds to thousands of latently infected cells
remained in these individuals at ART withdrawal [16]. Assuredly, maintaining ART during the
peri-transplant period was an essential component of the allo-HSCT regimens, limiting HIV's
spread from recipient cells to vulnerable donor cells [17]. Importantly, these allo-HSCTs also
indicate that factors outside of donor genetics contribute to depleting viral reservoirs.

An attractive explanation for allo-HSCT-induced reservoir decay is the pre-transplant
conditioning regimens used to reduce malignant cell burdens, create space for HSC
engraftment, and ablate immune cells mediating graft rejections [11, 18]. However, studies in
humans and nonhuman primates (NHPs) indicate that pre-transplant conditioning regimens only
transiently reduce viral reservoirs [19-24], which are refilled by the homeostatic or antigen-
driven proliferation of latently infected cells [17, 22]. Thus, cytoreductive treatments alone are
insufficient for eradicating HIV reservoirs, even when ART is maintained.

A more likely mechanism for allo-HSCT-mediated viral reservoir decay is the beneficial
effects of GvH responses [7, 15, 25]. After allo-HSCTs, major histocompatibility complex (MHC)-
matched donor T cells recognize minor alloantigens expressed by host leukocytes, eliminating
malignant and HIV-infected cells simultaneously, thereby mediating graft-versus-tumor and
graft-versus-viral reservoir (GvVR) effects, respectively [26, 27]. But these GvH interactions can
also result in life-threatening graft-versus-host disease (GvHD), a condition where donor cells
attack non-hematopoietic origin cells or tissues. Disentangling allo-HSCT's GvVR effects from
GvHD may improve the safety and efficacy of cellular therapies targeting viral reservoirs.

In humans, variability in treatment regimens makes it challenging to investigate allo-
HSCTs effects on HIV reservoirs. However, allo-HSCT treatment conditions can be
standardized in NHP models of HIV infection. To this end, cynomolgus macaques (Macaca
fascicularis) from the island of Mauritius are well-suited to model allo-HSCTs in people with HIV.

Mauritian cynomolgus macaques (MCM) are descended from a small founder population [28],
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resulting in limited genetic diversity, even at polymorphic loci. As a result, MCMs have only
seven MHC haplotypes (termed M1-M7), facilitating the assembly of MHC-matched transplant
pairs [29-31]. Moreover, SIV and simian-human immunodeficiency viruses (SHIVs) infections in
MCMs recapitulate HIV replication and viral reservoir dynamics [30-33], providing a platform for
studying allo-HSCTs impact on viral reservoirs.

In this study, we modeled CCR5 wild-type allo-HSCTs in four SHIV-infected and ART-
suppressed MCMs using our recently established TCRa/B-depleted MHC-matched bone
marrow (BM) transplant model, which supports donor chimerism without GvHD [34]. As
anticipated, the myeloablative conditioning regimen substantially depleted circulating
leukocytes. As a result, we detected approximately 85% whole blood donor chimerism, with
three MCMs having undetectable SHIV DNA in their peripheral blood mononuclear cells
(PBMCs) post-transplant. However, SHIV-harboring cells persisted in various tissues, indicating
that ART-suppression, allo-HSCs, and cytoreductive conditioning alone do not eliminate virally
infected cells early after allo-HSCTs. Our findings suggest that extended ART treatments and

GvH responses may be needed to eradicate viral reservoirs after allo-HSCTs.

Results
SHIV infection and ART suppression

We inoculated four MCMs (MCMs A-D) intravenously with SHIV162P3, a chimeric virus
with a CCR5-tropic HIV envelope [35]. As anticipated, virus replication peaked by three weeks
post-infection (p.i.) and declined thereafter (Fig. 1). To establish robust viral reservoirs, we
allowed the SHIV infections to progress untreated for between 6-16 weeks p.i. before starting
the MCMs on an ART regimen consisting of tenofovir, emtricitabine, and raltegravir. The ART
regimen suppressed plasma viremia to undetectable levels within three weeks of initiation (<100

viral RNA (VRNA) copy/eq per ml; Fig. 1). We maintained ART for the duration of the study,


https://doi.org/10.1101/2021.04.16.440168
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.16.440168; this version posted February 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

7

except where noted below, keeping plasma viremia undetectable, save for single viral blips in

MCMs A and D.

Allo-HSCT in SHIV-infected, ART-suppressed MCM

Our goal was to model allo-HSCTs with CCRS5 wild-type cells in ART-suppressed people
with HIV while minimizing the likelihood of severe GvHD. We collected BM aspirates from sex
and MHC-matched MCM (Table 1) and depleted cells expressing a/ T-cell receptors (TCRs),
removing potentially alloreactive T cells [34]. Approximately one month after starting ART, we
delivered myeloablative doses of total body irradiation (TBI; two consecutive days of 5 Gray
(Gy), 10 Gy total) and infused the MCMs with a/B T cell-depleted HSCs (0.6-1.0x107/Kg; Table
1). Post-transplant, we prophylactically treated the MCMs with cyclophosphamide and
tacrolimus to prevent GvHD (Supplementary Table S1).

As expected, the myeloablative conditioning regimen rapidly depleted peripheral white
blood cells (WBCs; Fig. 2a). However, the MCMs also developed chronic thrombocytopenia
post-transplant (Fig. 2b), which we treated with irradiated whole blood transfusions from SHIV-
negative MCMs. Nevertheless, neutrophils reappeared in the peripheral blood of the MCMs by
21 days post-transplant, with absolute counts in MCM-D spiking above pre-transplant levels
before rapidly declining (Fig. 2¢). The remaining three MCMs had persistent neutropenia after
their initial bursts of circulating neutrophils. Likewise, monocytes reemerged in the peripheral
blood by 21 days post-transplant, with MCM-D again having the most robust recovery (Fig. 2d).
The absolute monocyte counts were more variable than the neutrophil counts post-transplant,
gradually declining in MCMs A and C, while rapidly increasing in MCMs B and D before their
deaths.

Lymphocytes recovered slowly after the allo-HSCTs (Fig. 2e). In MCM-D, lymphocytes
reappeared in the peripheral blood approximately three weeks post-transplant and returned to

near pre-transplant levels by day 38 post-transplant. Likewise, MCM-A exhibited a slow but
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steady increase in peripheral lymphocytes, reaching ~3,500 cells/ul by day 71 post-transplant.
In contrast, MCMs B and C had stunted lymphocyte recoveries, with absolute lymphocyte
counts failing to reach 1,000 cells/pl of blood by 5- and 7-weeks post-transplant, respectively.
Similarly, CD4" T cells failed to fully recover in the MCMs blood post-transplant (Fig. 2f). Finally,
circulating CD8" T cells increased in MCMs A, B, and D approximately one-month post-
transplant (Fig. 2g), fluctuating in MCM-A until its death. Meanwhile, CD8+ T cells poorly
recovered in MCM-C, only reaching 86 CD8+ T cells/pl blood at 42 days post-transplant.

We measured post-transplant donor engraftment by deep sequencing single-nucleotide
polymorphisms (SNPs) unique to the donor and recipient MCMs. Despite low absolute
leukocyte counts, the allo-HSCT recipients exhibited greater than 85% whole blood donor
chimerism by three weeks post-transplant, followed by modest declines to approximately 80%
donor chimerism (Fig. 3a). Notably, MCM-A, the longest surviving transplant recipient,
maintained 70-90% donor chimerism for two months until euthanasia. Additionally, we
measured donor chimerism of circulating myeloid (monocytes) and lymphoid (B and T cells)
lineages in MCMs A, C, and D at necropsy (cells from MCM-B were unavailable for analysis).
The frequencies of donor-derived myeloid and lymphoid cells in MCMs C and D ranged
between 65-93% of total cells (Fig. 3b), consistent with the whole blood chimerism results (Fig.
3a). In MCM-A, 78% of the B and T cells were of donor origin (Fig. 3b), similar to the 83% of
donor cells detected in the whole blood. However, only 45% of the monocytes were of donor
origin. Collectively, these results indicate that donor leukocytes replaced recipient cells early
after transplant, with notable donor lymphocyte engraftment despite using a/f TCR-depleted

grafts.

Pre- and post-ART viral reservoirs
We designed our GvHD prophylaxis regimen of cyclophosphamide and tacrolimus to

minimize high-grade GvHD. As anticipated, GvHD was limited post-transplant with only MCM-A
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exhibiting transient skin lesions (white flaking/dry skin) that resolved with minimal intervention.
Additionally, MCMs C and D had diarrhea, which may have been a TBI side effect. Furthermore,
the MCMs had no significant abnormalities in their liver functions or elevated total bilirubin post-
transplant, indicating an absence of hepatic GvHD.

We measured cell-associated vDNA in PBMCs and inguinal lymph nodes to determine
the effect of ART, myeloablative conditioning, and allo-HSCTs on viral reservoirs in the absence
of severe GvHD (Fig. 4). Before starting ART, we detected more SHIV-harboring cells in the
inguinal lymph nodes (range 743-2,680 copy Eq/1x10”6 cells) than the PBMC (range 255-512
copy Eg/1x1076 cells), consistent with lymph nodes being a primary viral reservoir [36, 37].
Additionally, the lymph nodes of MCMs A and B contained more SHIV-infected cells than MCM-
D, potentially due to these MCMs starting ART later in infection (14-16 weeks versus 6 weeks).
Lastly, the number of SHIV-infected cells declined in the blood of all the MCMs between 36-64
days post-transplant, with MCMs A, B, and D having undetectable vDNA in their PBMCs (Fig.
4a).

Nevertheless, virally infected cells persisted in other tissues. MCMs-B, -C, and -D
remained on ART until being necropsied, enabling a more thorough examination of post-
transplant viral reservoirs. In MCM-C, we detected more vDNA in the inguinal lymph nodes at
necropsy than in pre-transplant samples (1,151 vs. 4,807 vDNA copy Eg/million cells; Fig. 4b).
This animal developed viral-induced colitis with ulcers post-transplant, potentially expanding
latently infected cells or promoting localized virus replication, spreading SHIV-harboring cells
into secondary lymphoid tissues. Nevertheless, we found vDNA outside of the secondary
lymphoid tissues in the three MCMs, including the bone marrow, lung, and jejunum (Fig. 4c).
Together these results demonstrate that viral reservoirs persist in various tissues early after

allo-HSCTs without GvHD.

SHIV rapidly rebounds after removing ART
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ATls are used in HIV cure studies to evaluate treatment efficacy [38, 39]. Therefore, we
modeled ATl in MCM-A, an animal with a single viral blip but otherwise suppressed plasma
viremia while on ART. One day before stopping ART, day 62 post-transplant, we collected blood
and axillary lymph nodes to measure cell-associated SHIV. In these samples, we found no
vDNA in the PBMCs but detected 271 vDNA copies/million cells in the lymph nodes, a slight
decrease from pre-transplant inguinal lymph nodes (359 vDNA copies/million cells; Fig. 4b).
Nevertheless, SHIV rebounded rapidly after removing ART (Fig. 1). Plasma viremia was 1x10’
VRNA copy eg/ml seven days after stopping treatment, roughly equivalent to peak acute
viremia, and spiked to nearly 1x108 VRNA copy eq/ml plasma at 10 days post-ART. These
results show that latent reservoirs can reactivate shortly after treatment interruption and initiate

viral rebound early after allo-HSCTs.

Discussion

Allo-HSCT-associated HIV reservoir decay likely results from parallel processes
protecting donor cells from infection and eliminating pre-existing latently infected cells [10, 11].
Here, we employed the clinically relevant SHIV/MCM model to determine the effect of
continuous ART and allo-HSCTs on viral reservoirs in the absence of high-grade GvHD. We
recently reported that transplanting MCMs with MHC-matched TCRa/B*-depleted HSCs and
prophylactically treating them with cyclophosphamide and tacrolimus prevents GvHD post-
transplant [34]. Employing this regimen, only one SHIV-infected MCM had transient skin lesions
post-transplant. These results contrast with previous NHP allo-HSCT studies where T-cell
replete HSCs quickly induced GvHD in ART-suppressed SHIV-infected rhesus macaques [40]
and uninfected MCMs [41].

Although we prevented GvHD, removing alloreactive TCRa/pB+ T cells from the bone
marrow grafts may have inhibited viral reservoir clearance. Still, our results agree with a

previous study transplanting MHC-haploidentical HSCs into ART-suppressed SHIV-infected
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rhesus macaques that developed GvHD post-transplant [49]. Both studies observed reduced
SHIV DNA levels in the blood and lymph nodes post-transplant, with SHIV reservoirs persisting
in other tissues. Further, post-transplant follow-up was short in both studies, supporting the
need for extended times on ART post-transplant to clear pre-existing latently infected cells.

Supplementing allo-HSCTs with cellular therapies may improve viral reservoir clearance
[42, 43]. Donor lymphocyte infusions (DLIs) can drive relapsing hematologic tumors into
remission [44]. Conceivably, incorporating DLIs into allo-HSCT treatment plans could similarly
augment GVVR responses [25]. However, since DLIs involve transferring polyclonal T cells, they
also carry a significant risk of GvHD [45]. Therefore, targeted cellular immunotherapies
maximizing GvVR effects while minimizing GvHD side effects are preferred. For instance,
repurposing cancer adoptive cell therapies may boost GvVR activity [46—48]. HIV-specific
chimeric antigen receptor (CAR) T- and NK-cell therapies are promising HIV cure strategies [49]
despite early iterations having limited impact on HIV reservoirs [50-53]. Alternatively, focusing T
cells on minor histocompatibility antigens (mHAgs) exclusively expressed by host leukocytes
may promote GvVR effects without causing GvHD [54]. We recently identified a mHAg in
APOBEC3C that is expressed preferentially by MCM immune cells [55]. Hence, this epitope
may serve as a model antigen for testing mHAg-targeted cellular immunotherapies in NHPs and
examining their capacity to eradicate viral reservoirs.

In this study, we used the pathogenic SIV-HIV chimera SHIV162P3 to model HIV
infections. This recombinant virus contains the env gene from the clade B isolate HIV-1 SF162
inserted into the SIVmac239 genomic backbone [56]. Importantly, SHIV162P3 exclusively uses
CCRS5 as a coreceptor, similar to most transmitted HIV-1 strains [35, 57]. This coreceptor usage
contrasts with common SIV strains, which can use alternate chemokine receptors and G-protein
coupled receptors for cell entry [58, 59]. However, SHIV162P3 replication is less robust than
most SIV strains, resulting in lower chronic phase viral loads [60, 61]. Indeed, MCM-A and -B

spontaneously suppressed viremia to approximately 10° vRNA copies/ml plasma by four months
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post-infection. Nevertheless, SHIV162P3 established pre-transplant viral reservoirs in our
MCMs consistent with previous SHIV/ SIV studies [36, 40, 62, 63].

Our study has several limitations. First, its small size and lack of a control group
transplanted with TCR a/B-replete HSCs make it difficult to draw firm conclusions from the
results. Second, ART was started 3-6 weeks before transplantation. While this provided
sufficient time to suppress SHIV replication, it does not reflect the prolonged ART typical of HIV-
infected allo-HSCT recipients [4, 5, 8, 14, 15]. Third, we could not determine whether virally
infected cells were of the donor or recipient origin post-transplant. A study by Colonna et al.
exploited haploidentical allo-HSCTs in rhesus macaques to sort donor and recipient cells based
on differential MHC expression, finding that most SHIV-infected cells were from the recipients
early after transplantation [40]. However, our MHC-matched MCMs lacked unique surface
markers to distinguish donor and recipient cells, prohibiting similar analyses. Lastly, we
achieved poor donor cell engraftment, hindering post-transplant analyses and potentially limiting
SHIV reservoir depletion. Consequently, we could not quantify donor chimerism in tissues or
measure post-transplant antiviral and GvVR immune responses. The limited lymphocyte
recovery also hampered our ability to longitudinally measure SHIV-infected cells post-transplant.
Therefore, less toxic pre-transplant conditioning regimens, higher HSC doses, or T-cell replete
HSCs may be necessary for sustaining donor cell engraftment. To this end, Burwitz et al.
established an allo-HSCT model in MHC-matched MCMs that achieves durable post-transplant
donor chimerism with reduced-intensity conditioning but has an increased risk of GvHD [41].
Thus, allo-HSCTs in NHPs will likely need to balance full donor engraftment with suppressing

GvHD to dissect the mechanisms of GvVR effects.

Conclusions
In summary, MHC-matched bone marrow transplants in ART-suppressed SHIV-infected MCMs

reduced, but did not eliminate, viral reservoirs early after transplantation. However, depleting
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TCRa/B T cells from the HSCs and post-transplant prophylaxis prevented high-grade GvHD.
Our results suggest that GvVR responses and sustained ART after allo-HSCTs may be needed

to significantly deplete viral reservoirs.

Methods

Ethics statement and animal care

The staff at the Wisconsin National Primate Research Center (WNPRC) cared for the
Cynomolgus macaques (Macaca fascicularis) according to the regulations and guidelines of the
University of Wisconsin Institutional Animal Care and Use Committee, which approved this
study (protocol g005424) following the recommendations of the Weatherall Report and the
principles described in the National Research Council's Guide for the Care and Use of
Laboratory Animals. The MCMs were closely monitored for signs of stress or pain. In
consultation with the WNPRC veterinarians, the MCMs were euthanized if they developed an

untreatable opportunistic infection, inappetence, and/or progressive decline in condition.

MHC typing

MHC genotyping was performed by Genetic Services at WNPRC as previously described [64].
Briefly, genomic DNA (gDNA) was isolated from whole blood or PBMCs and used as templates
in polymerase chain reactions (PCRs) with primers flanking exon 2 of MHC class | (Mafa-A,
Mafa-B, Mafi-I, and Mafa-E) and class |l (Mafa-DRB, Mafa-DQA, Mafa-DQB, Mafa-DPA, and
Mafa-DPB) loci. The PCR reactions were generated with a Fluidigm Access Array, which
permitted all reactions to be multiplexed in a single experiment. After cleanup with AMPure
beads (Beckman Coulter), the amplicons were sequenced on an Illlumina MiSeq. The resulting
sequences were mapped against a custom database of MCM class | and Il sequences to assign

one of seven MCM haplotypes (M1-M7).
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SHIV infections and viral loads

We inoculated the MCMs intravenously with 500 median tissue culture infectious doses (TCIDsp)
of SHIV162P3 [35]. Plasma viral loads were measured via quantitative real-time polymerase
chain reactions (QRT-PCRs) as previously described [65, 66]. Briefly, vVRNA was isolated from
plasma using the Maxwell Viral Total Nucleic Acid Purification kit (Promega) on a Maxwell 48
RSC instrument (Promega). Next, vVRNA was reverse transcribed into complementary DNA
(cDNA), amplified using the TagMan Fast Virus 1-Step Master Mix gqRT-PCR kit (Invitrogen) on
a LightCycler 480 or LC96 instrument (Roche), and quantified by interpolation onto a standard
curve of 10-fold serial dilutions of an SIV gag in vitro transcript. The assay limit of detection was

100 vRNA copies/ml.

Antiretroviral treatment

We treated the SHIV-infected MCMs with a combination of reverse transcriptase inhibitors
tenofovir (PMPA) and emtricitabine (FTC) and integrase inhibitor raltegravir (RAL). PMPA and
FTC were pre-formulated at concentrations of 20 mg/ml and 40 mg/ml in water containing
sodium hydroxide (NaOH) and administered subcutaneously once daily at 1 mil/kg of body
weight. 100 mg of RAL was mixed twice daily with food [67]. Gilead Sciences kindly provided

PMPA and FTC, and Merck kindly provided RAL through material transfer agreements.

Donor bone marrow collection and TCRa/B cell depletion

We prepared the HSCs as previously described [34]. Briefly, we collected BM from sex and
MHC-matched MCMs (Table 1) by aspirating up to 5 mL from four sites, 20 mL total, and
removed red blood cells using ACK lysis buffer (Thermo Fisher Scientific). Next, we washed the
cells twice with phosphate-buffered saline and incubated them with anti-TCRa/3
allophycocyanin (APC) antibodies (clone R73, BioLegend) for 20 minutes, followed by

incubating with anti-APC microbeads (Miltenyi Biotec) for an additional 20 minutes at 4°C.
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Finally, we passed the stained cells through two LS columns (Miltenyi Biotec) stacked on top of
one another, collecting both negative and positive cell fractions, and cryopreserving them at 30
million/mL in serum-free expansion medium (SFEM; Stem Cell Technologies) containing 5%

fetal bovine serum and 10% dimethylsulfoxide (DMSO) until further use.

Bone marrow transplants and care

First, we treated the MCMs with daily oral antibiotics trimethoprim (200 mg) and
sulfamethoxazole (40 mg) to decontaminate the gut, starting seven days pre-transplant (-7) and
continuing until day -1. Next, we started the MCMs on systemic bacterial prophylaxis by
administering ceftriaxone (50 mg/kg) on day -2; MCM-D was switched to cefazolin (25 mg/kg
twice daily) at day -1, and maintaining treatment until absolute neutrophil counts stabilized. On
day -2, the MCMs received five separate 1 Gy fractions of TBI on two consecutive days (10 Gy
total), sparing the lungs and eyes as previously described [34]. One day before transplantation,
we thawed cryopreserved TCRa/pB-depleted BM fractions at 37°C and cultured them overnight in
SFEM containing 100 ng/mL human stem cell factor (SCF, Peprotech), 100 ng/mL human Fms-
related tyrosine kinase 3 (FLT3) ligand (Peprotech), and 50 ng/mL human thrombopoietin (TPO,
Peprotech). On the day of transplantation, we resuspended the BM cells in 15 mL of Plasma-
Lyte (Baxter), a nonpyrogenic isotonic solution, supplemented with 2% autologous serum and 5
U/mL heparin, and infused the cell suspension intravenously. Next, we prophylactically treated
the MCMs for GvHD using cyclophosphamide (50 mg/kg) on days 4 and 5 post-transplant,
followed by twice-daily tacrolimus (0.01 mg/kg) starting at day 5, maintaining tacrolimus serum
levels between 5-15 ng/mL. To prevent fungal infections, we treated the MCMs with once-daily
fluconazole (5 mg/kg) starting on day 0. Lastly, we treated MCMs C and D with oral
eltrombopag (1.5 mg/kg) and N-acetyl L-cysteine (50 mg/kg), respectively, to support platelet

engraftment. See Supplementary Table 1 for treatment details.
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Measuring peripheral leukocyte populations and GvHD

Following transplantation, we collected peripheral blood from the MCMs twice per week for the
first month, followed by bi-weekly blood draws for the next two months and monthly thereafter.
We used an XS-1000i automated hematology analyzer (Sysmex) to measure platelets and
leukocyte populations. In addition, GvHD was evaluated as previously described [68].

We quantified CD4* and CD8" T cells by incubating 100 ul of whole blood with anti-CD8-
Brilliant Violet 421 (clone SK1; BioLegend), anti-CD4-APC (clone L200; BD-Pharmingen), and
anti-CD3-Alexa 700 (clone SP34; BD-Pharmingen) antibodies with Live/Dead Fixable Near-IR
vital dye (ThermoFisher Scientific) for 30 min at 4°C. Next, we lysed the red blood cells by
adding 1 ml of FACS Lysing Solution (BD Biosciences) and incubated the samples for 10
minutes at room temperature. We washed the cells three times with FACS buffer (phosphate-
buffered saline supplemented with 2% fetal calf serum), fixed with 2% paraformaldehyde, and
ran the samples on a BD-LSR-II flow cytometer using FACSDiva software (Becton Dickinson).
Finally, we analyzed the flow cytometry data using FlowJo software (Treestar), determining the
absolute CD4" and CD8" T cell counts by multiplying the frequency of CD4* or CD8" T cells
(singlets, live, CD3", CD4" or CD8") by the white blood counts per microliter of blood from the

matching complete blood counts (Supplementary Figure 1).

Lymphocyte isolation from tissues

We isolated lymphocytes from the blood, lymph nodes, spleen, and bone marrow as previously
described [69]. Briefly, we isolated PBMCs from EDTA-anticoagulated blood by density gradient
centrifugation using Ficoll-Paque PLUS (GE Healthcare), removing contaminating red blood
cells with ACK lysis buffer. We collected peripheral lymph nodes before ART (MCM A and B: 77
days post-infection (dpi); MCM-C: unavailable; and MCM-D: 34 dpi), after ART but before allo-
HSCT (MCM-A: 23 days post-ART; MCM-B: 24 days post-ART; MCM-C: 18 days post-ART;

and MCM-D: 12 days post-ART). Additionally, we collected lymph nodes from MCM-A 62 days
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post-transplant but before ART cessation and the necropsies for MCM C and D, which occurred
on days 46 and 39 post-transplant, respectively, while they were on ART. We were unable to
collect lymph nodes at MCM-B's necropsy for analysis.

We isolated lymphocytes from the lymph nodes, spleen, and bone marrow by dicing the
tissues with scalpels and forcing the cells through 100-um cell strainers to remove connective
tissues. Lymphocytes were enriched from the cell suspensions using Ficoll-Paque PLUS density

gradient centrifugation.

Measuring donor chimerism

We identified SNPs that distinguished the donor and recipient MCMs using a panel of 12 SNPs
(see Supplementary Table 2) and the rhAMP SNP Genotyping System (Integrated DNA
Technologies) as described previously [34, 70], giving preference to homozygous/homozygous
mismatches. We performed the rhAMP assays in triplicate using a LightCycler 96 Instrument
(Roche Molecular Systems) in the endpoint analysis mode.

We quantified donor chimerism in whole PBMCs or immune subsets by sequencing the
diagnostic SNPs with an lllumina MiSeq using previously described primer sets, PCR
conditions, and analysis pipeline (see also Supplementary Table 3 and Supplementary Table 4)
[34]. To isolate specific immune subsets, we stained PBMCs with anti-CD3 FITC (clone SP34;
BD Pharmingen), anti-CD14 PerCP-Cy5.5 (clone M5E2; BioLegend), anti-CD20 APC (clone
2H7; BioLegend), anti-CD45 PE (clone D058-1283; BD Pharmingen), and Live/Dead Fixable
Near-IR vital dye (ThermoFisher Scientific) and sorted into monocyte (singlets, live,
lymphocytes, CD45™9 CD14" cells), T lymphocyte (singlets, live, lymphocytes, CD14°, CD45"
CD3"), or B lymphocyte (singlets, live, lymphocytes, CD14-, CD45", CD20") populations using a
BD FACSJazz cell sorter. We used between 179 and 61,251 cells for gDNA extraction and

sequencing for each sorted population.
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Quantifying cell-associated viral DNA

We extracted gDNA from tissues or PBMCs using the DNeasy Blood & Tissue Kit (Qiagen) per
the manufacturer's instructions, except eluting the DNA twice with separate 75 uL of molecular
grade water (150 pl total volume). We determined the concentration of DNA using a Nanodrop
spectrophotometer (ThermoFisher Scientific), and we digested up to 3 ug of DNA with 3 pl of
EcoRI-HF restriction enzyme (New England Biolabs) per 50 pl.

We performed two digital droplet PCR (ddPCR) reactions for each sample: one
quantifying vDNA and the other determining total cell number. First, we quantified vDNA using
the primers and probes for SIV gag and the cycling conditions described by Gama et al. [71].
Second, we normalized vDNA copies to cell numbers by quantifying the RNase P (RPP30)
gene, as previously described [72]. We generated droplets and read the samples on a QX200
ddPCR system (Bio-Rad). We quantified the target genes in duplicate for each sample across at

least two independent runs.
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deletion; MHC; Maijor histocompatibility complex; NHPs: Nonhuman primates; BM: Bone
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chain reactions; cDNA: Complementary deoxyribonucleic acid; PMPA: Tenofovir (9-[9(R)-2-
(phosphonomethoxy)propylladenine; FTC: Emtricitabine; RAL: Raltegravir; SFEM: Serum-free
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Table 1. MCM characteristics and doses of transplanted cells

RECIPIENT DONOR T;ﬁ;‘gtffh'f;) CD34* CELLS TCRa/B* CELLS
D WHC gex oo D MHC g A% 1otal  DoselKg  Total Doselkg Total DoselKg
ype (yrs) type (yrs)
MCM-A MIM2 F 4  MCME M2M2 F 9  44X10° 15X10° 25X107 08X107  3X105  1X105
MCM-B MIM2 F 4  MCMF MIM2 F 3  85X10° 18X10°  5X107 1X107  17X105 3.6X10°
MCM-C M1/M2 F 13  MCM-G M1M2 F 11  7.4X108 12X10°  48X107 08X107  7X10°  1.1X10°
MCMD MI/M2 M 7  MCM-H MIM2 M 6  86x10° 16x108  34x107 06x107  8x105 1.4 x10°
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Figure 1. Plasma viral loads after SHIV162P3 infection. Longitudinal plasma
viral loads for the SHIV162P3-infected MCMs, with dashed lines indicating the
gRT-PCR limit of detection (100 vRNA copy Eg/ml plasma). The gray boxes signify
the timing of ART, the red arrows designate allo-HSCs infusions, and T indicate
necropsies.
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Figure 2. Effect of allo-HSCTs on cell populations and platelets. Longitudinal absolute counts
of (a) white blood cells, (b) platelets, (c) neutrophils, (d) monocytes, (e) lymphocytes, (f) CD4* T
cells, and (e) CD8* T cells after allo-HSCTs. Counts are displayed as x103/pl.
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Figure 3. Donor chimerism after allo-HSCT. We determined donor chimerism levels
post-transplant by sequencing SNPs differing between the donor and recipient. (a)
Longitudinal percent donor chimerism in whole blood after allo-HSCT. (b) At necropsy,
the percent donor chimerism among flow cytometry sorted PBMC monocytes
(CD45m9CD14" lymphocytes), T cells (CD14 CD45"CD3* lymphocytes), and B cells
(CD14-CD45"CD20").
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Figure 4. SHIV DNA in allo-HSC transplanted MCMs. We measured copies of vDNA in the (a)
PBMC and (b) peripheral lymph nodes before ART initiation, after ART but before allo-HSCTs,
and post-transplant. (c) SHIV DNA levels in the tissues of MCMs B, C, and D at necropsy. Total
SHIV DNA was measured by digital droplet PCR using SIV gag-specific primers and normalized
to 107 cells by measuring macaque RNaseP p30, RPP30, in companion ddPCR assays.
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