

1 High resolution analysis of the cytosolic Ca^{2+} events in beta cell collectives in situ

2 Sandra Postić,^{1,*} Srdjan Sarikas,^{1,*} Johannes Pfabe,¹ Viljem Pohorec,² Lidija Križančić
3 Bombek,² Nastja Sluga,² Maša Skelin Klemen,² Jurij Dolenšek,² Dean Korošak,^{2,3} Andraž
4 Stožer,² Carmella Evans-Molina,^{4,5} James D Johnson,⁶ and Marjan Slak Rupnik^{1,2,7,†}

5 ¹*Center for physiology and pharmacology, Medical University of Vienna, Austria*

6 ²*Institute of Physiology, Faculty of Medicine, University of Maribor, Slovenia*

7 ³*University of Maribor, Faculty of Civil Engineering, Transportation Engineering and Architecture*

8 ⁴*Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research,
9 Indiana University School of Medicine, Indianapolis, Indiana*

10 ⁵*Richard L. Roudebush VA Medical Center, Indianapolis, Indiana*

11 ⁶*Diabetes Research Group, Life Sciences Institute,
12 Department of Cellular and Physiological Sciences,
13 University of British Columbia, Vancouver, Canada*

14 ⁷*Alma Mater Europaea – European Center Maribor, Maribor, Slovenia*

15 (Dated: July 10, 2022)

16 The release of peptide hormones is predominantly regulated by a transient increase in cytosolic
Ca²⁺ concentration ([Ca²⁺]_c). To trigger exocytosis, Ca²⁺ ions enter the cytosol from intracellular
Ca²⁺ stores or from the extracellular space. The molecular events of late stages of exocytosis,
and their dependence on [Ca²⁺]_c, were extensively described in isolated single cells from various
endocrine glands. Notably less work has been done on endocrine cells *in situ* to address the hetero-
geneity of [Ca²⁺]_c events contributing to a collective functional response of a gland. For this beta
cell collectives in a pancreatic islet are particularly well suited as they are the smallest, experimen-
tally manageable functional unit, where [Ca²⁺]_c dynamics can be simultaneously assessed on both
cellular and collective level. Here we measured [Ca²⁺]_c transients across all relevant timescales,
from a sub-second to a minute time range, using high-resolution imaging with low-affinity Ca²⁺ sen-
sor. We quantified the recordings with a novel computational framework for semi-automatic image
segmentation and [Ca²⁺]_c event identification. Our results demonstrate that under physiological
conditions the duration of [Ca²⁺]_c events is variable, and segregated into 3 reproducible modes,
sub-second, second and tens of seconds time range, and are a result of a progressive temporal sum-
mation of the shortest events. Using pharmacological tools we show that activation of intracellular
Ca²⁺ receptors is both sufficient and necessary for glucose-dependent [Ca²⁺]_c oscillations in beta
cell collectives, and that a subset of [Ca²⁺]_c events could be triggered even in the absence of Ca²⁺
influx across the plasma membrane. In aggregate, our experimental and analytical platform was
able to readily address the involvement of intracellular Ca²⁺ receptors in shaping the heterogeneity
of [Ca²⁺]_c responses in collectives of endocrine cells *in situ*.

16 *Equally contributing authors

17 †Corresponding author:

18 Marjan Slak Rupnik

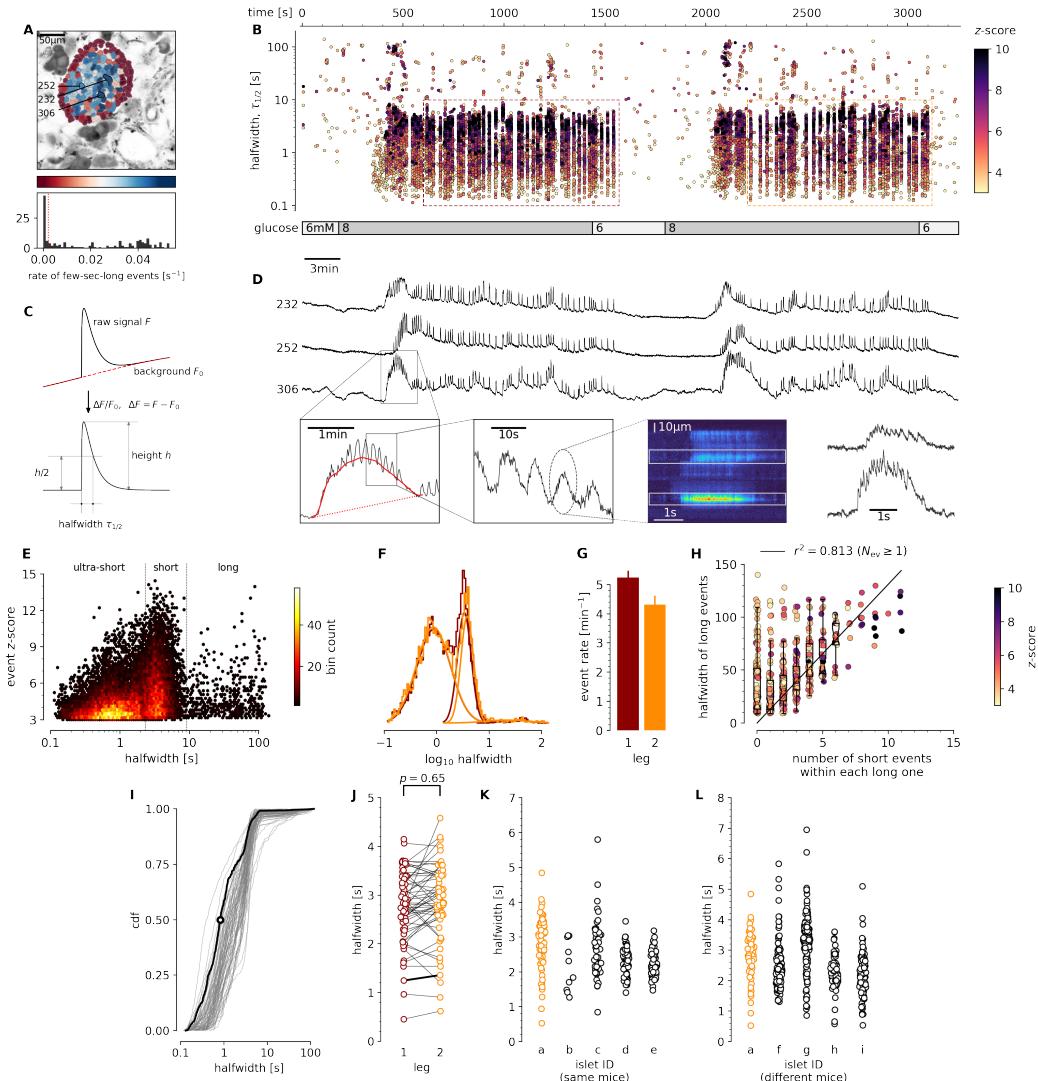
19 Center for physiology and pharmacology, Medical University of Vienna

20 Schwarzspanierstrasse 17, 1090 Vienna, Austria

21 email: marjan.slakrupnik@meduniwien.ac.at

22 phone: +43 1 40160 31113

23 Abbreviated title: Fast analysis of Ca²⁺ events in beta cell collectives


24

INTRODUCTION

25 Beta cell exposure to high glucose stimulates insulin release. Glucose entry into the beta cells through glucose
26 transporters leads to a series of cellular events that trigger diffusion of Ca^{2+} ions into the cytosol. Resulting elevation
27 in $[\text{Ca}^{2+}]_c$ ultimately produces a complex spatio-temporal pattern of $[\text{Ca}^{2+}]_c$ events, membrane potential changes, and
28 exocytosis of insulin[1–3]. Single-cell recording of electrophysiological parameters are accepted as the gold standard
29 approach to follow the plasma membrane events in a beta cell at a millisecond time scale[4, 5]. Electrical bursts
30 composed of sub-second spikes were measured to have a plateau frequency of a few per minute[4] at high physiological
31 glucose, while measured $[\text{Ca}^{2+}]_c$ oscillations were often orders of magnitude slower, with a period in a time scale
32 of minutes[6, 7]. In the past, higher frequency and long-term recordings of $[\text{Ca}^{2+}]_c$ oscillations were limited due to
33 relatively weak fluorescence signal of the classical fluorophores, their high affinity Ca^{2+} binding that yielded phase
34 lags, slow sampling rates, and substantial bleaching[6–8].

35 There is growing evidence that intracellular Ca^{2+} release channels, namely the IP_3 receptors (IP_3R) and the
36 ryanodine receptors (RYR), contribute to Ca^{2+} -dependent insulin release in beta cells[9–12]. However, their exact
37 role in physiological activation, activity and deactivation of beta cell is not clear[3]. A reactive oxygen species (ROS)-
38 dependent mechanism was described to stimulate RYRs to support glucose-dependent insulin release in male rats[13].
39 Moreover, multiple studies suggest that disrupted activity of intracellular Ca^{2+} release channels may contribute to
40 beta cell dysfunction and glucose intolerance [14–16].

41 To assess the contribution of intracellular Ca^{2+} release to $[\text{Ca}^{2+}]_c$ changes requires a much higher temporally resolved
42 imaging. Fortunately, the advancement in synthesis of novel fluorescent Ca^{2+} -sensing markers[17] solved most of the
43 aforementioned technical issues enabling recording of $[\text{Ca}^{2+}]_c$ with millisecond temporal and high spatial resolution
44 simultaneously in many cells with a possibility of repeated stimulation of the same cells over prolonged periods. High
45 data volumes generated in this manner demanded development of an advanced data analysis, which is presented in
46 this work. With these tools at hand, we conducted a series of experiments to revisit glucose-dependent beta cell
47 activation, activity and deactivation, and with the help of pharmacological tools we reassessed the contribution of
48 RYR intracellular Ca^{2+} release channels in these processes.

Figure 1. Quantification and analysis of $[\text{Ca}^{2+}]_c$ dynamics in physiological stimulatory glucose. **A**, Regions of interest (ROIs) obtained by our segmentation algorithm. The color indicates the number of events identified in the ROI trace, upon a high-pass filtering at 0.2Hz. We discarded ROIs with number of events below the threshold (red dashed line in the histogram in the lower panel). Indicated are the ROI numbers whose filtered traces correlate best with the average trace for the whole islet; the correlation coefficients being 0.835, 0.818 and 0.807 (from top down in D). **B**, Events' halfwidth duration through time. Note the ranges of halfwidth duration occurring, the events' synchronicity, and the phenotype's reproducibility in sequential glucose stimulation. Color indicates the statistical significance in terms of z -score. Only events with a z -score higher than 3 were included. The stimulation protocol is indicated in the bar at the bottom of the pane. The plateau phases in both stimulations are indicated by a color coded rectangles. There is a prominent superposition of the short events on the plateau phases between the ROIs. **C**, An schematic of a transient event to describe the features of $[\text{Ca}^{2+}]_c$ events from background subtraction of the raw data, to height and halfwidth duration. Peak-point is the time of highest amplitude of an event. **D**, (Upper Panel) Time courses from ROIs indicated in A, exposed to a double stimulation protocol, and rebinned to 2Hz (recorded 20Hz). The abscissa is shared with B and is indicated there. (Lower Panels) Illustration of the compounding nature of transients. The left-most panel is a closeup of the trace above to highlight the long transient in red. In the second closeup we emphasize the structure within the long transient. The third panel shows data from a different experiment, in same conditions (8 mM glucose), recorded as a line scan. In the final panel, we plot the time course of the indicated spatial regions, to illustrate the structure of sub-second events. **E**, In a z -score vs. halfwidth density plot, the events clearly separated into three groups, which we named ultra-short, short and long, with a typical separation between the groups at 2 s and 8.5 s. The dominant time scale of the events had a halfwidth duration of 2-5 s. **F**, Normalized Gaussian fit through the logarithmic distribution of halfwidth duration for events for both first and second stimulation as indicated in B. **G**, The rate of events for the dominant short $[\text{Ca}^{2+}]_c$ time scale for both stimulations indicated. **H**, Evidence that the long events resulted from a progressive temporal summation of the (ultra-)short events. Some of the long events are less likely to contain substructure of short events, have lower z -scores, and contribute only little to the least square fit. **I**, Cumulative distribution frequency (cdf) of the halfwidth duration of dominant short events during the plateau phase of the first stimulation for a randomly selected ROI. Thick black line indicates the median distribution. **J**, Comparison between the halfwidth durations of events in individual ROIs during first and second glucose stimulation. **K**, Comparison of halfwidth durations of events from all ROIs from different islets of the same mouse. **L**, Comparison of halfwidth durations of events of all ROIs from islets of different mice.

49

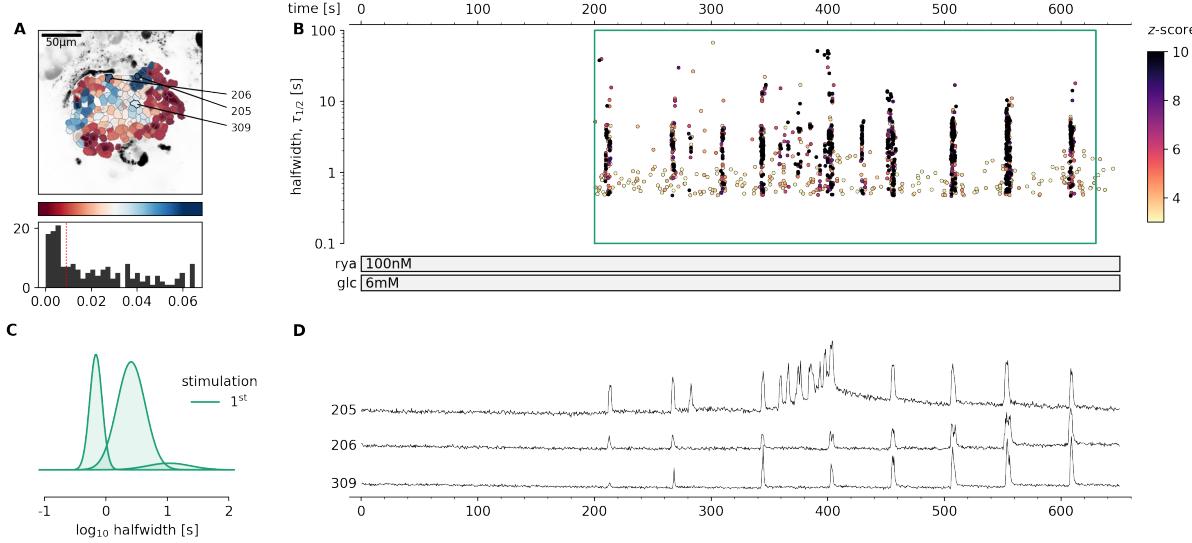
RESULTS

50

Imaging of beta cell $[Ca^{2+}]_c$ in pancreas slices at physiological glucose concentration

51 Pancreas tissue slices offer the opportunity to study beta cells *in situ* (Figure 1) and closer to physiological conditions
52 compared to isolated islets and dispersed islet cells [18]. At sub-stimulatory glucose concentrations (6 mM), beta
53 cells from adult mice displayed a stable resting $[Ca^{2+}]_c$, which can be seen during the pre-stimulatory and subsequent
54 washout phases (Figs. 1 BD). From a baseline of 6 mM, a physiological stimulatory glucose concentration (8 mM) after
55 a typical delay of solution exchange and glucose metabolism, triggered a biphasic $[Ca^{2+}]_c$ response (Figs. 1BD). This
56 biphasic response is composed of so-called initial increase in $[Ca^{2+}]_c$, previously termed the transient or asynchronous
57 phase, followed by a prolonged plateau phase (Figs. 1BD)[8, 19]. In both phases, we detected $[Ca^{2+}]_c$ events at
58 different time scales, spanning from millisecond to a hundred of seconds range (Figs 1B,D-F,I-L). These $[Ca^{2+}]_c$
59 events show several levels of temporal summation following a self-similarity pattern, as long events were a temporal
60 summation of series of short events, a feature that could be indicative of Ca^{2+} -induced Ca^{2+} release-like (CICR)
61 behaviour (Figure 1DH). In many aspects, the arrangement of short and long events reliably follows the electrical
62 activity recorded in classical studies[4].

63 The initial transient phase is characterized by sizeable delays between the activation of individual beta cell groups
64 within an islet[20]. In the initial phase we recorded one or more large transient $[Ca^{2+}]_c$ events with a mean duration of
65 tens of seconds (Figure 1D), and with or without discernible superimposed shorter $[Ca^{2+}]_c$ events. The long transient
66 events were also occasionally recorded outside the initial phase. In less than 30 % of recorded islets or in a small
67 fraction of the cells in a typical islet, long events were more prominent and were apparent in both initial as well as in
68 plateau phase.

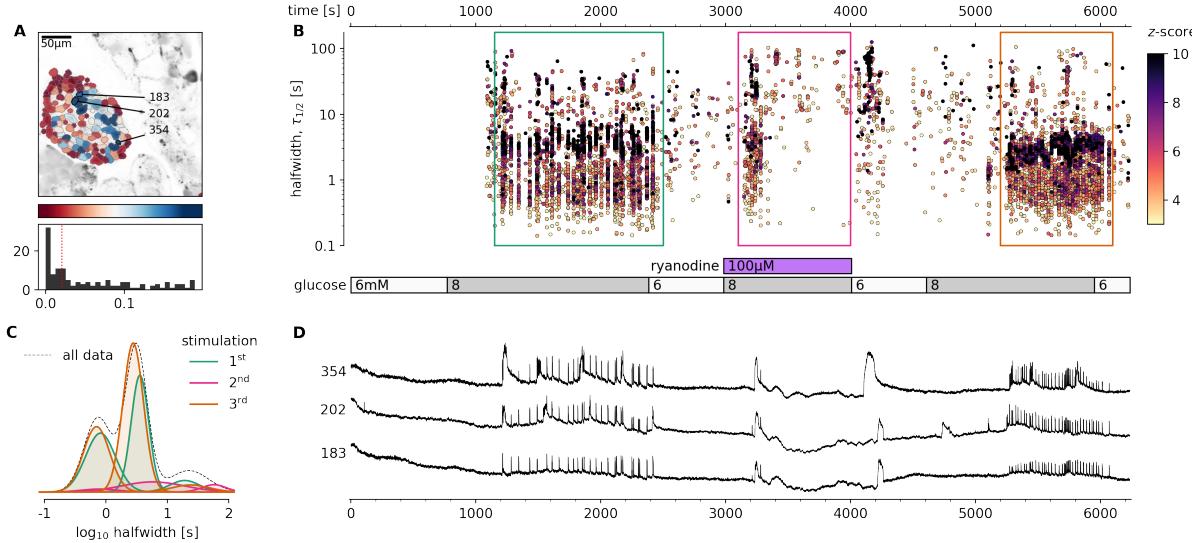

69 Meanwhile, during the plateau phase we recorded mostly $[Ca^{2+}]_c$ events with a mean halfwidth duration of a few
70 seconds (Figure 1D-G), occasionally exhibiting temporal summation into slowly rising and decaying long events (Figs.
71 1DH). These short events were a dominant time scale in the control conditions at 8 mM glucose in all experiments.
72 The short $[Ca^{2+}]_c$ events within the plateau phase were commonly well synchronised among the beta cells in an islet
73 (Figs. 1BD). The short $[Ca^{2+}]_c$ events on the plateau phase were regenerative and could be stably recorded for hours
74 at physiological glucose concentrations[21]. Due to the regenerative nature of the short $[Ca^{2+}]_c$ events, we could design
75 a multiple stimulation protocol on the same slice. The protocols were designed in a way that in the initial section

76 we tested the responsiveness to the stimulation with 8 mM glucose, in the second section we tested the effect of a
77 specific pharmacological treatment on stimulation with 8 mM glucose, and in the last section we applied another 8 mM
78 glucose control stimulation (Figure 3). A detailed inspection of the short $[Ca^{2+}]_c$ events in the plateau phase showed
79 that they were compound events composed of even shorter $[Ca^{2+}]_c$ events with a mean halfwidth duration below one
80 second (Figs. 1E, 2C, 5C). Similar ultra-short events were until now observed only as spikes on top of the bursts of
81 the electrical activity, and were attributed to Ca^{2+} action potentials[22–24], mediated by the dominant contribution
82 of L-type VACCs[25]. Our approach offered insight into $[Ca^{2+}]_c$ events on times scales spanning several orders of
83 magnitude (Figure 1E), with temporal resolution comparable to that achieved with electrophysiological approach,
84 and with an upgrade of simultaneously visualising the activity of all islet cells in an optical plane permitting the
85 interrogation of a collective behaviour *in situ* (Figure 1A).

86 The dynamic continuity of the time scales reflected in observed functional self-similarity resulted in a tri-modal
87 distribution of halfwidth durations of the individual events that could be individually fitted with Gaussian function
88 (Figure 1F). The reproducibility of the individual modes between different experiments was high, suggesting relatively
89 stable lengths of unitary and compound $[Ca^{2+}]_c$ events (Figure 1E), and comparable degree of reproducibility and
90 variability between the individual events on the plateau phase in the same ROI (Figure 1I), within the same ROIs
91 during sequential stimulation with glucose (Figure 1J), within ROIs of different islet of the same mice (Figure 1K), as
92 well as the among islets from different mice (Figure 1L). However, the frequencies of the events of all time scales were
93 typically not compared between different islets, since this parameter showed larger degree of variability, confirming
94 previous reports[20]. In addition, reporting shorter modes of $[Ca^{2+}]_c$ dynamics in comparison to classical approaches
95 by using low affinity indicators, we point out that these dominant short events reach at least an order of magnitude
96 higher $[Ca^{2+}]_c$ and make a major contribution to Ca^{2+} -dependent insulin release[26].

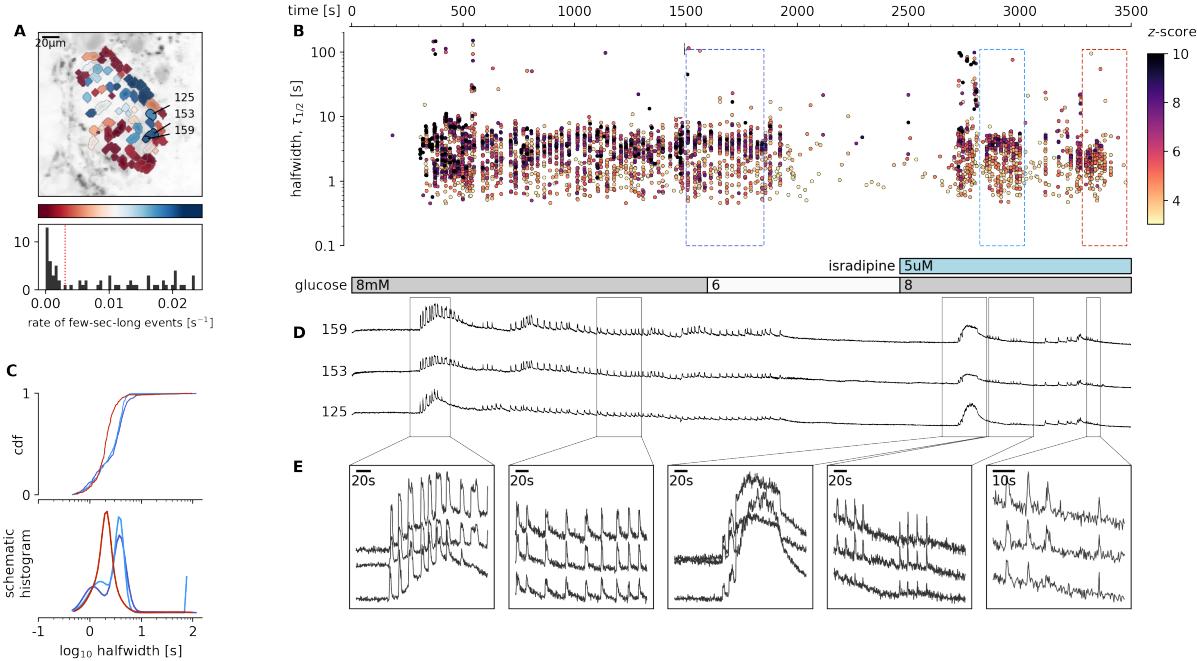
97 **Intracellular Ca^{2+} channels are sufficient to generate $[Ca^{2+}]_c$ oscillations at sub-stimulatory glucose**

98 Next, we directly assessed the contribution of RYR intracellular Ca^{2+} channels, which in mouse beta cells are
99 predominantly RYR2[16], in glucose-dependent $[Ca^{2+}]_c$ dynamics. We first tested the pharmacological RYR activation
100 (Figure 2, Video 2). We showed that at sub-threshold glucose, direct stimulation with stimulatory concentrations of
101 ryanodine (100 nM) occasionally elicited regenerative Ca^{2+} events (Figure 2). Predominantly short $[Ca^{2+}]_c$ events
102 were triggered at stimulatory ryanodine concentration. The both short and long $[Ca^{2+}]_c$ events induced by ryanodine


Figure 2. Pharmacological activation of intracellular RYR Ca^{2+} receptors in mouse beta cells at sub-threshold glucose concentration. **A**, Regions of interest (ROIs) obtained by our segmentation algorithm. The color indicates the number of events identified in the ROI trace, upon a high-pass filtering at 0.2Hz. We discarded ROIs with number of events below the threshold (red dashed line in the histogram in the lower panel). Indicated are the ROI numbers whose filtered traces correlate best with the average trace for the whole islet. **B**, Events' halfwidth duration through time. Note the ranges of halfwidth duration occurring, the events' synchronicity, and the phenotype's reproducibility in ryanodine stimulation. Color indicates the statistical significance in terms of *z*-score. The stimulation protocol is indicated in the bar at the bottom of the pane. There is a prominent superposition of the short events on the plateau phases between the ROIs. **C**, Normalized Gaussian fit through the logarithmic distribution of halfwidth duration during ryanodine stimulation, indicated temporal summation producing 3 discrete modes. **D**, Time courses from ROIs indicated in A, exposed to a double stimulation protocol, and rebinned to 2Hz (recorded at 20Hz). The abscissa is shared with B and is indicated there.

103 stimulation were a progressive temporal summation of the events in a sub-second range, and of the same duration as
 104 events observed under 8 mM glucose stimulation (Figure 1). The onset of the activity varied between individual beta
 105 cells in an islet (Figs. 2BD).

106 These results, together with the previously published data[27], suggest that pharmacological activation of both RYR
 107 or IP_3 intracellular release channel could produce $[\text{Ca}^{2+}]_c$ events in beta cells that would be regularly observed during
 108 the 8 mM glucose stimulation. Both stimulations generated compound $[\text{Ca}^{2+}]_c$ events through inter-molecular CICR
 109 and presented two distinct kinetic components for intracellular release of Ca^{2+} and distinct regimes of intercellular
 110 coordination. Together these data further confirm that a selective stimulation of Ca^{2+} release from the intracellular
 111 Ca^{2+} stores can drive $[\text{Ca}^{2+}]_c$ oscillations in beta cells that are both coordinated (Figure 2) or non-coordinated[27].


112 **Intracellular Ca^{2+} channels are necessary for glucose-induced $[\text{Ca}^{2+}]_c$ oscillations**

113 After demonstrating that $[\text{Ca}^{2+}]_c$ events can be evoked at glucose concentrations just below the glucose activa-
 114 tion threshold with RYR activation, we used specific pharmacological tools to selectively block the activity of these

Figure 3. Pharmacological inhibition of intracellular RYR Ca^{2+} channels in mouse beta cells selectively inhibits the plateau $[\text{Ca}^{2+}]_c$ oscillations. **A**, Regions of interest (ROIs) obtained by our segmentation algorithm. The color indicates the number of events identified in the ROI trace, upon a high-pass filtering at 0.2Hz. We discarded ROIs with number of events below the threshold (red dashed line in the histogram in the lower panel). Indicated are the ROI numbers whose filtered traces correlate best with the average trace for the whole islet. **B**, Events' halfwidth duration through time for an islet exposed to a triple 8 mM glucose stimulation protocol. Inhibitory ryanodine (100 μ M) was applied in the middle section of the protocol. The stimulation protocol is indicated in the bar at the bottom of the pane. There is a prominent superposition of the short events on the plateau phases between the ROIs. **C**, Normalized Gaussian fit through the logarithmic distribution of halfwidth duration during control conditions and RYR inhibition, indicated temporal summation producing 3 discrete peaks. Note a complete absence of short events during the plateau phase of the second stimulation in the presence of high ryanodine. **D**, Time courses from ROIs indicated in A, exposed to a triple stimulation protocol, and rebinned to 2Hz (recorded at 20Hz). The abscissa is shared with B and is indicated there. Note the reduced $[\text{Ca}^{2+}]_c$ level during the exposure to high ryanodine.

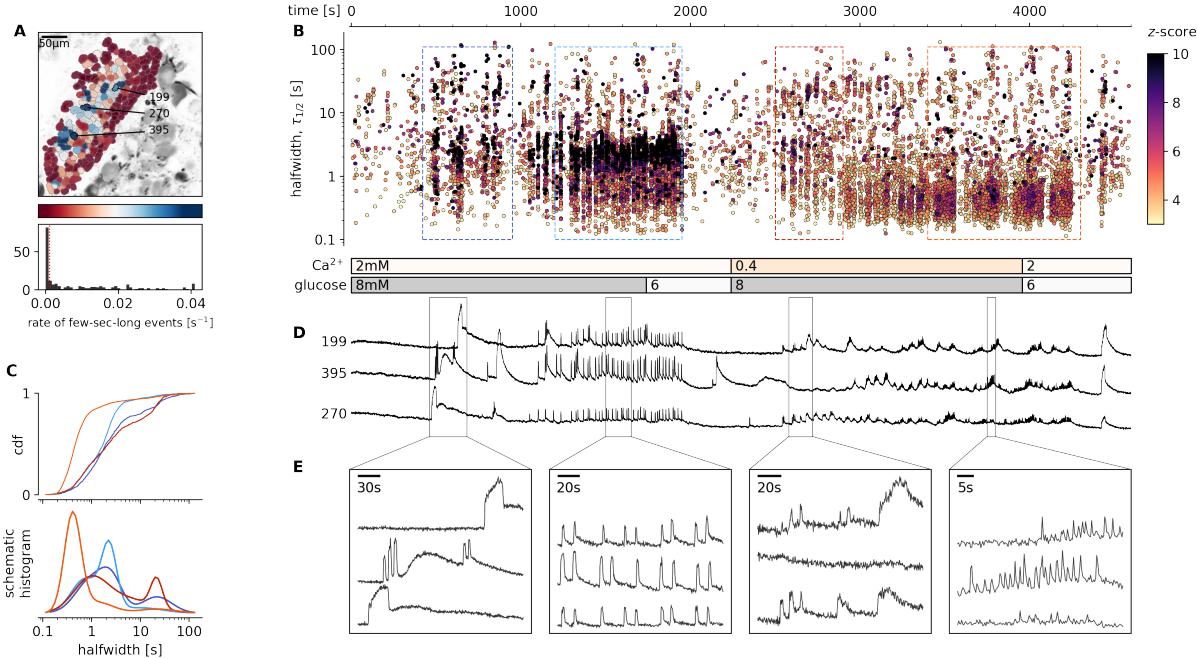
115 intracellular channels and consequently determine the contribution of these receptors to the glucose-dependent stim-
 116 ulation of $[\text{Ca}^{2+}]_c$ events. We blocked RYR intracellular Ca^{2+} channels with an inhibitory ryanodine concentration
 117 (100 μ M)(Figure 3, Video 3). High ryanodine selectively and completely inhibited the dominant time scale of events
 118 and its superimposed ultra-short events during the plateau phase, leaving initial long transient events intact (Figs.
 119 3BD). Immediately after the washout of the high ryanodine, we observed prominent long $[\text{Ca}^{2+}]_c$ oscillations, which is
 120 consistent with stimulatory effects of the low ryanodine concentration (Figure 3B-D). The exposure to high ryanodine
 121 concentration was fully reversible and subsequent exposure to control 8 mM glucose stimulation resulted in a response
 122 comparable to the initial control stimulation (Fig. 3B).

Figure 4. Glucose-dependent activation of beta cells in the presence of inhibitory isradipine concentration to block VACCs. **A**, Regions of interest (ROIs) obtained by our segmentation algorithm. The color indicates the number of events identified in the ROI trace, upon a high-pass filtering at 0.2Hz. We discarded ROIs with number of events below the threshold (red dashed line in the histogram in the lower panel). Indicated are the ROI numbers whose filtered traces correlate best with the average trace for the whole islet. **B**, Events' halfwidth duration through time for an islet exposed to a double 8 mM glucose stimulation protocol. Saturating concentration of VACC blocker isradipine (5 μ M) was applied in the second section of the protocol. The stimulation protocol is indicated in the bar at the bottom of the pane. There is a prominent superposition of the short events on the plateau phases between the ROIs. **C**, (top) Cumulative distribution frequency (cdf) of a mean halfwidth duration of events during the plateau phase of the both stimulations. (bottom) Normalized Gaussian fit through the logarithmic distribution of halfwidth duration during control conditions and inhibition of VACCs. Note a shift towards shorter events during the late plateau phase in the presence of isradipine. **D**, Time courses from ROIs indicated in A, exposed to a double stimulation protocol, and rebinned to 2Hz (original frequency is 20Hz). The abscissa is shared with B and is indicated there. **E**, Expanded time traces from a representative ROI indicating (as indicated in panel C) the a long event from the initial transient phase, followed by a plateau phase in control, long event during initiation of the second stimulation, short events from early plateau phase, and further shortened events from a late plateau phase.

123

[Ca²⁺]_c events can be initiated and maintained during L-type VACC block

124 Our next step towards elucidating the molecular mechanisms of the aforementioned cytosolic Ca²⁺ events was to
 125 determine to what extent these multiple time scales of [Ca²⁺]_c events depended on the activity of L-type VACCs.
 126 Previous experiments performed on beta cell-selective Cav1.2 Ca²⁺ channel null mice showed that, in the absence of
 127 the Ca²⁺ channel, [Ca²⁺]_c events were only moderately affected during the first minutes of the glucose stimulation,
 128 with a characteristic change in bursting pattern observed during acute stimulation[25]. In the present study, we used
 129 the double stimulation protocol to test the effect of a saturating concentration of isradipine (5 μ M), a specific L-type
 130 VACC blocker (Figure 4, Video 4). Consistent with the knockout mouse data, we observed a transient phase and


131 initial plateau activity with a halfwidth duration with a median value of 3.1 s (Q1 1.8 s, Q3 4.6 s) during the first
132 section and 3.4 s (Q1 2.1 s, Q3 4.3s, $p=0.249$) in the second section of the double protocol, where we co-applied
133 isradipine. However, in the continuation of the plateau phase, the pattern of $[\text{Ca}^{2+}]_c$ events was characterised by
134 shorter and smaller events with the median value of halfwidth duration of 2.4 s (Q1 1.9 s, Q3 3.1.s, $p<10^{-15}$)(Figure
135 2C (red traces)). Instead of CICR-like compound events of the dominant time scale, a reduced number of events with
136 a mean halfwidth duration below 2 seconds remained that could reflect progressively lower probability of CICR after
137 blockage of VACCs and a switch towards isolated ultra-short events (Figure 4E). Within minutes after the change in
138 the pattern of $[\text{Ca}^{2+}]_c$ events, the events disappeared completely.

139 Blocking L-type VACCs with isradipine during the plateau phase produced a similar change in the phenotype
140 of $[\text{Ca}^{2+}]_c$ events, with progressively shorter and smaller events, before events subsided completely (Figure S4-1).
141 A complete inhibition of the glucose-dependent $[\text{Ca}^{2+}]_c$ events was obtained when slices were exposed to 100 μM
142 diazoxide (Figure S4-2). At this concentration, diazoxide clamps the membrane potential close to the resting membrane
143 potential, which is around the diffusion equilibrium potential for K^+ (E_K ; -90 mV) [6, 28] and outside the range where
144 VACCs could be activated [29]).

145 Our experiments confirm a role of L-type VACCs for the regenerative glucose-dependent activity of beta cells during
146 the plateau phase[30]. However, we also confirm previous observations that these channels play only part of the role
147 during the first minutes of beta cells activation, and that the plasma membrane depolarization plays an independent
148 role in stimulation of intracellular Ca^{2+} release[31].

149 **$[\text{Ca}^{2+}]_c$ oscillations in low extracellular Ca^{2+} conditions**

150 To further test the potential role of intracellular Ca^{2+} channels on ER in the spatio-temporal regulation of $[\text{Ca}^{2+}]_c$
151 events, we used a classical approach with the reduction of extracellular Ca^{2+} concentration[31]. Incubation of beta cells
152 with 0.4 mM extracellular Ca^{2+} uncovered two major phenomena (Figure 5, Video 5). First, beta cells within the islets
153 tended to functionally dissociate, losing coordinated and global intercellular Ca^{2+} events with a phenotype resembling
154 the Cx36 ablated or pharmacologically blocked cell-cell electrical coupling [32, 33]. Second, low extracellular Ca^{2+} also
155 changed the pattern of $[\text{Ca}^{2+}]_c$ events (Figure 5). The most prominent effect of low extracellular Ca^{2+} concentration
156 was the complete absence of the short dominant time scale events (Figure 5), where the median halfwidth duration of
157 2.2 s (Q1 1.6 s, Q3 3.0 s) from the control section, decomposed to ultra-short events with a median halfwidth duration

Figure 5. Glucose-dependent activation of beta cells at sub-physiological extracellular Ca^{2+} concentration. **A**, Regions of interest (ROIs) obtained by our segmentation algorithm. The color indicates the number of events identified in the ROI trace, upon a high-pass filtering at 0.2Hz. We discarded ROIs with number of events below the threshold (red dashed line in the histogram in the lower panel). Indicated are the ROI numbers whose filtered traces correlate best with the average trace for the whole islet. **B**, Events' halfwidth duration through time for an islet exposed to a double 8 mM glucose stimulation protocol. Sub physiological extracellular Ca^{2+} level (400 μM) was applied in the second section of the protocol. The stimulation protocol is indicated in the bar at the bottom of the pane. There is a prominent superposition of the short events on the plateau phases between the ROIs. **C**, (top) Cumulative distribution frequency (cdf) of a mean halfwidth duration of events during the plateau phase of the both stimulations. Events from the initial transient phase are in dark colors, events from the plateau phase are in light color. (bottom) Normalized Gaussian fit through the logarithmic distribution of halfwidth duration during control conditions and inhibition of VACCs. Note a shift towards shorter events during the plateau phase in the conditions of sub physiological extracellular Ca^{2+} concentration. **D**, Time courses from ROIs indicated in A, exposed to a double stimulation protocol, and rebinned to 2Hz (recorded at 20Hz). The abscissa is shared with B and is indicated there. **E**, Expanded time traces from a representative ROI indicating (as indicated in panel C) the a long event from the initial transient phase, followed by a plateau phase in control, long event during initiation of the second stimulation, and short events from early plateau phase in low extracellular Ca^{2+} concentration.

158 of 0.6 s (Q1 0.5 s, Q3 1.7 s, $p < 10^{-200}$) during the treatment section. In addition, the median amplitude of the events
 159 was significantly smaller in the section with low extracellular Ca^{2+} concentration. The decomposition of the dominant
 160 time scale short $[\text{Ca}^{2+}]_c$ events resulted in a series of smaller, but higher frequency events (Figure 5B-E), confirming
 161 previous electrophysiological measurements [6]. The coherence of responses between the individual beta cells within
 162 the islet was more localised in low extracellular Ca^{2+} concentration. Also long events were significantly longer in the
 163 low extracellular Ca^{2+} concentration with median halfwidth duration of 24 s (Q1 14 s, Q3 33 s) in comparison to
 164 20 s (Q1 11 s, Q3 32 s, $p < 0.0001$) during the control section. Our results suggest that in the presence of sufficient
 165 extracellular Ca^{2+} concentration, the CICR-like $[\text{Ca}^{2+}]_c$ oscillations are likely to occur in glucose stimulated beta cells
 166 in situ and that these events decompose at sub-physiologically low extracellular $[\text{Ca}^{2+}]$. The spectrum of recorded

167 patterns of beta cell activities confirms previously described role of CICR through intracellular Ca^{2+} channels in
168 glucose-dependent activity of these cells[34, 35].

169 The low extracellular Ca^{2+} concentration recordings provide further evidence regarding the existence of two distinct
170 phases for the activation and activity of beta cells. The initial phase during the activation of beta cells in the fresh
171 pancreas slice consisted of one or few long IP_3 -dependent $[\text{Ca}^{2+}]_c$ transients (some tens of seconds long) as reported
172 before[27], followed by a plateau phase comprising of a series of short RYR-mediated events.

173

DISCUSSION

174 Decades of electrophysiological experiments on pancreatic beta cells have established a critical role for plasma
175 membrane ion channels in controlling excitability, dynamics of cytosolic Ca^{2+} events and insulin exocytosis [3, 23]. In
176 standard electrophysiology experiments, beta cells are kept at 3 mM glucose where they are electrically silent, after
177 which they are activated by an instantaneous increase to glucose levels well in excess of 10 mM [20, 33].

178 In the current study, we combined fast confocal microscopy, a photostable and bright low affinity Ca^{2+} sensor,
179 and tools of data sciences to obtain new insights into physiological activation of beta cells within intact islets in fresh
180 pancreas tissue slices. Specific pharmacological modulation of RYR in intact beta cell collectives stimulated with 8 mM
181 glucose and recorded with a unique spatio-temporal resolution demands an updated model of beta cell activation and
182 bursting activity. According to our model, multiple time scales of events are generated with a progressive temporal
183 superposition of ultra-short events, which represent CICR of either IP_3 [27] or RYR Ca^{2+} release channels. Both
184 intracellular channels can be directly stimulated by glucose. The ultra-short events represent unitary activity of
185 intracellular Ca^{2+} release channels, which can engage in intra-molecular CIC, and as described for other cell types,
186 depend on sufficient Ca^{2+} ER load[36, 37].

187 Evidence for CICR in beta cells involving both IP_3 and RYR channels has been previously reported [38–40]. When,
188 however, the ER Ca^{2+} load decreases, CICR bursts switch to sub-second events produced by individual or more
189 localized clusters of intracellular Ca^{2+} channels before events eventually stop. Decomposed CICR bursts therefore
190 appear to oscillate at higher frequency, a phenomenon reported after ER emptying using thapsigargin [41], genetic
191 ablation of L-type VACCs [25], or lowered extracellular Ca^{2+} [6, 41]. Our experiments show that physiological glu-
192 cose concentrations (e.g. 8 mM) support sufficient ER Ca^{2+} load [42] to enable CICR bursts triggered by direct
193 pharmacological stimulation of RYR and IP_3 Ca^{2+} channels. Addition of supra-threshold glucose concentration first

194 activates a prominent IP₃-dependent transient Ca²⁺ release lasting for several tens of seconds[27]. IP₃ activation
195 is localized to segregated beta cell clusters and not coordinated within the whole islet[43]. Next, Ca²⁺-dependent
196 mitochondrial metabolism of glucose boosts ATP production[15], that directly decreases the opening probability of
197 K_{ATP} channels[44], and directly activates RYR Ca²⁺ channels[45, 46]. High input resistance due to K_{ATP} channel
198 closure enhances the coordination between beta cells during the regenerative RYR-CICR activity. We also observed
199 coherent intercellular activity after ryanodine stimulation at sub-stimulatory glucose and this activity was specifically
200 blocked by inhibitory concentrations of ryanodine, suggesting that RYR independently promotes intercellular coordi-
201 nation due to strategic cellular localisation of these receptors. The long-term activity of intracellular Ca²⁺ receptors
202 during the plateau phase of beta cells must be supported with mobilisation of Ca²⁺ from the extracellular space,
203 where VACCs could activate through a large ER Ca²⁺ depletion as has been suggested earlier[41]. Our results do not
204 discount a role of plasma membrane K_{ATP} channels and voltage-gated Ca²⁺ entry in beta cell function. We speculate
205 that K_{ATP} channels play a critical depolarizing role to support activation of L-type VACCs, reloading the ER Ca²⁺
206 stores, promoting cell-cell coordination and the long-term regenerative activity, consistent with the human genetics
207 of beta cell responsiveness and their clinical utility as targets of sulphonylurea therapy[47]. K_{ATP} channels may also
208 play an outsized role in the response to an instantaneous glucose increase from hypoglycemic levels (2-3 mM) to
209 supra-physiological levels (15-25 mM). This is consistent with previous observations suggesting closure of K_{ATP} chan-
210 nels is not the sole mechanism to depolarise beta cells[48]. Indeed, other plasma membrane ionic currents have been
211 invoked to explain the complex oscillatory behaviour of beta cells [3, 23]. As an example, multiple Ca²⁺-dependent
212 K⁺ and other K⁺ channel activities have been bundled to explain the elusive, so called K_{slow} conductance, that could
213 critically shape the typical electrical bursting pattern of beta cells after initial beta cell activation [49-52]. The details
214 about the physiological glucose responses are even less clear in human beta cells and still need to be performed[53].

215 Glucose plays an essential role in filling, and therefore also emptying, intracellular Ca²⁺ stores[42]. Forced depletion
216 of intracellular Ca²⁺ stores using thapsigargin or extracellular EGTA, increases cytosolic Ca²⁺ concentration, and
217 produces a sustained depolarisation, with increased frequency of membrane potential oscillations[6, 41]. Similarly,
218 reduced activity of the SERCA2 pump to maintain ER Ca²⁺ loading has been shown to disrupt glucose-stimulated
219 calcium signalling[54]. Increased frequency of [Ca²⁺]_c events was also recorded in our experiment using low extracel-
220 lular Ca²⁺ concentration. We demonstrate that glucose around the threshold (6-7 mM glucose) supports ER Ca²⁺
221 release through IP₃[27] and RYR release channels. In addition to support sufficient Ca²⁺ load in the ER, glucose-

222 dependent effects in beta cells provide all key substrates, like ATP and cAMP, to directly trigger and modulate the
223 activation of intracellular Ca^{2+} release channels, even in the absence of plasma membrane depolarization that would
224 increase the opening probability of VACCs. Included in these stimuli is the parasympathetic release of ACh binding
225 to muscarinic ACh receptors (mAChRs) and induce insulin release via the production of IP_3 and Ca^{2+} release from
226 the intracellular stores[27, 55–57]. Previous studies, including our own, systematically underestimated the role of
227 RYR and IP_3 receptors due to pre-emptying of intracellular Ca^{2+} stores in too low (0-3 mM) extracellular glucose.

228 The prominent role for intracellular Ca^{2+} release had strong early support from $^{45}\text{Ca}^{2+}$ flux studies[30], but subse-
229 quent electrophysiological work challenged this paradigm[41, 45] and evidence accumulated in favor of the dominance
230 of plasma membrane K^+ channels and VACCs in patterning the dynamics of $[\text{Ca}^{2+}]_c$ events. Even the presence of
231 RYR Ca^{2+} channels in beta cells was debated[32, 58]. There has been less controversy regarding the expression and
232 roles of IP_3 Rs [59, 60]. However, we and others have documented RYR activity and confirmed RYR2 as the most
233 abundant isoform expressed in rat, mouse, and human beta cells[13, 14, 16, 61, 62]. Indeed, the unique localization
234 and Ca^{2+} -release kinetics of each intracellular Ca^{2+} release channel enables the coding of Ca^{2+} signals to control
235 specific cellular[62–65] or intercellular functions. The duality of contributions of both IP_3 and ryanodine receptors has
236 been previously described to underly complex patterns of intracellular Ca^{2+} regulation of neuronal activity[66]. As
237 proposed in our recent theoretical paper, beta cell and islet collectives could utilize dual Ca^{2+} sources to adequately
238 respond to a variety of metabolic challenges from those requiring transient hormonal adjustments to those requiring
239 major release of insulin[67]. Such a functional arrangement would support both a form of a circuit memory, and risk
240 of a stochastic editing contributing to the pathogenesis of diabetes mellitus[68].

241 It was proposed that a beta cell's ER is extraordinarily leaky to Ca^{2+} [69]. ER Ca^{2+} leak is accelerated by ER stress,
242 leading to beta cell apoptosis[14, 16]. In addition, excitotoxicity and ER Ca^{2+} overload have been implicated in beta
243 cell apoptosis [16] and may also contribute to diabetes pathogenesis. There is strong evidence that ER dysfunction
244 is involved in the pathogenesis of both type 1 and type 2 diabetes [70]. In type 1 diabetes, ER dysfunction is a
245 prominent and early feature [71]. In type 2 diabetes, Genome-wide association studies have identified multiple RYR2
246 SNPs with suggestive evidence in dozens of glycemic traits (www.type2diabetesgenetics.org, accessed Feb 2021)[72].

247 Both ER Ca^{2+} load as well as intracellular Ca^{2+} channels can serve as targets for therapy of diabetes mellitus[73].
248 Pharmacological inhibition of VACCs activity with verapamil was recently reported to have a positive effect on
249 beta cell function and survival in adults with recently diagnosed T1D [74], consistent with previous pre-clinical

250 studies [75]. Pre-clinical studies also demonstrate that inhibition of voltage-gated Na^+ channels can protect beta cells
251 from cytokine-induced death, and reduces diabetes incidence in NOD mice[76, 77]. Also, intracellular Ca^{2+} release
252 channels are druggable and were implicated in successful diabetes therapies. For example, RYR2 receptors can be
253 activated by both ATP and PKA [46] and, can therefore be directly stimulated by glucose and modulated by incretins,
254 catecholamines, and peptide hormones. RYRs are a proposed therapeutic target in Wolfram syndrome[78]. Abundant
255 physiological data also indicate that CICR from intracellular stores can serve as an “amplifier” of glucose-induced
256 insulin granule exocytosis and plays a central role in incretin-induced insulin secretion[34, 79].

257 The major strength and limitations of our approach are essentially the same as they have been described for a
258 fresh pancreatic slice preparation, which we introduced in 2001[18]. This is one of the first studies where we could
259 use high spatial and temporal resolution imaging to specifically address intracellular Ca^{2+} receptors. Some of the
260 observed long events may result from phenomena not necessarily connected to insulin secretion, such as movement, cilia
261 protrusion, metabolism, drift of the objective of the microscope. At the moment we do not have a full understanding
262 of the direction and the magnitude of all potential biases beyond the presented experimental evidence. In summary,
263 using powerful new rapid imaging and data analysis methods, we show here that RYR play essential roles in glucose
264 stimulated Ca^{2+} signalling in beta cells *in situ*.

265

MATERIALS AND METHODS

266

Ethics statement

267 We conducted the study in strict accordance with all national and European recommendations on care and handling
268 experimental animals, and all efforts were made to minimise the suffering of animals. The Ministry of Education,
269 Science and Research, Republic of Austria (No: 2020-0.488.800) and administration of the Republic of Slovenia for
270 Food Safety, Veterinary and Plant Protection (No: U34401-12/2015/3) approved the experimental protocol (No:
271 U34401-12/2015/3).

272

Tissue slice preparation and dye loading

273 C57BL/6J mice, 8–20 weeks of age, and of either sex (Jackson Laboratories), were kept on a 12:12 hours light:
274 dark schedule in individually ventilated cages (Allentown LLC, USA) and used to prepare pancreatic tissue slices, as

275 described previously [8, 80]. In brief, after sacrificing the mice, we accessed the abdominal cavity via laparotomy and
276 distally clamped the common bile duct at the major duodenal papilla. Proximally, we injected the low-melting-point
277 1.9 % agarose (Lonza, USA) dissolved in extracellular solution (ECS, consisting of (in mM) 125 NaCl, 26 NaHCO₃,
278 6 glucose, 6 lactic acid, 3 myo-inositol, 2.5 KCl, 2 Na-pyruvate, 2 CaCl₂, 1.25 NaH₂PO₄, 1 MgCl₂, 0.25 ascorbic
279 acid) at 40 °C into the common bile duct. Immediately after injection, we cooled the agarose infused pancreas with
280 ice-cold ECS and extracted it. We prepared tissue slices with a thickness of 140 µm with a vibratome (VT 1000 S,
281 Leica) and collected them in HEPES-buffered ECS at RT (HEPES-buffered ECS, consisting of (in mM) 125 NaCl,
282 10 HEPES, 10 NaHCO₃, 6 glucose, 6 lactic acid, 3 myo-inositol, 2.5 KCl, 2 Na-pyruvate, 2 CaCl₂, 1.25 NaH₂PO₄, 1
283 MgCl₂, 0.25 ascorbic acid; titrated to pH=7.4 using 1 M NaOH). For staining, we incubated the slices for 50 minutes
284 at RT in the dye-loading solution (6 µM Calbryte 520, AAT Bioquest), 0.03 % Pluronic F-127 (w/v), and 0.12 %
285 dimethylsulphoxide (v/v) dissolved in HEPES-buffered ECS). The Ca²⁺ fluorescent dyes from a Calbryte series are
286 highly fluorescent and photostable, allowing long-term recording even in deeper layers of the tissue slice. The linear
287 part of the Ca²⁺-binding curve for Calbryte 520 (K_D of 1.2 µM) captures the [Ca²⁺]_c changes in beta cells better
288 than the high affinity sensors we routinely used in our imaging experiments before. All chemicals were obtained from
289 Sigma-Aldrich (St. Louis, Missouri, USA) unless otherwise specified.

290

Stimulation protocol and cytosolic calcium imaging

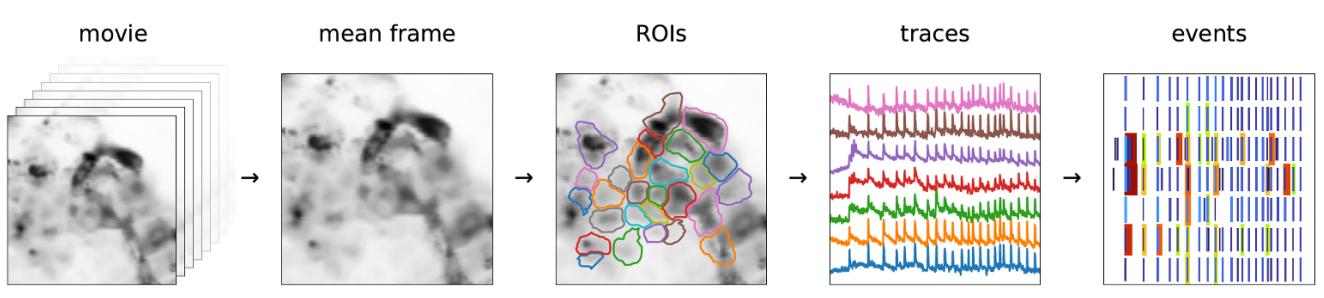


Figure 6. **Processing pipeline to automatically detect ROIs and [Ca²⁺]_c events at all time scales within an experiment.** From a full movie, we calculated the mean (or other statistic) across all frames. We passed the mean image through a band-pass filter and define ROIs by detecting local peaks of light intensity. We then saved ROIs with all the important information (time traces, ROI coordinates, movie statistics, recording frequency, pixel size, etc.). Traces contained features at very different timescales - with different timescales presumably being important for different cell types. We collected them into separable events for analysis.

291 We transferred individual pancreatic slices to a perfusion system containing 6 mM glucose in HEPES-buffered ECS
292 at 34 °C. We show representative traces for each experimental condition. Each of these conditions has been tested

293 on at least 3 separate experimental days. Slices, with the exception of experiments presented in Figs. 4 and 5, were
294 exposed to a series of three square-pulse-like stimulations (triple protocol) characterised by exposure to 8 mM glucose
295 for 25 minutes, followed by a washout with sub-stimulatory 6 mM glucose concentration until all the activity switched
296 off. We typically applied the pharmacological treatment during the second section of the triple protocol (section #2).
297 Imaging was performed on standard confocal microscopes equipped with resonant scanners (Leica Microsystems TCS
298 SP5 and SP8 or Nikon A1R) both upright and inverted with their respective sets of 20x high NA objective lenses.
299 Acquisition frequency was set to at least 20 Hz at 256 x 256 pixels, with pixels size close to $1 \mu\text{m}^2$ to allow for a
300 precise quantification of $[\text{Ca}^{2+}]_c$ oscillations. Calbryte 520 was excited by a 488 nm argon laser (Leica SP5 and Nikon
301 A1R) or 490 nm line of a white laser (Leica SP8). The emitted fluorescence was detected by HyD hybrid detector in
302 the range of 500-700 nm using a photon counting mode (Leica) or GaAsP PMT detectors (Nikon).

303 **Analysis and processing of data**

304 The general analysis pipeline was as follows. Experiments involving imaging of pancreatic slices typically focused on
305 a single field of view showing up to hundreds of cells, in a recording of at least several, often dozens, gigabytes. Current
306 tools that are widely used (e.g., ImageJ) rely on loading the recording, or its part, into memory, for viewing, analysis,
307 and processing. It also requires laborious and long human engagement. We have developed a set of interdependent
308 tools to automatise as much as possible the analysis pipeline (Figure 6, Supporting information).

309 Regions of interest (ROIs) were identified using a semi-automatic detection as follows. Recordings were stored as
310 a 3-dimensional ($T \times X \times Y$) numpy array [81]. When the recording was stable, obtaining a mean image, or any other
311 statistic over frame, was rather trivial. In case there was horizontal movement, it could be corrected for by aligning
312 the frames to a template. For this we used the functionality present in CaImAn [82], except that high frequency
313 recordings needed to be rebinned to some moderate frequency (a few Hz), before correcting, in order to reduce the
314 noise level. Once the translation offsets were obtained, we used them to correct the recording in original frequency.
315 To define regions of interest, we blurred the representative image by a kernel of the size we expect cells to be, and at
316 the scale double of that. The difference between these two images represents a band-pass filter of the original, where
317 the local intensity variations were emphasised (Figure S6-1). We then passed through all pixels where the value of the
318 filtered image was positive (or larger than a small positive threshold), and for each pixel we searched for a local peak
319 in its vicinity. All the pixels that lead to the same local peak were then grouped into a single ROI. As we were mainly

320 interested in islet cells, we chose the kernel size to approximately correspond to $10 \mu\text{m}$, which is the characteristic
321 length scale of the islet cells. If the pixel size is unknown, the choice of kernel is up to the person running the scripts.

322 Representative image can be a mean over all frames or any other statistic. In addition, our code supports standard
323 deviation, mean and standard deviation of the first derivative of the movie, and a "robust maximum" of the movie.
324 As "robust maximum", we defined a very high percentile of the set absolute values of a set, essentially a value close
325 to its maximum, by default it is 10th largest. We avoid the maximum as a means to make analysis robust to outliers.
326 This statistic is sensitive to cells which fire extremely rarely during a recording, so that the mean of those pixels is
327 negligible. By default, we choose an average of the mean and high percentile as a representative image for band-pass
328 filtering and ROI extraction.

329 Trace processing was conducted as follows. In an ideal detector, recording a time trace of a single pixel in absence
330 of any signal would consist of independent values of the number of photons detected during the dwell time. The
331 values (x) are then distributed according to the Poisson distribution, with standard deviation (σ_1) being equal to the
332 square root of the mean μ_1 , $\sigma_1 = \sqrt{\mu_1}$. Transformation to standard score or z -score (Figure S6-2) with $z = \frac{x-\mu}{\sigma}$ is
333 then performed that recasts the initial quantity x in the units of standard deviation from the expected mean.

334 A noisy trace in z spends 95% of the time between -2 and 2 , and 99.7% between -3 and 3 . Probability of $z > 3$ is
335 very small $p < 0.0013$, which is why it is often considered a threshold value for pointing out the outliers. In general,
336 the mean slow component needed to be inferred, typically by low-pass filtering. Throughout this project, we used
337 cascaded second-order section (sos) filtering, implemented in `scipy.signal` module [82]. The cut-off frequency f_{cut}
338 of a filter determines the timescale of the events that can be detected in z -score.

339 Fast Fourier transform naturally distorts signals, but the inferred z -score can be used to correct for it. We con-
340 structed an iterative filtering algorithm, where at each iteration, we neglect the outlier values of the original trace,
341 substitute them with the values of the slow component, and reapply the filter. At each iteration, the distortion is
342 less prominent, increasing the z -score. In Fig. S6-2, we show the result after 10 iterations, though we found three
343 iterations as a more conservative choice, and a reasonable compromise between results and computing time.

344 All above refers also to a sum of pixel traces, but, crucially, not to their mean. A sum of two pixels a and b
345 ($x = x_a + x_b$), with means μ_a and μ_b , would have a standard deviation as expected $\sigma = \sqrt{\mu} = \sqrt{\mu_a + \mu_b}$. But, if we
346 were to consider the average $\tilde{x} = x/2$, standard deviation would be $\sqrt{2}$ times smaller $\tilde{\sigma} = \sigma/\sqrt{2}$. Therefore, when
347 calculating z -score for a ROI trace, we always considered the sum, rather than the average trace of the underlying

348 pixels. When we visualised traces, we show them averaged, only to keep the scales comparable. The same reasoning
349 holds for rebinning a single trace, where the resulting trace, rebinned by a factor of n , had a standard deviation \sqrt{n}
350 times smaller than the original.

351 Experiments discussed in this manuscript were recorded on standard Leica SP5 or SP8, as well as NIKON A1R
352 confocal microscopes. In cases where we used a Hybrid detector in the photon counting mode (Leica) we saw no
353 significant departure from our assumption of Poisson distribution. Even with non-unit gain, the linear dependence
354 between variance and mean remains, though the slope was different from 1 (Figure S6-3). Other types of detectors
355 introduce additional sources of noise other than Poisson (eg. thermal), but mostly they were still dominated by
356 Poisson in our experience, at least as long as the values between neighbouring pixels and frames were independent.

357 Traces contain features spanning orders of magnitude in time: from tens of milliseconds, to tens of minutes.
358 We aimed to investigate how these events at different timescales and a connection between them and the islets'
359 environment interact. For this, we devised a two-step algorithm to identify intrinsic timescale of events and to
360 minimise false positives (Figure S6-4). In the first step, we performed a sequential filtering of the traces at timescales
361 starting from 0.5s, and increasing by a factor of $\sqrt[4]{2}$, $\tau = \{2^{-1}, 2^{-3/4}, 2^{-1/2}, 2^{-1/4}, \dots\}$, until the timescale of the
362 longest event of interest was achieved. At each timescale, we transformed the trace to z -score, and identify regions
363 where $z > 4$ as *candidate events*.

364 Events were characterised by the start time ((t_0) , its maximal height, and the width at the half of the height
365 ($halfwidth$, δt), which is our measurement of its duration. For simplicity, we defined end time as $t_{end} = t_0 + \delta t$,
366 although events arguably last much longer after the intensity drops at half of the peak.

367 For an event to be considered real, it needed to be detected at multiple timescales, and will have started around
368 the same time and will have approximately the same halfwidth. We specify a tolerance of 20 % of the halfwidth
369 as to whether two candidate events should be considered equal; if their start and end times were within 20 % of
370 the halfwidth, they were considered cognates, having arisen due to the same real event. For a set of cognates, we
371 estimated the start and end time of the real underlying event as a median over the set. If the resulting estimate for
372 the halfwidth is larger than 2 s, we required that a set consists of at least 4 candidate events (corresponding to event
373 being detectable when filtered at timescales that differ at least two-fold). For shorter events, we required only that
374 an event is not unique to a single timescale.

375 We also neglected events that last less than 3 time-frames, as well as those too close to the beginning or end of the

376 recording (within $\delta t/2$), which we ascribed to artefacts from zero-padding for the filtering. We termed this procedure
377 event *distilling* (Figs. 6, S6-4).

378

ACKNOWLEDGEMENTS

379 MSR received grants by the Austrian Science Fund/Fonds zur Förderung der Wissenschaftlichen Forschung (bilateral
380 grants I3562-B27 and I4319-B30). MSR, CE-M and JDJ received financial support from NIH (R01DK127236). MSR,
381 AS and DK further received financial support from the Slovenian Research Agency (research core funding program
382 P3-0396 and projects N3-0048, N3-0133 and J3-9289). JDJ receives grants from CIHR and Diabetes Canada.

383

CONFLICT OF INTEREST

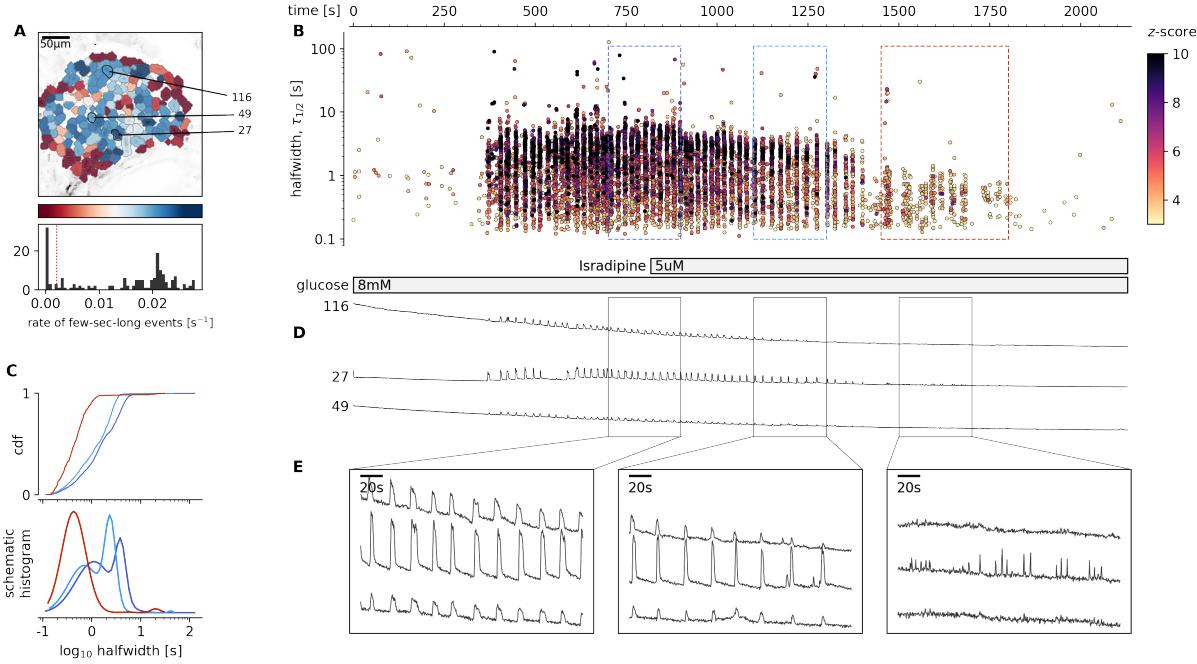
384 No conflict of interest.

385 * Equally contributing authors

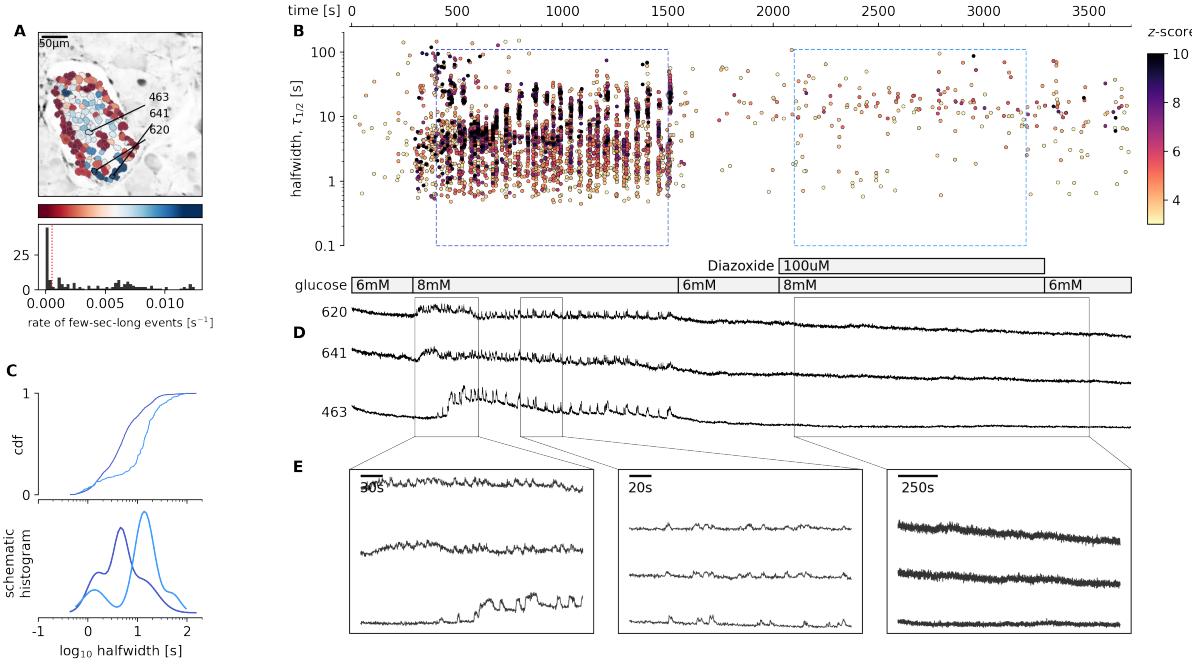
386 † Corresponding author: marjan.slakrupnik@meduniwien.ac.at

- 387 [1] G. Drews, P. Krippeit-Drews, and M. Dufer, Electrophysiology of islet cells, *Adv Exp Med Biol* **654**, 115 (2010).
388 [2] M. Skelin Klemen, J. Dolenšek, M. Slak Rupnik, and A. Stožer, The triggering pathway to insulin secretion: Functional
389 similarities and differences between the human and the mouse beta cells and their translational relevance, *Islets* , 00 (2017).
390 [3] P. Rorsman and F. M. Ashcroft, Pancreatic β -cell electrical activity and insulin secretion: Of mice and men, *Physiological
391 Reviews* **98**, 117 (2018).
392 [4] D. L. Cook, Isolated islets of langerhans have slow oscillations of electrical activity, *Metabolism* **32**, 681 (1983).
393 [5] J. V. Sanchez-Andres, R. Pomares, and W. J. Malaisse, Adaptive short-term associative conditioning in the pancreatic
394 β -cell, *Physiological Reports* **8**, e14403 (2020).
395 [6] P. Gilon and J. C. Henquin, Influence of membrane potential changes on cytoplasmic Ca^{2+} concentration in an electrically
396 excitable cell, the insulin-secreting pancreatic β -cell, *Journal of Biological Chemistry* **267**, 20713 (1992).
397 [7] R. Bertram, L. S. Satin, and A. S. Sherman, Closing in on the mechanisms of pulsatile insulin secretion, *Diabetes* **67**, 351
398 (2018).
399 [8] A. Stožer, J. Dolenšek, and M. S. Rupnik, Glucose-stimulated calcium dynamics in islets of langerhans in acute mouse
400 pancreas tissue slices, *PLoS ONE* **8**, 10.1371/journal.pone.0054638 (2013).
401 [9] M. Montero, M. Brini, R. Marsault, J. Alvarez, R. Sitia, T. Pozzan, and R. Rizzuto, Monitoring dynamic changes in free
402 Ca^{2+} concentration in the endoplasmic reticulum of intact cells, *The EMBO Journal* **14**, 5467 (1995).
403 [10] M. Michalak, J. M. Robert Parker, and M. Opas, Ca^{2+} signaling and calcium binding chaperones of the endoplasmic
404 reticulum, *Cell Calcium* **32**, 269 (2002).
405 [11] P. Gilon, H. Y. Chae, G. A. Rutter, and M. A. Ravier, Calcium signaling in pancreatic beta-cells in health and in type 2
406 diabetes, *Cell Calcium* **56**, 340 (2014).
407 [12] G. Santulli, R. Nakashima, Q. Yuan, and A. R. Marks, Intracellular calcium release channels: an update, *J Physiol* **595**,
408 3041 (2017).
409 [13] P. Llanos, A. Contreras-Ferrat, G. Barrientos, M. Valencia, D. Mears, and C. Hidalgo, Glucose-dependent insulin secretion
410 in pancreatic beta-cell islets from male rats requires Ca^{2+} release via ROS-stimulated ryanodine receptors, *PLoS ONE* **10**,
411 10.1371/journal.pone.0129238 (2015).
412 [14] D. S. Luciani, K. S. Gwiazda, T. L. Yang, T. B. Kalynyak, Y. Bychkivska, M. H. Frey, K. D. Jeffrey, A. V. Sampaio, T. M.
413 Underhill, and J. D. Johnson, Roles of $IP3R$ and $RRYR$ Ca^{2+} channels in endoplasmic reticulum stress and beta-cell death,
414 *Diabetes* **58**, 422 (2009).
415 [15] G. Santulli, G. Pagano, C. Sardu, W. Xie, S. Reiken, S. L. D'Ascia, M. Cannone, N. Marziliano, B. Trimarco, T. A. Guise,
416 A. Lacampagne, and A. R. Marks, Calcium release channel $RRYR2$ regulates insulin release and glucose homeostasis, *Journal
417 of Clinical Investigation* 10.1172/JCI79273 (2015).
418 [16] W. R. Yamamoto, R. N. Bone, P. Sohn, F. Syed, C. A. Reissaus, A. L. Mosley, A. B. Wijeratne, J. D. True, X. Tong,
419 T. Kono, and C. Evans-Molina, Endoplasmic reticulum stress alters ryanodine receptor function in the murine pancreatic
420 β cell, *Journal of Biological Chemistry* **294**, 168 (2019).
421 [17] J. Liao, D. Patel, Q. Zhao, R. Peng, H. Guo, and Z. Diwu, A novel $Ca(2+)$ indicator for long-term tracking of intracellular
422 calcium flux, *Biotechniques* **70**, 271 (2021).

- 423 [18] A. Marciniaik, C. M. Cohrs, V. Tsata, J. A. Chouinard, C. Selck, J. Stertmann, S. Reichelt, T. Rose, F. Ehehalt, J. Weitz,
424 M. Solimena, M. Slak Rupnik, and S. Speier, Using pancreas tissue slices for in situ studies of islet of langerhans and acinar
425 cell biology, *Nature Protocols* **9**, 2809 (2014).
- 426 [19] A. Stožer, R. Marković, J. Dolenšek, M. Perc, M. Marhl, M. Slak Rupnik, and M. Gosak, Heterogeneity and
427 delayed activation as hallmarks of self-organization and criticality in excitable tissue, *Frontiers in Physiology* **10**,
428 10.3389/fphys.2019.00869 (2019).
- 429 [20] A. Stožer, M. Skelin Klemen, M. Gosak, L. Križančić Bombek, V. Pohorec, M. Slak Rupnik, and J. Dolensek, Glucose-
430 dependent activation, activity, and deactivation of beta cell networks in acute mouse pancreas tissue slices, *Am J Physiol
431 Endocrinol Metab* 10.1152/ajpendo.00043.2021 (2021).
- 432 [21] M. Gosak, A. Stožer, R. Markovic, J. Dolenšek, M. Perc, M. S. Rupnik, and M. Marhl, Critical and supercritical spa-
433 tiotemporal calcium dynamics in beta cells, *Frontiers in Physiology* **8**, 10.3389/fphys.2017.01106 (2017).
- 434 [22] J. C. Henquin and H. P. Meissner, Significance of ionic fluxes and changes in membrane potential for stimulus-secretion
435 coupling in pancreatic b-cells, *Experientia* **40**, 1043 (1984).
- 436 [23] F. M. Ashcroft and P. Rorsman, Electrophysiology of the pancreatic beta-cell, *Prog Biophys Mol Biol* **54**, 87 (1989).
- 437 [24] S. Göpel, T. Kanno, S. Barg, J. Galvanovskis, and P. Rorsman, Voltage-gated and resting membrane currents recorded
438 from b-cells in intact mouse pancreatic islets, *The Journal of Physiology* **521**, 717 (1999).
- 439 [25] V. Schulla, E. Renström, R. Feil, S. Feil, I. Franklin, A. Gjinovci, X. J. Jing, D. Laux, I. Lundquist, M. A. Magnuson,
440 S. Obermüller, C. S. Olofsson, A. Salehi, A. Wendt, N. Klugbauer, C. B. Wollheim, P. Rorsman, and F. Hofmann, Impaired
441 insulin secretion and glucose tolerance in β cell-selective cav1.2 ca2+ channel null mice, *EMBO Journal* **22**, 3844 (2003).
- 442 [26] M. Skelin and M. Rupnik, Camp increases the sensitivity of exocytosis to ca2+ primarily through protein kinase a in mouse
443 pancreatic beta cells, *Cell Calcium* **49**, 89 (2011).
- 444 [27] N. Sluga, S. Postić, S. Sarikas, Y.-C. Huang, A. Stožer, and M. Slak Rupnik, Dual mode of action of acetylcholine on
445 cytosolic calcium oscillations in pancreatic beta and acinar cells in situ, *Cells* **10**, 1580 (2021).
- 446 [28] B. J. Zunkler, S. Lenzen, K. Manner, U. Panten, and G. Trube, Concentration-dependent effects of tolbutamide, meglitinide,
447 glipizide, glibenclamide and diazoxide on atp-regulated k+ currents in pancreatic b-cells, *Naunyn Schmiedebergs Arch
448 Pharmacol* **337**, 225 (1988).
- 449 [29] G. Larsson-Nyrén, J. Sehlin, P. Rorsman, and E. Renström, Perchlorate stimulates insulin secretion by shifting the gating
450 of I-type ca2+ currents in mouse pancreatic b-cells towards negative potentials, *Pflügers Archiv* **441**, 587 (2001).
- 451 [30] C. B. Wollheim and G. W. Sharp, Regulation of insulin release by calcium, *Physiol Rev* **61**, 914 (1981).
- 452 [31] M. W. Roe, M. E. Lancaster, R. J. Mertz, r. Worley, J. F., and I. D. Dukes, Voltage-dependent intracellular calcium release
453 from mouse islets stimulated by glucose, *J Biol Chem* **268**, 9953 (1993).
- 454 [32] M. A. Ravier, M. Güldenagel, A. Charollais, A. Gjinovci, D. Caille, G. Söhl, C. B. Wollheim, K. Willecke, J.-C. Henquin,
455 and P. Meda, Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced ca2+ and
456 insulin oscillations, and basal insulin release, *Diabetes* **54**, 1798 (2005).
- 457 [33] S. Speier, A. Gjinovci, A. Charollais, P. Meda, and M. Rupnik, Cx36-mediated coupling reduces β -cell heterogeneity,
458 confines the stimulating glucose concentration range, and affects insulin release kinetics, *Diabetes* **56**, 1078 (2007).
- 459 [34] G. G. Holz, C. A. Leech, R. S. Heller, M. Castonguay, and J. F. Habener, camp-dependent mobilization of intracellular
460 ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells. a ca2+ signaling system stimulated by the
461 insulinotropic hormone glucagon-like peptide-1-(7-37), *J Biol Chem* **274**, 14147 (1999).
- 462 [35] G. Kang, O. G. Chepurny, M. J. Rindler, L. Collis, Z. Chepurny, W.-h. Li, M. Harbeck, M. W. Roe, and G. G. Holz,
463 A camp and ca 2+ coincidence detector in support of ca 2+ -induced ca 2+ release in mouse pancreatic beta cells, *The
464 Journal of Physiology* **566**, 173 (2005).
- 465 [36] T. Guo, D. Gillespie, and M. Fill, Ryanodine receptor current amplitude controls ca2+ sparks in cardiac muscle, *Circulation
466 research* **111**, 28 (2012).
- 467 [37] W. Chen, R. Wang, B. Chen, X. Zhong, H. Kong, Y. Bai, Q. Zhou, C. Xie, J. Zhang, A. Guo, X. Tian, P. P. Jones, M. L.
468 O'Mara, Y. Liu, T. Mi, L. Zhang, J. Bolstad, L. Semeniuk, H. Cheng, J. Zhang, J. Chen, D. P. Tielemans, A. M. Gillis,
469 H. J. Duff, M. Fill, L.-S. Song, and S. R. W. Chen, The ryanodine receptor store-sensing gate controls ca2+ waves and
470 ca2+-triggered arrhythmias, *Nature Medicine* **20**, 184 (2014).
- 471 [38] M. S. Islam, P. Rorsman, and P.-O. Berggren, Ca2+ -induced ca2+ release in insulin-secreting cells, *FEBS Letters* **296**,
472 287 (1992).
- 473 [39] O. Dyachok and E. Gylfe, Ca(2+)-induced ca(2+) release via inositol 1,4,5-trisphosphate receptors is amplified by protein
474 kinase a and triggers exocytosis in pancreatic beta-cells, *J Biol Chem* **279**, 45455 (2004).
- 475 [40] O. Dyachok, G. Tufveson, and E. Gylfe, Ca2+-induced ca2+ release by activation of inositol 1,4,5-trisphosphate receptors
476 in primary pancreatic beta-cells, *Cell Calcium* **36**, 1 (2004).
- 477 [41] r. Worley, J. F., M. S. McIntyre, B. Spencer, R. J. Mertz, M. W. Roe, and I. D. Dukes, Endoplasmic reticulum calcium
478 store regulates membrane potential in mouse islet beta-cells, *J Biol Chem* **269**, 14359 (1994).
- 479 [42] A. Tengholm, B. Hellman, and E. Gylfe, The endoplasmic reticulum is a glucose-modulated high-affinity sink for ca2+ in
480 mouse pancreatic beta-cells, *J Physiol* **530**, 533 (2001).
- 481 [43] R. Marković, A. Stožer, M. Gosak, J. Dolenšek, M. Marhl, and M. S. Rupnik, Progressive glucose stimulation of islet beta
482 cells reveals a transition from segregated to integrated modular functional connectivity patterns, *Scientific Reports* **5**, 7845
483 (2015).
- 484 [44] S. Speier, S. B. Yang, K. Sroka, T. Rose, and M. Rupnik, Katp-channels in beta-cells in tissue slices are directly modulated
485 by millimolar atp, *Molecular and Cellular Endocrinology* **230**, 51 (2005).


- 486 [45] M. S. Islam, The ryanodine receptor calcium channel of beta-cells: Molecular regulation and physiological significance, Diabetes 10.2337/diabetes.51.5.1299 (2002).
- 487
- 488 [46] F. Van Petegem, Ryanodine receptors: structure and function, J Biol Chem 287, 31624 (2012).
- 489 [47] E. R. Pearson, I. Flechtner, P. R. Njølstad, M. T. Malecki, S. E. Flanagan, B. Larkin, F. M. Ashcroft, I. Klimes, E. Codner, V. Iotova, A. S. Slingerland, J. Shield, J.-J. Robert, J. J. Holst, P. M. Clark, S. Ellard, O. Søvik, M. Polak, and A. T. Hattersley, Switching from insulin to oral sulfonylureas in patients with diabetes due to kir6.2 mutations, New England Journal of Medicine 355, 467 (2006).
- 490
- 491
- 492
- 493 [48] P. Arkhammar, T. Nilsson, P. Rorsman, and O. Berggrens, The journal of biological chemistry inhibition of atp-regulated k⁺ channels precedes depolarization-induced increase in cytoplasmic free ca2+ concentration in pancreatic beta cells, THE JOURNAL OF BIOLOGICAL CHEMISTRY (1987).
- 494
- 495
- 496 [49] C. Ammala, O. Larsson, P. O. Berggren, K. Bokvist, L. Juntti-Berggren, H. Kindmark, and P. Rorsman, Inositol trisphosphate-dependent periodic activation of a ca(2+)-activated k⁺ conductance in glucose-stimulated pancreatic beta-cells, Nature 353, 849 (1991).
- 497
- 498
- 499 [50] C. Ammala, K. Bokvist, O. Larsson, P. O. Berggren, and P. Rorsman, Demonstration of a novel apamin-insensitive calcium-activated k⁺ channel in mouse pancreatic b cells, Pflugers Arch 422, 443 (1993).
- 500
- 501 [51] S. O. Gopel, Activation of ca2+-dependent k⁺ channels contributes to rhythmic firing of action potentials in mouse pancreatic beta cells, The Journal of General Physiology 114, 759 (1999).
- 502
- 503 [52] N. A. Tamarina, Y. Wang, L. Mariotto, A. Kuznetsov, C. Bond, J. Adelman, and L. H. Philipson, Small-conductance calcium-activated k⁺ channels are expressed in pancreatic islets and regulate glucose responses, Diabetes 52, 2000 (2003).
- 504
- 505 [53] J. C. Henquin, Glucose-induced insulin secretion in isolated human islets: does it truly reflect beta-cell function in vivo?, Mol Metab , 101212 (2021).
- 506
- 507 [54] X. Tong, T. Kono, E. K. Anderson-Baucum, W. Yamamoto, P. Gilon, D. Lebeche, R. N. Day, G. E. Shull, and C. Evans-Molina, Serca2 deficiency impairs pancreatic beta-cell function in response to diet-induced obesity, Diabetes 65, 3039 (2016).
- 508
- 509
- 510 [55] P. Gilon and J. C. Henquin, Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function, Endocr Rev 22, 565 (2001).
- 511
- 512 [56] A. Caicedo, Paracrine and autocrine interactions in the human islet: more than meets the eye, Semin Cell Dev Biol 24, 11 (2013).
- 513
- 514 [57] J. Dolenšek, M. S. Rupnik, and A. Stožer, Structural similarities and differences between the human and the mouse pancreas, Islets 7, e1024405 (2015).
- 515
- 516 [58] M. C. Beauvois, A. Arredouani, J. C. Jonas, J. F. Rolland, F. Schuit, J. C. Henquin, and P. Gilon, Atypical ca2+-induced ca2+ release from a sarco-endoplasmic reticulum ca2+-atpase 3-dependent ca2+ pool in mouse pancreatic beta-cells, J Physiol 559, 141 (2004).
- 517
- 518
- 519 [59] R. E. Hagar* and B. E. Ehrlich, Regulation of the type iii insp3 receptor and its role in beta cell function, Cellular and Molecular Life Sciences 57, 1938 (2000).
- 520
- 521 [60] Z. Chen, Z. Li, G. Peng, X. Chen, W. Yin, M. I. Kotlikoff, Z.-Q. Yuan, and G. Ji, Extracellular atp-induced nuclear ca2+ transient is mediated by inositol 1,4,5-trisphosphate receptors in mouse pancreatic beta-cells, Biochemical and Biophysical Research Communications 382, 381 (2009).
- 522
- 523
- 524 [61] S. Takasawa, M. Kuroki, K. Nata, N. Noguchi, T. Ikeda, A. Yamauchi, H. Ota, A. Itaya-Hironaka, S. Sakuramoto-Tsuchida, I. Takahashi, T. Yoshikawa, T. Shimosegawa, and H. Okamoto, A novel ryanodine receptor expressed in pancreatic islets by alternative splicing from type 2 ryanodine receptor gene, Biochemical and Biophysical Research Communications 10.1016/j.bbrc.2010.05.051 (2010).
- 525
- 526
- 527
- 528 [62] J. D. Johnson, S. Kuang, S. Misler, and K. S. Polonsky, Ryanodine receptors in human pancreatic beta cells: localization and effects on insulin secretion, The FASEB journal : official publication of the Federation of American Societies for Experimental Biology <https://doi.org/10.1096/fj.03-1280fje> (2004).
- 529
- 530
- 531 [63] M. J. Berridge, The am and fm of calcium signalling, Nature 386, 759 (1997).
- 532
- 533 [64] M. J. Berridge, P. Lipp, and M. D. Bootman, The versatility and universality of calcium signalling, Nature Reviews Molecular Cell Biology 1, 11 (2000).
- 534
- 535 [65] M. J. Berridge, Unlocking the secrets of cell signaling, Annu Rev Physiol (2004).
- 536
- 537 [66] J. Watras, B. E. Ehrlich, *et al.*, Bell-shaped calcium-response curves of lns (1, 4, 5) p3-and calcium-gated channels from endoplasmic reticulum of cerebellum, Nature 351, 751 (1991).
- 538
- 539
- 540 [67] D. Korošák, A. Stožer, and M. S. Rupnik, Collective biological computation of metabolic economy (2022).
- 541
- 542 [68] F. Durant, J. Morokuma, C. Fields, K. Williams, D. S. Adams, and M. Levin, Long-term, stochastic editing of regenerative anatomy via targeting endogenous bioelectric gradients, Biophysical Journal 112, 2231 (2017).
- 543
- 544 [69] C. Klec, C. T. Madreiter-Sokolowski, S. Stryeck, V. Sachdev, M. Duta-Mare, B. Gottschalk, M. R. Depaoli, R. Rost, J. Hay, M. Waldeck-Weiermair, D. Kratky, T. Madl, R. Malli, and W. F. Graier, Glycogen synthase kinase 3 beta controls presenilin-1-mediated endoplasmic reticulum ca(2)(+) leak directed to mitochondria in pancreatic islets and beta-cells, Cell Physiol Biochem 52, 57 (2019).
- 545
- 546 [70] S. G. Fonseca, J. Gromada, and F. Urano, Endoplasmic reticulum stress and pancreatic beta-cell death, Trends in Endocrinology & Metabolism 10.1016/j.tem.2011.02.008 (2011).
- 547
- 548 [71] A. Lombardi and Y. Tomer, Interferon alpha impairs insulin production in human beta cells via endoplasmic reticulum stress, Journal of Autoimmunity 80, 48 (2017).
- 549
- 550 [72] R. Sladek, G. Rocheleau, J. Rung, C. Dina, L. Shen, D. Serre, P. Boutin, D. Vincent, A. Belisle, S. Hadjadj, B. Balkau, B. Heude, G. Charpentier, T. J. Hudson, A. Montpetit, A. V. Pshezhetsky, M. Prentki, B. I. Posner, D. J. Balding,

- 550 D. Meyre, C. Polychronakos, and P. Froguel, A genome-wide association study identifies novel risk loci for type 2 diabetes,
551 *Nature* **445**, 881 (2007).
- 552 [73] M. J. Henderson, K. A. Trychta, S.-M. Yang, S. Bäck, A. Yasgar, E. S. Wires, C. Danchik, X. Yan, H. Yano, L. Shi,
553 K.-J. Wu, A. Q. Wang, D. Tao, G. Zahoránszky-Köhalmi, X. Hu, X. Xu, D. Maloney, A. V. Zakharov, G. Rai, F. Urano,
554 M. Airavaara, O. Gavrilova, A. Jadhav, Y. Wang, A. Simeonov, and B. K. Harvey, A target-agnostic screen identifies
555 approved drugs to stabilize the endoplasmic reticulum-resident proteome, *Cell Reports* **35**, 10.1016/j.celrep.2021.109040
556 (2021).
- 557 [74] F. Ovalle, T. Grimes, G. Xu, A. J. Patel, T. B. Grayson, L. A. Thielen, P. Li, and A. Shalev, Verapamil and beta cell
558 function in adults with recent-onset type 1 diabetes, *Nature Medicine* **24**, 1108 (2018).
- 559 [75] J. Chen, H. Cha-Molstad, A. Szabo, and A. Shalev, Diabetes induces and calcium channel blockers prevent cardiac
560 expression of proapoptotic thioredoxin-interacting protein, *Am J Physiol Endocrinol Metab* **296**, E1133 (2009).
- 561 [76] Y. H. C. Yang, Y. Y. Vilin, M. Roberge, H. T. Kurata, and J. D. Johnson, Multiparameter screening reveals a role for
562 Na^+ channels in cytokine-induced beta cell death, *Molecular Endocrinology* **28**, 406 (2014).
- 563 [77] J. T. C. Lee, I. Shanina, Y. N. Chu, M. S. Horwitz, and J. D. Johnson, Carbamazepine, a beta-cell protecting drug, reduces
564 type 1 diabetes incidence in nod mice, *Scientific Reports* **8**, 10.1038/s41598-018-23026-w (2018).
- 565 [78] T. T. Fischer and B. E. Ehrlich, Wolfram syndrome: a monogenic model for diabetes mellitus and neurodegeneration,
566 *Current Opinion in Physiology* **17**, 115 (2020).
- 567 [79] J. D. Bruton, R. Lemmens, C. L. Shi, S. Persson-Sjogren, H. Westerblad, M. Ahmed, N. J. Pyne, M. Frame, B. L. Furman,
568 and M. S. Islam, Ryanodine receptors of pancreatic beta-cells mediate a distinct context-dependent signal for insulin
569 secretion, *Faseb j* **17**, 301 (2003).
- 570 [80] S. Speier and M. Rupnik, A novel approach to in situ characterization of pancreatic beta-cells, *Pflügers Archiv European
571 Journal of Physiology* **446**, 553 (2003).
- 572 [81] C. R. Harris, K. J. Millman, S. J. Van Der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg,
573 N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. Van Kerkwijk, M. Brett, A. Haldane, J. F. Del Río, M. Wiebe, P. Peterson,
574 P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, Array programming
575 with numpy, *Nature* **585**, 357 (2020).
- 576 [82] A. Giovannucci, J. Friedrich, P. Gunn, J. Kalfon, B. L. Brown, S. A. Koay, J. Taxidis, F. Najafi, J. L. Gauthier, P. Zhou,
577 B. S. Khakh, D. W. Tank, D. B. Chklovskii, and E. A. Pnevmatikakis, Caiman an open source tool for scalable calcium
578 imaging data analysis, *eLife* **8**, 10.7554/elife.38173 (2019).


579 **SUPPORTING INFORMATION**

580 **SUPPORTING VIDEOS**

- 581 Link to videos: <https://figshare.com/s/e6d3945b658ec4ec3989>
582 **Video** Figure 1.
583 **Video** Figure 2.
584 **Video** Figure 3.
585 **Video** Figure 4.
586 **Video** Figure 5.

Figure S4-1. Glucose-dependent plateau activity of beta cells after blockage of VACCs. **A**, Regions of interest (ROIs) obtained by our segmentation algorithm. The color indicates the number of events identified in the ROI trace, upon a high-pass filtering at 0.2Hz. We discarded ROIs with number of events below the threshold (red dashed line in the histogram in the lower panel). Indicated are the ROI numbers whose filtered traces correlate best with the average trace for the whole islet. **B**, Events' halfwidth duration through time for an islet exposed to a single 8 mM glucose stimulation protocol. Saturating concentration of isradipine (5 μ M) was applied during the plateau phase of the activity. The stimulation protocol is indicated in the bar at the bottom of the pane. There is a prominent superposition of the short events on the plateau phases between the ROIs. **C**, (top) Cumulative distribution frequency (cdf) of a mean halfwidth duration of events during the plateau phase of the both stimulations. Events from the initial transient phase are in colored as indicated in panel B. (bottom) Normalized Gaussian fit through the logarithmic distribution of halfwidth duration during control conditions and inhibition of VACCs. Note a shift towards shorter events during the plateau phase in the presence of isradipine. **(D)** Time courses from ROIs indicated in A, exposed to a single stimulation protocol, and rebinned to 2Hz (recorded at 20Hz). The abscissa is shared with B and is indicated there. **E**, Expanded time traces from a representative ROI indicating (as in panel C) events from the different sections of the plateau phase.

Figure S4-2. Glucose-dependent activation of beta cells in the absence of the plasma membrane depolarisation.

A, Regions of interest (ROIs) obtained by our segmentation algorithm. The color indicates the number of events identified in the ROI trace, upon a high-pass filtering at 0.2Hz. We discarded ROIs with number of events below the threshold (red dashed line in the histogram in the lower panel). Indicated are the ROI numbers whose filtered traces correlate best with the average trace for the whole islet. **B**, Events' halfwidth duration through time for an islet exposed to a single 8 mM glucose stimulation protocol. Saturating concentration of isradipine (5 μ M) was applied during the plateau phase of the activity. The stimulation protocol is indicated in the bar at the bottom of the pane. There is a prominent superposition of the short events on the plateau phases between the ROIs, exposed to a double 8 mM glucose stimulation protocol. 100 μ M diazoxide was applied in the second section of the protocol. **C**, (top) Cumulative distribution frequency (cdf) of a mean halfwidth duration of events during the plateau phase of the both stimulations. Events from the first phase are in dark color, events from the second plateau phase are in light color. (bottom) Normalized Gaussian fit through the logarithmic distribution of halfwidth duration during control conditions and in the absence of plasma membrane depolarization. Note a shift towards longer events during the plateau phase in the conditions of high concentration of diazoxide. **D**, Time courses from ROIs indicated in A, exposed to a double stimulation protocol, and rebinned to 2Hz (recorded at 20Hz). The abscissa is shared with B and is indicated there. **E**, Expanded time traces from a representative ROI indicating (as in panel C) events from the different sections of the plateau phase.

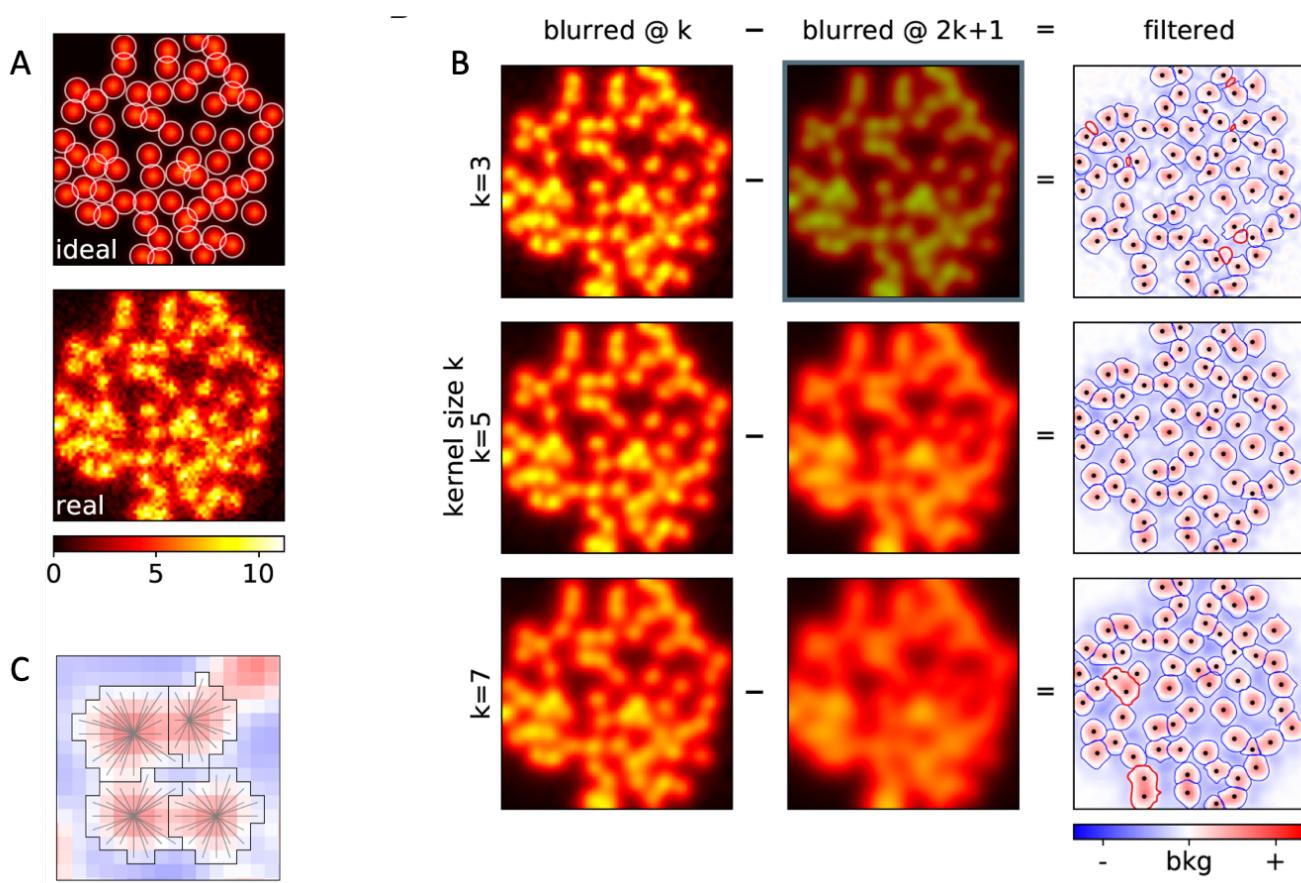


Figure S6-1. **A**, Computationally created template 64×64 image with uniform spherical cells, and with Poisson noise added. **B**, Band-pass filtering of the "realistic" image from A, with different kernel sizes, for denoising (left), and for approximating background (middle). The difference is the filtered image, used to construct ROIs (right). The size of the kernel determines the approximate size of the ROIs obtained. In thick red contours we emphasise misidentified ROIs; the dots indicate the real locations of the cells' centers. **C**, Each ROI is constructed by explicitly searching for a closest peak in intensity. A pixel can only be part of a single ROI.

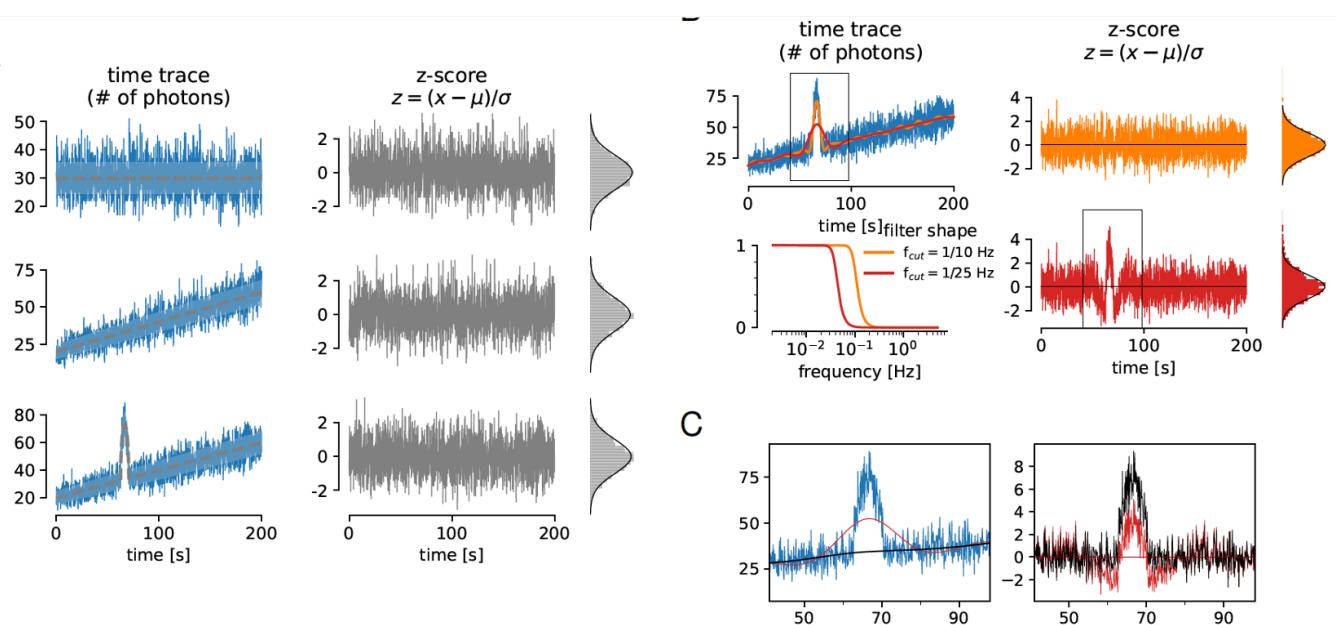


Figure S6-2. **A**, *Left*: Simulated traces with Poisson noise (blue) around different means (grey) with different temporal features. The shaded area represents one standard deviation interval around mean. *Right*: Irrespective of the shape of the mean, z-score transformation behaves exactly as a Gaussian variable with zero mean and unit standard deviation. **B**, The values of z-scores depend on the reference. In subfigure (A), the reference curves are known, but in general they need to be inferred, typically by low-pass filtering. The cut-off frequency f_{cut} of a filter determines the timescale of the events that can be detected in z-score. If filtered with too high cut-off (orange), the resulting smooth curve follows too closely the trace and the event is not visible in z . With $f_{cut} = 1/50$ Hz, the resulting z-score has obvious outliers ($z \geq 3$), visible both in trace and in the histogram. **C**, Zoom to the indicated regions from B. The original (blue) and the filtered trace and z-score (red), and the filtered trace and z-score corrected for distortion (black).

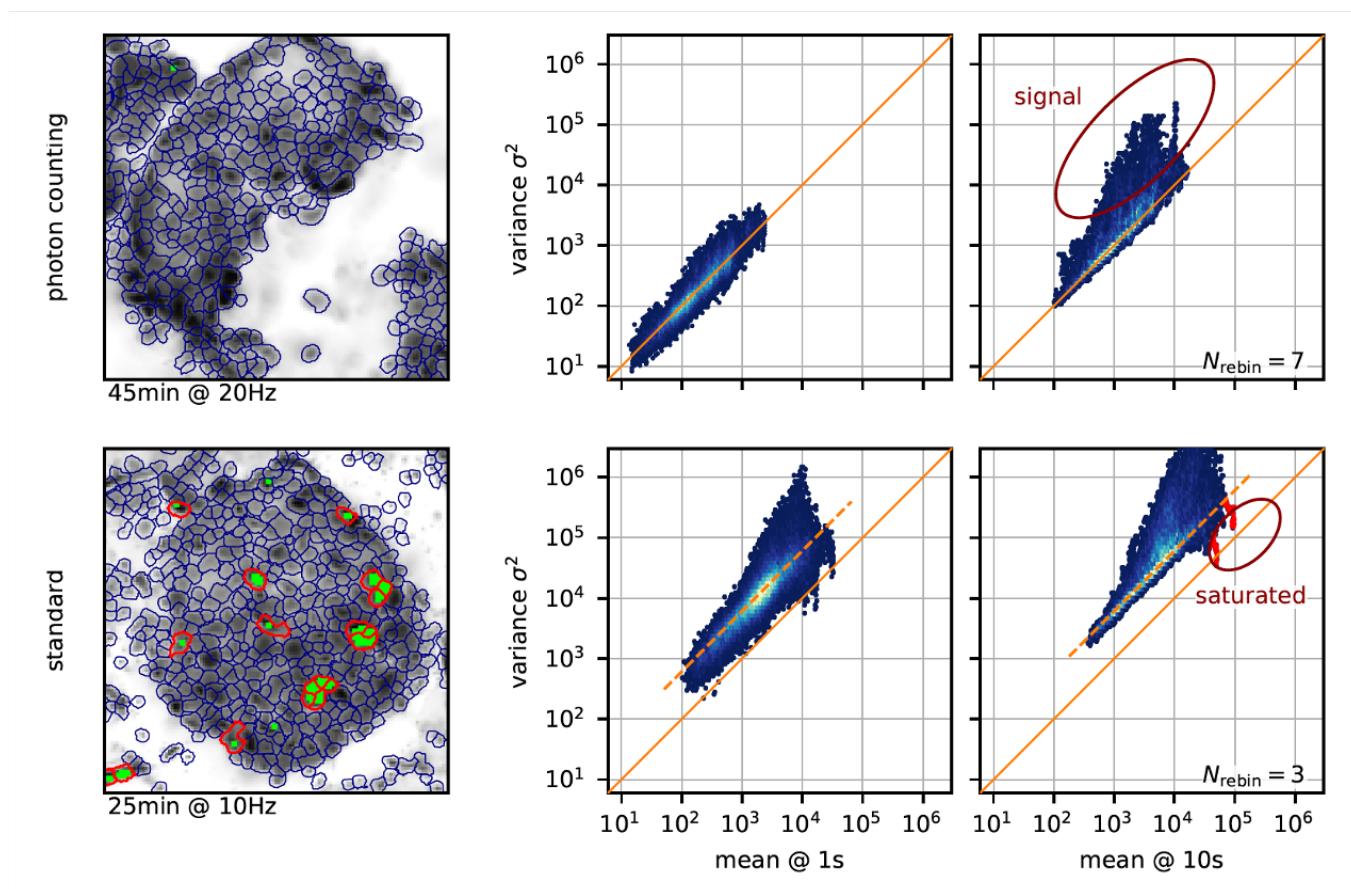


Figure S6-3. *Left:* Regions of interest for the two experiments recorded using the raw photon-counting mode (*top*) and the standard mode with large gain (*bottom*). Pixels which had at least 10 saturated values are shown in green. In thick red contours we emphasise ROIs with at least 30 green pixels used to emphasise the influence of saturation (see below). For each recording, we filter the ROI traces at 1s (*middle*) and 10s (*right*) to separate the trace into slow and fast component. For each ROI we then randomly choose 100 values of the slow component together with the variance of the fast component from a window around the same timepoint, with window size the same as the timescale. (Note the log-log scale of the axes, so that for a dependence of type $y = kx^n$, the apparent offset in the log-log plot is defined by slope of the dependence k , and the apparent slope in the plot by the exponent n .) In agreement with our assumptions, the variances and the means are linearly dependent ($n = 1$), and in the case of raw photon counts, the dependence is exactly 1 (solid diagonal line $\sigma^2 = \mu$). In the standard mode with non-unit gain, the dependence is still linear, yet with a slope larger than one (dashed orange line). Points above the bulk in this view are due to windows with larger variance, and presumably connected with activity (at the appropriate timescale). Points below the bulk are due to undervariate windows. They are concentrated at high values and are due to saturated pixels. In the lower right plot we emphasise this fact by showing the points from saturated ROIs in red.

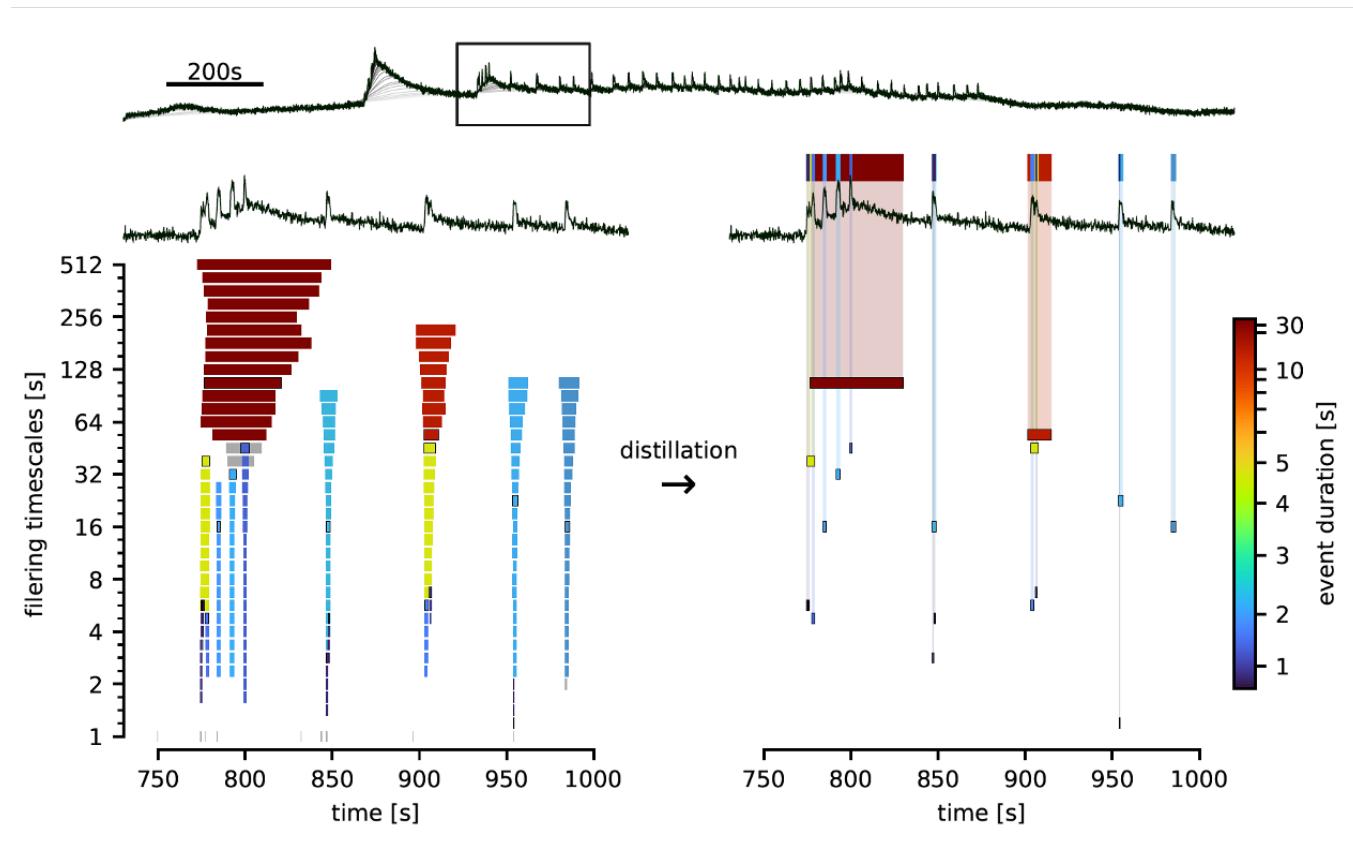
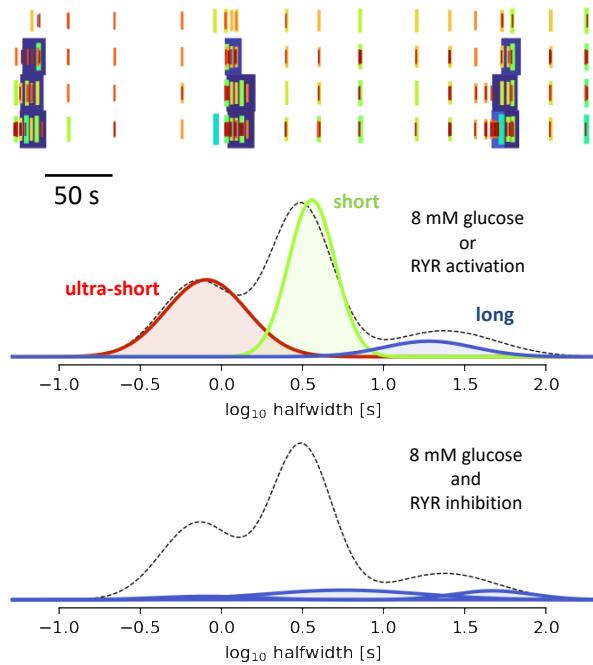
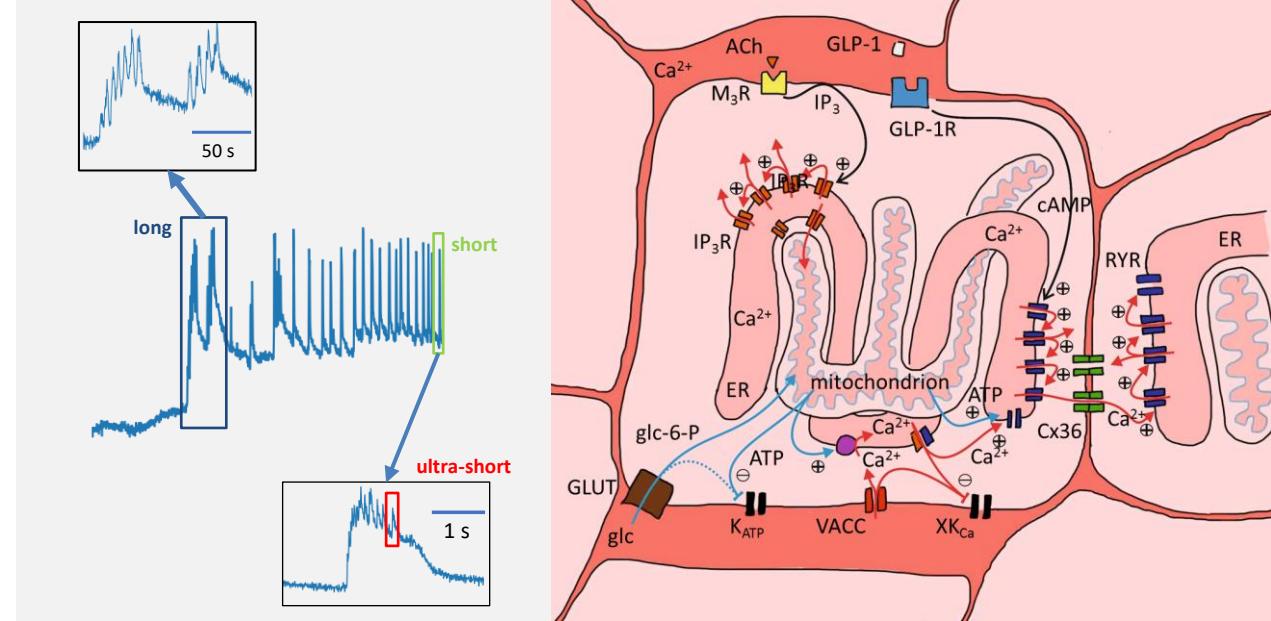



Figure S6-4. **A**, Example of a trace (black) and slow components in sequential filtering (shades of grey). **B**, Close-up view of the indicated small region from (A) and a representation of all candidate events in that region detected through sequential filtering. Each bar represents an event. Vertical position corresponds to the timescale at which the event was detected, the horizontal boundaries correspond to beginning and end time. In grey we show events that are deemed false positives, because they are detected at too few filtering timescales. Others events belong to groups of similar events which are then considered real; we show a boundary around the bar of the event closest to the one finally distilled. It's time boundaries are set to median of the whole group, and the colour indicates its halfwidth. **C**, Distillation greatly removes redundancies and false positive candidates. Only robust events are selected for further analysis (see text for details). In the top part we represent the distilled events at single height, in a more compact view. We choose a colour code (mapping to a hill curve) which is nearly linear up to a few seconds, to emphasise the colour difference at the timescales most interesting for our analysis.


CICR in beta cells

METHODS

Automated detection of ROIs and events

OUTCOME Temporal summation of $[Ca^{2+}]_c$ events

CONCLUSION

Intracellular Ca^{2+} release is both sufficient and necessary for glucose-dependent activity of beta cells in mice.

doi here