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ABSTRACT

The mechanisms by which flaviviruses use non-canonical translation to support their

replication in host cells are largely unknown. Here we investigated how the integrated stress

response (ISR), which promotes translational arrest by eIF2ɑ phosphorylation (p‒eIF2ɑ),

regulates flavivirus replication. During Dengue virus (DENV) and Zika virus (ZIKV)

infection, eIF2ɑ phosphorylation peaked at 24 hours post infection and was dependent on

PKR but not type I interferon. The ISR is activated downstream of p-eIF2α during infection

with either virus, but translation arrest only occurred following DENV4 infection. Despite

this difference, both DENV4 and ZIKV replication was impaired in cells lacking PKR,

independent of IFN-I/NF-kB signalling or cell viability. By using a ZIKV 5′ UTR reporter

system as a model, we found that this region of the genome is sufficient to promote an

enhancement of viral mRNA translation in the presence of an active ISR. Together we
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provide evidence that flaviviruses escape ISR translational arrest and co-opt this response to

increase viral replication.

INTRODUCTION

The Flavivirus genus is part of the Flaviviridae family and contains the causative

agents of several human diseases of high global impact, such as Dengue virus (DENV), Zika

virus (ZIKV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), West Nile virus

(WNV) and others. Flaviviruses are enveloped ssRNA(+) viruses of about 50 nm in diameter

with 10-11 kb genome containing a single ORF flanked by two non-coding segments (UTRs)

5′ - (capped) and 3′ - (non-polyadenylated) (1). Flavivirus replication is cytoplasmic in strong

association with ER, forming viral replication complexes by convolution of ER membrane

(2).

Despite the presence of a 5′ -cap on its genome, DENV can also use a

cap-independent mechanism for protein synthesis under the suppression of the cap-binding

protein, eIF4E (3). Using DENV and ZIKV, this mechanism was later shown to be mediated

by an internal ribosomal entry site (IRES) localised in viral 5'-UTR (4). A recent report has

confirmed the existence of the IRES element (5), indicating, along with previous suggestions

(3, 6, 7) that a cap-dependent translation would be used for viral polyprotein synthesis until

the suppression of canonical translation initiation when a switch to cap-independent

translation would take place. This alternative cap-independent mechanism, including cell

conditions to promote the switch in translation mode, remains to be fully characterised.

A well-known cellular control over the translation machinery is coordinated by four

kinases of the integrated stress response (ISR), that act as sensors of different stressors. They

are: (i) PKR, activated by double-stranded RNA (dsRNA); (ii) HRI, activated by oxidative

stress and/or heme deficiency; (iii) PERK, activated by endoplasmic reticulum stress; and (iv)
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GCN2, activated by deprivation of amino acids (8–10). Therefore, ISR is capable of sensing

viral infections directly by detecting replication intermediates (dsRNA) or indirectly via

structural or metabolic stresses. A shared target of these four kinases is the subunit alpha of

the translation factor eIF2 (eIF2α), which is part of the ternary complex (TC,

eIF2-GTP-tRNAi
Met), necessary for translation initiation. Phosphorylation of eIF2α (p-eIF2α)

prevents the exchange of the associated inactive GDP for the active GTP, blocking its

recycling for participation in the formation of new 43S complexes, thus inhibiting general

protein synthesis (11, 12).

In the present work, we show that PKR is the main kinase leading to eIF2α

phosphorylation and cellular protein translation arrest during DENV4 and ZIKV infection.

EIF2α phosphorylation, however, is linked to the establishment of an optimal cellular

environment for virus replication. Using ZIKV as a model, we demonstrate that the viral

5´-UTR is required to promote enhanced viral translation when eIF2α is phosphorylated.

These results suggest that ISR may provide the necessary conditions for viral alternative

translation boosting viral replication.

RESULTS

DENV4 and ZIKV induce ISR activation during infection

DENV4 and ZIKV infections were carried out in human lung A549 cells. These

cells support viral replication and respond to type one interferons (IFN-I) (4, 13–17).

Interferon stimulated genes (ISGs) are central for flavivirus restriction. We evaluated eIF2α

phosphorylation during DENV4 and ZIKV infection as an ISR activation marker. By

immunoblot analysis, we showed that both viruses induce p‒eIF2α by 24 hours post infection

(h p.i.) (Figure 1A). Furthermore, this time point coincides with the detection of p-PKR
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(Thr451), the activated form of the protein, suggesting the participation of this kinase in ISR

activation during infection. Quantification by flow cytometry enabled us to determine that

eIF2α phosphorylation happened after 12 h p.i. and peaking at 24 h p.i. (Figure 1B). This

time frame is surprisingly late, considering that from at least 12 h p.i. infectious virus

particles can already be detected in cell supernatants under these experimental conditions

(Supplementary Figure 1).

To further investigate the context of eIF2α phosphorylation, cells were co-stained

with a monoclonal antibody directed against the flavivirus envelope protein (Figure 1C-D).

At 24 h p.i. DENV4 infected cells exhibited a significant double-positive population, with

about 90% of p‒eIF2α+ cells being infected. However, during ZIKV infection, there is a

lower proportion of double-positive cells, with about 40% of envelope positive cells in the

p‒eIF2α+ population. These cells may be infected with ZIKV, but they do not yet express

enough envelope protein to allow detectable staining. The same profile of co-staining

quantified by cytometry could also be visualised by immunofluorescence (Figure 1D).

In summary, although both infections led to different profiles of anti‒p‒eIF2α and

anti‒flavivirus co-staining, both viruses promoted stress responses within the same time

frame.
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Figure 1 – DENV4 and ZIKV promote phosphorylation of eIF2α in A549 cells. A549

cells were infected with DENV4 (MOI 2) or ZIKV (MOI 3) and harvested at the indicated

times for analysis. (A) Immunoblot analysis of cell extracts resolved in denaturing

SDS-PAGE. (B) Flow cytometry analysis for quantification of cells expressing p‒eIF2α

within the total population (C) Dot plot and Venn diagram of representative results from

co-staining with anti-flavivirus E protein and anti-p‒eIF2α at 24 h p.i. analysed by flow

cytometry and (D) immunofluorescence of infections under the same conditions,
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representative images of three independent experiments. In the column chart, the bars

represent the means ± SEM from three independent experiments. Statistical analysis was

performed by paired t test comparing infected samples to the respective uninfected control. *:

p ≤0.05; **: p ≤0.01; ***: p ≤0.001; ns / no markup: no statistical difference; h p.i: hours

post-infection.

Phosphorylation of eIF2α during DENV4/ZIKV infection is PKR-dependent and IFN-I

independent

To investigate which ISR kinase promotes eIF2α phosphorylation in our model, gene

deletion by CRISPR-Cas9 was used to produce A549 PKR and IFNAR knockout cell lines

(Supplementary Figure 2A). In PKR-/- cells infected with DENV4 or ZIKV, p‒eIF2α was

abrogated indicating that ISR activation promoted by both viruses is mostly dependent on this

kinase (Figure 2A,B). Since PKR is an IFN-stimulated gene (ISG), and considering the late

ISR activation, the participation of IFN-I signalling in eIF2α phosphorylation was assessed.

However, there was no change in the level of p‒eIF2α in infected IFNAR-/- A549s compared

to WT cells (Figure 2A,B). Likewise, experiments using a PKR/IFNAR double-knockout

(Supplementary Figure 2B) lineage confirmed the requirement for constitutive PKR

expression to drive eIF2α phosphorylation.

The persistence of a small population p‒eIF2α+ in the PKR-/- cells infected with

ZIKV, indicates the activation of other ISR kinase by this virus. Therefore, we decided to

investigate PERK activity using the selective inhibitor, GSK2656157 (18). GSK2656157

(PERKi) treatment did not alter the induction of p‒eIF2α in DENV4 infected cells but

promoted a small decrease in p‒eIF2α population in ZIKV infected cells (Figure 2C). This

demonstrated a minor participation of PERK in the ISR activation in the ZIKV model.
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In summary, the phosphorylation of eIF2α during DENV4 or ZIKV infection in this

model was mainly PKR dependent and IFN-I independent.

Figure 2 – Phosphorylation of eIF2α during DENV4 or ZIKV infections is

PKR-dependent and IFN-independent. (A) Flow cytometry analysis for quantification of

cells expressing p‒eIF2α within the total population of the indicated lineages of A549 cells

infected with DENV4 (MOI 2) at 24 h p.i.; and (B) same experiment using ZIKV (MOI 3)

(C) Flow cytometry analysis for quantification of cells expressing p‒eIF2α within the total

population A549 WT and PKR-/-cells infected with DENV4 (MOI 2) or ZIKV (MOI 3) or

treated with UPR inducer thapsigargin 2µM for 45 minutes in the presence or absence of the

PERK inhibitor GSK2656157 (5 µM) for 24h; and (D) immunoblot analysis of cell extracts

from the same experiment resolved in denaturing SDS-PAGE. Representative image of two

independent experiments. DKO: double IFNAR-/-/PKR-/- knockout. In column charts, bars

represent the mean ± SEM from three independent experiments. Statistical analysis was
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performed by one-way ANOVA, followed by Tukey’s test for multiple comparisons. *: p

≤0.05; **: p ≤0.01; ***: p ≤0.001; ns / no markup: no statistical difference.

PKR is not blocked by DENV4 or ZIKV but shows delayed activation

The late PKR activation during infection with both viruses is not explained by the

need of type I IFN signalling to boost PKR levels. Therefore, we tested whether PKR activity

is blocked by infection at earlier time points. To test this, the dsRNA analogue, poly (I:C),

was used to stimulate PKR. Poly (I:C) transfection was performed at 3 h p.i. and cells were

analysed at 9 h p.i., that is, before virus-promoted eIF2α phosphorylation (Figure 3A). The

comparable levels of p‒eIF2α between mock and infected cells stimulated with poly (I:C)

suggest that PKR is not blocked by DENV4 or ZIKV in the early stages of infection (Figure

3A). The absence of p‒eIF2α in PKR-/- cells demonstrates that eIF2α phosphorylation

induced by poly (I:C) is exclusively dependent on this kinase.

If PKR is not blocked in the early stages of infection by DENV4 or ZIKV, the late

ISR activation could be due to the amount of dsRNA in infected cells not reaching the

threshold required for PKR activation. To test this hypothesis, infected cells were incubated

in a semisolid medium so viral spread happens from cell to cell by juxtaposition allowing

temporal inferences of events based on cell location from the centre of the viral foci.

Immunofluorescence of DENV4 infected cells shows that cells at the edge of the viral foci do

not phosphorylate eIF2α despite the presence of large amounts of dsRNA (Figure 3B). This

delayed activation of PKR may be explained by the ability of flaviviruses to hide their

dsRNA inside viral replication complexes, as suggested for other RNA sensors (19–21).

Another possibility is PKR being activated not by viral dsRNA, but by mitochondrial RNA as

a consequence of viral suppression of mitophagy (22). In either case, these results indicate

that at this stage of the infection, ISR activation by PKR is delayed, occurring in infected
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cells after the establishment of viral replication complexes. Further studies will be necessary

to determine the nature of this delay.

Figure 3 ‒ PKR is not blocked by DENV4 or ZIKV but shows delayed activation. (A)

Cells were infected with DENV4 (MOI 2) and ZIKV (MOI 3) and incubated for 1h 30min

before the virus inoculum was removed. Then, cells were stimulated with poly (I:C) at 3 h p.i.

with 10 μg/ml for 6 hours. Analysis for quantification of the cell population expressing

p‒eIF2α after stimulation with poly (I:C) was performed by flow cytometry. Data from three

independent experiments. (B) Immunofluorescence of A549 WT cells infected with DENV4

for 48 h p.i. in semisolid medium. Cells fixed, permeabilized and co-stained with DAPI,

anti-dsRNA and anti-p‒eIF2α. Representative image of three independent experiments. In the

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 12, 2023. ; https://doi.org/10.1101/2021.04.08.439069doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.439069
http://creativecommons.org/licenses/by-nd/4.0/


column chart, bars represent the means ± SEM. Statistical analysis was performed by

one-way ANOVA, followed by Tukey’s test for multiple comparisons. **: p ≤0.01; ns: no

statistical difference.

DENV4, but not ZIKV, induces translation arrest in infected cells

To investigate the consequences of eIF2α phosphorylation on cellular and viral

protein synthesis, viral infections were performed in semi-solid medium and a puromycin

labelling protocol was used to assess general translation activity (23). By

immunofluorescence analysis, it was possible to observe that p‒eIF2α in WT lineage

promotes cellular translation arrest during DENV4 infection, evidenced by the absence of

puromycin incorporation in the centre of viral plaques (Figure 4A). At the edges of the

plaque, however, anti-puromycin and anti-flavivirus simultaneous staining reinforces data

presented previously (Fig 3B) that translation arrest happens relatively late during DENV4

infection. In PKR-/- cells, however, co-staining is present throughout the viral plaque,

suggesting cell translation downregulation during DENV4 infection is caused by ISR

activation via PKR.

Surprisingly for ZIKV, there is a different profile, with more intense incorporation of

puromycin by infected WT cells than bystander cells (Figure 4B). Bystander cells are here

defined as cells that were in the same environment of infected cells (i.e., same well or

organism) but viral protein was not detected. Anti-puromycin signal is stronger in the

perinuclear region which coincides with viral replication sites (Figure 4C). The phenotype of

increased translation activity in infected cells is lost in PKR-/-cell lines, suggesting that PKR

activation allows increased viral translation.
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Figure 4 - DENV4, but not ZIKV, induces PKR-dependent translation arrest in infected

cells. Immunofluorescence of A549 WT or PKR-/- cells infected with DENV4 (A) or ZIKV

(B) for 48 h p.i. in semisolid medium. Cells labelled with puromycin before fixation and
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permeabilization. Co-staining with DAPI, anti-puromycin, anti-flavivirus envelope (E) and

secondary antibodies. (C) Zoom on WT cells infected with ZIKV for a better appreciation of

the immunostaining pattern. Representative images of three different experiments.

PKR is required for expression of eIF2α-downstream genes and proteins during DENV4

and ZIKV infections

Phosphorylation of eIF2α as indicated above results in a general shutdown of protein

synthesis, however, translation of the activation transcription factor 4 (ATF4) is increased in

this situation (24, 25) leading to the induction of its target genes DDIT3 (CHOP) and

GADD34 involved in cellular stress resolution pathways (26, 27)GADD34 is responsible for

eIF2α de-phosphorylation hence resuming global translation. Thus, to evaluate the impact of

PKR deficiency in events downstream of eIF2α phosphorylation, the expression of DDIT3

(CHOP) and GADD34 was analysed by qPCR. As observed in Figure 5A, both DDIT3 and

GADD34 were less expressed in PKR-/- cells than in WT cells during DENV4 and ZIKV

infection. This downregulation is subtle, possibly due to control of these genes by other

pathways such as IRF3/7 (28, 29) and STAT3-NFkB or NF-YA (30, 31). Consistent with its

regulation by eIF2:p-eIF2 levels (32, 33), when GADD34 protein is analysed by

immunoblotting (Figure 5B) or flow cytometry (Figure 5C), this protein shows a pattern of

expression similar to that of p‒eIF2α in WT and PKR-/- cells (Fig. 2A-B), demonstrating the

transcriptional and post-transcriptional cellular control over eIF2α downstream signalling.

Together, these results show that during infection by DENV4 and ZIKV, the

activation of the stress response is not restricted to phosphorylation of PKR and eIF2α; and

reinforces that the activation of this pathway is abolished in the PKR-/- cells.
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Figure 5 ‒ PKR is required for expression of eIF2α-downstream genes and proteins

during DENV4/ZIKV infections. A549 WT or PKR-/- cells infected with DENV4 (MOI 2)

or ZIKV (MOI 3) and harvested at 24 h p.i. for analysis. (A) Quantification by RT-qPCR of

DDIT3 and GADD34 gene expression. Relative expression calculated by 2-ΔΔCt methods

using mock cells as reference. (B) Immunoblot analysis of GADD34 protein expression.

Representative image of two independent experiments. (C) Flow cytometry analysis for

quantification of cells expressing GADD34 within the total population. In the column charts,

bars represent the means ± SEM from three independent experiments. Statistical analysis was

performed by paired t test comparing the two cell lineages under the same conditions. *: p

≤0.05; **: p ≤0.01; ***: p ≤0.001; ns / no markup: no statistical difference.

Disruption of the PKR‒eIF2α pathway impairs DENV4 and ZIKV replication

Considering the efficacy of p-eIF2α in blocking cellular translation and the

dependency of PKR for this phosphorylation, we evaluated the impact of PKR deletion on

virus replication. Surprisingly, replication of both viruses was impaired in PKR-/-cells, shown

by lower virus titres (Figure 6A) and smaller plaque sizes and number of cells/plaque (Figure

6B-C). Viral genome replication, assessed by qPCR, does not show statistically significant

difference, but a trend of lower replication in PKR-/- cells can be seen and may reflect

impairment of other viral replication steps (Figure 6D).
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The lower virus titres and diminished plaque sizes in PKR-/- cells are particularly

counterintuitive since this cell line is defective in activating the whole antiviral pathway

coordinated by PKR. This finding indicated the possibility that the PKR deletion has a

negative impact on other antiviral pathways and/or these viruses could have co-opted the ISR

to promote viral replication.

Figure 6 - Disruption of the PKR‒eIF2α pathway impairs DENV4 and ZIKV

replication. (A) Viral titration from A549 WT or PKR-/- cells infected with DENV4 (MOI 2)

or ZIKV (MOI 3) and harvested at 24 h p.i. for analysis. Plaque size comparison of virus in

A549 WT or PKR-/- cells infected with DENV4 and incubated for 8 days or infected with

ZIKV and incubated for 5 days: measurements of (B) plaque areas and (C) number of cells

per plaque from immunofluorescence. (D) Quantification by RT-qPCR of DENV4 or ZIKV

viral RNA from A549 WT or PKR-/- cells infected with DENV4 (MOI 2) or ZIKV (MOI 3)

and harvested at 24 h p.i. for analysis. Relative expression calculated by 2-ΔΔCt method using
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mock cells as a reference for cell genes and WT cells as reference for viral genome. PFU:

plate forming units; FFU: focus forming units. In all charts, bars represent the means ± SEM

from three independent experiments. Statistical analysis was performed by paired t test

comparing the two cell lineages under the same conditions. *: p ≤0.05; **: p ≤0.01; ***: p

≤0.001; ns / no markup: no statistical difference.

PKR deletion does not affect the innate immune response or cell viability

The phenotype of reduced viral replication in PKR-/- lineage could be explained by

changes in the cellular innate immune response, as several studies report the role of PKR in

sustaining NF-κB and IFN signalling (34–39) and promoting IFNγ and TNFα expression (40,

41). To investigate the possibility of alterations in innate immune pathways as a result of

PKR deletion, the gene and protein expression of elements of this cellular response were

evaluated.

Genes activated by IRF3/7, IFN-I or NF-κB did not show any significant difference

in transcription between WT and PKR-/- cells during virus infections (Figure 7A).

Immunoblotting corroborated this transcriptional analysis, as no differences were observed in

STAT1 activation, or IFIT1 and ISG15 expression levels between the two cell lines, thus

demonstrating that virus-induced IFN-I signalling was not affected by PKR deletion (Figure

7B).

As PKR could also play a role in cell survival during viral infection (42), cell

viability was analysed at 24 h p.i. by flow-cytometry. Also in this assay, no difference

between WT and PKR-/- cells was observed during virus infections (Figure 7C).

These results allow us to conclude that PKR deletion does not significantly affect

the innate immune response or cell survival during DENV4 or ZIKV infection. Therefore,
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alterations in these pathways do not explain the lower viral replication seen in the PKR-/-

cells.

Figure 7 - PKR deletion does not affect the innate immune response or cell viability.

A549 WT or PKR-/- cells infected with DENV4 (MOI 2) or ZIKV (MOI 3) and harvested at

24 h p.i. for analysis. (A) Quantification by RT-qPCR of IFNβ, IFNλ, ISG15 and TNFα gene

expression. Relative expression calculated by 2-ΔΔCt methods using mock cells as a reference.

(B) Immunoblot analysis of cell extracts resolved in denaturing SDS-PAGE. Representative

image of two independent experiments. (C) Flow cytometry analysis for quantification of

living cells by staining with Zombie-NIR viability dye. Mock WT cells set as 100%

reference. In the column charts, bars represent the means ± SEM from three independent

experiments. Statistical analysis was performed by paired t test comparing the two cell

lineages under the same conditions. *: p ≤0.05; **: p ≤0.01; ***: p ≤0.001; ns / no markup:

no statistical difference.
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ZIKV co-opts PKR‒eIF2α pathway to increase viral translation through its 5′ -UTR

ISR control over cell translation can promote the expression of certain mRNAs as a

consequence of their 5′ -UTR sequence and/or structure (33, 43). Therefore, we next sought

to investigate whether viral 5′ -UTR could subvert the ISR to promote replication. Hence, a

translation activity assay was performed based on the ZIKV genome using a luciferase

reporter readout. For this assay, a reporter plasmid was designed with the first 194

nucleotides of ZIKV, this includes the 5′ -UTR followed by the first 87 nt from the viral

polyprotein fused in frame with the firefly luciferase gene (Figure 8A). A control plasmid for

expression of Renilla luciferase with the same backbone that the firefly luciferase reporter

was co-transfected for data normalisation. Results are presented in Relative Translation

Activity (RTA), given in percentage, using values obtained with WT mock cells as reference

(100%).

Cells were infected with ZIKV (or MOCK treated) for 12 hours before plasmid

transfection, and then analysed at 36 h p.i. to maximise the time of luciferase expression

under the context of ISR activation. The comparison between mock and infected conditions

for each cell line reveals that virus infection promotes a 2-fold increase in translation activity

by WT and IFNAR-/-cells (Figure 8B). In contrast, in PKR-/- and double knockout cells this

effect is suppressed and the relative translation activity in these cells is similar or lower to

WT uninfected cells. These results suggest that the ZIKV 5′ -UTR is sufficient to promote a

relative advantage of mRNA translation in the presence of p‒eIF2α.
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Figure 8 - ZIKV 5′ -UTR is sufficient to increase relative reporter translation in

PKR‒eIF2α competent cells. (A) Diagram of reporter construct used for the assay,

containing the first 87 nt of viral capsid protein. (B) Relative translation of ZIKV reporter in

A549 (WT/PKR-/-/IFNAR-/-/DKO) cells infected with ZIKV (MOI 3), transfected at 12 h p.i.

and analysed at 36 h p.i. In the column chart, the bars represent the means ± SEM from three

independent experiments. *: p ≤0.05; **: p ≤0.01; ***: p ≤0.001; ns / no markup: no

statistical difference.

DISCUSSION

Flaviviruses efficiently translate their genome via a cap-dependent translation

mechanism. However, following suppression of canonical translation initiation that takes

place during infection, it has been proposed that a switch to cap-independent translation

occurs (3, 5, 44). Cell conditions to promote the switch in translation mode and the required

auxiliary factors (e.g. eIFs) for alternative translation remain to be fully characterised.

In the present work, we investigated how the ISR, known to promote translation arrest

through eIF2α phosphorylation, would play a role in this elusive non-canonical translation

mechanism employed by flaviviruses. Using A549 cells we verified that PKR promotes
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p-eIF2α during DENV4 and ZIKV infections. In accordance, previous reports have also

detected p-eIF2α in A549 cells during DENV (6, 45), ZIKV (46) and JEV (47) infections; as

well as studies using other cell lines (48, 49). Further characterization of p-eIF2α was

performed by flow cytometry to allow quantification and co-staining for other markers.

Although DENV4 and ZIKV promote eIF2α phosphorylation within the same time frame,

these viruses displayed different profiles of anti‒p‒eIF2α and anti‒flavivirus envelope

protein co-staining, indicating distinct dynamics between viral replication and activation of

stress response for each virus. Therefore, cytometry is here proposed as a complementary

method to investigate ISR activation, in addition to immunoblotting and

immunofluorescence, as it provides more detailed information.

It is worth noting that a few studies observe the activation of the PERK pathway of

the unfolded protein response (UPR) during DENV and ZIKV infections without excluding

the participation of other ISR kinases especially regarding eIF2α phosphorylation (50–54). In

the present model, PERK plays a minor role in ZIKV-induced p-eIF2α. Here, PKR is clearly

accountable for the majority of ISR activation during infection with both DENV4 and ZIKV.

The ISR was shown to be activated by PKR to downstream genes via eIF2α phosphorylation

in WT cells but abolished in PKR-/- cells. However, other flaviviruses such as JEV and WNV

seem to phosphorylate eIF2α at least partially dependent on PERK (50–54). For JEV, this

could be due to PKR blocking promoted by viral NS2a (47).

An increased expression of p-eIF2α downstream genes was also found in Huh7 cells

infected with DENV (55). In this study, single-cell RNA-seq analysis showed upregulation of

DDIT3 and GADD34 (aka PPP1R15A) mRNAs, as well as of other ATF4-downstream genes

(ASNS, CTH, HERPUD1, SOD2, TRIB3) (56–60) within the infected population

(Supplementary Figure 3A-B). A second study using the same approach in PBMC (61)

revealed an upregulation of GADD34 mRNA in DENV-infected monocytes and T cells
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(Supplementary Figure 3C-D). The upregulation of these mRNAs suggests ISR activation

after DENV infection in these cell models. However, as shown here, the expression of these

genes is also regulated by post-transcriptional mechanisms dependent on the presence of

p-eIF2α.

In our model, a PKR-dependent translation arrest was confirmed in DENV-infected

cells as expected, but curiously not in ZIKV-infected cells. For the latter, increased

puromycin incorporation in perinuclear areas indicates a possible viral escape mechanism

from ISR translation control. This difference might be related to the distinct dynamics

between viral replication and activation of stress response for each virus seen in the

co-staining assay. Therefore, it calls for further investigation using methods such as live-cell

imaging, to track down the sequence of events during infection.

Roth et al, reported a general translation arrest after infection of Huh7 cells with

several Flavivirus species and strains despite the absence of p-eIF2α (7). This conflicting

result could be due to the different cells used. Although we do not exclude the possibility that

other translation suppression mechanisms, such as RIDD (62), RNase L (63) and 4E-BP

dephosphorylation (64, 65), can also take place in our model in later times after infection.

Despite the differences in translational activity under activated ISR, both DENV4

and ZIKV presented an approximated 50% less viral replication in PKR-/- cells. This decrease

suggests that ISR activation is not essential for viral replication but rather exploited by both

viruses to counter a major cellular antiviral pathway for their own benefit. Indeed, after

discarding the hypothesis of PKR deletion disturbing common antiviral pathways in this

model (e.g., type I IFN expression, NFκB activation and apoptosis), our translation activity

assay has shown that the ZIKV 5′ -UTR promotes a relative advantage of mRNA translation

in the presence of p‒eIF2α. This finding reveals that ZIKV not only escapes ISR translation

arrest, but also uses this response to increase viral replication. We hypothesise that this could
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be achieved by the presence of multiple upstream open reading frames (uORFs) in the 5′

region of the ZIKV genome (66). The presence of multiple uORFs is what allows the main

ORF of ATF4 to be translated in the presence of p-eIF2α (24, 25), therefore, a similar strategy

could be used by ZIKV to translate the viral polyprotein during ISR activation.

However, we can not rule out that viral alternative translation that does not require

eIF2/TC for initiation is also used by DENV4 and ZIKV. The independence of eIF2 for

translation initiation under stress conditions has been previously reported within Flaviviridae

family, since HCV (Hepacivirus genus) and Pestivirus C (formerly CSFV, Pestivirus genus)

IRES present similar functioning through IRES dependent mechanisms (67–69).

Here we demonstrate that DENV4 and ZIKV induce eIF2α phosphorylation in a PKR

dependent manner and that its absence is detrimental for optimal virus replication. Using

ZIKV as a model we showed that this effect maps to the 5′-UTR of the viral genome.

Altogether these results suggest that the activation of the PKR/p-eIF2α axis may be necessary

for the engagement of the non-canonical translation employed by flaviviruses.

Supplementary Figure 1 – Viral titration in VERO cells of supernatant from A549 WT cells

infected with (A) DENV4 (MOI 2) or (B) ZIKV (MOI 3) harvested at 12 and 24 h p.i. for
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analysis. PFU: plate forming units; FFU: focus forming units. In all charts, points represent

the means ± SEM from three independent experiments.

Supplementary Figure 2 – Characterization of knockout cell lines. (A) Clones of A549

PKR-/-: Immunoblot of unstimulated and stimulated cells with 100 IU/ml of IFN-α2a for 12

hours demonstrating successful PKR deletion. (B) Clones of A549 IFNAR-/-/PKR-/- after

stimulation with 100 IU/ml of IFN-α2a for 12 hours demonstrating the deletion of PKR on

the parental IFNAR-/- cells. DKO: double-knockout.
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Supplementary figure 3 – p‒eIF2α-downstream genes are upregulated in

DENV-infected Huh7 cells and PBMCs. (A) Dataset from (55), of DENV-infected Huh7

cells, analysed by single-cell RNA-seq. Heatmap representing expression variability of

stress-related genes in uninfected, bystander and infected cells; and (B) violin plot

representing the expression of p-eIF2α- and ATF4-downstream genes in uninfected,

bystander and infected cell populations. (C) Dataset from (61), of PBMCs from patients

infected with DENV, analysed by single-cell RNA-seq. Dot plot representing the expression

of PPP1R15A/GADD34 in different cell population and infection conditions; and (D) violin

plot representing the expression of PPP1R15A/GADD34 the whole PBMC population under

uninfected, bystander and infected conditions.
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MATERIALS AND METHODS

Cells and viruses. VERO-E6 (ATCC® CRL-1586™) A549 (ATCC® CCL-185™)

and derived cell lines were grown at 37° C/5% CO2 in DMEM-F12 medium supplemented

with 1 U/ml penicillin /streptomycin and 5% foetal bovine serum. C6/36 cells (ATCC®

CRL-1660 were grown at 28° C in Leibovitz's L-15 medium supplemented with 1 U/ml

penicillin /streptomycin and 5% fetal bovine serum. IFNAR1 knockout cell line has been

previously described (70, 71). PKR-/- and DKO (IFNAR-/-/PKR-/-) were produced with a pair

of sgRNA guides (PKR1-FWD: CACCGATTATGAACAGTGTGCATCG; PKR1-REV:

AAACCGATGCACACTGTTCATAATC;

PKR2-FWD:CACCGAAACAGTTCTTCGTTGCTTA; PKR2-REV:

AAACTAAGCAACGAAGAACTGTTTC) cloned into pSpCas9(BB)-2A-Puro (PX459)

vector (Addgene) according to developer’s protocol (72). Clonal populations of new cell lines

were isolated and tested to confirm gene deletion (Supplementary figure 2). Experiments

were carried out with the 1B6 clone of PKR-/- cells and the 2B6 clone of DKO cells.

DENV-4 virus, TVP-360 strain (73) and ZIKV, strain BR 2015/15261 (74) were

kindly provided by Dr Claudia N. Duarte dos Santos (Fiocruz-PR, Brazil). Viral stocks were

produced in C6/36 cells and all viral titrations were performed in VERO cells by

plaque-forming units (PFU) or focus-forming units (FFU).

Poly (I:C)Transfection. Cell stimulation with poly (I:C) (“polyinosinic:

polycytidylic acid”) was performed with Lipofectamine 3000 (Invitrogen) following

manufacturer’s instructions for A459 cells at the proportion of 1 ug of poly(I:C) in 1 ml of

medium in a 12-well plate.

Western-blots. Samples were lysed on ice with RIPA buffer (150 mM NaCl; 50 mM

Tris-HCl pH8; 1% NP40; 0.1% SDS; 0.5% sodium deoxycholate) supplemented with

cOmplete™ and PhosSTOP inhibitors™ (Roche) according to manufacturer's
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recommendations. Protein extracts were heat-denatured in the loading buffer and resolved in

SDS-PAGE. Antibodies used for immunoblot reactions were: PKR antibody (Santa Cruz

Biotechnology, Inc, sc-707, dilution 1:100); phospho-PKR (Thr451) polyclonal antibody,

Invitrogen, 44-668G, dilution 1:100); phospho-eIF2α (Ser51) antibody (Cell Signaling

Technology, Inc., #9721, dilution 1:1000); GADD34 antibody (Proteintech, 10449-1-AP,

dilution 1:500); α-tubulin (DM1A) mAb (Cell Signaling Technology, Inc., #3873, dilution

1:1000); STAT1 antibody (AbCam, ab3987, dilution 1:1000); phospho-STAT1(Y701) M135

(Abcam, ab29045, dilution 1:1000); IFIT1 polyclonal antibody (Thermo/Pierce, PA3-848,

dilution 1:1000); ISG15 mouse mAb (R&D System, MAB4845, dilution 1:1000); anti-mouse

IgG, HRP-linked Antibody (Cell Signaling Technology, Inc., #7076, dilution 1:5000);

anti-rabbit IgG, HRP-linked Antibody, Cell Signaling Technology, Inc., #7074, dilution

1:5000). The imaging of blots was carried out on the Chemidoc MP (Bio-Rad).

Flow cytometry. Cells were fixed in BD-Phosflow Lyse/Fix buffer. Primary and

secondary antibodies were diluted in permeabilization buffer (0.1% saponin; 1% fetal bovine

serum, in PBS) for staining. Between each step, samples were washed in blocking buffer (1%

fetal bovine serum in PBS). Antibodies and dyes used for flow cytometry were:

phospho-eIF2α (Ser51) antibody (Cell Signaling Technology, Inc., #3597, dilution 1:300);

human monoclonal antibody DV 18.4 (75)(dilution 1:100); GADD34 antibody (Proteintech,

10449-1-AP, dilution 1:250 (IF/FACS); Zombie-NIR fixable viability dye (BioLegend,

423105, dilution 1:750); Goat anti-Rabbit IgG (H+L) Alexa Fluor 647 conjugated

(Invitrogen, A-21245, dilution 1:500); Goat anti-Rabbit IgG (H+L) Alexa Fluor 488

conjugated (Invitrogen, A-11008, dilution 1:500); Goat anti-Human IgG (H+L) Alexa Fluor

488 conjugated (Invitrogen, A-11013, dilution 1:500). Data acquisition was performed with

FACSVerse™ (BD) and data analysis with FlowJo software (BD).

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 12, 2023. ; https://doi.org/10.1101/2021.04.08.439069doi: bioRxiv preprint 

https://paperpile.com/c/XzvuFM/BeAAN
https://doi.org/10.1101/2021.04.08.439069
http://creativecommons.org/licenses/by-nd/4.0/


Immunofluorescence: Cells were grown and infected on 13 mm cover slips in

24-wells plates and incubated in liquid or semisolid medium according to experiment design.

Fixation in 3% paraformaldehyde for 20 minutes and permeabilization with Triton X-100

0,5% in PBS for 5 minutes. Primary and secondary antibodies were diluted in blocking buffer

(2% bovine serum albumin in PBS) for staining. Between each step, samples were washed in

PBS. Antibodies and dyes used for immunofluorescence were: DAPI (Invitrogen);

anti-dsRNA MAb J2 (SCICONS, 10010500, dilution 1:200); human monoclonal antibody

DV 18.4 (75)(dilution 1:100); anti-puromycin 12D10 (Millipore, MABE343, dilution

1:20,000); phospho-eIF2α (Ser51) antibody (Cell Signaling Technology, Inc., #3597, dilution

1:300); Goat anti-Rabbit IgG (H+L) Alexa Fluor 647 conjugated (Invitrogen, A-21245,

dilution 1:500); Goat anti-Rabbit IgG (H+L) Alexa Fluor 488 conjugated (Invitrogen,

A-11008, dilution 1:500); Goat anti-Human IgG (H+L) Alexa Fluor 488 conjugated

(Invitrogen, A-11013, dilution 1:500); Donkey Anti-Mouse IgG H&L Alexa Fluor 647

conjugated (Abcam, ab150107, dilution 1:500). Image acquisition was performed in the

confocal microscope Leica DMI6000 B.

RT-qPCR:RNA was extracted and purified with HiYield TotalRNA mini kit (RBC

Real Biotech Corporation, YRB50) according to manufacturer's instructions. Reverse

transcription reaction was performed with MMLV "in house" kit from 1 μg of total RNA.

Quantitative PCRs were performed with GoTaq ® qPCR Master mix (Promega) with the

following primer sets: h18S (F: 5'-TAGAGGGACAAGTGGCGTTC-3', R:

5'-CGCTGAGCCAGTCAGTGT-3'); hIFNL1 (F: 5'-TTCCAAGCCCACCACAACTG-3', R:

5'-GAGTGACTCTTCCAAGGCGT-3'); hIFNB1 (F: 5'-AAACTCATGAGCAGTCTGCA-3',

R: 5'-AGGAGATCTTCAGTTTCGGAGG-3'); hTNFA (F:

5'-TCTTCTCGAACCCCGAGTGA-3', R: 5'-CCTCTGATGGCACCACCAG-3'); hISG15 (F:

5'-TCCTGGTGAGGAATAACAAGGG-3', R: 5'-TCAGCCAGAACAGGTCGTC-3');
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hDDIT3 (F: 5'-GGAGCATCAGTCCCCCACTT-3', R:

5'-TGTGGGATTGAGGGTCACATC-3'); hGADD34 (F:

5'-CTGGCTGGTGGAAGCAGTAA-3', R: 5'-TATGGGGGATTGCCAGAGGA-3'); DENV4

vRNA (F: 5'-TTGTCCTAATGATGCTGGTCG-3', R:

5'-TCCACCTGAGACTCCTTCCA-3'); ZIKV vRNA (F:

5'-CTGTGGCATGAACCCAATAG-3', R: 5'-ATCCCATAGAGCACCACTCC-3'). Data

acquisition with StepOne Plus real time PCR system (Applied Biosystems) and relative

mRNA expression was calculated by 2-ΔΔCT method.

ZIKV Luciferase reporter vectors: The pSGDLuc vector previously described

(76), was used as a template to design the Renilla luciferase and the ZIKV firefly luciferase

reporters. The Renilla luciferase was amplified using the following oligonucleotides 5´-

TCCGCCCAGTTCCGCCCATTCTCCGC-3´ and

5´-GCGCTCTAGATTATCTCGAGGTGTAGAAATAC- 3´ and then cloned back into the

pSGDLuc previously digested with AvrII and XbaI This will create a plasmid only

expressing the Renilla luciferase gene under the T7 or SV40 promoter.

The first 194 nucleotides of the ZIKV genome were cloned first in the pSGD plasmid using

the set of primers 5´-GCGCCTCGAGATAAGTTGTTGATCTGTGTGAATCAGAC-3´ and

5´-GCGCAGATCTGCCCCCAAAGGGGCTCACACGGGCTAC-3´ in order to introduce

this fragment in frame with the 2A-firefly luciferase gene. Using this intermediate plasmid as

a template, the ZIKV-2A-firefly luciferase gene was later amplified with oligonucleotides

5´-TCCGCCCAGTTCCGCCCATTCTCCGC-3´and 5´-

GATTCACACAGATCAACAACTccctatagtgagtc to introduce the T7 promoter upstream of

the ZIKV coding region; and 5´-GCTTTACTGGGGCTACGATCTTTTGC-3´ and

5´-gactcactatagggAGTTGTTGATCTGTGTGAATC-3´ to amplify the ZIKV region. This was

cloned back into the pSGD plasmid previously digested with AvrII and BglII . This will
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create a plasmid expressing the ZIKV-2A-firefly luciferase fused gene under the T7 or SV40

promoter.

Luciferase assays: Cells were transfected using Lipofectamine 3000 (Invitrogen)

with firefly and Renilla Luciferase plasmids at the proportion of 98 ng and 2 ng respectively

for every 2x104 cells in a 96-well plate. For cell lysis and luminescence reaction,

Dual-Luciferase® Reporter Assay System (Promega) was used following the manufacturer’s

instructions.

Single-cell RNA sequencing analysis: Processed, publicly available single-cell

RNA-seq data are available through the GEO accession number GSE110496 and

GSE116672. We downloaded processed single-cell data and metadata from the

supplementary information from the respective publication (55, 61).

Then, we used CellRouter (77) to perform quality control, normalisation, analysis

and visualise the expression of selected genes with log2 fold changes > 0.15.
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