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SUMMARY 

Advanced solid cancers are complex assemblies of tumor, immune, and stromal cells characterized by 

high intratumoral variation. We use highly multiplexed tissue imaging, 3D reconstruction, spatial 

statistics, and machine learning to identify cell types and states underlying morphological features of 

known diagnostic and prognostic significance in colorectal cancer. Quantitation of these features in 

high-plex marker space reveals recurrent transitions from one tumor morphology to the next, some of 

which are coincident with long-range gradients in the expression of oncogenes and epigenetic regulators. 

At the tumor invasive margin, where tumor, normal, and immune cells compete, T-cell suppression 

involves multiple cell types and 3D imaging shows that seemingly localized 2D features such as tertiary 

lymphoid structures are commonly interconnected and have graded molecular properties. Thus, while 

cancer genetics emphasizes the importance of discrete changes in tumor state, whole-specimen imaging 

reveals large-scale morphological and molecular gradients analogous to those in developing tissues. 
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INTRODUCTION 

Much of our knowledge of tumor microanatomy derives from 150 years of inspection of 

hematoxylin and eosin (H&E)-stained tissue sections, complemented for the last eighty years by 

immunohistochemistry (Coons et al., 1942). Histopathology has identified numerous recurrent features 

of tumors with diagnostic or prognostic significance (Amin et al., 2017), but classical methods often 

provide insufficient information for mechanistic studies and precision medicine. Spatial tumor atlases 

(Rozenblatt-Rosen et al., 2020) aim to build on this foundation and the current understanding of tumor 

genetics by collecting detailed molecular and morphological information on cells in a preserved 3D 

environment. The construction of such atlases is made possible by the recent development of highly-

multiplexed tissue imaging methods (Angelo et al., 2014; Gerdes et al., 2013; Giesen et al., 2014; 

Goltsev et al., 2018; Lin et al., 2018; Saka et al., 2019; Schürch et al., 2020; Wagner et al., 2019) that 

yield subcellular resolution images of 10-80 antigens. When segmented and quantified, high-plex tissue 

images make it possible to identify cell types, assay proliferation, measure oncogene expression, and 

generate single-cell data that are a natural complement to scRNA-seq (Burger et al., 2021; Gaglia et al., 

2022; Nirmal et al., 2022). Despite our increasingly deep knowledge about the genomic drivers of 

cancer – from oncogenic mutations to large-scale chromosomal rearrangements – we do not yet know 

how the spatial arrangement of the tumor microenvironment (TME) impacts pathogenesis; for instance, 

which feature types and spatial scales are relevant for mapping the 3D TME, how disease-associated 

histological features relate to molecular states, and whether morphological differences are discrete (like 

mutations) or continuous (like morphogen gradients found in development). 

‘Bottom-up’ approaches to tissue atlas construction involve enumerating cell types, identifying 

cell-cell interactions, and generating local neighborhoods using spatial statistics. Such approaches 

leverage tools developed for the analysis of dissociated single cell data (e.g., mass cytometry (Bendall et 

al., 2011) and scRNA-seq (Luecken & Theis, 2019)). In contrast, “top-down” approaches involve 

annotating histopathologic features (histotypes) that have been demonstrated to associate with disease 

state or outcome (Amin et al., 2017) followed by computation on the multiplexed data to identify 

underlying molecular patterns. Histopathology has a long history of identifying striking spatial features 

in small cohorts that do not have prognostic or diagnostic value on follow-up, introducing a note of 

caution into ‘bottom-up’ analysis (Mazer et al., 2019; Voskuil, 2015). At the same time, discoveries 

arising from ‘top-down’ analysis are strongly influenced by prior expectations. In this paper, we analyze 

colorectal cancer (CRC) using both approaches and compare the resulting insights. 
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Histological features of established significance in CRC include: (i) the degree of differentiation 

relative to normal epithelial structures based on tumor cell morphology (e.g., cell shape, nuclear size, 

etc.) and the organization of cellular neighborhoods (e.g., glandular organization, hypercellularity, etc.) 

(Fleming et al., 2012); (ii) the position and morphology of the invasive margin (Cianchi et al., 1997; 

Schürch et al., 2020) including the presence of “tumor buds,” small clusters of tumor cells surrounded 

by stroma (Lugli et al., 2017) which are correlated with poor outcomes (i.e., increased risk of local 

recurrence, metastasis, and cancer-related death) (A. C. Rogers et al., 2016); (iii) the extent of T-cell 

infiltration (Bruni et al., 2020) and the presence of peritumoral tertiary lymphoid structures (TLS) 

(organized aggregates of B and other immune cell types; (Di Caro et al., 2014)). In many cases, the 

origins and molecular basis of these histological features are not fully understood, although de-

differentiation, including “stemness” (Aponte & Caicedo, 2017), epithelial-mesenchymal transition 

(EMT) (Kalluri & Weinberg, 2009), changes in nuclear mechanics (Uhler & Shivashankar, 2018), and 

similar processes, are likely involved. In the case of tumor budding, epigenetic changes, not specific 

mutations, have been shown to drive EMT (Centeno et al., 2017). 

In this paper, we combined top-down and bottom-up analyses of high-plex CyCIF (Lin et al., 

2018) and H&E images of CRC with single-cell sequencing and micro-region transcriptomics. We show 

that accurate assessment of disease-relevant tumor structures requires the statistical power of whole-

slide imaging, not the small specimens found in tissue microarrays (TMAs); this typically corresponds 

to 105 to 106 cells per specimen, far more cells than are required for dissociative methods. Using 3D 

reconstruction of serial sections and supervised machine learning, we show that archetypical CRC 

histologic features are often graded and intermixed with morphological transitions and molecular 

gradients spanning 102 or more cell diameters. Tumor budding also appears to be a graded phenotype, 

and budding cells, as classically defined, form an extreme example of a gradual molecular and 

morphological transition. Moreover, tumor buds, TLS, and several other structures are substantially 

larger than they appear in 2D: for example, B cell-rich TLS are interconnected communities of 

lymphocytes that can extend throughout large regions of the tumor. Thus, the TME is organized on 

spatial scales spanning 3-4 orders of magnitude, from subcellular organelles to cellular assemblies of 

hundreds of microns or more.  

RESULTS  

Overview of the specimens and data. 

Multiplexed CyCIF and H&E imaging were performed on 93 FFPE CRC human specimens 

spanning a wide variety of histologic and molecular subtypes (Table S1), which were imaged in three 
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different formats, as illustrated in Figure 1A. Sample CRC1 (Figures 1B-1E) was subjected to 3D 

analysis: 106 serial sections were cut from an ~1.7 x 1.7 cm piece of FFPE tissue and 22 H&E and 25 

CyCIF images were collected, skipping some sections to increase the total dimension along the Z-axis. 

These images were then reconstructed in 3D and combined with scRNA-seq, and GeoMx 

transcriptomics (Zollinger et al., 2020) (Figures 1A, S1A; Tables S1, S2). Second, 16 additional 

samples (CRC2-17) were imaged in 2D as whole slides. Finally, CRC2-17 plus 77 additional tumors 

(CRC18-93) were imaged as part of a TMA (0.6 mm diameter cores; four cores per patient) (Figure 

1A). In each case, CyCIF was performed using various combinations of 102 lineage-specific antibodies 

against epithelial, immune, and stromal cell populations and markers of cell cycle state, signaling 

pathway activity, and immune checkpoint expression (specific antibodies for the ‘main,’ ‘tumor-

focused,’ and ‘immune-focused’ panels are listed in Tables S3-S6). MCMICRO software (Schapiro et 

al., 2022) was used to segment images, quantify fluorescence intensities on a per-cell basis, and assign 

cell types based on lineage-specific marker expression (Figures 1C, S1B-S1C; Table S7). Overall, ~2 x 

108 segmented cells were identified in 75 whole-slide images using different combinations of antibodies 

(~6TB of data) (Muhlich et al., 2022). All data are available for download via the HTAN Portal (see data 

access) and images of CRC1-17 are available for interactive online viewing without data or software 

download using MINERVA software (Hoffer et al., 2020; Rashid et al., 2022).  

Figure 1 shows images and single cell data for CRC1, a poorly differentiated stage IIIB 

BRAFV600E adenocarcinoma (pT3N1bM0) (Weiser, 2018) with microsatellite instability (MSI-H) that 

arose in the cecum. This specimen was noteworthy for having complex histomorphology and an 

extended front invading into underlying smooth muscle (muscularis propria) and connective tissue. The 

front included a ‘budding invasive margin’ invading the submucosa adjacent to normal colonic mucosa 

(IM-A), a ‘mucinous invasive margin’ (IM-B), and a deep ‘pushing invasive margin’ (IM-C); the latter 

two regions invade the submucosa and muscularis (Figure 1B). t-SNE on the CyCIF data demonstrated 

a clear separation of cytokeratin-positive (CK+) epithelial cells (both normal and transformed) from 

CD31+ endothelial cells (primarily blood vessels), desmin+ stromal cells, and CD45+ immune cells 

(Figures S1B-S1D; Table S8). Immune cells could be further divided into biologically important 

classes such as CD8+PD1+ cytotoxic T cells (Tc), CD4+ helper T cells, CD20+ B cells, CD68+ and/or 

CD163+ macrophages, as well as discrete sub-categories such as CD4+FOXP3+ T regulatory cells (Tregs) 

(Table S7). scRNA-seq was performed on ~104 cells from an adjacent (frozen) region of CRC1 (Chen et 

al., 2021) and the resulting estimated cell-type abundances exhibited a high degree of concordance with 
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estimations from image data (R2 = 0.94; Figures 1D-1E, S1E-S1F), demonstrating the accuracy of the 

image segmentation and intensity quantifications. 

Impact of spatial correlation on statistical power.  

While having more single-cell data is preferable in principle, the effort required to collect 3D 

image stacks is substantially greater than single-section imaging; moreover, whereas a single whole-

section image captures an individual patient’s data, an image of a TMA can contain specimens from 

>100 patients. For this reason, most high-plex tissue imaging papers to date focus on TMAs or – in the 

case of mass spectrometry-based imaging methods (MIBI, IMC) – on fields of view (FOVs) of ~1 mm2. 

It is nonetheless well established that the minimum image dimension needed to accurately measure 

features within an image depends on the size of these features, which can be estimated from pixel-to-

pixel correlation lengths (Rajaram et al., 2017). In CRC1-17, we observed correlation lengths ranging 

from ~80 µm for CD31 positivity to ~400 µm for keratin or CD20 positivity (Figures 2A-2D, S2A) and 

these length scales were directly related to observable and recurrent features of tumor morphology 

including capillaries for CD31+, sheets of tumor for CK+ cells, and TLS for CD20+ (Figures 2C-2D). 

Since these length scales are similar to those of most TMA cores, we used empirical and first-principles 

approaches to investigate the impact of sample size on the accuracy and precision of statistical analysis 

of 3D, 2D whole-slide, and TMA data. 

As an initial empirical approach, we generated a “virtual TMA” (vTMA) comprising 1 mm 

diameter FOVs subsampled from an image of CRC1 (section 097); each virtual core contained ~103 

cells as compared to ~5 x 105 for a whole-slide CRC1 image. Sampling was performed so that the 

vTMA would primarily contain CK+ tumor or epithelial cells. CRC2-17 had been used, prior to the 

current work, to generate a real TMA (rTMA) in a pathology core, allowing us to confirm that vTMA 

and rTMA cores generated were similar (Figure 2E). When we computed the abundance of CK+ cells 

(cell count divided by the total cell number) in each vTMA core we found that it varied 20-fold from 5% 

to 95% whereas the true value determined by counting all cells in CRC1 section 097 was 45% (Figure 

2F). Abundance estimates for α-SMA and FOXP3 positivity in vTMA cores were also imprecise, but to 

a lesser extent than for keratin positivity (Figure 2F). In contrast, when random samples of ~103 cells 

were drawn from the single cell data without regard to position in the specimen, the estimated 

abundance of CK+ cells was 45 ± ~1%, a good estimate of the actual value (Figure 2F). Thus, 

imprecision associated with computing cell abundance from a vTMA arises only when spatial 

arrangements are preserved. 
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These findings can be explained in full from a theoretical perspective based on the Central Limit 

Theorem for correlated data (Lavrakas, 2008). The effective sample size (Neff) for correlated data is 

approximately related to the sample size N for “dissociated cells” (cells chosen at random without regard 

to position in an image or drawn from a dissociated cell preparation as in scRNA-seq or flow cytometry) 

via a simple scaling law (see Methods for the derivation): 

�

����
� ��� �

�����
�� . (EQ1) 

where �� is the spatial correlation strength, � the length scale (e.g., ~400 µm for CK+) and average cell 

size �����. We observed a good match between CyCIF data and theory (R2 = 0.97; Figures 2G, S2B) and 

a reduction in effective sample size (N/Neff) of 10- to 1,000-fold depending on the marker identity 

(median value ~100). Thus, a 1 mm core containing ~103 spatially correlated cells constituted as few as 

1 to 3 independent samples, which explains the high variance when cell abundance is estimated. We 

conclude that the analysis of TMA cores and other similarly small FOVs is an inadequate means to 

accurately determine a feature as simple as cell abundance simply because the sample is too small 

relative to the size of most features (we consider 2D v 3D sampling below). 

Analysis of higher-order spatial features, such as cell proximity (Figures 2H, S2C) was also 

strongly impacted by spatial correlation. For example, vTMA data were much less precise than random 

sampling when computing the correlation of CK+ (tumor) cell frequency with neighboring α-SMA+ 

(stromal) cell frequency as a function of distance (compare blue and green in Figure 2H; note that 

distance is plotted as the number of neighboring cells, which is proportional to the square of the 

distance). The same was true when we searched for neighborhoods containing CD45+ immune cells and 

CD31+ endothelial cells that represent areas of perivascular inflammation. Inspection of underlying 

images showed that these differences related to variation of tissue morphologies and spatial 

arrangements (illustrated by four selected cores; Figures 2I, 2J, S2D). 

 To compare the magnitude of biological (patient-to-patient) variability with sampling error we 

computed cell abundances for single markers and biologically relevant marker combinations (e.g., 

CD68+PDL1+ macrophages) and observed a 3- to 10-fold variation from CRC2-17 (Figure 2K, red). 

However, inter-core variance from any single specimen obtained from rTMAs was substantially greater 

(Figure 2K, blue & teal). Only one measurement made from TMAs, Ki-67 positivity in CK+ cells, 

exhibited inter-patient variability (18-61%) greater than sampling error between cores (~30%) (Figures 

2K, S2E-S2F). Thus, imaging small fields of view causes sampling error to exceed true patient-to-
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patient variability in most cases. This error is sufficiently great that it can lead to false associations with 

patient outcome in Kaplan-Meier analysis (Figures S2G-S2H). 

To determine whether 2D whole-slide images are an adequate approximation of a 3D specimens 

we computed cell abundances and spatial correlations for 24 Z-sections from CRC1 and compared this 

to patient-to-patient variability estimated from whole-slide images of specimens CRC2-17 (compare red 

and blue in Figures S2I-S2J). For all but a few markers, we found that variance between Z-sections was 

substantially smaller than patient-to-patient variability. The variances, when observed, were 

immediately interpretable as differences in tumor architecture along the Z axis. We conclude that 2D 

whole-slide imaging of a 3D specimen does not, in general, suffer from the same subsampling problem 

as TMAs or small fields of view; this too is consistent with theory about sampling under correlation. As 

we show below, however, some mesoscale features of tumors can only be detected in 3D datasets. 

Morphological and molecular gradients involving tumor phenotypes. 

To link high-plex image features to histological CRC features with well-established prognostic 

value, such as degree of tumor differentiation (well, moderate, poor), grade (low, high), subtype 

(mucinous, signet ring cell, etc.) (Weiser, 2018), two board-certified pathologists annotated regions of 

interest (ROI) from all 22 H&E sections of CRC1 and then transferred the annotations to adjacent 

CyCIF images for single-cell analysis. Annotations included normal colonic mucosa (ROI1); moderately 

differentiated invasive adenocarcinoma with glandular morphology involving the luminal surface 

(ROI2), submucosa (ROI3) or the muscularis propria at the deep invasive margin (ROI4); regions of 

poorly differentiated (high-grade) adenocarcinoma with solid and/or signet ring cell architecture (ROI5); 

and regions of invasive adenocarcinoma with prominent extracellular mucin pools (ROI6) (Figure 1B). 

A region with prominent tumor budding (TB) near margin IM-A was also annotated. Excluding muscle, 

CyCIF data showed that solid adenocarcinoma (RO15) had the highest proportion of CK+ tumor cells 

(~70%), whereas adjacent normal epithelium (ROI1) had the fewest CK+ (~25%) and the most stromal 

and immune cells. 

To determine which molecular features correspond to each histology, we trained a k-nearest 

neighbor (kNN) classifier using molecular features (CyCIF intensities) on pathology labels. For 

simplicity, we consolidated the ROIs into four classes with half of the cells in each class used for 

training and half for validation. A different classifier was generated for each pair of CyCIF and H&E 

images for CRC1-17. Of note, the pathologist-labeled H&E data was rich in morphological context, but 

the CyCIF data comprised only cell positions (centroids) and integrated marker intensities, not 
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morphological or neighborhood information. We observed high confidence predictions from the trained 

kNN classifier (Shannon entropy near zero) on the validation set (Figures 3A, S3A) showing that the 

classifier had encoded disease-relevant morphology using marker intensity alone. However, we found 

that no single molecular marker was unique to a specific ROI or tissue morphology implying that 

morphology is encoded in hyperdimensional intensity features. 

Unexpectedly, kNN classifiers scored most regions of CRC1 outside of the annotated (training 

and validation) data as comprising a mixture of morphological classes (as quantified by the posterior 

probability) with transitions from one class to another. In many regions, Shannon entropy values 

approached two, demonstrating an equal mixture of all four classes (red in Figures 3B, S3B). This was 

not a limitation of the markers used for classification, because similar results were obtained with 

combinations of ~100 antibodies used to stain sections 044 to 047 of CRC1 (Figures S3C-S3D; Table 

S4). When tumor regions with high Shannon entropy values were examined in H&E, we found that they 

corresponded to transitions between classical morphologies (Figure 3D). These transitions were not 

limited to a single part of the tumor but were observed multiple times in spatially separated areas on 

dimensions ranging from a few cell diameters (~50 µm) to the whole image (~1 cm) (Figure 3C) and 

included transitions from mucinous to glandular, mucinous to solid, and glandular to solid. 

When we performed principal component analysis (PCA) on 31 spatially resolved transcriptomic 

microregions (using GeoMx microregion transcriptomics, with each microregion sorted into CK+ or CK- 

cells) we also observed gradations in molecular state for both the tumor/epithelial (CK+; Figure 3E, 

circles) and immune/stromal (CK-; squares) compartments. In this case, principal component one (PC1; 

the dominant source of variance) correlated with histologic subtype and grade while PC2 correlated with 

epithelial vs. stromal compartment. In support of kNN models of CyCIF data, we observed a graded 

transition along PC1 from glandular/mucinous (low-grade) histologies to fragmented/budding (high-

grade) histologies in both the epithelial/tumor and stromal/immune compartments. These findings serve 

to confirm the existence of graded state transitions at multiple locations in CRC1. 

Across all 17 tumors, analysis of CyCIF data revealed intermixing of histologies to a greater or 

lesser extent with some tumors exhibiting contiguous blocks of a single morphology (e.g., CRC5) and 

intermixing similar to CRC1 in others (e.g., CRC14; Figures 3F, S3B). There was no obvious 

correlation between the degree of intermixing and MSI-H status (which promotes genome instability). 

We conclude that different and highly characteristic histological phenotypes routinely used for 

pathology grading and clinical planning in CRC are present in both discrete and intermixed forms, most 

likely due to epigenetic rather than genetic heterogeneity. 
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When we looked for patterns in CyCIF data we found that multiple markers exhibited intensity 

gradients that in some cases encompassed an entire tumor and in others coincided with local 

morphological gradients. Four examples are shown: a normal-glandular transition corresponding to E-

cadherin and PCNA gradients that are inversely correlated (Figure 3D; left); a mucinous-solid transition 

coinciding with inversely correlated cytokeratin 20 and cytokeratin 18 gradients (Figure 3D; center); 

alternating glandular-solid transitions (Figure 3D; right, yellow curved arrow); and a glandular-solid 

transition coinciding with a transition in epigenomic regulators and modifications involving histone 

trimethylation (Figure 3D; right, white arrow). The histone acetylation (H3K27ac) vs. trimethylation 

(H3K27me3) marks are known to play complementary roles in transcriptional regulation (Zhao et al., 

2021, p. 27), and we observed graded and anti-correlated expression on long length-scales in multiple 

tumors (e.g., CRC4, CRC5; Figure 3G), providing further evidence of organized epigenetic gradients in 

tumors. Graded expression of the tumor suppressor p53 and oncogene EGFR – two genes whose levels 

of expression play well established roles CRC biology – was also observed (Figure 3G). The white 

circles in Figure 3G are regions of tissue removed for rTMA construction (4 or 5 cores per specimen) 

based on the inspection of H&E images alone. It is immediately apparent that several sets of cores were 

inadvertently chosen to lie along a molecular gradient. Such variation between TMAs from a single 

specimen is often attributed to random heterogeneity rather than the large-scale structure we observe in 

whole-slide images. Chemical and physical gradients play essential roles in normal tissue development 

(Oudin & Weaver, 2016), but are less explored in tumors, perhaps because tumor genetics tends to focus 

on discrete differences (mutations). 

Tumor budding and molecular transitions at the deep invasive front. 

For diagnostic purposes, tumor buds are defined by the International Tumor Budding Consensus 

Conference (ITBCC) as clusters of ≤4 tumor cells surrounded by stroma and lying along the invasive 

front (Lugli et al., 2017), or, less commonly, the non-marginal ‘internal’ tumor mass (Lugli et al., 2011). 

Using ITBCC criteria a pathologist annotated buds in CRC1-17 and identified a total ~7 x 103 budding 

cells in 10 of 17 specimens examined (representing ~0.01% of all tumor cells; Figure 4A, arrows and 

boxes highlight examples on H&E, yellow outlines on CyCIF images indicate segmented budding cells, 

Figure S4A). In CRC1, buds were largely confined to one ~2.0 x 0.7 x 0.4 mm region of the invasive 

front (region IM-A, Figure 1B) near normal colonic epithelium and interspersed with T cells (Figure 

4B). When we examined a 3D reconstruction of CRC1, we found that these “ITBCC buds” were 

frequently connected to each other and to the main tumor mass (Figures 4C-4D, S4B); buds as 
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classically defined appeared to be predominantly cross-sectional views of these fibrillar structures (i.e., 

‘bud-like’ structures rather than true buds). This observation is consistent with a previous 3D study of 

budding based on H&E images (Bronsert et al., 2014). 

To analyze these structures objectively, we used Delaunay triangulation (Delaunay, 1934), to 

annotate CK+ cells (i.e., tumor and normal epithelium) that were immediately adjacent to each other 

(Figure 4E). The smallest Delaunay clusters contained 1-4 contiguous cells surrounded by stroma and 

corresponded to ITBCC buds (Figure 4F; red) whereas the largest clusters contained >104 cells and 

mapped to regions of poorly differentiated adenocarcinoma with solid architecture (which were almost 

entirely composed of tumor cells; yellow and orange). The widest range of cluster sizes was observed in 

differentiated regions with glandular architecture (Figure 4F; blue green). A key feature of tumor 

budding cells is that they express low levels of cell-to-cell adhesion proteins (e.g., E-cadherin, CD44, 

and Ep-CAM) (Gosens et al., 2007) and have a low proliferative index (Rubio, 2007, 2008). We 

confirmed that buds matching ITBCC criteria in our data had reduced expression of adhesion and 

proliferation markers (Figure S4C). Moreover, a t-SNE representation of all single cell data labeled by 

Delaunay cluster size showed that cells in the smallest Delaunay clusters expressed the lowest E-

cadherin levels of all CK+ cells and that proliferation markers (e.g., PCNA) were also expressed at low 

levels (Figure 4G, circled region). However, tumors in our cohort did not contain a discrete population 

of E-cadherin/proliferation-low budding cells, instead, the expression of E-cadherin, Na-K ATPase, 

PCNA, and Ki-67 varied continuously with cluster size in CRC1 (Figures 4H, S4D) as well as other 

CRC tumors (Figures 4I, S4E). 

 Inspection of the underlying images (Figures 5A-5B) revealed that regions of cohesive 

glandular tumor (which was associated with large Delaunay cluster sizes and a PCNAhigh state) often 

fragmented into fibrillar structures comprised of smaller clusters and a PCNAlow state. At the terminal 

tips of these fibrillar structures were ‘bud-like’ structures exhibiting the lowest PCNA expression and 

surrounded by stroma (Figure 5A) or mucin (Figure 5B). Analogous transitions between tumor masses 

and small Delaunay clusters were observed throughout the tumor both at the invasive front (IM-A in 

CRC1), in mucinous spaces (IM-B), and along the luminal surface of the tumor in regions corresponding 

to discohesive growth with focal signet ring cell morphology (ROI5, Figure 1B) (Sung et al., 2008). The 

small Delaunay clusters found in mucin pools were not distinguishable in size or expression (of cohesive 

and proliferation markers) from buds as classically defined (Figures 4I, S4E) even though the ITBCC 

definition encompasses only clusters in fibrous stroma. PCA of GeoMx RNA expression data (Figure 

3E) confirmed that regions with ITBCC buds (brown dots), fragmented tumor and budding (orange), 
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and budding into mucinous spaces (yellow) were similar to each other and distinct from other tumor 

morphologies (Figure 3E). Moreover, all three bud-like morphologies expressed elevated levels of 

genes in the EMT Hallmark gene set (GSEA M5930; Figure 5C, orange, yellow, brown) consistent with 

the idea that a loss of cell cohesion occurs frequently across tumors, is associated with an EMT-like 

process, and may be driven by a similar epigenetic program (Centeno et al., 2017). In 2D views, mucin 

surrounding many bud-like structures in CRC1 is found in pools of many different sizes that are 

apparently isolated from each other (mucins are large glycoproteins that protect the gastrointestinal 

epithelium; Figure 5D arrowheads) (Bresalier, 2002). However, when we used the CRC1 3D 

reconstruction to map these pools, we found that they were frequently continuous with each other and 

with the colonic lumen, up to 1cm away; in CRC1 this is most prominent in the central region involving 

invasive margin IM-B (Figure 5E). 

Putting these data together, we conclude that EMT-like transitions and tumor budding in CRC is 

characterized not by the formation of isolated spheres of cells, as first described by Weinberg and 

colleagues in tissue culture (Mani et al., 2008), but instead by the formation of large fibrillar structures 

that appear to be small buds when viewed in cross-section at their distal tips. Fibrils can invade into a 

variety of different environments including stroma and mucin (which itself consists of large inter-

connected mucin-filled structures rather than isolated pools) and we speculate that their formation is 

driven by a gradual (not abrupt) breakdown in cell adhesion associated with a graded EMT-like 

transition (Figure 5F). 

 

Networks of tertiary lymphoid structures and their composition. 

Anti-tumor immunity involves innate as well as adaptive mechanisms that mediate the expansion 

and activation of cytotoxic T cells and the production of antibodies by B cells (plasma cells). Adaptive 

immunity occurs within secondary lymph organs (Peyer’s patches in the colonic mucosa) (Schumacher 

& Thommen, 2022) as well as tertiary lymphoid structures (TLS), which develop in non-lymphoid 

tissues such as tumors and other sites of chronic inflammation. The formation, organization, and 

functions of TLS are under active investigation, but their presence is known to be associated with good 

prognosis and immune checkpoint inhibitor (ICI) responsiveness (Cabrita et al., 2020; Helmink et al., 

2020). Pathology inspection of 47 individual sections of CRC1 (22 H&E and 25 CyCIF) identified over 

900 distinct SLO and TLS domains in 2D (Figures 6A, S5A). However, following 3D registration and 

segmentation, we found that many of these domains were connected in larger 3D structures; for 

example, seven large networks (Figure 6B; 3D rendering view) each spanning >12 sections and several 
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mm laterally, could be assembled from 20-200 individual 2D domains each (the final assembly included 

133 additional smaller SLO/TLS networks; Figures 6C, S5B). The large tertiary lymphoid structure 

networks (TLSNs) were found along the invasive fronts (networks A, B, D), inside tumor (F, G), or in 

layers of the muscularis (E) or subserosa (C; the subserosa is peri-colonic fibroadipose tissue external to 

the muscularis). To study the cellular composition of TLSNs, we performed K-means clustering on 

CyCIF intensity data (with k = 7 to match the number of large networks, Figure 6D) and recovered 

clusters with the properties of SLOs (cluster 3) that were found near normal mucosa (as expected for 

Peyer’s patches) or typical TLS-like lymphoid-aggregates within the tumor itself (cluster 1, Figures 6E-

6F, S5C-S5D). TLS undergo maturation and are expected to differ from one another, but when we 

mapped marker expression clusters onto the physical organization of TLSNs, we found that some were 

relatively homogenous, containing cells from one expression cluster whereas others were heterogenous. 

For example, TLSN-C, which was predominantly located in the subserosa, was >96% composed of 

expression cluster 7, which showed a marked predominance of CD45+CD20+ B cells with little 

enrichment of other populations; TLSN-F, which was found immediately adjacent to the region of tumor 

budding, was 95% comprised of cluster 6 which was defined by a more heterogeneous collection of 

immune lineages including B cells, numerous PD1+ cytotoxic T cells, FOXP3+ Tregs, and PDL1+ myeloid 

cells. In contrast, other TLSN-A, -B, or -D contained mixtures of expression clusters (Figures 6E, S5C). 

To study an intermixed TLSN in greater detail, we projected marker clusters onto a 3D rendering 

of TLSN-B (Figure 6G), which had been assembled from the greatest number of individual 2D domains 

(206) and spanned all sections of CRC1 (Figures 6B, S5B). We found enrichment of myeloid cells 

(CD68+CD163+; cluster 4, green) on the mucinous side of TLSN-B, with enrichment of T-cell (CD3+, 

CD45RO+, CD4+; cluster 5, yellow) and B-cell (CD20+CD45+; cluster 7, red) clusters intermixed along 

the stromal side (Figure 6G). Inspection of corresponding H&E images revealed numerous discrete B 

cell aggregates with associated T cells in clusters 4 to 7 with states distinguished by the relative 

abundance of different cell types (Figure 6I). The impression of graded composition was confirmed 

when we performed PCA on marker intensities and mapped principal component scores onto the TLSN-

B structure (Figures 6H, S5E). This representation of the data emphasized the gradations in 

composition found within a single network.  

To extend this analysis, we superimposed the marker-based clustering from CRC1 onto CRC2-

17 (Figure S5F); we found that the prevalence of individual marker clusters varied from tumor to tumor 

but was similar for CRC1 and CRC2-17 in aggregate (Figures 6J, 6K). Like CRC1, CRC16 and 17 are 

MSI-H tumors with rich TLS networks that appear large and connected even in 2D. Moreover, in 
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CRC16 the area surrounding mucin pools and TLS were enriched in cells from marker clusters 4, 5 and 

7 – as in CRC1 (Figure 6L) From these data, we conclude that CRC1 is a reasonable exemplar of our 

overall cohort and that preliminary conclusions can therefore be drawn from our single 3D 

reconstruction. These are that (i) TLS can form interconnected networks rather than the isolated 

structures observed in 2D sections, (ii) TLS networks within a single tumor can differ from one another 

significantly with respect to the proportions of different immune lineages, and (iii) the cell types and 

functional markers within a single large TLS network can vary considerably from one region to the next, 

and much of this variation appears graded, implying intra-TLS patterning and communication. 

 

Immune profiling of the invasive margin.  

The immune response at the tumor margin strongly influences disease progression and ICI 

responsiveness (Paijens et al., 2021). Among the three morphologies found at the CRC1 invasive 

margin, IM-A, the region with tumor budding and poorly differentiated morphology, had the greatest 

density of immune cells (Figure 7A) but was also strongly immunosuppressive, with abundant 

CD4+FOXP3+ Tregs partially-localized with CD8+ cytotoxic T cells along tumor margins (Figure 7B). 

While PDL1+ cells were found inside the tumor and the stroma (Figure 7C), the interaction between 

PDL1+ and PD1+cells was enriched at the budding interface cells (Figure 7D). IM-B exhibited the least 

immune cell infiltration, consistent with a role for mucins in immune evasion or sequestration (Bhatia et 

al., 2019). IM-C was rich in Tregs but had very few PDL1+ cells as compared to IM-A (Figures 7C, 7D). 

To explore the connection between the tumor margin morphologies and molecular properties 

systematically, we used using Latent Dirichlet Allocation (LDA), a probabilistic modeling method that 

reduces complex structures into distinct component communities (“topics”) while accounting for 

uncertainty and missing data (Blei et al., 2003; Jackson et al., 2020; Valle et al., 2014). We annotated 

invasive margins in CRC1-17 for i) infiltration with tumor budding, ii) deepest invasion, and iii) all 

other morphologies (mucinous fronts were too infrequent to represent their own category) and then 

performed LDA on CyCIF data (33-plex immune panel; Figure S6A) (Nirmal et al., 2022). We found 

that LDA topics had significantly different frequencies in different regions of the invasive margin 

(Figures 7E, S6B-S6C). Margins with tumor budding were significantly associated with CD4+ and 

CD8+ T cells (Figure 7E, topic 1), the deep invasive front with tumor cell proliferation (Ki-67 positivity 

in CK+ cells; topic 9), and the remainder of the front with podoplanin positivity (PDPN+; topic 7). PDPN 

is a short transmembrane protein widely expressed in cancer cells and cancer-associated fibroblast that is 

implicated in cell migration, invasion, and metastasis (Krishnan et al., 2018). Fibroblasts secrete 
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abundant cytokines and growth factors, potentially explaining the activation of signal transduction (i.e., 

phosphotyrosine - pTyr - and phospho-SRC positivity; topic 10) along this portion of the tumor margin. 

In contrast, myeloid cells were ubiquitous, and their frequency (topics 5 and 12) did not significantly 

associate with any specific margin morphology. We conclude that morphologically distinguishable 

domains of the CRC invasive margin have differing levels of tumor cell proliferation (low in buds and 

high in deep invasive margins), activation (pTyr), and immune suppression. 

With respect to immunosuppression, the distribution of PD1+ and PDL1+ cells is of particular 

interest because this interaction can be targeted therapeutically in CRC (André et al., 2022). Across 

CRC1-17, the fraction of PD1+cells varied 4-fold (from 3-12% of all cells) and these cells were >80% 

CD4+ or CD8+ T cells (Figures S6D, S7). The fraction of PDL1+ cells varied 12-fold (3-40%) (Figure 

S6E) and was correlated with the number of PD1+ cells (r = 0.52, p = 0.034; Z test). While a small 

minority (1-5%) of tumor cells expressed PDL1, the cells most likely to be PDL1+ were CD68+ (14-51% 

positive) and CD11c+ myeloid cells (10-88% positive); PDL1+ myeloid cells were also ~6.5-fold more 

abundant on average than PDL1+ tumor cells (Figures 7F, S6E). The sole exception to this rule was 

CRC17 in which >40% of all tumor cells were strongly PDL1 positive; this tumor was also high-grade 

with extensive necrosis and uniformly poorly differentiated solid architecture and t-SNE showed it to be 

a clear outlier with respect to composition (Figures 7G; S7A-S7C). Immunotherapy is indicated for 

MSI-H CRCs because they are highly immunogenic (Boland & Goel, 2010); we found that MSI-H 

tumors in our cohort (n = 16 out of 93; see methods) had 5-fold more PDL1+ tumor cells and 6-fold 

more PDL1+ myeloid cells on average than MSI-L tumors (p = 0.044 and 0.002 two-side t-test, Figure 

7H), but the latter still outnumbered the former ~4-fold. Moreover, ~80% of MSI-H tumors had more 

PDL1+ myeloid cells than the average MSI-L tumor (Figure 7H). Across the CRC cohort we found that 

single positive CD68+CD11c- and CD68-CD11c+ as well as double positive CD68+CD11c+ cells were 

commonly PDL1+, although this fraction and the relative abundance of each myeloid subset varied 

several fold (Figures S6F-S6G), We do not have the markers in our panels to more precisely subtype 

PDL1+ myeloid populations across the CRC cohort but our interpretation is that they include variable 

proportions of macrophages, dendritic cells, and other mononuclear phagocytes.  

Functionally, it is not simply the prevalence of PDL1+ cells that is relevant for T-cell 

suppression, but also which cells are in spatial proximity to allow for PDL1:PD1 binding. To study this, 

we performed proximity analysis using a 20 µm cutoff and found that, across 24 CRC1 sections, cells 

interacting with PD1+ cells were strongly enriched for CD45 positivity and depleted for CK positivity 

(p<0.001 pairwise t-test, two-sided), showing that PD1+ T cells more commonly interact with PDL1+ 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2021.03.31.437984doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437984
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lin-Wang-Coy-Sorger et al.      3D Colorectal cancer atlas 
 

16 

immune cells than tumor cells in CRC1. This was also true of CRC2-16 with CRC17 representing the 

sole exception (Figure 7J, red lines). Cells interacting with PD1+ cells were also significantly more 

likely to be positive for the CD44 adhesion receptor (Senbanjo & Chellaiah, 2017) and the HLA-A 

major histocompatibility antigen than non-interacting cells. Co-localization of CD68+PDL1+ myeloid 

cells with PD1+CD8+ T cells was also confirmed by co-occurrence mapping in CRC1 (Figure 7K, upper 

panel). Finally, high resolution (∼220 nm laterally) optical sectioning 12-plex CyCIF provided direct 

evidence of PDL1+ myeloid cells synapsing with PD1+ T cells at the tumor margin: we observed 

multiple examples of co-localization and polarization of PD1 and PDL1 on the membranes of adjacent 

cells, consistent with formation of functional cell-cell interactions (Figure 7L). We conclude that 

immunosuppression of PD1+ T cells in our CRC cohort most commonly involves PDL1+ myeloid, not 

PDL1-expressing tumor cells. Nevertheless, PDL1-expressing tumor cells may still be involved in 

immune suppression in some tumors. In CRC1 for example, greater >85% of interactions of PD1+ T 

cells with PDL1-expressing cells are myeloid in origin, but the 3% of tumor cells are that are PDL1+ are 

concentrated at the budding margin in close proximity to T cells (Figure 7K, lower panel; summary 

schematic Figure 7M). 

 

DISCUSSION 

Understanding intra-tumor heterogeneity (ITH) is widely regarded as essential for improving our 

knowledge of tumor initiation and progression and ultimately for optimizing diagnosis and therapy 

(Marusyk et al., 2012). The image-based single cell analysis described in this paper supports two broad 

conclusions about the nature and organization of the ITH in CRC. First, our data show that molecular 

states (protein markers) and tissue morphologies (histotypes) are often graded, with transitions between 

phenotypes spanning spatial scales from a few cell diameters to many millimeters. For example, 

gradients in the epigenetic markers H3K27me3 and H3K27ac can span several centimeters along an 

entire tissue specimen. These markers play complementary roles in regulating transcription (Zhao et al., 

2021, p. 27), and we find that their levels are commonly anti-correlated. In other cases, changes in 

cellular phenotypes are graded or recur in a semi-periodic manner, reminiscent of the “reaction-

diffusion” gradients of morphogens observed in embryonic development (Turing, 1952) and also 

observed by fixed and intravital imaging in the mouse (Kondo et al., 2021) and in frozen human tissue 

by mass spectrometry (Randall et al., 2020). Second, cell-cell interactions most commonly studied at a 

local level are often organized into large and interconnected structures that are substantially larger than 

inspection of 2D sections suggests. These structures include: (i) the 1-4 cell tumor buds that are cross-
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sectional views of fibrillar structures (Bronsert et al., 2014) characterized by progressively lower 

expression of cell adhesion and proliferation markers as they narrow in diameter along the proximal-to-

distal axis; (ii) intertumoral mucin pools that are surrounded by tumor in 2D but comprise 3D networks 

connected in some cases to the intestinal lumen and its microbiome; (iii) TLS, which are strongly 

implicated in anti-tumor immunity (Edin et al., 2019, p. 20), and form 3D interconnected networks with 

graded molecular and cellular composition. The presence of large and small scale gradients is consistent 

with how tissue development is controlled (K. W. Rogers & Schier, 2011) and how epigenetics regulate 

cell state, but contrasts with an emphasis on enumeration of discrete cell states and mutations using 

single cell sequencing.  

When a machine learning (kNN) model involving high-plex intensity data was trained by a 

pathologist to distinguish morphologies such as glandular vs. solid and high vs. low grade tumor, we 

found archetypal morphologies used in diagnosis were graded and intermixed to a greater or lesser 

degree in different specimens that did not correspond to MSI-H (hypermutant) vs. MSI-L status, 

suggesting that epigenetic factors rather than genetic ITH plays a dominant role. We found that 

differences in morphology did not map to differences in single markers, but instead to hyperdimensional 

features involving combinations of multiple proteins. We therefore speculate that the morphologic 

gradients observed in tissue specimens result from the aggregate action of several underlying molecular 

gradients, which may include epigenetic regulators, oncogenic signaling effectors, as well as cell-

extrinsic factors such as gradients in cytokines and nutrients.  

Graded changes in protein expression along tumor cell fibrils represent an interesting case in 

which a connection can be drawn between molecular and morphological gradients. The diagnostic 

criterion for a tumor bud is the presence of clusters of 1-4 cells surrounded by stroma at the tumor 

invasive margin (Lugli et al., 2017). Tumor buds are assumed to constitute isolated single cells or small 

clusters of cells with EMT-like signatures prone to infiltration and metastasis (Mani et al., 2008). 

However, in agreement with an earlier H&E study (Bronsert et al., 2014), we find that buds in CRC1 are 

most likely to be cross-sectional views of the narrow distal tips of fibrillar structures that project from 

the main tumor mass. Using Delaunay triangulation to quantify these structures we find that E-cadherin 

and Ki-67 levels fall, with progression from the widest (proximal) to the narrowest (distal) regions of the 

fibrils. Delaunay triangulation identifies morphologically similar fibrils in other regions of the tumor, 

including as projections into the mucin network. This recurrence of morphological transitions is 

consistent with the idea that ITH can have a substantial non-genetic origin (Black & McGranahan, 2021; 

Sharma et al., 2019).  
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Ensuring adequate spatial power for tissue imaging. 

To date, most analysis of high-plex tissue images has focused on reconstructing small 

neighborhoods of cells, particularly from tissue microarrays and small fields of view. However, a key 

technical conclusion of our paper is that even local proximity analysis is confounded by poor statistical 

power due to pixel-to-pixel spatial correlations that generate the structures and patterns visible in 

images. Whereas the number of independent samples in a set of dissociated cells (e.g., in scRNA-seq) is 

equal to the number of cells (N), the Central Limit Theorem tells us that the effective sample size (Neff) 

for spatially correlated data in an image will always be smaller (Lavrakas, 2008). In CRCs we find that 

correlation length scales for biologically relevant markers can be as large ~500 µm, making Neff 100 to 

1000-fold smaller than N. Thus, in many cases, TMAs and mm-scale fields of view contain only a single 

instance of a feature of interest, resulting in measurement error that is substantially greater than the 

patient-to-patient variability. This penalty is even more severe for complex properties such as 

neighborhood inclusion and exclusion and is sufficient to generate spurious correlations with Kaplan-

Meier survival estimators.  

In contrast, imaging entire slides in 2D (~105 cells) largely overcomes this problem (Neff ~ 100). 

It is also the standard in conventional pathology (Ghaznavi et al., 2013), and is regarded by the FDA a 

diagnostic necessity (Aeffner et al., 2019; Health, 2019). The argument for whole-slide imaging has not 

conventionally had this statistical foundation, and has instead been justified by the need to view tumor 

cells in context for classification using the TNM system (Amin et al., 2017), the performance of which is 

only rarely exceeded by the addition of molecular data. However, the two arguments are fundamentally 

similar. Our data also show that 3D reconstruction enables substantial additional insight into the 

connectivity of large-scale structures, but for relatively straightforward tasks such as cell-type 

enumeration, 2D whole-slide imaging appears adequate. Nonetheless, a requirement for whole-slide 

imaging in a research and diagnostic setting comes with substantial cost: per-patient data sets are >102 

larger than with TMAs, cohorts are more difficult to acquire (whole blocks must be accessed and recut), 

and the data analysis remains challenging since files can be as large as a terabyte per specimen. 

 

Immunology of the CRC invasive margin. 

The morphology and depth of invasion of a tumor margin has high prognostic value (Weiser, 

2018) and differences between infiltrative and well-delineated pushing margins are commonly used for 

patient management (Koelzer & Lugli, 2014). By annotating invasive margins in our CRC cohort, we 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2021.03.31.437984doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437984
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lin-Wang-Coy-Sorger et al.      3D Colorectal cancer atlas 
 

19 

found that the immune environment can vary substantially within a single tumor and also recurrently 

with margin morphology across specimens. Budding regions are the most T-cell rich, but also the most 

immunosuppressive (with abundant Tregs and PDL1-expressing ells). Whereas tumor buds have few 

proliferating cells, tumor cells in areas of deep invasive margins are highly proliferative and have fewer 

immediately adjacent immune cells. Because MSI-H CRC is often treated with ICIs, the mechanism of 

PDL1-mediated suppression of T cells at the tumor margin is particularly relevant (André et al., 2022). 

We find that, in all but one of the 17 CRCs we examined, PDL1-expressing myeloid cells outnumber 

PDL1-expressing tumor cells 4-fold or more; high resolution imaging also demonstrates that myeloid 

cells form PDL1:PD1 mediated contacts with PD1+ T cells. These findings are consistent with recent 

data from mouse models of colon cancer showing that dendritic cells are a primary source of 

immunosuppressive PDL1 (Oh et al., 2020) and with a general role for dendritic cells in tolerization. 

However, we find that the relative abundance of PDL1+ cells most likely to correspond to macrophages 

and dendritic cells proximate to T cells varies substantially from tumor to tumor, suggesting that 

dendritic cells are not the only relevant PDL1+ myeloid population. Deeper molecular profiling should 

make it possible to determine the precise identities of PDL1+ myeloid cells involved in T-cell 

suppression in different tumors as well their prognostic significance. Although PDL1+ tumor cells were 

rare in all but one tumor (CRC17), these cells can also play a role in immunosuppression because they 

were often found concentrated in regions of tumor budding. An obvious follow-up question that will 

require analysis of cohorts of ICI-treated patients is whether the origin of PDL1 plays a role in 

responsiveness to ICIs and whether tumors that are exceptionally high in tumor-intrinsic PDL1 – like 

CRC17 – will be more or less ICI sensitive. 
 

Limitations of this study. 

The most substantial limitation in the current study is that only one CRC has been reconstructed 

in 3D, largely because the process remains arduous and manual. Moreover, many of the features whose 

architecture we examine – tumor budding fibrils, TLS networks, and invasive margins – would benefit 

from deeper molecular profiling to better identify cell types and states. An obvious example is to further 

determine the relationships between B and plasma cell maturation markers, antigen presenting cells such 

as dendritic cells and helper T cells, cytotoxic cells such as CD8 T cells, and functional states with 

regard to emergent 3D TLS morphologies. There are also many spatial relationships among the 2 x 108 

cells in our dataset that we are unable to explore in a single paper, particularly since several of our 

computational methods are quite simple (e.g., k-means clustering); other approaches from graph or 
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percolation theory might be superior (Plotkin et al., 2002; Reynolds et al., 2009). Moreover, image 

segmentation and cell-type calling methods continue to improve, and all types of analysis will likely 

benefit in the future from reprocessing of primary images. To mitigate these and other limitations, and to 

enable follow-on studies, we are releasing all images and processed data in multiple formats. The results 

described above also suggest multiple ways in which data could be better acquired for future 3D tumor 

studies.  

DATA AVAILABILITY AND ATLAS IMAGE VIEWING (PRE-PUBLICATION) 

As part of this paper all images at full resolution, all derived image data (e.g., segmentation masks) and 

all cell count tables have been released via the NCI-sponsored repository for Human Tumor Atlas 

Network (HTAN; https://htan-portal-nextjs.vercel.app/). Because the public resource is still undergoing 

extensive development, an additional version of the numerical data is also available at 

https://www.synapse.org/#!Synapse:syn18434611/wiki/597418. Several of the figure panels in this 

paper are available with text and audio narration for anonymous on-line browsing using MINERVA 

software (Rashid et al., 2022), which supports zoom, pan, and selection actions without requiring the 

installation of software. A Minerva story with an overview of CRC1 (sections 096 and 097) can be 

found at: cycif.org/crc1-intro and the 25 CRC1 Z-sections can be found at: cycif.org/crc1-3d. The third 

Minerva story focused on data integration for CRC1 can be found at: https://www.cycif.org/data/lin-

wang-coy-2021/viz.html. Other resources, including images of CRC2-17, for this paper can be found at 

https://www.tissue-atlas.org/atlas-datasets/lin-wang-coy-2021/. We will make all of these MINERVA 

stories available directly via the published version of this paper; we are currently securing DOIs for 

these stories to provide a more uniform name space. 
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FIGURE TITLES AND LEGENDS 

Figure 1. Overview of the data. 

(A) Overview of the data collection strategy for 93 FFPE CRC specimens available as a 3D stack, single 

whole-slides, and TMAs. Specimens were serially sectioned for H&E staining and CyCIF imaging 

(Table S2). For CRC1 (see Table S1 for clinical information), 25 sections were stained with the main 

CyCIF antibody panel (Table S3), and 3 sections were stained with targeted panels (Tables S4-S6). 

Sixteen additional tumors (CRC2-17; Table S1) were imaged as whole-slides using the main and 

targeted antibody panels and also included in a TMA along with 77 additional CRC tumors (4 cores 

each; CRC18-93; Table S1). (B) Histopathologic annotation of H&E images into three invasive margins 

(A: budding margin, B: mucinous margin, C: pushing margin) and 6 different ROIs (1: normal mucosa, 

2: superficial (luminal) adenocarcinoma, 3: submucosal adenocarcinoma, 4: muscularis propria 

adenocarcinoma (deep invasive front), 5: solid adenocarcinoma, 6: mucinous adenocarcinoma). ROIs 

2-4 exhibit a moderately differentiated appearance with glandular architecture, while ROIs 5-6 exhibit a 

poorly differentiated appearance with predominantly solid or cribriform architecture. Regions of tumor 

budding were also annotated. Schematic made with BioRender. (C) An example of a CyCIF whole-slide 
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image (section 097) and cell-type assignment. Twenty-one different cell types from three main 

categories (tumor, stroma, and immune; Table S7) were defined and their locations mapped within the 

tumor section. (D) Comparison of cell-type percentages assessed via single cell RNA-sequencing 

(scRNA-seq) and CyCIF. (E) Dimensionality reduction of single-cell data by t-SNE (CRC1 section 

097), color coded by staining intensity for the indicated marker. All markers were used to generate the t-

SNE map while only random sampled 50,000 cells are shown in the plot. Cell-type plot (right) uses 

color code shown in Figure S1C. 

  

Figure 2. Spatial heterogeneity and estimation errors for regional sampling. 

(A) Length scales for select markers across CRC1-17. (B) Spatial correlations of binarized staining 

intensities for CK+ (red), α-SMA+ (blue), and FOXP3+ (green) cells, along with their exponential fits 

(dashed lines). (C) CyCIF image showing a CD20+ TLS (pink circle) and a CD31+ blood vessel (yellow 

circle and magnified in inset). (D) Spatial distribution of CD20+ cells (magenta dots and contours) and 

CD31+ cells (cyan dots); numbers 1-6 indicate annotated ROIs. (E) Virtual 1 mm TMA cores from 

CRC1 (section 097) and 0.6 mm cores from a real TMA of other CRC patients (CRC2-93). (F) 

Estimates of cell-type abundance using vTMA cores or random sampling. (G) Estimation error of 

vTMAs summarized by fold-reduction in effective sample size, N/Neff, for marker log-intensities and 

cell-type compositions. Observed error is compared to that predicted by accounting for exponential fits 

of spatial correlations in the Central Limit Theorem (R2 = 0.97, green); deviations (red) are attributable 

to some violation of model assumptions (e.g., deviation from exponential decay). (H) Correlation of 

select cell-type pairs amongst 10 nearest neighbors. (I) Correlation functions of CK+ cells as estimated 

from vTMAs or random sampling. Estimates from four cores are also shown. (J) Images of the four 

cores (A-D) highlighted in (I). (K) The fraction of various marker-positive cells across specimens 

CRC2-17 whole-slide or TMA data, or among TMAs from specimens CRC18-93. Box plot displays data 

points and 1st-3rd quartiles, proportions <0.0001 are denoted as a single data point along the dotted line.  

 

Figure 3. Correlation and prediction of morphologic and molecular tumor phenotypes. 

(A) Example ROIs corresponding to four different tumor morphologies (H&E) used for training (left 

column) and non-adjacent regions that were predicted with high confidence (right column). The kNN 

classifiers were trained and validated separately for each section to evaluate the reproducibility of the 

models. (B) Prediction confidence for assignment of kNN classes as measured by Shannon entropy. A 

value of 0 corresponds to perfect certainty. A value of 2 indicates random assignment (i.e., equal mixing 
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of all classes). (C) Posterior probability that each CK+ cell belongs to normal epithelium or glandular, 

solid, or mucinous tumor classes. Annotation reflects classifier gradients and alternation corresponding 

to morphologic phenotype. (D) Left: Sample tumor region that transitions from normal to abnormal 

glandular features (H&E, top) coinciding with transition from E-cadherin expression to PCNA (CyCIF, 

bottom). Contours describe averaged local epithelial cell expression of PCNA. Center and right: 

Additional examples of transition regions, with H&E (top), CyCIF (middle), and quantified expression 

contours (bottom). (E) PCA of 31 spatially resolved GeoMx transcriptomics regions (analyzed areas 

indicated in Figure S1A). (F) Cumulative distribution of single-cell classification entropy of CRC1-17 

rescaled to unit range. Patients with only two classes (black) had only normal epithelial and a tumor 

morphology class. Different CRC1 sections used different markers for classification. (G) Examples of 

marker gradients on the scale of whole tumor sections. White circles denote regions cored out during 

TMA construction.  

 

Figure 4. Tumor budding is a distributed phenomenon associated with graded molecular and 

morphologic transitions. 

(A) Left: H&E field of view (FOV) (CRC1, H&E section 096) from invasive margin A (IM-A, see 

Figure 1B) with a subset of budding cells indicated by boxes and arrowheads. Right: Corresponding 

CyCIF channels (CRC1, CyCIF section 097). Red outlines indicate the main tumor mass and yellow 

outlines the canonical tumor buds. (B) Different magnifications of the annotated budding region in 

CRC1 section 097. (C) 3D overview of CRC1 IM-A. Left: Surface renderings of glandular tumor (blue), 

α-SMA+ stroma (purple), normal mucosa (green), CD68+PDL1+ cells (yellow), and budding cells (red). 

Right: All annotated buds colored by budding cell density and showing interconnected fibril-like 

networks of budding cells. (D) 3D visualization of annotated buds (purple) relative to connected tumor 

mass (gray) and other cells with uncertain connectivity (green). Corresponding regions in 2D CyCIF 

images are in Figure S4B. (E) Delaunay clusters of CK+ cells in a local FOV of CRC1 section 097. CK+ 

cell neighborhoods are denoted by edges, along with CK- cells (blue) and pathology annotated buds 

(white). (F) Left: Histogram of cluster-sizes (log2) across all 25 CRC1 sections. Right: Cluster sizes 

mapped onto CRC1 section 097. Image exaggerates size of single cells for visibility. (G) Left: t-SNE of 

cluster size. Color represents log2 cluster size and black outline denotes small clusters (including 

annotated buds). Center and right: t-SNE of CK+ cell expression of the indicated marker with color 

representing marker intensity. (H) Log-intensity of markers and their dependency on cluster-size in 

CRC1 tumor cells. Expression of annotated buds shown in green for reference. Box plots show 1st-3rd 
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quartiles; points beyond are not shown. Each box represents ~105-106 cells. (I) Log-intensity of markers 

and their dependency on cluster-size for tumor cells in CRC2-17, as in Figure 4H.  

 

Figure 5. Small, isolated tumor and mucin structures in 2D are large, connected networks in 3D. 

(A) Example of transition from main tumor mass into fibrils and ‘bud-like’ cells in the stroma in CyCIF 

(top) and H&E (bottom). There is gradual loss of Na-K ATPase and PCNA from the main tumor mass to 

the tips of fibrils with decreasing cluster-size (budding cells appear red on CyCIF, arrowheads). Image is 

oversaturated to make hues more visible. (B) Analogous budding structures in mucinous tumor regions, 

with fibrils and budding cells (arrowheads) extending into mucin pools rather than stroma. (C) Heat map 

of GeoMx data for selected EMT hallmark genes. Each column corresponds to an analyzed region from 

one tissue section, as described in Figure S1A. Morphology corresponding to each region is indicated. 

(D) Two exemplar H&E FOVs from different regions of the reconstructed mucin structure with mucin 

pools that appear isolated in 2D sections (arrowheads). (E) Connectivity of mucin pools across serial 

sections. Largest contiguous mucin pool structure (red) extends into the lumen (lumen surface outlined 

in yellow). Image is mirrored along Z relative to Figure 1B to better visualize details. (F) Schematic 

diagram depicting serial sectioning through fibrils of budding cells at the tumor invasive margin, 

illustrating how a large contiguous 3D structure may appear as isolated cells or small clusters in 2D 

sections. Made with BioRender. 

 

Figure 6. 3D TLS structure and cell compositions.  

(A) 2D TLS domains in CRC1, section 097. Numbers indicate the individual TLS/SLO domains 

identified in this one section. (B) 3D rendering view of TLS networks (TLSNs) from CRC1. The 7 

largest TLS networks are labeled A-G. Histogram shows the number of individual TLS identified in 2D 

sections from each TLS network (A-G). (C) 3D TLS networks projected onto XY surface. (D) 

Clustering of TLS domains by kNN (left panel) and number of domains in each cluster (right panel). (E) 

TLS cluster distribution in CRC1; 7 largest TLSNs are outlined and labeled. (F) Example CyCIF images 

of TLS clusters 1 and 3. (G) Left: 3D view of TLSN-B from CRC1 with each TLS domain colored by 

cluster. This 3D view is in the same orientation as TLSN-B shown in panel E and in the top view 

(shown in right upper panel). Right: Cross-sectional views of XY (top) and XZ (bottom) show TLS 

domains in TLSN-B. (H) 3D view of TLSN-B, colored by principal component 1 (PC1). (I) Example 

CyCIF and H&E images of TLS clusters 4, 5, 6, and 7. (J) TLS domain counts in CRC1-17 (section 097 
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was used for CRC1). (K) Heatmap of TLS clusters from CRC1-17. (L) 2D TLS domains of CRC16, 

colored by TLS clusters. 

 

Figure 7. Immune landscape of CRC and its invasive margins.  

Abundance and distribution of (A) CD45+, (B) CD4+FOXP3+ (Treg) and CD8+ (Tc), and (C) PDL1+ cells 

with ROI numbers indicated; TB denotes region enriched for tumor budding; in panel A, the three 

regions of the invasive front are labelled IM-A, IM-B, and IM-C. (D) Co-occurrence of PDL1+ and 

PD1+ using a distance cutoff of 20 μm. Panels A-C and K depict CRC1 section 097. (E) LDA topics and 

their relative abundancies along the tumor margin. (F) PDL1 expression in indicated cell types. The top 

panel represents the relative fractions of PDL1+ cells over indicated populations, while the bottom panel 

shows the absolute fractions of PDL1+ or double marker positive cells. (G) Representative images of 

PDL1+CK+ cells in CRC1 (top panel) and CRC17 (lower panel). (H) Plot of PDL1+CK+ (top panel) or 

PDL1+CD68+ cell fractions in MSI-H or MSI-L samples from TMA data (CRC2-93). (I) 

Characterization of PDL1:PD1 interaction in CRC1 (all 25 sections). PDL1+ cells were binned into two 

subsets, one with PD1+ cells in proximity (20 µm cutoff) and one without. The fractions of CK+ (top 

panel) and CD45+ (bottom panel) in these two bins are plotted; P-values from pairwise t-test are shown 

(n = 25). (J) Characterization of PDL1:PD1 interaction in CRC1-17 performed as in panel I (n = 17). 

(K) Co-occurrence maps using a distance cutoff of 20 μm and cell types shown. (L) High-resolution 3D 

imaging of PDL1:PD1 interaction among tumor and myeloid cells. Top panel: maximum intensity 

projections. Bottom panel: 3D rendering from Imaris software. (M) Schematic illustrating tumor-

immune interactions at different types of invasive margins. 

DATA AND SOFTWARE AVAILABILITY 

All full resolution images, derived image data (e.g., segmentation masks) and all cell count tables 

will be publicly released via the NCI-sponsored repository for Human Tumor Atlas Network (HTAN; 

https://humantumoratlas.org/) at Sage Synapse. A version of this data is available at 

https://www.synapse.org/#!Synapse:syn18434611/wiki/597418. Several of the figure panels in this 

paper are available with text and audio narration for anonymous on-line browsing using MINERVA 

software (Rashid et al., 2022), which supports zoom, pan and selection actions without requiring the 

installation of software. A Minerva story with an overview of CRC1 (sections 096 and 097) can be 

found at: cycif.org/crc1-intro and the 25 CRC1 Z-sections can be found at: cycif.org/crc1-3d. scRNA-

seq data is available in the Gene Expression Omnibus (GEO accession: GSE166319). 
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All software used in this manuscript is freely available via GitHub as described in (Schapiro et 

al., 2022) and references therein and in https://github.com/labsyspharm/CRC_atlas_2022. 

SUPPLEMENTAL INFORMATION  

Supplemental information includes six figures, eight tables, and three movies (Lin-Wang-Coy-CRC1-

Movie 1-Lumen View, Lin-Wang-Coy-CRC1-Movie 2-Budding and Lin-Wang-Coy-CRC1-Movie 3-

TLS). Interactive data viewing is possible via anonymous web links via https://www.cycif.org/crc1-

intro, https://www.cycif.org/crc1-3d, and https://www.cycif.org/data/lin-wang-coy-2021/viz.html.  

 

SUPPLEMENTAL FIGURE LEGENDS 

Figure S1. Overview of dataset and connection between cell-type calling and underlying 

morphologies. Related to Figure 1. 

Design of GeoMx experiment. (A) 32 regions were selected from one tissue section of CRC1 (31 passed 

quality control and were used in the analysis). Representative images of the regions are shown (right 

panels). Scale bars: 2 mm in left panel, 200 μm in the zoomed in views and 200 μm in the right panels 

showing representative morphologies. (B) Representative images of main antibody panel from CRC1. 

(Blue: DNA stain with Hoechst 33342). Scale bars, 100 μm. (C) Cell-types mapped across CRC1, 

section 097. Cell-type definitions and main classification markers are as indicated. A detailed 

marker/reference dictionary is presented in Table S7. (D) Variation in composition of each annotated 

ROI across all sections of CRC1 for the same three main classes of cell-types as listed in Figure S1C 

(tumor epithelium, stroma, and immune). (E) UMAP plot of scRNA-seq data generated from CRC1, and 

cell-types identified by Leiden clustering (see Methods). (F) Marker-guided sub-clustering was 

performed as described in Methods. Positive cells are highlighted in yellow. 

 

Figure S2. Impact of TMA sampling error. Related to Figure 2.  

(A) Field of view (FOV) portraying four different correlation length scales and strengths for CK+, 

FOXP3+, α-SMA+, and CD163+ cells. Four circles with radii denoting the length scale parameters. (B) 

Scaling law estimates of N/Neff for CK+, FOXP3+, and α-SMA+ based on the scaling law in Equation 1 

(shaded colored boxes represent lcell  = 7-13 μm, l from fits) compared to 0.6 mm vTMA cores (colored 

bars). (C) Correlation of select cell-type pairs amongst 10 nearest neighbors. (D) Correlation functions 

between select cell-type pairs as estimated from virtual tissue microarrays (vTMAs) or random 

sampling, overlaid with the correlation functions from four cores (from Figure 2I). (E) Percent variance 
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in real TMA (rTMA) estimates of cell-type abundance that can be attributed to sampling error, after 

removing outliers. Expected improvement from sampling four cores per tumor is shown in yellow. (F) 

FOVs of patient sections with low and high Ki-67+ cell abundance. Circles show the length scale of Ki-

67+ cells. (G, H) Kaplan-Meier (KM) curves for progression-free survival (patients CRC2-17), 

calculated from TMAs (left) and whole-slide images (WSI, right). (G) KM curves generated from data 

stratified with α-SMA+ percentage (cutoff 40%) in each patient sample. (H) KM curves generated from 

data stratified with mean CD4 expression level (cutoff: 3,500 AFU) in each patient sample. (I) Variation 

of cell-type composition between sections of a single tumor (CRC1) and sections from different patient 

tumors (CRC2-17). Section sampling error is typically a minority of the variance between patient 

sections. (J) Variation of cell-type spatial correlation strengths and length scales across CRC1 Z-

sections (blue) and across patients CRC2-17 (red). In most cases, variation within a patient is smaller 

than that between patients and shows no signs of bias.  

 

Figure S3. kNN-classification of epithelial histology. Related to Figure 3. 

 (A) Precision and recall of morphology classifiers trained on CRC1 sections. (B) Normalized Shannon 

entropy of cells in the CRC sections indicated in Figure 3F. (C) (Left) Shannon entropy of kNN-

classification for cells in CRC1. Normal cells from normal colon epithelium (ROI1) have low-entropy, 

indicating high-confidence classification. Regions used for training were also high confidence, as 

expected by definition. Most tumor regions were classified as being between classes, i.e., having high 

entropy. (Right) The relative weight of each class is visualized by hue. (D) Dimensional reduction of 

subsampled single-cell expression from CK+ cells by t-SNE, with pathologist annotations indicated by 

color. Each of the four marker panels provide enough information to cluster normal epithelial cells 

(black) separately from tumor cells, despite limited overlap in markers between panels (indicated by 

Venn diagram). Different annotations roughly occupy different regions of expression space, indicating 

that expression and morphology are correlated, but tumor cells largely form a continuous distribution, 

supporting the existence of mixed morphologies. 

 

Figure S4. Tumor bud characterization. Related to Figure 4. 

(A) Proportion of pathology annotated budding cells amongst CK+ cells across each of the sections. (B) 

CyCIF image with location of 3D viewpoints corresponding to Figure 4C and 4D. Arrow represents 

approximate viewing angle in those figures. (C) Differential expression of markers in cells annotated as 

tumor buds. The relative expression of indicated markers is represented in heatmap as the log2 ratio of 
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budding tumor cells to all tumor cells. (D) Log-intensity of markers and their dependency on cluster-size 

in CRC1 tumor cells across all 25 sections (as in Figure 4H). Expression of annotated buds shown in 

green for reference. Box plots show 1st-3rd quartiles; points beyond are not shown. Each box represents 

~105-106 cells. (E) Log-intensity of markers and their dependency on cluster-size for tumor cells in 

CRC2-17 (as in Figure 4I).  

 

Figure S5. 3D TLS structures and clusters. Related to Figure 6. 

(A) 2D projection of TLS networks (TLSN) across all sections of CRC1 (left panel), and the section-by-

section view of TLS networks in nine selected sections (right panels). (B) The number of TLS per 3D 

TLS network (top) and the number of the total of 25 slides in which a particular TLS network was 

identified (bottom). (C) TLS domain cluster composition in each section of CRC1. (D) Representative 

H&E images of TLS domain clusters 1 and 3, the same regions as shown in Figure 6F (serial section 

shown). (E) 3D view of TLSN-B, colored by principal component 2 (PC2) (PC1 shown in Figure 6H). 

(F) t-SNE plots of all TLS domain clusters from CRC1 (25 sections) and CRC2-17 (16 sections), 

colored by samples (left panel) or TLS domain clusters (right panel). 

 

Figure S6. LDA analysis of immune composition. Related to Figure 7.  

(A) 16 LDA topics from CRC1-17, immune panel (33 antibodies). Representative markers are shown in 

red and black text (the size of label for each marker is proportional to its probability within each of the 

topics). (B) Two-way hierarchal clustering between LDA topics and pathology annotated regions. The 

cell/topic counts from all pathologist-annotated ROIs as well as marker-defined ROIs (*) were clustered 

with full lineage and Euclidean distancing. (C) The fractions of topics in three selected regions of the 

invasive margin across all samples (a subset of the topics is shown in Figure 7E; budding margin, deep 

invasive margin, and ‘border’ margin which does not include the deepest invasive front). (D) Fractions 

of PD1+ cells in selected populations. The percentage of PD1+ cells in total/any cells or cell groups 

selected with indicated markers were plotted sample by sample (CRC1-17). (E) Fractions of PDL1+ 

cells in selected populations. The percentage of PDL1+ cells in total/any cells or cell groups selected 

with indicated markers were plotted per CRC sample. (F) The fractions of PDL1+ cells in myeloid 

subsets. Box plot showing the percentage of PDL1+ cells in CD68+CD11c-, CD68-CD11c+, and 

CD68+CD11c+ per sample (boxes indicate 1st-3rd quartiles and whiskers represent 5% and 95%; red line 

indicates medians). (G) Relative frequency of PDL1+ myeloid subsets in each sample. The numbers of 
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CD68+CD11c-, CD68-CD11c+ and CD68+CD11c+ cells in PDL1+ population were calculated, and the 

relative abundancy (divided by sum) of each subset is shown. 

 

Figure S7. Cell composition in CRC2-17. Related to Figure 7. 

(A) t-SNE plots based on CyCIF data for specimens CRC1-17 (excluding data from the DNA staining). 

Cell types are shown at the bottom of the figure. Tumor/epithelium (T/E), stroma (S) and immune (I) 

populations are outlined in black. The t-SNE plot for CRC1 is reproduced from Figure 1E for reference. 

(B) t-SNE of CRC1-17 labelled by specimen identity with labelling by general cell type in upper right. 

(C) Cell-type composition for CRC1-17 shown as stacked bar graphs with the same color code as in 

panel A.  

 

SUPPLEMENTAL TABLE LEGENDS 

Table S1. Clinical information for colorectal cancer cohort. Demographic and diagnostic information 

for all patient-derived specimens in this study. CRC1 was analyzed in 3D and CRC2-17 in whole-slide 

2D and TMA 2D. Other specimens (CRC18-93) were imaged as TMA cores, as described in the text and 

Figure 1. 

 

Table S2. Sectioning plan for specimen CRC1. Thickness and staining plan for CRC1 sections shown 

in Figure 1. All CyCIF sections other than 044-046 were stained using the primary CyCIF antibody 

panel described in Table S3. Sections 044-406 were stained as described in Table S4. Numbers refer to 

the HTAN universal ID scheme used to access underlying Level 2 to Level 4 data in the HTAN data 

portal. 

 

Table S3. Primary CyCIF antibody panel. Antibodies used to stain all CRC1 sections 044-046 

including CRC2-17 sections and TMAs. CST refers to Cell Signaling Technologies (Beverley MA 

USA); RRID refers to the Research Resource Identifier available at https://scicrunch.org/resources.  

 

Table S4. Supplementary CyCIF antibody panel for CRC1. Antibodies used to stain CRC1 sections 

044-046. Abbreviations as in Table S3. 

 

Table S5. Tumor-focused antibody panel. Antibodies used to stain CRC2-17 for whole-slide imaging. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2021.03.31.437984doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437984
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lin-Wang-Coy-Sorger et al.      3D Colorectal cancer atlas 
 

30 

Table S6. Immune-focused antibody panel. Antibodies used to stain CRC2-17 for whole-slide 

imaging.  

 

Table S7. Cell-type dictionary. Cell-type assignments based on marker intensities. The first tab shows 

the primary discriminating markers and tabs 2 and 3 show assignments based on all markers in the 

panel. 

 

Table S8. Cell-type composition for regions of interest in CRC1. Cell-type composition for 

pathologist-defined regions of interest (see Figure 1B) across all sections processed for CyCIF. Cell-type 

definitions as in Table S7. 

STAR METHODS 

CONTACT FOR REAGENT AND RESOURCE SHARING 

This manuscript contains no unique reagents or resources; all antibodies are available commercially (see 

Table S3-S6 and Key Resources file) and all data can be accessed via the Human Tumor Atlas Network 

(HTAN) portal (https://htan-portal-nextjs.vercel.app/). 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Human Tissue 

Unfixed (fresh) tissue from a resection of a colon adenocarcinoma (CRC1) was isolated by the 

Cooperative Human Tissue Network (CHTN) for single cell RNA-sequencing. A portion of the sample 

was formalin-fixed and paraffin-embedded (FFPE) and tissue sections were generated by the CHTN as 

outlined in Table S2. Additional FFPE colon adenocarcinoma specimens were retrieved from the 

archives of the Department of Pathology at Brigham and Women’s Hospital (BWH) with Institutional 

Review Board (IRB) approval as part of a discarded/excess tissue protocol. 92 different tumor samples 

(CRC2-93) were used to construct a tissue microarray (HTMA 402; four 0.6 mm diameter cores were 

extracted from the FFPE donor blocks and assembled into a recipient TMA block). Whole-slide sections 

of 16 of these colon adenocarcinoma specimens (CRC2-17) were also analyzed, after the four cores 

were removed. Clinical metadata was abstracted from the BWH medical record and clinical and 

biospecimen metadata for CRC1 was provided by the CHTN. The tumor and adjacent normal tissue in 

CRC1 was collected from a resection of the cecum of a 69-year old male; the medical reports indicated 

that the tumor was a poorly differentiated stage IIIB adenocarcinoma (pT3N1bM0) (Weiser, 2018) with 
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microsatellite instability (MSI-H) and a BRAFV600E (c.1799T>A) mutation. Histopathology review 

showed that the tumor had a broad front invading into underlying muscle (muscularis propria) and 

connective tissue giving rise to a ‘budding margin’ (IM-A) adjacent to an area of normal colon mucosa 

(ROI1), a ‘mucinous margin’ in the middle of the specimen (IM-B), and a deep ‘pushing margin’ (IM-

C) (these three margins are denoted “A”, “B” and “C” in Figure 1B). 

METHOD DETAILS 

CyCIF protocol 

Tissue-based cyclic immunofluorescence (CyCIF) was performed as previously described (Lin et al., 

2018). The detailed protocol is available in protocols.io (dx.doi.org/10.17504/protocols.io.bjiukkew). In 

brief, the BOND RX Automated IHC/ISH Stainer was used to bake FFPE slides at 60°C for 30 minutes, 

to dewax the sections using the Bond Dewax solution at 72°C, and for antigen retrieval using Epitope 

Retrieval 1 (LeicaTM) solution at 100°C for 20 minutes. Slides underwent multiple cycles of antibody 

incubation, imaging, and fluorophore inactivation. All antibodies were incubated overnight at 4°C in the 

dark. Slides were stained with Hoechst 33342 for 10 minutes at room temperature in the dark following 

antibody incubation in every cycle. Coverslips were wet-mounted using 200 µL of 10% Glycerol in PBS 

prior to imaging. Images were acquired using a 20x objective (0.75 NA) on a CyteFinder slide scanning 

fluorescence microscope (RareCyte Inc. Seattle WA). Fluorophores were inactivated using a 4.5% H2O2, 

24 mM NaOH/PBS solution and an LED light source for 1 hour. 

 

Single-cell RNA-sequencing 

Samples for scRNA-seq were processed according to the HTAN publication (Chen et al., 2021). 

Surgical tissues were removed and placed into RPMI solution and transported directly to the processing 

laboratory within 10 minutes. Tissue samples were immediately minced to approximately 4 mm2 and 

washed with DPBS. The samples were then incubated in chelation buffer (4 mM EDTA, 0.5 mM DTT) 

at 4°C for 1�hour and 15�minutes. Then, the resulting suspensions were dissociated with cold protease 

and DNAse I for 25 minutes. The suspensions were triturated throughout the process, every 10 minutes, 

then washed three times with DPBS before encapsulation. Single cells were encapsulated and barcoded 

using the inDrop scRNA-seq platform as previously described (Banerjee et al., 2020), targeting about 

2,500 cells. Sequencing libraries were prepared using TruDrop library structure (Southard-Smith et al., 

2020). Sequencing was performed on the NovaSeq 6000 (150 bp paired end) at a depth of approximately 

150 million reads per sample. 
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QUANTIFICATION AND STATISTICAL ANALYSIS 

Image processing and data quantification 

Image analysis was performed with the Docker-based NextFlow pipeline MCMICRO) (Schapiro et al., 

2022) and with customized scripts in Python, ImageJ and MATLAB. All code is available in GitHub 

(https://github.com/labsyspharm/CRC_atlas_2022). Briefly, after raw images were acquired, stitching 

and registration of the different tiles and cycles was performed with MCMICRO using the ASHLAR 

module (Muhlich et al., 2022). The assembled OME.TIFF files from each slide were then passed 

through quantification modules. For background subtraction, a rolling ball algorithm with 50-pixel 

radius was applied using ImageJ/Fiji. For segmentation and quantification, UNMICST2 was used 

(Schapiro et al., 2022; Yapp et al., 2022) supplemented by customized ImageJ scripts (Lin et al., 2018) 

to generate single-cell data. More details and source code can be found at www.cycif.org and as listed in 

the software availability section. 

 

Single-cell data quality control for CyCIF 

Single-cell data for multiplexed images was passed through several quality control (QC) steps during 

generation of the cell feature table. Initial QC was done simultaneously with segmentation and 

quantification, so that cells lost from the specimen in the later cycles would not be included in the 

output. Next, single-cell data was filtered based on the mean Hoechst staining intensity across cycles; 

cells with coefficient of variation (CV) greater than three standard deviations from the mean were 

discarded as were any objects identified by segmentation as “cells” but having no DNA intensity. These 

steps are designed to eliminate cells in which the nuclei are not included as a result of sectioning. Highly 

autofluorescent (AF) cells (measured in cycle 1 or 2) were also removed from the analysis, using a 

customized MATLAB script that applied a Gaussian Mixture Model (GMM) to identify high-AF 

populations. More details and scripts are available at https://github.com/labsyspharm/CRC_atlas_2022. 

 

Cell-type identification using CyCIF data 

Multiparameter single-cell intensity data was used for generating binary gates. For the main CyCIF 

panels, 16 measurements (cytokeratin, Ki-67, CD3, CD20, CD45RO, CD4 CD8a, CD68 CD163, 

FOXP3, PD1, PDL1, CD31, α-SMA, desmin, and CD45) were subjected to binary gating. All samples 

and markers were gated independently. A customized MATLAB script was used to apply 2-component 

Gaussian Mixture Modeling and generate the initial gate, followed by human-inspection and adjustment. 

Double or triple gates were also generated via Boolean operation in single-cell data. For hierarchal cell-
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type identification, a modified SYLARAS algorithm (Baker et al., 2020) was applied with these 

datasets, and a total of 21 different cell types were assigned using the 16 markers described above. 

Additional markers (e.g., E-cadherin) were considered to be continuous variables and used for analysis 

but not cell-type assignment. The completed cell dictionary for cell-type identification can be found in 

Table S7. 

 

Pathology annotation of histologic features 

Hematoxylin and eosin (H&E) stained tissue sections from all specimens (CRC1-17) were evaluated by 

two board-certified pathologists (S.C., S.S.). For each case, 6 principle regions of interest (ROI) 

corresponding to histopathologic regions or morphologic variations defined in the pathologic evaluation 

of CRC were defined when present for all 22 H&E Z-levels, including: (1) normal mucosa; (2) 

moderately differentiated invasive adenocarcinoma (glandular, typical morphology) involving the 

luminal surface, (3) submucosa (corresponding to ‘pT2’ depth by TNM staging), and (4) muscularis 

propria (corresponding to ‘pT3’ by TNM staging); (5) poorly differentiated invasive adenocarcinoma 

(solid, signet ring cells, corresponding to ‘high-grade’ histology); and (6) moderately-poorly 

differentiated invasive adenocarcinoma with mucinous features and extracellular mucin pooling (6). 

Regions of ITBCC-defined tumor budding (i.e., clusters of ≤4 cells apparently detached from the main 

tumor mass surrounded by stroma at the tumor invasive front) were also annotated in CRC2-17 and on 

all 22 H&E Z-levels of CRC1. For CRC2-17, additional histologic features that were not present in 

CRC1 were also annotated when present, including: adenoma (tubular), tumor necrosis, comedo 

necrosis, squamoid, pleomorphic, and extensive signet ring cell tumor morphology, and perineural or 

lymphovascular invasion by tumor. In cases with clear anatomic orientation, the deep invasive tumor 

front was initially delineated as a band with an approximate width of 5-10 cell diameters (50-100 μm) at 

the deep edge of the tumor. In cases with multiple histologic subtypes present at the invasion margin, 

each type was annotated separately; in CRC1, this included IM-A (budding/infiltrative), IM-B 

(mucinous), and IM-C (pushing) margins, with similar notation used in other cases. Tertiary lymphoid 

structures were defined in each case by identifying aggregates of lymphoid cells on H&E and correlating 

with CD20, CD4, and CD8 immunofluorescence (CyCIF) to identify discrete aggregates of B cells with 

adjacent or intermixed T-cell populations, including both immature/early TLS without histologic 

evidence of well-formed germinal centers, and more mature TLS with germinal center formation 

(Fridman et al., 2022). 
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Pathologist-annotated budding cells and Delaunay cluster-sizes of cytokeratin+ cells 

Using ITBCC criteria, a trained pathologist annotated budding regions in CRC1 (n = 25) and CRC2-17 

(n = 16) from both CyCIF and H&E images. These selected ROIs were used in the data analysis, and 

CK+ cells in these areas were labelled as “budding tumor cells.” In cluster size analyses, a neighborhood 

graph was constructed for all segmented cell centroids using Delaunay triangulation, removing edges 

whose lengths were greater than 20 μm. Then, the CK+ neighborhood graph was defined as the subgraph 

restricted to the CK+ cells (i.e., removing all nodes and edges connected to CK- cells). The cluster size of 

each CK+ cell was defined as the number of nodes in its connected component of the subgraph. For 

quantification of marker expression dependence on cluster-size, cells annotated as normal colon mucosa 

(ROI1) were removed from the CK+ subgraph. In the 25 CRC1 Z-sections, cells in the upper-left corner 

of the image (1 cm x 1 cm) were also removed; this region contained CK+ cells of reactive, benign, and 

mesothelial origin, as opposed to tumor cells of interest. 

  

Biased downsampling based on cluster-size for t-SNE visualization 

By definition, most tumor cells have a large cluster-size. Therefore, to visualize the cluster-size 

dependence of marker expression with t-SNE, we downsampled cells by stochastically rejecting cells at 

frequency 1 � � 1/
��� , for cluster-size 
�. The power of 4 was chosen empirically to balance the 

representation of various cluster sizes. Final t-SNE plots were made by further subsampling 1,000 cells 

from each section uniformly. The t-SNE plots in Figure 4G were computed using the following 

markers: Na-K ATPase, Ki-67, cytokeratin, PDL1, E-cadherin, vimentin, CDX2, lamin ABC, desmin, 

and PCNA. 

 

kNN-classification of epithelial cell morphologies trained on pathologist annotations 

To develop a kNN classifier for pathologist-annotated regions of interest (ROIs), epithelial cells were 

defined by gating using a univariate, 2-component Gaussian Mixture Model on the relevant marker 

(cytokeratin, cytokeratin 19, cytokeratin 18, or E-cadherin) in each section. A kNN-classifier was 

trained on the annotated, epithelial cells using CyCIF marker expression as predictors, and annotated 

ROI labels as responses. Markers that exhibited unexpected optical artefacts or significant tissue loss 

were not used (see below for specific markers that were excluded). Learning and prediction were 

performed using MATLAB’s ��
��

�� and ������
�� functions, with k = 40 neighbors. The prior 

probability of each label was set as uniform. In each section, there were at least 2,000 annotated cells for 

each label. Annotated cells were split 50/50 into training and validation sets. Posterior probability colors 
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in Figure S3C (panels in right column) were visualized based on its vector of classification posterior 

probabilities ��	, ��, �
, ���, for 1: normal, 2: glandular classes, 3: solid, and 4: mucinous. The RGB-

values of each cell were then defined as: 

��, �, ��  �  ���, �
, ���/max���� 

to capture the relative weight of each class.  

 

For the sections in the primary CRC1 dataset (e.g., section 044), the following markers were used as 

predictors: Na-K ATPase, Ki-67, keratin, PDL1, E-cadherin, vimentin, CDX2, lamin, desmin, PCNA, 

autofluorescence; see paragraph below for further details on included and excluded markers. For CRC1 

section 046, which was stained with an extended antibody panel, the following markers were used as 

predictors: cyclin B1, cytokeratin 20, cytokeratin 18, NUP98, cytokeratin 8, PDL1, acetyl-tubulin, p62, 

pan-cytokeratin, lamin A/C, tubulin. For sections CRC1 sections 045 and 047, which were also stained 

with different extended antibody panels, we used all artefact-free markers (totaling 29 and 36 

respectively). For CRC2-17, the entire antibody panel was used. 

 

In the primary dataset, for kNN classification we excluded Hoechst, CD3, CD4, CD20, CD163, CD45, 

CD68, FOXP3, CD45RO, α-SMA, PD1, CD8a, CD31, collagen, and autofluorescence as being 

irrelevant to tumor-intrinsic feature expression. The Ki-67 (D3B5) Rabbit mAb was included because it 

showed superior staining to another Ki67 antibody (Ki67_570) which was excluded. For CRC1 section 

045, we excluded Hoechst and autofluorescence. CK17 was excluded due to staining artefacts. CK14, 

alternate pERK, Cyclin B1, Perforin, MAP2, GFAP, Cyclin A2, p-mTOR, Cyclin E were excluded due 

to tissue loss in the final cycles. For CRC1 section 046, we excluded Hoechst, autofluorescence, CD3, 

CD4, CD57, CD163, IBA1, CD16, CD11c, CD45, CD68, CD11b, CD11a, CD1a, Granzyme B, CD14, 

PD-1, HLA-A, CD8a, and CD31 as irrelevant to tumor extrinsic programs. PAX5, POLR2A, NFATc1, 

PAX8, and phospho-BTK were excluded due to tissue loss in late cycles. VEGFR2 was excluded due to 

the presence of staining artefacts. For CRC1 section 047, we excluded Hoechst, autofluorescence, and 

CD20 as irrelevant to tumor expression. EZH2, phospho-CDK, E2F1, FOXA2 were excluded due to 

staining artefacts. 

 

Contour plots of epithelial cell marker expression gradients 

Contours represent level sets for the average marker expression of the 400 nearest tumor cells, and were 

computed using the MATLAB contour() function. 
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3D registration of CRC1 serial sections 

All CyCIF sections were registered using a custom script written in MATLAB 2018 (MathWorks). 

Briefly, each section was first registered using a rigid transformation followed by elastic deformations 

starting at section 012 and cascading towards the top and bottom sections. For the rigid transformation, 

an early cycle Hoechst signal with minimal artefacts from each section was selected. All channels were 

padded by an equivalent of 1,600 pixels along all borders when registering at full resolution. Rigid 

transformation required consistent landmarks across all sections. Therefore, we identified two such 

features: the edge of the mucosa section and a point where it transitions into the stromal region. This 

region was annotated on several downsampled sections, providing training data for a UNet model to 

estimate fuzzy locations of the transition point and the mucosal edge. Starting from section 012 and 

taking the centroid of each fuzzy estimate as that section’s transition point, all 25 sections were aligned 

by translation. Each section was then rotated around the transition point until the fuzzy estimates for the 

edge of the mucosa region overlapped maximally between sections. For subsequent elastic deformation, 

we manually selected between 25-35 control points across each section. Most control points were 

located near the site of budding cells. Then, using local weighted means with these control points via the 

fitgeotrans() MATLAB function, we applied a deformation starting from section 012 towards section 

001 and 025. Finally, we applied Demon’s algorithm to refine registration further. Images were 

downsampled by a factor of 0.25 and histogram matched, before applying the imregdemons() MATLAB 

function with an accumulated field smoothing of 1.5 and downsampling with 7 pyramid levels. Demon’s 

algorithm was applied starting from section 12. 

 

3D visualization of registered CRC1 serial sections 

Using Imaris, images were Gaussian-blurred, and an intensity threshold was applied to define regions 

(e.g., CK+). Connectivity of buds or mucin pools were defined on blurred, thresholded voxels. 

 

Virtual TMA cores and fold-change in effective sample size N/Neff 

Virtual TMAs (vTMA) were constructed from whole-slide sections by randomly selecting a central cell 

and including all cells within 500 μm of the central cell’s centroid as one core. For each vTMA core, a 

matching, uniform random sample was generated from the whole-slide section with an equal number of 

cells. The standard-errors of the mean from vTMA (i.e., regional) sampling (��
�) or random sampling 
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(�������) were estimated from the means of 1,000 cores and their matched, random samples. The 

effective sample size N/Neff was defined as the square of the standard-errors’ ratios:  

��
�
�/��

������. 

 

Spatial correlation functions and predicting standard-error of regional sampling 

For each sample (whole-slide, virtual TMA core, or real TMA core), spatial correlation functions ������ 

were calculated for a pair of variables �, � and a nearest-neighbor index �. Specifically, ������ was 

given by the Pearson correlation between cells’ �-values and their �th - nearest neighbors’ �-values. 

Each � index was associated to the average, inter-cell-centroid distance ���� of all �th - nearest 

neighbors in a sample. Correlations were computed up to � � 200. Each ��������� was fit to an 

exponential ��exp��	�� for parameters ��, �	, over the range of 5 # � # 200 to avoid spurious 

correlations between adjacent cells that may arise from image segmentation errors. Correlation strength 

was defined as ��, and length scale � � �1/�	. Fits were performed with the ��
�� MATLAB function 

with default options. We subsequently estimated the standard-error of the mean of a variable � for a 

regional sample of $ correlated cells as follows. First, we computed the $ % $ matrix of inter-cellular 

distances ��� , and then computed the $ % $ correlation matrix &� between cells using the fit of the 

spatial correlation function ������. By the Central Limit Theorem for weakly-dependent variables 

(Ibragimov, 1962), we expect the standard- error of the mean for N samples to be '| &� |/$, for | &� | 
the sum of all entries in &�.  

 

Scaling analysis of fold-change in effective sample size N/Neff 

For a variable � with variance �� � 1, the fold-change N/Neff is defined as: 

 

�

����
� ��

���

��
	
��
�

� | �� |/��

	/�
� | �� |

�
. 

 

The final term can be interpreted as the sum of correlations between an average cell and all other cells in 

the sample region �. Choosing a coordinate system with an average cell at the origin, we approximate 

the sum as an integral: 

| &� |
$ ) * ��+ ����|+|�,�+�

�

 

� � ��� ��exp
�|�|/���
���
. 
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Where ,�+� is the density of cells, and 
 is the spatial dimension of the regional sample. If we assume a 

uniform density ,�+� � 1/��
���� for a cell length scale �����, and change variables in the integral to 

eliminate the length scale �, we have: 

 
| �� |

�
� �� � �

�����
�

�

� ��� exp
����	
, 

which gives us a scaling relation with which we can roughly estimate N/Neff from parameters: 

�

����
� �� � �

�����
�

�

. 

 

Variance between patient TMAs due to sampling error and an optimal score 

For any given cell-type’s %-composition, we computed the variance of estimates from the whole-slide 

tumor regions of each patient, ��
�������, and the variance of estimates from TMA cores, ��

�
�. We 

considered ��
�������to be the biological variance of ��

�
�, and remaining variance to be residual error 

from sampling, ��
��������. Percent of variance explained by sampling was given by ��

��������/
 ��

�
�. For the hypothetical scenario of averaging 4 cores, ��
�������� would be 4-fold lower, and 

percent variance explained was given by ���
��������/4�/ ���

��������/4 . ��
���������. Outliers in 

each distribution, as indicated in each boxplot, were excluded from the variance calculations. 

 

Immune profiling, LDA analysis, and PDL1:PD1 interaction 

For CRC1-17 whole-slide sections stained with the immune panel, multiparameter single-cell intensity 

data was used to generate binary gates (for 30 of 33 markers). LDA analysis for spatial topic analysis 

was performed using MATLAB “fitlda” function. In brief, the single-cell data of each sample was split 

into 200 microns x 200 microns grids, and the positive frequency for each marker was calculated for 

each grid. The pooled frequencies of all samples were used to train the final LDA model, and 16 topics 

were isolated. To determine PDL1:PD1 interactions in single-cell data, the cell neighbors within 20 

microns were identified with a k-nearest searching algorithm. The PDL1+ cells with PD1+ cells in 

proximity were labeled as “PD1+ interactors.” The marker expression of PD1+ interactors and other 

PDL1+ cells were compared as described. In Figure 7F (top panel), number PDL1+ cells with indicated 

subsets (any, CK+, CD68+, and CD11c+) were divided by the total cell number in the given subset. In 

Figures 7I and 7J, the positive ratios were calculated by the positive cell number of indicated markers 

(CK+, CD45+, HLA-A+, and CD44+) normalized with the PDL1+ cells in either interacting or non-

interacting groups. 
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scRNA-seq data analysis 

Following sample demultiplexing from the sequencer, reads were filtered, sorted by their barcode of 

origin, and aligned to the reference transcriptome to generate a counts matrix using the DropEst pipeline 

(Petukhov et al., 2018). Barcodes containing cells were identified using dropkick (Heiser et al., 2020). 

Batches were combined and consensus non-negative matrix factorization (cNMF; (Kotliar et al., 2019)) 

was performed to identify metagenes in the resulting cell matrix, assigning “usage” scores for each 

factor to all cells. The factors or metagenes contain gene loadings that rank detected genes by their 

contribution to each factor, which are shown on UMAP embeddings in descending order. CytoTRACE 

(Gulati et al., 2020) was also run using the web portal at https://cytotrace.stanford.edu/ to calculate 

“stemness” or cellular plasticity scores based on genetic diversity. Leiden clustering (Traag et al., 2019) 

and PAGA (Wolf et al., 2019) graph construction was performed on principal component analysis of the 

normalized and arcsinh-transformed raw counts matrix. A two-dimensional UMAP (McInnes et al., 

2020) embedding was then generated using SCANPY (Wolf et al., 2018) based on principal component 

analysis and initial cluster positions determined by PAGA. 

 

GeoMx RNA spatial transcriptomics  

We used the GeoMx® Cancer Transcriptome Atlas (CTA) to profile RNA expression levels of ~1,800 

genes from 32 selected regions (Figure S1A) from an FFPE tissue section of CRC1 using methods 

described by the manufacturer (NanoString Technologies, Seattle, WA). Probes were collected 

separately from CK+ and CK- cells and processed using cDNA library preparation methods. The library 

was then sent for sequencing with Illumina NovaSeq 6000. QC was performed using vendor-provided 

software. 31 of the 32 samples passed QC, and these datasets were used for downstream analysis. Probe 

counts were normalized with the total counts in each condition and used for principal component 

analysis and hierarchical clustering. 
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