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SUMMARY

Advanced solid cancers are complex assemblies of tumor, immune, and stromal cells characterized by
high intratumoral variation. We use highly multiplexed tissue imaging, 3D reconstruction, spatial
statistics, and machine learning to identify cell types and states underlying morphological features of
known diagnostic and prognostic significance in colorectal cancer. Quantitation of these featuresin
high-plex marker space reveals recurrent transitions from one tumor morphology to the next, some of
which are coincident with long-range gradients in the expression of oncogenes and epigenetic regulators.
At the tumor invasive margin, where tumor, normal, and immune cells compete, T-cell suppression
involves multiple cell types and 3D imaging shows that seemingly localized 2D features such as tertiary
lymphoid structures are commonly interconnected and have graded molecular properties. Thus, while
cancer genetics emphasi zes the importance of discrete changes in tumor state, whole-specimen imaging

reveals large-scale morphological and molecular gradients analogous to those in devel oping tissues.
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INTRODUCTION

Much of our knowledge of tumor microanatomy derives from 150 years of inspection of
hematoxylin and eosin (H& E)-stained tissue sections, complemented for the last eighty years by
immunohistochemistry (Coons et al., 1942). Histopathology has identified numerous recurrent features
of tumors with diagnostic or prognostic significance (Amin et al., 2017), but classical methods often
provide insufficient information for mechanistic studies and precision medicine. Spatial tumor atlases
(Rozenblatt-Rosen et al., 2020) aim to build on this foundation and the current understanding of tumor
genetics by collecting detailed molecular and morphological information on cellsin a preserved 3D
environment. The construction of such atlases is made possible by the recent development of highly-
multiplexed tissue imaging methods (Angelo et al., 2014; Gerdes et al., 2013; Giesen et al., 2014,
Goltsev et a., 2018; Lin et al., 2018; Sakaet al., 2019; Schurch et al., 2020; Wagner et a., 2019) that
yield subcellular resolution images of 10-80 antigens. When segmented and quantified, high-plex tissue
images make it possible to identify cell types, assay proliferation, measure oncogene expression, and
generate single-cell data that are a natural complement to ScCRNA-seq (Burger et al., 2021; Gagliaet a.,
2022; Nirmal et al., 2022). Despite our increasingly deep knowledge about the genomic drivers of
cancer — from oncogenic mutations to large-scale chromosomal rearrangements — we do not yet know
how the spatial arrangement of the tumor microenvironment (TME) impacts pathogenesis; for instance,
which feature types and spatial scales are relevant for mapping the 3D TME, how disease-associated
histological features relate to molecular states, and whether morphological differences are discrete (like
mutations) or continuous (like morphogen gradients found in devel opment).

‘Bottom-up’ approaches to tissue atlas construction involve enumerating cell types, identifying
cell-cel interactions, and generating local neighborhoods using spatial statistics. Such approaches
leverage tools developed for the analysis of dissociated single cell data (e.g., mass cytometry (Bendall et
al., 2011) and scRNA-seq (Luecken & Thel's, 2019)). In contrast, “top-down” approaches involve
annotating histopathologic features (histotypes) that have been demonstrated to associate with disease
state or outcome (Amin et al., 2017) followed by computation on the multiplexed data to identify
underlying molecular patterns. Histopathology has along history of identifying striking spatial features
in small cohorts that do not have prognostic or diagnostic value on follow-up, introducing a note of
caution into ‘ bottomrup’ analysis (Mazer et al., 2019; Voskuil, 2015). At the same time, discoveries
arising from ‘top-down’ analysis are strongly influenced by prior expectations. In this paper, we analyze
colorectal cancer (CRC) using both approaches and compare the resulting insights.
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Histological features of established significancein CRC include: (i) the degree of differentiation
relative to normal epithelial structures based on tumor cell morphology (e.g., cell shape, nuclear size,
etc.) and the organization of cellular neighborhoods (e.g., glandular organization, hypercellularity, etc.)
(Fleming et al., 2012); (ii) the position and morphology of the invasive margin (Cianchi et al., 1997,
Schiirch et al., 2020) including the presence of “tumor buds,” small clusters of tumor cells surrounded
by stroma (Lugli et al., 2017) which are correlated with poor outcomes (i.e., increased risk of local
recurrence, metastasis, and cancer-related death) (A. C. Rogers et al., 2016); (iii) the extent of T-cdll
infiltration (Bruni et al., 2020) and the presence of peritumoral tertiary lymphoid structures (TLS)
(organized aggregates of B and other immune cell types; (Di Caro et al., 2014)). In many cases, the
origins and molecular bas's of these histological features are not fully understood, although de-
differentiation, including “stemness’ (Aponte & Caicedo, 2017), epithelial-mesenchymal transition
(EMT) (Kalluri & Weinberg, 2009), changes in nuclear mechanics (Uhler & Shivashankar, 2018), and
similar processes, are likely involved. In the case of tumor budding, epigenetic changes, not specific
mutations, have been shown to drive EMT (Centeno et al., 2017).

In this paper, we combined top-down and bottom-up analyses of high-plex CyCIF (Linet al.,
2018) and H& E images of CRC with single-cell sequencing and micro-region transcriptomics. We show
that accurate assessment of disease-relevant tumor structures requires the statistical power of whole-
dlide imaging, not the small specimens found in tissue microarrays (TMAS); this typically corresponds
to 10° to 10° cells per specimen, far more cells than are required for dissociative methods. Using 3D
reconstruction of serial sections and supervised machine learning, we show that archetypical CRC
histologic features are often graded and intermixed with morphological transitions and molecular
gradients spanning 10 or more cell diameters. Tumor budding also appears to be a graded phenotype,
and budding cells, as classically defined, form an extreme example of a gradual molecular and
morphological transition. Moreover, tumor buds, TLS, and several other structures are substantially
larger than they appear in 2D: for example, B cell-rich TLS are interconnected communities of
lymphocytes that can extend throughout large regions of the tumor. Thus, the TME is organized on
gpatial scales spanning 3-4 orders of magnitude, from subcellular organelles to cellular assemblies of
hundreds of microns or more.

RESULTS

Overview of the specimens and data.

Multiplexed CyCIF and H& E imaging were performed on 93 FFPE CRC human specimens

spanning awide variety of histologic and molecular subtypes (Table S1), which were imaged in three
4
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different formats, asillustrated in Figure 1A. Sample CRC1 (Figures 1B-1E) was subjected to 3D
analysis: 106 serial sections were cut from an ~1.7 x 1.7 cm piece of FFPE tissue and 22 H& E and 25
CyCIF images were collected, skipping some sections to increase the total dimension along the Z-axis.
These images were then reconstructed in 3D and combined with sScCRNA-seq, and GeoM x
transcriptomics (Zollinger et al., 2020) (Figures 1A, S1A; Tables S1, S2). Second, 16 additional
samples (CRC2-17) wereimaged in 2D as whole slides. Finally, CRC2-17 plus 77 additional tumors
(CRC18-93) were imaged as part of aTMA (0.6 mm diameter cores; four cores per patient) (Figure
1A). In each case, CyCIF was performed using various combinations of 102 lineage-specific antibodies
against epithelial, immune, and stromal cell populations and markers of cell cycle state, signaling
pathway activity, and immune checkpoint expression (specific antibodies for the ‘main,” ‘tumor-
focused,” and ‘immune-focused’ panels are listed in Tables S3-S6). MCMICRO software (Schapiro et
al., 2022) was used to segment images, quantify fluorescence intensities on a per-cell basis, and assign
cell types based on lineage-specific marker expression (Figures 1C, S1B-S1C; Table S7). Overall, ~2 x
108 segmented cells were identified in 75 whole-slide images using different combinations of antibodies
(~6TB of data) (Muhlich et al., 2022). All data are available for download viathe HTAN Portal (see data
access) and images of CRC1-17 are available for interactive online viewing without data or software
download usng MINERV A software (Hoffer et al., 2020; Rashid et al., 2022).

Figure 1 shows images and single cell data for CRC1, a poorly differentiated stage 111B
BRAF®%F adenocarcinoma (pT3N1bMO0) (Weiser, 2018) with microsatellite instability (MSI-H) that
arose in the cecum. This specimen was noteworthy for having complex histomorphology and an
extended front invading into underlying smooth muscle (muscularis propria) and connective tissue. The
front included a *budding invasive margin’ invading the submucosa adjacent to normal colonic mucosa
(IM-A), a‘mucinousinvasive margin’ (IM-B), and adeep ‘pushing invasive margin’ (IM-C); the latter
two regions invade the submucosa and muscularis (Figure 1B). t-SNE on the CyCIF data demonstrated
aclear separation of cytokeratin-positive (CK™) epithelial cells (both normal and transformed) from
CD31" endothelial cells (primarily blood vessels), desmin® stromal cells, and CD45" immune cells
(Figures S1B-S1D; Table S8). Immune cells could be further divided into biologically important
classes such as CD8'PD1" cytotoxic T cells (Tc), CD4" helper T cells, CD20" B cells, CD68" and/or
CD163" macrophages, aswell as discrete sub-categories such as CD4'FOXP3" T regulatory cells (Tregs)
(Table S7). scRNA-seq was performed on ~10* cells from an adjacent (frozen) region of CRC1 (Chen et
al., 2021) and the resulting estimated cell-type abundances exhibited a high degree of concordance with
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estimations from image data (R? = 0.94; Figures 1D-1E, S1E-S1F), demonstrating the accuracy of the

image segmentation and intensity quantifications.

I mpact of spatial correlation on statistical power.

While having more single-cell datais preferable in principle, the effort required to collect 3D
image stacks is substantially greater than single-section imaging; moreover, whereas a single whole-
section image captures an individual patient’s data, an image of a TMA can contain specimens from
>100 patients. For this reason, most high-plex tissue imaging papers to date focus on TMAs or —in the
case of mass spectrometry-based imaging methods (MIBI, IMC) —on fields of view (FOV's) of ~1 mm?,
It is nonetheless well established that the minimum image dimension needed to accurately measure
features within an image depends on the size of these features, which can be estimated from pixel-to-
pixe correlation lengths (Rgaram et al., 2017). In CRC1-17, we observed correlation lengths ranging
from ~80 pm for CD31 positivity to ~400 um for keratin or CD20 positivity (Figures 2A-2D, S2A) and
these length scales were directly related to observable and recurrent features of tumor morphology
including capillaries for CD31", sheets of tumor for CK™ cells, and TLS for CD20" (Figures 2C-2D).
Since these length scales are similar to those of most TMA cores, we used empirical and first-principles
approaches to investigate the impact of sample size on the accuracy and precision of statistical analysis
of 3D, 2D whole-slide, and TMA data.

Asan initial empirical approach, we generated a“virtual TMA” (VTMA) comprisng 1 mm
diameter FOV's subsampled from an image of CRC1 (section 097); each virtual core contained ~10°
cells as compared to ~5 x 10° for awhole-slide CRC1 image. Sampling was performed so that the
VTMA would primarily contain CK* tumor or epithelial cells. CRC2-17 had been used, prior to the
current work, to generate areal TMA (rTMA) in a pathology core, allowing usto confirm that vTMA
and rTMA cores generated were similar (Figure 2E). When we computed the abundance of CK™ cells
(cell count divided by thetotal cell number) in each vTMA core we found that it varied 20-fold from 5%
to 95% whereas the true value determined by counting all cellsin CRC1 section 097 was 45% (Figure
2F). Abundance estimates for a-SMA and FOXP3 positivity in VTMA cores were also imprecise, but to
alesser extent than for keratin positivity (Figure 2F). In contrast, when random samples of ~10° cells
were drawn from the single cell data without regard to position in the specimen, the estimated
abundance of CK™ cells was 45 + ~1%, a good estimate of the actual value (Figure 2F). Thus,
imprecision associated with computing cell abundance from avTMA arises only when spatial

arrangements are preserved.
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These findings can be explained in full from atheoretical perspective based on the Central Limit
Theorem for correlated data (Lavrakas, 2008). The effective sample size (Ne) for correlated datais
approximately related to the sample size N for “dissociated cells’ (cells chosen at random without regard
to position in an image or drawn from a dissociated cell preparation as in SCRNA-seq or flow cytometry)

viaasimple scaling law (see Methods for the derivation):

w2, (EQ)

Negr leell

where ¢, isthe spatial correlation strength, I the length scale (e.g., ~400 um for CK™) and average cell
sizel,,;. We observed a good match between CyCIF data and theory (R? = 0.97; Figures 2G, S2B) and
areduction in effective sample size (N/Ne) of 10- to 1,000-fold depending on the marker identity
(median value ~100). Thus, a1 mm core containing ~10° spatially correlated cells constituted as few as
1 to 3 independent samples, which explains the high variance when cell abundance is estimated. We
conclude that the analysis of TM A cores and other similarly small FOV'sis an inadequate meansto
accurately determine afeature as smple as cell abundance simply because the sample is too small

relative to the size of most features (we consider 2D v 3D sampling below).

Analysis of higher-order spatial features, such as cell proximity (Figures2H, S2C) was aso
strongly impacted by spatial correlation. For example, vVTM A data were much less precise than random
sampling when computing the correlation of CK™ (tumor) cell frequency with neighboring a-SMA”*
(stromal) cell frequency as afunction of distance (compare blue and green in Figur e 2H; note that
distance is plotted as the number of neighboring cells, which is proportional to the square of the
distance). The same was true when we searched for neighborhoods containing CD45" immune cells and
CD31" endothelial cells that represent areas of perivascular inflammation. Inspection of underlying
images showed that these differences related to variation of tissue morphologies and spatial
arrangements (illustrated by four selected cores; Figures2l, 2J, S2D).

To compare the magnitude of biological (patient-to-patient) variability with sampling error we
computed cell abundances for single markers and biologically relevant marker combinations (e.g.,
CD68"PDL1" macrophages) and observed a 3- to 10-fold variation from CRC2-17 (Figure 2K, red).
However, inter-core variance from any single specimen obtained from rTMAs was substantially greater
(Figure 2K, blue & teal). Only one measurement made from TMAs, Ki-67 positivity in CK™ cells,
exhibited inter-patient variability (18-61%) greater than sampling error between cores (~30%) (Figures
2K, S2E-S2F). Thus, imaging small fields of view causes sampling error to exceed true patient-to-
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patient variability in most cases. This error is sufficiently great that it can lead to fal se associations with
patient outcome in Kaplan-Meler analysis (Figures S2G-S2H).

To determine whether 2D whole-slide images are an adequate approximation of a 3D specimens
we computed cell abundances and spatial correlations for 24 Z-sections from CRC1 and compared this
to patient-to-patient variability estimated from whole-slide images of specimens CRC2-17 (compare red
and blue in Figures S21-S2J). For all but afew markers, we found that variance between Z-sections was
substantially smaller than patient-to-patient variability. The variances, when observed, were
immediately interpretable as differences in tumor architecture along the Z axis. We conclude that 2D
whole-slide imaging of a 3D specimen does not, in general, suffer from the same subsampling problem
as TMAsor small fields of view; thistoo is consistent with theory about sampling under correlation. As

we show below, however, some mesoscal e features of tumors can only be detected in 3D datasets.

Mor phological and molecular gradientsinvolving tumor phenotypes.

To link high-plex image features to histological CRC features with well-established prognostic
value, such as degree of tumor differentiation (well, moderate, poor), grade (low, high), subtype
(mucinous, signet ring cell, etc.) (Weiser, 2018), two board-certified pathol ogists annotated regions of
interest (ROI) from all 22 H& E sections of CRC1 and then transferred the annotations to adjacent
CyCIF images for single-cell analysis. Annotations included normal colonic mucosa (ROI1); moderately
differentiated invasive adenocarcinoma with glandular morphology involving the luminal surface
(ROI2), submucosa (ROI3) or the muscularis propria at the deep invasive margin (ROI4); regions of
poorly differentiated (high-grade) adenocarcinoma with solid and/or signet ring cell architecture (ROI5);
and regions of invasive adenocarcinoma with prominent extracellular mucin pools (ROI6) (Figure 1B).
A region with prominent tumor budding (TB) near margin IM-A was also annotated. Excluding muscle,
CyCIF data showed that solid adenocarcinoma (RO15) had the highest proportion of CK™ tumor cells
(~70%), whereas adjacent normal epithelium (ROI1) had the fewest CK™ (~25%) and the most stromal
and immune cells.

To determine which molecular features correspond to each histology, we trained a k-nearest
neighbor (kNN) classifier usng molecular features (CyCIF intensities) on pathology |abels. For
simplicity, we consolidated the ROIs into four classes with half of the cells in each class used for
training and half for validation. A different classifier was generated for each pair of CyCIF and H& E
images for CRC1-17. Of note, the pathologist-labeled H& E data was rich in morphological context, but
the CyCIF data comprised only cell positions (centroids) and integrated marker intensities, not

8
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morphological or neighborhood information. We observed high confidence predictions from the trained
kNN classifier (Shannon entropy near zero) on the validation set (Figures 3A, S3A) showing that the
classifier had encoded disease-relevant morphology using marker intensity alone. However, we found
that no single molecular marker was unique to a specific ROI or tissue morphology implying that

morphology is encoded in hyperdimensional intensity features.

Unexpectedly, KNN classifiers scored most regions of CRC1 outside of the annotated (training
and validation) data as comprising a mixture of morphological classes (as quantified by the posterior
probability) with transitions from one class to another. In many regions, Shannon entropy values
approached two, demonstrating an equal mixture of all four classes (red in Figures 3B, S3B). Thiswas
not a limitation of the markers used for classification, because similar results were obtained with
combinations of ~100 antibodies used to stain sections 044 to 047 of CRC1 (Figures S3C-S3D; Table
S4). When tumor regions with high Shannon entropy values were examined in H& E, we found that they
corresponded to transitions between classical morphologies (Figure 3D). These transitions were not
limited to asingle part of the tumor but were observed multiple timesin spatially separated areas on
dimensionsranging from afew cell diameters (~50 pum) to the whole image (~1 cm) (Figure 3C) and

included transitions from mucinous to glandular, mucinous to solid, and glandular to solid.

When we performed principal component analysis (PCA) on 31 spatially resolved transcriptomic
microregions (using GeoMx microregion transcriptomics, with each microregion sorted into CK* or CK”
cells) we also observed gradations in molecular state for both the tumor/epithelial (CK™; Figure 3E,
circles) and immune/stromal (CK"; squares) compartments. In this case, principal component one (PC1,;
the dominant source of variance) correlated with histologic subtype and grade while PC2 correlated with
epithelial vs. stromal compartment. In support of KNN models of CyCIF data, we observed a graded
transition along PC1 from glandular/mucinous (low-grade) histologies to fragmented/budding (high-
grade) histologies in both the epithelial/tumor and stromal/immune compartments. These findings serve

to confirm the existence of graded state transitions at multiple locationsin CRC1.

Across all 17 tumors, analysis of CyCIF data revealed intermixing of histologies to a greater or
lesser extent with some tumors exhibiting contiguous blocks of a single morphology (e.g., CRC5) and
intermixing smilar to CRC1 in others (e.g., CRC14; Figures 3F, S3B). There was no obvious
correlation between the degree of intermixing and M SI-H status (which promotes genome instability).
We conclude that different and highly characteristic histological phenotypes routinely used for
pathology grading and clinical planning in CRC are present in both discrete and intermixed forms, most
likely due to epigenetic rather than genetic heterogeneity.

9
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When we looked for patternsin CyCIF data we found that multiple markers exhibited intensity
gradients that in some cases encompassed an entire tumor and in others coincided with local
morphological gradients. Four examples are shown: a normal-glandular transition corresponding to E-
cadherin and PCNA gradients that are inversely correlated (Figur e 3D; left); a mucinous-solid transition
coinciding with inversely correlated cytokeratin 20 and cytokeratin 18 gradients (Figur e 3D; center);
alternating glandular-solid transitions (Figur e 3D; right, yellow curved arrow); and a glandular-solid
trangition coinciding with atransition in epigenomic regulators and modifications involving histone
trimethylation (Figure 3D; right, white arrow). The histone acetylation (H3K27ac) vs. trimethylation
(H3K27me3) marks are known to play complementary roles in transcriptional regulation (Zhao et al.,
2021, p. 27), and we observed graded and anti-correlated expression on long length-scales in multiple
tumors (e.g., CRC4, CRC5; Figure 3G), providing further evidence of organized epigenetic gradientsin
tumors. Graded expression of the tumor suppressor p53 and oncogene EGFR — two genes whose levels
of expression play well established roles CRC biology — was also observed (Figur e 3G). The white
circlesin Figure 3G areregions of tissue removed for rTMA construction (4 or 5 cores per specimen)
based on the inspection of H& E images alone. It isimmediately apparent that several sets of cores were
inadvertently chosen to lie along a molecular gradient. Such variation between TMAs from asingle
specimen is often attributed to random heterogeneity rather than the large-scal e structure we observe in
whole-slide images. Chemical and physical gradients play essential roles in normal tissue devel opment
(Oudin & Weaver, 2016), but are less explored in tumors, perhaps because tumor genetics tends to focus

on discrete differences (mutations).

Tumor budding and molecular transitions at the deep invasive front.

For diagnostic purposes, tumor buds are defined by the International Tumor Budding Consensus
Conference (ITBCC) as clusters of <4 tumor cells surrounded by stroma and lying along the invasive
front (Lugli et al., 2017), or, less commonly, the non-marginal ‘internal’ tumor mass (Lugli et a., 2011).
Using ITBCC criteriaa pathologist annotated budsin CRC1-17 and identified atotal ~7 x 10% budding
cellsin 10 of 17 specimens examined (representing ~0.01% of all tumor cells; Figure 4A, arrows and
boxes highlight examples on H& E, yellow outlines on CyCIF images indicate segmented budding cells,
Figure S4A). In CRC1, buds were largely confined to one ~2.0 x 0.7 x 0.4 mm region of the invasive
front (region IM-A, Figure 1B) near normal colonic epithelium and interspersed with T cells (Figure
4B). When we examined a 3D recongtruction of CRC1, we found that these“I TBCC buds’ were
frequently connected to each other and to the main tumor mass (Figures 4C-4D, $4B); buds as

10
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classically defined appeared to be predominantly cross-sectional views of these fibrillar structures (i.e.,
‘bud-like’ structures rather than true buds). This observation is consistent with a previous 3D study of
budding based on H& E images (Bronsert et al., 2014).

To analyze these structures objectively, we used Delaunay triangulation (Delaunay, 1934), to
annotate CK" cells (i.e., tumor and normal epithelium) that were immediately adjacent to each other
(Figure 4E). The smallest Delaunay clusters contained 1-4 contiguous cells surrounded by stroma and
corresponded to ITBCC buds (Figur e 4F; red) whereas the largest clusters contained >10” cells and
mapped to regions of poorly differentiated adenocarcinoma with solid architecture (which were aimost
entirely composed of tumor cells; yellow and orange). The widest range of cluster sizes was observed in
differentiated regions with glandular architecture (Figur e 4F; blue green). A key feature of tumor
budding cellsisthat they express low levels of cell-to-cell adhesion proteins (e.g., E-cadherin, CD44,
and Ep-CAM) (Gosens et a., 2007) and have alow proliferative index (Rubio, 2007, 2008). We
confirmed that buds matching ITBCC criteriain our data had reduced expression of adhesion and
proliferation markers (Figure SAC). Moreover, at-SNE representation of all single cell data labeled by
Delaunay cluster size showed that cellsin the smallest Delaunay clusters expressed the lowest E-
cadherin levels of all CK™ cells and that proliferation markers (e.g., PCNA) were also expressed at low
levels (Figure 4G, circled region). However, tumorsin our cohort did not contain a discrete population
of E-cadherin/proliferation-low budding cells, instead, the expression of E-cadherin, Na-K ATPase,
PCNA, and Ki-67 varied continuously with cluster sizein CRC1 (Figures4H, $4D) as well as other
CRC tumors (Figures4l, HAE).

Inspection of the underlying images (Figur es 5A-5B) revealed that regions of cohesive
glandular tumor (which was associated with large Delaunay cluster sizes and a PCNA"®" state) often
fragmented into fibrillar structures comprised of smaller clusters and a PCNA'®" state. At the terminal
tips of these fibrillar structures were ‘ bud-like' structures exhibiting the lowest PCNA expression and
surrounded by stroma (Figure 5A) or mucin (Figur e 5B). Analogous transitions between tumor masses
and small Delaunay clusters were observed throughout the tumor both at the invasive front (IM-A in
CRC1), in mucinous spaces (IM-B), and along the luminal surface of the tumor in regions corresponding
to discohesive growth with focal signet ring cell morphology (ROI5, Figure 1B) (Sung et al., 2008). The
small Delaunay clusters found in mucin pools were not distinguishable in size or expression (of cohesive
and proliferation markers) from buds as classically defined (Figures4l, SAE) even though the ITBCC
definition encompasses only clustersin fibrous stroma. PCA of GeoMx RNA expression data (Figure
3E) confirmed that regions with ITBCC buds (brown dots), fragmented tumor and budding (orange),
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and budding into mucinous spaces (yellow) were similar to each other and distinct from other tumor
morphologies (Figure 3E). Moreover, all three bud-like morphologies expressed elevated levels of
genesinthe EMT Hallmark gene set (GSEA M5930; Figure 5C, orange, yellow, brown) consistent with
theideathat aloss of cell cohesion occurs frequently across tumors, is associated with an EMT-like
process, and may be driven by a similar epigenetic program (Centeno et al., 2017). In 2D views, mucin
surrounding many bud-like structuresin CRC1 is found in pools of many different sizesthat are
apparently isolated from each other (mucins are large glycoproteins that protect the gastrointestinal
epithelium; Figure 5D arrowheads) (Bresalier, 2002). However, when we used the CRC1 3D
reconstruction to map these pools, we found that they were frequently continuous with each other and
with the colonic lumen, up to 1cm away; in CRC1 thisis most prominent in the central region involving
invasive margin IM-B (Figure 5E).

Putting these data together, we conclude that EM T-like transitions and tumor budding in CRC is
characterized not by the formation of isolated spheres of cells, asfirst described by Weinberg and
colleagues in tissue culture (Mani et a., 2008), but instead by the formation of large fibrillar structures
that appear to be small buds when viewed in cross-section at their distal tips. Fibrils can invade into a
variety of different environmentsincluding stromaand mucin (which itself consists of large inter-
connected mucin-filled structures rather than isolated pools) and we speculate that their formation is
driven by a gradual (not abrupt) breakdown in cell adhesion associated with a graded EMT-like
trangition (Figure 5F).

Networ ks of tertiary lymphoid structuresand their composition.

Anti-tumor immunity involves innate as well as adaptive mechanisms that mediate the expansion
and activation of cytotoxic T cells and the production of antibodies by B cells (plasmacells). Adaptive
immunity occurs within secondary lymph organs (Peyer’ s patches in the colonic mucosa) (Schumacher
& Thommen, 2022) aswell astertiary lymphoid structures (TLS), which develop in non-lymphoid
tissues such as tumors and other sites of chronic inflammation. The formation, organization, and
functions of TLS are under active investigation, but their presence is known to be associated with good
prognosis and immune checkpoint inhibitor (ICI) responsiveness (Cabrita et al., 2020; Helmink et al.,
2020). Pathology inspection of 47 individual sections of CRC1 (22 H& E and 25 CyCIF) identified over
900 distinct SLO and TLS domainsin 2D (Figures 6A, S5A). However, following 3D registration and
segmentation, we found that many of these domains were connected in larger 3D structures; for

example, seven large networks (Figure 6B; 3D rendering view) each spanning >12 sections and several
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mm laterally, could be assembled from 20-200 individual 2D domains each (the final assembly included
133 additional smaller SLO/TLS networks; Figures 6C, S5B). The large tertiary lymphoid structure
networks (TLSNs) were found along the invasive fronts (networks A, B, D), inside tumor (F, G), or in
layers of the muscularis (E) or subserosa (C; the subserosa is peri-colonic fibroadipose tissue external to
the muscularis). To study the cellular composition of TLSNs, we performed K-means clustering on
CyCIF intensity data (with k = 7 to match the number of large networks, Figure 6D) and recovered
clusters with the properties of SLOs (cluster 3) that were found near normal mucosa (as expected for
Peyer’ s patches) or typical TLS-like lymphoid-aggregates within the tumor itself (cluster 1, Figures 6E-
6F, S5C-S5D). TLS undergo maturation and are expected to differ from one another, but when we
mapped marker expression clusters onto the physical organization of TLSNSs, we found that some were
relatively homogenous, containing cells from one expression cluster whereas others were heterogenous.
For example, TLSN-C, which was predominantly located in the subserosa, was >96% composed of
expression cluster 7, which showed a marked predominance of CD45'CD20" B cells with little
enrichment of other populations; TLSN-F, which was found immediately adjacent to the region of tumor
budding, was 95% comprised of cluster 6 which was defined by a more heterogeneous collection of
immune lineages including B cells, numerous PD1" cytotoxic T cells, FOXP3" Tieg, and PDL1" myeloid
cells. In contrast, other TLSN-A, -B, or -D contained mixtures of expression clusters (Figures 6E, S5C).

To study an intermixed TLSN in greater detail, we projected marker clusters onto a 3D rendering
of TLSN-B (Figure 6G), which had been assembled from the greatest number of individual 2D domains
(206) and spanned all sections of CRC1 (Figures 6B, S5B). We found enrichment of myeloid cells
(CD68"CD163"; cluster 4, green) on the mucinous side of TLSN-B, with enrichment of T-cell (CD3",
CD45R0O", CD4™; cluster 5, yellow) and B-cell (CD20"CD45"; cluster 7, red) clusters intermixed along
the stromal side (Figure 6G). Inspection of corresponding H& E images revealed numerous discrete B
cell aggregates with associated T cellsin clusters 4 to 7 with states distinguished by the relative
abundance of different cell types (Figure 6l). Theimpression of graded composition was confirmed
when we performed PCA on marker intensities and mapped principal component scores onto the TLSN-
B structure (Figures 6H, S5E). This representation of the data emphasized the gradationsin
composition found within a single network.

To extend this analysis, we superimposed the marker-based clustering from CRC1 onto CRC2-
17 (Figure S5F); we found that the prevalence of individual marker clusters varied from tumor to tumor
but was similar for CRC1 and CRC2-17 in aggregate (Figures 6J, 6K). Like CRC1, CRC16 and 17 are
M SI-H tumors with rich TLS networks that appear large and connected even in 2D. Moreover, in
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CRC16 the area surrounding mucin pools and TLS were enriched in cells from marker clusters 4, 5 and
7—asin CRCL1 (Figure 6L) From these data, we conclude that CRC1 is a reasonable exemplar of our
overall cohort and that preliminary conclusions can therefore be drawn from our single 3D
reconstruction. These arethat (i) TLS can form interconnected networks rather than the i solated
structures observed in 2D sections, (ii) TLS networks within a single tumor can differ from one another
significantly with respect to the proportions of different immune lineages, and (iii) the cell types and
functional markers within asingle large TLS network can vary considerably from one region to the next,

and much of this variation appears graded, implying intra-TLS patterning and communication.

Immune profiling of the invasive margin.

The immune response at the tumor margin strongly influences disease progression and ICI
responsiveness (Paijens et al., 2021). Among the three morphologies found at the CRC1 invasive
margin, IM-A, the region with tumor budding and poorly differentiated morphology, had the greatest
density of immune cells (Figure 7A) but was also strongly immunosuppressive, with abundant
CD4"FOXP3" Tiegs partially-localized with CD8" cytotoxic T cells along tumor margins (Figure 7B).
While PDL1" cells were found inside the tumor and the stroma (Figur e 7C), the interaction between
PDL1" and PD1"cells was enriched at the budding interface cells (Figure 7D). IM-B exhibited the least
immune cell infiltration, consistent with arole for mucins in immune evasion or sequestration (Bhatia et
a., 2019). IM-C wasrich in Tregs but had very few PDL1" cells as compared to IM-A (Figures 7C, 7D).
To explore the connection between the tumor margin morphologies and molecular properties
systematically, we used using Latent Dirichlet Allocation (LDA), a probabilistic modeling method that
reduces complex structures into distinct component communities (“topics’) while accounting for
uncertainty and missing data (Blei et al., 2003; Jackson et al., 2020; Valle et al., 2014). We annotated
invasive marginsin CRC1-17 for i) infiltration with tumor budding, ii) deepest invasion, and iii) all
other morphologies (mucinous fronts were too infrequent to represent their own category) and then
performed LDA on CyCIF data (33-plex immune panel; Figure S6A) (Nirmal et al., 2022). We found
that LDA topics had significantly different frequencies in different regions of the invasive margin
(Figures 7E, S6B-S6C). Margins with tumor budding were significantly associated with CD4" and
CD8" T cells (Figure 7E, topic 1), the deep invasive front with tumor cell proliferation (Ki-67 positivity
in CK" cells; topic 9), and the remainder of the front with podoplanin positivity (PDPN*; topic 7). PDPN
is a short transmembrane protein widely expressed in cancer cells and cancer-associated fibroblast that is
implicated in cell migration, invasion, and metastasis (Krishnan et al., 2018). Fibroblasts secrete
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abundant cytokines and growth factors, potentially explaining the activation of signal transduction (i.e.,
phosphotyrosine - pTyr - and phospho-SRC positivity; topic 10) along this portion of the tumor margin.
In contrast, myeloid cells were ubiquitous, and their frequency (topics 5 and 12) did not significantly
associate with any specific margin morphology. We conclude that morphologically distinguishable
domains of the CRC invasive margin have differing levels of tumor cell proliferation (low in buds and
high in deep invasive margins), activation (pTyr), and immune suppression.

With respect to immunosuppression, the distribution of PD1" and PDL1" cellsis of particular
interest because this interaction can be targeted therapeutically in CRC (André et al., 2022). Across
CRC1-17, the fraction of PD1"cells varied 4-fold (from 3-12% of all cells) and these cells were >80%
CD4" or CD8' T cells (Figures S6D, S7). The fraction of PDL1" cells varied 12-fold (3-40%) (Figure
S6E) and was correlated with the number of PD1" cells (r = 0.52, p = 0.034; Z test). While a small
minority (1-5%) of tumor cells expressed PDL1, the cells most likely to be PDL1" were CD68" (14-51%
positive) and CD11c" myeloid cells (10-88% positive); PDL1" myeloid cells were also ~6.5-fold more
abundant on average than PDL1" tumor cells (Figures 7F, S6E). The sole exception to this rule was
CRCL17 in which >40% of all tumor cells were strongly PDL1 positive; this tumor was also high-grade
with extensive necrosis and uniformly poorly differentiated solid architecture and t-SNE showed it to be
aclear outlier with respect to composition (Figures 7G; S7A-S7C). Immunotherapy isindicated for
MSI-H CRCs because they are highly immunogenic (Boland & Goel, 2010); we found that M SI-H
tumorsin our cohort (n = 16 out of 93; see methods) had 5-fold more PDL1" tumor cells and 6-fold
more PDL1" myeloid cells on average than M SI-L tumors (p = 0.044 and 0.002 two-side t-test, Figure
7H), but the latter still outnumbered the former ~4-fold. Moreover, ~80% of M SI-H tumors had more
PDL1" myeloid cells than the average M SI-L tumor (Figure 7H). Across the CRC cohort we found that
single positive CD68"CD11¢ and CD68' CD11c" aswell as double positive CD68"CD11c" cells were
commonly PDL1", although this fraction and the relative abundance of each myeloid subset varied
several fold (Figures S6F-S6G), We do not have the markers in our panels to more precisdly subtype
PDL1" myeloid populations across the CRC cohort but our interpretation is that they include variable
proportions of macrophages, dendritic cells, and other mononuclear phagocytes.

Functionally, it is not simply the prevalence of PDL1" cellsthat is relevant for T-cell
suppression, but also which cells are in spatial proximity to allow for PDL1:PD1 binding. To study this,
we performed proximity analysis using a 20 um cutoff and found that, across 24 CRC1 sections, cells
interacting with PD1" cells were strongly enriched for CD45 positivity and depleted for CK positivity
(p<0.001 pairwise t-test, two-sided), showing that PD1" T cells more commonly interact with PDL1*
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immune cells than tumor cellsin CRC1. Thiswas also true of CRC2-16 with CRC17 representing the
sole exception (Figure 7J, red lines). Cellsinteracting with PD1" cells were also significantly more
likely to be positive for the CD44 adhesion receptor (Senbanjo & Chellaiah, 2017) and the HLA-A
major histocompatibility antigen than non-interacting cells. Co-localization of CD68"PDL1" myeloid
cellswith PD1'CD8" T cells was also confirmed by co-occurrence mapping in CRC1 (Figure 7K, upper
panel). Finally, high resolution (~220 nm laterally) optical sectioning 12-plex CyCIF provided direct
evidence of PDL1" myeloid cells synapsing with PD1" T cells at the tumor margin: we observed
multiple examples of co-localization and polarization of PD1 and PDL1 on the membranes of adjacent
cells, consistent with formation of functional cell-cell interactions (Figure 7L). We conclude that
immunosuppression of PD1" T cellsin our CRC cohort most commonly involves PDL1" myeloid, not
PDL1-expressing tumor cells. Nevertheless, PDL 1-expressing tumor cells may still be involved in
immune suppression in some tumors. In CRC1 for example, greater >85% of interactions of PD1" T
cells with PDL 1-expressing cells are myeloid in origin, but the 3% of tumor cells are that are PDL1" are
concentrated at the budding margin in close proximity to T cells (Figure 7K, lower panel; summary
schematic Figure 7M).

DISCUSSION

Understanding intra-tumor heterogeneity (ITH) iswidely regarded as essential for improving our
knowledge of tumor initiation and progression and ultimately for optimizing diagnosis and therapy
(Marusyk et al., 2012). The image-based single cell analysis described in this paper supports two broad
conclusions about the nature and organization of the ITH in CRC. First, our data show that molecular
states (protein markers) and tissue morphologies (histotypes) are often graded, with transitions between
phenotypes spanning spatial scales from afew cell diameters to many millimeters. For example,
gradients in the epigenetic markers H3K27me3 and H3K27ac can span several centimeters along an
entire tissue specimen. These markers play complementary roles in regulating transcription (Zhao et al.,
2021, p. 27), and we find that their levels are commonly anti-correlated. In other cases, changesin
cellular phenotypes are graded or recur in a semi-periodic manner, reminiscent of the “reaction-
diffuson” gradients of morphogens observed in embryonic development (Turing, 1952) and also
observed by fixed and intravital imaging in the mouse (Kondo et al., 2021) and in frozen human tissue
by mass spectrometry (Randall et al., 2020). Second, cell-cdll interactions most commonly studied at a
local level are often organized into large and interconnected structures that are substantially larger than
inspection of 2D sections suggests. These structuresinclude: (i) the 1-4 cell tumor buds that are cross-
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sectional views of fibrillar structures (Bronsert et al., 2014) characterized by progressively lower
expression of cell adhesion and proliferation markers as they narrow in diameter along the proximal-to-
distal axis; (ii) intertumoral mucin pools that are surrounded by tumor in 2D but comprise 3D networks
connected in some cases to the intestinal lumen and its microbiome; (iii) TLS, which are strongly
implicated in anti-tumor immunity (Edin et al., 2019, p. 20), and form 3D interconnected networks with
graded molecular and cellular composition. The presence of large and small scale gradientsis consistent
with how tissue development is controlled (K. W. Rogers & Schier, 2011) and how epigenetics regulate
cell state, but contrasts with an emphasis on enumeration of discrete cell states and mutations using
single cell sequencing.

When a machine learning (KNN) model involving high-plex intensity datawas trained by a
pathologist to distinguish morphologies such as glandular vs. solid and high vs. low grade tumor, we
found archetypal morphologies used in diagnosis were graded and intermixed to a greater or lesser
degreein different specimensthat did not correspond to MSI-H (hypermutant) vs. MSI-L status,
suggesting that epigenetic factors rather than genetic ITH plays a dominant role. We found that
differences in morphology did not map to differences in single markers, but instead to hyperdimens onal
features involving combinations of multiple proteins. We therefore specul ate that the morphologic
gradients observed in tissue specimens result from the aggregate action of several underlying molecular
gradients, which may include epigenetic regulators, oncogenic signaling effectors, as well as cell-
extrinsic factors such as gradients in cytokines and nutrients.

Graded changesin protein expression along tumor cell fibrils represent an interesting casein
which a connection can be drawn between molecular and morphological gradients. The diagnostic
criterion for atumor bud isthe presence of clusters of 1-4 cells surrounded by stroma at the tumor
invasive margin (Lugli et al., 2017). Tumor buds are assumed to congtitute isolated single cells or small
clusters of cellswith EMT-like signatures prone to infiltration and metastasis (Mani et al., 2008).
However, in agreement with an earlier H& E study (Bronsert et al., 2014), we find that budsin CRCL1 are
most likely to be cross-sectional views of the narrow distal tips of fibrillar structures that project from
the main tumor mass. Using Delaunay triangulation to quantify these structures we find that E-cadherin
and Ki-67 levelsfall, with progression from the widest (proximal) to the narrowest (distal) regions of the
fibrils. Delaunay triangulation identifies morphologically similar fibrilsin other regions of the tumor,
including as projections into the mucin network. This recurrence of morphological transitionsis
consistent with the idea that ITH can have a substantial non-genetic origin (Black & McGranahan, 2021;
Sharmaet al., 2019).
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Ensuring adequate spatial power for tissueimaging.

To date, most analysis of high-plex tissue images has focused on reconstructing small
neighborhoods of cdlls, particularly from tissue microarrays and small fields of view. However, akey
technical conclusion of our paper isthat even local proximity analysis is confounded by poor statistical
power due to pixel-to-pixe spatial correlations that generate the structures and patterns visible in
images. Whereas the number of independent samplesin a set of dissociated cells (e.g., in SCRNA-seq) is
equal to the number of cells (N), the Central Limit Theorem tells us that the effective sample size (Nes)
for spatially correlated datain an image will always be smaller (Lavrakas, 2008). In CRCs we find that
correlation length scales for biologically relevant markers can be as large ~500 um, making Net 100 to
1000-fold smaller than N. Thus, in many cases, TMAs and mm-scale fields of view contain only asingle
instance of afeature of interest, resulting in measurement error that is substantially greater than the
patient-to-patient variability. This penalty is even more severe for complex properties such as
neighborhood inclusion and exclusion and is sufficient to generate spurious correlations with Kaplan-
Meier survival estimators.

In contrast, imaging entire slidesin 2D (~10° cells) largely overcomes this problem (N ~ 100).
It is also the standard in conventional pathology (Ghaznavi et al., 2013), and is regarded by the FDA a
diagnostic necessity (Aeffner et al., 2019; Health, 2019). The argument for whole-slide imaging has not
conventionally had this statistical foundation, and has instead been justified by the need to view tumor
cellsin context for classification using the TNM system (Amin et al., 2017), the performance of whichis
only rarely exceeded by the addition of molecular data. However, the two arguments are fundamentally
similar. Our data also show that 3D reconstruction enables substantial additional insight into the
connectivity of large-scale structures, but for relatively straightforward tasks such as cell-type
enumeration, 2D whole-slide imaging appears adequate. Nonetheless, a requirement for whole-slide
imaging in a research and diagnostic setting comes with substantial cost: per-patient data sets are >10
larger than with TM As, cohorts are more difficult to acquire (whole blocks must be accessed and recut),
and the data analysis remains challenging since files can be as large as a terabyte per specimen.

Immunology of the CRC invasive margin.

The morphology and depth of invasion of atumor margin has high prognostic value (Weiser,
2018) and differences between infiltrative and well-delineated pushing margins are commonly used for
patient management (Koelzer & Lugli, 2014). By annotating invasive marginsin our CRC cohort, we
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found that the immune environment can vary substantially within a single tumor and also recurrently
with margin morphology across specimens. Budding regions are the most T-cell rich, but also the most
immunosuppressive (with abundant T,egs and PDL1-expressing €ells). Whereas tumor buds have few
proliferating cells, tumor cellsin areas of deep invasive margins are highly proliferative and have fewer
immediately adjacent immune cells. Because MSI-H CRC is often treated with I1CIs, the mechanism of
PDL1-mediated suppression of T cells at the tumor margin is particularly relevant (André et al., 2022).
We find that, in all but one of the 17 CRCs we examined, PDL1-expressing myeloid cells outnumber
PDL 1-expressing tumor cells 4-fold or more; high resolution imaging also demonstrates that myeloid
cellsform PDL1:PD1 mediated contacts with PD1* T cells. These findings are consistent with recent
data from mouse models of colon cancer showing that dendritic cells are a primary source of
immunosuppressive PDL1 (Oh et al., 2020) and with ageneral role for dendritic cells in tolerization.
However, we find that the relative abundance of PDL1" cells most likely to correspond to macrophages
and dendritic cells proximate to T cells varies substantially from tumor to tumor, suggesting that
dendritic cells are not the only relevant PDL1" myeloid population. Degper molecular profiling should
make it possible to determine the precise identities of PDL1" myeloid cellsinvolved in T-cell
suppression in different tumors as well their prognostic significance. Although PDL1" tumor cells were
rarein all but onetumor (CRC17), these cells can also play arole in immunosuppression because they
were often found concentrated in regions of tumor budding. An obvious follow-up question that will
require analysis of cohorts of ICl-treated patients is whether the origin of PDL1 playsarolein
responsiveness to ICls and whether tumors that are exceptionally high in tumor-intrinsic PDL1 — like

CRC17 —will be more or less ICI sensitive.

Limitations of thisstudy.

The most substantial limitation in the current study isthat only one CRC has been reconstructed
in 3D, largely because the process remains arduous and manual. Moreover, many of the features whose
architecture we examine — tumor budding fibrils, TLS networks, and invasive margins— would benefit
from deeper molecular profiling to better identify cell types and states. An obvious exampleis to further
determine the relationships between B and plasma cell maturation markers, antigen presenting cells such
as dendritic cellsand helper T cells, cytotoxic cells such asCD8 T cells, and functional states with
regard to emergent 3D TLS morphologies. There are also many spatial relationships among the 2 x 10°
cellsin our dataset that we are unable to explore in a single paper, particularly since several of our
computational methods are quite ssimple (e.g., k-means clustering); other approaches from graph or
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percolation theory might be superior (Plotkin et al., 2002; Reynolds et al., 2009). Moreover, image
segmentation and cell-type calling methods continue to improve, and all types of analysiswill likely
benefit in the future from reprocessing of primary images. To mitigate these and other limitations, and to
enable follow-on studies, we are releasing all images and processed data in multiple formats. The results
described above also suggest multiple ways in which data could be better acquired for future 3D tumor
studies.

DATA AVAILABILITY AND ATLASIMAGE VIEWING (PRE-PUBLICATION)

As part of this paper all images at full resolution, all derived image data (e.g., segmentation masks) and
all cell count tables have been released via the NCI-sponsored repository for Human Tumor Atlas
Network (HTAN; https://htan-portal-nextjs.vercel.app/). Because the public resourceis still undergoing

extensive development, an additional version of the numerical datais also available at
https.//www.Synapse.org/#! Synapse:syn18434611/wiki/597418. Several of the figure panelsin this
paper are available with text and audio narration for anonymous on-line browsing using MINERV A

software (Rashid et al., 2022), which supports zoom, pan, and selection actions without requiring the
installation of software. A Minerva story with an overview of CRC1 (sections 096 and 097) can be
found at: cycif.org/crcl-intro and the 25 CRC1 Z-sections can be found at: cycif.org/crc1-3d. Thethird

Minerva story focused on data integration for CRC1 can be found at: https://www.cycif.org/datallin-

wang-coy-2021/viz.html. Other resources, including images of CRC2-17, for this paper can be found at
https://www.ti ssue-atlas.org/atl as-datasets/lin-wang-coy-2021/. We will make all of these MINERV A

stories available directly via the published version of this paper; we are currently securing DOIs for
these stories to provide a more uniform name space.
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FIGURE TITLESAND LEGENDS

Figure 1. Overview of the data.

(A) Overview of the data collection strategy for 93 FFPE CRC specimens available as a 3D stack, single
whole-slides, and TMAS. Specimens were serially sectioned for H& E staining and CyCIF imaging
(Table S2). For CRC1 (see Table S1 for clinical information), 25 sections were stained with the main
CyCIF antibody panel (Table S3), and 3 sections were stained with targeted panels (T ables $4-S6).
Sixteen additional tumors (CRC2-17; Table S1) were imaged as whole-slides using the main and
targeted antibody panels and also included ina TMA along with 77 additional CRC tumors (4 cores
each; CRC18-93; Table S1). (B) Histopathologic annotation of H& E images into three invasive margins
(A: budding margin, B: mucinous margin, C: pushing margin) and 6 different ROIs (1: normal mucosa,
2: superficial (luminal) adenocarcinoma, 3: submucosal adenocarcinoma, 4. muscularis propria
adenocarcinoma (deep invasive front), 5: solid adenocarcinoma, 6: mucinous adenocarcinoma). ROIs
2-4 exhibit amoderately differentiated appearance with glandular architecture, while ROIs 5-6 exhibit a
poorly differentiated appearance with predominantly solid or cribriform architecture. Regions of tumor

budding were also annotated. Schematic made with BioRender. (C) An example of a CyCIF whole-slide
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image (section 097) and cell-type assignment. Twenty-one different cell types from three main
categories (tumor, stroma, and immune; T able S7) were defined and their locations mapped within the
tumor section. (D) Comparison of cell-type percentages assessed via single cell RNA-sequencing
(scRNA-seq) and CyCIF. (E) Dimensionality reduction of single-cell data by t-SNE (CRCL1 section
097), color coded by staining intensity for the indicated marker. All markers were used to generate the t-
SNE map while only random sampled 50,000 cells are shown in the plot. Cell-type plot (right) uses
color code shown in Figure S1C.

Figure 2. Spatial heterogeneity and estimation errorsfor regional sampling.

(A) Length scales for select markers across CRC1-17. (B) Spatial correlations of binarized staining
intensities for CK™ (red), a-SMA™ (blue), and FOXP3" (green) cells, along with their exponential fits
(dashed lines). (C) CyCIF image showing a CD20" TLS (pink circle) and aCD31" blood vessel (yellow
circle and magnified in inset). (D) Spatial distribution of CD20" cells (magenta dots and contours) and
CD31" cdlls (cyan dots); numbers 1-6 indicate annotated ROIs. (E) Virtual 1 mm TMA cores from
CRC1 (section 097) and 0.6 mm cores from areal TMA of other CRC patients (CRC2-93). (F)
Estimates of cell-type abundance using VTMA cores or random sampling. (G) Estimation error of
VTMAs summarized by fold-reduction in effective sample size, N/Ng, for marker log-intensities and
cell-type compositions. Observed error is compared to that predicted by accounting for exponential fits
of spatial correlationsin the Central Limit Theorem (R? = 0.97, green); deviations (red) are attributable
to some violation of model assumptions (e.g., deviation from exponential decay). (H) Correlation of
select cell-type pairs amongst 10 nearest neighbors. (1) Correlation functions of CK™ cells as estimated
from vTMAs or random sampling. Estimates from four cores are also shown. (J) Images of the four
cores (A-D) highlighted in (I). (K) The fraction of various marker-positive cells across specimens
CRC2-17 whole-slide or TMA data, or among TMASs from specimens CRC18-93. Box plot displays data
points and 1%-3" quartiles, proportions <0.0001 are denoted as a single data point along the dotted line.

Figure 3. Correlation and prediction of mor phologic and molecular tumor phenotypes.

(A) Example ROIs corresponding to four different tumor morphologies (H& E) used for training (left
column) and non-adjacent regions that were predicted with high confidence (right column). The KNN
classifiers were trained and validated separately for each section to evaluate the reproducibility of the
models. (B) Prediction confidence for assignment of kNN classes as measured by Shannon entropy. A

value of 0 corresponds to perfect certainty. A value of 2 indicates random assignment (i.e., equal mixing
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of all classes). (C) Posterior probability that each CK* cell belongs to normal epithelium or glandular,
solid, or mucinous tumor classes. Annotation reflects classifier gradients and alternation corresponding
to morphologic phenotype. (D) Left: Sample tumor region that trangitions from normal to abnormal
glandular features (H& E, top) coinciding with transition from E-cadherin expression to PCNA (CyCIF,
bottom). Contours describe averaged local epithelial cell expression of PCNA. Center and right:
Additional examples of trangtion regions, with H& E (top), CyCIF (middle), and quantified expression
contours (bottom). (E) PCA of 31 gpatially resolved GeoMx transcriptomics regions (analyzed areas
indicated in Figure S1A). (F) Cumulative distribution of single-cell classification entropy of CRC1-17
rescaled to unit range. Patients with only two classes (black) had only normal epithelial and atumor
morphology class. Different CRC1 sections used different markers for classification. (G) Examples of
marker gradients on the scale of whole tumor sections. White circles denote regions cored out during
TMA construction.

Figure4. Tumor budding isa distributed phenomenon associated with graded molecular and

mor phologic transitions.

(A) Left: H&E field of view (FOV) (CRC1, H& E section 096) from invasive margin A (IM-A, see
Figure 1B) with asubset of budding cells indicated by boxes and arrowheads. Right: Corresponding
CyCIF channels (CRC1, CyCIF section 097). Red outlines indicate the main tumor mass and yellow
outlines the canonical tumor buds. (B) Different magnifications of the annotated budding region in
CRC1 section 097. (C) 3D overview of CRC1 IM-A. Left: Surface renderings of glandular tumor (blue),
a-SMA™ stroma (purple), normal mucosa (green), CD68'PDL1" cells (yellow), and budding cells (red).
Right: All annotated buds colored by budding cell density and showing interconnected fibril-like
networks of budding cells. (D) 3D visualization of annotated buds (purple) relative to connected tumor
mass (gray) and other cells with uncertain connectivity (green). Corresponding regionsin 2D CyCIF
images arein Figure $4B. (E) Delaunay clusters of CK* cellsin alocal FOV of CRC1 section 097. CK*
cell neighborhoods are denoted by edges, along with CK™ cells (blue) and pathology annotated buds
(white). (F) Left: Histogram of cluster-sizes (log2) across all 25 CRC1 sections. Right: Cluster sizes
mapped onto CRC1 section 097. Image exaggerates size of single cellsfor visibility. (G) Left: t-SNE of
cluster size. Color represents log2 cluster size and black outline denotes small clusters (including
annotated buds). Center and right: t-SNE of CK™ cell expression of the indicated marker with color
representing marker intensity. (H) Log-intensity of markers and their dependency on cluster-sizein
CRCL1 tumor cells. Expression of annotated buds shown in green for reference. Box plots show 1%-3"
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quartiles; points beyond are not shown. Each box represents ~10°-10° cells. (1) Log-intensity of markers

and their dependency on cluster-size for tumor cellsin CRC2-17, asin Figure 4H.

Figure5. Small, isolated tumor and mucin structuresin 2D are large, connected networksin 3D.
(A) Example of transition from main tumor massinto fibrils and ‘bud-like’ cellsin the stromain CyCIF
(top) and H&E (bottom). Thereis gradual loss of Na-K ATPase and PCNA from the main tumor massto
the tips of fibrils with decreasing cluster-size (budding cells appear red on CyCIF, arrowheads). Imageis
oversaturated to make hues more visible. (B) Analogous budding structures in mucinous tumor regions,
with fibrils and budding cells (arrowheads) extending into mucin pools rather than stroma. (C) Heat map
of GeoMx datafor selected EMT hallmark genes. Each column corresponds to an analyzed region from
one tissue section, as described in Figure S1A. Morphology corresponding to each region is indicated.
(D) Two exemplar H& E FOV's from different regions of the reconstructed mucin structure with mucin
pools that appear isolated in 2D sections (arrowheads). (E) Connectivity of mucin pools across serial
sections. Largest contiguous mucin pool structure (red) extends into the lumen (lumen surface outlined
in yellow). Image is mirrored along Z relative to Figur e 1B to better visualize details. (F) Schematic
diagram depicting serial sectioning through fibrils of budding cells at the tumor invasive margin,
illustrating how alarge contiguous 3D structure may appear as isolated cells or small clustersin 2D

sections. Made with BioRender.

Figure6. 3D TL S structure and cell compositions.

(A) 2D TLS domainsin CRCL1, section 097. Numbers indicate the individual TLS/SLO domains
identified in this one section. (B) 3D rendering view of TLS networks (TLSNs) from CRC1. The 7
largest TLS networks are labeled A-G. Histogram shows the number of individual TLS identified in 2D
sections from each TLS network (A-G). (C) 3D TLS networks projected onto XY surface. (D)
Clustering of TLS domains by kNN (left panel) and number of domains in each cluster (right pandl). (E)
TLS cluster distribution in CRC1; 7 largest TLSNs are outlined and labeled. (F) Example CyCIF images
of TLS clusters 1 and 3. (G) Left: 3D view of TLSN-B from CRC1 with each TLS domain colored by
cluster. This3D view isin the same orientation as TLSN-B shown in panel E and in thetop view
(shown in right upper panel). Right: Cross-sectional views of XY (top) and XZ (bottom) show TLS
domainsin TLSN-B. (H) 3D view of TLSN-B, colored by principal component 1 (PC1). (I) Example
CyCIF and H& E images of TLS clusters 4, 5, 6, and 7. (J) TLS domain countsin CRC1-17 (section 097
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was used for CRC1). (K) Heatmap of TLS clusters from CRC1-17. (L) 2D TLS domains of CRC16,
colored by TLS clusters.

Figure 7. Immune landscape of CRC and itsinvasive margins.

Abundance and distribution of (A) CD45", (B) CD4"FOXP3" (T,eg) and CD8" (Tc), and (C) PDL1" cells
with ROI numbers indicated; TB denotes region enriched for tumor budding; in panel A, the three
regions of the invasive front are labelled IM-A, IM-B, and IM-C. (D) Co-occurrence of PDL1" and
PD1" using adistance cutoff of 20 pm. Panels A-C and K depict CRC1 section 097. (E) LDA topics and
their relative abundancies along the tumor margin. (F) PDL1 expression in indicated cell types. The top
pane represents the relative fractions of PDL1" cells over indicated populations, while the bottom panel
shows the absolute fractions of PDL1" or double marker positive cells. (G) Representative images of
PDL1'CK" cdlsin CRCL1 (top panel) and CRC17 (lower panel). (H) Plot of PDL1'CK" (top pane) or
PDL1'CD68" cdll fractionsin MSI-H or MSI-L samples from TMA data (CRC2-93). (1)
Characterization of PDL1:PD1 interaction in CRC1 (all 25 sections). PDL1" cells were binned into two
subsets, one with PD1" cells in proximity (20 um cutoff) and one without. The fractions of CK™ (top
panel) and CD45" (bottom panel) in these two bins are plotted; P-values from pairwise t-test are shown
(n=25). (J) Characterization of PDL1:PD1 interaction in CRC1-17 performed asin panel | (n = 17).
(K) Co-occurrence maps using a distance cutoff of 20 um and cell types shown. (L) High-resolution 3D
imaging of PDL1:PD1 interaction among tumor and myeloid cells. Top panel: maximum intensity
projections. Bottom panel: 3D rendering from Imaris software. (M) Schematic illustrating tumor-

immune interactions at different types of invasive margins.

DATA AND SOFTWARE AVAILABILITY

All full resolution images, derived image data (e.g., segmentation masks) and all cell count tables
will be publicly released via the NCI-sponsored repository for Human Tumor Atlas Network (HTAN;
https://humantumoratlas.org/) at Sage Synapse. A version of thisdatais available at
https.//www.Synapse.org/#! Synapse:syn18434611/wiki/597418. Several of the figure panelsin this

paper are available with text and audio narration for anonymous on-line browsing using MINERV A
software (Rashid et al., 2022), which supports zoom, pan and selection actions without requiring the
installation of software. A Minerva story with an overview of CRC1 (sections 096 and 097) can be
found at: cycif.org/crcl-intro and the 25 CRC1 Z-sections can be found at: cycif.org/crc1-3d. ScCRNA-

seq datais available in the Gene Expression Omnibus (GEO accession: GSE166319).
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All software used in this manuscript is freely available via GitHub as described in (Schapiro et
a., 2022) and references therein and in https.//github.com/labsyspharm/CRC _atlas 2022.

SUPPLEMENTAL INFORMATION

Supplemental information includes six figures, eight tables, and three movies (Lin-Wang-Coy-CRC1-
Movie 1-Lumen View, Lin-Wang-Coy-CRC1-Movie 2-Budding and Lin-Wang-Coy-CRC1-Movie 3-

TLS). Interactive data viewing is possible via anonymous web links via https.//www.cycif.org/crcl-

intro, https://www.cycif.org/crc1-3d, and https://www.cycif.org/data/lin-wang-coy-2021/viz.html.

SUPPLEMENTAL FIGURE LEGENDS

Figure S1. Overview of dataset and connection between cell-type calling and under lying

mor phologies. Related to Figure 1.

Design of GeoMx experiment. (A) 32 regions were selected from one tissue section of CRC1 (31 passed
guality control and were used in the analysis). Representative images of the regions are shown (right
panels). Scale bars: 2 mm in left panel, 200 wm in the zoomed in views and 200 um in the right panels
showing representative morphologies. (B) Representative images of main antibody panel from CRCL.
(Blue: DNA stain with Hoechst 33342). Scale bars, 100 um. (C) Cell-types mapped across CRC1,
section 097. Cell-type definitions and main classification markers are asindicated. A detailed
marker/reference dictionary is presented in Table S7. (D) Variation in composition of each annotated
ROI across all sections of CRCL for the same three main classes of cell-types aslisted in Figure S1C
(tumor epithelium, stroma, and immune). (E) UMAP plot of sScRNA-seq data generated from CRCL1, and
cell-types identified by Leiden clustering (see Methods). (F) Marker-guided sub-clustering was
performed as described in Methods. Positive cells are highlighted in yellow.

Figure S2. Impact of TMA sampling error. Related to Figure 2.

(A) Field of view (FOV) portraying four different correlation length scales and strengths for CK™,
FOXP3", a-SMA", and CD163" cells. Four circles with radii denoting the length scale parameters. (B)
Scaling law estimates of N/Ng¢ for CK*, FOXP3", and a-SMA"™ based on the scaling law in Equation 1
(shaded colored boxes represent I = 7-13 um, | from fits) compared to 0.6 mm vTMA cores (colored
bars). (C) Correlation of select cell-type pairs amongst 10 nearest neighbors. (D) Correlation functions
between select cell-type pairs as estimated from virtual tissue microarrays (VTMAS) or random
sampling, overlaid with the correlation functions from four cores (from Figure 2I). (E) Percent variance
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inreal TMA (rTMA) estimates of cell-type abundance that can be attributed to sampling error, after
removing outliers. Expected improvement from sampling four cores per tumor is shown in yellow. (F)
FOV's of patient sections with low and high Ki-67" cell abundance. Circles show the length scale of Ki-
67" cdls. (G, H) Kaplan-Meier (KM) curves for progression-free survival (patients CRC2-17),
calculated from TMASs (Ieft) and whole-dlide images (WS, right). (G) KM curves generated from data
ratified with a-SMA™ percentage (cutoff 40%) in each patient sample. (H) KM curves generated from
data stratified with mean CD4 expression level (cutoff: 3,500 AFU) in each patient sample. (I) Variation
of cell-type composition between sections of a single tumor (CRC1) and sections from different patient
tumors (CRC2-17). Section sampling error istypically a minority of the variance between patient
sections. (J) Variation of cell-type spatial correlation strengths and length scales across CRCL1 Z-
sections (blue) and across patients CRC2-17 (red). In most cases, variation within a patient is smaller
than that between patients and shows no signs of bias.

Figure S3. KNN-classification of epithelial histology. Related to Figure 3.

(A) Precision and recall of morphology classifiers trained on CRCL1 sections. (B) Normalized Shannon
entropy of cellsin the CRC sectionsindicated in Figur e 3F. (C) (Left) Shannon entropy of kNN-
classification for cellsin CRC1. Normal cells from normal colon epithelium (ROI1) have low-entropy,
indicating high-confidence classification. Regions used for training were also high confidence, as
expected by definition. Most tumor regions were classified as being between classes, i.e., having high
entropy. (Right) The relative weight of each classis visualized by hue. (D) Dimensional reduction of
subsampled single-cell expression from CK™ cells by t-SNE, with pathologist annotations indicated by
color. Each of the four marker panels provide enough information to cluster normal epithelial cells
(black) separately from tumor cells, despite limited overlap in markers between panels (indicated by
Venn diagram). Different annotations roughly occupy different regions of expression space, indicating
that expression and morphology are correlated, but tumor cells largely form a continuous distribution,

supporting the existence of mixed morphologies.

Figure S4. Tumor bud characterization. Related to Figure 4.

(A) Proportion of pathology annotated budding cells amongst CK™ cells across each of the sections. (B)
CyCIF image with location of 3D viewpoints corresponding to Figure 4C and 4D. Arrow represents
approximate viewing angle in those figures. (C) Differential expression of markersin cells annotated as
tumor buds. The relative expression of indicated markersis represented in heatmap as the log2 ratio of
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budding tumor cellsto all tumor cells. (D) Log-intensity of markers and their dependency on cluster-size
in CRC1 tumor cells across all 25 sections (asin Figure 4H). Expression of annotated buds shown in
green for reference. Box plots show 1%-3 quartiles; points beyond are not shown. Each box represents
~10°-10° cells. (E) Log-intensity of markers and their dependency on cluster-size for tumor cellsin
CRC2-17 (asin Figure4l).

Figure S5. 3D TLSstructuresand clusters. Related to Figure 6.

(A) 2D projection of TLS networks (TLSN) across all sections of CRCL1 (left panel), and the section-by-
section view of TLS networks in nine selected sections (right panels). (B) The number of TLS per 3D
TLS network (top) and the number of the total of 25 slides in which a particular TLS network was
identified (bottom). (C) TLS domain cluster composition in each section of CRC1. (D) Representative
H&E images of TLS domain clusters 1 and 3, the same regions as shown in Figur e 6F (serial section
shown). (E) 3D view of TLSN-B, colored by principal component 2 (PC2) (PC1 shown in Figure 6H).
(F) t-SNE plots of al TLS domain clusters from CRCL1 (25 sections) and CRC2-17 (16 sections),
colored by samples (left panel) or TLS domain clusters (right panel).

Figure S6. L DA analysis of immune composition. Related to Figure 7.

(A) 16 LDA topics from CRC1-17, immune panel (33 antibodies). Representative markers are shown in
red and black text (the size of label for each marker is proportional to its probability within each of the
topics). (B) Two-way hierarchal clustering between LDA topics and pathology annotated regions. The
cell/topic counts from all pathologist-annotated ROIs as well as marker-defined ROIs (*) were clustered
with full lineage and Euclidean distancing. (C) The fractions of topicsin three selected regions of the
invasive margin across all samples (a subset of the topicsis shown in Figure 7E; budding margin, deep
invasive margin, and ‘border’ margin which does not include the deepest invasive front). (D) Fractions
of PD1" cellsin selected populations. The percentage of PD1" cellsin total/any cells or cell groups
selected with indicated markers were plotted sample by sample (CRC1-17). (E) Fractions of PDL1"
cellsin selected populations. The percentage of PDL1" cellsin total/any cells or cell groups selected
with indicated markers were plotted per CRC sample. (F) The fractions of PDL1" cellsin myeloid
subsets. Box plot showing the percentage of PDL1" cellsin CD68'CD11c’, CD68' CD11c’, and
CD68'CD11c" per sample (boxesindicate 1%-3" quartiles and whiskers represent 5% and 95%; red line
indicates medians). (G) Relative frequency of PDL1+ myeloid subsetsin each sample. The numbers of
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CD68'CD11c, CD68'CD11c" and CD68'CD11c’ cellsin PDL1+ population were calculated, and the
relative abundancy (divided by sum) of each subset is shown.

Figure S7. Cell composition in CRC2-17. Related to Figure 7.

(A) t-SNE plots based on CyCIF datafor specimens CRC1-17 (excluding data from the DNA staining).
Cdll types are shown at the bottom of the figure. Tumor/epithelium (T/E), stroma (S) and immune (1)
populations are outlined in black. The t-SNE plot for CRCL1 is reproduced from Figure 1E for reference.
(B) t-SNE of CRC1-17 labelled by specimen identity with labelling by general cell type in upper right.
(C) Cdll-type composition for CRC1-17 shown as stacked bar graphs with the same color code asin
panel A.

SUPPLEMENTAL TABLE LEGENDS

Table S1. Clinical information for colorectal cancer cohort. Demographic and diagnostic information
for al patient-derived specimensin this study. CRC1 was analyzed in 3D and CRC2-17 in whole-slide
2D and TMA 2D. Other specimens (CRC18-93) were imaged as TMA cores, as described in the text and
Figure 1.

Table S2. Sectioning plan for specimen CRCL1. Thickness and staining plan for CRC1 sections shown
in Figure 1. All CyCIF sections other than 044-046 were stained using the primary CyCIF antibody
panel described in Table S3. Sections 044-406 were stained as described in Table S4. Numbers refer to
the HTAN universal ID scheme used to access underlying Level 2 to Level 4 datainthe HTAN data
portal.

Table S3. Primary CyCIF antibody panel. Antibodies used to stain all CRC1 sections 044-046
including CRC2-17 sections and TMAs. CST refersto Cell Signaling Technologies (Beverley MA
USA); RRID refers to the Research Resource Identifier available at https://scicrunch.org/resources.

Table $4. Supplementary CyCIF antibody panel for CRC1. Antibodies used to stain CRCL1 sections
044-046. Abbreviationsasin Table S3.

Table S5. Tumor-focused antibody panel. Antibodies used to stain CRC2-17 for whole-slide imaging.
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Table S6. Immune-focused antibody panel. Antibodies used to stain CRC2-17 for whole-dlide
imaging.

Table S7. Céll-type dictionary. Cell-type assignments based on marker intensities. The first tab shows
the primary discriminating markers and tabs 2 and 3 show assignments based on all markersin the

panel.

Table S8. Cell-type composition for regionsof interest in CRC1. Cell-type composition for
pathol ogist-defined regions of interest (see Figure 1B) across all sections processed for CyCIF. Cell-type
definitionsasin Table S7.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

This manuscript contains no unigue reagents or resources; al antibodies are available commercially (see
Table S3-S6 and Key Resources file) and all data can be accessed viathe Human Tumor Atlas Network
(HTAN) portal (https:.//htan-portal-nextjs.vercel.app/).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Tissue

Unfixed (fresh) tissue from aresection of a colon adenocarcinoma (CRC1) was isolated by the
Cooperative Human Tissue Network (CHTN) for single cell RNA-sequencing. A portion of the sample
was formalin-fixed and paraffin-embedded (FFPE) and tissue sections were generated by the CHTN as
outlined in Table S2. Additional FFPE colon adenocarcinoma specimens were retrieved from the
archives of the Department of Pathology at Brigham and Women’'s Hospital (BWH) with Institutional
Review Board (IRB) approval as part of a discarded/excess tissue protocol. 92 different tumor samples
(CRC2-93) were used to construct atissue microarray (HTMA 402; four 0.6 mm diameter cores were
extracted from the FFPE donor blocks and assembled into a recipient TMA block). Whole-slide sections
of 16 of these colon adenocarcinoma specimens (CRC2-17) were also analyzed, after the four cores
were removed. Clinical metadata was abstracted from the BWH medical record and clinical and

bi ospecimen metadata for CRC1 was provided by the CHTN. The tumor and adjacent normal tissuein
CRC1 was collected from aresection of the cecum of a 69-year old male; the medical reports indicated
that the tumor was a poorly differentiated stage I11B adenocarcinoma (pT3N1bMO) (Weiser, 2018) with
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microsatellite instability (MSI-H) and a BRAF'*% (c.1799T>A) mutation. Histopathology review
showed that the tumor had a broad front invading into underlying muscle (muscularis propria) and
connective tissue giving rise to a ‘budding margin’ (IM-A) adjacent to an area of normal colon mucosa
(ROI1), a‘mucinous margin’ in the middle of the specimen (IM-B), and a deep ‘ pushing margin’ (IM-
C) (these three margins are denoted “A”, “B” and “C” in Figure 1B).

METHOD DETAILS

CyCIF protocol

Tissue-based cyclic immunofluorescence (CyCIF) was performed as previously described (Lin et al.,
2018). The detailed protocol is available in protocols.io (dx.doi.org/10.17504/protocols.io.bjiukkew). In
brief, the BOND RX Automated IHC/ISH Stainer was used to bake FFPE dlides at 60°C for 30 minutes,
to dewax the sections using the Bond Dewax solution at 72°C, and for antigen retrieval using Epitope

Retrieval 1 (Leica™) solution at 100°C for 20 minutes. Slides underwent multiple cycles of antibody
incubation, imaging, and fluorophore inactivation. All antibodies were incubated overnight at 4°C in the
dark. Slides were stained with Hoechst 33342 for 10 minutes at room temperature in the dark following
antibody incubation in every cycle. Coverslips were wet-mounted using 200 pL of 10% Glycerol in PBS
prior to imaging. Images were acquired using a 20x objective (0.75 NA) on a CyteFinder slide scanning
fluorescence microscope (RareCyte Inc. Seattle WA). Fluorophores were inactivated using a4.5% H>0Ox,
24 mM NaOH/PBS solution and an LED light source for 1 hour.

Single-cell RNA-sequencing
Samples for scRNA-seq were processed according to the HTAN publication (Chen et al., 2021).
Surgical tissues were removed and placed into RPMI solution and transported directly to the processing

laboratory within 10 minutes. Tissue samples were immediately minced to approximately 4 mm? and
washed with DPBS. The samples were then incubated in chelation buffer (4 mM EDTA, 0.5 mM DTT)
at 4°C for 100hour and 15 Tminutes. Then, the resulting suspensions were dissociated with cold protease
and DNAse | for 25 minutes. The suspensions were triturated throughout the process, every 10 minutes,
then washed three times with DPBS before encapsulation. Single cells were encapsulated and barcoded
using the inDrop scRNA-seq platform as previously described (Banerjee et al., 2020), targeting about
2,500 cells. Sequencing libraries were prepared using TruDrop library structure (Southard-Smith et al.,
2020). Sequencing was performed on the NovaSeq 6000 (150 bp paired end) at a depth of approximately
150 million reads per sample.
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QUANTIFICATION AND STATISTICAL ANALYSIS

| mage processing and data quantification

Image analysis was performed with the Docker-based NextFHow pipeline MCMICRO) (Schapiro et al.,
2022) and with customized scriptsin Python, ImageJ and MATLAB. All codeis available in GitHub
(https://github.com/labsyspharm/CRC _atlas 2022). Briefly, after raw images were acquired, stitching
and registration of the different tiles and cycles was performed with MCMICRO using the ASHLAR
module (Muhlich et al., 2022). The assembled OME.TIFF files from each slide were then passed
through quantification modules. For background subtraction, arolling ball algorithm with 50-pixel

radius was applied using ImageJ/Fiji. For segmentation and quantification, UNMICST2 was used
(Schapiro et al., 2022; Y app €t a., 2022) supplemented by customized ImageJ scripts (Lin et al., 2018)
to generate single-cell data. More details and source code can be found at www.cycif.org and aslisted in
the software availability section.

Single-cell data quality control for CyCIF

Single-cell data for multiplexed images was passed through several quality control (QC) steps during
generation of the cell feature table. Initial QC was done simultaneously with segmentation and
guantification, so that cells lost from the specimen in the later cycles would not be included in the
output. Next, single-cell data was filtered based on the mean Hoechst staining intensity across cycles;
cells with coefficient of variation (CV) greater than three standard deviations from the mean were
discarded as were any objects identified by segmentation as“cells’ but having no DNA intensity. These
steps are designed to eliminate cells in which the nuclel are not included as a result of sectioning. Highly
autofluorescent (AF) cells (measured in cycle 1 or 2) were also removed from the analysis, using a
customized MATLAB script that applied a Gaussian Mixture Model (GMM) to identify high-AF
populations. More details and scripts are available at https.//github.com/labsyspharm/CRC _atlas 2022.

Cell-typeidentification using CyCIlF data

Multiparameter single-cell intensity data was used for generating binary gates. For the main CyCIF
panels, 16 measurements (cytokeratin, Ki-67, CD3, CD20, CD45R0O, CD4 CD8a, CD68 CD163,
FOXP3, PD1, PDL1, CD31, a-SMA, desmin, and CD45) were subjected to binary gating. All samples
and markers were gated independently. A customized MATLAB script was used to apply 2-component
Gaussian Mixture Modeling and generate the initial gate, followed by human-inspection and adjustment.

Double or triple gates were also generated via Boolean operation in single-cell data. For hierarchal cell-
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type identification, amodified SYLARAS algorithm (Baker et al., 2020) was applied with these
datasets, and atotal of 21 different cell types were assigned using the 16 markers described above.
Additional markers (e.g., E-cadherin) were considered to be continuous variables and used for analysis
but not cell-type assignment. The completed cell dictionary for cell-type identification can be found in
Table S7.

Pathology annotation of histologic features

Hematoxylin and eosin (H&E) stained tissue sections from all specimens (CRC1-17) were evaluated by
two board-certified pathologists (S.C., S.S.). For each case, 6 principle regions of interest (ROI)
corresponding to histopathologic regions or morphologic variations defined in the pathologic evaluation
of CRC were defined when present for al 22 H& E Z-levels, including: (1) normal mucoss; (2)
moderately differentiated invasive adenocarcinoma (glandular, typical morphology) involving the
luminal surface, (3) submucosa (corresponding to ‘pT2’ depth by TNM staging), and (4) muscularis
propria (corresponding to ‘pT3’ by TNM staging); (5) poorly differentiated invasive adenocarcinoma
(solid, signet ring cdlls, corresponding to ‘high-grade’ histology); and (6) moderately-poorly
differentiated invasi ve adenocarcinoma with mucinous features and extracellular mucin pooling (6).
Regions of ITBCC-defined tumor budding (i.e., clusters of <4 cells apparently detached from the main
tumor mass surrounded by stroma at the tumor invasive front) were also annotated in CRC2-17 and on
all 22 H&E Z-levels of CRC1. For CRC2-17, additional histologic features that were not present in
CRC1 were aso annotated when present, including: adenoma (tubular), tumor necrosis, comedo
necrosis, squamoid, pleomorphic, and extensive signet ring cell tumor morphology, and perineural or
lymphovascular invasion by tumor. In cases with clear anatomic orientation, the deep invasive tumor
front was initially delineated as a band with an approximate width of 5-10 cell diameters (50-100 um) at
the deep edge of the tumor. In cases with multiple histologic subtypes present at the invasion margin,
each type was annotated separately; in CRC1, thisincluded IM-A (budding/infiltrative), IM-B
(mucinous), and IM-C (pushing) margins, with ssmilar notation used in other cases. Tertiary lymphoid
structures were defined in each case by identifying aggregates of lymphoid cells on H& E and correlating
with CD20, CD4, and CD8 immunofluorescence (CyCIF) to identify discrete aggregates of B cells with
adjacent or intermixed T-cell populations, including both immature/early TLS without histologic
evidence of well-formed germinal centers, and more mature TLS with germinal center formation
(Fridman et al., 2022).
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Pathologist-annotated budding cells and Delaunay cluster -sizes of cytokeratin® cells
Using ITBCC criteria, atrained pathologist annotated budding regionsin CRC1 (n = 25) and CRC2-17
(n =16) from both CyCIF and H& E images. These selected ROIs were used in the data analysis, and

CK" cdllsin these areas were labelled as “budding tumor cells.” In cluster size analyses, a neighborhood

graph was constructed for all segmented cell centroids using Delaunay triangulation, removing edges
whose lengths were greater than 20 um. Then, the CK™ neighborhood graph was defined as the subgraph
restricted to the CK™ cdlls (i.e., removing all nodes and edges connected to CK™ cells). The cluster size of
each CK" cell was defined as the number of nodes in its connected component of the subgraph. For
guantification of marker expression dependence on cluster-size, cells annotated as normal colon mucosa
(ROI1) were removed from the CK™ subgraph. In the 25 CRC1 Z-sections, cellsin the upper-left corner
of theimage (1 cm x 1 cm) were also removed; this region contained CK™ cells of reactive, benign, and
mesothelial origin, as opposed to tumor cells of interest.

Biased downsampling based on cluster -size for t-SNE visualization

By definition, most tumor cells have alarge cluster-size. Therefore, to visualize the cluster-size
dependence of marker expression with t-SNE, we downsampled cells by stochastically rejecting cells at
frequency 1 — (1/n.)*, for cluster-size n.. The power of 4 was chosen empirically to balance the
representation of various cluster sizes. Final t-SNE plots were made by further subsampling 1,000 cells
from each section uniformly. The t-SNE plotsin Figure 4G were computed using the following
markers: Na-K ATPase, Ki-67, cytokeratin, PDL1, E-cadherin, vimentin, CDX2, lamin ABC, desmin,
and PCNA.

kNN-classification of epithelial cell mor phologiestrained on pathologist annotations

To develop a kNN classifier for pathologist-annotated regions of interest (ROIS), epithelial cellswere
defined by gating using a univariate, 2-component Gaussian Mixture Mode on the relevant marker
(cytokeratin, cytokeratin 19, cytokeratin 18, or E-cadherin) in each section. A kNN-classifier was
trained on the annotated, epithelial cells using CyCIF marker expression as predictors, and annotated
ROI labels as responses. Markers that exhibited unexpected optical artefacts or significant tissue loss
were not used (see below for specific markers that were excluded). Learning and prediction were
performed using MATLAB's fitcknn() and predict() functions, with k = 40 neighbors. The prior
probability of each label was set as uniform. In each section, there were at least 2,000 annotated cells for
each label. Annotated cells were split 50/50 into training and validation sets. Posterior probability colors
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in Figure S3C (panelsin right column) were visualized based on its vector of classification posterior
probabilities (p,, p,, P3, p4), for 1: normal, 2: glandular classes, 3: solid, and 4: mucinous. The RGB-
values of each cell were then defined as:

(R,G,B) = (p2,p3,Ps)/max(p;)
to capture the relative weight of each class.

For the sectionsin the primary CRCL1 dataset (e.g., section 044), the following markers were used as
predictors: Na-K ATPase, Ki-67, keratin, PDL1, E-cadherin, vimentin, CDX2, lamin, desmin, PCNA,
autofluorescence; see paragraph below for further details on included and excluded markers. For CRC1
section 046, which was stained with an extended antibody panel, the following markers were used as
predictors: cyclin B1, cytokeratin 20, cytokeratin 18, NUP98, cytokeratin 8, PDL1, acetyl-tubulin, p62,
pan-cytokeratin, lamin A/C, tubulin. For sections CRC1 sections 045 and 047, which were also stained
with different extended antibody panels, we used all artefact-free markers (totaling 29 and 36
respectively). For CRC2-17, the entire antibody panel was used.

In the primary dataset, for KNN classification we excluded Hoechst, CD3, CD4, CD20, CD163, CD45,
CD68, FOXP3, CD45R0, a-SMA, PD1, CD8a, CD31, collagen, and autofluorescence as being
irrelevant to tumor-intrinsic feature expression. The Ki-67 (D3B5) Rabbit mAb was included because it
showed superior staining to another Ki67 antibody (Ki67_570) which was excluded. For CRC1 section
045, we excluded Hoechst and autofluorescence. CK17 was excluded due to staining artefacts. CK14,
aternate pERK, Cyclin B1, Perforin, MAP2, GFAP, Cyclin A2, p-mTOR, Cyclin E were excluded due
to tissue loss in the final cycles. For CRC1 section 046, we excluded Hoechst, autofluorescence, CD3,
CD4, CD57, CD163, IBA1, CD16, CD11c, CD45, CD68, CD11b, CD11a, CD1a, Granzyme B, CD14,
PD-1, HLA-A, CD8a, and CD31 asirrelevant to tumor extrinsic programs. PAX5, POLR2A, NFATcL,
PAX8, and phospho-BTK were excluded dueto tissue loss in late cycles. VEGFR2 was excluded dueto
the presence of staining artefacts. For CRC1 section 047, we excluded Hoechst, autofluorescence, and
CD20 asirrelevant to tumor expression. EZH2, phospho-CDK, E2F1, FOXA2 were excluded due to
staining artefacts.

Contour plots of epithelial cell marker expresson gradients

Contours represent level setsfor the average marker expression of the 400 nearest tumor cells, and were
computed using the MATLAB contour () function.
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3D registration of CRC1 serial sections
All CyCIF sections were registered using a custom script written in MATLAB 2018 (MathWorks).

Briefly, each section was first registered using a rigid transformation followed by elastic deformations
starting at section 012 and cascading towards the top and bottom sections. For the rigid transformation,
an early cycle Hoechst signal with minimal artefacts from each section was selected. All channels were
padded by an equivalent of 1,600 pixels along al borders when registering at full resolution. Rigid
transformation required consistent landmarks across all sections. Therefore, we identified two such
features. the edge of the mucosa section and a point where it transitions into the stromal region. This
region was annotated on several downsampled sections, providing training datafor a UNet model to
estimate fuzzy locations of the transition point and the mucosal edge. Starting from section 012 and
taking the centroid of each fuzzy estimate as that section’stransition point, all 25 sections were aligned
by trandlation. Each section was then rotated around the transition point until the fuzzy estimates for the
edge of the mucosa region overlapped maximally between sections. For subsequent elastic deformation,
we manually selected between 25-35 control points across each section. Most control points were
located near the site of budding cells. Then, using local weighted means with these control points viathe
fitgeotrans() MATLAB function, we applied a deformation starting from section 012 towards section
001 and 025. Finally, we applied Demon'’s algorithm to refine registration further. Images were
downsampled by afactor of 0.25 and histogram matched, before applying the imregdemons() MATLAB
function with an accumulated field smoothing of 1.5 and downsampling with 7 pyramid levels. Demon’s
algorithm was applied starting from section 12.

3D visualization of reqgistered CRC1 serial sections

Using Imaris, images were Gaussian-blurred, and an intensity threshold was applied to define regions
(e.g., CK™). Connectivity of buds or mucin pools were defined on blurred, thresholded voxels.

Virtual TMA cores and fold-changein effective sample Size N/Net

Virtual TMAs (VTMA) were constructed from whole-slide sections by randomly selecting a central cell
and including all cells within 500 um of the central cell’s centroid as one core. For each VTMA core, a
matching, uniform random sample was generated from the whole-slide section with an equal number of

cells. The standard-errors of the mean from vTMA (i.e, regional) sampling (o74) Or random sampling
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(Granaom) Were estimated from the means of 1,000 cores and their matched, random samples. The

effective sample size N/Ngi was defined as the square of the standard-errors’ ratios:

2 2
o TMA/O- random-

Spatial correlation functions and predicting standar d-error of regional sampling

For each sample (whole-dlide, virtual TMA core, or real TMA core), spatial correlation functions C,5 ()
were calculated for apair of variables A, B and a nearest-neighbor index r. Specifically, C,5 (1) was
given by the Pearson correlation between cells A-values and their " - nearest neighbors’ B-values.
Each r index was associated to the average, inter-cell-centroid distance d (') of all 7" - nearest
neighborsin a sample. Correlations were computed up to r = 200. Each C,5(d (7)) wasfit to an
exponentia cyexp(c,d) for parameters ¢, c,, over therangeof 5 < r < 200 to avoid spurious
correlations between adjacent cells that may arise from image segmentation errors. Correlation strength
was defined as ¢, and length scalel = —1/c,. Fits were performed with the fit() MATLAB function
with default options. We subsequently estimated the standard-error of the mean of avariable A for a
regional sample of N correlated cells asfollows. First, we computed the N X N matrix of inter-cellular

distances d; ;, and then computed the N X N correlation matrix X, between cells using the fit of the

ijs
gpatial correlation function C,4(d). By the Central Limit Theorem for weakly-dependent variables
(Ibragimov, 1962), we expect the standard- error of the mean for N samplestobe /| Xy |/N, for | 2y |

the sum of all entriesin Xy.

Scaling analysis of fold-changein effective sample size N/Nes

For avariable A with variance 6 = 1, the fold-change N/Ng: is defined as:

N _ o’rma _ |ENI/N® _ |2ZN]

Nerr 02 random 1/N N

The final term can be interpreted as the sum of correlations between an average cell and all other cellsin
the sample region R. Choosing a coordinate system with an average cell at the origin, we approximate

the sum as an integral:

PN

o [ ua(xbo)

= ["d™x coexp(—|x]/Dp(x).
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Where p(x) isthe density of cells, and n isthe spatial dimension of the regional sample. If we assume a
uniform density p(x) ~ 1/1" ., for acdl length scalel..;;, and change variables in the integral to
eliminate the length scale [, we have:
l n
ZTNl ~ Co ( ) % d™u exp(—w),

lcell

which gives us a scaling relation with which we can roughly estimate N/Ng: from parameters:

e ()
Nesy O\icen/ -

Variance between patient TMAsdue to sampling error and an optimal score

For any given cell-type’' s %-composition, we computed the variance of estimates from the whole-slide
tumor regions of each patient, O-Zpatient! and the variance of estimates from TMA cores, 6%;4,,. We
considered g% 4., t0 be the biological variance of o 1,4, and remaining variance to be residual error
from sampling, azsamp,ing. Percent of variance explained by sampling was given by azsampling /

a2 4. For the hypothetical scenario of averaging 4 cores, stampzing would be 4-fold lower, and
percent variance explained was given by (6% sampiing/4)/ (0% sampiing/4 + 0% sampting) - Outliersin

each distribution, asindicated in each boxplot, were excluded from the variance calculations.

I mmune profiling, L DA analysis, and PDL 1:PD1 inter action

For CRC1-17 whole-dlide sections stained with the immune panel, multiparameter single-cell intensity
datawas used to generate binary gates (for 30 of 33 markers). LDA analysis for spatial topic analysis
was performed using MATLAB “fitlda” function. In brief, the single-cell data of each sample was split
into 200 microns x 200 microns grids, and the positive frequency for each marker was calculated for
each grid. The pooled frequencies of al samples were used to train the final LDA model, and 16 topics
wereisolated. To determine PDL1:PD1 interactionsin single-cell data, the cell neighbors within 20
microns were identified with a k-nearest searching algorithm. The PDL1" cellswith PD1" cellsin
proximity were labeled as “PD1" interactors.” The marker expression of PD1" interactors and other
PDL1" cells were compared as described. In Figure 7F (top panel), number PDL1" cells with indicated
subsets (any, CK”, CD68", and CD11c") were divided by the total cell number in the given subset. In
Figures 7l and 7J, the pogitive ratios were calculated by the positive cell number of indicated markers
(CK*, CD45", HLA-A", and CD44") normalized with the PDL1" cellsin either interacting or non-

interacting groups.
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scRNA-seq data analysis

Following sample demultiplexing from the sequencer, reads were filtered, sorted by their barcode of
origin, and aligned to the reference transcriptome to generate a counts matrix using the DropEst pipeline
(Petukhov et al., 2018). Barcodes containing cells were identified using dropkick (Heiser et al., 2020).
Batches were combined and consensus non-negative matrix factorization (C(NMF; (Kotliar et al., 2019))
was performed to identify metagenes in the resulting cell matrix, assigning “usage” scores for each
factor to all cells. The factors or metagenes contain gene loadings that rank detected genes by their
contribution to each factor, which are shown on UMAP embeddings in descending order. CytoTRACE
(Gulati et al., 2020) was also run using the web portal at https.//cytotrace.stanford.edu/ to calculate

“stemness’ or cellular plasticity scores based on genetic diversity. Leiden clustering (Traag et al., 2019)
and PAGA (Wolf et al., 2019) graph construction was performed on principal component analysis of the
normalized and arcsinh-transformed raw counts matrix. A two-dimensional UMAP (Mclnnes et al.,
2020) embedding was then generated using SCANPY (Wolf et al., 2018) based on principal component
analysis and initial cluster positions determined by PAGA.

GeoM x RNA spatial transcriptomics

We used the GeoMx® Cancer Transcriptome Atlas (CTA) to profile RNA expression levels of ~1,800
genes from 32 selected regions (Figure S1A) from an FFPE tissue section of CRC1 using methods
described by the manufacturer (NanoString Technologies, Seaitle, WA). Probes were collected
separately from CK* and CK™ cells and processed using cDNA library preparation methods. The library
was then sent for sequencing with I[llumina NovaSeq 6000. QC was performed using vendor-provided
software. 31 of the 32 samples passed QC, and these datasets were used for downstream analysis. Probe
counts were normalized with the total counts in each condition and used for principal component

analysis and hierarchical clustering.
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