

1 **Title: *Scn1a*-GFP transgenic mouse revealed Nav1.1 expression in neocortical pyramidal
2 tract projection neurons**

3
4 **Authors:** Tetsushi Yamagata^{1, 2, ¶}, Ikuo Ogiwara^{2, 3, ¶}, Tetsuya Tatsukawa^{2, ¶}, Toshimitsu
5 Suzuki^{1, 2}, Yuka Otsuka¹, Nao Imaeda¹, Emi Mazaki^{2, †}, Ikuyo Inoue^{2, ‡}, Natsuko Tokonami^{2, §},
6 Yurina Hibi¹, Shigeyoshi Itohara⁴, and Kazuhiro Yamakawa^{1, 2, *}

7
8 **Affiliations:**

9 ¹Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya

10 City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan.

11 ²Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198,
12 Japan.

13 ³Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan.

14 ⁴Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama
15 351-0198, Japan.

16

17

18 [¶]These authors contributed equally to this work.

19

20 [†]Present address; International Research Center for Neurointelligence (IRCN), The University
21 of Tokyo, Institutes for Advanced Study, Tokyo 113-0033, Japan.

22 [‡]Present address; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for
23 Advanced Intelligence Project, Kyoto 606-8507, Japan.

24 [§]Present address; Institute of Physiology, University of Zürich, CH-8057 Zürich, Switzerland.

25

26 ^{*}Correspondence and requests for materials should be addressed to K.Y. (E-mail:
27 yamakawa@med.nagoya-cu.ac.jp)

28

29

30 **Abstract**

31 Expressions of voltage-gated sodium channels Nav1.1 and Nav1.2, encoded by *SCN1A* and
32 *SCN2A* genes respectively, have been reported to be mutually exclusive in most brain regions.
33 In juvenile and adult neocortex, Nav1.1 is predominantly expressed in inhibitory neurons
34 while Nav1.2 is in excitatory neurons. Although a distinct subpopulation of layer V (L5)
35 neocortical excitatory neurons were also reported to express Nav1.1, their nature has been
36 uncharacterized. In hippocampus, Nav1.1 has been proposed to be expressed only in
37 inhibitory neurons. By using newly-generated transgenic mouse lines expressing *Scn1a*
38 promoter-driven green fluorescent protein (GFP), here we confirm the mutually-exclusive
39 expressions of Nav1.1 and Nav1.2 and the absence of Nav1.1 in hippocampal excitatory
40 neurons. We also show that Nav1.1 is expressed in inhibitory and a subpopulation of
41 excitatory neurons not only in L5 but all layers of neocortex. By using neocortical excitatory
42 projection neuron markers including FEZF2 for L5 pyramidal tract (PT) and TBR1 for layer
43 VI (L6) cortico-thalamic (CT) projection neurons, we further show that most L5 PT neurons
44 and a minor subpopulation of layer II/III (L2/3) cortico-cortical (CC) neurons express Nav1.1
45 while the majority of L6 CT, L5/6 cortico-striatal (CS) and L2/3 CC neurons express Nav1.2.
46 These observations now contribute to the elucidation of pathological neural circuits for
47 diseases such as epilepsies and neurodevelopmental disorders caused by *SCN1A* and *SCN2A*
48 mutations.

49

50 **Introduction**

51 Voltage-gated sodium channels (VGSCs) play crucial roles in the generation and propagation
52 of action potentials, contributing to excitability and information processing (Catterall, 2012).
53 They consist of one main pore-forming alpha- and one or two subsidiary beta-subunits that
54 regulate kinetics or subcellular trafficking of the alpha subunits. Human has nine alpha
55 (Nav1.1~Nav1.9) and four beta (beta-1~beta-4) subunits. Among alphas, Nav1.1, Nav1.2,
56 Nav1.3 and Nav1.6, encoded by *SCN1A*, *SCN2A*, *SCN3A* and *SCN8A*, respectively, are
57 expressed in central nervous system. *SCN3A* is mainly expressed embryonically (Brysch et al.,
58 1991), and *SCN1A*, *SCN2A* and *SCN8A* are major alphas after birth. Although these three
59 genes show mutations in a wide spectrum of neurological diseases such as epilepsy, autism
60 spectrum disorder (ASD) and intellectual disability, two of those, *SCN1A* and *SCN2A*, are
61 major ones (reviewed in Yamakawa et al., 2016; Meisler et al., 2021). To understand the
62 circuit basis of these diseases, it's indispensable to know the detailed distributions of these
63 molecules in the brain.

64 We previously reported that expressions of Nav1.1 and Nav1.2 seem to be
65 mutually-exclusive in many brain regions (Yamagata et al., 2017). In adult neocortex and
66 hippocampus, Nav1.1 is dominantly expressed in medial ganglionic eminence-derived
67 parvalbumin-positive (PV-IN) and somatostatin-positive (SST-IN) inhibitory neurons
68 (Ogiwara et al., 2007; Lorincz and Nusser, 2008; Ogiwara et al., 2013; Li et al., 2014; Tai et
69 al., 2014; Tian et al., 2014; Yamagata et al., 2017). In the neocortex, some amount of Nav1.1
70 is also expressed in a distinct subset of layer V (L5) excitatory neurons (Ogiwara et al., 2013),
71 but their natures were unknown. In the hippocampus, Nav1.1 seems to be expressed in
72 inhibitory but not in excitatory neurons (Ogiwara et al., 2007; Ogiwara et al., 2013). In
73 contrast, a major amount of Nav1.2 (~95%) is expressed in excitatory neurons including the
74 most of neocortical and all of hippocampal ones, and a minor amount is expressed in caudal
75 ganglionic eminence-derived inhibitory neurons such as vasoactive intestinal polypeptide
76 (VIP)-positive ones (Lorincz and Nusser 2010; Yamagata et al., 2017; Ogiwara et al., 2018).
77 However, a recent study reported that a subpopulation (more than half) of VIP-positive
78 inhibitory neurons is Nav1.1-positive (Goff and Goldberg, 2019).

79 VGSCs are mainly localized at axons and therefore it is not always easy to identify their
80 origins, soma. To overcome this, here in this study we generated bacterial artificial
81 chromosome (BAC) transgenic mouse lines that express GFP under the control of *Scn1a*
82 promoters, and we carefully investigated the GFP/Nav1.1 distribution in mouse brain. Our
83 analysis confirmed that expressions of Nav1.1 and Nav1.2 are mutually-exclusive and that in

84 neocortex Nav1.1 is expressed in both inhibitory and excitatory neurons while in
85 hippocampus only in inhibitory but totally absent in excitatory neurons. Furthermore by using
86 a transcription factor FEZF2 (FEZ family zinc finger protein 2 transcriptional factor), also
87 referred to as Fezl, Fez1, Zfp312 and Fez, as a marker for L5 PT neurons (Inoue et al., 2004;
88 Chen et al., 2005; Chen et al., 2008; Molyneaux et al., 2005; Lodato et al., 2014 ; Matho et al.,
89 2021), and a transcription factor TBR1 which suppresses FEZF2 expression and therefore
90 does not overlap with FEZF2 (Han et al., 2011; McKenna et al., 2011, Matho et al., 2021), we
91 found that most of L5 FEZF2-positive neurons are GFP-positive while L5/6 TBR1-positive
92 neurons are largely GFP-negative and Nav1.2-positive. These results proposed that Nav1.1 is
93 expressed in L5 PT while Nav1.2 in L5/6 non-PT neurons such as L5/6 CS and L6 CT
94 projection neurons. A majority of L2/3 excitatory neurons express Nav1.2 but a minor
95 subpopulation are GFP-positive, suggesting that most of CC projection neurons express
96 Nav1.2 but the distinct minor population express Nav1.1. These results refine the expression
97 loci of Nav1.1 and Nav1.2 in the brain and should contribute to the understanding of circuit
98 mechanisms for diseases caused by *SCN1A* and *SCN2A* mutations.
99

100 **Results**

101 **Generation and verification of *Scn1a*-GFP transgenic mouse lines**

102 *Scn1a*-GFP founder mice were generated from C57BL/6J zygotes microinjected with a
103 modified *Scn1a*-GFP BAC construct harboring all, upstream and downstream,
104 *Scn1a*-promoters (Nakayama et al., 2010) (Figure 1A) (see Materials and Methods for details).
105 Western blot analysis (Figure 1B) and immunohistochemistry (Supplementary figure S1)
106 showed robust GFP expression and mostly normal expression levels of Nav1.1 in *Scn1a*-GFP
107 mouse lines #184 and #233. Both lines showed a similar distribution of chromogenic GFP
108 immunosignals across the entire brain (Figures 2A-H), and a similar distribution was also
109 obtained in fluorescence detection of GFP (Figures 2I-L and Supplementary figure S2). In
110 neocortex (Figures 2B, F, J and Supplementary figures S2B, F), GFP-positive cells were
111 distributed throughout all cortical layers. In hippocampus (Figures 2C, G, K and
112 Supplementary figures S2C, G), cells with intense GFP signals, which are assumed to be
113 PV-IN and SST-IN (Ogiwara et al, 2007; Tai et al., 2014) (see also Figure 8), were scattered
114 in stratum oriens, pyramidale, radiatum, lucidum and lacunosum-moleculare of the CA (cornu
115 ammonis) fields, hilus and molecular layer of dentate gyrus. Of note, somata of dentate
116 granule cells were apparently GFP-negative. CA1~3 pyramidal cells were twined around with
117 fibrous GFP immunosignals. We previously reported that the fibrous Nav1.1-signals clinging

118 to somata of hippocampal CA1~3 pyramidal cells were disappeared by conditional
119 elimination of Nav1.1 in PV-INs but not in excitatory neurons, and therefore concluded that
120 these Nav1.1-immunopositive fibers are axon terminals of PV-INs (Ogiwara et al., 2013). As
121 such, GFP signals are fibrous but do not form cell shapes in the CA pyramidal cell layer
122 (Figures 2C, G, K and Supplementary figures S2C, G), and therefore these CA pyramidal
123 cells themselves are assumed to be GFP-negative. These observations further confirmed our
124 previous proposal that hippocampal excitatory neurons are negative for Nav1.1 (Ogiwara et
125 al., 2007; Ogiwara et al., 2013). In cerebellum (Figures 2D, H, L and Supplementary figures
126 S2D, H), GFP signals appeared in Purkinje, basket, and deep cerebellar nuclei cells, again
127 consistent to the previous reports (Ogiwara et al., 2007; Ogiwara et al., 2013). In the
128 following analyses, we used the line #233 which shows stronger GFP signals than #184.

129 Quantification of Nav1.1 signals in western blot analyses of brain lysates from the
130 *Scn1a*-GFP mice and their wild-type littermates (N = 5 animals per each genotype) showed no
131 difference between genotypes, while that of GFP somehow deviated among individual
132 *Scn1a*-GFP mice (Supplementary figure S3). Fluorescence imaging of the *Scn1a*-GFP sagittal
133 brain sections at postnatal day 15 (P15), 4-week-old (4W) and 8W showed that GFP-signals
134 continue to be intense in caudal region such as thalamus, mid brain, and brainstem (Figure 3),
135 which is well consistent with our previous report of Nav1.1 protein and *Scn1a* mRNA
136 distributions in wild-type mouse brain (Ogiwara et al., 2007).

137

138 **Nav1.1 is expressed in both excitatory and inhibitory neurons in neocortex but only in
139 inhibitory neurons in hippocampus**

140 In the neocortex of *Scn1a*-GFP mouse, a large number of cells with GFP-positive somata
141 (GFP-positive cells) were broadly distributed across all cortical layers (Figure 3 and
142 Supplementary figure S4). Intensities of GFP signals in primary somatosensory cortex (S1) at
143 L2/3 are much higher than other areas such as primary motor cortex (M1) (Supplementary
144 figure S4), however the cell population (density) of GFP-positive cells did not differ in these
145 areas indicating that GFP-signals for GFP-positive cells are stronger in S1 at L2/3. Although
146 GFP signals are strong in PV-INs (see Figure 8), cell density of PV-INs is not specifically
147 high at S1 area and therefore most cells with strong GFP signals in S1 at L2/3 may not be
148 PV-INs but excitatory neurons.

149 In order to know the ratio of GFP-positive cells among all neurons, we further performed
150 immunohistochemical staining using NeuN-antibody on *Scn1a*-GFP mouse at P15 and cells
151 were counted at M1 and S1 (Supplementary figure S5 and Supplementary table S1). The

152 NeuN staining showed that GFP-positive cells occupy 30% (L2/3), 32% (L5) and 22% (L6)
153 of NeuN- or GFP-positive cells at P15 (Supplementary figure S5B and Supplementary table
154 S1). However, we noticed that sparsely-distributed cells with intense GFP-signals, which are
155 assumed to be PV-INs (see Figure 8), were often NeuN-negative (Supplementary figure S5A -
156 arrowheads), reminiscent of a previous report that NeuN expression is absent in cerebellar
157 inhibitory neurons such as Golgi, basket and satellite cells in cerebellum (Weyer et al., 2003).
158 Therefore, NeuN-positive cells do not represent all neurons in neocortex as well.
159 NeuN/GFP-double negative neurons could even exist and therefore above figure
160 (Supplementary figure S5B) may deviate from the real ratios of GFP-positive cells among all
161 neurons.

162 Next, we performed triple-immunostaining of Nav1.1, GFP and ankyrinG on brains of
163 *Scn1a*-GFP mouse at P15. In the neocortex (Figure 4), axon initial segments (AISs) of cells
164 with Nav1.1-positive somata were always Nav1.1-positive but somata of cells with
165 Nav1.1-positive AISs were occasionally Nav1.1-negative (Figures 4A-C). Cell counting
166 revealed that 17% (L2/3), 21% (L5) and 8% (L6) of neurons (cells with ankyrinG-positive
167 AISs) were GFP-positive (Figure 4D-left panel and Supplementary table S2). Of note, all
168 cells with Nav1.1-positive AISs or somata were GFP-positive, but AISs or somata for only
169 half of GFP-positive cells were Nav1.1-positive (Figure 4D and Supplementary tables S3, S4),
170 possibly due to undetectably low levels of Nav1.1 immunosignals in a subpopulation of
171 GFP-positive cells. The above ratios of GFP-positive cells among neurons (cells with
172 ankyrinG-positive AISs) obtained in the triple-immunostaining of Nav1.1, GFP and ankyrinG
173 are rather discordant to those obtained in the later experiment of triple-immunostaining of
174 Nav1.2, GFP and ankyrinG, 23% (L2/3), 30% (L5) and 21% (L6) (see Figure 11). Therefore,
175 we additionally performed double-immunostaining of GFP and ankyrinG on brains of
176 *Scn1a*-GFP mouse at P15, and the ratios of of GFP-positive cells among neurons were 30%
177 (L2/3), 26% (L5) and 9% (L6) (Supplementary figure S6 and Supplementary table S5).
178 Averaged ratios of GFP-positive cells among neurons of Figures 4D, 11B and Supplementary
179 figure S6B are 23% (L2/3), 26% (L5) and 13% (L6) (Supplementary figure S7 and
180 Supplementary table S6), which are actually significantly lower than those obtained in the
181 NeuN-staining (Supplementary figure S5 and Supplementary table S1).

182 In contrast to the neocortex where only half of GFP-positive cells were Nav1.1-positive, in
183 the hippocampus all GFP-positive cells were Nav1.1-positive and all Nav1.1-positive cells
184 were GFP-positive (Figure 5). Actually, most of excitatory neurons such as CA1~3 pyramidal
185 cells and dentate granule cells were GFP-negative. As described above (Figures 2C, G),

186 fibrous GFP and Nav1.1 signals twining around CA1~3 pyramidal cells' somata which are
187 assumed to be axon terminals of PV-INs were again observed (Figures 5A, B, D). Cell
188 counting in the hippocampal CA1 region showed that 98% of cells with GFP-positive somata
189 were Nav1.1-positive at their AISs and 100% of cells with Nav1.1-positive AISs were
190 GFP-positive (Figure 5F and Supplementary tables S7, S8).

191 Double *in situ* hybridization of *Scn1a* and GFP mRNAs showed that these signals well
192 overlap in both neocortex and hippocampus of *Scn1a*-GFP mice (Figure 6), further supporting
193 that the GFP signals well represent endogenous *Scn1a*/Nav1.1 expression. Again, in
194 neocortex *Scn1a* and GFP mRNAs seem to be expressed in a number of neurons including
195 some of excitatory pyramidal cells, while in hippocampus they are absent in excitatory
196 neurons such as CA1~3 pyramidal cells and dentate granule cells. All of these distributions of
197 *Scn1a* and GFP mRNAs in *Scn1a*-GFP transgenic mouse brain are consistent to our previous
198 report of regional distributions of *Scn1a* mRNA in wild-type mouse (Ogiwara et al, 2007).

199 To investigate the ratio of inhibitory neurons in GFP-positive cells, we generated and
200 examined *Scn1a*-GFP and vesicular GABA transporter (*Vgat*)-Cre (Ogiwara et al., 2013)
201 double transgenic mice in which *Vgat*-Cre is expressed in all GABAergic inhibitory neurons
202 and visualized by floxed tdTomato transgene (Figure 7). In the neocortex at 4W, 23% (L2/3),
203 28% (L5) and 27% (L6) of GFP-positive cells were Tomato-positive inhibitory neurons and
204 73% (L2/3), 77% (L5) and 83% (L6) of Tomato-positive cells were GFP-positive (Figure 7C
205 and Supplementary tables S9, S10). These results suggest that a significant subpopulation of
206 neocortical excitatory neurons also express Nav1.1. Our previous observation that Nav1.1 is
207 expressed in callosal axons of neocortical excitatory neurons (Ogiwara et al., 2013) supports
208 that a subpopulation of L2/3 CC neurons express Nav1.1. Unlike in neocortex, in the
209 hippocampus most of GFP-positive cells were Tomato-positive, 98% (CA1) and 94% (DG),
210 and majorities of Tomato-positive GABAergic neurons are GFP-positive, 93% (CA1) and
211 77% (DG). These results further confirmed that in hippocampus Nav1.1 is expressed in
212 inhibitory neurons but not in excitatory neurons. Although somata of pyramidal cells in
213 CA2/3 region are weakly GFP-positive in this and some other experiments (Figure 7B,
214 Supplementary figure S2G), those were GFP-negative in other experiments (Figures 2K, 5A,
215 D) and therefore the Nav1.1 expression in CA2/3 pyramidal cells would be minimal if any.

216 We further performed immunohistochemical staining of PV and SST in neocortex and
217 hippocampus of *Scn1a*-GFP mice at 4W (Figure 8). PV and SST do not co-express in cells
218 and do not overlap. PV-INs and SST-INs were both GFP-positive, and especially GFP signals
219 in PV-INs were intense (Figure 8A). Cell counting revealed that 21% (L2/3), 37% (L5), 37%

220 (L6), 58% (CA1), 42% (CA2/3), and 41% (DG) of GFP-positive cells were PV or
221 SST-positive depending on regions in neocortex and hippocampus (Figure 8B and
222 Supplementary tables S11-S13). All PV-INs were GFP-positive (Figure 8B - middle), and
223 most of SST-INs were GFP-positive (Figure 8B - right). Comparison of these results with
224 those of *Vgat*-Cre mouse (Figure 7) suggests that GFP-positive GABAergic neurons in
225 neocortex are mostly PV- or SST-positive, while in hippocampus a half of those are
226 PV/SST-negative GABAergic neurons. Higher ratios of PV- or SST-positive cells (Figure 8B)
227 compared with those of *Vgat*-Cre-positive cells (Figure 7C) among GFP-positive cells would
228 be explained by that we counted PV-positive cells even if their PV-immunosignals are
229 moderate and a significant subpopulation of such cells are known to be excitatory neurons
230 (Jinno et al., 2004; Tanahira et al., 2009; Matho et al., 2021). Quantitative analysis of GFP
231 signal intensity and area size of cells revealed that GFP signal intensities in PV-positive cells
232 were significantly higher than those in PV-negative cells and GFP signal intensities in
233 SST-positive cells were lower than those in PV-positive cells but similar to PV/SST-double
234 negative cells (Figure 9 and Supplementary tables S14-S16). These results indicate that
235 Nav1.1 expression level in PV-INs is significantly higher than those in excitatory neurons and
236 PV-negative GABAergic neurons including SST-INs.

237

238 **Nav1.1 and Nav1.2 expressions are mutually exclusive in mouse brain**

239 We previously reported that expressions of Nav1.1 and Nav1.2 seem to be mutually-exclusive
240 in multiple brain regions including neocortex, hippocampal CA1, dentate gyrus, striatum,
241 globus pallidus, and cerebellum in wild-type mice (Yamagata et al., 2017). To further confirm
242 it, here we performed triple immunostaining for Nav1.1, Nav1.2 and ankyrinG, and counted
243 Nav1.1- or Nav1.2-immunopositive AISs in the neocortex of *Scn1a*-GFP mice (Figure 10).
244 The staining again showed that Nav1.1 and Nav1.2 expressions are mutually exclusive in
245 brain regions including neocortex (Figure 10A). The counting revealed that 5% (L2/3), 6%
246 (L5) and 3% (L6) of AISs at P15 were Nav1.1-positive and 78% (L2/3), 69% (L5) and 69%
247 (L6) of AISs at P15 were Nav1.2-positive in the neocortex (Figure 10B and Supplementary
248 table S17). Of note, less than 0.5% of AISs are Nav1.1/Nav1.2-double positive confirming
249 that Nav1.1 and Nav1.2 do not co-express. These results are consistent with our previous
250 study (Yamagata et al., 2017) and further support that expressions of Nav1.1 and Nav1.2 are
251 mutually exclusive in mouse neocortex at least at immunohistochemical level.

252 As mentioned, GFP signals in *Scn1a*-GFP mouse can represent even moderate or low
253 Nav1.1 expressions which cannot be detected by immunohistochemical staining, so some of

254 GFP-positive cells may still express Nav1.2. To investigate whether and if so how much of
255 GFP-positive cells have Nav1.2-positive AISs in *Scn1a*-GFP mouse neocortex, we performed
256 triple immunohistochemical staining for Nav1.2, GFP and ankyrinG (Figure 11 and
257 Supplementary tables S18-S20). The staining showed that AISs of GFP-positive cells are
258 largely negative for Nav1.2, and cells with Nav1.2-positive AISs are mostly GFP-negative
259 (Figure 11A). Cell counting revealed that 88% (L2/3), 90% (L5) and 95% (L6) of cells with
260 Nav1.2-positive AISs at P15 were GFP-negative (Figure 11B-middle panel and
261 Supplementary table S19), and 69% (L2/3), 83% (L5), and 86% (L6) of AISs of GFP-positive
262 cells at P15 were Nav1.2-negative (Figure 11B-right panel and Supplementary table S20).
263 These results indicate that the co-expression of GFP and Nav1.2 would be minimal if any.
264

265 **Neocortical pyramidal tract and a subpopulation of cortico-cortical projection neurons 266 express Nav1.1**

267 Neocortical excitatory neurons can be divided into functionally distinct subpopulations, a
268 majority of those are pyramidal cells which have axons of long-range projections such as L2/3
269 CC, L5 PT, L5/6 CS and L6 CT projection neurons (Shepherd, 2013). Although PT neurons
270 also project their axon collaterals to ipsilateral striatum, CS neurons project bilaterally to ipsi-
271 and contralateral striata. A transcription factor FEZF2 is expressed in L5 PT neurons, forms
272 their axonal projections and defines their targets (Inoue et al., 2004; Chen et al., 2005; Chen et
273 al., 2008; Lodato et al., 2014). Most of PT neurons are FEZF2-positive (Molyneaux et al.,
274 2005; Matho et al., 2021). We previously reported that a subpopulation of neocortical L5
275 pyramidal neurons is Nav1.1-positive (Ogiwara et al., 2013), but their natures were unclear.
276 To investigate those, here we performed immunohistochemical staining of FEZF2 and GFP
277 on *Scn1a*-GFP mouse brains (Figures 12 and 13, Supplementary tables S21-S23). In L5 where
278 a major population of FEZF2-positive cells locate (Figure 12A), a majority of FEZF2-positive
279 neurons were GFP-positive (83% and 96% of FEZF2-positive neurons were GFP-positive at
280 P15 and 4W, respectively) (Figure 12B - middle panels, Supplementary table S22). In L2/3,
281 FEZF2-positive cells were scarce (Figure 12A). In L6, a certain number of FEZF2-positive
282 cells exist but overlaps of FEZF2 and GFP signals are much less compared to those in L5
283 (Figure 12 and Supplementary tables S21-S23). Quantitative analyses revealed that
284 FEZF2/GFP-double positive cells in L5 showed significantly lower GFP immunosignal
285 intensities and larger signal areas (soma sizes) compared to those of
286 FEZF2-negative/GFP-positive cells (Figure 13 and Supplementary table S24), indicating that
287 L5 PT neurons showed lower Nav1.1 expression compared to other neurons such as PV-INs

288 (see also Figure 9). Soma sizes of GFP-positive cells in L6 were overall smaller than those of
289 FEZF2/GFP-double positive cells in L5, and there was no statistically significant difference in
290 size between the FEZF2-positive/negative subpopulations. However, FEZF2/GFP-double
291 positive cells still showed lower intensity of GFP signals compared to
292 FEZF2-negative/GFP-positive cells (Figure 13 and Supplementary table S24).

293 We further performed triple immunostaining of FEZF2, Nav1.1 and ankyrinG on
294 *Scn1a*-GFP mice at P15, and found that 11% of FEZF2-positive cells have Nav1.1-positive
295 AIS in L5 of *Scn1a*-GFP mouse neocortex (Supplementary figure S8 and Supplementary
296 tables S25-S27). The low ratios of FEZF2/Nav1.1-double positive cells are most possibly due
297 to immunohistochemically-undetectable low levels of Nav1.1 expression in these excitatory
298 neurons.

299 We also performed triple immunostaining of FEZF2, Nav1.2 and ankyrinG on *Scn1a*-GFP
300 mice at P15 (Supplementary figure S9 and Supplementary tables S28-S31). The staining
301 showed that 20% of neurons (cells with ankyrinG-positive AISs) in L5 are FEZF2-positive
302 and a half of L5 FEZF2-positive cells have Nav1.2-positive AISs. Together with the
303 observation that most of FEZF2-positive cells are GFP-positive (Figure 12), these results
304 indicate that a subpopulation of FEZF2-positive PT neurons may express both Nav1.1 and
305 Nav1.2.

306 We additionally performed triple immunostaining of FEZF2, GFP, and Nav1.2 on
307 *Scn1a*-GFP mice at P15 (Supplementary figure S10 and Supplementary table S32), showing
308 that in L5 74% of FEZF2-positive cells are GFP-positive but a majority of their AISs are
309 Nav1.2-negative. The ratios of Nav1.2-positive cells among FEZF2-positive cells obtained in
310 the triple-immunostaining of FEZF2, GFP and Nav1.2 (Supplementary figure S10) are 27%
311 (L5) and 40% (L6). These results further support the above notion that a subpopulation of
312 FEZF2-positive PT neurons may express both Nav1.1 and Nav1.2. Although further studies
313 such retrograde tracking analyses are required to confirm and figure out the detailed circuits,
314 all these results propose that the majority of L5 PT neurons express Nav1.1.

315

316 **The majority of cortico-thalamic, cortico-striatal and cortico-cortical projection neurons
317 express Nav1.2**

318 TBR1 (T-box brain 1 transcription factor) is a negative regulator of FEZF2 and therefore not
319 expressed in the PT neurons, all of which are known to be FEZF2-positive (Chen et al., 2008;
320 Han et al., 2011; McKenna et al., 2011). TBR1 is predominantly expressed in L6 CT neurons
321 and subpopulations of L2/3 and L5 non-PT excitatory neurons instead (Han et al., 2011;

322 McKenna et al., 2011; Matho et al., 2021). To further elucidate the distributions of GFP
323 (Nav1.1)-expressing neurons in neocortex, we performed immunohistochemical staining of
324 TBR1 on *Scn1a*-GFP mice (Figure 14 and Supplementary tables S33-S35) and quantitated
325 GFP signal intensities and area sizes of cells (Figure 15 and Supplementary table S36).
326 TBR1-positive cells were predominant in neocortical L6, some in L5 and a few in L2/3. In L5,
327 contrary to the high ratios of GFP-positive cells among FEZF2-positive cells (83% at P15,
328 and 96% at 4W) (Figure 12B), the ratios of GFP-positive cells among TBR1-positive cells are
329 quite low (11% at P15, and 5% at 4W) (Figure 14B-middle panels and Supplementary table
330 S34). Soma sizes of TBR1/GFP-double positive cells were smaller than those of
331 TBR1-negative/GFP-positive cells (Figure 15-middle panel and Supplementary table S36). In
332 L6 where a major population of TBR1-positive neurons locate, the ratios of GFP-positive
333 cells among TBR1-positive cells are still low (15% at P15, and 26% at 4W) (Figure
334 14B-middle panels and Supplementary table S34). Soma sizes of TBR1/GFP-double positive
335 cells were also smaller than those of TBR1-negative/GFP-positive cells, and
336 TBR1/GFP-double positive cells showed lower intensity of GFP immunosignals compared to
337 TBR1-negative/GFP-positive cells (Figure 15-right panel and Supplementary table S36). We
338 additionally performed triple immunostaining for TBR1, Nav1.1, and ankyrinG on
339 *Scn1a*-GFP mice (Supplementary figure S11 and Supplementary tables S37-S39). Notably,
340 the ratios of Nav1.1-positive cells among TBR1-positive cells are 0% in all layers
341 (Supplementary figure S11B-right panel and Supplementary table S39). These results indicate
342 that the major population of TBR1-positive cells do not express Nav1.1.

343 To investigate whether TBR1-positive cells express Nav1.2, we performed triple
344 immunostaining of TBR1, Nav1.2 and ankyrinG on *Scn1a*-GFP mice (Supplementary figure
345 S12 and Supplementary tables S40-S43). In L5, contrary to the low ratios of GFP-positive
346 cells among TBR1-positive cells (11% at P15 and 5% at 4W) (Figure 14B-middle panels and
347 Supplementary table S34), the ratios of Nav1.2-positive cells among TBR1-positive cells are
348 high (69% (L2/3), 69% (L5) and 69% (L6) at P15) (Supplementary figure S12B-right-upper
349 panel and Supplementary table S42). The ratios of TBR1-positive cells among
350 Nav1.2-positive cells are 29% (L2/3), 53% (L5) and 62% (L6) at P15 (Supplementary figure
351 S12B-middle upper panel and Supplementary table S41).

352 We further performed triple immunostaining for TBR1, Nav1.2 and GFP on *Scn1a*-GFP
353 mice (Supplementary figure S13 and Supplementary table S44) and found that most (88%) of
354 L6 TBR1-positive cells are GFP-negative.

355 Taken together, these results indicate that most TBR1-positive neurons including L6 CT
356 neurons do not express Nav1.1 but expresses Nav1.2.

357 As a whole, above results showed that a minor subpopulation of L2/3 CC and L5 PT
358 neurons express Nav1.1 while the majority of L2/3 CC, L5/6 CS and L6 CT neurons express
359 Nav1.2. A breakdown of L5 neuron species containing PT neurons is specifically described
360 (Supplementary figure S14).

361

362 **Discussion**

363 In our present study, we developed *Scn1a* promoter-driven GFP mice in which the expression
364 of GFP mimics that of Nav1.1. All PV-INs and most of SST-INs were GFP-positive in the
365 neocortex and hippocampus of the *Scn1a*-GFP mouse, being consistent with the previous
366 reports of Nav1.1 expression in those inhibitory neurons (Ogiwara et al., 2007; Lorincz and
367 Nusser, 2008; Ogiwara et al., 2013; Li et al., 2014; Tai et al., 2014; Tian et al., 2014;
368 Yamagata et al., 2017). All Nav1.1-positive cells were GFP-positive. Reversely all
369 GFP-positive cells were also Nav1.1-positive in the hippocampus, but in the neocortex only a
370 half of GFP-positive cells were Nav1.1-positive. This is largely because in the hippocampus
371 Nav1.1 expression is restricted to inhibitory neurons, but in the neocortex Nav1.1 is expressed
372 not only in inhibitory but also in a subpopulation of excitatory neurons in which Nav1.1
373 expression is low and not easily detected immunohistochemically by anti-Nav1.1 antibodies.
374 In neocortex, one third of GFP-positive cells were GABAergic cells such as PV-INs and
375 SST-INs, and remained two-third were excitatory neurons. GFP signals were especially
376 intense in PV-positive cells indicating strong Nav1.1 expression in those cells, while
377 GFP-signals in SST-positive cells were similar to those in excitatory neurons. In addition,
378 extensive immunostaining analyses using projection neuron markers FEZF2 and TBR1
379 together with anti-Nav1.2 antibody also revealed that most L5 PT neurons and a minor
380 subpopulation of L2/3 CC neurons express Nav1.1 while the majority of L6 CT, L5/6 CS and
381 L2/3 CC neurons express Nav1.2.

382 The above observations should contribute to understanding of neural circuits responsible
383 for diseases such as epilepsy and neurodevelopmental disorders caused by *SCN1A* and *SCN2A*
384 mutations. Dravet syndrome is a sporadic intractable epileptic encephalopathy characterized
385 by early onset (6 months ~ 1 year after birth) epileptic seizures, intellectual disability, autistic
386 features, ataxia and increased risk of sudden unexpected death in epilepsy (SUDEP). De novo
387 loss-of-function mutations of *SCN1A* are found in more than 80% of the patients (Claes et al.,
388 2001; Sugawara et al., 2002; Fujiwara et al., 2003; Dravet et al., 2005; Depienne et al., 2009;

389 Meng et al., 2015). In mice, loss-of-function *Scn1a* mutations caused clinical features
390 reminiscent of Dravet syndrome, including early-onset epileptic seizures, hyperactivity,
391 learning and memory deficits, reduced sociability and ataxic gaits and premature sudden
392 death (Yu et al., 2006; Ogiwara et al., 2007; Oakley et al., 2009; Cao et al., 2012; Han et al.,
393 2012; Kalume et al., 2013; Ito et al., 2013). As also shown in the present study, Nav1.1 is
394 densely localized at AISs of inhibitory cells such PV-IN (Ogiwara et al., 2007; Ogiwara et al.,
395 2013; Li et al., 2014; Tai et al., 2014) and selective elimination of Nav1.1 in PV-IN in mice
396 leads to epileptic seizures, sudden death and deficits in social behavior and spatial memory
397 (Ogiwara et al., 2013; Tatsukawa et al., 2018). It is thus plausible that Nav1.1
398 haplo-deficiency in PV-IN plays a pivotal role in the pathophysiology of many clinical
399 aspects of Dravet syndrome. Notably, mice with selective Nav1.1 haplo-elimination in global
400 inhibitory neurons were at a greater risk of lethal seizure than systemic Nav1.1
401 haplo-deficient mice, and the mortality risk of mice with Nav1.1 haplo-deficiency in
402 inhibitory neurons was significantly decreased or improved with additional Nav1.1
403 haplo-elimination in dorsal telencephalic excitatory neurons (Ogiwara et al., 2013), which
404 indicates beneficial effects of Nav1.1 deficiency in excitatory neurons for epileptic seizures
405 and sudden death. Because of the absence of Nav1.1 in hippocampal excitatory neurons
406 (Ogiwara et al., 2007; Ogiwara et al., 2013; Yamagata et al., 2017, and the present study), the
407 ameliorating effect was most possibly caused by Nav1.1 haploinsufficiency in neocortical
408 excitatory neurons. Kalume and colleagues (2013) reported that parasympathetic
409 hyperactivity is observed in Nav1.1 haplo-deficient mice and it causes ictal bradycardia and
410 finally result in seizure-associated sudden death.

411 Our present finding of Nav1.1 expression in L5 pyramidal tract projection neurons which
412 innervate the vagus nerve may possibly elucidate the ameliorating effects of Nav1.1
413 haploinsufficiency in neocortical excitatory neurons for sudden death of Nav1.1
414 haplo-deficient mice and may contribute to the understanding of the neural circuit for SUDEP
415 in patients with Dravet syndrome. Further studies including retrograde tracing and
416 electrophysiological analyses are awaited.

417 We previously proposed that impaired cortico-striatal excitatory neurotransmission causes
418 epilepsies in *Scn2a* haplodeficient mouse (Miyamoto et al., 2019). Our present finding of
419 Nav1.2 expression in CS neurons is consistent and further support the proposal. Because
420 *SCN2A* has been well established as one of top genes which show de novo loss-of-function
421 mutations in patients with ASD (Hoischen et al., 2014; Johnson et al., 2016) and because
422 impaired striatal function was suggested in multiple ASD animal models (Fuccillo et al.,

423 2016), our finding of Nav1.2 expression in CS neurons may also contribute to the
424 understanding of neural circuit for ASD caused by *SCN2A* mutations.

425 In summary, the present investigations using a newly-developed *Scn1a* promoter-driven
426 GFP mice together with anti-Nav1.1/Nav1.2 antibodies and neocortical neuron markers
427 revealed the expression loci of Nav1.1 and Nav1.2 in more detail. Further developments of
428 transgenic mice for other sodium channel genes' promoter-driven reporter molecules and
429 combinatorial analyses of those mice are awaited to segregate and redefine their unique
430 functional roles in each of highly diverse neuronal species and complexed neural circuits.

431

432

433 **Materials and Methods**

434

435 **Animal work statement**

436 All animal experimental protocols were approved by the Animal Experiment Committee of
437 Nagoya City University and RIKEN Center for Brain Science. Mice were handled in
438 accordance with the guidelines of the Animal Experiment Committee.

439

440 **Mice**

441 *Scn1a*-GFP BAC transgenic mice were generated as follows. A murine BAC clone
442 RP23-232A20 containing the *Scn1a* locus was obtained from the BACPAC Resource Center
443 (<https://bacpacresources.org>). A GFP reporter cassette, comprising a red-shifted variant GFP
444 cDNA and a downstream polyadenylation signal derived from pIRES2-EGFP (Takara Bio),
445 was inserted in-frame into the initiation codon of the *Scn1a* coding exon 1 using the Red/ET
446 Recombineering kit (Gene Bridges), according to the manufacturer's instructions. A correctly
447 modified BAC clone verified using PCR and restriction mapping was digested with *Sac*II,
448 purified using CL-4B sepharose (GE Healthcare), and injected into pronuclei of C57BL/6J
449 zygotes. Mice carrying the BAC transgene were identified using PCR with primers:
450 m*Scn1a*_TG_check_F1, 5'-TGTTCTCCACGTTCTGGTT-3', m*Scn1a*_TG_check_R1,
451 5'-TTAGCCTCTCTTGCAATG-3' and EGFP_R1, 5'-GCTCCTGGACGTAGCCTTC-3'
452 that detect the wild-type *Scn1a* allele as an internal control (186 bp) and the inserted
453 transgene (371 bp). Of fifteen independent founder lines that were crossed with C57BL/6J
454 mice, twelve lines successfully transmitted the transgene to their progeny. Of twelve founders,
455 two lines (#184 and 233) that display much stronger green fluorescent intensity compared
456 with other lines were selected, and maintained on a congenic C57BL/6J background. The

457 mouse lines had normal growth and development. The line #233 has been deposited to the
458 RIKEN BioResource Research Center (<https://web.brc.riken.jp/en/>) for distribution under the
459 registration number RBRC10241. *Vgat*-Cre BAC transgenic mice and loxP flanked
460 transcription terminator cassette CAG promotor driven tdTomato transgenic
461 (*Rosa26*-tdTomato; B6.Cg- Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J, Stock No: 007914,
462 The Jackson Laboratory, USA) mice were maintained on a C57BL/6J background. To
463 generate triple mutant mice (*Scn1a*-GFP^{gfp/-}, *Vgat*-Cre^{cre/-}, *Rosa26*-tdTomato^{tomato/-}),
464 heterozygous *Scn1a*-GFP and *Vgat*-Cre mice were mated with homozygous *Rosa26*-tdTomato
465 transgenic mice.

466

467 **Western blot analysis**

468 Mouse brains at 5W were isolated and homogenized in homogenization buffer [(0.32 M
469 sucrose, 10 mM HEPES, 2 mM EDTA and 1× complete protease inhibitor cocktail (Roche
470 Diagnostics), pH 7.4)], and centrifuged for 15 min at 1,000 g. The supernatants were next
471 centrifuged for 30 min at 30,000 g. The resulting supernatants were designated as the cytosol
472 fraction. The pellets were subsequently resuspended in lysis buffer (50 mM HEPES and 2
473 mM EDTA, pH 7.4) and centrifuged for 30 min at 30,000 g. The resulting pellets, designated
474 as the membrane fraction, were dissolved in 2 M Urea, 1× NuPAGE reducing agent (Thermo
475 Fisher Scientific) and 1× NuPAGE LDS sample buffer (Thermo Fisher Scientific). The
476 cytosol and membrane fractions were separated on the NuPAGE Novex Tris-acetate 3–8% gel
477 (Thermo Fisher Scientific) or the PAG mini SuperSep Ace Tris-glycine 5–20% gel
478 (FUJIFILM Wako Pure Chemical), and transferred to nitrocellulose membranes (Bio-Rad).
479 Membranes were probed with the rabbit anti-Nav1.1 (250 ng/ml; IO1, Ogiwara et al., 2007),
480 chicken anti-GFP (1:5,000; ab13970, Abcam) and mouse anti-β tubulin (1:10,000; T0198,
481 Sigma-Aldrich) antibodies, and incubated with the horseradish peroxidase-conjugated goat
482 anti-rabbit IgG (1:2,000; sc-2004, Santa Cruz Biotechnology), rabbit anti-chicken IgY
483 (1:1,000; G1351, Promega) and goat anti-mouse IgG (1:5,000; W4011, Promega) antibodies.
484 Blots were detected using the enhanced chemiluminescence reagent (PerkinElmer). The
485 intensity of the Nav1.1 immunosignals were quantified using the Image Studio Lite software
486 (LI-COR, Lincoln, Nebraska USA) and normalized to the level of β tubulin or
487 Glyceraldehyde 3-phosphate dehydrogenase.

488

489 **Histochemistry**

490 Mice were deeply anesthetized, perfused transcardially with 4% paraformaldehyde (PFA) in
491 PBS (10 mM phosphate buffer, 2.7 mM KCl, and 137 mM NaCl, pH 7.4) or
492 periodate-lysine-4% PFA (PLP). Brains were removed from the skull and post-fixed. For
493 fluorescent imaging, PFA-fixed brains were cryoprotected with 30% sucrose in PBS, cut in 30
494 μ m parasagittal sections, and mounted on glass slides. The sections on glass slides were
495 treated with TrueBlack Lipofuscin Autofluorescence Quencher (Biotium) to reduce
496 background fluorescence. For immunostaining, frozen parasagittal sections (30 μ m) were
497 blocked with 4% BlockAce (DS Pharma Biomedical) in PBS for 1 hour at room temperature
498 (RT), and incubated with rat anti-GFP (1:500; GF090R, Nacalai Tesque). The sections were
499 then incubated with the secondary antibodies conjugated with biotin (1:200; Vector
500 Laboratories). The antibody-antigen complexes were visualized using the Vectastain Elite
501 ABC kit (Vector Laboratories) with Metal enhanced DAB substrate (34065, PIERCE). For
502 immunofluorescent staining, we prepared 6 μ m parasagittal sections from paraffin embedded
503 PLP-fixed brains of mice. The sections were processed as previously described (Yamagata et
504 al., 2017). Following antibodies were used to detect GFP, Nav1.1, Nav1.2, TBR1, FEZF2,
505 ankyrinG, NeuN, parvalbumin and somatostatin; mouse anti-GFP antibodies (1:500;
506 11814460001, Roche Diagnostics), anti-Nav1.1 antibodies (1:10,000; rabbit IO1, 1:500; goat
507 SC-16031, Santa Cruz Biotechnology), anti-Nav1.2 antibodies (1:1,000; rabbit ASC-002,
508 Alomone Labs; goat SC-31371, Santa Cruz Biotechnology), rabbit anti-TBR1 antibody
509 (1:1,000; ab31940, Abcam or 1:500; SC-376258, Santa Cruz Biotechnology), rabbit
510 anti-FEZF2 antibody (1:500; #18997, IBL), ankyrinG antibodies (1:500; mouse SC-12719,
511 rabbit SC-28561; goat, SC-31778, Santa Cruz Biotechnology), mouse anti-NeuN biotin
512 conjugated antibody (1:2,000; MAB377B, Millipore), rabbit anti-parvalbumin (1:5,000;
513 PC255L, Merck) and rabbit anti-somatostatin (1:5,000; T-4103, Peninsula Laboratories,
514 1:1,000; SC-7819, Santa Cruz Biotechnology) antibodies. As secondary antibodies, Alexa
515 Fluor Plus 488, 555, 594 and 647 conjugated antibodies (1:1,000; A32723, A32766, A32794,
516 A32754, A32849, A32795, A32787, Thermo Fisher Scientific) were used. To detect NeuN,
517 Alexa-647 conjugated streptavidin (1:1,000; S21374, Thermo Fisher Science) was used.
518 Images were captured using fluorescence microscopes (BZ-8100 and BZ-X710, Keyence),
519 and processed with Adobe Photoshop Elements 10 (Adobe Systems) and BZ-X analyzer
520 (Keyence).

521

522 **Fluorescence and Immunofluorescence quantification**

523 For quantification of inhibitory neurons in GFP-positive cells, we used
524 *Scn1a*-GFP/*Vgat*-Cre/*Rosa26*-tdTomato mice at 4W. We acquired multiple color images of
525 primary motor cortex and hippocampus from three parasagittal sections per animal. Six
526 images per region of interest were manually counted and summarized using Adobe Photoshop
527 Elements 10 and Excel (Microsoft). On immunofluorescence quantification, we used
528 *Scn1a*-GFP mice at P15 and/or 4W for the quantification of immunosignals. For
529 quantification of GFP, NeuN, PV, SST, Nav1.1, Nav1.2, FEZF2 or TBR1-positive cells, we
530 acquired multiple color images of primary motor cortex and hippocampus from three
531 parasagittal sections per animal. Six ~ nine images per region of interest were manually
532 quantified and summarized. For quantification of PV, SST, FEZF2 or TBR1-positive cells,
533 intensity and area size of GFP fluorescent signals were measured by Fiji software. Statistical
534 analyses were performed by one-way ANOVA followed by Tukey–Kramer post-hoc multiple
535 comparison test using Kypot 6.0 (KyensLab Inc.). P-value smaller than 0.05 was considered
536 statistically significant. Data are presented as the mean ± standard error of the mean (SEM).

537

538 ***In situ* hybridization**

539 Frozen sections (30 µm) of PFA-fixed mouse brains at 4W were incubated in 0.3% H₂O₂
540 in PBS for 30 min at RT to quench endogenous peroxidases, and mounted on glass slides. The
541 sections on slides were UV irradiated with 1,250 mJ/cm² (Bio-Rad), permeabilized with 0.3%
542 TritonX-100 in PBS for 15 min at RT, and digested with 1 µg/ml proteinase K (Nacalai
543 Tesque) in 10mM Tris-HCl and 1mM EDTA, pH 8.0, for 30 min at 37°C, washed twice with
544 100 mM glycine in PBS for 5 min at RT, fixed with 4% formaldehyde in PBS for 5 min at RT,
545 and acetylated with 0.25% acetic anhydride in 100 mM triethanolamine, pH8.0. After
546 acetylation, the sections were washed twice with 0.1 M phosphate buffer, pH 8.0, incubated in
547 a hybridization buffer [(50% formamide, 5× SSPE, 0.1% SDS, and 1 mg/ml Yeast tRNA
548 (Roche Diagnostics)] containing the Avidin solution (Vector Laboratories) for 2 hr at 60°C,
549 and hybridized with 2 µg/ml digoxigenin (DIG)- and dinitrophenol (DNP)-labeled probes in a
550 hybridization buffer containing the Biotin solution (Vector Laboratories) overnight at 60°C in
551 a humidified chamber. The hybridized sections were washed with 50% formamide in 2× SSC
552 for 15 min at 50°C twice, incubated in TNE (1 mM EDTA, 500 mM NaCl, 10 mM Tris-HCl,
553 pH 8.0) for 10 min at 37°C, treated with 20 µg/ml RNase A (Nacalai Tesque) in TNE for 15
554 min at 37°C, washed 2× SSC twice for 15 min each at 37°C twice and 0.2× SSC twice for 15
555 min each at 37°C. After washing twice in a high stringency buffer (10 mM Tris, 10 mM
556 EDTA and 500 mM NaCl, pH 8.0) for 10 min each at RT, the sections were blocked with a

557 blocking buffer [20 mM Tris and 150 mM NaCl, pH 7.5 containing 0.05% Tween-20, 4%
558 BlockAce (DS Pharma Biomedical) and 0.5× Blocking reagent (Roche Diagnostics)] for 1 hr
559 at RT, and incubated with the alkaline phosphatase-conjugated sheep anti-DIG (1:500;
560 11093274910, Roche Diagnostics) and biotinylated rabbit anti-DNP (1:100; BA-0603, Vector
561 laboratories) antibodies in a blocking buffer overnight at 4°C, followed by incubation with the
562 biotinylated goat anti-rabbit antibody (1:200; BA-1000, Vector laboratories) in a blocking
563 buffer at RT for 1 to 2hr. The probes were visualized using the NBT/BCIP kit (Roche
564 Diagnostics), VECTASTAIN Elite ABC kit (Vector laboratories) and ImmPACT DAB
565 substrate (Vector laboratories).

566 The DIG-labeled RNA probes for *Scn1a* designed to target the 3'-untranslated region
567 (nucleotides 6,488–7,102 from accession number NM_001313997.1) were described
568 previously (Ogiwara et al., 2007), and synthesized using the MEGAscript transcription kits
569 (Thermo Fisher Scientific) with DIG-11-UTP (Roche Diagnostics). The DNP-labeled RNA
570 probes for GFP were derived from the fragment corresponding to nucleotides 1,256–1,983 in
571 pIRES2-EGFP (Takara Bio), and prepared using the MEGAscript transcription kits (Thermo
572 Fisher Scientific) with DNP-11-UTP (PerkinElmer).

573

574

575 **Acknowledgment**

576 We thank Dr. Yaguchi (Laboratory for Behavioral Genetics) and the staff members at the
577 Research Resources Division of RIKEN Center for Brain Science for technical assistance in
578 generating *Scn1a*-GFP BAC Tg mice and Dr. Kaneda (Nippon Medical School) for his
579 support. This study was supported in part by MEXT/JSPS KAKENHI JP20H03566,
580 JP17H01564, JP16H06276, AMED JP18dm0107092, RIKEN Center for Brain Science
581 (K.Y.); Takeda Science Foundation, Kiyokun Foundation (I.O. and K.Y.); MEXT/JSPS
582 KAKENHI JP19790747, JP21791020, JP16K15564, JP19K08284 (I.O.); and Japan Epilepsy
583 Research Foundation (I.O. and T.T.).

584

585

586 **Competing interests**

587 No competing interests declared.

588

589

590 **References**

- 591 1. Brysch W, Creutzfeldt OD, Lüno K, Schlingensiepen R, Schlingensiepen KH. Regional
592 and temporal expression of sodium channel messenger RNAs in the rat brain during
593 development. *Exp Brain Res.* **86**(3): 562-567 (1991).
- 594 2. Cao D, Ohtani H, Ogiwara I, Ohtani S, Takahashi Y, Yamakawa K, Inoue Y. Efficacy of
595 stiripentol in hyperthermia-induced seizures in a mouse model of Dravet syndrome.
596 *Epilepsia.* **53**, 1140-1145 (2012).
- 597 3. Catterall WA. Voltage-gated sodium channels at 60: structure, function and
598 pathophysiology. *J. Physiol.* **590**(11):2577-2589 (2012).
- 599 4. Chen B, Schaevitz LR., McConnell SK. Fezf1 regulates the differentiation and axon
600 targeting of layer 5 subcortical projection neurons in cerebral cortex. *Proc. Natl. Acad. Sci.*
601 *USA.* **102**:17184-17189 (2005).
- 602 5. Chen B, Wang SS, Hattox AM, Rayburn H, Nelson SB, McConnell SK. The Fezf2-Ctip2
603 genetic pathway regulates the fate choice of subcortical projection neurons in the
604 developing cerebral cortex. *Proc. Natl. Acad. Sci. USA.* **105**(32):11382-11387 (2008).
- 605 6. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De
606 novo mutations in the sodium-channel gene *SCN1A* cause severe myoclonic epilepsy of
607 infancy. *Am. J. Hum. Genet.* **68**, 1327-1332 (2001).
- 608 7. Depienne C, Trouillard O, Saint-Martin C, Gourfinkel-An I, Bouteiller D, Carpentier W,
609 Keren B, Abert B, Gautier A, Baulac S, Arzimanoglou A, Cazeneuve C, Nababout R,
610 LeGuern E. Spectrum of *SCN1A* gene mutations associated with Dravet syndrome:
611 analysis of 333 patients. *J. Med. Genet.* **46**, 183-191 (2009).
- 612 8. Dravet C, Bureau M, Oguni H, Fukuyama Y, Cokar O. Severe myoclonic epilepsy in
613 infancy (Dravet syndrome) in *Epileptic Syndromes in Infancy, Childhood and*
614 *Adolescence, 4th edn* (eds. Roger, J. et al.) 89-113 (John Libbey Eurotext Ltd, Montrouge,
615 France, 2005).
- 616 9. Fuccillo MV. Striatal Circuits as a Common Node for Autism Pathophysiology. *Front.*
617 *Neurosci.* **10**:27 (2016).
- 618 10. Fujiwara T, Sugawara T, Mazaki-Miyazaki E, Takahashi Y, Fukushima K, Watanabe M,
619 Hara K, Morikawa T, Yagi K, Yamakawa K, Inoue Y. Mutations of sodium channel α
620 subunit type 1 (*SCN1A*) in intractable childhood epilepsies with frequent generalized
621 tonic-clonic seizures. *Brain.* **126**, 531-546 (2003).
- 622 11. Goff KM, Goldberg EM. Vasoactive intestinal peptide-expressing interneurons are
623 impaired in a mouse model of Dravet syndrome. *Elife.* **8**, e46846 (2019).

624 12. Han S, Tai C, Westenbroek RE, Yu FH, Cheah CS, Potter GB, Rubenstein JL, Scheuer T,
625 de la Iglesia HO, Catterall WA. Autistic-like behaviour in *Scn1a*^{+/−} mice and rescue by
626 enhanced GABA-mediated neurotransmission. *Nature*. **489**, 385–390 (2012).

627 13. Han W, Kwan KY, Shim S, Lam MMS, Shin Y, Xu X, Zhu Y, Li M, Sestan N. TBR1
628 directly represses Fezf2 to control the laminar origin and development of the corticospinal
629 tract. *Proc. Natl. Acad. Sci. USA* **108**(7), 3041-3046 (2011)

630 14. Hoischen A, Krumm N, Eichler EE. Prioritization of neurodevelopmental disease genes
631 by discovery of new mutations. *Nat. Neurosci.* **17**(6):764-772 (2014).

632 15. Ito S, Ogiwara I, Yamada K, Miyamoto H, Hensch TK, Osawa M, Yamakawa K. Mouse
633 with Nav1.1 haploinsufficiency, a model for Dravet syndrome, exhibits lowered
634 sociability and learning impairment. *Neurobiol. Dis.* **49**, 29–40 (2013).

635 16. Inoue K, Terashima T, Nishikawa T, Takumi T. Fez1 is layer-specifically expressed in the
636 adult mouse neocortex. *Eur J Neurosci.* **20**(11):2909-16 (2004).

637 17. Jinno S, Kosaka T. Parvalbumin is expressed in glutamatergic and GABAergic
638 corticostriatal pathway in mice. *J Comp Neurol.* **477**(2):188-201 (2004).

639 18. Johnson MR, Shkura K, Langley SR, Delahaye-Duriez A, Srivastava P, Hill WD,
640 Rackham OJ, Davies G, Harris SE, Moreno-Moral A, Rotival M, Speed D, Petrovski S,
641 Katz A, Hayward C, Porteous DJ, Smith BH, Padmanabhan S, Hocking LJ, Starr JM,
642 Liewald DC, Visconti A, Falchi M, Bottolo L, Rosselli T, Danis B, Mazzuferi M, Foerch
643 P, Grote A, Helmstaedter C, Becker AJ, Kaminski RM, Deary IJ, Petretto E. Systems
644 genetics identifies a convergent gene network for cognition and neurodevelopmental
645 disease. *Nat. Neurosci.* **19**(2):223-232 (2016).

646 19. Kalume F, Westenbroek RE, Cheah CS, Yu FH, Oakley JC, Scheuer T, Catterall WA.
647 Sudden unexpected death in a mouse model of Dravet syndrome. *J. Clin. Invest.* **123**,
648 1798–1808 (2013).

649 20. Li T, Tian C, Scalmani P, Frassoni C, Mantegazza M, Wang Y, Yang M, Wu S, Shu Y.
650 Action potential initiation in neocortical inhibitory interneurons. *PLoS Biol.* **12**, e1001944:
651 (2014).

652 21. Lodato S, Molyneaux BJ, Zuccaro E, Goff LA, Chen HH, Yuan W, Meleski A, Takahashi
653 E, Mahony S, Rinn JL, Gifford DK, Arlotta P. Gene co-regulation by Fezf2 selects
654 neurotransmitter identity and connectivity of corticospinal neurons. *Nat Neurosci.*
655 **17**(8):1046-54 (2014).

656 22. Lorincz A, Nusser Z. Cell-type-dependent molecular composition of the axon initial
657 segment. *J. Neurosci.* **28**(53), 14329-14340 (2008).

658 23. Lorincz A, Nusser Z. Molecular identity of dendritic voltage-gated sodium channels.
659 *Science* **328**(5980):906-909 (2010).

660 24. Matho KS, Huilgol D, Galbavy W, He M, Kim G, An X, Lu J, Wu P, Di Bella DJ, Shetty
661 AS, Palaniswamy R, Hatfield J, Raudales R, Narasimhan A, Gamache E, Levine JM,
662 Tucciarone J, Szelenyi E, Harris JA, Mitra PP, Osten P, Arlotta P, Huang ZJ. Genetic
663 dissection of the glutamatergic neuron system in cerebral cortex. *Nature*.
664 **598**(7879):182-187 (2021)

665 25. McKenna WL, Betancourt J, Larkin KA, Abrams B, Guo C, Rubenstein JL, Chen B. Tbr1
666 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical
667 development. *J. Neurosci.* **31**(2):549-564 (2011).

668 26. Meisler MH, Hill SF, Yu W. Sodium channelopathies in neurodevelopmental disorders.
669 *Nat. Rev. Neurosci.* **22**(3):152-166 (2021).

670 27. Meng H, Xu HQ, Yu L, Lin GW, He N, Su T, Shi YW, Li B, Wang J, Liu XR, Tang B,
671 Long YS, Yi YH, Liao WP. The *SCN1A* mutation database: updating information and
672 analysis of the relationships among genotype, functional alteration, and phenotype. *Hum.*
673 *Mutat.* **36**, 573–580 (2015).

674 28. Miyamoto H, Tatsukawa T, Shimohata A, Yamagata T, Suzuki T, Amano K, Mazaki E,
675 Raveau M, Ogiwara I, Oba-Asaka A, Hensch TK, Itohara S, Sakimura K, Kobayashi K,
676 Kobayashi K, Yamakawa K. Impaired cortico-striatal excitatory transmission triggers
677 epilepsy. *Nat. Commun.* **10**(1):1917 (2019).

678 29. Molyneaux BJ, Arlotta P, Hirata T, Hibi M, Macklis JD. Fezl is required for the birth and
679 specification of corticospinal motor neurons. *Neuron*. **47**:817–831 (2005).

680 30. Nakayama T, Ogiwara I, Ito K, Kaneda M, Mazaki E, Osaka H, Ohtani H, Inoue Y,
681 Fujiwara T, Uematsu M, Haginoya K, Tsuchiya S, Yamakawa K. Deletions of SCN1A 5'
682 genomic region with promoter activity in Dravet syndrome. *Hum. Mutat.* **31**(7):820-829
683 (2010).

684 31. Oakley JC, Kalume F, Yu FH, Scheuer T, Catterall WA. Temperature- and age-dependent
685 seizures in a mouse model of severe myoclonic epilepsy in infancy. *Proc. Natl. Acad. Sci.*
686 *USA*. **106**, 3994–3999 (2009).

687 32. Ogiwara I, Miyamoto H, Morita N, Atapour N, Mazaki E, Inoue I, Takeuchi T, Itohara S,
688 Yanagawa Y, Obata K, Furuichi T, Hensch TK, Yamakawa K. Nav1.1 Localizes to axons
689 of parvalbumin-positive inhibitory interneurons: A circuit basis for epileptic seizures in
690 mice carrying an *Scn1a* gene mutation. *J. Neurosci.* **27**, 5903–5914 (2007)

691 33. Ogiwara I, Iwasato T, Miyamoto H, Iwata R, Yamagata T, Mazaki E, Yanagawa Y,
692 Tamamaki N, Hensch TK, Itohara S, Yamakawa K. Nav1.1 haploinsufficiency in
693 excitatory neurons ameliorates seizure-associated sudden death in a mouse model of
694 Dravet syndrome. *Hum. Mol. Genet.* **22**, 4784–4804 (2013).

695 34. Ogiwara I, Miyamoto H, Tatsukawa T, Yamagata T, Nakayama T, Atapour N, Miura E,
696 Mazaki E, Ernst SJ, Cao D, Ohtani H, Itohara S, Yanagawa Y, Montal M, Yuzaki M,
697 Inoue Y, Hensch TK, Noebels JL, Yamakawa K. Nav1.2 haplodeficiency in excitatory
698 neurons causes absence-like seizures in mice. *Commun. Biol.* **1**:96 (2018).

699 35. Paxinos G, Franklin BJ. The mouse brain in stereotaxic coordinates. Academic Press
700 (2001).

701 36. Shepherd GM. Corticostriatal connectivity and its role in disease. *Nat. Rev. Neurosci.* **14**,
702 278–291 (2013).

703 37. Sugawara T, Mazaki-Miyazaki E, Fukushima K, Shimomura J, Fujiwara T, Hamano S,
704 Inoue Y, Yamakawa K. Frequent mutations of *SCN1A* in severe myoclonic epilepsy in
705 infancy. *Neurology* **58**, 1122–1124 (2002).

706 38. Tai T, Abe Y, Westenbroek RE, Scheuer T, Catterall WA. Impaired excitability of
707 somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of
708 Dravet syndrome. *Proc. Natl. Acad. Sci. USA.* **111**, E3139–3148 (2014).

709 39. Tanahira C, Higo S, Watanabe K, Tomioka R, Ebihara S, Kaneko T, Tamamaki N.
710 Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice.
711 *Neurosci Res.* **63**(3):213–23 (2009).

712 40. Tatsukawa T, Ogiwara I, Mazaki E, Shimohata A, Yamakawa K. Impairments in social
713 novelty recognition and spatial memory in mice with conditional deletion of *Scn1a* in
714 parvalbumin-expressing cells. *Neurobiol. Dis.* **112**, 24–34 (2018).

715 41. Tian C, Wang K, Ke W, Guo H, Shu Y. Molecular identity of axonal sodium channels in
716 human cortical pyramidal cells. *Front Cell Neurosci.* **8**: 297 (2014).

717 42. Weyer A, Schilling K. Developmental and cell type-specific expression of the neuronal
718 marker NeuN in the murine cerebellum. *J Neurosci Res.* **73**, 400–409 (2003).

719 43. Yamagata T, Ogiwara I, Mazaki E, Yanagawa Y, Yamakawa K. Nav1.2 is expressed in
720 caudal ganglionic eminence-derived disinhibitory interneurons: Mutually exclusive
721 distributions of Nav1.1 and Nav1.2. *Biochem. Biophys. Res. Commun.* **491**, 1070–1076
722 (2017).

723 44. Yamakawa, K. Mutations of voltage-gated sodium channel genes *SCN1A* and *SCN2A* in
724 epilepsy, intellectual disability, and autism in *Neuronal and synaptic dysfunction in*

725 *autism spectrum disorder and intellectual disability* (eds. Sara, C. & Verpelli, C.)

726 233–251 (Elsevier, Amsterdam, Netherlands, 2016).

727 45. Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA, Spain WJ,

728 McKnight GS, Scheuer T, Catterall WA. Reduced sodium current in GABAergic

729 interneurons in a mouse model of severe myoclonic epilepsy in infancy. *Nat. Neurosci.* **9**,

730 1142–1149 (2006).

731

732 **Figure legends**

733

734 **Figure 1. Generation of *Scn1a*-GFP mice.**

735 (A) Schematic representation of the modified BAC construct containing the *Scn1a*-GFP
736 transgene. A GFP reporter cassette consisting of GFP cDNA and a polyadenylation signal was
737 inserted at the ATG initiation codon in the coding exon 1 of *Scn1a*. Filled and hatched boxes
738 indicate the coding and non-coding exons of *Scn9a* and *Scn1a*. Arrows indicate the start sites
739 and orientation of transcription of *Scn1a*. (B) Western blot analysis for *Scn1a*-GFP and
740 endogenous Nav1.1. The whole cytosolic fractions from 5W *Scn1a*-GFP brains (lines #184
741 and #233) were probed with anti-GFP and their membrane fractions were probed with
742 anti-Nav1.1 antibodies. β -Tubulin was used as an internal control. pA, polyadenylation signal;
743 Tg, hemizygous *Scn1a*-GFP transgenic mice; Wt, wild-type littermates.

744

745 **Figure 2. Distributions of GFP signals in brains are similar among *Scn1a*-GFP mouse
746 lines.**

747 Chromogenic immunostaining of GFP (brown) with Nissl counterstaining (violet) of lines
748 #184 and #233 (A-H) and GFP fluorescence images of line #233 (I-L) on parasagittal sections
749 from 5–6W *Scn1a*-GFP brains. Boxed areas in (A, E, I, B, F, J, C, G, K, D, H, L) are
750 magnified in (B-D, F-H, J-L, B1, F1, J1, C1-3, G1-3, K1-3, D1, H1, L1). The two lines (lines
751 #184 and #233) showed a similar distribution pattern of GFP-expressing cells across all brain
752 regions (A-H), but the signals in the line #233 are more intense than the line #184. In
753 neocortex (B, F, J), GFP-expressing cells were scattered throughout the entire region. In the
754 hippocampus (C, G, K), GFP-positive inhibitory neurons were sparsely distributed (see also
755 Figure 8), while excitatory neurons in stratum pyramidale and stratum granulosum are
756 GFP-negative. In cerebellum (D, H, L), Purkinje, basket, and deep cerebellar nuclei cells were
757 GFP-positive. IHC, immunohistochemistry; CA, cornu ammonis; DG, dentate gyrus; o,
758 stratum oriens; p, stratum pyramidale; r, stratum radiatum; lm, stratum
759 lacunosum-moleculare; l, stratum lucidum; m, stratum moleculare; g, stratum granulosum; h,
760 hilus; DCN, deep cerebellar nuclei; M, molecular layer; P, Purkinje cell layer; G, granular cell
761 layer. Scale bars; 1 mm (A, E, I), 500 μ m (C, D, G, H, K, L), 100 μ m (B, F, J), 50 μ m (B1,
762 C1-3, D1, F1, G1-3, H1, J1, K1-3, L1).

763

764 **Figure 3. Distribution of GFP signals in *Scn1a*-GFP mouse brain are largely maintained
765 through development.**

766 Fluorescent images of parasagittal sections from P15 (**A**), 4W (**B**) and 8W (**C**) *Scn1a*-GFP
767 mouse brains (line #233). GFP signals were observed in multiple brain regions. APT, anterior
768 pretectal nucleus; CPu, caudate putamen; Cx, cerebral cortex; DCN, deep cerebellar nuclei;
769 HP, hippocampus; IC, inferior colliculus; Mo, medulla oblongata; Ob, olfactory bulb; P, pons;
770 RT, reticular thalamic nucleus; SC, superior colliculus; STN, subthalamic nucleus; VPM,
771 ventral posteromedial thalamic nucleus; ZI, zona incerta. Scale bars; 1 mm.
772

773 **Figure 4. All cells with Nav1.1-positive AISs are GFP-positive but only half or less**
774 **population of AISs for GFP-positive cells are Nav1.1-positive in *Scn1a*-GFP mouse**
775 **neocortex.**

776 (**A**) Triple immunofluorescent staining of parasagittal section from P15 *Scn1a*-GFP mouse
777 brain (line #233) by mouse anti-GFP (green), rabbit anti-Nav1.1 (magenta), and goat
778 anti-ankyrinG (cyan) antibodies. Regions at primary motor cortex are shown. (**B, C**)
779 Magnified images outlined in (A) are shown in (B) and (C). Arrows indicate AISs of cells
780 with GFP-positive somata in which both somata and AISs are positive for Nav1.1.
781 Arrowheads indicate AISs of cells with GFP-positive somata in which AISs but not somata
782 are positive for Nav1.1. All images are oriented from pial surface (top) to callosal (bottom).
783 Scale bars; 100 μ m (A), 50 μ m (B and C). (**D**) Cell counting of three *Scn1a*-GFP mice. Bar
784 graphs indicating the percentage of cells with GFP- and Nav1.1-positive/negative somata and
785 AISs per cells with ankyrinG-positive AISs (left panel), the percentage of cells with
786 GFP-positive/negative somata per cells with ankyrinG-positive AISs and Nav1.1-positive
787 somata and/or AISs (middle panel), and the percentage of cells with Nav1.1-positive/negative
788 somata and/or AISs per cells with ankyrinG-positive AISs and GFP-positive somata (right
789 panel) in L2/3, L5, and L6 (see also Supplementary tables S2-S4). Only cells with
790 ankyrinG-positive AISs were counted. Nav1.1 immunosignals were occasionally observed in
791 somata, but in such cases Nav1.1 signals were always observed in their AISs if visible by
792 ankyrinG staining. Note that 99% (L2/3), 99% (L5) and 97% (L6) of cells with
793 Nav1.1-positive AISs have GFP-positive somata (middle panel), but only half or less of cells
794 with GFP-positive somata have Nav1.1-positive AISs (right panel). L2/3, L5: neocortical
795 layer II/III and V. AnkG, ankyrinG; +, positive; -, negative.

796
797 **Figure 5. All cells with Nav1.1-positive AISs are GFP-positive and all AISs of**
798 **GFP-positive cells are Nav1.1-positive in *Scn1a*-GFP mouse hippocampus.**

799 (A-D) Triple immunofluorescent staining of parasagittal section from P15 *Scn1a*-GFP mouse
800 brain (line #233) by mouse anti-GFP (green), rabbit anti-Nav1.1 (magenta), and goat
801 anti-ankyrinG (cyan) antibodies. Regions at hippocampus were shown. Note that GFP and
802 Nav1.1 immunosignals mostly overlap at somata. CA1, cornu ammonis 1; CA2, cornu
803 ammonis 2; CA3, cornu ammonis 3; DG, dentate gyrus. Images are oriented from pial surface
804 (top) to callosal (bottom). Scale bars; 100 μ m. (E) Magnified images for co-expression of
805 GFP and Nav1.1 in cells at CA1 region. Arrowheads indicate Nav1.1-positive AISs of
806 GFP-expression cells. Scale bar; 50 μ m. (F) Bar graphs indicate the percentage of cells in
807 hippocampal CA1 region with Nav1.1-positive/negative AISs per cells with GFP-positive
808 somata and ankyrinG-positive AISs (left panel), and the percentage of cells with
809 GFP-positive/negative somata per cells with Nav1.1/ankyrinG-double positive AISs (right
810 panel) (see also Supplementary tables S7, S8). Only cells with ankyrinG-positive AISs were
811 counted. GFP/Nav1.1-double negative cells, most of which are pyramidal cells, were not
812 counted because of the accumulated nature of their ankyrinG-positive AISs. AnkG, ankyrinG;
813 +, positive; -, negative.

814

815 **Figure 6. GFP and *Scn1a* mRNAs expressions goodly overlap in *Scn1a*-GFP mouse
816 brain.**

817 Double *in situ* hybridization for *Scn1a*-GFP transgene mRNA and endogenous *Scn1a* mRNA
818 on parasagittal sections from 4W *Scn1a*-GFP brains (line #233). (A) Sections were hybridized
819 with antisense (left) and sense (right) RNA probes for GFP transgene (brown) and
820 endogenous *Scn1a* (blue) mRNA species and chromogenically stained. Magnified images
821 outlined in (A) are shown in (B-D) for antisense probes, and (E-G) for sense probes. o,
822 stratum oriens; p, stratum pyramidale; r, stratum radiatum; lm, stratum
823 lacunosum-moleculare; m, stratum moleculare; g, stratum granulosum, CA1, cornu ammonis
824 1; DG, dentate gyrus. Scale bars; 500 μ m (A), 50 μ m (B-G).

825

826 **Figure 7. One third of GFP-positive cells in neocortex are inhibitory neurons, but most
827 of GFP-positive cells in hippocampus are inhibitory neurons.**

828 (A, B) GFP (green) and Tomato (magenta) fluorescent images of parasagittal sections from
829 4W *Scn1a*-GFP/*Vgat*-cre/*Rosa26*-tdTomato mouse. Regions at primary motor cortex (A) and
830 hippocampus (B) are shown. Scale bar; 100 μ m. (C) Bar graphs indicate the percentage of
831 cells with Tomato-positive/negative somata per cells with GFP-positive somata (left panel)
832 (see also Supplementary table S9) and the percentage of cells with GFP-positive/negative

833 somata per cells with Tomato-positive somata (right panel) (see also Supplementary table
834 S10) in L2/3, L5, L6, CA1 and DG. Cells in primary motor cortex and hippocampus of
835 *Scn1a*-GFP mouse at 4W were counted. L2/3, L5, L6, CA1 and DG: neocortical layer II/III, V,
836 VI, cornu ammonis 1, dentate gyrus. +, positive; -, negative.

837

838 **Figure 8. Parvalbumin or somatostatin-positive inhibitory neurons are GFP-positive in**
839 ***Scn1a*-GFP mouse neocortex and hippocampus.**

840 (A) Triple immunofluorescent staining of parasagittal sections from 4W *Scn1a*-GFP mouse
841 (line #233) by mouse anti-GFP (green), rabbit anti-parvalbumin (PV) (magenta) and goat
842 anti-somatostatin (SST) (Cyan) antibodies. Regions at neocortex and hippocampus are shown.
843 Merged images were shown in the right columns. Arrows indicate SST/GFP-double positive
844 cells. Arrowheads indicate PV/GFP-double positive. o, stratum oriens; p, stratum pyramidale;
845 r, stratum radiatum; h, hilus; g, stratum granulosum; m, stratum moleculare. All images are
846 oriented from pial surface (top) to callosal (bottom). Scale bars; 50 μ m. (B) Bar graphs
847 indicate the percentage of cells with PV- and SST-positive/negative somata per cells with
848 GFP-positive somata (left panel) (see also Supplementary table S11), the percentage of cells
849 with GFP-positive/negative somata per cells with PV-positive somata (middle panel) (see also
850 Supplementary table S12), and the percentage of cells with GFP-positive/negative somata per
851 cells with SST-positive somata (right panel) (see also Supplementary table S13) in L2/3, L5,
852 L6, CA1, CA2/3 and DG. Cells in neocortex and hippocampus of *Scn1a*-GFP mouse at 4W
853 were counted. L2/3, L5, L6, CA1, CA2/3 and DG: neocortical layer II/III, V, VI, cornu
854 ammonis 1, 2 plus 3, dentate gyrus. +, positive; -, negative.

855

856 **Figure 9. GFP-signals in parvalbumin-positive inhibitory neurons are higher than**
857 **PV-negative/GFP-positive cells in *Scn1a*-GFP mouse neocortex.**

858 (A) Scatter plots of intensities and area sizes of GFP immunosignals in GFP-positive cells
859 with PV or SST-positive or negative somata. Cells at primary motor cortex (upper panels) and
860 hippocampus (lower panels) in parasagittal sections from 4W *Scn1a*-GFP mouse (line #233)
861 were analyzed. PV-positive (magenta circles) or SST-positive (black circles) and negative
862 (green circles) cells in neocortical L2/3, L5, and L6 or hippocampal CA1, CA2/3, and DG are
863 plotted (see also Supplementary table S14). (B) Box-plots represent values for the intensity
864 and area size in each cell type (see also Supplementary tables S15, S16). Cross marks indicate
865 mean values in each cell type. Statistical significance was assessed using one-way ANOVA
866 followed by Tukey–Kramer post-hoc multiple comparison test. *; p < 0.05, **; p < 0.01, ***;

867 p < 0.001. Note that GFP signal intensities of PV/GFP-double positive cells were significantly
868 higher than that of SST/GFP-double positive cells and PV/SST-negative/GFP-positive cells
869 (all layers), while GFP signal intensities of SST/GFP-double positive cells were similar to
870 PV/SST-negative/GFP-positive cells in neocortex. In hippocampus, GFP signal intensities of
871 SST/GFP-double positive cells were significantly lower than that of
872 SST-negative/GFP-positive cells at CA2/3 and DG. CA1, CA2/3 and DG: cornu ammonis 1,
873 2 plus 3, dentate gyrus. a.u., arbitrary unit; +, positive; -, negative.

874

875 **Figure 10. Nav1.1 and Nav1.2 are mutually exclusive at AISs in mouse brain.**

876 (A) Triple immunofluorescent staining on parasagittal sections from *Scn1a*-GFP mouse at
877 P15 by rabbit anti-Nav1.1 (green), goat anti-Nav1.2 (magenta), and mouse anti-ankyrinG
878 (cyan) antibodies. Merged images are shown in the right panels. Arrows indicate
879 Nav1.2-positive AISs. Arrowheads indicate Nav1.1-positive AISs. Note that there are no
880 Nav1.1/Nav1.2-double positive AISs. Images are oriented from pial surface (top) to callosal
881 (bottom). Scale bars; 50 μ m. (B) Bar graphs indicating the percentage of Nav1.1 and
882 Nav1.2-positive/negative AISs per AISs detected by ankyrinG-staining in L2/3, L5, and L6 of
883 *Scn1a*-GFP mice. Note that Nav1.1/Nav1.2-double positive AISs were less than 0.5% of all
884 AISs in these layers (see Supplementary table S17). L2/3, L5, L6: neocortical layer II/III, V,
885 VI. AnkG, ankyrinG; +, positive; -, negative.

886

887 **Figure 11. Cells with Nav1.2-positive AISs are mostly GFP-negative in *Scn1a*-GFP
888 mouse neocortex.**

889 (A) Triple immunofluorescent staining of parasagittal sections from P15 *Scn1a*-GFP mouse
890 brain (line #233) by mouse anti-GFP (green), goat anti-Nav1.2 (magenta) and rabbit
891 anti-ankyrinG (cyan) antibodies. Merged images of the signals are shown in the right panels.
892 Arrows indicate Nav1.2-positive AISs of cells with GFP-negative somata. Arrowheads
893 indicate Nav1.2-negative AISs of cells with GFP-positive somata. All images are oriented
894 from pial surface (top) to callosal (bottom). Scale bars; 50 μ m. (B) Bar graphs indicating the
895 percentage of cells with GFP- and Nav1.2-positive/negative somata and AISs per cells with
896 ankyrinG-positive AISs (left panel) (see also Supplementary table S18), the percentage of
897 cells with GFP-positive/negative somata per cells with ankyrinG/Nav1.2-double positive AISs
898 (middle panel) (see also Supplementary table S19), and the percentage of cells with
899 Nav1.2-positive/negative AISs per cells with ankyrinG-positive AISs and GFP-positive
900 somata (right panel) (see also Supplementary table S20) in L2/3, L5, and L6. Note that 88%

901 (L2/3), 90% (L5) and 95% (L6) of cells with Nav1.2-positive AISs have GFP-negative
902 somata (middle panel), and 68% (L2/3), 83% (L5) and 86% (L6) of cells with GFP-positive
903 somata have Nav1.2-negative AISs (right panel). L2/3, L5, L6: neocortical layer II/III, V, VI.
904 AnkG, ankyrinG; +, positive; -, negative.

905

906 **Figure 12. Cells positive for FEZF2 are mostly GFP-positive at L5 of *Scn1a*-GFP mouse**
907 **neocortex.**

908 (A) Double immunostaining of FEZF2 and GFP in neocortex of 4W *Scn1a*-GFP mouse (line
909 #233) by rabbit anti-FEZF2 (magenta) and mouse anti-GFP (green) antibodies. Arrows
910 indicate FEZF2/GFP-double positive cells. Magnified images outlined in (A) are shown in
911 (A1-A3). Note that FEZF2 signals mostly overlap with GFP signals in L5. Many of the
912 remained GFP-positive/FEZF2-negative cells have intense GFP signals and are assumed to be
913 inhibitory neurons (see Figure 8). Scale bars; 100 μ m (A), 50 μ m (A1-A3). (B) Bar graphs
914 indicating the percentage of cells with FEZF2- and GFP-positive/negative nuclei and somata
915 per cells with GFP-positive somata and/or FEZF2-positive nuclei (left panels) (see also
916 Supplementary table S21), the percentage of cells with GFP-positive/negative somata per
917 cells with FEZF2-positive nuclei (middle panels) (see also Supplementary table S22), and the
918 percentage of cells with FEZF2-positive/negative nuclei per cells with GFP-positive somata
919 (right panels) (see also Supplementary table S23) in L2/3, L5, and L6. Cells at primary motor
920 cortex of *Scn1a*-GFP mouse at P15 and 4W were counted. Note that 83% (P15) and 96%
921 (4W) of cells with FEZF2-positive cells are GFP-positive in L5 (middle panels), but a half of
922 cells with GFP-positive cells are FEZF2-positive in L5 (right panel). L2/3, L5, L6: neocortical
923 layer II/III, V, VI. +, positive; -, negative.

924

925 **Figure 13. FEZF2-positive cells have lower GFP signal intensities in *Scn1a*-GFP mouse**
926 **neocortex.**

927 Scatter plots of intensities and area sizes of GFP immunosignals in GFP-positive cells with
928 FEZF2-positive/negative nuclei. Cells at primary motor cortex in parasagittal sections from
929 4W *Scn1a*-GFP mouse (line #233) were analyzed. FEZF2-positive (orange squares) and
930 negative (black circles) cells in neocortical L2/3, L5, and L6 are plotted (see also
931 Supplementary table S24). Note that GFP signal intensities of FEZF2/GFP-double positive
932 cells were significantly lower than that of FEZF2-negative/GFP-positive cells (L5, L6), and
933 signal area size of FEZF2/GFP-double positive cells were significantly larger than that of

934 FEZF2-negative/GFP-positive cells (L2/3, L5). Statistical significance was assessed using
935 t-test. a.u., arbitrary unit; +, positive; -, negative.

936

937 **Figure 14. GFP-positive cells were mostly negative for TBR1 at L5 of *Scn1a*-GFP mouse**
938 **neocortex.**

939 (A) Double immunostaining of TBR1 and GFP in neocortex of 4W *Scn1a*-GFP mouse (line
940 #233) detected by mouse rabbit anti-TBR1 (magenta) and anti-GFP (green) antibodies.
941 Arrows indicate TBR1-negative/GFP-positive cells. Magnified images outlined in (A) are
942 shown in (A1-A6). Note that at L5 GFP-positive cells were mostly TBR1-negative but at L2/3
943 more than half of GFP-positive cells were TBR1-positive. Scale bars; 100 μ m (A), 50 μ m
944 (A1-A6). (B) Bar graphs indicating the percentage of cells with TBR1- and
945 GFP-positive/negative nuclei and somata per GFP-positive cells and/or TBR1-positive nuclei
946 (left panels) (see also Supplementary table S33), the percentage of cells with
947 GFP-positive/negative somata per cells with TBR1-positive nuclei (middle panels) (see also
948 Supplementary table S34), and the percentage of cells with TBR1-positive/negative nuclei per
949 cells with GFP-positive somata (right panels) (see also Supplementary table S35) in L2/3, L5,
950 and L6. Cells in primary motor cortex of *Scn1a*-GFP mouse at P15 and 4W were counted.
951 Note that 86% (P15) and 95% (4W) of cells with TBR1-positive cells are GFP-negative in L5
952 (middle panels), and 90% (P15) and 96% (4W) of cells with GFP-positive cells are
953 TBR1-negative in L5 (right panel). L2/3, L5, L6: neocortical layer II/III, V, VI. +, positive;
954 -, negative.

955

956 **Figure 15. TBR1-positive cells have lower GFP signal intensities in *Scn1a*-GFP mouse**
957 **neocortex.**

958 Scatter plots of intensities and area sizes of GFP immunosignals in GFP-positive cells with
959 TBR1-positive/negative nuclei. Cells at primary motor cortex in parasagittal sections from
960 4W *Scn1a*-GFP mouse (line #233) were analyzed. TBR1-positive (orange squares) and
961 negative (black circles) cells in neocortical L2/3, L5, and L6 are plotted (see also
962 Supplementary table S36). Note that GFP signal intensities of TBR1/GFP-double positive
963 cells were significantly lower than that of TBR1-negative/GFP-positive cells (L6), and signal
964 area size of TBR1/GFP-double positive cells was significantly smaller than that of
965 TBR1-negative/GFP-positive cells (L5, L6). Statistical significance was assessed using t-test.
966 a.u., arbitrary unit; +, positive; -, negative.

967

969 **Supplementary Information**

970

971 **Supplementary figure S1. GFP expressions in brains of two *Scn1a*-GFP transgenic**
972 **mouse lines.**

973 Chromogenic immunostaining of GFP in parasagittal sections from brains of 5W *Scn1a*-GFP
974 mouse lines (#184, #233) and wild-type controls by anti-GFP antibody (brown). Sections
975 were counterstained with Nissl for labeling of neurons (violet). IHC, immunohistochemistry.
976 Scale bars; 1 mm.

977

978 **Supplementary figure S2. Similar GFP distribution in brains of two *Scn1a*-GFP mouse**
979 **lines (#184, #233).**

980 Fluorescence images of parasagittal sections from brains of P15-17 *Scn1a*-GFP mouse lines
981 #184 (A-D) and #233 (E-H). Magnified images outlined in (A, E) are shown in (B-D, F-H)
982 and further magnified in (B1, C1~3, D1, F1, G1~3, H1). Although both lines #184 and #233
983 show a similar distribution of GFP-signals across all brain regions, the GFP signals are more
984 intense in #233 than that in #184 in caudal part of the brain such as mid brain and brainstem.
985 CA, cornu ammonis; DG, dentate gyrus; o, stratum oriens; p, stratum pyramidale; r, stratum
986 radiatum; l, stratum lucidum; g, stratum granulosum; h, hilus; DCN, deep cerebellar nuclei; M,
987 molecular layer; P, Purkinje cell layer; G, granular cell layer. Scale bars; 1 mm (A, E), 500
988 μ m (B-D, F-H), 50 μ m (B1, C1-3, D1, F1, G1-3, H1).

989

990 **Supplementary figure S3. Expression levels of Nav1.1 are stable but that of GFP are**
991 **rather variable among *Scn1a*-GFP individual mice.**

992 (A) Western blot analysis for Nav1.1 in *Scn1a*-GFP and wild-type mice. The whole
993 membrane fractions from 5W *Scn1a*-GFP brains (line #233) were probed with anti-Nav1.1
994 antibody (left panel). Nav1.1 values quantified from the blots were normalized by
995 beta-tubulin (TUBB), and the mean of Nav1.1 amount in wild-type was assigned as a value of
996 100 (right panel). The amount of Nav1.1 was not significantly changed in the *Scn1a*-GFP
997 mice compared to wild-type mice (t-test; $p > 0.05$). The boxes show median, 25th and 75th
998 percentiles, and whiskers represent minimum and maximum values. Cross marks indicate
999 mean values for each genotype. (B) Western blot analysis for GFP in *Scn1a*-GFP and
1000 wild-type mice. The whole cytosolic fractions from the same series of mice used in (A) were
1001 probed with anti-GFP antibody (left panel). GFP values were normalized by glyceraldehyde

1002 3-phosphate dehydrogenase (GAPDH), and the lowest GFP amount in the #2 mouse was
1003 assigned as a value of 1 (right panel). Statistical significance was assessed using t-test.

1004

1005 **Supplementary figure S4. Distribution of GFP fluorescent signals in neocortical layers of**
1006 ***Scn1a*-GFP mouse brain.**

1007 (A) Fluorescent images of parasagittal section spanning whole neocortical area of P15
1008 *Scn1a*-GFP brain (line #233). (B-D) Outlined areas in (A) are magnified in (B-D) and further
1009 in (B1-B3, C1-C2, D1-D3). GFP signals in L2/3 of primary somatosensory cortex (C) are
1010 brighter than other regions such as primary motor cortex (B) and secondary visual cortex (D).
1011 Brain regions were defined using mouse brain atlas (Paxinos and Franklin, 2001) as reference.
1012 Dashed lines indicate the borders between M1, S1 and V2 areas. M1, primary motor cortex;
1013 S1, primary somatosensory cortex; V2, secondary visual cortex. Scale bars; 1 mm (A), 100
1014 μ m (B-D), 50 μ m (B1-B3, C1-C3, D1-D3).

1015

1016 **Supplementary figure S5. Immunostaining of NeuN and GFP in the neocortex of**
1017 ***Scn1a*-GFP mouse.**

1018 (A) Double immunostaining of parasagittal sections from P15 *Scn1a*-GFP mouse brain (line
1019 #233) by mouse anti-GFP (green) and mouse anti-NeuN (magenta) antibodies with DAPI
1020 (blue). Merged images are shown in the right panels. Arrows indicate GFP/NeuN-double
1021 positive cells. Arrowheads indicate GFP-positive but NeuN-negative cells. Note that cells
1022 with intense GFP-signals, which are assumed to be inhibitory neurons (see Figure 8), were
1023 NeuN-negative. All images are oriented from pial surface (top) to callosal (bottom). Scale
1024 bars; 50 μ m. (B) Bar graphs indicating the percentage of cells with GFP-positive somata
1025 among cells with GFP- and/or NeuN-positive somata in neocortical layers. Cells in primary
1026 motor cortex (M1) and primary somatosensory cortex (S1) of P15 *Scn1a*-GFP mice were
1027 counted (see also Supplementary table S1). L2/3, L5, L6: neocortical layer II/III, V, VI. +,
1028 positive; -, negative.

1029

1030 **Supplementary figure S6. Immunostaining of GFP and ankyrinG in the neocortex of**
1031 ***Scn1a*-GFP mouse.**

1032 (A) Double immunostaining of parasagittal sections from P15 *Scn1a*-GFP mouse brain (line
1033 #233) by mouse anti-GFP (green) and goat anti-ankyrinG (cyan) antibodies. Merged images
1034 are shown in the right panels. Arrows indicate ankyrinG-positive AISs with GFP-positive
1035 soma. All images are oriented from pial surface (top) to callosal (bottom). Scale bars; 50 μ m.

1036 **(B)** Bar graphs indicating the percentage of cells with GFP-positive/negative somata per cells
1037 with ankyrinG-positive AISs in L2/3, L5, and L6 (see also Supplementary table S5). Note that
1038 30% (L2/3), 26% (L5) and 9% (L6) of cells with ankyrinG-positive AISs have GFP-positive
1039 somata. L2/3, L5, L6: neocortical layer II/III, V, VI. AnkG, ankyrinG; +, positive; -, negative.
1040

1041 **Supplementary figure S7. GFP-positive cells are more abundant in layers II/III and V**
1042 **than in layer VI of the neocortex.**

1043 Bar graphs indicating the average percentage of cells with GFP-positive/negative somata per
1044 cells with ankyrinG-positive AISs in three different assessments (see also Supplementary
1045 table S6). Note that 23% (L2/3), 26% (L5) and 13% (L6) of cells with ankyrinG positive AISs
1046 have GFP-positive somata. L2/3, L5, L6: neocortical layer II/III, V, VI. AnkG, ankyrinG; +,
1047 positive; -, negative.

1048

1049 **Supplementary figure S8. A part of FEZF2-positive cells at L5 have Nav1.1-positive AIS**
1050 **of *Scn1a*-GFP mouse neocortex.**

1051 **(A)** Triple immunostaining of parasagittal section from P15 *Scn1a*-GFP mouse brain (line
1052 #233) by rabbit anti-FEZF2 (magenta), goat anti-Nav1.1 (green), and mouse anti-ankyrinG
1053 (cyan) antibodies. Merged images are shown in the right panels. An arrow indicates
1054 Nav1.1-positive AIS of FEZF2-positive cell. All images are oriented from pial surface (top)
1055 to callosal (bottom). Scale bars; 50 μ m. **(B)** Bar graphs indicating the percentage of cells with
1056 FEZF2- and Nav1.1-positive/negative nuclei or AISs per cells with ankyrinG-positive AISs
1057 (left panel) (see also Supplementary table S25), the percentage of cells with
1058 FEZF2-positive/negative nuclei per cells with ankyrinG and Nav1.1-positive AISs (middle
1059 panel) (see also Supplementary table S26), and the percentage of cells with
1060 Nav1.1-positive/negative AISs per cells with ankyrinG-positive AISs and FEZF2-positive
1061 nuclei (right panel) (see also Supplementary table S27). Cells in primary motor cortex of
1062 *Scn1a*-GFP mouse at P15 were counted. L5, L6: neocortical layer V, VI. AnkG, ankyrinG; +,
1063 positive; -, negative.

1064

1065 **Supplementary figure S9. A half of FEZF2-positive cells at L5 have Nav1.2-positive AIS**
1066 **of *Scn1a*-GFP mouse neocortex.**

1067 **(A)** Triple immunostaining of parasagittal section from P15 *Scn1a*-GFP mouse brain (line
1068 #233) by rabbit anti-FEZF2 (green), goat anti-Nav1.2 (magenta), and mouse anti-ankyrinG
1069 (cyan) antibodies. Merged images are shown in the right panels. An arrow indicates

1070 FEZF2/Nav1.2-double positive cell. An arrowhead indicates Nav1.2-negative AIS of
1071 FEZF2-positive cell. All images are oriented from pial surface (top) to callosal (bottom).
1072 Scale bars; 50 μ m. (B) Bar graphs indicating the percentage of cells with FEZF2 and
1073 Nav1.2-positive/negative nuclei or AISs per cells with ankyrinG-positive AISs (left-upper
1074 panel) (see also Supplementary table S28), the percentage of cells with
1075 FEZF2-positive/negative nuclei per cells with ankyrinG and Nav1.2-positive AISs
1076 (middle-upper panel) (see also Supplementary table S29), and the percentage of cells with
1077 Nav1.2-positive/negative AISs per cells with ankyrinG-positive AISs and FEZF2-positive
1078 nuclei (right-upper panel) (see also Supplementary table S30). Cells with
1079 ankyrinG-positive/negative AISs per cells with FEZF2-positive nuclei (lower panel) (see also
1080 Supplementary table S31). Cells in primary motor cortex of *Scn1a*-GFP mouse at P15 were
1081 counted. L5, L6: neocortical layer V, VI. +; positive. -; negative.

1082

1083 **Supplementary figure S10. Most of the FEZF2/GFP-double positive cells are**
1084 **Nav1.2-negative at L5 in *Scn1a*-GFP mouse neocortex.**

1085 (A) Triple immunostaining of parasagittal sections from P15 *Scn1a*-GFP mouse brain (line
1086 #233) by rabbit anti-FEZF2 (cyan), mouse anti-GFP (green), and goat anti-Nav1.2 (magenta)
1087 antibodies. Merged images are shown in the right panels. Arrows indicate FEZF2/GFP-double
1088 positive cells (cells with GFP-positive somata and FEZF2-positive nuclei). Note that
1089 Nav1.2-positive AISs do not belong to GFP/FEZF2-double positive cells. All images are
1090 oriented from pial surface (top) to callosal (bottom). Scale bars; 25 μ m. (B) Bar graphs
1091 indicating the percentage of cells with GFP- and Nav1.2-positive/negative somata and AISs
1092 per cells with FEZF2-positive nuclei in L5 and L6 (see also Supplementary table S32). For
1093 this graph, to obtain correct cell population for Nav1.2-negative cells, virtual cell numbers
1094 were estimated using percentage of ankyrinG/FEZF2-double positive cells in Supplementary
1095 figure S9B-lower panel (see also Supplementary table S28). Cells in primary motor cortex of
1096 *Scn1a*-GFP mouse at P15 were counted. L5, L6: neocortical layer V, VI. +, positive; -,
1097 negative.

1098

1099 **Supplementary figure S11. AISs of TBR1-positive cells are Nav1.1-negative in**
1100 ***Scn1a*-GFP mouse neocortex.**

1101 (A) Triple immunostaining of parasagittal section from P15 *Scn1a*-GFP mouse brain (line
1102 #233) by rabbit anti-TBR1 (magenta), goat anti-Nav1.1 (green), and mouse anti-ankyrinG
1103 (cyan) antibodies. The regions of motor cortex were shown. Merged images are shown in the

1104 right panels. Arrowheads indicate Nav1.1-positive cells. All images are oriented from pial
1105 surface (top) to callosal (bottom). Scale bars; 50 μ m. (B) Bar graphs indicating the percentage
1106 of cells with TBR1- and Nav1.1-positive/negative nuclei or AISs per cells with
1107 ankyrinG-positive AISs (left panel) (see also Supplementary table S37), the percentage of
1108 cells with TBR1-positive/negative nuclei per cells with ankyrinG- and Nav1.1-positive AISs
1109 (middle panel) (see also Supplementary table S38), and the percentage of cells with
1110 Nav1.1-positive/negative AISs per cells with ankyrinG-positive AISs and TBR1-positive
1111 nuclei (right panel) (see also Supplementary table S39). Cells in primary motor cortex of
1112 *Scn1a*-GFP mouse at P15 were counted. L2/3, L5, L6: neocortical layer II/III, V, VI. AnkG,
1113 ankyrinG; +, positive; -, negative.

1114

1115 **Supplementary figure S12. 70% of TBR1-positive cells have Nav1.2-positive AIS in**
1116 ***Scn1a*-GFP mouse neocortex.**

1117 (A) Triple immunostaining of parasagittal section from P15 *Scn1a*-GFP mouse brain (line
1118 #233) by rabbit anti-TBR1 (green), goat anti-Nav1.2 (magenta), and mouse anti-ankyrinG
1119 (cyan) antibodies. Merged images are shown in the right panels. Arrows indicate
1120 TBR1/ankyrinG-double positive cells. Arrowheads indicate Nav1.2-positive AIS of
1121 TBR1-positive cells. All images are oriented from pial surface (top) to callosal (bottom).
1122 Scale bars; 25 μ m. (B) Bar graphs indicating the percentage of cells with TBR1- and
1123 Nav1.2-positive/negative nuclei or AISs per cells with ankyrinG-positive AISs (left-upper
1124 panel) (see also Supplementary table S40), the percentage of cells with
1125 TBR1-positive/negative nuclei per cells with ankyrinG- and Nav1.2-positive AISs
1126 (middle-upper panel) (see also Supplementary table S41), and the percentage of cells with
1127 Nav1.2-positive/negative AISs per cells with ankyrinG-positive AISs and TBR1-positive
1128 nuclei (right-upper panel) (see also Supplementary table S42). Cells with
1129 ankyrinG-positive/negative AISs per cells with TBR1-positive nuclei (lower panel) (see also
1130 Supplementary table S43). Cells in primary motor cortex of *Scn1a*-GFP mouse at P15 were
1131 counted. L2/3, L5, L6: neocortical layer II/III, V, VI. AnkG, ankyrinG; +, positive; -,
1132 negative.

1133

1134 **Supplementary figure S13. TBR1/Nav1.2-double positive cells are GFP-negative at L5**
1135 **and L6 in *Scn1a*-GFP mouse neocortex.**

1136 (A) Triple immunostaining of parasagittal section from P15 *Scn1a*-GFP mouse brain (line
1137 #233) by rabbit anti-TBR1 (cyan), mouse anti-GFP (green), and goat anti-Nav1.2 (magenta)

1138 antibodies. Merged images are shown in the right panels. Arrows indicate TBR1/GFP-double
1139 positive cells. Arrowheads indicate Nav1.2-positive AIS of TBR1-positive cells. All images
1140 are oriented from pial surface (top) to callosal (bottom). Scale bar; 50 μ m. (B) Bar graphs
1141 indicating the percentage of cells with GFP- and Nav1.2-positive/negative somata and AISs
1142 per cells with TBR1-positive nuclei in L2/3, L5, and L6 (see also Supplementary table S44).
1143 For this graph, to obtain correct cell population for Nav1.2-negative cells, virtual cell numbers
1144 were estimated using percentage of ankyrinG/TBR1-double positive cells in Supplementary
1145 figure S12B-lower panel (see also Supplementary table S40). Cells in primary motor cortex of
1146 *Scn1a*-GFP mouse at P15 were counted. L2/3, L5, L6: neocortical layer II/III, V, VI. +,
1147 positive; -, negative.

1148

1149 **Supplementary figure S14. Distributions of Nav1.1 (GFP) and Nav1.2 in neocortical**
1150 **layer V revealed by the analysis of *Scn1a*-GFP mouse.**

1151

1152

per cells with GFP+ and/or NeuN+ somata

Region ^a	% GFP+, NeuN- ^b	% GFP+, NeuN+ ^b	% GFP-, NeuN+ ^b
M1	L2/3	6.8 ± 0.5	23.3 ± 0.5
	L5	8.4 ± 0.6	23.8 ± 0.1
	L6	6.5 ± 0.6	15.2 ± 2.2
S1	L2/3	6.7 ± 0.1	21.3 ± 2.0
	L5	10.2 ± 0.9	22.6 ± 2.1
	L6	5.9 ± 0.7	11.7 ± 1.8

1153

1154 **Supplementary table S1. Percentage of cells with GFP- and/or NeuN-positive somata**
1155 **among cells with GFP- and/or NeuN-positive somata in *Scn1a*-GFP mouse neocortex.**

1156 Values for Supplementary figure S5B. ^aM1, S1, L2/3, L5, L6: primary motor cortex, primary
1157 somatosensory cortex, neocortical layer II/III, V, VI. Cells in three *Scn1a*-GFP mice (line
1158 #233) at P15 were counted; ^bL2/3 (M1; N = 2599 cells, S1; N=2932), L5 (M1; N = 1734 cells,
1159 S1; N=1827) and L6 (M1; N = 2465 cells, S1; N=2335). Values are presented as mean ± SEM.
1160 +, positive; -, negative.

1161

1162

per cells with AnkG+ AISs

Region ^a	% GFP+ ^b		% GFP- ^b	
	% Nav1.1+	% Nav1.1-	% Nav1.1+	% Nav1.1-
L2/3	16.6 ± 1.9		83.4 ± 1.9	
L5	21.4 ± 3.3		78.6 ± 3.3	
L6	7.9 ± 1.7		92.1 ± 1.7	
	% Nav1.1+	% Nav1.1-	% Nav1.1+	% Nav1.1-
L2/3	5.5 ± 1.1	11.1 ± 0.8	0.2 ± 0.1	83.4 ± 2.0
L5	8.0 ± 0.2	13.4 ± 3.3	0.2 ± 0.1	78.7 ± 3.1
L6	3.7 ± 0.5	4.2 ± 1.3	0.1 ± 0.1	92.0 ± 1.6

1163

1164 **Supplementary table S2. Percentage of cells with GFP- and Nav1.1-positive/negative**
1165 **somata and AISs per cells with ankyrinG-positive AISs in *Scn1a*-GFP mouse neocortex.**

1166 Values for Figure 4D-left panel. ^aL2/3, L5, L6: neocortical layer II/III, V, VI. Cells in three
1167 *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL2/3 (N = 1412 cells), L5 (N = 1054 cells),
1168 and L6 (N = 1481 cells). Values are presented as mean ± SEM. AnkG, ankyrinG; +, positive;
1169 -, negative.

1170

1171

per cells with AnkG+ AISs and Nav1.1+ somata and/or AISs

Region ^a	% GFP+ ^b	% GFP- ^b
L2/3	98.5 ± 0.8	1.55 ± 0.8
L5	98.7 ± 0.6	1.27 ± 0.6
L6	97.2 ± 2.8	2.82 ± 2.8

1172

1173 **Supplementary table S3. Percentage of cells with GFP-positive/negative somata per cells**
1174 **with ankyrinG-positive AISs and Nav1.1-positive somata and/or AISs in *Scn1a*-GFP**
1175 **mouse neocortex.** Values for Figure 4D-middle panel. ^aL2/3, L5, L6: neocortical layer II/III,
1176 V, VI. Cells in three *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL2/3 (N = 108 cells),
1177 L5 (N = 124 cells), and L6 (N = 82 cells). Values are presented as mean ± SEM. AnkG,
1178 ankyrinG; +, positive; -, negative.

1179

1180

per cells with AnkG+ AISs and GFP+ somata

Region ^a	% Nav1.1+ ^b	% Nav1.1- ^b
L2/3	32.8 ± 3.5	67.2 ± 3.5
L5	39.9 ± 6.4	60.1 ± 6.4
L6	49.5 ± 8.4	50.5 ± 8.4

1181

1182 **Supplementary table S4. Percentage of cells with GFP-positive/negative somata per cells**
1183 **with ankyrinG-positive AISs and Nav1.1+ somata and/or AISs in *Scn1a*-GFP mouse**
1184 **neocortex.** Values for Figure 4D-right panel. ^aL2/3, L5, L6: neocortical layer II/III, V, VI.
1185 Cells in three *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL2/3 (N = 229 cells), L5 (N
1186 = 220 cells), and L6 (N = 111 cells). Values are presented as mean ± SEM. AnkG, ankyrinG;
1187 +, positive; -, negative.

1188

1189

1190

per cells with AnkG+ AISs

Region ^a	% GFP+ ^b	% GFP- ^b
L2/3	30.0 ± 1.1	70.0 ± 1.1
L5	26.4 ± 1.6	73.6 ± 1.6
L6	9.0 ± 1.0	91.0 ± 1.0

1191

1192 **Supplementary table S5. Percentage of cells with GFP-positive/negative somata per cells**
1193 **with ankyrinG-positive AISs in *Scn1a*-GFP mouse neocortex.** Values for Supplementary
1194 figure S6B. ^aL2/3, L5, L6: neocortical layer II/III, V, VI. Cells in three *Scn1a*-GFP mice (line
1195 #233) at P15 were counted; ^bL2/3 (N = 1787 cells), L5 (N = 1450 cells), and L6 (N = 2330
1196 cells). Values are presented as mean ± SEM. AnkG, ankyrinG; +, positive; -, negative.

1197

1198

Region ^a	% GFP+/AnkG+ AIS ^b	Nav1.1/GFP/AnkG		Nav1.2/GFP/AnkG	
		% GFP+/AnkG+ AIS ^b	% GFP+/AnkG+ AIS ^b	Average	SEM
L2/3	30.0	16.6	22.6	23.1	3.9
L5	26.4	21.4	30.2	26.0	2.5
L6	9.0	7.9	20.7	12.5	4.1

1199

1200 **Supplementary table S6. Percentage of cells with GFP-positive somata per cells with**
1201 **ankyrinG-positive AISs in the three different assessments.** Values for Supplementary
1202 figure S7. ^aL2/3, L5, L6: neocortical layer II/III, V, VI. ^bValues indicate that percentage of
1203 GFP positive cells in Supplementary figure S6B, Figure 4D-left panel and Figure 11B-left
1204 panel, respectively. AnkG, ankyrinG; +, positive; -, negative.

1205

1206

1207

Region ^a	per cells with GFP+ somata and AnkG+ AISs	
	% Nav1.1+ ^b	% Nav1.1- ^b
CA1	98.3 ± 0.9	1.7 ± 0.9

1208

1209 **Supplementary table S7. Percentage of cells with Nav1.1-positive/negative AISs per cells**
1210 **with GFP-positive somata and ankyrinG-positive AISs in *Scn1a*-GFP mouse**
1211 **hippocampus.** Values for Figure 5F-left panel. ^aCA1: Cornu ammonis 1. ^bCells in three
1212 *Scn1a*-GFP mice (line #233) at P15 were counted (N = 117 cells). Values are presented as
1213 mean ± SEM. AnkG, ankyrinG; +, positive; -, negative.

1214

1215

Region ^a	per cells with Nav1.1+ and AnkG+ AISs	
	% GFP+ ^b	% GFP- ^b
CA1	100.0 ± 0.0	0.0 ± 0.0

1216

1217 **Supplementary table S8. Percentage of cells with GFP-positive/negative somata per cells**
1218 **with Nav1.1/ankyrinG-double positive AISs in *Scn1a*-GFP mouse hippocampus.** Values
1219 for Figure 5F-right panel. ^aCA1: Cornu ammonis 1. ^bCells in three *Scn1a*-GFP mice (line
1220 #233) at P15 were counted (N = 114 cells). Values are presented as mean ± SEM. AnkG,
1221 ankyrinG; +, positive; -, negative.

1222

per cells with GFP+ somata		
Region ^a	% Tomato+ ^b	% Tomato- ^b
L2/3	23.2 ± 2.4	76.8 ± 2.4
L5	28.1 ± 0.8	71.9 ± 0.8
L6	27.4 ± 3.3	72.6 ± 3.3
CA1	97.9 ± 0.1	2.1 ± 0.1
DG	93.5 ± 4.5	6.5 ± 4.5

1223

1224 **Supplementary table S9. Percentage of cells with Tomato-positive/negative somata per**
1225 **cells with GFP-positive somata in *Scn1a*-GFP/*Vgat*-Cre/*Rosa26*-tdTomato mouse**
1226 **neocortex and hippocampus.** Values for Figure 7C-left panels. ^aL2/3, L5, L6, CA1, DG:
1227 neocortical layer II/III, V, VI, cornu ammonis 1, dentate gyrus. Cells in two
1228 *Scn1a*-GFP/*Vgat*-Cre/*Rosa26*-tdTomato mice (line #233) at 4W were counted; ^bL2/3 (N =
1229 882 cells), L5 (N = 693 cells), L6 (N = 590 cells), CA1 (N = 270 cells) and DG (N = 191
1230 cells). Values are presented as mean ± SEM. +, positive; -, negative.

1231

1232

per cells with Tomato+ somata		
Region ^a	%GFP+ ^b	% GFP- ^b
L2/3	72.7 ± 5.0	27.3 ± 5.0
L5	76.9 ± 0.0	23.1 ± 0.0
L6	83.0 ± 5.5	17.0 ± 5.5
CA1	93.2 ± 0.2	6.8 ± 0.2
DG	77.2 ± 5.2	22.8 ± 5.2

1233

1234 **Supplementary table S10. Percentage of cells with GFP-positive/negative somata per**
1235 **cells with Tomato-positive somata in *Scn1a*-GFP/*Vgat*-Cre/*Rosa26*-tdTomato mouse**
1236 **neocortex and hippocampus.** Values for Figure 7C-right panels. ^aL2/3, L5, L6, CA1, DG:
1237 neocortical layer II/III, V, VI, cornu ammonis 1, dentate gyrus. Cells in two
1238 *Scn1a*-GFP/*Vgat*-Cre/*Rosa26*-tdTomato mice (line #233) at 4W were counted; ^bL2/3 (N =
1239 263 cells), L5 (N = 224 cells), L6 (N = 300 cells), CA1 (N = 276 cells) and DG (N = 364
1240 cells). Values are presented as mean ± SEM. +, positive; -, negative.

1241

Region ^a	per cells with GFP+ somata			
	% PV+, SST+ ^b	% PV+ ^b	% SST+ ^b	% PV-, SST- ^b
L2/3	0.1 ± 0.1	14.7 ± 1.4	6.4 ± 2.5	78.8 ± 3.8
L5	0.1 ± 0.1	26.3 ± 1.5	11.1 ± 2.1	62.4 ± 3.7
L6	0.4 ± 0.4	21.8 ± 2.2	14.8 ± 1.6	63.0 ± 3.7
CA1	2.0 ± 0.3	33.6 ± 3.2	22.7 ± 3.5	41.7 ± 7.4
CA2/3	1.4 ± 0.3	24.6 ± 5.1	16.0 ± 1.5	58.1 ± 6.5
DG	0.0 ± 0.0	19.3 ± 4.5	21.4 ± 1.4	59.3 ± 3.4

1242

1243 **Supplementary table S11. Percentage of cells with PV-positive/negative somata per cells**
1244 **with GFP-positive somata in *Scn1a*-GFP mouse neocortex and hippocampus.** Values for
1245 Figure 8B-left panels. ^aL2/3, L5, L6, CA1, CA2/3, DG: neocortical layer II/III, V, VI, cornu
1246 ammonis 1, 2 plus 3, dentate gyrus. Cells in three *Scn1a*-GFP mice (line #233) at 4W were
1247 counted; ^bL2/3 (N = 631 cells), L5 (N = 533 cells), L6 (N = 390 cells), CA1 (N = 231 cells),
1248 CA2/3 (N = 311 cells) and DG (N = 258 cells). Values are presented as mean ± SEM. +,
1249 positive; -, negative.

1250

Region ^a	per cells with PV+ somata	
	%GFP+ ^b	% GFP- ^b
L2/3	100.0 ± 0.0	0.0 ± 0.0
L5	98.4 ± 1.5	1.6 ± 1.5
L6	100.0 ± 0.0	0.0 ± 0.0
CA1	100.0 ± 0.0	0.0 ± 0.0
CA2/3	100.0 ± 0.0	0.0 ± 0.0
DG	100.0 ± 0.0	0.0 ± 0.0

1251

1252 **Supplementary table S12. Percentage of cells with GFP-positive/negative somata per**
1253 **cells with PV-positive somata.** Values for Figure 8B-middle panels. ^aL2/3, L5, L6, CA1,
1254 CA2/3, DG: neocortical layer II/III, V, VI, cornu ammonis 1, 2 plus 3, dentate gyrus. Cells in
1255 three *Scn1a*-GFP mice (line #233) at 4W were counted; ^bL2/3 (N = 95 cells), L5 (N = 144
1256 cells), L6 (N = 84 cells), CA1 (N = 83 cells), CA2/3 (N = 78 cells) and DG (N = 37 cells).
1257 Values are presented as mean ± SEM. +, positive; -, negative.

1258

1259

Region ^a	per cells with SST+ somata	
	% GFP+ ^b	% GFP- ^b
L2/3	89.8 ± 7.6	10.2 ± 7.6
L5	83.3 ± 4.1	16.7 ± 4.1
L6	95.4 ± 2.8	4.6 ± 2.8
CA1	100.0 ± 0.0	0.0 ± 0.0
CA2/3	96.4 ± 1.9	3.4 ± 1.9
DG	99.3 ± 0.7	0.7 ± 0.7

1260

1261 **Supplementary table S13. Percentage of cells with GFP-positive/negative somata per**
1262 **cells with SST-positive somata.** Values for Figure 8B-right panels. ^aL2/3, L5, L6, CA1,
1263 CA2/3, DG: neocortical layer II/III, V, VI, cornu ammonis 1, 2 plus 3, dentate gyrus. Cells in
1264 three *Scn1a*-GFP mice (line #233) at 4W were counted; ^bL2/3 (N = 46 cells), L5 (N = 76
1265 cells), L6 (N = 58 cells), CA1 (N = 58 cells), CA2/3 (N = 56 cells) and DG (N = 55 cells).
1266 Values are presented as mean ± SEM. +, positive; -, negative.

1267

Region ^a	GFP+, PV-, SST-		GFP+, PV+		GFP+, SST+	
	Area size ^b	Intensity ^b	Area size ^b	Intensity ^b	Area size ^b	Intensity ^b
L2/3	1037.1 ± 19.1	79.0 ± 1.2	1090.0 ± 51.8	112.0 ± 4.9	986.5 ± 55.7	76.4 ± 4.8
L5	1401.3 ± 63.6	62.9 ± 0.8	1051.4 ± 36.3	77.9 ± 2.0	969.1 ± 51.5	58.5 ± 1.4
L6	1003.2 ± 36.6	52.0 ± 1.1	1333.4 ± 61.0	65.7 ± 2.1	1130.2 ± 57.7	57.0 ± 2.9
CA1	1290.6 ± 72.6	76.5 ± 3.9	1544.1 ± 106.6	84.1 ± 5.6	1508.0 ± 99.5	74.9 ± 3.0
CA2/3	988.0 ± 49.5	74.9 ± 2.5	1494.8 ± 134.4	83.5 ± 3.5	1146.9 ± 86.9	61.2 ± 2.6
DG	1242.1 ± 61.5	73.6 ± 2.4	1721.0 ± 159.1	82.7 ± 5.5	1382.1 ± 123.2	51.5 ± 1.4

1268

1269 **Supplementary table S14. Area size and intensity of GFP immunosignals in**
1270 **GFP-positive cells with PV/SST-positive or negative somata in *Scn1a*-GFP mouse**
1271 **neocortex and hippocampus.** Values for Figure 9A. ^aL2/3, L5, L6, CA1, CA2/3, DG:
1272 neocortical layer II/III, V, VI, cornu ammonis 1, 2 plus 3, dentate gyrus. Cells in two
1273 *Scn1a*-GFP mice (line #233) at 4W were counted; ^bL2/3 (N = 157 cells), L5 (N = 122 cells)
1274 and L6 (N = 109 cells), CA1 (N = 52 cells), CA2/3 (N = 85 cells) and DG (N = 60 cells).
1275 Values are presented as mean ± SEM. +, positive; -, negative.
1276

1277

Region ^a	Cell type ^b	p-value for intensity ^c	
		PV-, SST-, GFP+	PV+, GFP+
L2/3	PV+, GFP+	1.4×10^{-6}	NA
	SST+, GFP+	8.4×10^{-1}	1.4×10^{-6}
L5	PV+, GFP+	1.5×10^{-6}	NA
	SST+, GFP+	1.3×10^{-1}	1.5×10^{-6}
L6	PV+, GFP+	1.7×10^{-6}	NA
	SST+, GFP+,	1.4×10^{-1}	9.6×10^{-3}
CA1	PV+ GFP+	4.1×10^{-1}	NA
	SST+, GFP+	9.6×10^{-1}	3.6×10^{-1}
CA2/3	PV+, GFP+	8.4×10^{-2}	NA
	SST+, GFP+	3.7×10^{-2}	9.0×10^{-4}
DG	PV+, GFP+	1.8×10^{-1}	NA
	SST+, GFP+	5.9×10^{-6}	6.2×10^{-1}

1278

1279 **Supplementary table S15. Statistical significance for intensity of GFP immunosignals in**
1280 **GFP-positive cells with PV/SST-positive or negative somata.** Values for Figure 9B-left
1281 panels. ^aL2/3, L5, L6, CA1, CA2/3, DG: neocortical layer II/III, V, VI, cornu ammonis 1, 2
1282 plus 3, dentate gyrus. Cells in two *Scn1a*-GFP mice (line #233) at 4W were counted; ^bL2/3 (N
1283 = 157 cells), L5 (N = 122 cells) and L6 (N = 109 cells), CA1 (N = 52 cells), CA2/3 (N = 85
1284 cells) and DG (N = 60 cells). ^cStatistical significance was assessed using one-way ANOVA
1285 followed by Tukey–Kramer post-hoc multiple comparison test. Values are presented as mean
1286 \pm SEM. +, positive; -, negative; NA, not available.

1287

Region ^a	Cell type ^b	p-value for area size ^c	
		PV-, SST-, GFP+	PV+, GFP+
L2/3	PV+, GFP+	4.9×10^{-1}	NA
	SST+, GFP+	7.2×10^{-1}	3.6×10^{-1}
L5	PV+, GFP+	1.2×10^{-4}	NA
	SST+, GFP+	1.5×10^{-4}	7.3×10^{-1}
L6	PV+, GFP+	8.0×10^{-6}	NA
	SST+, GFP+	1.9×10^{-1}	3.8×10^{-2}
CA1	PV+, GFP+	1.2×10^{-1}	NA
	SST+, GFP+	2.0×10^{-1}	9.6×10^{-1}
CA2/3	PV+, GFP+	8.2×10^{-5}	NA
	SST+, GFP+	5.6×10^{-1}	9.8×10^{-2}
DG	PV+, GFP+	9.7×10^{-3}	NA
	SST+, GFP+	5.1×10^{-1}	1.5×10^{-1}

1288

1289 **Supplementary table S16. Statistical significance for area size of GFP immunosignals in**
1290 **GFP-positive cells with PV/SST-positive or negative somata.** Values for Figure 9B-right
1291 panels. ^aL2/3, L5, L6, CA1, CA2/3, DG: neocortical layer II/III, V, VI, cornu ammonis 1, 2
1292 plus 3, dentate gyrus. Cells in two *Scn1a*-GFP mice (line #233) at 4W were counted; ^bL2/3 (N
1293 = 157 cells), L5 (N = 122 cells) and L6 (N = 109 cells), CA1 (N = 52 cells), CA2/3 (N = 85
1294 cells) and DG (N = 60 cells). ^cStatistical significance was assessed using one-way ANOVA
1295 followed by Tukey–Kramer post-hoc multiple comparison test. Values are presented as mean
1296 \pm SEM. +, positive; -, negative; NA, not available.

1297

per cells with AnkG+ AISs

Region ^a	% Nav1.1+ ^b		% Nav1.1- ^b	
L2/3	4.7 ± 0.1		95.3 ± 0.1	
L5	6.0 ± 1.5		94.0 ± 1.5	
L6	2.5 ± 0.3		97.5 ± 0.3	
	% Nav1.2+	% Nav1.2-	% Nav1.2+	% Nav1.2-
L2/3	0.3 ± 0.2	4.4 ± 0.1	78.1 ± 3.6	17.2 ± 3.7
L5	0.1 ± 0.1	5.9 ± 1.4	69.3 ± 4.5	24.7 ± 5.7
L6	0.1 ± 0.1	2.3 ± 0.1	69.3 ± 3.4	28.3 ± 3.2

1298

1299 **Supplementary table S17. Percentage of cells with Nav1.1- and Nav1.2-positive/negative**
1300 **cells per cells with ankyrinG-positive AISs in *Scn1a*-GFP mouse neocortex.** Values for
1301 Figure 10B. ^aL2/3, L5, L6: neocortical layer II/III, V, VI. Cells in three *Scn1a*-GFP mice (line
1302 #233) at P15 were counted; ^bL2/3 (N = 1300 cells), L5 (N = 895 cells), and L6 (N = 1295
1303 cells). Values are presented as mean ± SEM. AnkG, ankyrinG; +, positive; -, negative.

1304

1305

per cells with AnkG+ AISs

Region ^a	% GFP+ ^b		% GFP- ^b	
L2/3	22.6 ± 2.9		77.4 ± 2.9	
L5	30.2 ± 0.3		69.8 ± 0.3	
L6	20.7 ± 1.4		79.3 ± 1.4	
	% Nav1.2+	% Nav1.2-	% Nav1.2+	% Nav1.2-
L2/3	7.0 ± 1.4	15.6 ± 1.6	53.3 ± 2.5	24.1 ± 0.9
L5	5.2 ± 1.2	25.0 ± 1.5	47.0 ± 2.2	22.8 ± 1.9
L6	3.2 ± 0.8	17.6 ± 0.9	59.3 ± 2.4	20.0 ± 3.7

1306

1307 **Supplementary table S18. Percentage of cells with GFP- and Nav1.2-positive/negative**
1308 **somata and AISs per cells with ankyrinG-positive AISs in *Scn1a*-GFP mouse neocortex.**
1309 Values for Figure 11B-left panel. ^aL2/3, L5, L6: neocortical layer II/III, V, VI. Cells in three
1310 *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL2/3 (N = 877 cells), L5 (N = 724 cells)
1311 and L6 (N = 682 cells). Values are presented as mean ± SEM. AnkG, ankyrinG; +, positive; -,
1312 negative.

1313

1314

per cells with AnkG+ and Nav1.2+ AISs

Region ^a	% GFP+ ^b	% GFP- ^b
L2/3	11.8 ± 2.7	88.2 ± 2.7
L5	10.0 ± 1.6	90.0 ± 1.6
L6	5.0 ± 1.0	95.0 ± 1.0

1315

1316 **Supplementary table S19. Percentage of cells with GFP-positive/negative somata per**
1317 **cells with Nav1.2/ankyrinG-double positive AISs in *Scn1a*-GFP mouse neocortex.** Values
1318 for Figure 11B-middle panel. ^aL2/3, L5, L6: neocortical layer II/III, V, VI. Cells in three
1319 *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL2/3 (N = 527 cells), L5 (N = 378 cells)
1320 and L6 (N = 422 cells). Values are presented as mean ± SEM. AnkG, ankyrinG; +, positive; -,
1321 negative.

1322

1323

per cells with AnkG+ AISs and GFP+ somata

Region ^a	% Nav1.2+ ^b	% Nav1.2- ^b
L2/3	31.5 ± 2.3	68.5 ± 2.3
L5	17.1 ± 4.4	82.9 ± 4.4
L6	14.4 ± 2.6	85.6 ± 2.6

1324

1325 **Supplementary table S20. Percentage of cells with Nav1.2-positive/negative AISs per**
1326 **cells with ankyrinG-positive AISs and GFP+ somata in *Scn1a*-GFP mouse neocortex.**
1327 Values for Figure 11B-right panel. ^aL2/3, L5, L6: neocortical layer II/III, V, VI. Cells in three
1328 *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL2/3 (N = 197 cells), L5 (N = 215 cells)
1329 and L6 (N = 139 cells). Values are presented as mean ± SEM. AnkG, ankyrinG; +, positive; -,
1330 negative.

1331

1332

Age ^a	Region ^b	per cells with GFP+ somata and/or FEZF2+ nuclei		
		% GFP+, FEZF2- ^c	% GFP+, FEZF2+ ^c	% GFP-, FEZF2+ ^c
P15	L2/3	72.9 ± 3.1	13.1 ± 4.4	14.0 ± 2.2
	L5	40.4 ± 1.5	49.8 ± 2.4	9.9 ± 1.7
	L6	38.0 ± 9.0	5.0 ± 3.6	56.9 ± 8.5
4W	L2/3	88.6 ± 2.7	6.6 ± 0.8	4.7 ± 1.9
	L5	51.1 ± 0.1	47.2 ± 0.3	1.7 ± 0.3
	L6	59.3 ± 8.5	15.7 ± 1.3	25.0 ± 9.8

1333

1334 **Supplementary table S21. Percentage of cells with FEZF2- and GFP-positive/negative**
1335 **nuclei and somata per cells with GFP-positive somata and/or FEZF2-positive nuclei in**
1336 ***Scn1a*-GFP mouse neocortex.** Values for Figure 12B-left panels. ^aTwo animals were
1337 counted for each age. ^bL2/3, L5, L6: neocortical layer II/III, V, VI. Cells in *Scn1a*-GFP mice
1338 (line #233) were counted; ^cL2/3 (P15, N = 670 cells; 4W, N = 325 cells), L5 (P15, N = 733
1339 cells; 4W, N = 431 cells) and L6 (P15, N = 466 cells; 4W, N = 386 cells). Values are
1340 presented as mean ± SEM. +, positive; -, negative.

1341

1342

Age ^a	Region ^b	per cells with FEZF2+ nuclei	
		% GFP+ ^c	% GFP- ^c
P15	L2/3	43.2 ± 13.9	56.8 ± 13.9
	L5	83.4 ± 2.9	16.6 ± 2.9
	L6	8.0 ± 5.0	92.0 ± 5.0
4W	L2/3	48.2 ± 18.5	51.8 ± 18.5
	L5	95.7 ± 0.4	4.3 ± 0.4
	L6	36.2 ± 0.4	63.8 ± 0.4

1343

1344 **Supplementary table S22. Percentage of cells with GFP-positive/negative somata per**
1345 **cells with FEZF2-positive nuclei in *Scn1a*-GFP mouse neocortex.** Values for Figure
1346 12B-middle panels. ^aTwo animals were counted for each age. ^bL2/3, L5, L6: neocortical layer
1347 II/III, V, VI. Cells in *Scn1a*-GFP mice (line #233) were counted; ^cL2/3 (P15, N = 198 cells;
1348 4W, N = 25 cells), L5 (P15, N = 431 cells; 4W, N = 214 cells) and L6 (P15, N = 283 cells;
1349 4W, N = 202 cells). Values are presented as mean ± SEM. +, positive; -, negative.

1350

1351

Age ^a	Region ^b	per cells with GFP+ somata	
		% FEZF2+ ^c	% FEZF2- ^c
P15	L2/3	16.1 ± 4.9	83.9 ± 4.9
	L5	54.3 ± 2.2	45.7 ± 2.2
	L6	12.0 ± 9.6	88.0 ± 9.6
4W	L2/3	5.8 ± 0.3	94.2 ± 0.3
	L5	49.0 ± 1.2	51.0 ± 1.2
	L6	17.0 ± 3.7	83.0 ± 3.7

1352

1353 **Supplementary table S23. Percentage of cells with FEZF2-positive/negative nuclei per**
1354 **cells with GFP-positive somata in *Scn1a*-GFP mouse neocortex.** Values for Figure
1355 12B-right panels. ^aTwo animals were counted for each age. ^bL2/3, L5, L6: neocortical layer
1356 II/III, V, VI. Cells in *Scn1a*-GFP mice (line #233) at P15 were counted; ^cL2/3 (P15, N = 567
1357 cells; 4W, N = 318 cells), L5 (P15, N = 479 cells; 4W, N = 363 cells) and L6 (P15, N = 202
1358 cells; 4W, N = 228 cells). Values are presented as mean ± SEM. +, positive; -, negative.

1359

1360

Region ^a	FEZF2+, GFP+		FEZF2-, GFP+		p-value	
	Area size ^b	Intensity ^b	Area size ^b	Intensity ^b	Area size ^c	Intensity ^c
L2/3	510.8 ± 9.0	50.4 ± 0.8	377.3 ± 9.0	48.0 ± 0.8	1.0 × 10 ⁻²	5.8 × 10 ⁻¹
L5	577.4 ± 21.4	47.6 ± 1.6	461.6 ± 18.1	25.9 ± 3.1	7.3 × 10 ⁻⁵	3.8 × 10 ⁻⁸
L6	389.3 ± 27.9	43.0 ± 3.2	372.1 ± 19.0	52.4 ± 2.3	6.4 × 10 ⁻¹	3.8 × 10 ⁻²

1361

1362 **Supplementary table S24. Area size and intensity of GFP immunosignals in**
1363 **GFP-positive cells with FEZF2-positive or negative nuclei in *Scn1a*-GFP mouse**
1364 **neocortex.** Values for Figure 13. ^aL2/3, L5, L6: neocortical layer II/III, V, VI. Cells in one
1365 *Scn1a*-GFP mouse (line #233) at 4W were counted; ^bL2/3 (N = 159 cells), L5 (N = 147 cells)
1366 and L6 (N = 80 cells). ^cStatistical significance was assessed using t-test. Values are presented
1367 as mean ± SEM. +, positive; -, negative.

1368

1369

1370

per cells with AnkG+ AISs

Region ^a	% FEZF2+ ^b	% FEZF2- ^b	
L5	52.8 ± 0.7	47.2 ± 0.7	
L6	66.3 ± 5.5	33.7 ± 5.5	
	% Nav1.1+	% Nav1.1-	% Nav1.1+
L5	2.2 ± 0.4	18.5 ± 0.8	4.9 ± 1.6
L6	0.4 ± 0.3	18.7 ± 1.4	2.3 ± 0.3
			% Nav1.1-
			74.4 ± 1.3
			78.6 ± 1.7

1371

1372 **Supplementary table S25. Percentage of cells with FEZF2- and Nav1.1-positive/negative**
1373 **nuclei or AISs per cells with ankyrinG-positive AISs in *Scn1a*-GFP mouse neocortex.**

1374 Values for Supplementary figure S8B-left panel. ^aL5, L6: neocortical layer II/III, V, VI. Cells
1375 in three *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL5 (N = 588 cells) and L6 (N =
1376 580 cells). Values are presented as mean ± SEM. AnkG, ankyrinG; +, positive; -, negative.

1377

1378

per cells with AnkG+ and Nav1.1+ AISs

Region ^a	% FEZF2+ ^b	% FEZF2- ^b
L5	35.9 ± 9.7	64.1 ± 9.7
L6	12.4 ± 8.6	87.6 ± 8.6

1379

1380 **Supplementary table S26. Percentage of cells with FEZF2-positive/negative nuclei per**
1381 **cells with ankyrinG/Nav1.1-double positive AISs in *Scn1a*-GFP mouse neocortex.** Values
1382 for Supplementary figure S8B-middle panel. ^aL5, L6: neocortical layer V, VI. Cells in three
1383 *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL5 (N = 115 cells) and L6 (N = 45 cells).
1384 Values are presented as mean ± SEM. AnkG, ankyrinG; +, positive; -, negative.

1385

1386

per cells with AnkG+ AISs and FEZF2+ nuclei

Region ^a	% Nav1.1+ ^b	% Nav1.1- ^b
L5	11.1 ± 1.9	88.9 ± 1.9
L6	1.7 ± 1.3	98.3 ± 1.3

1387

1388 **Supplementary table S27. Percentage of cells with Nav1.1-positive/negative AISs per**
1389 **cells with ankyrinG-positive AISs and FEZF2-positive nuclei in *Scn1a*-GFP mouse**
1390 **neocortex.** Values for Supplementary figure S8B-right panel. ^aL5, L6: neocortical layer V, VI.
1391 Cells in three *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL5 (N = 326 cells) and L6
1392 (N = 324 cells). Values are presented as mean ± SEM. AnkG, ankyrinG; +, positive; -,
1393 negative.

1394

1395

per cells with AnkG+ AISs

Region ^a	% FEZF2+ ^b		% FEZF2- ^b	
	% Nav1.2+	% Nav1.2-	% Nav1.2+	% Nav1.2-
L5	20.4 ± 5.7		79.6 ± 5.7	
L6	11.6 ± 3.4		88.4 ± 3.4	
L5	8.9 ± 1.7	11.5 ± 1.0	50.1 ± 0.9	29.5 ± 2.6
L6	6.0 ± 1.3	5.6 ± 3.3	49.3 ± 4.8	39.1 ± 2.2

1396

1397 **Supplementary table S28. Percentage of cells with FEZF2- and Nav1.2-positive/negative**
1398 **nuclei or AISs per cells with ankyrinG-positive AISs in *Scn1a*-GFP mouse neocortex.**
1399 Values for Supplementary figure S9B-left-upper panel. ^aL5, L6: neocortical layer V, VI. Cells
1400 in three *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL5 (N = 644 cells) and L6 (N =
1401 758 cells). Values are presented as mean ± SEM. AnkG, ankyrinG; +, positive; -, negative.

1402

1403

1404

per cells with AnkG+ and Nav1.2+ AISs

Region ^a	% FEZF2+ ^b	% FEZF2- ^b
L5	15.1 ± 2.9	84.9 ± 2.9
L6	10.5 ± 4.3	89.5 ± 4.3

1405

1406 **Supplementary table S29. Percentage of cells with FEZF2-positive/negative nuclei per**
1407 **cells with ankyrinG/Nav1.2-double positive AISs in *Scn1a*-GFP mouse neocortex.** Values
1408 for Supplementary figure S9B-middle-upper panel. ^aL5, L6: neocortical layer V, VI. Cells in
1409 three *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL5 (N = 376 cells) and L6 (N = 415
1410 cells). Values are presented as mean ± SEM. AnkG, ankyrinG; +, positive; -, negative.

1411

per cells with AnkG+ AISs and FEZF2+ nuclei

Region ^a	% Nav1.2+ ^b	% Nav1.2- ^b
L5	51.2 ± 3.7	48.8 ± 3.7
L6	41.6 ± 9.5	58.4 ± 9.5

1412

1413 **Supplementary table S30. Percentage of cells with Nav1.2-positive/negative AISs per**
1414 **cells with ankyrinG-positive AISs and FEZF2-positive nuclei in *Scn1a*-GFP mouse**
1415 **neocortex.** Values for Supplementary figure S9B-right-upper panel. ^aL5, L6: neocortical layer
1416 V, VI. Cells in three *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL5 (N = 135 cells)
1417 and L6 (N = 94 cells). Values are presented as mean ± SEM. AnkG, ankyrinG; +, positive; -,
1418 negative.

1419

1420

1421

per cells with FEZF2+ nuclei

Region ^a	% AnkG+ ^b	% AnkG- ^b
L5	38.6 ± 7.1	61.4 ± 7.1
L6	39.4 ± 6.3	60.6 ± 6.3

1422

1423 **Supplementary table S31. Percentage of cells with ankyrinG-positive/negative AISs per**
1424 **cells with FEZF2-positive nuclei in *Scn1a*-GFP mouse neocortex.** Values for
1425 Supplementary figure S9B-lower panel. ^aL5, L6: neocortical layer V, VI. Cells in three
1426 *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL5 (N = 301 cells), and L6 (N = 257 cells).
1427 Values are presented as mean ± SEM. AnkG, ankyrinG; +, positive; -, negative.

1428

1429

per cells with FEZF2+ nuclei

Region ^a	% GFP+ ^b		% GFP- ^b	
	% Nav1.2+	% Nav1.2- ^c	% Nav1.2+	% Nav1.2- ^c
L5	74.4 ± 3.4	25.6 ± 3.4		
L6	16.5 ± 4.7	83.5 ± 4.7		

1430

1431 **Supplementary table S32. Percentage of cells with GFP- and Nav1.2-positive/negative**
1432 **somata and AISs per cells with FEZF2-positive nuclei in *Scn1a*-GFP mouse neocortex.**
1433 Values for Supplementary figure S10B. ^aL5, L6: neocortical layer V, VI. Cells in three
1434 *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL5 (N = 267 cells) and L6 (N = 188 cells).
1435 ^cIn these values, because they were including ankyrinG-negative cells, to obtain correct cell
1436 population for Nav1.2-negative/ankyrinG-positive cells, virtual cell number were estimated
1437 using ratio of ankyrinG/FEZF2 double positive cells in Supplementary figure S9B. Values are
1438 presented as mean ± SEM. +, positive; -, negative.

1439

1440

1441

Age ^a	Region ^b	per cells with GFP+ somata and/or TBR1+ nuclei		
		% GFP+, TBR1- ^c	% GFP+, TBR1+ ^c	% GFP-, TBR1+ ^c
P15	L2/3	46.5 ± 0.8	38.7 ± 0.4	14.8 ± 0.3
	L5	49.3 ± 1.2	5.5 ± 2.0	45.1 ± 0.8
	L6	14.8 ± 2.3	12.9 ± 7.4	72.3 ± 9.8
4W	L2/3	35.3 ± 0.2	42.1 ± 1.5	22.6 ± 1.3
	L5	54.7 ± 0.1	2.4 ± 1.8	42.9 ± 0.1
	L6	13.3 ± 1.8	22.1 ± 4.5	64.6 ± 6.3

1442

1443 **Supplementary table S33. Percentage of cells with TBR1- and GFP-positive/negative**
 1444 **nuclei and somata per GFP-positive cells and/or TBR1-positive nuclei in *Scn1a*-GFP**
 1445 **mouse neocortex.** Values for Figure 14B-left panels. ^aTwo animals were counted for each
 1446 age. ^bL2/3, L5, L6: neocortical layer II/III, V, VI. Cells in *Scn1a*-GFP mice (line #233) were
 1447 counted; ^cL2/3 (P15, N = 704 cells; 4W, N = 549 cells), L5 (P15, N = 639 cells; 4W, N = 400
 1448 cells) and L6 (P15, N = 990 cells; 4W, N = 598 cells). Values are presented as mean ± SEM.
 1449 +, positive; -, negative.

1450

1451

Age ^a	Region ^b	per cells with TBR1+ nuclei	
		% GFP+ ^c	% GFP- ^c
P15	L2/3	71.9 ± 0.4	28.1 ± 0.4
	L5	10.7 ± 3.9	89.3 ± 3.9
	L6	15.4 ± 9.1	84.6 ± 9.1
4W	L2/3	64.7 ± 1.6	35.3 ± 1.6
	L5	5.1 ± 3.9	94.9 ± 3.9
	L6	25.6 ± 5.7	74.4 ± 5.7

1452

1453 **Supplementary table S34. Percentage of cells with GFP-positive/negative somata per**
 1454 **cells with TBR1-positive nuclei in *Scn1a*-GFP mouse neocortex.** Values for Figure
 1455 14B-middle panels. ^aTwo animals were counted for each age. ^bL2/3, L5, L6: neocortical layer
 1456 II/III, V, VI. Cells in *Scn1a*-GFP mice (line #233) were counted; ^cL2/3 (P15, N = 367 cells;

1457 4W, N = 358 cells), L5 (P15, N = 322 cells; 4W, N = 180 cells) and L6 (P15, N = 848 cells;
1458 4W, N = 518 cells). Values are presented as mean \pm SEM. +, positive; -, negative.
1459

1460

Age ^a	Region ^b	per cells with GFP+ somata	
		% TBR1+ ^c	% TBR1- ^c
P15	L2/3	45.1 ± 0.7	54.9 ± 0.7
	L5	10.0 ± 3.5	90.0 ± 3.5
	L6	41.5 ± 12.9	58.5 ± 12.9
4W	L2/3	54.4 ± 0.7	45.6 ± 0.7
	L5	4.1 ± 3.2	95.9 ± 3.2
	L6	61.2 ± 2.9	38.8 ± 2.9

1461

1462 **Supplementary table S35. Percentage of cells with TBR1-positive/negative nuclei per**
1463 **cells with GFP-positive somata in *Scn1a*-GFP mouse neocortex.** Values for Figure
1464 14B-right panels. ^aTwo animals were counted for each age. ^bL2/3, L5, L6: neocortical layer
1465 II/III, V, VI. Cells in *Scn1a*-GFP mice (line #233) were counted; ^cL2/3 (P15, N = 601 cells;
1466 4W, N = 422 cells), L5 (P15, N = 350 cells; 4W, N = 228 cells) and L6 (P15, N = 235 cells;
1467 4W, N = 222 cells). Values are presented as mean ± SEM. +, positive; -, negative.

1468

1469

Region ^a	TBR1+, GFP+		TBR1-, GFP+		p-value	
	Area size ^b	Intensity ^b	Area size ^b	Intensity ^b	Area size ^c	Intensity ^c
L2/3	372.9 ± 7.5	41.8 ± 1.1	377.0 ± 11.0	43.8 ± 1.8	7.5 × 10 ⁻¹	2.9 × 10 ⁻¹
L5	337.5 ± 21.4	36.0 ± 1.7	481.6 ± 16.2	42.0 ± 1.5	8.6 × 10 ⁻⁵	5.9 × 10 ⁻²
L6	318.2 ± 10.3	35.9 ± 0.9	475.8 ± 24.3	50.6 ± 2.3	8.8 × 10 ⁻¹⁰	1.1 × 10 ⁻⁹

1470

1471 **Supplementary table S36. Area size and intensity of GFP immunosignals in**
1472 **GFP-positive cells with TBR1-positive or negative nuclei in *Scn1a*-GFP mouse neocortex.**
1473 Values for Figure 15. ^aL2/3, L5, L6: neocortical layer II/III, V, VI. Cells in one *Scn1a*-GFP
1474 mouse (line #233) at 4W were counted; ^bL2/3 (N = 189 cells), L5 (N = 118 cells) and L6 (N =
1475 105 cells). ^cStatistical significance was assessed using t-test. Values are presented as mean ±
1476 SEM. +, positive; -, negative.

1477

1478

1479

1480

Region ^a	per cells with AnkG+ AISs			
	% TBR1+ ^b		% TBR1- ^b	
L2/3	34.5 ± 0.7		65.5 ± 0.7	
L5	52.8 ± 0.7		47.2 ± 0.7	
L6	66.3 ± 5.5		33.7 ± 5.5	
	% Nav1.1+	% Nav1.1-	% Nav1.1+	% Nav1.1-
	L2/3	0.0 ± 0.0	34.5 ± 0.7	6.9 ± 0.6
L5	0.0 ± 0.0	52.8 ± 0.7	10.2 ± 1.1	37.0 ± 1.7
L6	0.0 ± 0.0	66.3 ± 5.5	3.3 ± 0.7	30.4 ± 5.7

1481

1482 **Supplementary table S37. Percentage of cells with TBR1- and Nav1.1-positive/negative**
1483 **nuclei or AISs per cells with ankyrinG-positive AISs in *Scn1a*-GFP mouse neocortex.**

1484 Values for Supplementary figure S11B-left panel. ^aL2/3, L5, L6: neocortical layer II/III, V, VI.
1485 Cells in three *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL2/3 (N = 879 cells), L5 (N
1486 = 614 cells) and L6 (N = 816 cells). Values are presented as mean ± SEM. AnkG, ankyrinG;
1487 +, positive; -, negative.

1488

1489

Region ^a	per cells with AnkG+ and Nav1.1+ AISs	
	% TBR1+ ^b	% TBR1- ^b
L2/3	0.0 ± 0.0	100.0 ± 0.0
L5	0.0 ± 0.0	100.0 ± 0.0
L6	0.0 ± 0.0	100.0 ± 0.0

1490 **Supplementary table S38. Percentage of cells with TBR1-positive/negative nuclei per**
1491 **cells with ankyrinG/Nav1.1-double positive AISs in *Scn1a*-GFP mouse neocortex.** Values
1492 for Supplementary figure S11B-middle panel. ^aL2/3, L5, L6: neocortical layer II/III, V, VI.
1493 Cells in three *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL2/3 (N = 59 cells), L5 (N =
1494 63 cells) and L6 (N = 28 cells). Values are presented as mean ± SEM. AnkG, ankyrinG; +,
1495 positive; -, negative.

1496

1497

1498

per cells with AnkG+ AISs and TBR1+ nuclei

Region ^a	% Nav1.1+ ^b	% Nav1.1- ^b
L2/3	0.0 ± 0.0	100.0 ± 0.0
L5	0.0 ± 0.0	100.0 ± 0.0
L6	0.0 ± 0.0	100.0 ± 0.0

1499

1500 **Supplementary table S39. Percentage of cells with Nav1.1-positive/negative AISs per**
1501 **cells with ankyrinG-positive AISs and TBR1-positive nuclei in *Scn1a*-GFP mouse**
1502 **neocortex.** Values for Supplementary figure S11B-right panel. ^aL2/3, L5, L6: neocortical
1503 layer II/III, V, VI. Cells in three *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL2/3 (N =
1504 296 cells), L5 (N = 319 cells) and L6 (N = 552 cells). Values are presented as mean ± SEM.
1505 AnkG, ankyrinG; +, positive; -, negative.

1506

1507

per cells with AnkG+ AISs

Region ^a	% TBR1+ ^b		% TBR1- ^b	
	% Nav1.2+	% Nav1.2-	% Nav1.2+	% Nav1.2-
L2/3	33.3 ± 5.0		66.7 ± 5.0	
L5	48.9 ± 2.5		51.1 ± 2.5	
L6	62.7 ± 3.5		37.3 ± 3.5	

1508

1509 **Supplementary table S40. Percentage of cells with TBR1- and Nav1.2-positive/negative**

1510 **nuclei or AISs per cells with ankyrinG-positive AISs in *Scn1a*-GFP mouse neocortex.**

1511 Values for Supplementary figure S12B-left-upper panel. ^aL2/3, L5, L6: neocortical layer II/III,
1512 V, VI. Cells in three *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL2/3 (N = 967 cells),
1513 L5 (N = 667 cells), and L6 (N = 833 cells). Values are presented as mean ± SEM. AnkG,
1514 ankyrinG; +, positive; -, negative.

1515

1516

1517

per cells with AnkG+ and Nav1.2+ AISs

Region ^a	% TBR1+ ^b	% TBR1- ^b
L2/3	28.5 ± 3.2	71.5 ± 3.2
L5	52.8 ± 1.4	47.2 ± 1.4
L6	62.4 ± 4.5	37.6 ± 4.5

1518

1519 **Supplementary table S41. Percentage of cells with TBR1-positive/negative nuclei per**
1520 **cells with ankyrinG/Nav1.2-double positive AISs in *Scn1a*-GFP mouse neocortex.** Values
1521 for Supplementary figure S12B-middle-upper panel. ^aL2/3, L5, L6: neocortical layer II/III, V,
1522 VI. Cells in three *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL2/3 (N = 995 cells), L5
1523 (N = 667 cells) and L6 (N = 923 cells). Values are presented as mean ± SEM. AnkG,
1524 ankyrinG; +, positive; -, negative.

1525

1526

per cells with AnkG+ AISs and TBR1+ nuclei

Region ^a	% Nav1.2+ ^b	% Nav1.2- ^b
L2/3	69.3 ± 3.5	30.8 ± 3.5
L5	68.9 ± 2.7	31.1 ± 2.7
L6	68.7 ± 3.8	31.3 ± 3.8

1527

1528 **Supplementary table S42. Percentage of cells with Nav1.2-positive/negative AISs per**
1529 **cells with ankyrinG-positive AISs and TBR1-positive nuclei in *Scn1a*-GFP mouse**
1530 **neocortex.** Values for Supplementary figure S12B-right-upper panel. ^aL2/3, L5, L6:
1531 neocortical layer II/III, V, VI. Cells in three *Scn1a*-GFP mice (line #233) at P15 were
1532 counted; ^bL2/3 (N = 317 cells), L5 (N = 309 cells) and L6 (N = 523 cells). Values are
1533 presented as mean ± SEM. AnkG, ankyrinG; +, positive; -, negative.

1534

1535

1536

per cells with TBR1+ nuclei

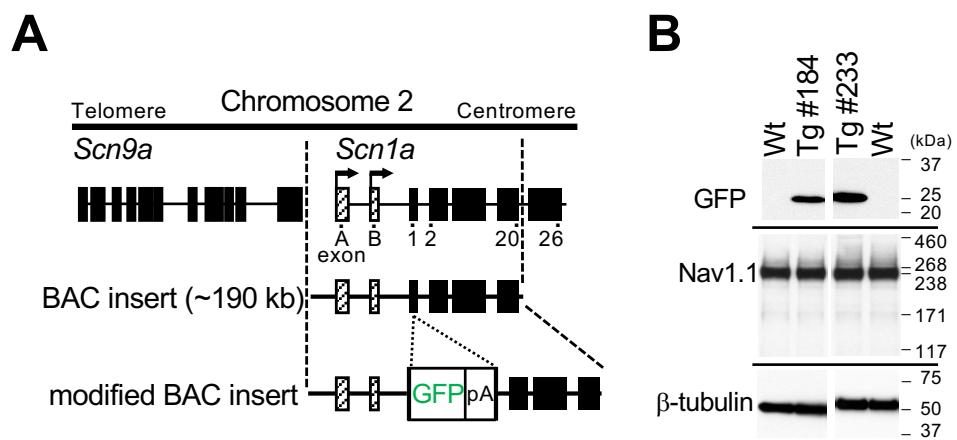
Region ^a	% AnkG+ ^b	% AnkG- ^b
L2/3	62.9 ± 4.9	37.1 ± 4.9
L5	52.2 ± 5.5	47.8 ± 5.5
L6	52.3 ± 3.4	47.7 ± 3.4

1537

1538 **Supplementary table S43. Percentage of cells with AnkG-positive/negative AISs per cells**
1539 **with TBR1-positive nuclei in *Scn1a*-GFP mouse neocortex.** Values for Supplementary
1540 figure S12B-lower panel. ^aL2/3, L5, L6: neocortical layer II/III, V, VI. Cells in three
1541 *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL2/3 (N = 509 cells), L5 (N = 582 cells)
1542 and L6 (N = 998 cells). Values are presented as mean ± SEM. AnkG, ankyrinG; +, positive; -,
1543 negative.

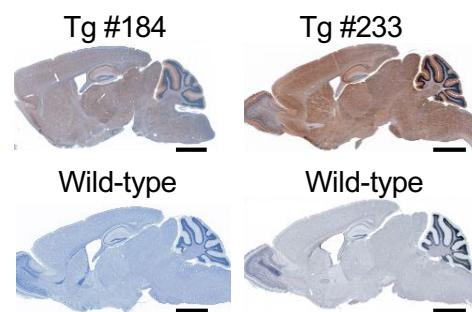
1544

1545

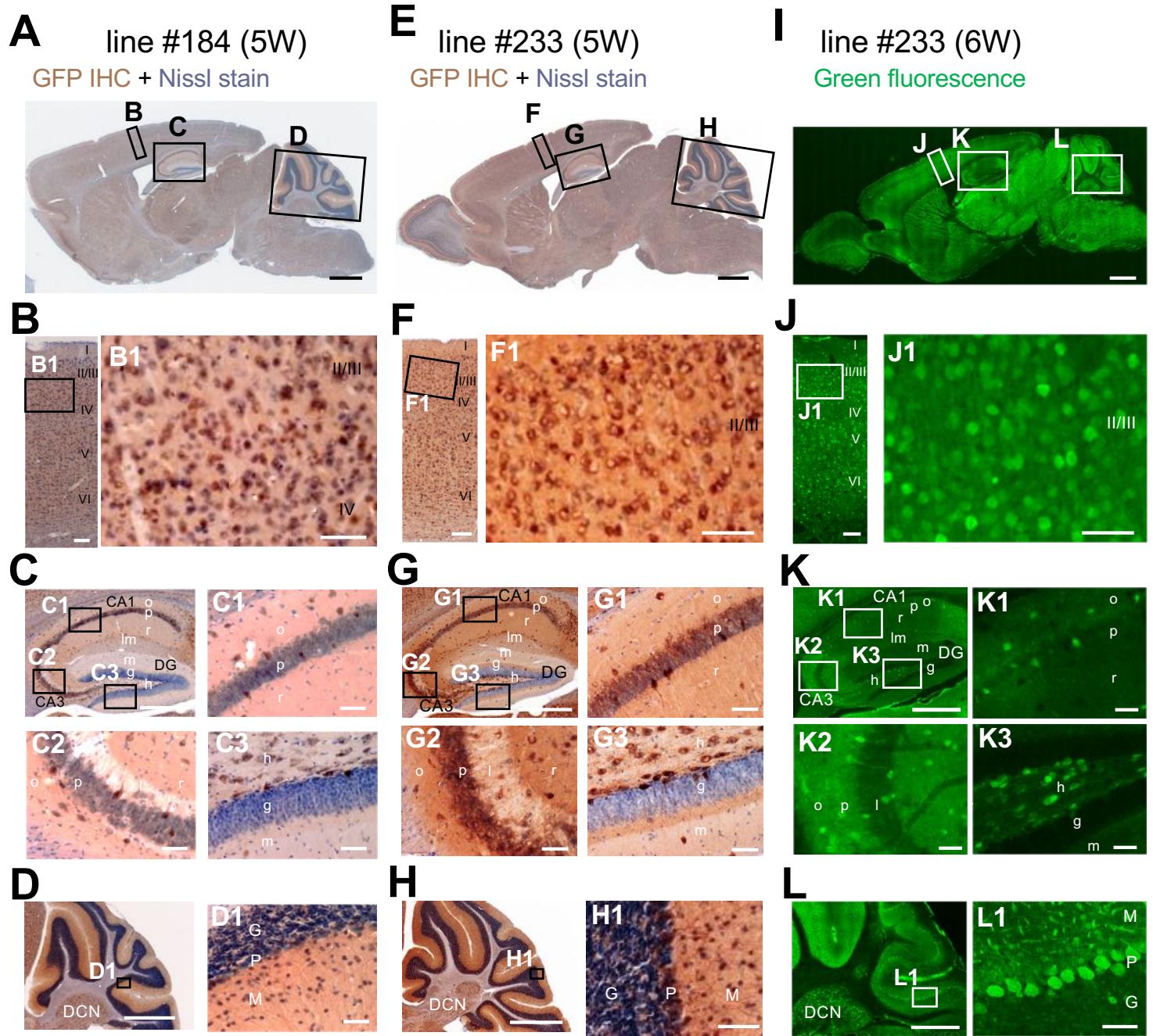

per cells with TBR1+ nuclei

Region ^a	% GFP+ ^b		% GFP- ^b	
	% Nav1.2+	% Nav1.2- ^c	% Nav1.2+	% Nav1.2- ^c
L2/3	57.7 ± 5.0	42.3 ± 5.0		
L5	29.7 ± 6.0	70.3 ± 6.0		
L6	11.6 ± 2.5	88.4 ± 2.5		
	% Nav1.2+	% Nav1.2- ^c	% Nav1.2+	% Nav1.2- ^c
L2/3	30.2 ± 6.8	27.4 ± 2.5	20.4 ± 3.6	22.0 ± 2.7
L5	12.8 ± 5.6	16.3 ± 2.6	36.8 ± 5.4	34.1 ± 1.8
L6	5.0 ± 1.3	7.0 ± 2.3	36.6 ± 5.2	51.5 ± 2.8

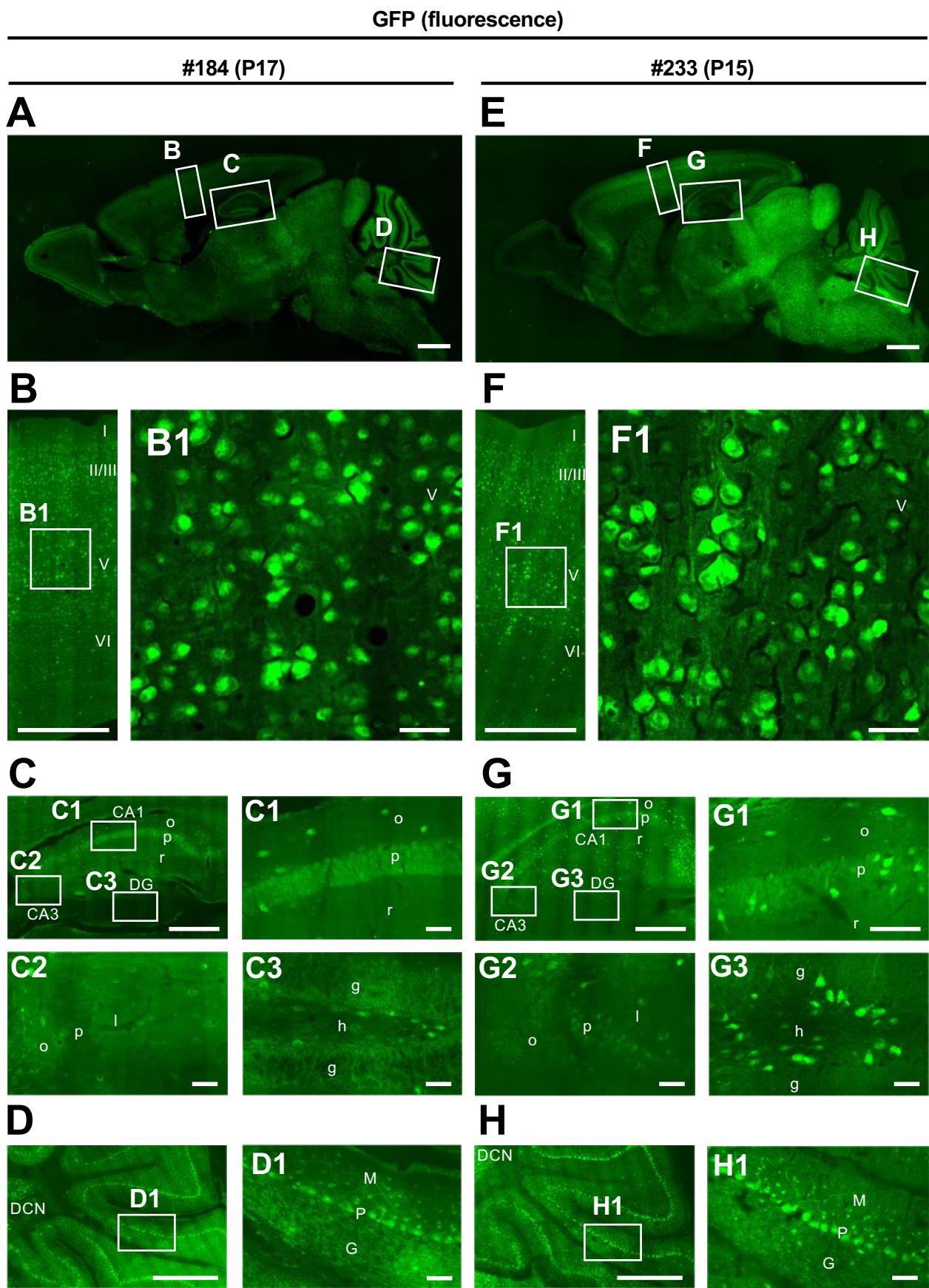
1546

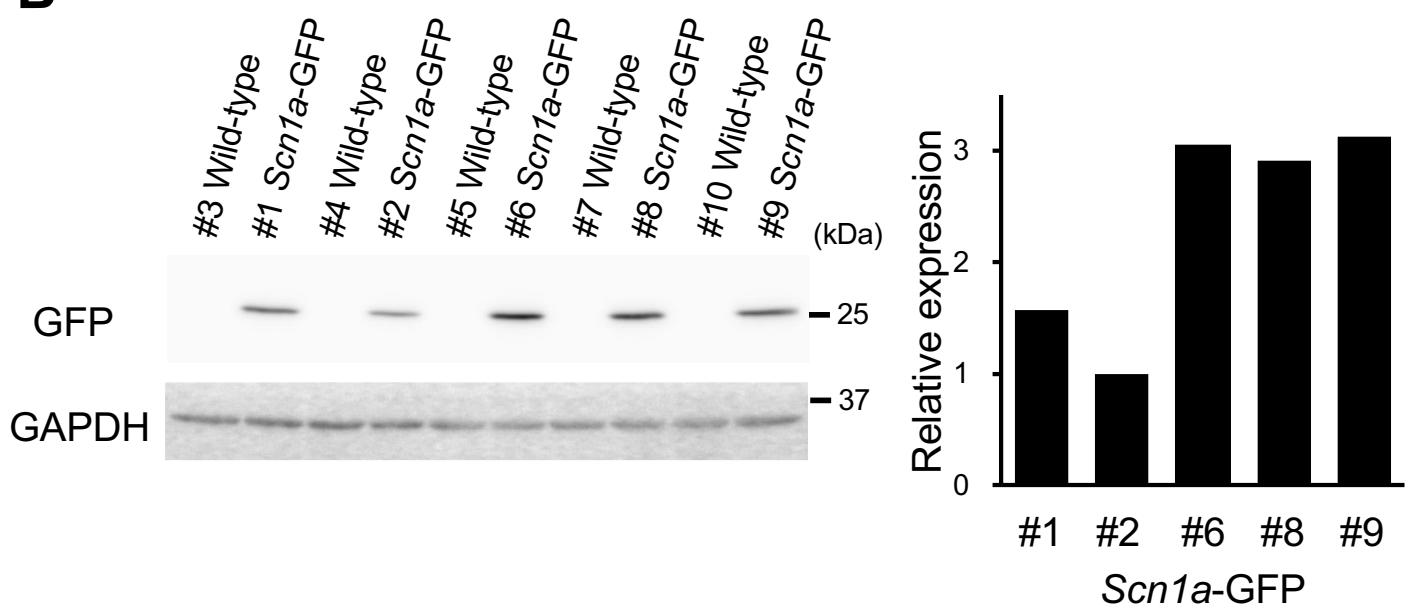

1547 **Supplementary table S44. Percentage of cells with GFP- and Nav1.2-positive/negative**
1548 **somata and AISs per cells with TBR1-positive nuclei in *Scn1a*-GFP mouse neocortex.**
1549 Values for Supplementary figure S13B. ^aL2/3, L5, L6: neocortical layer II/III, V, VI. Cells in
1550 three *Scn1a*-GFP mice (line #233) at P15 were counted; ^bL2/3 (N = 461 cells), L5 (N = 464
1551 cells) and L6 (N = 913 cells). ^cIn these values, because they were including AnkG-negative
1552 cells, to obtain correct cell population for Nav1.2-/AnkG+ cells, virtual cell numbers were
1553 estimated using ratio of AnkG+/TBR1+ cells in Supplementary figure S12B. Values are
1554 presented as mean ± SEM. AnkG, ankyrinG; +, positive; -, negative.

1555

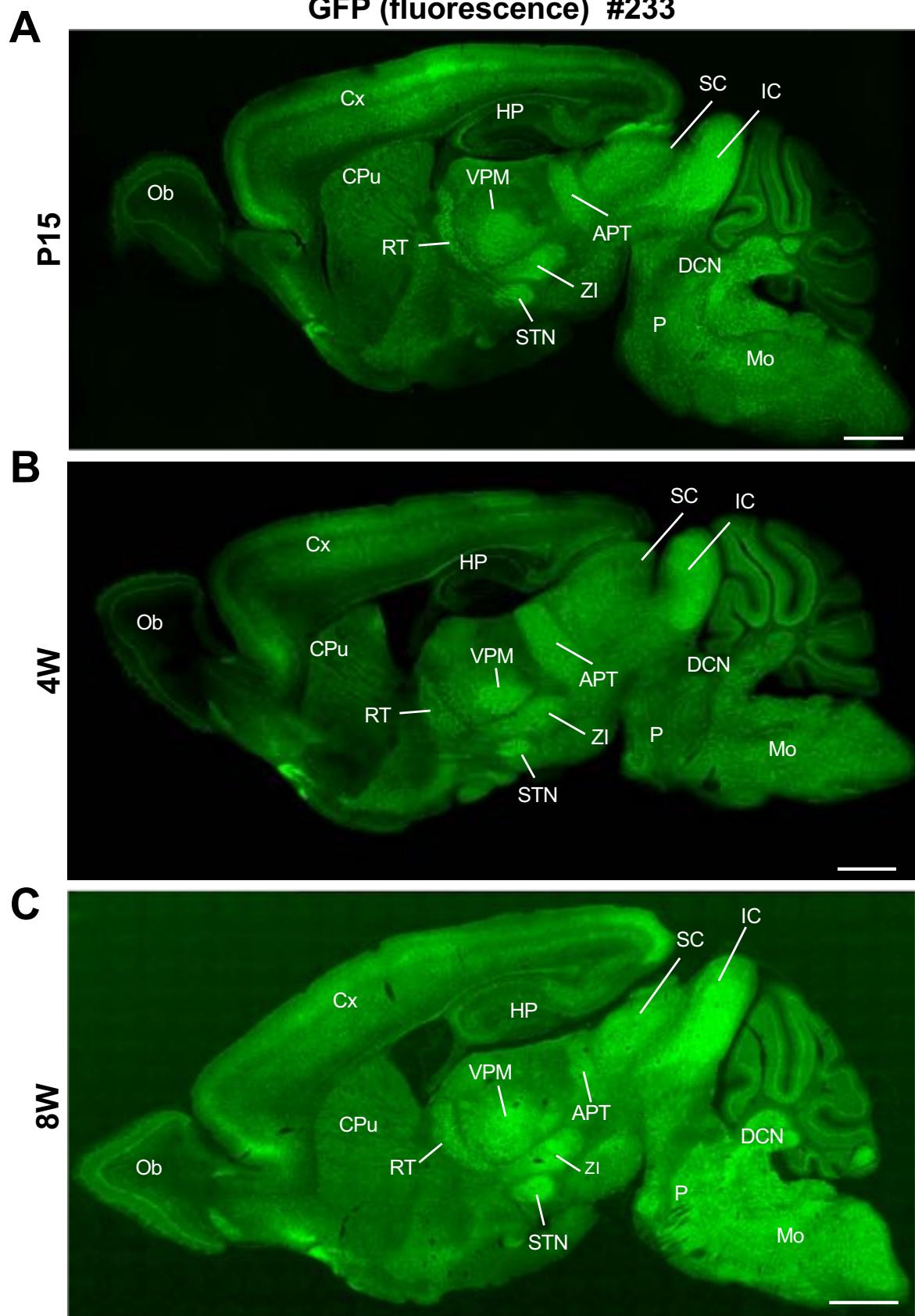


Yamagata et al., Figure 1

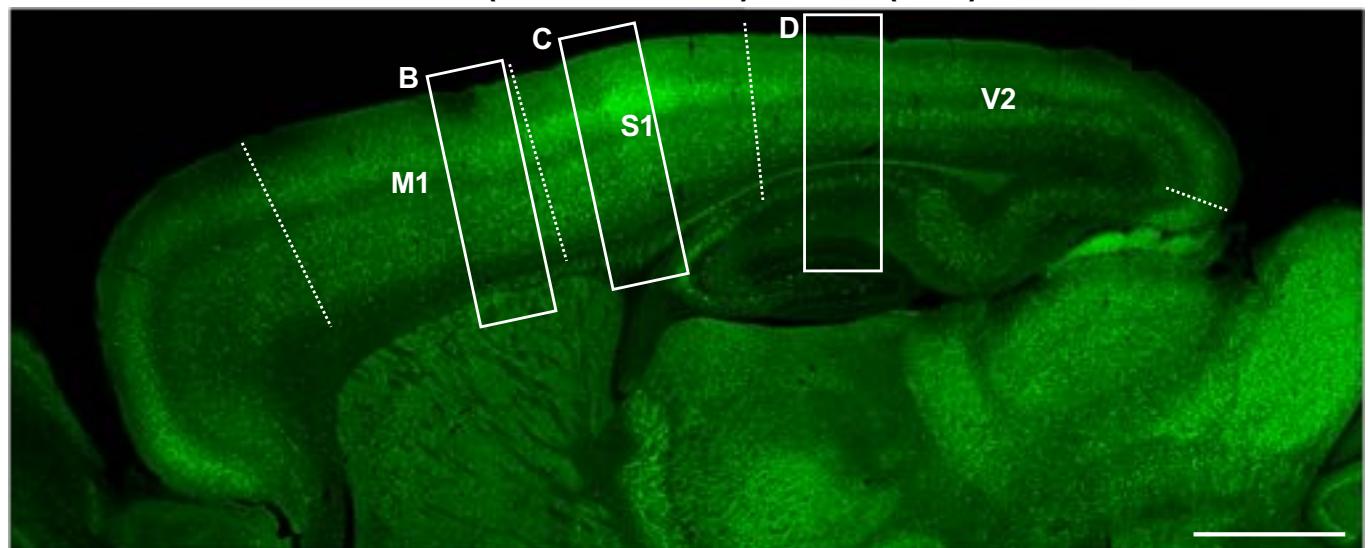
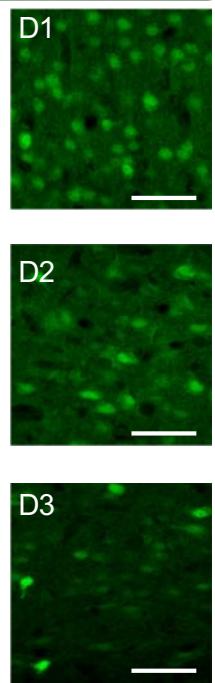
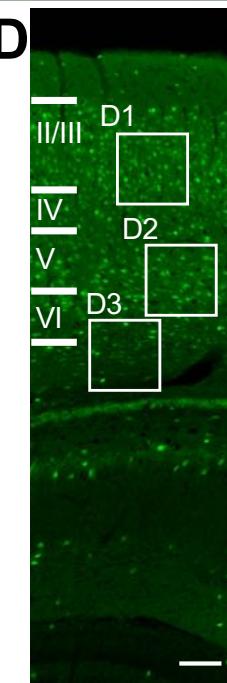
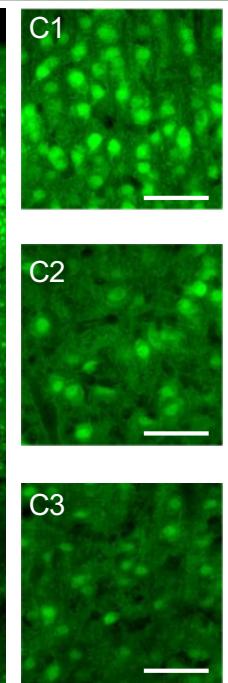
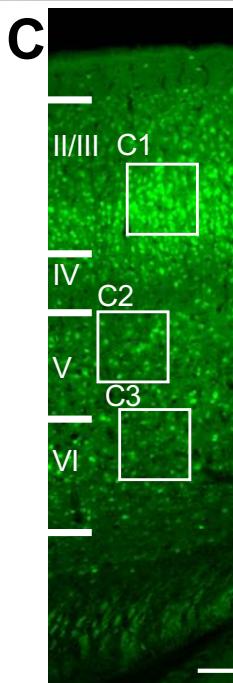
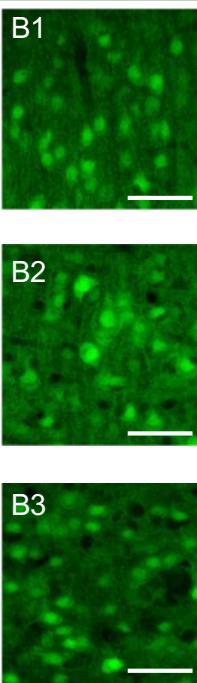
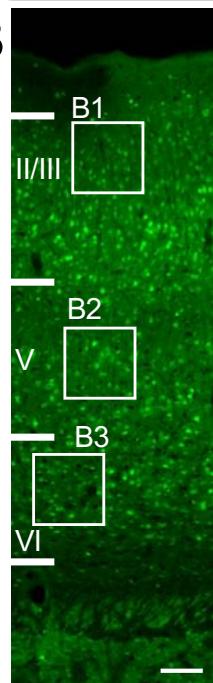

GFP IHC + Nissl stain (5W)


Yamagata et al., Supplementary figure S1

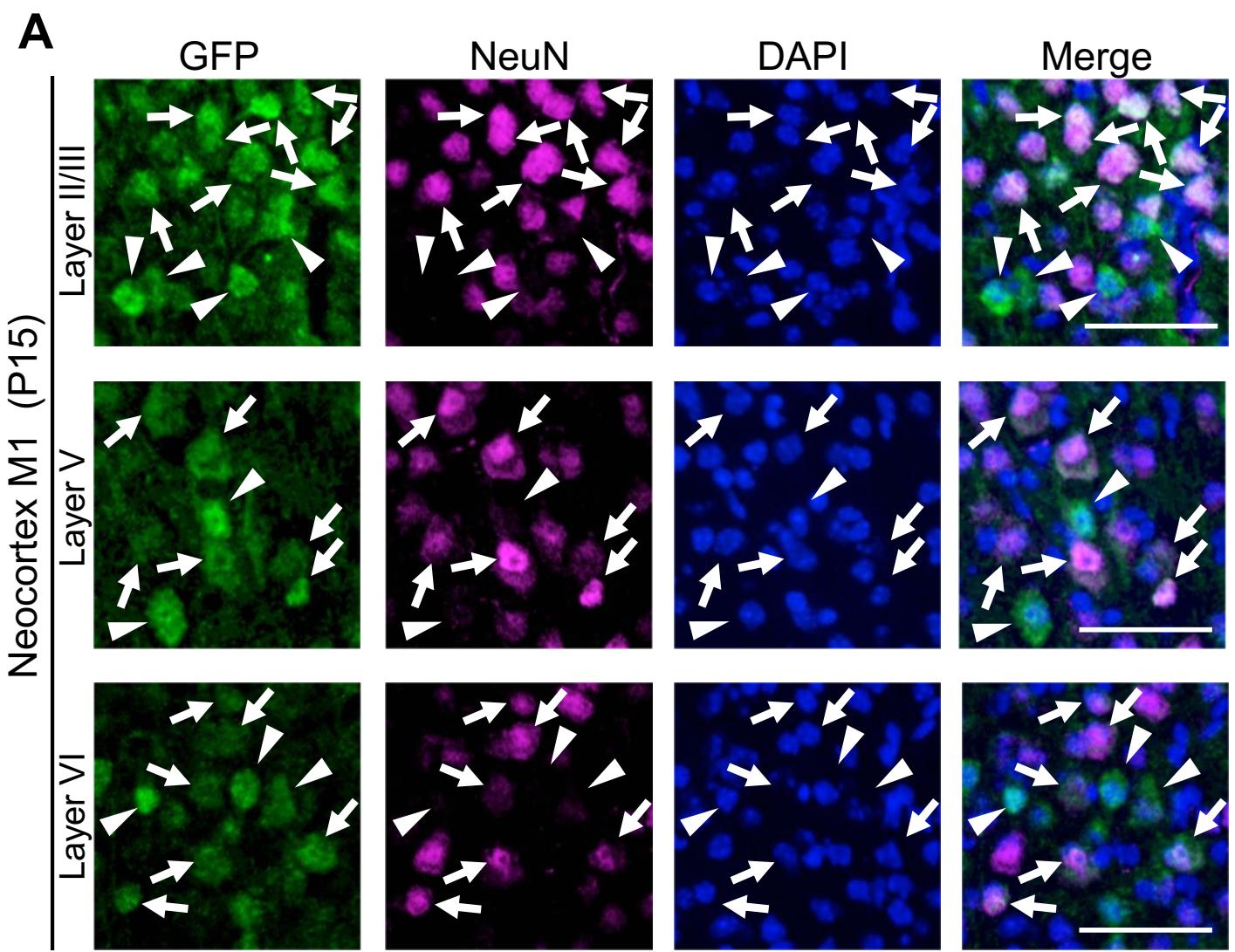
Yamagata et al., Figure 2

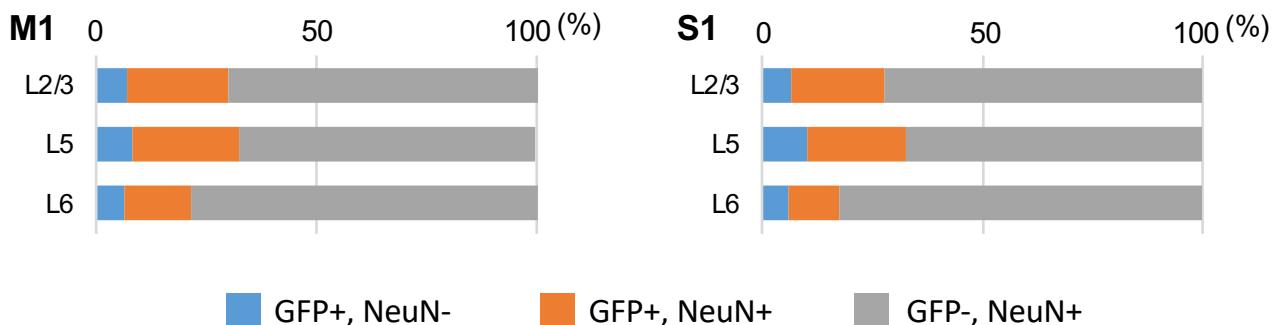


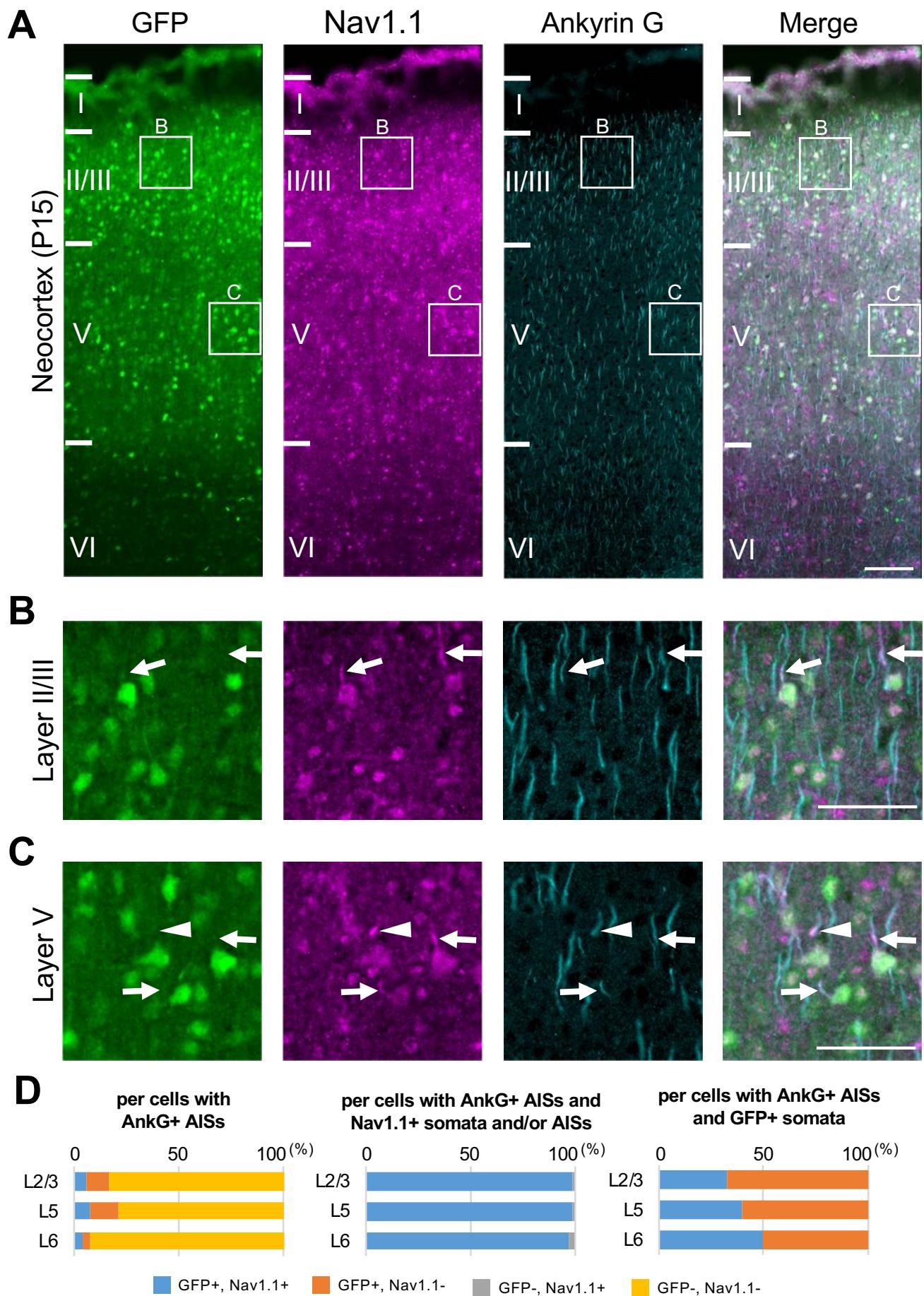
Yamagata et al., Supplementary figure S2








A**B**

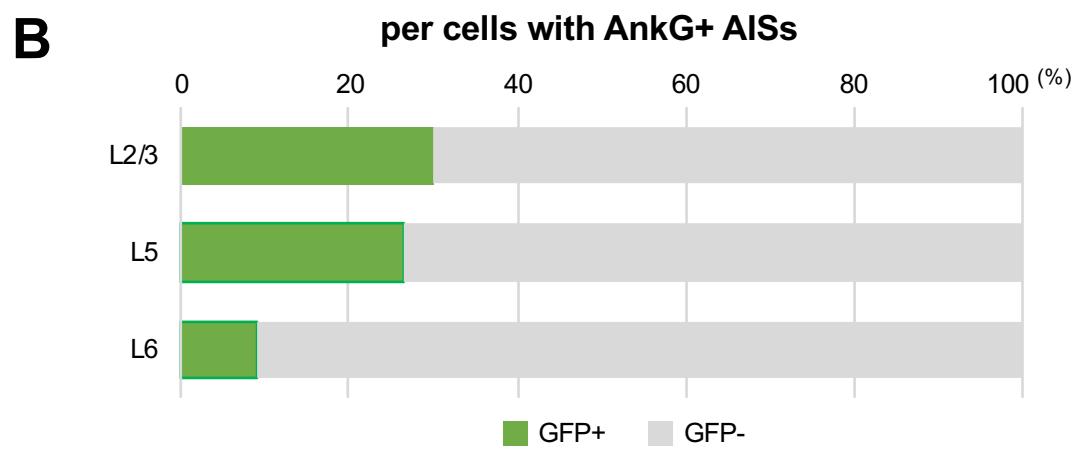
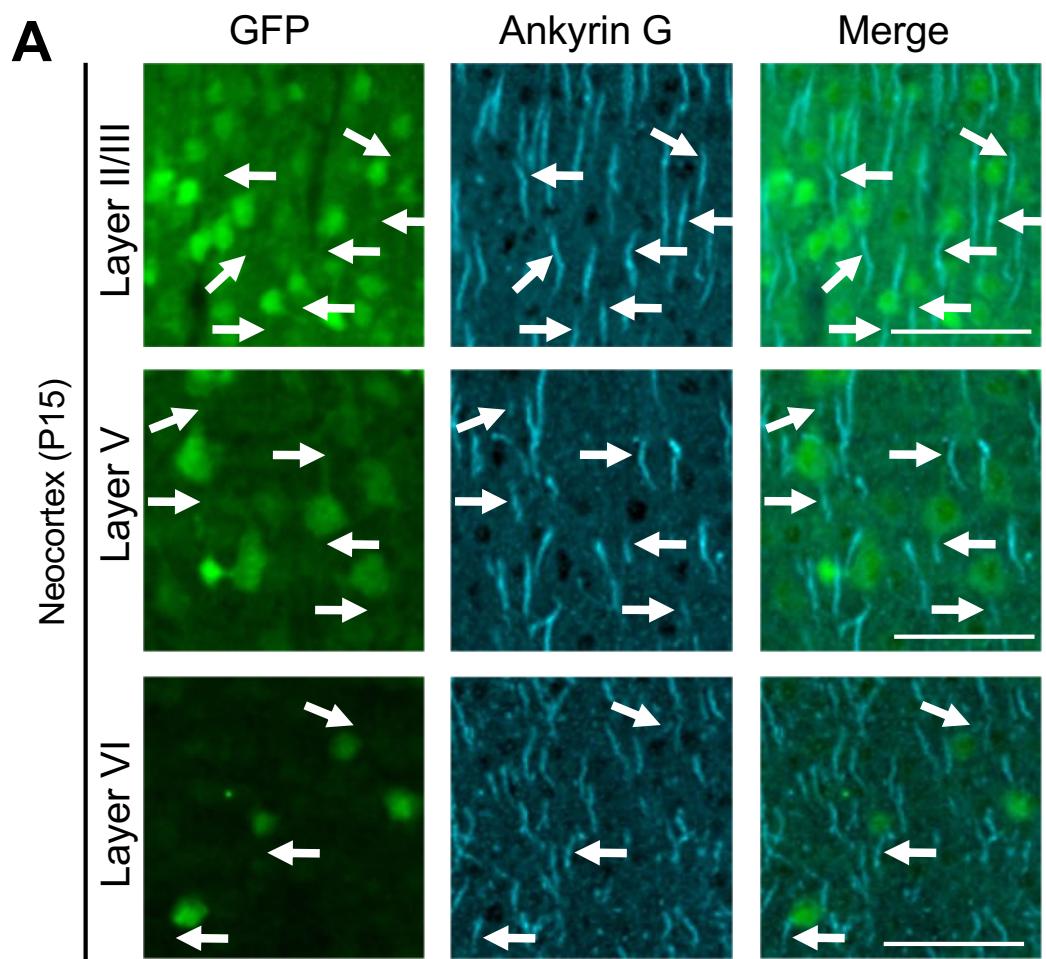
Yamagata et al., Supplementary figure S3


GFP (fluorescence) #233

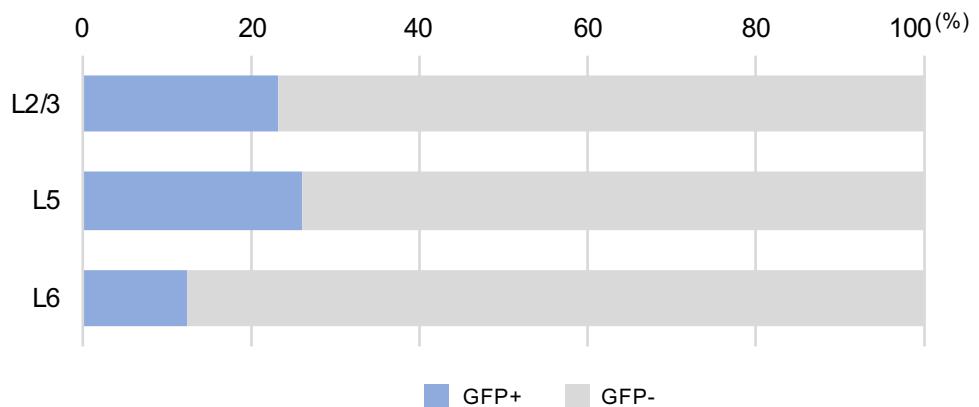

Yamagata et al., Figure 3

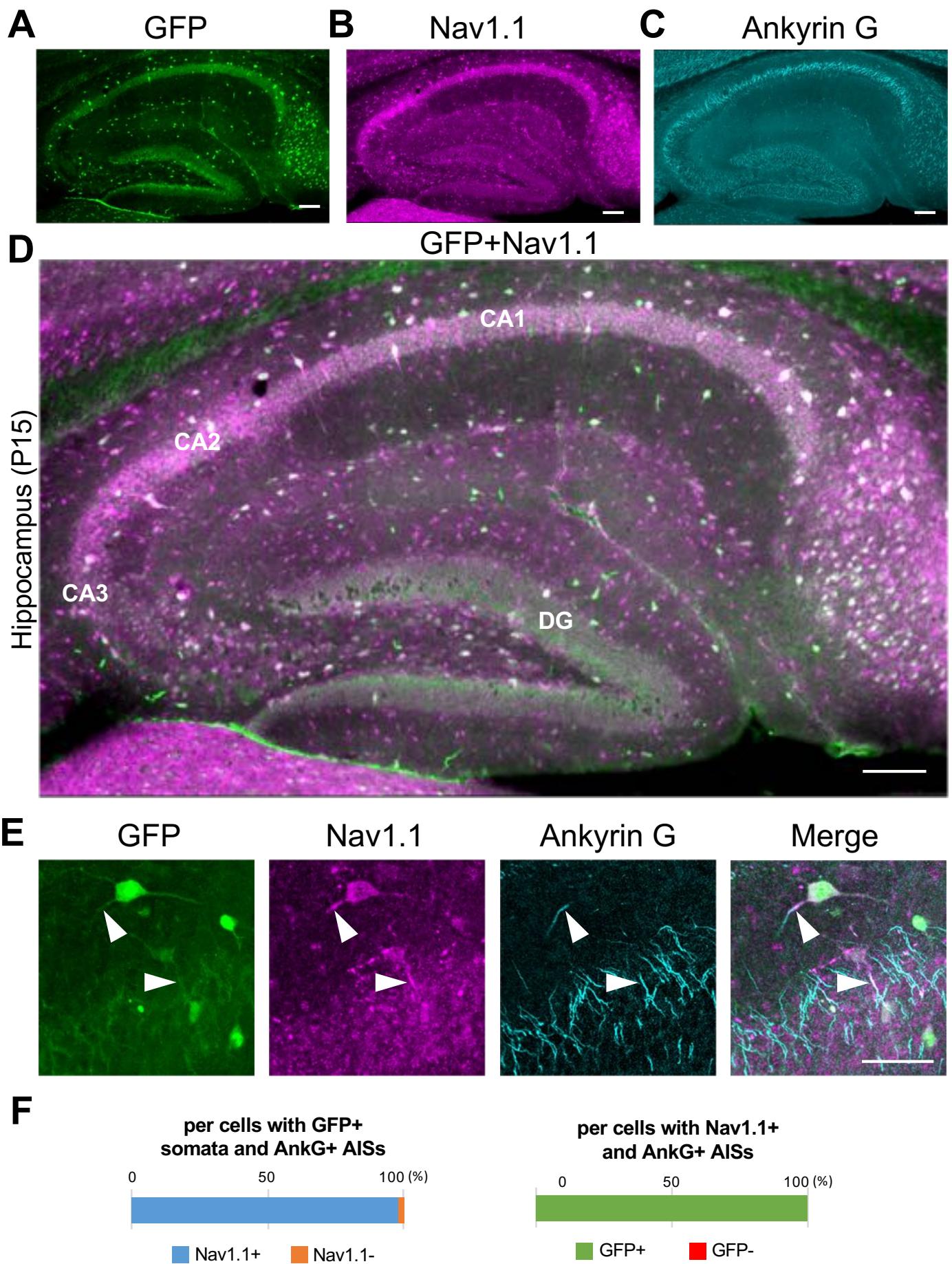

A**GFP (fluorescence) #233 (P15)****B**

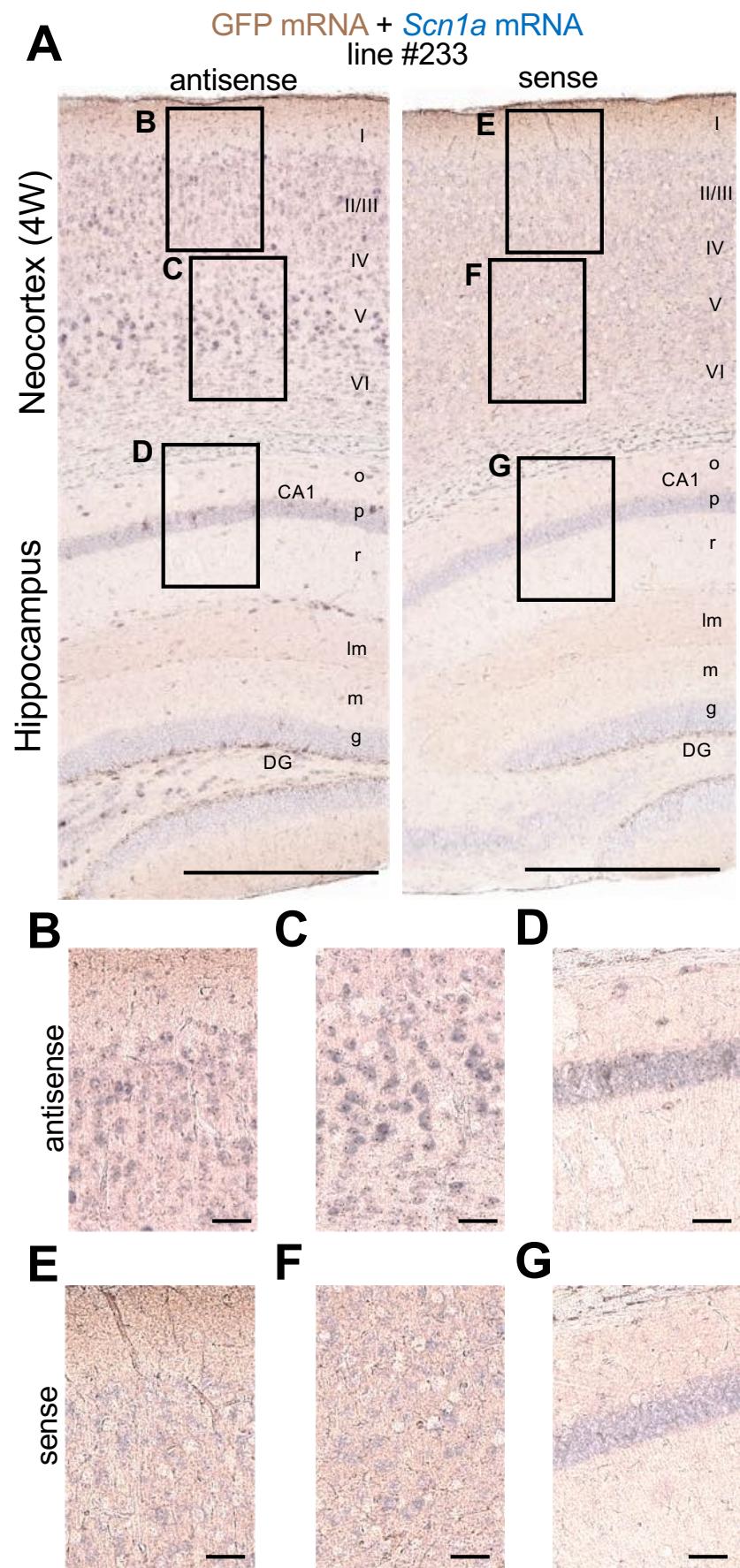
Yamagata et al., Supplementary figure S4

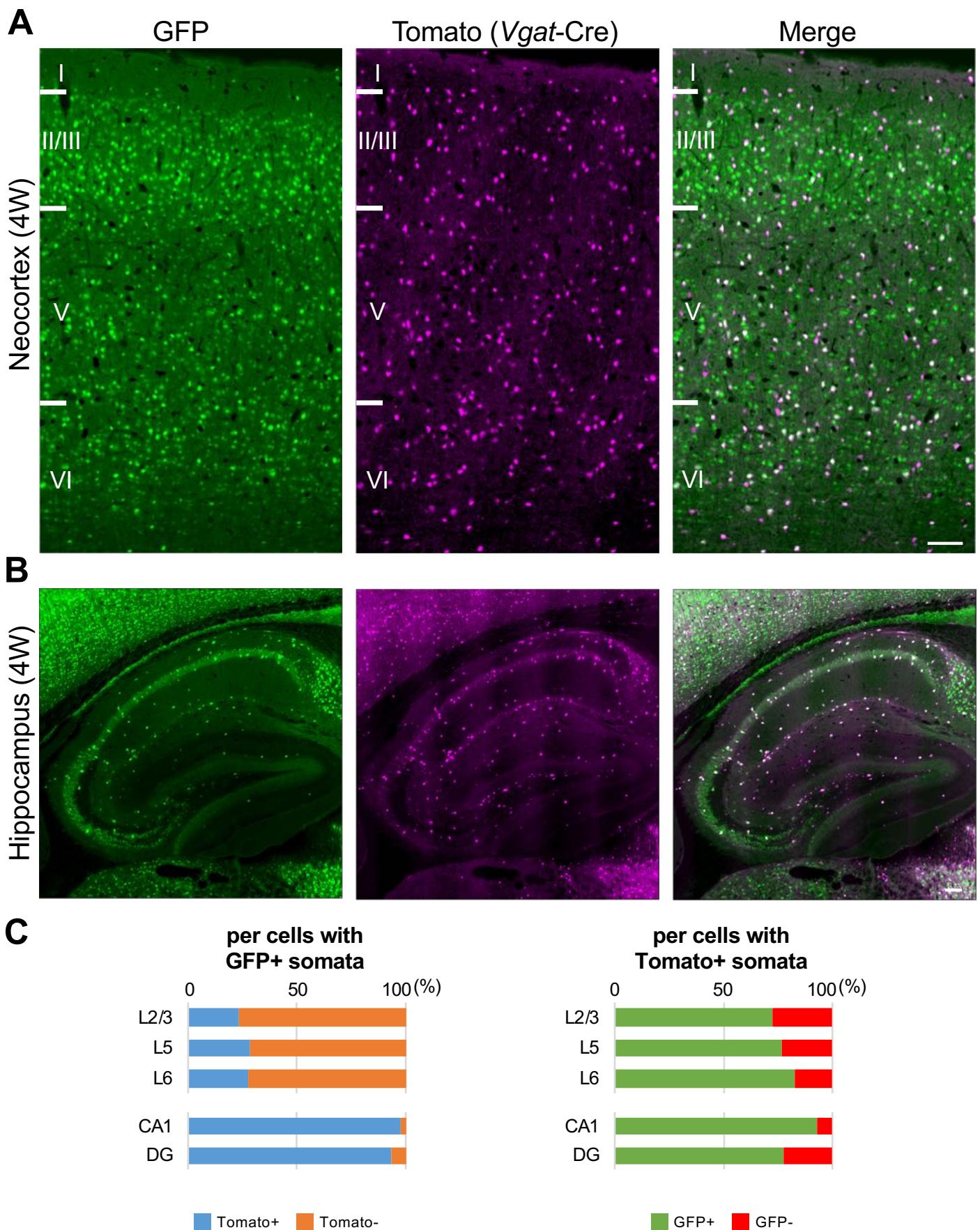



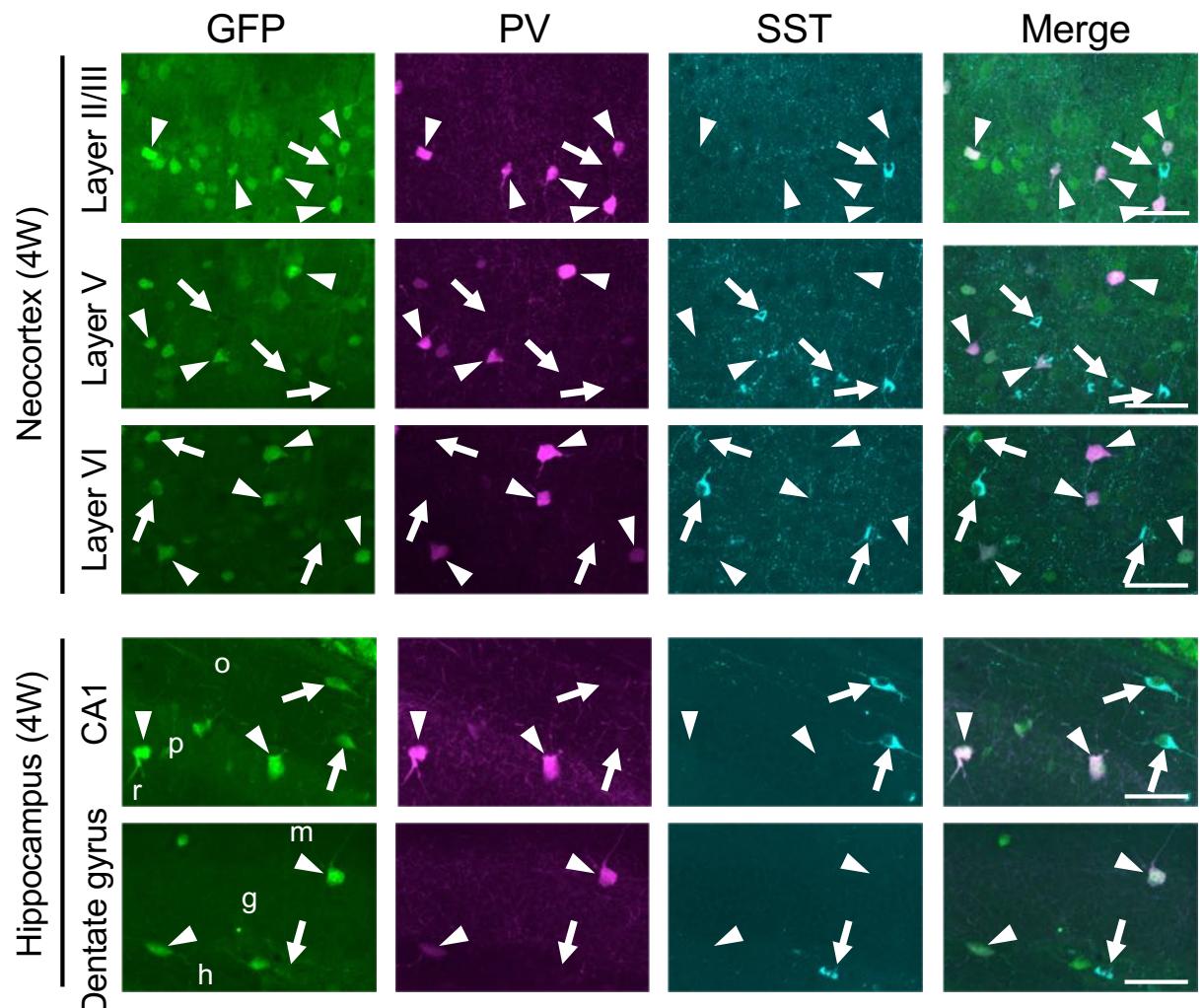
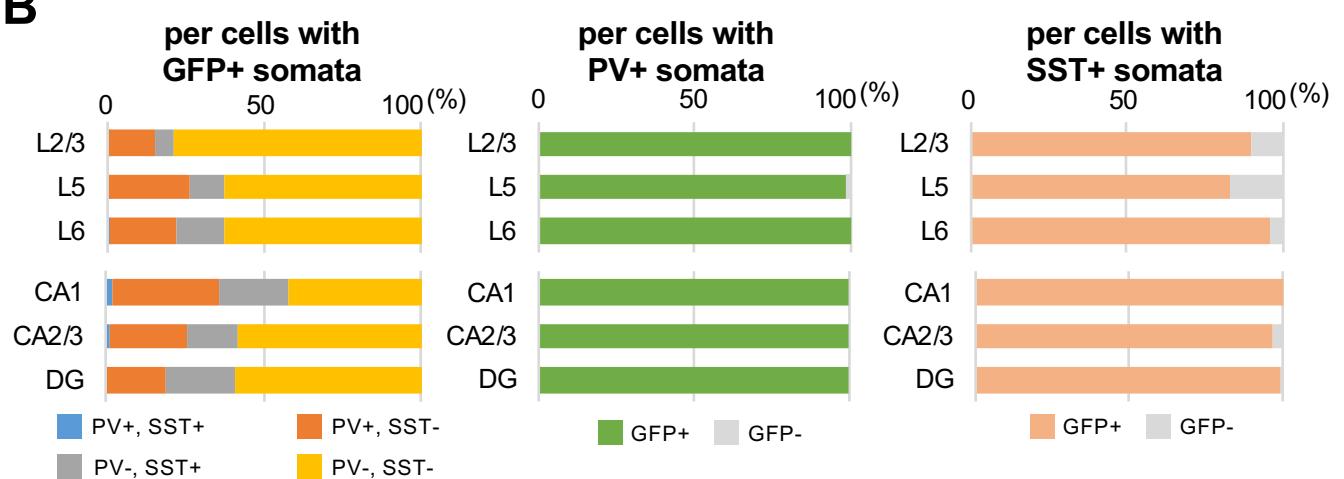
B per cells with GFP+ and/or NeuN+ somata

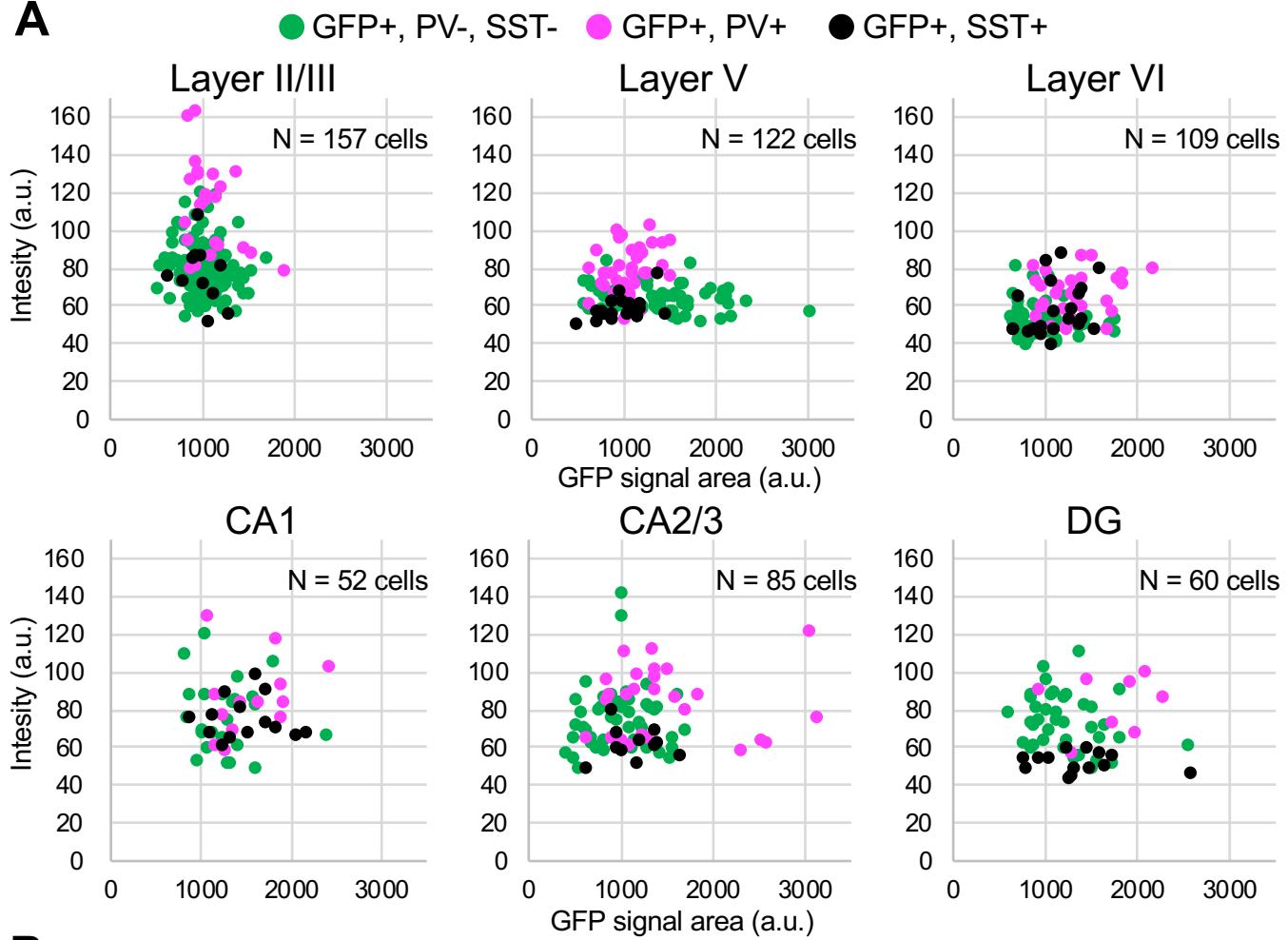
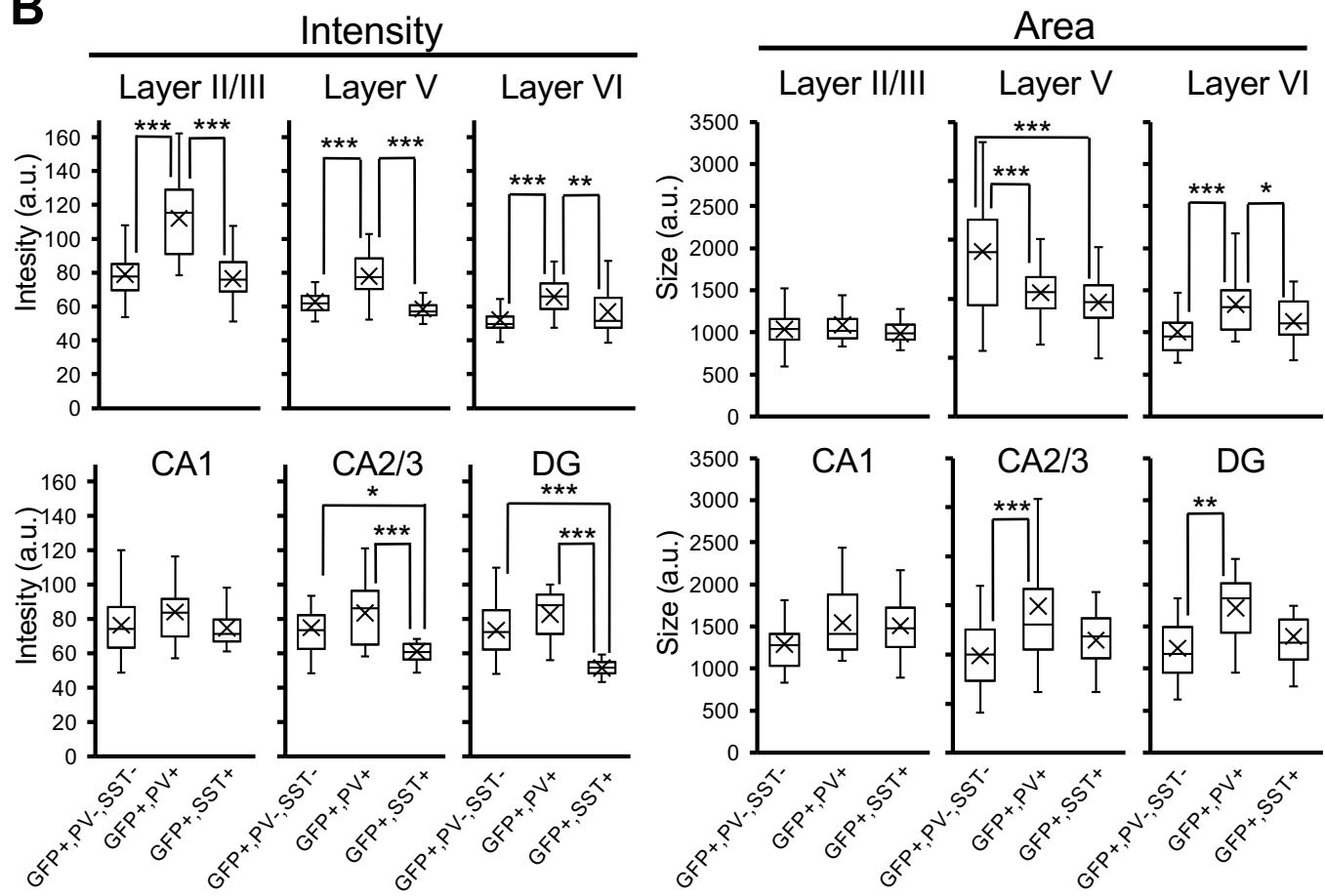


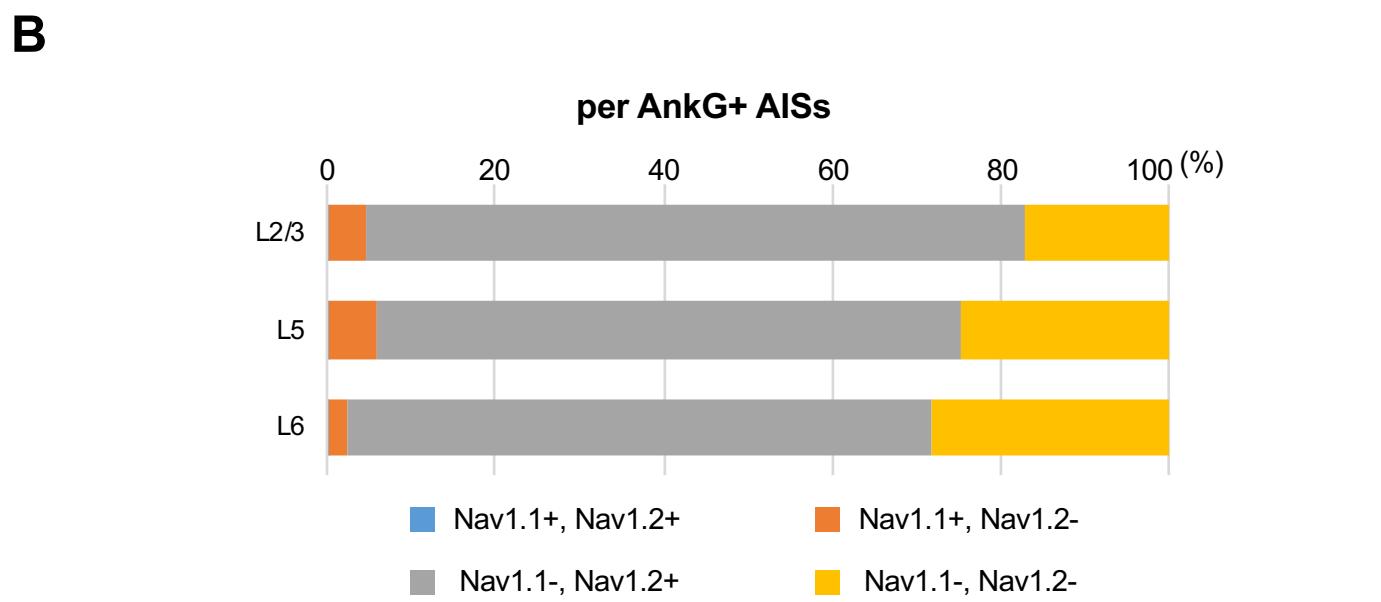
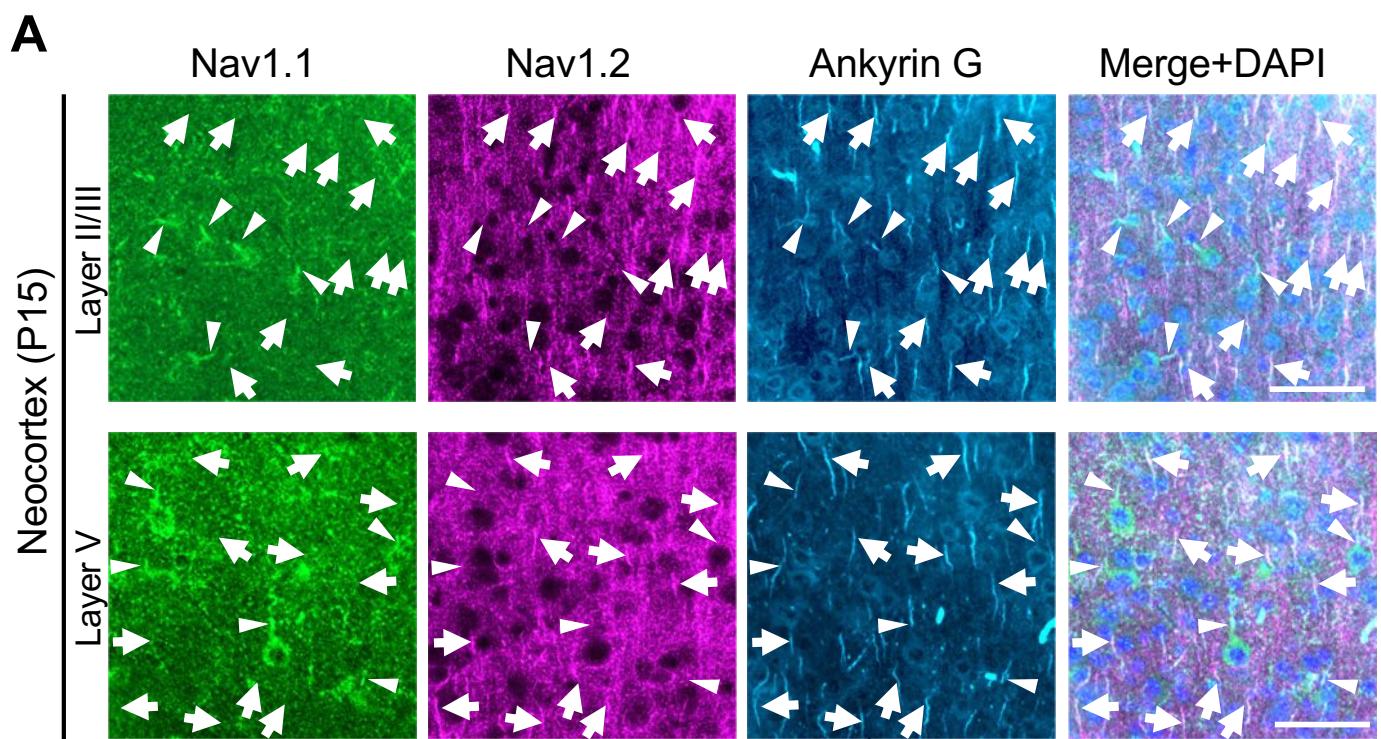

Yamagata et al., Figure 4


per cells with AnkG+ AISs (Figs 4, 11, S6 average)

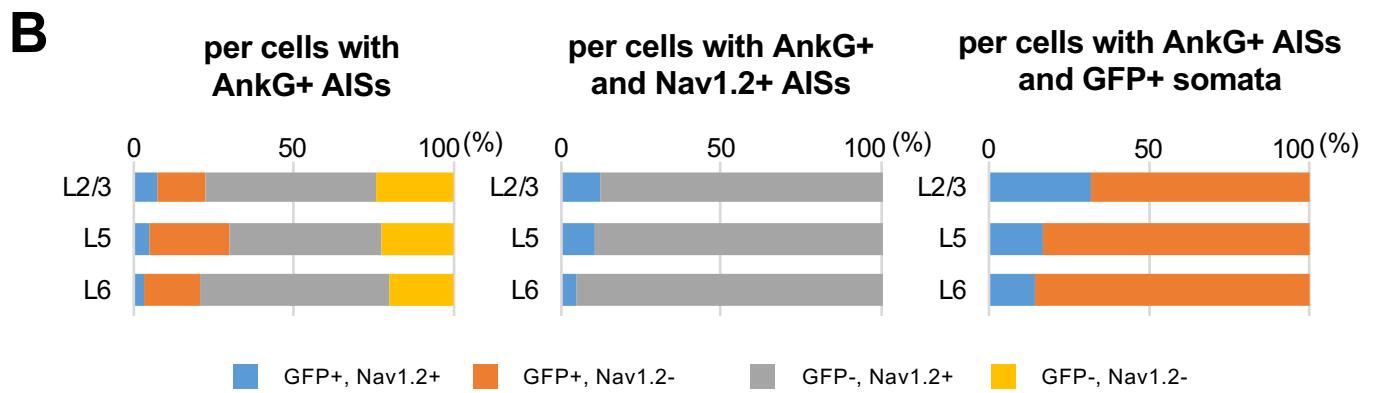
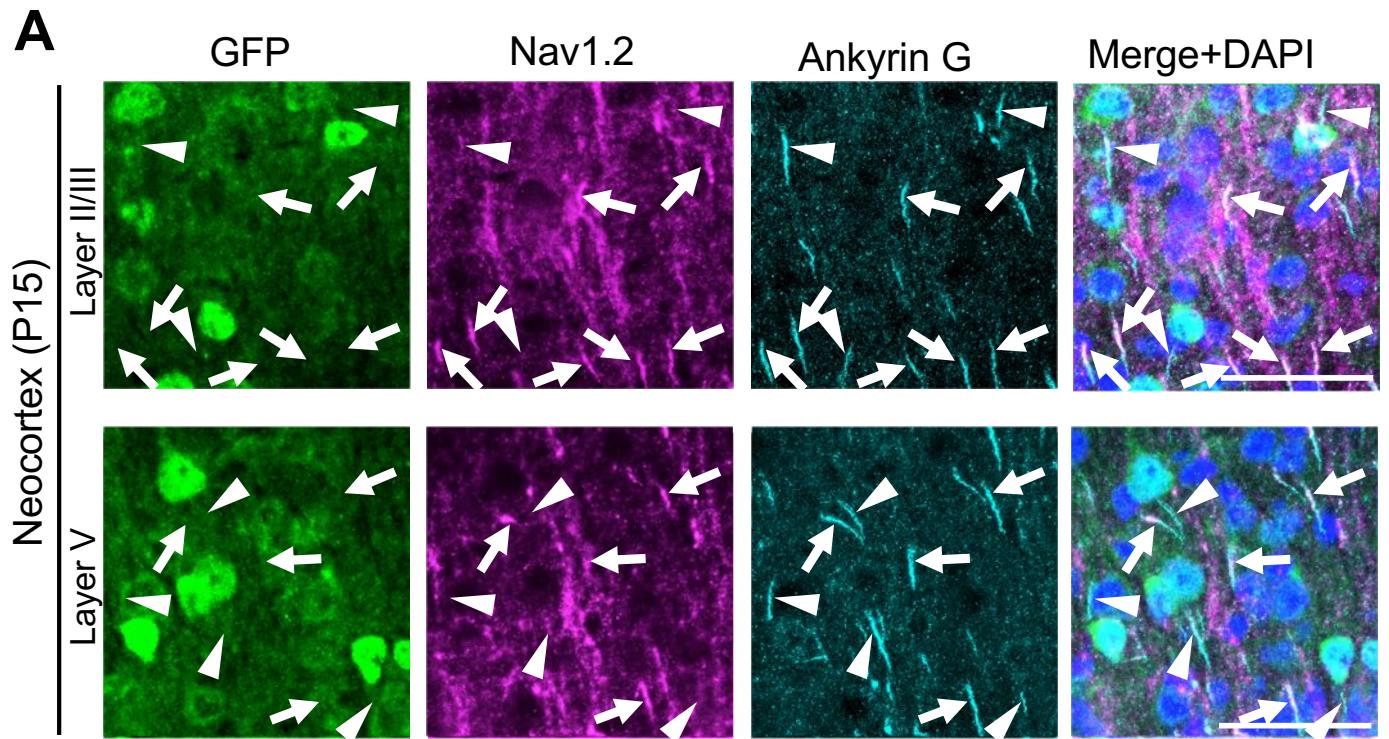

Yamagata et al., Supplementary figure S7



Yamagata et al., Figure 5

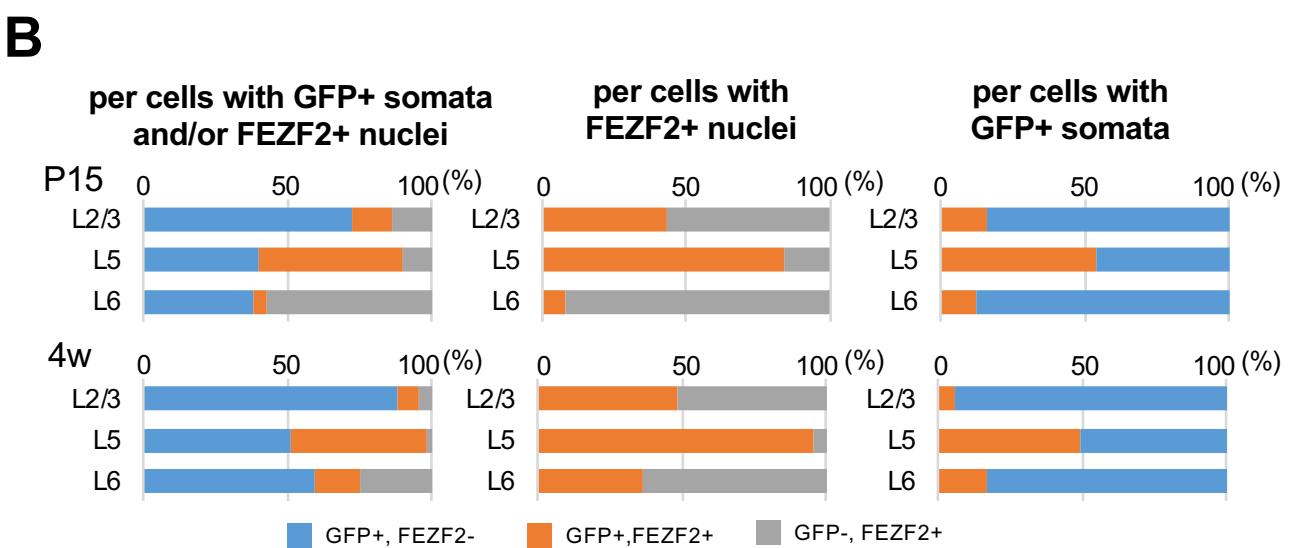
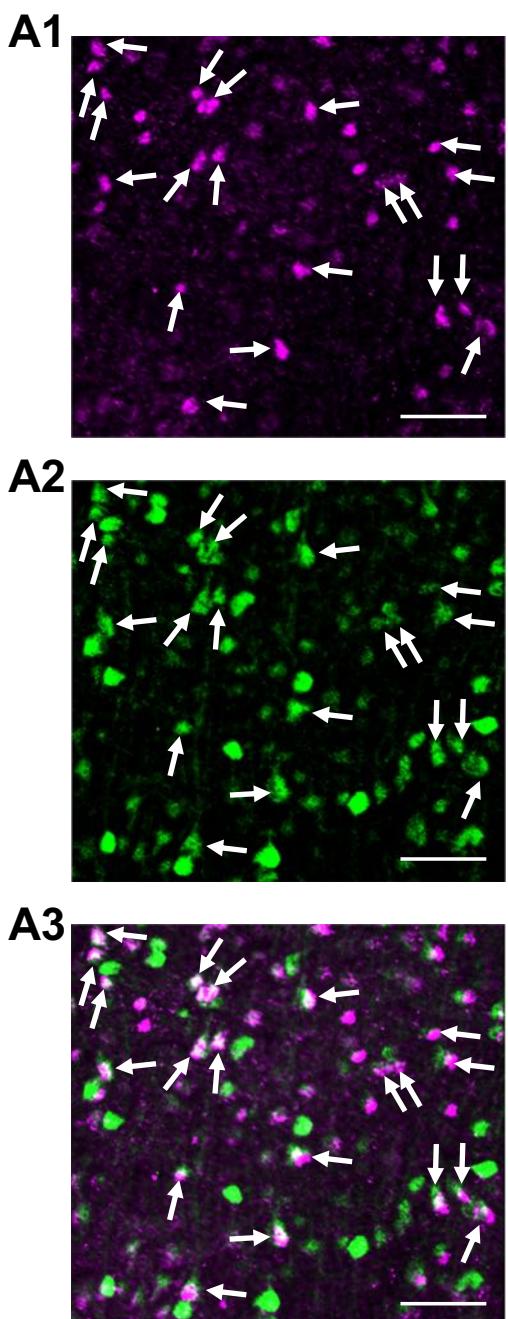
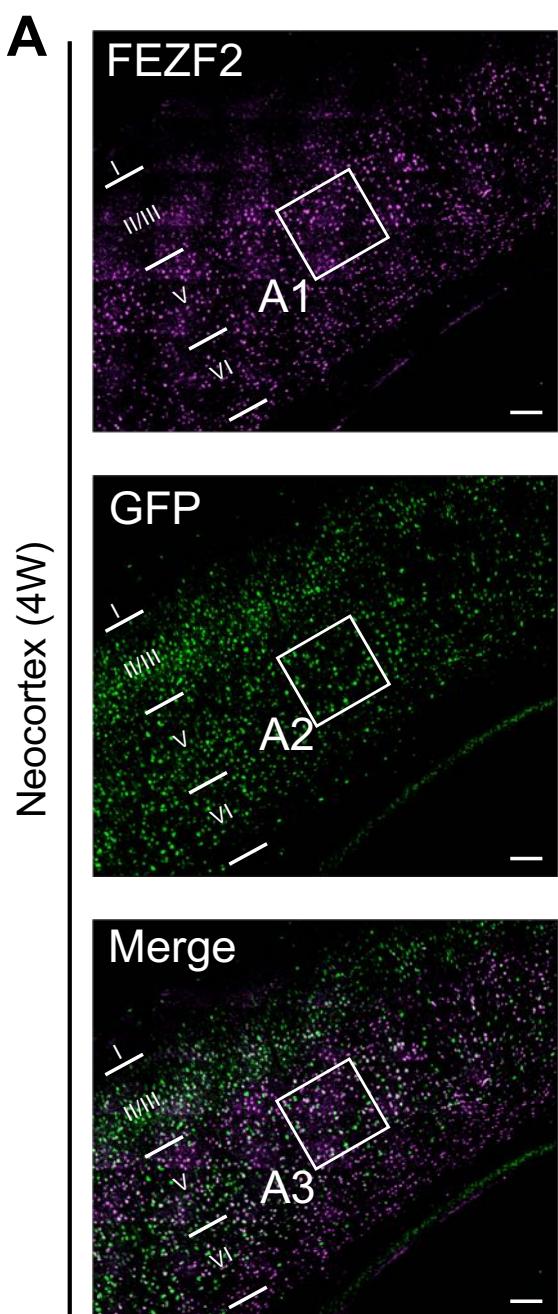


Yamagata et al., Figure 6

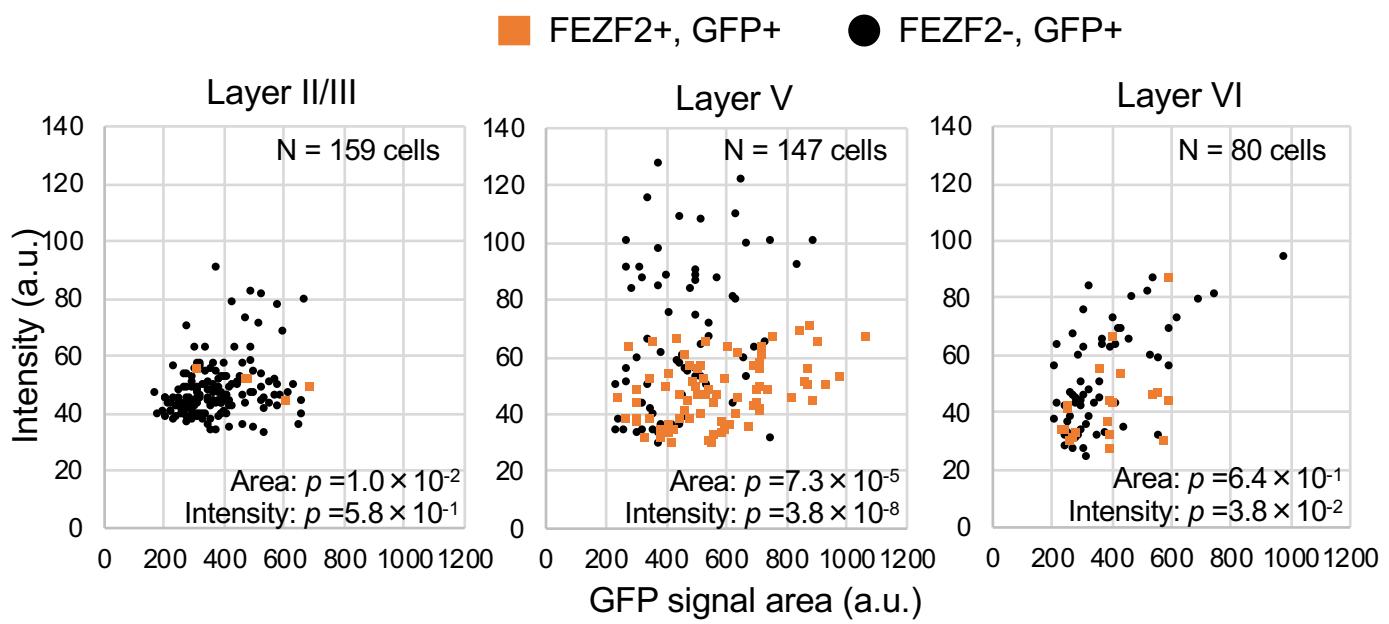


Yamagata et al., Figure 7

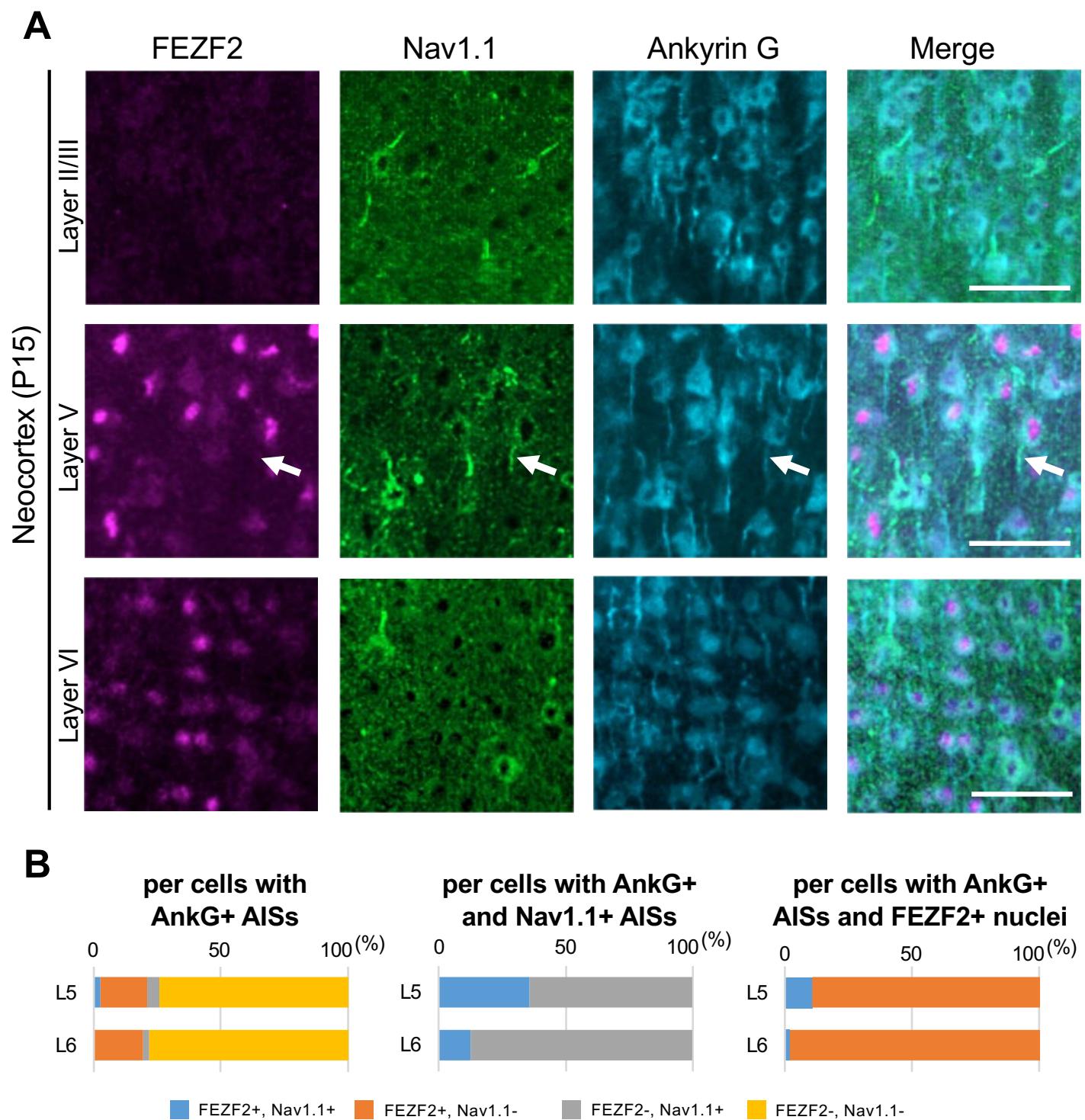
A**B**

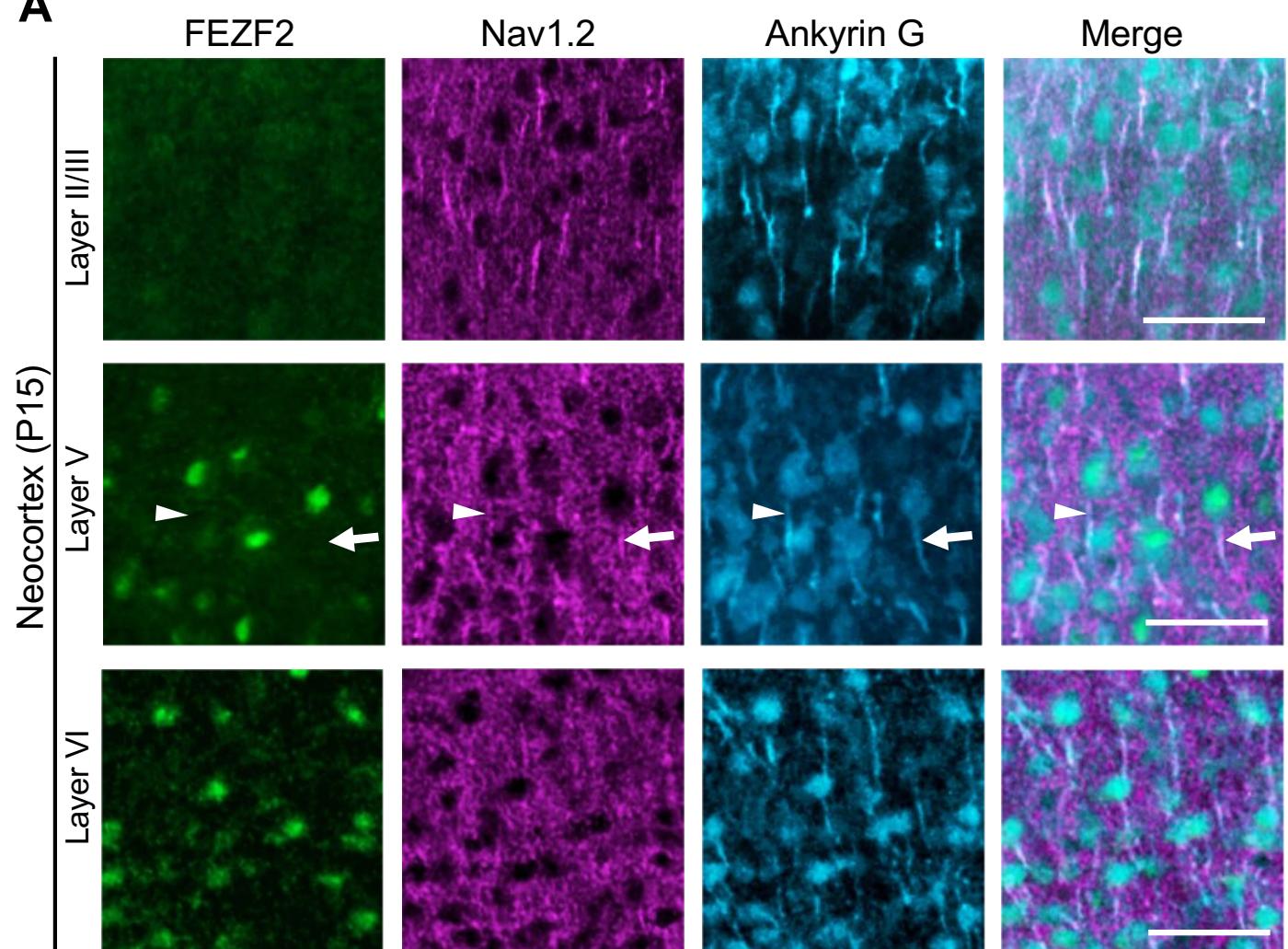
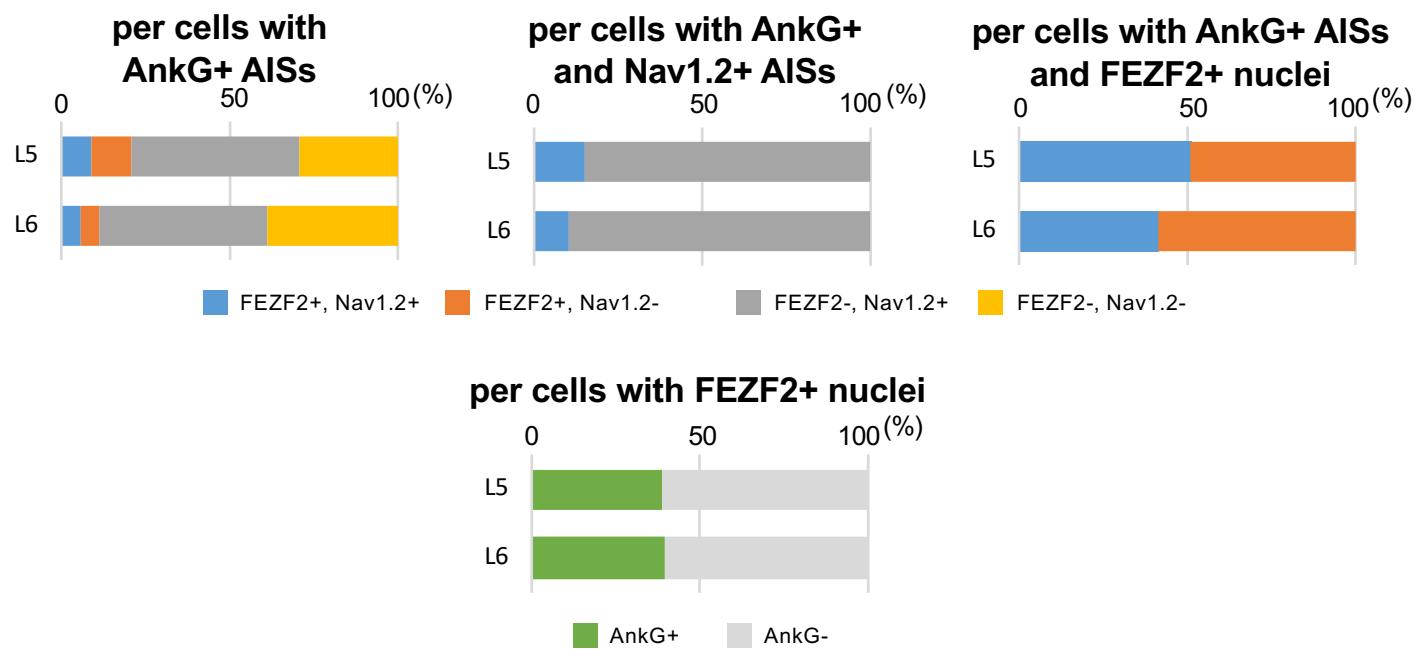


Yamagata et al., Figure 8

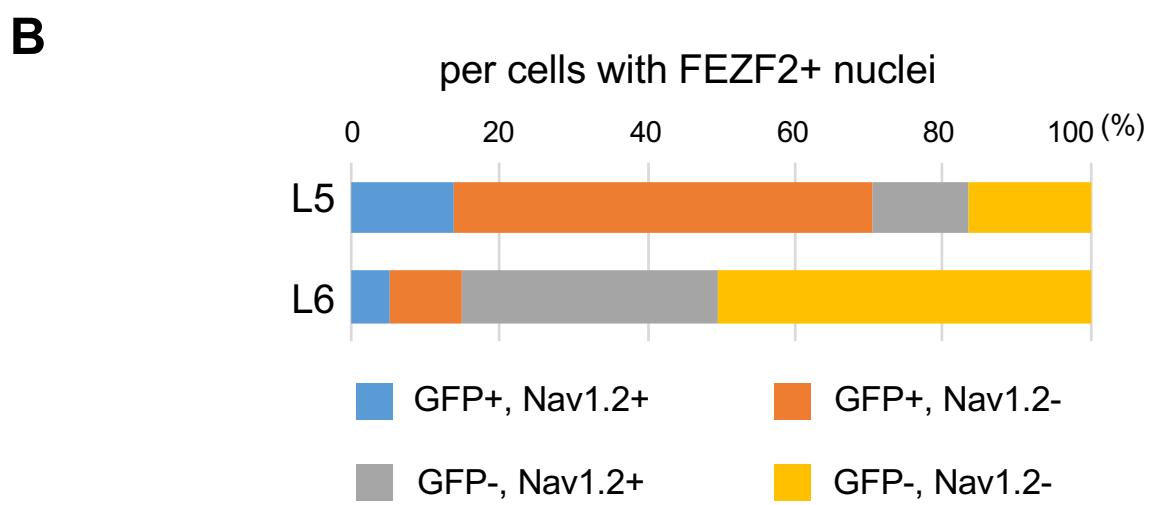
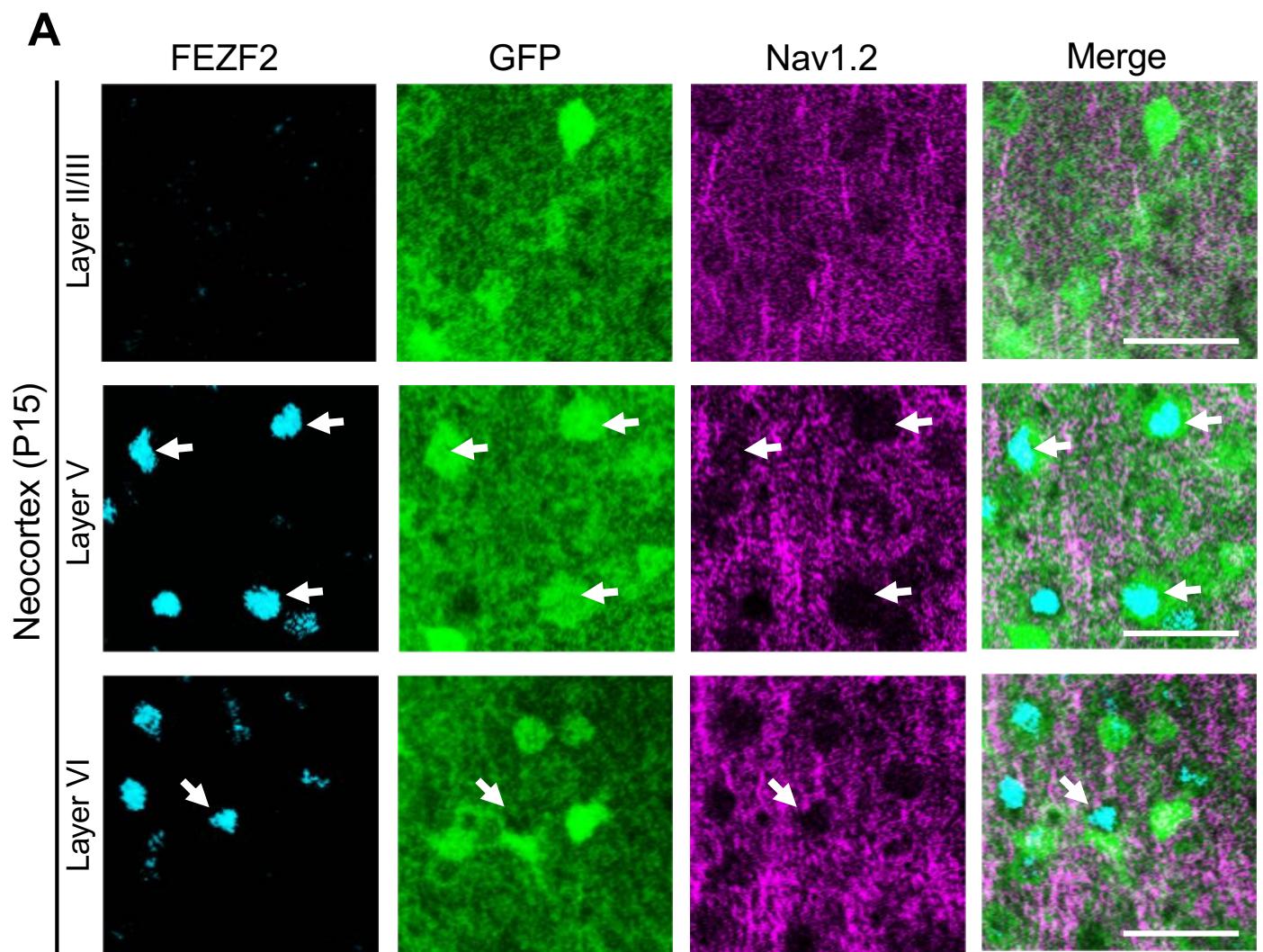
A**B**

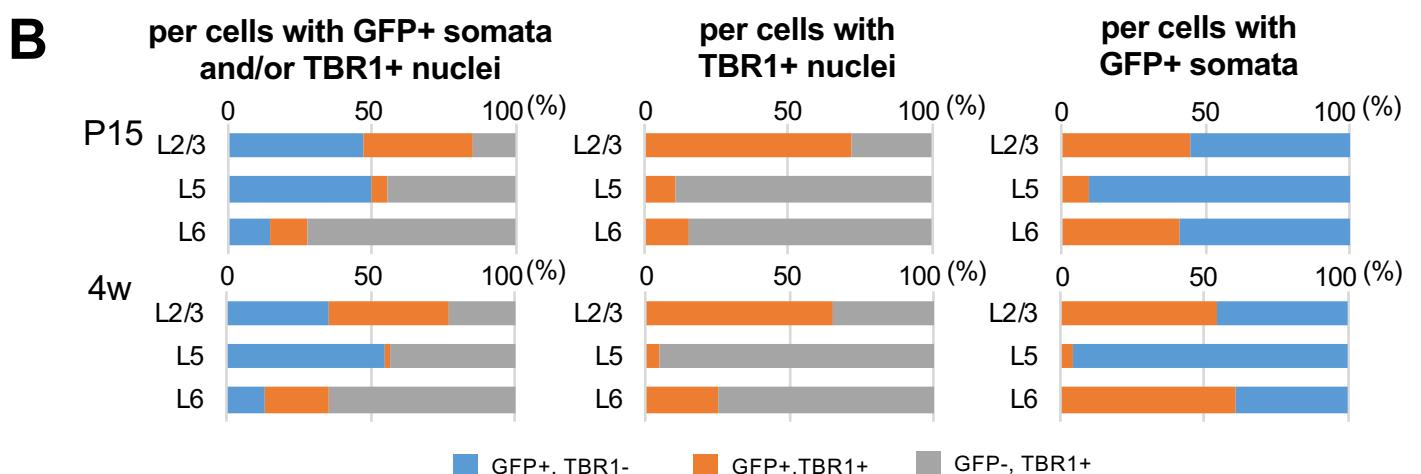
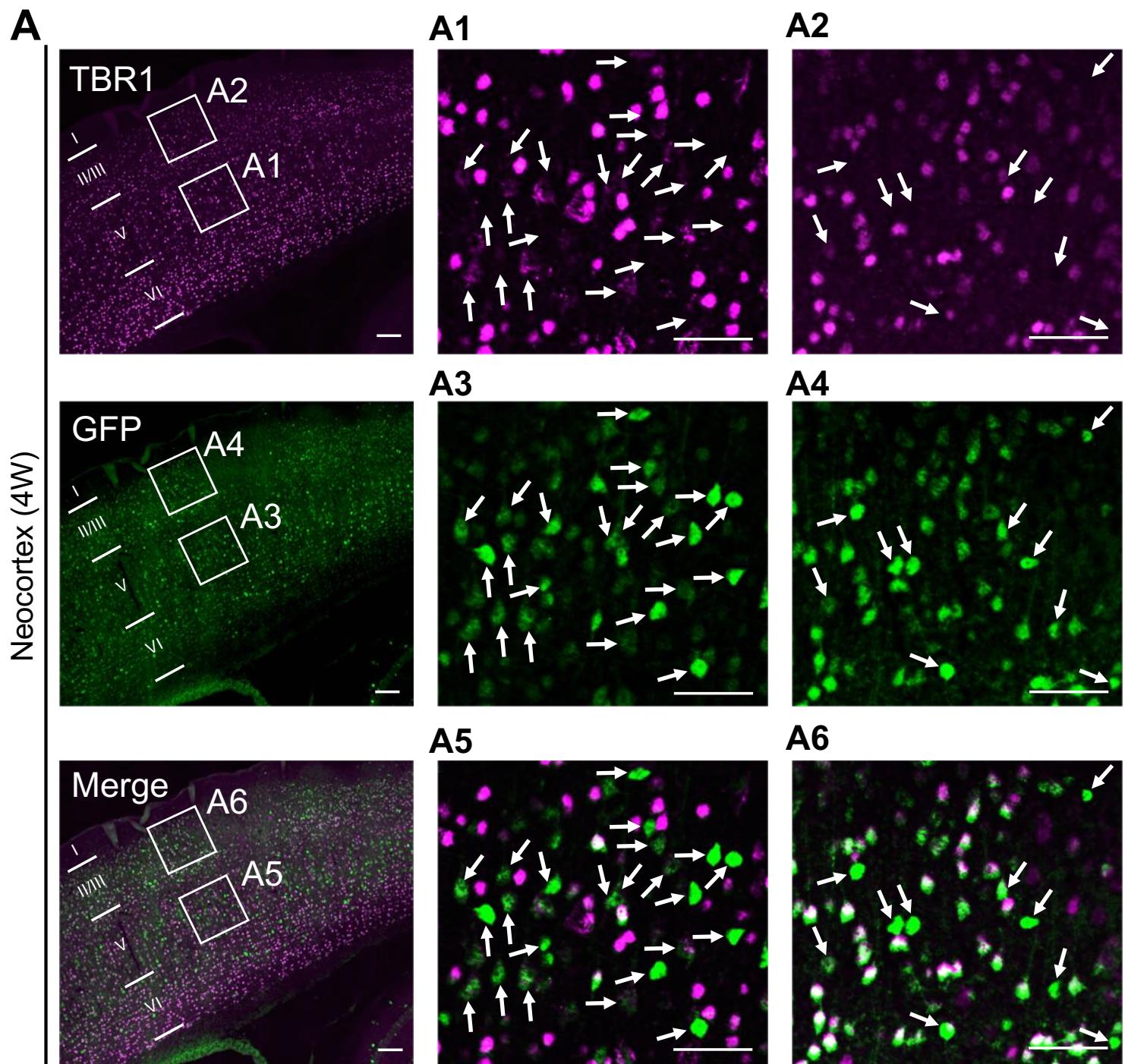



Yamagata et al., Figure 9


Yamagata et al., Figure 10

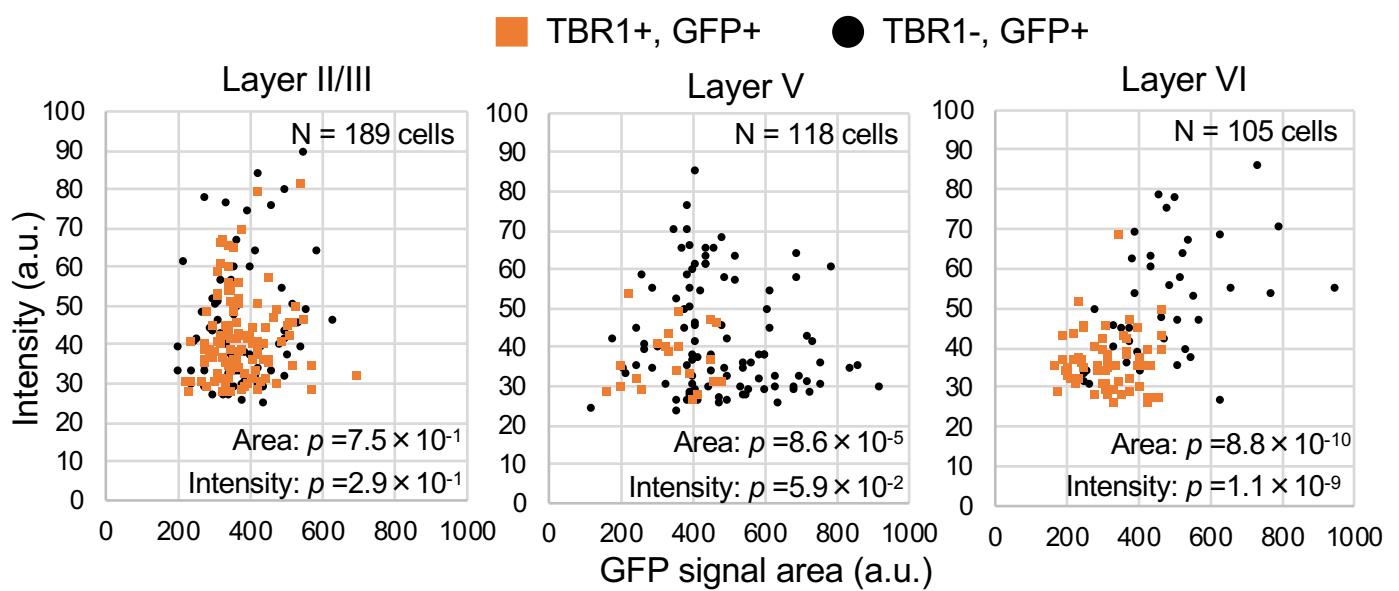

Yamagata et al., Figure 11

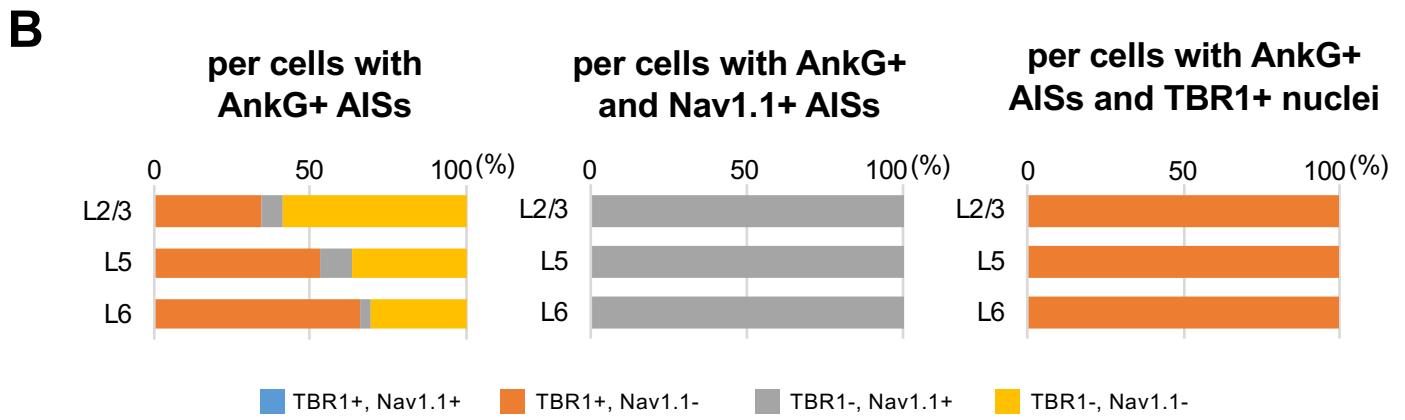
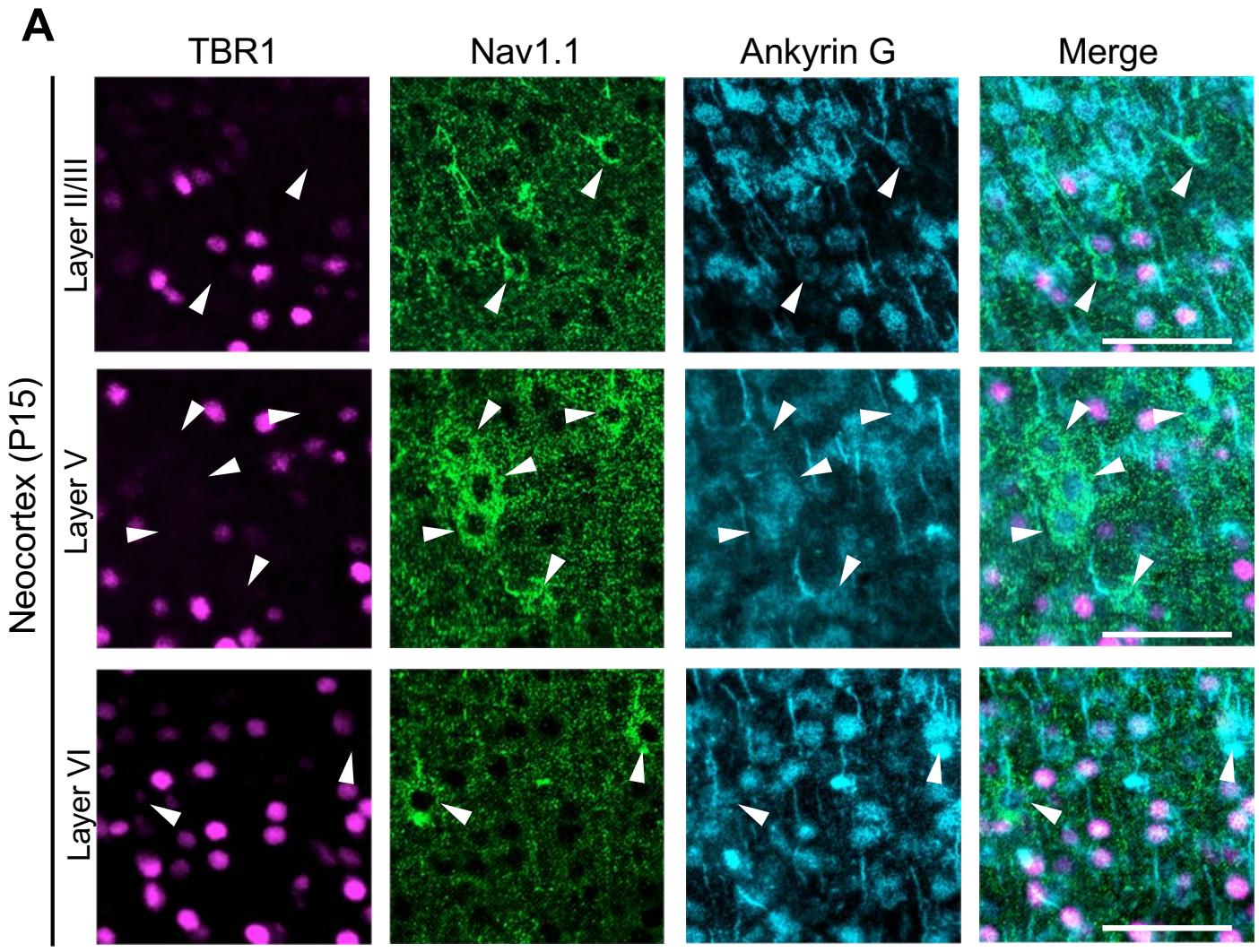


Yamagata et al., Figure 12

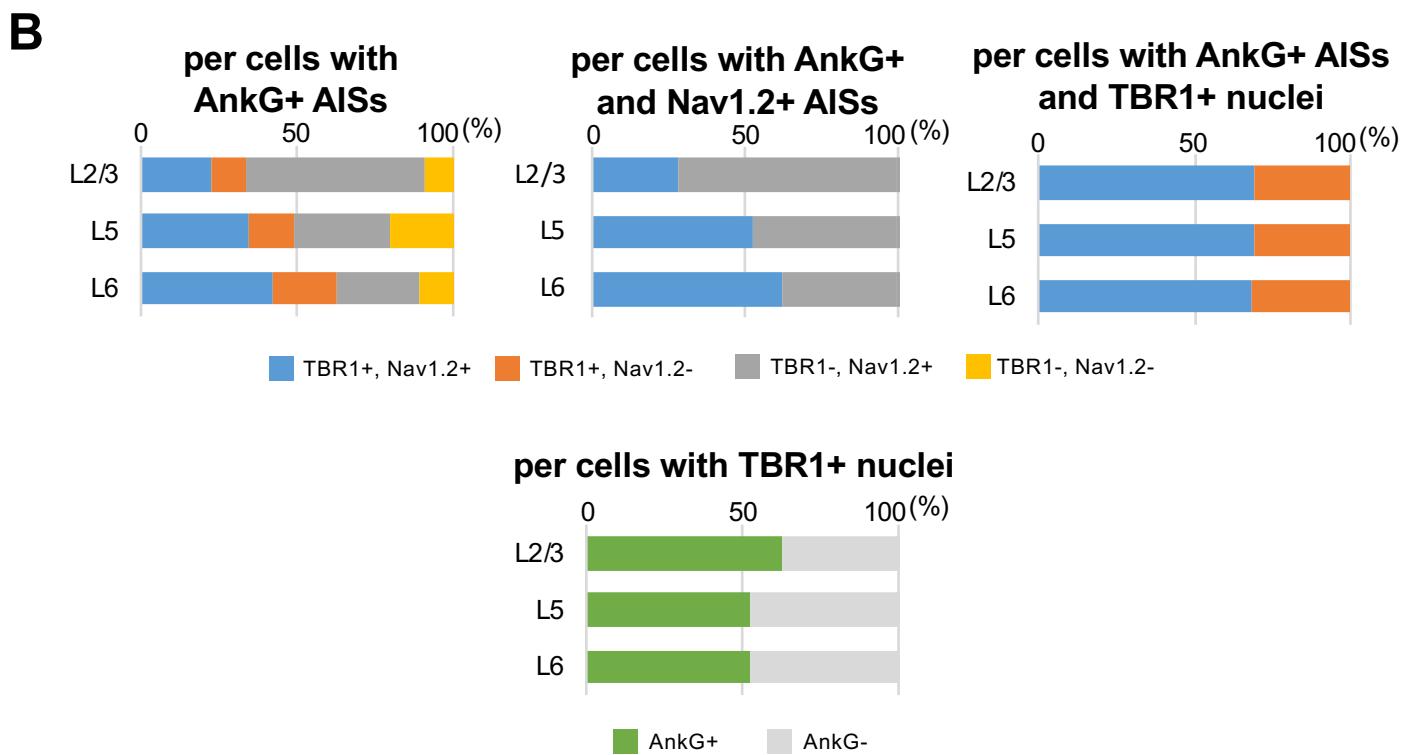
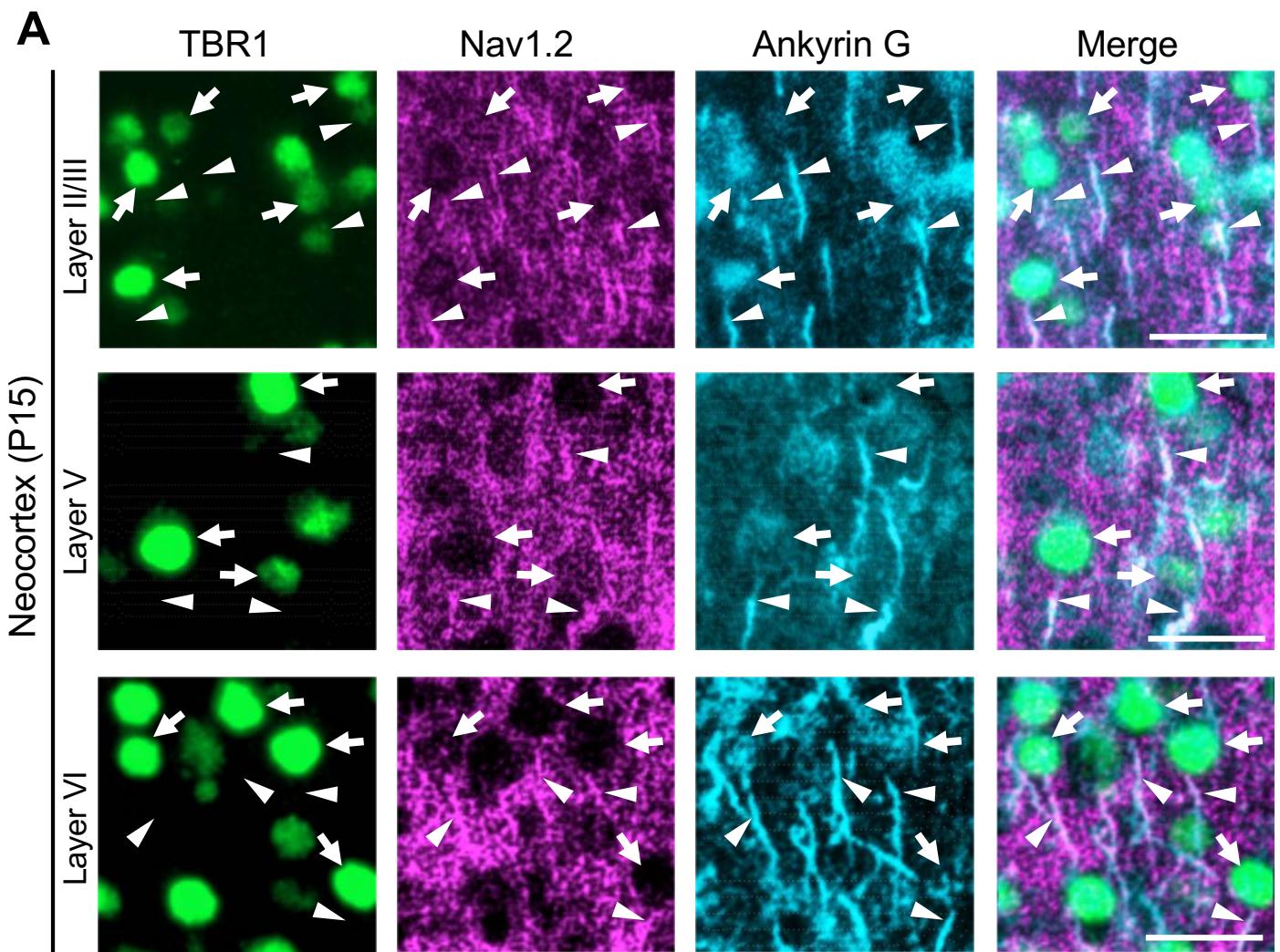



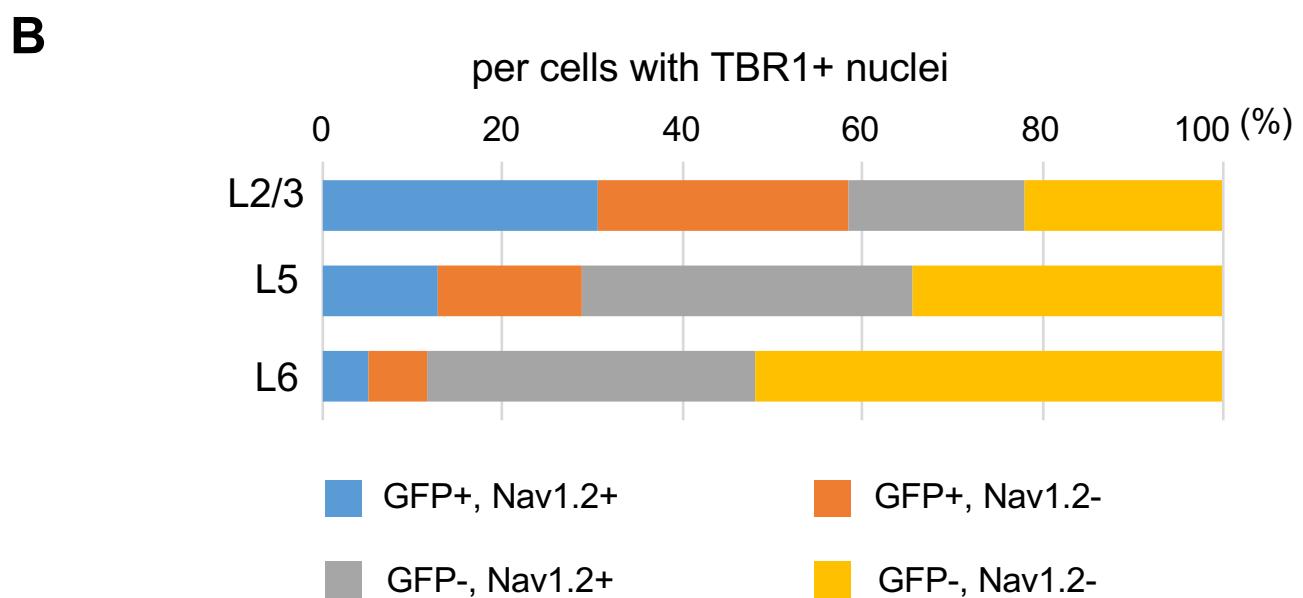
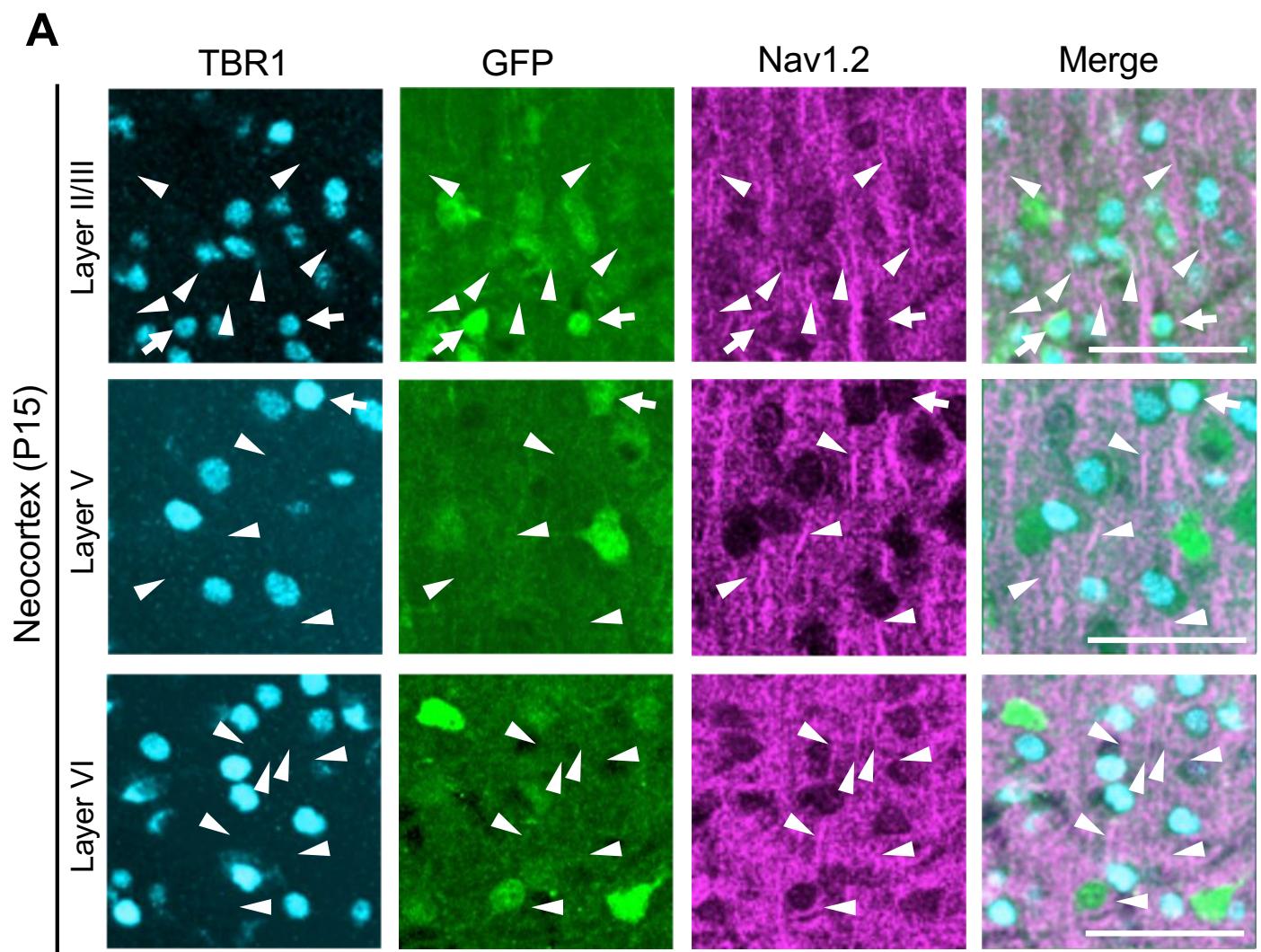
Yamagata et al., Figure 13

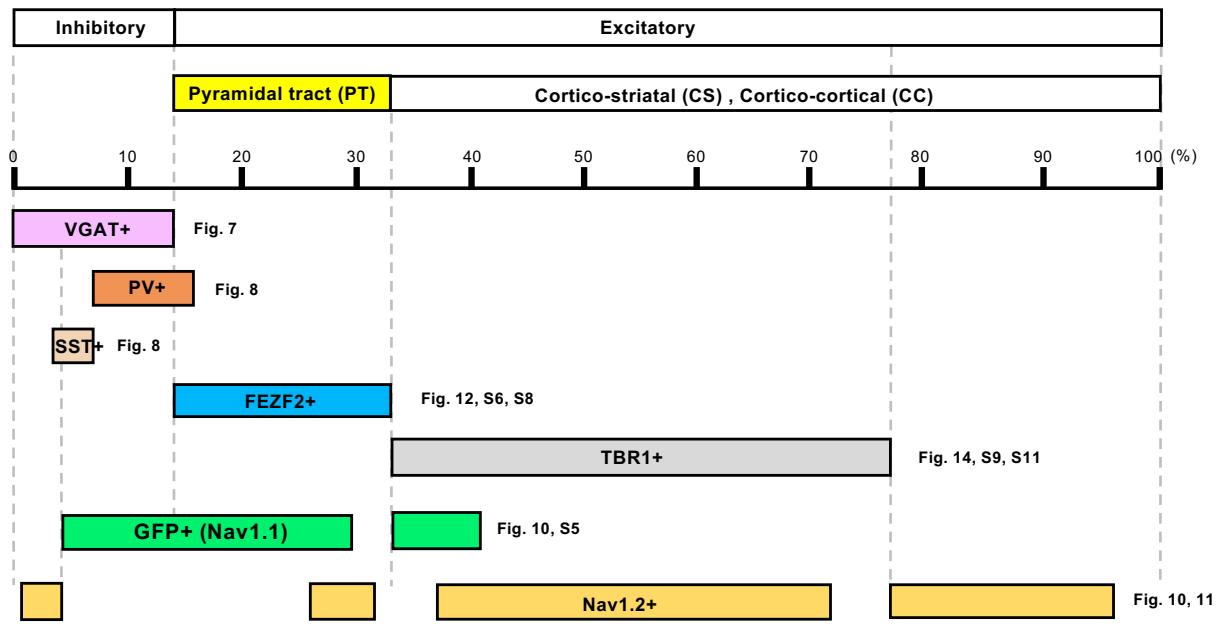


A**B**



Yamagata et al., Figure 14


Yamagata et al., Figure 15

Neocortical Layer V (L5) neurons

Yamagata et al., Supplementary figure S14