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Abstract Discovering the rules of synaptic plasticity is an important step for understanding
brain learning. Existing plasticity models are either 1) top-down and interpretable, but not flexible
enough to account for experimental data, or 2) bottom-up and biologically realistic, but too
intricate to interpret and hard to fit to data. To avoid the shortcomings of these approaches, we
present a new plasticity rule based on a geometrical readout mechanism that flexibly maps
synaptic enzyme dynamics to predict plasticity outcomes. We apply this readout to a
multi-timescale model of hippocampal synaptic plasticity induction that includes electrical
dynamics, calcium, CaMKIl and calcineurin, and accurate representation of intrinsic noise sources.
Using a single set of model parameters, we demonstrate the robustness of this plasticity rule by
reproducing nine published ex vivo experiments covering various spike-timing and
frequency-dependent plasticity induction protocols, animal ages, and experimental conditions.
Our model also predicts that in vivo-like spike timing irregularity strongly shapes plasticity
outcome. This geometrical readout modelling approach can be readily applied to other excitatory
or inhibitory synapses to discover their synaptic plasticity rules.

Introduction

To understand how brains learn, we need to identify the rules governing how synapses change their
strength in neural circuits. What determines whether each synapse strengthens, weakens, or stays
the same? The dominant principle at the basis of current models of synaptic plasticity is the Hebb
postulate (Hebb, 1949) which states that neurons with correlated electrical activity strengthen their
synaptic connections, while neurons active at different times weaken their connections. In particu-
lar, spike-timing-dependent plasticity (STDP) models (Blum and Abbott, 1996; Gerstner et al., 1996;
Eurich et al., 1999) were formulated based on experimental observations that precise timing of
pre- and post-synaptic spiking determines whether synapses are strengthened or weakened (De-
banne et al., 1996; Tsodyks and Markram, 1997, Bi and Poo, 1998; Markram et al., 2011). However,
experiments also found that plasticity induction depends on the rate and number of stimuli de-
livered to the synapse (Dudek and Bear, 1992; Sjéstrom et al., 2007), and the level of dendritic
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spine depolarisation (Artola et al., 1990; Magee and Johnston, 1997; Sjostrom and Hdusser, 2006;
Golding et al., 2002; Hardie and Spruston, 2009). The lack of satisfactory plasticity models based
solely on neural spiking prompted researchers to consider simple models based on synapse bio-
chemistry (Castellani et al., 2001, 2005). Following a proposed role for postsynaptic calcium (Ca%*)
signalling in synaptic plasticity (Lisman, 1989), previous models assumed that the amplitude of
postsynaptic calcium controls long-term alterations in synaptic strength, with moderate levels of
calcium causing long-term depression (LTD) and high calcium causing long-term potentiation (LTP)
(Shouval et al., 2002; Karmarkar and Buonomano, 2002). However experimental data suggests
that calcium dynamics are also important (Yang et al., 1999; Mizuno et al., 2001; Wang et al., 2005;
Nevian and Sakmann, 2006; Tigaret et al., 2076). As a result, subsequent phenomenological mod-
els of plasticity incorporated slow variables that integrate the fast synaptic input signals, loosely
modelling calcium and its downstream effectors (Abarbanel et al., 2003; Rubin et al., 2005; Rack-
ham et al., 2010; Clopath and Gerstner, 2010; Kumar and Mehta, 2011; Graupner and Brunel, 2012;
Honda et al., 2013; Standage et al., 2014; De Pitta and Brunel, 2016). Concurrently, more detailed
models tried to explicitly describe the molecular pathways integrating the calcium dynamics and
its stochastic nature (Cai et al., 2007; Shouval and Kalantzis, 2005; Miller et al., 2005; Zeng and
Holmes, 2010; Yeung et al., 2004). However, even these models do not account for data showing
that plasticity is highly sensitive to physiological conditions such as the developmental age of the
animal (Dudek and Bear, 1993; Meredith et al., 2003; Cao and Harris, 2012; Cizeron et al., 2020),
extracellular calcium and magnesium concentrations (Mulkey and Malenka, 1992; Inglebert et al.,
2020) and tissue temperature (Volgushev et al., 2004; Wittenberg and Wang, 2006; Klyachko and
Stevens, 2006). The fundamental issue is that the components of these phenomenological models
do not directly map to biological components of synapses, so they cannot automatically model
alterations due to physiological and experimental conditions. This absence limits the predictive
power of this class of plasticity models.

An alternative approach taken by several groups (Bhalla and Iyengar, 1999; Jedrzejewska-Szmek
et al., 2017; Blackwell et al., 2019; Chindemi et al., 2020; Zhang et al., 2021) was to model the com-
plex molecular cascade leading to synaptic weight changes. The main benefit of this approach
is the direct correspondence between the model's components and biological elements, but this
comes at the price of a large number of poorly constrained parameters. Additionally, the increased
number of nonlinear equations and stochasticity makes fitting to plasticity experiment data diffi-
cult (Mdki-Marttunen et al., 2020). Subtle differences between experimental STDP protocols can
produce completely different synaptic plasticity outcomes, indicative of finely tuned synaptic be-
haviour. This raises major challenges for both simple and complex models.

To tackle this problem, we devised a new plasticity rule based on a bottom-up, data-driven ap-
proach by building a biologically-grounded model of plasticity induction at a single rat hippocampal
CA3-CA1 synapse. We focused on this synapse type because of the abundant published exper-
imental data that can be used to quantitatively constrain the model parameters. Compared to
previous models in the literature, we aimed for an intermediate level of detail: enough biophysical
components to capture the key dynamical processes underlying plasticity induction, but not the
detailed molecular cascade underlying plasticity expression; much of which is poorly quantified for
the various experimental conditions we cover in this study.

Our model is centred on dendritic spine electrical dynamics, calcium signalling and immediate
downstream molecules, which we then map to synaptic strength change via a conceptually new
dynamical, geometric readout mechanism. Crucially, the model also captured intrinsic noise based
on the stochastic switching of synaptic receptors and ion channels (Yuste et al., 1999; Ribrault et al.,
2017). We found that, with a single set of parameters, the model can account for published data
from spike-timing and frequency-dependent plasticity experiments, and variations in physiological
parameters influencing plasticity outcomes. We also tested how the model responded to in vivo-
like spike timing jitter and spike failures, and found that the plasticity rules were highly sensitive
to these subtle input alterations.
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Figure 1. | The synapse model, its timescales and mechanisms. a, Model diagram with the synaptic components including pre and
postsynaptic compartments and inhibitory transmission (bottom left). b, Stochastic dynamics of the different ligand-gated and voltage-gated ion
channels in the model. Plots show the total number of open channels as a function of time. AMPAr, NMDAr: AMPA- and NMDA-type glutamate
receptors respectively; GABA(A)r: Type A GABA receptors; VGCC: R-, T- and L-type voltage-gated Ca2+ channels; SK: SK potassium channels. The
insets show a zoomed time axis highlighting the difference in timescale of the activity among the channels. ¢, Dendritic spine membrane
potential (left) and calcium concentration (right) as function of time for a single causal (1Pre1Post10) stimulus (EPSP: single excitatory
postsynaptic potential, "1Pre"; BaP: single back-propagated action potential, "1Post"). d, Left: depletion of vesicle pools (reserve and docked)
induced by 30 pairing repetitions delivered at 5 Hz (Sterratt et al., 2011), see Methods and Materials. The same depletion rule is applied to both
glutamate- and GABA-containing vesicles. Right: BaP efficiency as function of time. BaP efficiency phenomenologically captures the
distance-dependent attenuation of BaP (Buchanan and Mellor, 2007; Golding et al., 2001), see Methods and Materials. e, Concentration of
active enzyme for CaM, CaN and CaMKII, as function of time triggered by 30 repetitions of 1Pre1Post10 pairing stimulations delivered at 5 Hz.
The vertical grey bar is the duration of the stimuli, 6 s. The multiple traces in the graphs in panels c (right) and e reflect the run-to-run variabiltity
due to the inherent stochasticity in the model.

.= Results

»s A multi-timescale model of synaptic plasticity induction.

oa  We builta computational model of plasticity induction at a single CA3-CA1 rat glutamatergic synapse
os (Figure T). Our goal was to reproduce results on synaptic plasticity that explored the effects of
o6 several experimental parameters: fine timing differences between pre and postsynaptic spiking
oz (Figure 2 and Figure 3); stimulation frequency (Figure 4); animal age (Figure 5); external calcium
es and magnesium (Figure 6); stochasticity in the firing structure (Figure 7), temperature and exper-
oo imental conditions variations (Supplemental files). Where possible, we set parameters to values
100 previously estimated from synaptic physiology and biochemistry experiments, and tuned the re-
102 mainder within physiologically plausible ranges to reproduce our target plasticity experiments (see
102 Methods and Materials).

103 The model components are schematized in Figure 1a (full details in Methods and Materials).
104 For glutamate release, we used a two-pool vesicle depletion and recycling system, which accounts
15 for short-term presynaptic depression and facilitation. When glutamate is released from vesicles, it

3 of 64


https://doi.org/10.1101/2021.03.30.437703
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.30.437703; this version posted May 4, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

can bind to the postsynaptic a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-
D-aspartate receptors (AMPArs and NMDArs, respectively), depolarizing the spine head by ~30 mV
(Kwon et al., 2017; Jayant et al., 2017; Beaulieu-Laroche and Harnett, 2018). The dendritic spine
membrane depolarization causes the activation of voltage-gated calcium channels (VGCCs) and
removes magnesium ([Mg?*],) block from NMDArs. Backpropagating action potentials (BaP) can
also depolarize the spine membrane by up to ~60 mV (Kwon et al., 2017; Jayant et al., 2017). As an
inhibitory component, we modelled a gamma-aminobutyric acid receptor (GABAr) synapse on the
dendrite shaft (Destexhe et al., 1998). Calcium ions influx through VGCCs and NMDArs can activate
SK potassium channels (Adelman et al., 2012; Griffith et al., 2016), which provide a tightly-coupled
local negative feedback limiting spine depolarisation. Upon entering the spine, calcium ions also
bind to calmodulin (CaM). Calcium-bound CaM in turn activates two major signalling molecules (Fu-
jii et al., 2013): Ca**/calmodulin-dependent protein kinase Il (CaMKIl) and calcineurin (CaN) phos-
phatase, also known as PP2B (Saraf et al., 2018). We included these two enzymes because of
the overwhelming evidence that CaMKIl activation is necessary for Schaffer-collateral LTP (Giese
et al., 1998; Chang et al., 2017), while CaN activation is necessary for LTD (O’Connor et al., 2005;
Otmakhov et al., 2015). Later, we show how we map the joint activity of CaMKIl and CaN to LTP
and LTD. Ligand-gated ion channels (ionotropic receptors) and voltage-gated ion channels have
an inherent random behavior, stochastically switching between open and closed states (Ribrault
et al., 2011). If the number of ion channels is large, then the variability of the total population
activity becomes negligible relative to the mean (0’Donnell and Van Rossum, 2014). However in-
dividual hippocampal synapses contain only small numbers of receptors and ion channels, for
example they contain ~10 NMDArs and <15 VGCCs (Takumi et al., 1999; Sabatini and Svoboda,
2000; Nimchinsky et al., 2004), making their total activation highly stochastic. Therefore, we mod-
elled AMPAr, NMDAr, VGCCs and GABAr as stochastic processes. Presynaptic vesicle release events
were also stochastic: glutamate release was an all-or-none event, and the amplitude of each glu-
tamate pulse was drawn randomly, modelling heterogeneity in vesicle size (Liu et al., 1999). The
inclusion of stochastic processes to account for an intrinsic noise in synaptic activation (Deperrois
and Graupner, 2020) contrasts with most previous models in the literature, which either represent
all variables as continuous and deterministic or add an external generic noise source (Bhalla, 2004;
Antunes and De Schutter, 2012; Bartol et al., 2015).

The synapse model showed nonlinear dynamics across multiple timescales. For illustration,
we stimulated the synapse with single simultaneous glutamate and GABA vesicle releases (Figure
1h). AMPArs and VGCCs open rapidly but close again within a few milliseconds. The dendritic
GABAr closes more slowly, on a timescale of ~10 ms. NMDArs, the major calcium source, closes
on timescales of ~50 ms and ~250 ms for the GIUN2A and GIuN2B subtypes, respectively.

To show the typical responses of the spine head voltage and Ca**, we stimulated the synapse
with a single presynaptic pulse (EPSP) paired 10 ms later with a single BaP (1Pre1Post10) (Figure
1c left). For this pairing, the arrival of a BaP at the spine immediately after an EPSP, leads to a
large Ca>* transient aligned with the BaP due to the NMDArs first being bound by glutamate then
unblocked by the BaP depolarisation (Figure 1c right).

Single pre or postsynaptic stimulation pulses did not cause depletion of vesicle reserves or sub-
stantial activation of the enzymes. To illustrate these slower-timescale processes, we stimulated
the synapse with a prolonged protocol: one presynaptic pulse followed by one postsynaptic pulse
10 ms later, repeated 30 times at 5 Hz (Figure 71d-e). The number of vesicles in both the docked and
reserve pools decreased substantially over the course of the stimulation train (Figure 1d left), which
in turn causes decreased vesicle release probability. Similarly, by the 30th pulse, the dendritic BaP
amplitude had attenuated to ~85% (~70% BaP efficiency; Figure 1d right) of its initial amplitude,
modelling the effects of slow dendritic sodium channel inactivation (Colbert et al., 1997; Golding
et al., 2007). Free CaM concentration rose rapidly in response to calcium transients but also de-
cayed back to baseline on a timescale of ~500 ms (Figure 7e top). In contrast, the concentration of
active CaMKIl and CaN accumulated over a timescale of seconds, reaching a sustained peak during
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the stimulation train, then decayed back to baseline on a timescale of ~10 and ~120 s respectively,
in line with experimental data (Quintana et al., 2005; Fujii et al., 2013; Chang et al., 2017) (Figure
Te).

The effects of the stochastic variables can be seen in Figure 1b-d. The synaptic receptors and
ion channels open and close randomly (Figure 1b). Even though spine voltage, calcium, and down-
stream molecules were modelled as continuous and deterministic, they inherited some random-
ness from the upstream stochastic variables. As a result, there was substantial trial-to-trial variabil-
ity in the voltage and calcium responses to identical pre and postsynaptic spike trains (grey traces
in Figure 1c). This variability was also passed on to the downstream enzymes CaM, CaMKIl and CaN,
but was filtered and therefore attenuated by the slow dynamics of CaMKIl and CaN. In summary,
the model contained stochastic nonlinear variables acting over five different orders of magnitude
of timescale, from ~1 ms to ~1 min, making it sensitive to both fast and slow components of input
signals.

Distinguishing between stimulation protocols using the CaMKIl and CaN joint re-
sponse.

It has proven difficult for simple models of synaptic plasticity to capture the underlying rules and ex-
plain why some stimulation protocols induce plasticity while others do not. We tested the model's
sensitivity by simulating its response to a set of protocols used by Tigaret et al. (2016) in a recent
ex vivo experimental study on adult (P50-55) rat hippocampus with blocked GABAr. We focused
on three pairs of protocols (three rows in Figure 2). For each of these pairs, one of the protocols
experimentaly induced LTP or LTD, while the other subtly different protocol caused no change (NC)
in synapse strength. Notably, three leading spike-timing and calcium-dependent plasticity models
(Song et al., 2000; Pfister and Gerstner, 2006; Graupner and Brunel, 2012) could not fit these data
(Figure 3-Figure Supplement 1 a,b and c). We thus asked if, by contrast, our new model could
distinguish between each pair of protocols by assigning the correct plasticity outcome.

The first pair of protocols differed in intensity. A protocol which caused no plasticity consisted
of 1 presynaptic spike followed 10 ms later by one postsynaptic spike repeated at 5 Hz for one
minute (1Pre1Post10, 300 at 5Hz). The other protocol induced LTP, but differed only in that it
included a postsynaptic doublet instead of a single spike (1Pre2Post10, 300 at 5Hz), implying a
slightly stronger initial BaP amplitude. We first attempted to achieve separability by plotting CaMKII
or CaN activities independently. As observed in the plots in Figure 2a, it was not possible to set
a single concentration threshold on either CaMKIl or CaN that would discriminate between the
protocols. This result was expected, at least for CaMKII, as recent experimental data demonstrates
a fast saturation of CaMKIIl concentration in dendritic spines regardless of stimulation frequency
(Chang et al., 2017).

To achieve better separability we set out to test a different approach, which was to combine the
activity of the two enzymes, by plotting the joint CaMKIl and CaN responses against each other on
a 2D plane (Figure 2b). This innovative geometric plot is based on a mathematical concept of orbits
from dynamical systems theory (Meiss, 2007). In this plot, the trajectories of two protocols can be
seen to overlap for the initial part of the transient and then diverge. To quantify trial to trial vari-
ability, we also calculated contour maps showing the mean fraction of time the trajectories spent
in each part of the plane during the stimulation (Figure 2c). Importantly, both the trajectories and
contour maps were substantially non-overlapping between the two protocols, implying that they
can be separated based on the joint CaN-CaMKII activity. We found that the 1Pre2Post10 protocol
leads to a weaker response in both CaMKIl and CaN, corresponding to the lower blue traces in
Figure 2b. The decreased response to the doublet protocol was due to the stronger attenuation of
dendritic BaP amplitude over the course of the simulation (Golding et al., 2007), leading to reduced
calcium influx through NMDArs and VGCCs (data not shown).

Using the second pair of protocols, we explored if this combined enzyme activity analysis could
distinguish between subtle differences in protocol sequencing. We stimulated our model with
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Figure 2. | The duration and amplitude of the joint CaN-CaMKII activity differentiates plasticity protocols. a, Time-course of active
enzyme concentration for CaMKII (solid line) and CaN (dashed line) triggered by two protocols consisting of 300 repetitions at 5 Hz of
1Pre2Post10 or 1Pre1Post10 stimulus pairings. Protocols start at time 0 s. Experimental data indicates that 1Pre2Post10 and 1Pre1Post10
produce LTP and no change (NC), respectively. b, Trajectories of joint enzymatic activity (CaN-CaMKIl) as function of time for the protocols in
panel a, starting at the initial resting state (filled black circle). The arrows show the direction of the trajectory and filled grey circles indicate the
time points at 2, 10 and 60 s after the beginning of the protocol represented as 2, 10 and 60 s. The region of the CaN-CaMKII plane enclosed in
the black square is expanded in panel c. ¢, Mean-time (colorbar) spent by the orbits in the CaN-CaMKIl plane region expanded from panel b for
each protocol (average of 100 samples). For panels ¢, f and i the heat maps were based on enzyme activity throughout the protocol plus a
further 10 s after the stimulation ended. d-f, CaN-CaMKII activities for the protocols 1Pre2Post50 (LTP-inducing) and 2Post1Pre50 (NC) depicted
in the same manner as in panels a-c. g-i, CaN-CaMKII activities for the LTD-inducing protocol 2Pre50 (900 repetitions at 3 Hz) and the NC
protocol 2Pre10 (300 repetitions at 5 Hz) depicted in the same manner as in panels a-c.

207 ONe causal paring protocol (EPSP-BaP) involving a single presynaptic spike followed 50 ms stimu-
208 lated our model with one causal paring protocol (EPSP-BaP) involving a single presynaptic spike
200 followed 50 ms later by a doublet of postsynaptic spikes (1Pre2Post50, 300 at 5Hz), repeated at
210 5 Hz for one minute, which caused LTP in Tigaret et al. (2016). The other anticausal protocol in-
211 volved the same total number of pre and postsynaptic spikes, but with the pre-post order reversed
212 (2Post1Pre50, 300 at 5Hz). Experimentally the anticausal (BaP-EPSP) protocol did not induce plas-
213 ticity (Tigaret et al., 2016). Notably, the only difference was the sequencing of whether the pre or
214 postsynaptic neuron fired first, over a short time gap of 50 ms. Despite the activations being ap-
215 parently difficult to distinguish (Figure 2d), we found that the LTP-inducing protocol caused greater
216 CaN activation than the protocol that did not trigger plasticity. Indeed, this translated to a horizon-
217 tal offsetin both the trajectory and contour map (Figure 2e-f), demonstrating that another pair of
218 protocols can be separated in the joint CaN-CaMKIl plane.
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The third pair of protocols differed in both duration and intensity. We thus tested the com-
bined enzyme activity analysis in this configuration. In line with a previous study (/saac et al.,
2009), Tigaret et al. (2016) found that a train of doublets of presynaptic spikes separated by 50
ms repeated at a low frequency of 3 Hz for 5 minutes (2Pre50, 900 at 3Hz) induced LTD, while a
slightly more intense but shorter duration protocol of presynaptic spike doublets separated by 10
ms repeated at 5 Hz for one minute (2Pre10, 300 at 5Hz) did not cause plasticity. When we sim-
ulated both protocols in the model (Figure 2g-i), both caused similar initial responses in CaMKII
and CaN. In the shorter protocol, this activation decayed to baseline within 100 s of the end of the
stimulation. However the slower and longer-duration 2Pre50 3Hz 900p protocol caused an addi-
tional sustained, stochastically fluctuating, plateau of activation of both enzymes (Figure 2g). This
resulted in the LTD-inducing protocol having a downward and leftward-shifted CaN-CaMKII trajec-
tory and contour plot, relative to the other protocol (Figure 2h-i). These results again showed that
the joint CaN-CaMKII activity can predict plasticity changes.

A geometrical readout mapping joint enzymatic activity to plasticity outcomes.
The three above examples demonstrated that ploting the combined CaN-CaMKII activities in a 2D
plane allowed us to distinguish between subtly different protocols with correct assignment of plas-
ticity outcome. We found that the simulated CaN-CaMKIl trajectories from the two LTP-inducing
protocols (Figure 2a and Figure 2d) spent a large fraction of time near ~ 20 uM CaMKIl and 7-10 pM
CaN. In contrast, protocols that failed to trigger LTP had either lower (Figure 2d and g), or higher
CaMKIl and CaN activation (1Pre1Post10, Figure 2a). The LTD-inducing protocol, by comparison,
spent a longer period in a region of sustained but lower ~ 12uM CaMKIl and ~ 2uM CaN and acti-
vation. The plots in Figure 2¢, f and g, show contour maps of histograms of the joint CaMKII-CaN
activity, indicating where in the plane the trajectories spent most time. Figure 2c and f indicate that
this measure can be used to predict plasticity, because the NC and LTP protocol histograms are
largely non-overlapping. In Figure 2c, the NC protocol response "overshoots" the LTP protocol re-
sponse, whereas in Figure 2f the NC protocol response "undershoots" the LTP protocol response.
In contrast, when we compared the response histograms for the LTD and NC protocols, we found a
greater overlap (Figure 2i). This suggested that, in this case, the histogram alone was not sufficient
to separate the protocols, and that protocol duration is also important. LTD induction (2Pre50)
required a more prolonged activation than NC (2Pre10). We thus took advantage of these joint
CaMKII-CaN activity maps to design a minimal readout mechanism connecting combined enzyme
activity to LTP, LTD or no change (NC). We reasoned that this readout would need three key prop-
erties. First, since the CaMKII-CaN trajectories corresponding to LTP and LTD were not linearly sep-
arable, the readout requires nonlinear boundaries to activate the plasticity inducing components.
Second, since LTD requires more prolonged activity than LTP, the readout should be sensitive to
the timescale of the input. Third, a mechanism is required to convert the 2D LTP-LTD inducing
signals into a synaptic weight change. After iterating through several designs, we satisfied the first
property by designing "plasticity regions": polygons in the CaN-CaMKII plane that would detect
when trajectories pass through. We satisfied the second property by using two plasticity inducing
components with different time constants which low-pass-filter the plasticity region signals. We sat-
isfied the third property by feeding both the opposing LTP and LTD signals into a stochastic Markov
chain which accumulated the total synaptic strength change. Overall this readout mechanism acts
as a parsimonious model of the complex signalling cascade linking CaMKIl and CaN activation to
expression of synaptic plasticity (He et al., 2015). It can be considered as a two-dimensional exten-
sion of previous computational studies that applied analogous 1D threshold functions to dendritic
spine calcium concentration (Shouval et al., 2002; Karmarkar and Buonomano, 2002; Graupner
and Brunel, 2012; Standage et al., 2014).

We now elaborate on the readout design process. We first drew non-overlapping polygons
of LTP and LTD "plasticity regions" in the CaN-CaMKII plane (Figure 3a). We positioned these re-
gions over the parts of the phase space where the enzyme activities corresponding to the LTP- and
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LTD-inducing protocols were most different (Methods and Materials), as shown by trajectories in
Figure 2. When a trajectory enters in one of these plasticity regions, it activates LTD or LTP indica-
tor variables (Methods and Materials) which encode the joint enzyme activities (trajectories in the
phase plots) transitions across the LTP and LTD regions over time (Figure 3b). These indicator vari-
ables drove transition rates of a plasticity Markov chain used to predict LTP or LTD (Figure 3c), see
Methods and Materials. Intuitively, this plasticity Markov chain models the competing processes
of insertion/deletion of AMPArs to the synapse, although this is not represented in the model. The
LTD transition rates were slower than the LTP transition rates, to reflect studies showing that LTD
requires sustained synaptic stimulation (Yang et al., 1999; Mizuno et al., 2001; Wang et al., 2005).
The parameters for this plasticity Markov chain (Methods and Materials) were fit to the plastic-
ity induction outcomes from different protocols (Table 7). At the beginning of the simulation, the
plasticity Markov chain starts with 100 processes (Destexhe et al., 1998) in the state No Change
(NC), with each variable representing 1% weight change, an abstract measure of synaptic strength
that can be either EPSP, EPSC, or field EPSP slope depending on the experiment. Each process can
transit stochastically between NC, LTP and LTD states. At the end of the protocol, the plasticity out-
come is given by the difference between the number of processes in the LTP and the LTD states
(Methods and Materials).

In Figure 3d, we plot the model's responses to seven different plasticity protocols used by
Tigaret et al. (2016) by overlaying example CaMKII-CaN trajectories for each protocol with the LTP
and LTD regions. The corresponding region indicators are plotted as function of time in Figure
3e, and long-term alterations in the synaptic strength are plotted as function of time in Figure 3f.
The three protocols that induced LTP in the Tigaret et al. (2016) experiments spent substantial
time in the LTP region, and so triggered potentiation. In contrast, the 1Pre1Post10 overshoots
both regions, crossing them only briefly on its return to baseline, and so resulted in little weight
change. The protocol that induced LTD (2Pre50, purple trace) is five times longer than other pro-
tocols, spending sufficient time inside the LTD region (Figure 3f). In contrast, two other protocols
that spent time in the same LTD region of the CaN-CaMKII plane (2Post1Pre50 and 2Pre10) were
too brief to induce LTD. These protocols were also not strong enough to reach the LTP region, so
resulted in no net plasticity, again consistent with Tigaret et al. (2016) experiments.

We observed run-to-run variability in the amplitude of the predicted plasticity, due to the inher-
ent stochasticity in the model. To ensure that stochastic components are necessary for adequate
model behaviour, we compared stochastic and deterministic versions of the model with and with-
out discrete presynaptic release and found that adding stochastic components indeed modified
the model’s behaviour (Figure 3-Figure Supplement 2). Also, we confirmed that VGCCs are neces-
sary for accurate modelling of Tigaret et al. (2016) data as blocking these channels reproduced the
data obtained in VGCC blockers by Tigaret i.e. no potentiation could be elicited (Figure 3-Figure
Supplement 3). Finally, we stress in Figure 3-Figure Supplement 4 that the horizontal boundaries
(related to CaMKII activity) are indeed necessary.

In Figure 3g, we plot the distribution of the predicted plasticity from all the protocols (colours) of
Tigaret alongside the experimental data (Tigaret et al., 2016). We find a very good correspondence
between the model and experiments. Of note, data fitting of the experiments in Tigaret et al. (2016)
(Figure 3g) was more accurate with our model than the fitting obtained with existing leading spike-
or calcium-based STDP models (Song et al., 2000; Pfister and Gerstner, 2006; Graupner and Brunel,
2012), see Figure 3-Figure Supplement 1.

Experimentally, LTP can be induced by few pulses while LTD usually requires stimulation proto-
cols of longer duration (Yang et al., 1999; Mizuno et al., 2001; Wang et al., 2005). We incorporated
this effect into the geometrical readout model by letting LTP have faster transition rates than LTD
(Figure 3c). Tigaret et al. (2016) found that 300 repetitions of anticausal post-before-pre pairings
did not cause LTD, in contrast to the canonical spike-timing-dependent plasticity curve (Bi and Poo,
1998). We hypothesized that LTD might indeed appear with the anticausal protocol (Table 1) if
stimulation duration was increased. To explore this possibility in our model, we systematically
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Figure 3. | Read-out strategy to accurately model Tigaret et al. (2016) experiment. a, lllustration of the joint CaMKIl and CaN activities
crossing the plasticity regions. Arrows indicate the flow of time, starting at the filled black circle. Time is hidden so that changes in active enzyme
concentrations are seen more clearly. b, Region indicator showing when the joint CaN and CaMKII activity crosses the LTD or LTP regions in
panel a. For example, the LTP indicator is such that 1, ,p(x) = 1 if x € LT P and 0 otherwise. Leaving the region activates a leaking mechanism
that keeps track of the accumulated time inside the region. Such leaking mechanism drives the transition rates used to predict plasticity
(Methods and Materials). ¢, Plasticity Markov chain with three states: LTD, LTP and NC. There are only two transition rates which are functions
of the plasticity region indicator (Methods and Materials). The LTP transition is fast whereas the LTD transition is slow, meaning that LTD change
requires longer time inside the LTD region (panel a). The NC state starts with 100 processes. d, Joint CaMKIl and CaN activity for all protocols in
Tigaret et al. (2016) (shown in panel f). The stimulus ends when the trajectory becomes smooth. Trajectories correspond to those in Figure 2b,e
and h, at 60 s. e, Region indicator for the protocols in panel f. The upper square bumps are caused by the protocol crossing the LTP region, the
lower square bumps when the protocol crosses the LTD region (as in panel d). f, Synaptic weight (%) as function of time for each protocol. The
weight change is defined as the number (out of 100) of states in the LTP state minus the number of states in the LTD state (panel c). The
trajectories correspond to the median of the simulations in panel g. g, Synaptic weight change (%) predicted by the model compared to data
(EPSC amplitudes) from Tigaret et al. (2016) (100 samples for each protocol, also for panel h and i). The data (filled grey circles) was provided by
Tigaret et al. (2016) (note an 230% outlier as the red asterisk). h, Predicted mean synaptic weight change (%) as a function of delay (ms) and
number of pairing repetitions (pulses) for the protocol 1Pre2Post(delay), where delays are between -100 and 100 ms. LTD is induced by
2Post1Pre50 after at least 500 pulses. The mean weight change along each dashed line is reported in the STDP curves in panel i. i, Synaptic
weight change (%) as a function of pre-post delay. Each plot corresponds to a different pairing repetition number (color legend). The solid line
shows the mean, and the ribbons are the 2nd and 4th quantiles. The filled grey circles are the data means estimated in Tigaret et al. (2016), also
shown in panel g.

Figure 3-Figure supplement 1. Standard models comparison for predicting plasticity fail to account for the data from Tigaret et al. (2016).
Figure 3-Figure supplement 2. Comparison showing different roles of stochasticity in the model.

Figure 3-Figure supplement 3. Effects of blocking VGCCs.

Figure 3-Figure supplement 4. Exclusively setting vertical boundaries (no CaMKII selectivity) fails to capture the correct outcome.

Figure 3-Figure supplement 5. Varying Tigaret et al. (2016) experimental parameters.
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varied the number of paired repetitions from 100 to 1200, and also co-varied the pre-post delay
from -100 to 100 ms. Figure 3h shows a contour plot of the predicted mean synaptic strength
change across for the 1Pre2Post(delay) stimulation protocol for different numbers of pairing rep-
etitions. In Figure 3h, a LTD window appears after ~500 pairing repetitions for some anticausal
pairings, in line with our hypothesis. The magnitude of LTP also increases with pulse number, for
causal positive pairings. For either 100 or 300 pairing repetitions, only LTP or NC is induced (Figure
3i). The model also made other plasticity predictions by varying Tigaret et al. (2016) experimen-
tal conditions (Figure 3-Figure Supplement 5). In summary, our geometrical readout reveals that
the direction and magnitude of the change in synaptic strength can be predicted from the joint
CaMKII-CaN activity in the LTP and LTD regions.

Frequency-dependent plasticity

The stimulation protocols used by Tigaret et al. (2076) explored how subtle variations in pre and
postsynaptic spike timing influenced the direction and magnitude of plasticity (see Table 1) for ex-
perimental differences). In contrast, traditional synaptic plasticity protocols exploring the role of
presynaptic stimulation frequency did not measure the timing of co-occurring postsynaptic spikes
(Dudek and Bear, 1992; Wang and Wagner, 1999; Kealy and Commins, 2010). These studies found
that long-duration low-frequency stimulation induces LTD, whereas short-duration high-frequency
stimulation induces LTP, with a cross-over point of zero change at intermediate stimulation fre-
quencies. In addition to allowing us to explore frequency-dependent plasticity (FDP), this stimu-
lation paradigm also gave us further constraints to define the LTD polygon region in the model
since in Tigaret et al. (2016), only one LTD case was available. For FDP, we focused on modelling
the experiments from Dudek and Bear (1992), who stimulated Schaffer collateral projections to
pyramidal CA1 neurons with 900 pulses in frequencies ranging from 1 Hz to 50 Hz. In addition to
presynaptic stimulation patterns, the experimental conditions differed from Tigaret et al. (2076) in
two other aspects: animal age and control of postsynaptic spiking activity (see Table 1 legend). We
incorporated both age-dependence and EPSP-evoked-BaPs in our model (Methods and Materials).
Importantly, the geometrical readout mechanism mapping joint CaMKII-CaN activity to plasticity
remained identical for all experiments in this work.

Figure 4a shows the joint CaMKII-CaN activity when we stimulated the model with 900 presy-
naptic spikes at 1, 3, 5, 10 and 50 Hz (Dudek and Bear, 1992). Higher stimulation frequencies drove
stronger responses in both CaN and CaMKII activities (Figure 4a). Figure 4b,c show the correspond-
ing plasticity region indicator for the LTP/LTD region threshold crossings and the synaptic strength
change. From this set of five protocols, only the 50 Hz stimulation drove a response strong enough
to reach the LTP region of the plane (Figure 4a and d). Although the remaining four protocols drove
responses primarily in the LTD region, only the 3 and 5 Hz stimulations resulted in substantial LTD.
The 1 Hz and 10 Hz stimulations resulted in negligible LTD, but for two distinct reasons. Although
the 10 Hz protocol's joint CaMKII-CaN activity passed through the LTD region of the plane (Figure
4a and d), it was too brief to activate the slow LTD mechanism built into the readout (Methods
and Materials). The 1 Hz stimulation, on the other hand, was prolonged, but its response was too
weak to reach the LTD region, crossing the threshold only intermittently (Figure 4b, bottom trace).
Overall the model matched well the mean plasticity response found by Dudek and Bear (1992), see
Figure 4e, following a classic BCM-like curve as function of stimulation frequency (Abraham et al.,
2001; Bienenstock et al., 1982).

We then used the model to explore the stimulation space in more detail by varying the stim-
ulation frequency from 0.5 Hz to 50 Hz, and varying the number of presynaptic pulses from 50
to 1200. Figure 4f shows a contour map of the mean synaptic strength change (%) in this 2D
frequency-pulse number space. Under Dudek and Bear (1992) experimental conditions, we found
that LTD induction required at least ~300 pulses, at frequencies between 1Hz and 3Hz. In contrast,
LTP could be induced using ~50 pulses at ~20Hz or greater. The contour map also showed that
increasing the number of pulses (vertical axis in Figure 4e) increases the magnitude of both LTP
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Figure 4. | Frequency dependent plasticity, Dudek and Bear (1992) dataset. a, Example traces of joint CaMKII-CaN activity for each of Dudek
and Bear (1992) protocol. b, Region indicator showing when the joint CaMKII-CaN activity crosses the LTD or LTP regions for each protocol in
panel a. ¢, Synaptic weight change (%) as a function of time for each protocol, analogous to Figure 3c. Trace colours correspond to panel a. The
trajectories displayed were chosen to match the medians in panel e. d, Mean (100 samples) time spent (s) for protocols 1Pre for 900 pairing
repetitions at 3, 10 and 50 Hz. e, Comparison between data from Dudek and Bear (1992) and our model (1Pre 900p, 300 samples per frequency,
see Table 1). Data are represented as normal distributions with the mean and variance of the change in field EPSP slope taken from Dudek and
Bear (1992). f, Prediction for the mean weight change (%) when varying the stimulation frequency and pulse number (24x38x100 data points,
respectively pulse x frequency x samples). The filled grey circles show the Dudek and Bear (1992) protocol parameters and the corresponding
results are shown in panel e.
Figure 4-Figure supplement 1. Varying experimental parameters in Dudek and Bear (1992) and Poisson spike train during development.
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and LTD. This was paralleled by a widening of the LTD frequency range, whereas the LTP frequency
threshold remained around ~20Hz, independent of pulse number.

The pulse-dependent amplification of synaptic weight predicted in Figure 4 is also valid for
Tigaret et al. (2016) experiment shown in Figure 3h.

Ex vivo experiments in Dudek and Bear (1992) were done at 35°C. However, lower tempera-
tures are more widely used for ex vivo experiments because they extend brain slice viability. We
performed further simulations testing temperature modifications for Dudek and Bear (1992) ex-
periment, predicting a strong effect on plasticity outcomes (Figure 4-Figure Supplement 1d-f).

Variations in plasticity induction with developmental age

The rules for induction of LTP and LTD change during development (Dudek and Bear, 1993; Cao
and Harris, 2012), so a given plasticity protocol can produce different outcomes when delivered to
synapses from young animals versus mature animals. For example, when Dudek and Bear (1993)
tested the effects of low-frequency stimulation (1 Hz) on CA3-CA1 synapses from rats of different
ages, they found that the magnitude of LTD decreases steeply with age from P7 until becoming
minimal in mature animals >P35 (Figure 5a, circles). Across the same age range, they found that a
theta-burst stimulation protocol induced progressively greater LTP magnitude with developmental
age (Figure 5b, circles). Paralleling this, multiple properties of neurons change during development:
the NMDAr switches its dominant subunit expression from GIUN2B to GIuN2A (Sheng et al., 1994;
Popescu et al., 2004; lacobucci and Popescu, 2017), the reversal potential of the receptor (GABAr)
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switches from depolarising to hyperpolarizing (Rivera et al., 1999; Meredith et al., 2003; Rinetti-
Vargas et al., 2017), and the action potential backpropagates more efficiently with age (Buchanan
and Mellor, 2007). These mechanisms have been proposed to underlie the developmental changes
in synaptic plasticity rules because they are key regulators of synaptic calcium signalling (Meredith
et al., 2003; Buchanan and Mellor, 2007). However, their sufficiency and individual contributions
to the age-related plasticity changes are unclear and this has not been taken into account in any
previous model. We incorporated these mechanisms in the model (Methods and Materials) by
parameterizing each of the three components to vary with the animal’'s postnatal age, to test if
they could account for the age-dependent plasticity data.

We found that elaborating the model with age-dependent changes in NMDAr composition,
GABAr reversal potential, and BaP efficiency, while keeping the same plasticity readout parame-
ters, was sufficient to account for the developmental changes in LTD and LTP observed by Dudek
and Bear (1993) (Figure 5a,b). We then explored the model’s response to protocols of various stim-
ulation frequencies, from 0.5 to 50 Hz, across ages from P5 to P80 (Figure 5c,e). Figure 5¢ shows
the synaptic strength change as function of stimulation frequency for ages P15, P25, P35 and P45.
The magnitude of LTD decreases with age, while the magnitude of LTP increases with age. Figure
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5e shows a contour plot of the same result, covering the age-frequency space.

The 1Hz presynaptic stimulation protocol in Dudek and Bear (1993) did not induce LTD in adult
animals (Dudek and Bear, 1992). We found that the joint CaN-CaMKII activity trajectories for this
stimulation protocol underwent an age-dependent leftward shift beyond the LTD region (Figure
5f). This implies that LTD is not induced in mature animals by this conventional LFS protocol due
to insufficient activation of enzymes. In contrast, Tigaret et al. (2016) and Isaac et al. (2009) were
able to induce LTD in adult rat tissue by combining LFS with presynaptic spike pairs repeated 900
times at 3 Hz. Given these empirical findings and our modelling results, we hypothesized that LTD
induction in adult animals requires that the stimulation protocol: 1) causes CaMKIll and CaN activity
to stay more in the LTD region than the LTP region, and 2) is sufficiently long to activate the LTD
readout mechanism. With experimental parameters used by Dudek and Bear (1993), this may be
as short as 300 pulses when multi-spike presynaptic protocols are used since the joint CaMKII-CaN
activity can reach the LTD region more quickly than for single spike protocols. We simulated two
such potential protocols as predictions: doublet and quadruplet spike groups delivered 300 times
at 1 Hz, with 50 ms between each pair of spikes in the group (Figure 5d). The model predicted that
both these protocols induce LTD in adults, whereas as shown above, the single pulse protocol did
not cause LTD. These findings suggest that the temporal requirements for inducing LTD may not
be as prolonged as previously assumed, since they can be reduced by varying stimulation intensity.
See Figure 5-Figure Supplement 1 for frequency versus age maps for presynaptic bursts.

Dudek and Bear (1993) also performed theta-burst stimulation (TBS, Table 1) at different de-
velopmental ages, and found that LTP is not easily induced in young rats (Cao and Harris, 2012),
as depicted in Figure 5b. The model qualitatively matches this trend, and also predicts that TBS
induces maximal LTP around P21, before declining further during development (Figure 5b, green
curve). Similarly, we found that high-frequency stimulation induces LTP only for ages >P15, peaks
at P35, then gradually declines at older ages (Figure 5e). Note that in Figure 5b, we used 6 epochs
instead of 4 used by Dudek and Bear (1993) to increase LTP outcome which is known to washout
after one hour for young rats (Cao and Harris, 2012).

In contrast to Dudek and Bear (1993) findings, other studies have found that LTP can be induced
in hippocampus in young animals (<P15) with STDP. For example, Meredith et al. (2003) found that,
at room temperature, 1Pre1Post10 induces LTP in young rats, whereas 1Pre2Post10 induces NC.
This relationship was inverted for adults, with 1Pre1Post inducing no plasticity and 1Pre2Post10
inducing LTP (Figure 5-Figure Supplement 7).

Together, these results suggest that not only do the requirements for LTP/LTD change with age,
but also that these age-dependencies are different for different stimulation patterns. Finally, we
explore which mechanisms are responsible for plasticity induction changes across development
in the FDP protocol (Figure 5-Figure Supplement 1) by fixing each parameter to young or adult
values for the FDP paradigm. Our model analysis suggests that the NMDAr switch (/lacobucci and
Popescu, 2017) is a dominant factor affecting LTD induction, but the maturation of BaP (Buchanan
and Mellor, 2007) is the dominant factor affecting LTP induction, with GABAr shift having only a
weak influence on LTD induction for Dudek and Bear (1993) FDP.

Plasticity requirements during development do not necessarily follow the profile in Dudek and
Bear (1993) as shown by Meredith et al. (2003) STDP experiment. Our model shows that multiple
developmental profiles are possible when experimental conditions vary within the same stimula-
tion paradigm. This is illustrated in Figure 6-Figure Supplement 2 a-c by varying the age of STDP
experiments done in different conditions. We fitted well the data from Wittenberg and Wang (2006)
by adapting the model with appropriate age and temperature.

Effects of extracellular calcium and magnesium concentrations on plasticity out-
come.

The canonical STDP rule (Bi and Poo, 1998), measured in cultured neurons with high extracellular
calcium ([Ca?*],) and at room temperature, was recently found not to be reproducible at physio-
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a5 logical [Ca®*], in CA1 brain slices (Inglebert et al., 2020). Instead, by varying the [Ca?*], and [Mg?*],,
ase  Inglebert et al. (2020) found a spectrum of STDP rules with either no plasticity or full-LTD for phys-
a7 iological [Ca?*], conditions ([Ca?*],< 1.8 mM) and a bidirectional rule for high [Ca?*], ([Ca®*],> 2.5
e mMM), shown in Figure 6a-c.

459 We attempted to reproduce Inglebert et al. (2020) findings by varying [Ca?*], and [Mg?*], with
a0 the following consequences for the model mechanisms (Methods and Materials). On the presy-
461 Naptic side, [Ca%*], modulates vesicle release probability. On the postsynaptic side, high [Ca®*],
a2 reduces NMDAr conductance (Maki and Popescu, 2014), whereas [Mg?*], affects the NMDAr Mg?*
w3 block (Jahr and Stevens, 1990). Furthermore, spine calcium influx activates SK channels, which hy-
sa perpolarize the membrane and indirectly modulate NMDAr activity (Ngo-Anh et al., 2005; Griffith
a5 etal., 2016).
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Figure 6. Effects of extracellular calcium and magnesium concentrations on plasticity. a, Synaptic weight (%) for a STDP rule with
[Ca2+]0:1 .3 mM (fixed ratio, Ca/Mg=1.5). According to the data extracted from Inglebert et al. (2020), the number of pairing repetitions for
causal/positive (anti-causal/negative) delays is 100 (150), both delivered at 0.3 Hz. The solid line is the mean, and the ribbons are the 2nd and
4th quantiles predicted by our model (all panels use 100 samples). b, Same as a, but for [Ca2*], = 1.8 mM (Ca/Mg ratio = 1.5). ¢, Same as a, but
for [Ca2*], = 3 mM (Ca/Mg ratio = 1.5). d, Mean time spent for causal pairing, 1Pre1Post10, at different Ca/Mg concentration ratios. The contour
plots are associated with the panels a, b and c. e, Predicted effects of extracellular Ca/Mg on STDP outcome. Synaptic weight change (%) for
causal (1Pre1Post10, 100 at 0.3 Hz) and anticausal (1Post1Pre10, 150 at 0.3 Hz) pairings varying extracellular Ca from 1.0 to 3 mM (Ca/Mg ratio =
1.5). The dashed lines represent the experiments in the panel a, b and c. We used 21x22x100 data points, respectively calcium x delay x samples.
f, Predicted effects of varying frequency and extracellular Ca/Mg for an STDP protocol. Contour plot showing the mean synaptic weight (%) for a
single causal pairing protocol (1Pre1Post10, 100 samples) varying frequency from 0.1 to 10 Hz and [Ca2*], from 1.0 to 3 mM (Ca/Mg ratio = 1.5).
We used 21x18x100 data points, respectively calcium x frequency x samples.

Figure 6-Figure supplement 1. Effects of extracellular calcium and magnesium concentration on plasticity.

Figure 6-Figure supplement 2. Temperature and age effects.

466 Figure 6a-c compares our model to Inglebert et al. (2020) STDP data at different [Ca?*], and
a7 [Mg?'],. Note that Inglebert et al. (2020) used 150 pairing repetitions for the anti-causal stimuli and
s6s 100 pairing repetitions for the causal stimuli both delivered at 0.3 Hz. At [Ca®*],=1.3 mM, Figure
a0 60 shows that the STDP rule induced weak LTD for brief causal delays. At [Ca?*], = 1.8 mM, in
a0 Figure 6b, the model predicted a full-LTD window. At [Ca?*], = 3 mM, in Figure 6c, it predicted a
an1  bidirectional rule with a second LTD window for long causal pairings, previously theorized by Rubin
a2 et al. (2005).
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Figure 6d illustrates the time spent by the joint CaN-CaMKII activity for 1Pre1Post10 using /n-
glebert et al. (2020) experimental conditions. Each density plot corresponds to a specific specific
Ca/Mg ratio as in Figure 6a-c. The response under low [Ca%*], spent most time inside the LTD
region, but high [Ca?*], shifts the trajectory to the LTP region. Figure 6-Figure Supplement 1a
presents density plots for the anti-causal protocols.

Inglebert et al. (2020) fixed the Ca/Mg ratio at 1.5, although aCSF formulations in the literature
differ (see Table 1). Figure 6-Figure Supplement 1d shows that varying the Ca/Mg ratio and [Ca?*],
for Inglebert et al. (2020) experiments restrict LTP to Ca/Mg>1.5 and [Ca%*],>1.8 mM.

Our model can also identify the transitions between LTD and LTP depending on Ca/Mg. Fig-
ure 6e shows a map of plasticity as function of pre-post delay and Ca/Mg concentrations and the
parameters where LTP is induced for the 1Pre1Post10 protocol. Since plasticity rises steeply at
around [Ca?*], = 2.2 mM (see Figure 6e), small fluctuations in [Ca?*], near this boundary could
cause qualitative transitions in plasticity outcomes. For anti-causal pairings, increasing [Ca?*], in-
creases the magnitude of LTD (Figure 6-Figure Supplement 1b illustrates this with Inglebert et al.
(2020) data).

Inglebert et al. (2020) also found that increasing the pairing frequency to 5 or 10 Hz results
in a transition from LTD to LTP for 1Pre1Post10 at [Ca®*], = 1.8 mM (Figure 6-Figure Supplement
1c), similar frequency-STDP behaviour has been reported in the cortex (Sjostrém et al., 2007). In
Figure 6f, we varied both the pairing frequencies and [Ca?*], and we observe similar transitions to
Inglebert et al. (2020). However, the model's transition for [Ca%*], = 1.8 mM was centred around
0.5 Hz, which was untested by Inglebert et al. (2020). The model predicted no plasticity at higher
frequencies, unlike the data, that shows scattered LTP and LTD (see Figure 6-Figure Supplement
1c). Another frequency dependent comparison, Figure 3-Figure Supplement 5c and Figure 6-Figure
Supplement 1h, show that Tigaret et al. (2016) burst-STDP and Inglebert et al. (2020) STDP share
a similar transition structure, different from Dudek and Bear (1992) FDP.

In contrast to Inglebert et al. (2020) results, we found that setting low [Ca?*], for Tigaret et al.
(2016) burst-STDP abolishes LTP, and does not induce strong LTD (Figure 3-Figure Supplement 5d).
For Dudek and Bear (1992) experiment, Figure 4-Figure Supplement 1d [Mg?*], controls a sliding
threshold between LTD and LTP but not [Ca?*], (Figure 4-Figure Supplement 1b). For another direct
stimulation experiment, Figure 6-Figure Supplement 1c shows that in an Mg-free medium, LTP
expression requires fewer pulses (Mizuno et al., 2007).

Despite exploring physiological [Ca?*], and [Mg?*], Inglebert (Inglebert et al., 2020) use a non-
physiological temperature (30°C) which extends T-type VGCC closing times and modifies the CaN-
CaMKIl baseline (Figure 6-Figure Supplement 2i). Figure 6-Figure Supplement 2g,h show compara-
ble simulations for physiological temperatures. In summary, our model predicts that temperature
can change STDP rules in a similar fashion to [Ca®*], (Figure 6-Figure Supplement 1a,b). Overall,
we confirm that plasticity is highly sensitive to variations in extracellular calcium, magnesium, and
temperature (Figure 3-Figure Supplement 5a, Figure 6-Figure Supplement 2d-f).

In vivo-like spike variability affects plasticity
In the above sections, we used highly regular and stereotypical stimulation protocols to replicate
typical ex vivo plasticity experiments. In contrast, neural spiking in hippocampus in vivo is irregular
and variable (Fenton and Muller, 1998; Isaac et al., 2009). Previous studies that asked how natural
firing variability affects the rules of plasticity induction used simpler synapse models (Rackham
etal., 2010; Graupner et al., 2016; Cui et al., 2018). We explored this question in our synapse model
using simulations with three distinct types of additional variability: 1) spike time jitter, 2) failures
induced by dropping spikes, 3) independent pre and postsynaptic Poisson spike trains (Graupner
et al., 2016).

We introduced spike timing jitter by adding zero-mean Gaussian noise (s.d. ¢) to pre and postsy-
naptic spikes, changing spike pairs inter-stimulus interval (ISI). In Figure 7a, we plot the LTP magni-
tude as function of jitter magnitude (controlled by o) for protocols taken from Tigaret et al. (2016).
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Figure 7. | Jitter and spike dropping effects
on STDP and Poisson spike trains. a, Mean
weight (%) for the jittered STDP protocols
(protocol color legend shown in b ). The solid
line is the mean, and the ribbons are the 2nd
and 4th quantiles predicted by our model using
100 samples (same panels a, b and g). b, Mean
weight (%) for the same (Tigaret et al., 2016)
protocols used in panel a subjected to random
spike removal (sparsity %). ¢, Mean time spent
(s) varying jittering. Contour plot shows
2Post1Pre50 and 1Pre1Post10 (300 at 5 Hz)
without (grey contour plot) and with jittering
(coloured contour plot). The circles and squares
correspond to the marks in panel a. d, Mean
time spent (s) varying sparsity. Contour plot in
grey showing 0% sparsity for 2Post1Pre50 300 at
5Hz (see Figure 2f). The contour plots show the
protocol with spike removal sparsities at 0%
(NC), 30% (LTP), and 80% (NC). The triangles
correspond to the same marks in panel a. e,
Distribution of the 50 ms jittering applied to the
causal protocol 1Pre1Post10, 300 at 5 Hz in
which nearly half of the pairs turned into
anticausal. The mean frequency is 5 + 13.5 Hz
making it to have a similar firing structure and
position in the LTP region. The similar occurs for
2Post1Pre50 (panel ). f, Mean weight change
(%) combining both jittering (panel a) and
sparsity (panel b) for 2Post1Pre50, 300 at 5 Hz. g,
Mean weight change (%) of pre and postsynaptic
Poisson spike train delivered simultaneously for
10 s. The plot shows the plasticity outcome for
different presynaptic firing rate
(1000/frequency) for a fixed postsynaptic
baseline at 10Hz. The upper raster plot depicts
the released vesicles at 40 Hz and the
postsynaptic baseline at 10Hz (including the AP
evoked by EPSP). h), Mean weight change (%)
varying the rate of pre and postsynaptic Poisson
spike train delivered simultaneously for 10 s.
The heat map data along the vertical white
dashed line is depicted in panel g.

s23 With no jitter, ¢ = 0, these protocols have different LTP magnitudes (corresponding to Figure 3)
s22 and become similar once ¢ increases. The three protocols with a postsynaptic spike doublet gave

s2s identical plasticity for ¢ = 50 ms.

526 To understand the effects of jittering, we plotted the trajectories of joint CaN-CaMKIl activity
s2z  (Figure 7c). 2Post1Pre50 which "undershoots" the LTP region shifted into the LTP region for jitter
s22 6 = 50 ms. In contrast, 1PreT1Post10 which "overshoots" the LTP region shifted to the opposite

s20 direction towards the LTP region.

530 Why does jitter cause different spike timing protocols to yield similar plasticity magnitudes?
sa1  Increasing jitter causes a fraction of pairings to invert causality. Therefore, the jittered protocols
s32 became a mixture of causal and anticausal pairings (Figure 7c). This situation occurs for all paired

16 of 64


https://doi.org/10.1101/2021.03.30.437703
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.30.437703; this version posted May 4, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

protocols. So any protocol with the same number spikes will produce a similar outcome if the jitter
is large enough. Note that despite noise the mean frequency was conserved at 5 + 13.5 Hz (see
Figure 7e).

Next, we studied the effect of spike removal. In the previous sections, synaptic release prob-
ability was ~60% (for [Ca®*], = 2.5 mM) or lower, depending on the availability of docked vesicles
(Methods and Materials). However, baseline presynaptic vesicle release probability is heteroge-
neous across CA3-CA1 synapses, ranging from ~ 10 — 90% (Dobrunz et al., 1997; Enoki et al., 2009)
and likely lower on average in vivo (Froemke and Dan, 2002; Borst, 2010). BaPs are also heteroge-
neous with random attenuation profiles (Golding et al., 2007) and spike failures (Short et al., 2017).
To test the effects of pre and postsynaptic failures on plasticity induction, we performed simula-
tions where we randomly removed spikes, altering the regular attenuation observed in Tigaret
et al. (2016) protocols.

In Figure 7b we plot the plasticity magnitude as function of sparsity (percentage of removed
spikes). The sparsity had different specific effects for each protocol. 1Pre2Post10 and 1Pre2Post50
which originally produced substantial LTP were robust to spike removal until ~ 60% sparsity. In con-
trast, the plasticity magnitude from both 1Pre1Post10 and 2Post1Pre50 showed a non-monotonic
dependence on sparsity, first increasing then decreasing, with maximal LTP at ~40% sparsity.

To understand how sparsity causes this non-monotonic effect on plasticity magnitude, we plot-
ted the histograms of time spent in the CaN-CaMKII plane for 2Post1Pre50 for three levels of spar-
sity: 0%, 30% and 80% (Figure 7d). For 0% sparsity, the activation spent most time at the border
between the LTP and LTD regions, resulting in no change. Increasing sparsity to 30% caused the
activation to shift rightward into the LTP region because there was less attenuation of pre and
postsynaptic resources. In contrast, at 80% sparsity, the activation moved into the LTD region be-
cause there were not enough events to substantially activate CaMKIl and CaN. Since LTD is a slow
process and the protocol duration is short (60s), there was no net plasticity. Therefore for this pro-
tocol, high and low sparsity caused no plasticity for distinct reasons, whereas intermediate sparsity
enabled LTP by balancing resource depletion with enzyme activation.

Next we tested the interaction of jitter and spike removal. Figure 7f shows a contour map of
weight change as a function of jitter and sparsity for the 2Post1Pre50 protocol, which originally
induced no plasticity (Figure 2). Increasing spike jitter enlarged the range of sparsity inducing LTP.
In summary, these simulations (Figure 7a,b,f and h) show that different STDP protocols have dif-
ferent degrees of sensitivity to noise in the firing structure, suggesting that simple plasticity rules
derived from regular ex vivo experiments may not predict plasticity in vivo.

How does random spike timing affect rate-dependent plasticity? We stimulated the model with
pre and postsynaptic Poisson spike trains for 10s, under Dudek and Bear (1992) experimental condi-
tions. We systematically varied both the pre and postsynaptic rates (Figure 7h). The 10s stimulation
protocols induced only LTP, since LTD requires a prolonged stimulation (Mizuno et al., 2007). LTP
magnitude monotonically increased with the presynaptic rate (Figure 7g and h). In contrast, LTP
magnitude varied non-monotonically as a function of postsynaptic rate, initially increasing until a
peak at 10 Hz, then decreasing with higher stimulation frequencies. This non-monotonic depen-
dence on post-synaptic rate is inconsistent with classic rate-based models of Hebbian plasticity.
We also investigated how this plasticity dependence on pre- and postsynaptic Poisson firing rates
varies with developmental age (Figure 4-Figure Supplement 1g-i). We found that at P5 no plastic-
ity is induced, at P15 a LTP region appears at around 1 Hz postsynaptic rate, and at P20 plasticity
becomes similar to the mature age, with a peak in LTP magnitude at 10 Hz postsynaptic rate.

Discussion

We built a model of a rat CA3-CA1 hippocampal synapse, including key electrical and biochemical
components underlying synaptic plasticity induction (Figure 7). We developed a novel geometric
readout of combined CaN-CaMKII dynamics (Figure 2-Figure 4) to predict the outcomes from a
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range plasticity experiments with heterogeneous conditions: animal developmental age (Figure
5), aCSF composition (Figure 6), temperature (Supplemental files), and in vivo-like firing variability
(Figure 7). This readout provides a simple and intuitive window into the dynamics of the synapse
during plasticity. Our model is thus based on the joint activity of these two key postsynaptic en-
zymes at both fast and slow time scales and considers the stochastic and adaptable dynamics of
their activities dictated by the upstream calcium-dependent components at both the pre- and post-
synapse. On this basis alone, our model is akin to biological processes where the outcome is jointly
determined by several stochastic signaling components and a combination of multiple enzyme ac-
tivities in time and space, i.e., are multi-dimensional. Our model is scalable, as it gives the pos-
sibility for the readout to be extended to dynamics of » different molecules, using n-dimensional
closed regions. It is abstract in the sense that we do not identify the readout components with
specific synaptic molecules. Nevertheless, we anticipate that simple biochemical networks could
implement the readout’s functional mapping (Alon, 2019).

In addition to providing a new model of CA3-CA1 synapse biophysics, the main contribution
of this work is the novel readout mechanism mapping synaptic enzymes to plasticity outcomes.
This readout was built based on the concept that the full temporal activity of CaN-CaMKII over the
minutes-timescale stimulus duration, and not their instantaneous levels, is responsible for changes
in synaptic efficacy (Fujii et al., 2013). The readaout follows the measurements of CaMKIl and CaN
molecular dynamics made using FRET imaging (Fujii et al., 2013). CaMKIl and CaN were chosen be-
cause they act upstream of several biochemical pathways implicated in the expression of plasticity
and their inhibition blocks LTP and LTD, respectively (O’Connor et al., 2005). We expect that future
studies using high temporal resolution measurements such as those provided by recent FRET tools
available for CaMKIl (Chang et al., 2017, 2019) will bring refinements to our model with the possi-
bility to further test our readout predictions. In contrast, previous models assume that plasticity
is explainable in terms of synaptic calcium or enzyme response to single BAP-EPSP pairings (Shou-
val et al., 2002; Karmarkar and Buonomano, 2002). We instantiated this concept by analyzing the
joint CaN-CaMKII activity in the two-dimensional plane and designing polygonal plasticity readout
regions (Figure 3a). In doing so, we generalised previous work with plasticity induction based on
single threshold and a slow variable (Badoual et al., 2006; Rubin et al., 2005; Clopath and Gerstner,
2010; Graupner and Brunel, 2012) Given the high number of parameters in the model, we do not
expect that the specific readout parameters we fit are unique. The addition of new datasets could
better constrain the model fit. Here, we used only a two-dimensional readout, but anticipate a
straightforward generalisation to higher-dimensions. The central discovery is that these trajecto-
ries, despite being stochastic, can be separated in the plane as a function of the stimulus (Figure 3).
This is the basis of our new synaptic plasticity rule.

Let us describe the intuition behind our model more concisely. First, we abstracted away the
sophisticated cascade of plasticity expression. Second, the plasticity regions, crossed by the trajec-
tories, are described with a minimal set of parameters. Importantly, their tuning is quite straight-
forward and done only once, even when the joint activity is stochastic. The tuning of the model is
possible thanks to the decoupling of the plasticity process from the spine biophysics which acts as
a feedforward input to the plasticity Markov chain and from the distributions of the different tra-
jectories, which are well separated. It is expected that one could find other versions of this model
(parameters or conceptual) instantiating our multidimensional readout concept that also match
the data well. The separability afforded by the geometrical readout, along with the model flexibil-
ity via fitting the plasticity regions, enabled us to reproduce data from nine different experiments
using a single fixed set of model parameters. In contrast, we found that classic spike-timing (Song
et al., 2000; Pfister and Gerstner, 2006) or calcium-threshold (Graupner and Brunel, 2012) models
could not reproduce the range of protocols from Tigaret et al. (2016) (Figure 3-Figure Supplement
7). More complicated molecular-cascade models have been shown to account for individual plas-
ticity experiments (Antunes et al., 2016; Jedrzejewska-Szmek et al., 2017; Mdki-Marttunen et al.,
2020; Bhalla, 2017), but have not been demonstrated to reproduce the wide range of protocols
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presented here while considering experimental heterogeneity.

For some protocols, the CaMKII-CaN trajectories overshot the plasticity regions (e.g. Figure 3d).
Although abnormally high and prolonged calcium influx to cells can trigger cell death (Zhivotovsky
and Orrenius, 2011), the effects of high calcium concentrations at single synapses are poorly under-
stood. Notably, a few studies have reported evidence consistent with an overshoot, where strong
synaptic calcium influx does not induce LTP (Yang et al., 1999; Tigaret et al., 2016; Pousinha et al.,
2017).

Our model included critical components for plasticity induction at CA3-CA1 synapses: those af-
fecting dendritic spine voltage, calcium signalling, and enzymatic activation. We were able to use
our model to make quantitative predictions, because its variables and parameters corresponded
to biological components. This property allowed us to incorporate the model components’ depen-
dence on developmental age, external Ca/Mg levels, and temperature to replicate datasets across a
range of experimental conditions. The model is relatively fast to simulate, taking ~1 minute of CPU
time to run 1 minute of biological time. These practical benefits should enable future studies to
make experimental predictions on dendritic integration of multiple synapticinputs (Blackwell et al.,
2019; Oliveira et al., 2012; Ebner et al., 20719) and on the effects of synaptic molecular alterations
in pathological conditions. In contrast, abstract models based on spike timing (Song et al., 2000;
Pfister and Gerstner, 2006; Clopath and Gerstner, 2010) or simplified calcium dynamics (Shouval
et al., 2002; Graupner and Brunel, 2012) must rely on ad hoc adjustment of parameters with less
biological interpretability.

Intrinsic noise is an essential component of the model. How can the synapse reliably express
plasticity but be noisy at the same time (Yuste et al., 1999; Ribrault et al., 2011)? Noise can be re-
duced either by redundancy or by averaging across time, also called ergodicity (Sterling and Laugh-
lin, 2015). However redundancy requires manufacturing and maintaining more components, and
therefore costs energy. We propose that, instead, plasticity induction is robust due to temporal
averaging by slow-timescale signalling and adaptation processes. These slow variables display re-
duced noise levels by averaging the faster timescale stochastic variables. This may be a reason
why CaMKII uses auto-phosphorylation to sustain its activity and slow its decay time (Chang et al.,
2017, 2019). In summary, this suggests that the temporal averaging by slow variables, combined
with the separability afforded by the multidimensional readout, allows synapses to tolerate noise
while remaining energy-efficient.

A uniqueness of our model is that it simultaneously incorporates biological variables such as
electrical components at pre and postsynaptic sites some with adaptive functions such as attenua-
tion, age and temperature, stochastic noise and fast and slow timescales. Some of these variables
have been modelled by other groups, e.g. stochasticity, BaP attenuation or pre-synaptic plasticity
(Cai et al., 2007; Shouval and Kalantzis, 2005; Zeng and Holmes, 2010; Miller et al., 2005; Yeung
et al., 2004; Shah et al., 2006; Deperrois and Graupner, 2020; Costa et al., 2015), but generally in-
dependently from each other. To position the uniqueness of our model in this broader context, we
also provide a direct comparison of our model with some of the most recent leading models of ex-
citatory synapse plasticity and the experimental work they reproduce (Table 1-Table Supplement
1 and Table 1-Table Supplement 2).

We identified some limitations of the model. First, we modelled only a single postsynaptic spine
attached to a two-compartment neuron (soma and dendrite), see Model Compartments in Online
Methods. Second, the model abstracted the complicated process of synaptic plasticity expression.
Indeed, even if this replicated the early phase of LTP/LTD expression in the first 30-60 minutes
after induction, we did not take into account slower protein-synthesis-dependent processes, main-
tenance processes, and synaptic pruning proceed at later timescales (Bailey et al., 2015). Third, like
most biophysical models, ours contained many parameters (Methods and Materials). Although we
set these to physiologically plausible values and then tuned to match the plasticity data, other com-
binations of parameters may fit the data equally well (Marder and Taylor, 2011; Mdaki-Marttunen
et al., 2020) due to the ubiquitous phenomenon of redundancy in biochemical and neural systems

19 of 64


https://doi.org/10.1101/2021.03.30.437703
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.30.437703; this version posted May 4, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

(Gutenkunst et al., 2007; Marder, 20117). Indeed synapses are quite heterogeneous in receptor
and ion channel counts (Takumi et al., 1999; Sabatini and Svoboda, 2000; Racca et al., 2000; Nim-
chinsky et al., 2004), protein abundances (Shepherd and Harris, 1998; Sugiyama et al., 2005), and
spine morphologies (Bartol et al., 2015; Harris and Stevens, 1989), even within the subpopulation
of CA1 pyramidal neuron synapses that we modelled here. It remains to be discovered how neu-
rons tune their synaptic properties in this vast parameter space to achieve functional plasticity
rules, or implement meta-plasticity (Huang et al., 1992; Deisseroth et al., 1995; Abraham, 2008).
Fourth, the activation of clustered synapses could influence the plasticity outcome, and the num-
ber of synapses activated during plasticity induction can be difficult to control experimentally. Our
model concerns plasticity at a single synapse, which is also important during synaptic cluster acti-
vation (Ujfalussy and Makara, 2020). We drew from data in Tigaret et al. (2016) where there is little
indication of simultaneous clustered synaptic activation. Furthermore, our simulations are in good
agreement with plasticity experiments using local field potential recordings (Dudek and Bear, 1993)
where the number of activated synapses is uncertain. This indicates that the model proposed here
can account for this aspect of synaptic plasticity heterogeneity. Finally, our readout model does
not correspond to a specific molecular cascade beyond CaN and CaMKIl activations. However, we
anticipate that the same mapping could be implemented by simple biochemical reaction networks,
with for example, transition rates based on Hill functions for the plasticity boundaries. Future work
could try to match this readout to known synaptic molecules.

Several predictions follow from our results. Since the model respected the stochasticity of vesi-
clerelease (Rizzoli and Betz, 2005; Alabi and Tsien, 2012), NMDAr (Nimchinsky et al., 2004; Popescu
etal., 2004; lacobucci and Popescu, 2017; Sinclair et al., 2016), and VGCC opening (Magee and John-
ston, 1995; Sabatini and Svoboda, 2000; Iftinca et al., 2006), the magnitude of plasticity varied from
simulation trial to trial (Methods and Materials, Figure 3g and Figure 4e). This suggests that the
rules of plasticity are inherently stochastic (Bhalla, 2004; Antunes et al., 2016) and that the vari-
ability observed in these experiments (Inglebert et al., 2020; Tigaret et al., 2016; Dudek and Bear,
1992, 1993; Mizuno et al., 2001; Meredith et al., 2003; Wittenberg and Wang, 2006) is partly due
to stochastic signalling, in addition to the previously-documented heterogeneity in synapse prop-
erties (Nusser, 2018) that we did not study here. By running extensive simulations over the space
of protocols beyond those tested experimentally (Figure 3h,i; Figure 4f; Figure 5c,e and f; Figure
6e,f), we made testable predictions for plasticity outcomes. For example, Tigaret et al. (2016) did
not find LTD when using classic post-before-pre stimulation protocols, but the model predicted
that LTD could be induced if the number of pairing repetitions was extended (Figure 3h,i). The
model also predicts that the lack of LTD induced by FDP in adults can be recovered using doublets
or quadruplet spike protocols (Figure 5d). We tested the model's sensitivity to spike time jitter and
spike failure in the stimulation protocols (Figure 7). Our simulations predicted that this firing vari-
ability can alter the rules of plasticity, in the sense that it is possible to add noise to cause LTP for
protocols that did not otherwise induce plasticity.

What do these results imply about the rules of plasticity in vivo? First, we noticed that successful
LTP or LTD induction required a balance between two types of slow variables: those that attenuate,
such as presynaptic vesicle pools and dendritic BaP, versus those that accumulate, such as slow
enzymatic integration (Cai et al., 2007; Mizusaki et al., 2018; Deperrois and Graupner, 2020). This
balance is reflected in the inverted-U shaped magnitude of LTP seen as a function of post-synaptic
firing rate (Figure 7h). Second, although spike timing on millisecond timescales can in certain cir-
cumstances affect the direction and magnitude of plasticity (Figure 3), in order to drive sufficient
activity of synaptic enzymes, these patterns would need to be repeated for several seconds. How-
ever, if these repetitions are subject to jitter or failures, as observed in hippocampal spike trains in
vivo (Fenton and Muller, 1998; Wierzynski et al., 2009), then the millisecond-timescale information
will be destroyed as it gets averaged out across repetitions by the slow integration processes of
CaMKiIl and CaN (Figure 7a-d). The net implication is that millisecond-timescale structure of individ-
ual spike pairs is unlikely to play an important role in determining hippocampal synaptic plasticity
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735 in vivo (Froemke and Dan, 2002; Sadowski et al., 2016; Graupner et al., 2016).

736 In summary, we presented a new type of biophysical model for plasticity induction at the rat
73z CA3-CAT glutamatergic synapse. Although the model itself is specific to this synapse type, the
73 study's insights may generalise to other synapse types, enabling a deeper understanding of the
730 rules of synaptic plasticity and brain learning.

o Methods and Materials

-2 Data and code availability

72 All simulations were performed in the Julia programming language (version 1.4.2). This choice
73 was dictated by simplicity and speed (Perkel, 2019). The code for the Markov chains is mostly
72 automatically generated from reactions, and could be exported to an SBML representation for
7as  porting to other languages.

746 Simulating the synapse model is equivalent to sampling a piecewise deterministic Markov pro-
77 cess, and this relies on the thoroughly tested Julia package PiecewiseDeterministicMarkovProcesses.jl.
72 These simulations are event-based, and no approximation is made beyond the ones required to
7a0  iNntegrate the ordinary differential equations by the LSODA method (Livermore Solver for Ordinary
7s0  Differential Equations). We ran the parallel simulations in the Nef cluster operated by Inria.

Table 1. Table with the parameters extracted from the respective publications. To fit the data associated to
publications displaying a parameter interval (e.g. 70 to 100) we used a value within the provided limits.
Otherwise, we depict in parentheses the value used to fit to the data. For complete data structure on these
publications and the ones used for method validation see github code. We allowed the AP to be evoked by
EPSPs for these protocols: Mizuno et al. (2001), Dudek and Bear (1992) Dudek and Bear (1993). Note that
Tigaret et al. (2016) used GABA(A)r blockers, which we modelled by setting the GABAr conductance to zero.
Also, Mizuno et al. (2001) LTD protocol used partial NMDA blocker modelled by reducing NMDA conductance
by 97 %.

Table 1 - Table Supplement 1. Comparison of recent computational models for plasticity.

Table 2 - Table Supplement 2. Comparison of the experimental conditions for the different reproduced
datasets in recent computational models for plasticity.

Experiment  Paper Repetitions Freq (Hz) Age (days) Temp. (°C) [Ca?*],(mM)  [Mg¥*],(mM)

STDP Tigaret et al. (2016) 300 5 56 35 2.5 1.3

STDP Inglebert et al. (2020) 100, positive delays -, 5 14—20 30 13-3 cans

150, negative delays (21 for LTP)  (30.45 for LTP)

STDP Meredith et al. (2003) 20 0.2 9—45 24—-28 2 2

STDP Wittenberg and Wang (2006) 70—100 5 14—21 24—30 2 1
(22.5-23)

pre-burst Tigaret et al. (2016) 300 and 900 3and5 56 35 2.5 13

FDP Dudek and Bear (1992) 900 1—50 35 35 25 1.5

FDP Dudek and Bear (1993) 900 1 7—35 35 2.5 1.5

T8S Dudek and Bear (1993) 3—4(5) epochs apreati00Hz o 14and17 35 25 15

(10x at 5Hz)

LFS Mizuno et al. (2007) 1—600 1 12—28 30 2.4 0

(26.5-31)

s Notation
72 We write 1, for the indicator of a set 4, meaning that 1,(x) = 1 if x belongs to A and zero otherwise.

s Vesicle release and recycling

7sa  Vesicle-filled neurotransmitters from the presynaptic terminals stimulate the postsynaptic side
755 When successfully released. We derived a vesicle release Markov chain model based on a deter-
756 Ministic approach described in Sterratt et al. (2011). We denote by (¢, -+, 1,) the arrival times of
77 the presynaptic spikes.

758 Vesicles can be in two states, either belonging to the docked pool (with cardinal D) with fast
750 emptying, or to the reserve pool (with cardinal R) which replenishes D (Rizzoli and Betz, 2005).
70 Initially the docked and reserve pools have D, and R, vesicles, respectively. The docked pool loses
7e1 One vesicle each time a release occurs (Rudolph et al., 2015), with transition D — D — 1 (Figure
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Table 2. Stochastic transitions used in the pool dynamics. Note that the rates depend on the pool's cardinal
(Pyle et al., 2000).

Transition Rate Initial Condition
(R,D) > (R-1,D+1) (D,—D)-R/t, D(®)=D,
(R,D)— (R+1,D-1) (R,—R)-D/7z R(0)=R,
(R.D)— (R+1,D)  (Ry—R)/7}/

8). The reserve pool replenishes the docked pool with transition (R, D) — (R—1, D + 1). Finally, the
reserve pool is replenished with rate (R, — R)/r;ff with the transition (R, D) — (R + 1, D).

In addition to the stochastic dynamics in Table 2, each spike 1, triggers a vesicle release D —
D - 1 with probability p,,;:

1.349

+ e+(Ca>*1,~1.708 mM)

(Ca,.)’
)"+ h((Ca?*],)

Pr(Ca,,,.[Ca®],, D) = 1.0, h([Ca**],) = 0.654 + . )

(Ca

pre

which is a function of presynaptic calcium Ca,, and extracellular calcium concentration [Ca%],
through the threshold a([Ca**],). To decide whether a vesicle is released for a presynaptic spike
t,, we use a phenomenological model of Ca,,, (see Figure 8a) based on a resource-use function
(Tsodyks and Markram, 1997).

pre

Ca

Ca,,=——2 Ca,,(0)=0
T I " (2)
Caj“'"ﬁ = % - 6Ca ' Cajump ' Capre Cajump(o) =1
Upon arrival of the presynaptic spikes, r € (¢,, --- ,#,), we update Ca,,, according to the deterministic

jump:
Ca,, — Ca, , +Ca,;

pre pre Jjump*

Finally, after Ca,,, has been updated, a vesicle is released with probability p,,, (Figure 8b).

Parameters for the vesicle release model are given in Table 3. The experimental constraints to
devise a release probability model are given by Hardingham et al. (2006) and Tigaret et al. (2016).
Because [Ca?*], modifies the release probability dynamics (King et al., 2001), we fixed an initial
release probability to 68 % for [Ca®*], = 2.5 mM as reported by Tigaret et al. (2016) (initial value in
Figure 8b,d). Additionally, Hardingham et al. (2006) reports a 38% reduction in the initial release
probability when changing [Ca?*], from 2.5 mM to 1 mM. Taking these into account, the decreasing
sigmoid function in the Figure 8e depicts our [Ca’*],-dependent release probability model (p,,,).

Figure 8e shows that our p,,, function is in good agreement with a previous analytical model
suggesting that p,,([Ca**],) « ([Ca®*],)> mM~2 (King et al., 2007). Our model also qualitatively
reproduces the vanishing of calcium dye fluorescence levels after 20 s of theta trains from Tigaret
et al. (2016) (in their Supplementary Materials). We interpret their fluorescence measurements as
an effect of short-term depression (see Figure 8b).

Despite our model agreeing with previous works, it is a simplified presynaptic model that does
not encompass the highly heterogeneous nature of vesicle release. Vesicle release dynamics are
known to be sensitivity to various experimental conditions such as temperature (Ferndndez-Alfonso
and Ryan, 2004), the age for some brain regions (Rudolph et al., 2015) or magnesium concentra-
tion (Hardingham et al., 2006). Furthermore, since our model of vesicle dynamics is simple, ,,.
in Equation 2 has two roles: to delay the p,,, recovery caused by Ca,, inactivation (enforced by
5c, In Equation 2) and to prevent vesicle release after HFS-induced depression (King et al., 2007;
Rizzoli and Betz, 2005). Later, we incorporate a higher number of experimental parameters (age,
temperature, [Ca?*],, [Mg?*],) with our NMDAr model, the main postsynaptic calcium source.
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Table 3. | Parameter values used in the presynaptic model. Our model does not implement a larger pool
called "resting pool" containing ~ 180 vesicles (CA3-CA1 hippocampus) (Alabi and Tsien, 2012). Terminology
note: In other works, the larger pool with ~180 vesicles can be found with different nomenclatures such as
"reserve pool" (Siidhof, 2000) or "resting pool" (Alabi and Tsien, 2012). Furthemore, the nomenclature used in
our model for the reserve pool is use in other studies as the "recycling pool", e.g. Rizzoli and Betz (2005) and
Alabi and Tsien (2012).

Name Value Reference
Vesicle release model (stochastic part)

initial number of vesicles at D D, =25 5 to 20 (Rizzoli and Betz, 2005; Alabi and Tsien, 2012)
initial number of vesicles at R R, =30 17 to 20 vesicles (Alabi and Tsien, 2012)
time constant R ~ D =55 1 5 (Rizzoli and Betz, 2005)
(D recycling)

time constant D - R 5o =45 5 20 s (when depleted) to 5 min (hypertonic shock)
(R mixing) R (Rizzoli and Betz, 2005; Pyle et al., 2000)
time constant 1 R e =40 s 20 to 30 s (Rizzoli and Betz, 2005)
(R recycling) R

release probability half-activation curve  h see Equation 1
release probability sigmoid slope s=2 fixed for all [Ca*],

Vesicle release model (deterministic part)

50 - 500 ms with dye (Maravall et al., 2000)

Ca,,, attenuation recover 7,.=20ms

e y e therefore < 50 to 500 ms without dye
deterministic jump attenuation recovery r,,, =20s ~ 20 s (Rizzoli and Betz, 2005)
deterministic jump attenuation fraction  §,, = 0.0004 (Forsythe et al., 1998)

Model compartments

Our modelis built over three compartments, a spherical dendritic spine linked by the neck to a cylin-
drical dendrite connected to a spherical soma. The membrane potential of these compartments
satisfy the equations below (parameters in Table 4). Since the dendrite is a single compartment,
the precise spine location is undefined. For more detailed morphological simulations to predict
plasticity see Ebner et al. (2019), Chindemi et al. (2020) and Jedrzejewska-Szmek et al. (2017). The
distance from the soma to the spine functionally mimics the BaP attenuation as shown in Golding
et al. (2007), and it is set to 200 pym for all simulations, except in Figure 3-Figure Supplement 6c
and Figure 3-Figure Supplement 5e. In these panels, we modified this distance as described in the
graph y-axis to model Ebner et al. (2019) data. The different currents in the soma, dendrite and
spine are described as follows.

Membrane potential and currents

The membrane potential of these compartments satisfy the equations below (parameters in Table
4). The different currents are described in the following sections.

Csp : Vsp = &neck * (Vdend - Vsp)+g]ip : (Ereu - Vsp)+1T + IL + IR + INMDA +1AMPA + ISK (3)

y ada, en

Cdend . Vdend = gBa:t : (Vsoma - Vdend) + 8neck * (Vsp - Va’end) + gi a. (Erev - Vdend) + IGABA (4)
y ada, soma

Csoma : Vsama = gBa:t : (Vdend - Vsoma) + &1 : (Ereu - Vsoma) + ;lage : (IBaP + INa) + IK (5)

Action-potential backpropagation (BaP)

Postsynaptic currents

The postsynaptic currents are generated in the soma, backpropagated to the dendritic spine and
filtered by a passive dendrite. The soma generates BaPs using a version of the Na* and K* channel
models developed by Migliore et al. (1999). The related parameters are described in Table 5 (the
voltage unit is mV).
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Figure 8. | Presynaptic release. a, Presynaptic calcium in response to the protocol 1Pre, 300 at 5 Hz displaying adaptation. b, Release
probability for the same protocol as panel A but subjected to the docked vesicles availability. ¢, Number of vesicles in the docked and reserve
pools under depletion caused by the stimulation from panel a. d, Plot of the mean (300 samples) release probability (%) for different
frequencies for the protocol 1Pre 300 pulses at [Ca2*], = 2.5 mM. e, Release probability (%) for a single presynaptic spike as a function of [CaZ*],.
Note that King et al. (2007) model was multiplied by the experimentally measured release probability at [Ca*], = 2 mM since their model has
this calcium concentration as the baseline. Our model also does not cover the abolishing of release probability at [Ca?*], = 0.5 mM which can
also be difficult to measure experimentally given the rarity of events (Hardingham et al., 2006).

Sodium channel Potassium channel
+30
a (I/soma) =04- —mmay — a (mea) — —0 11-Vsoma—13)
1 _ e_ .mr;mz
soma + 30 — —_
By (Vipma) = 0.124 - W B, (Vi) = €00 Viona1)
e~ 12 —
Vigpe) = o) Vi) =
Mine Y soma mma)"'ﬁ ( Soma Ming VY soma l+a (I/wma)
1 ﬂ ( Soma
m_(V, = n (V, max | 50 ——22—:2
o) o) + Vo) ) = (30 0 5:2)
I/soma +45 Nipg — 1
ah( soma) 0.01 - Veomatds n(I/mma) = n—
e 15 —1 T
Vioma +45
soma) =0.03- % IK =Yk h- (EreuK - I/soma)
1—e
h(I/voma) - ah( voma) (1 - h) ﬂh voma “h
(V. )= Miyg — M

T

Iy, =7na" m - h- (Erevy, = Vioma)-

soma

Totrigger aBaP, an external current I, isinjected inthe soma attimesrt € {7,,....t,} (postsynap-
tic input times) for a chosen duration §,,; with amplitude 1, (n4), considering H as the Heaviside
function this is expressed as:

Ipp = Z H(t) (1= H(t,+6,,) - 1,
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Table 4. Parameters for the neuron electrical properties. * The membrane leak conductance in the spine is
small since the spine resistance is so high that is considered infinite (> 10° MQ) (Koch and Zador, 1993). The
current thus mostly leaks axially through the neck cytoplasm. The dendrite leak conductance is also small in

order to control the distance-dependent attenuation by the axial resistance term g“B‘i‘g” in Equation 4 and
Equation 5.
Name Value Reference

Passive cable

leak reversal potential

Epe = =70 mV

69mV (Spigelman et al., 1996)

membrane leak conductance
(for spine and passive dendrite)
membrane leak conductance
(only soma)

membrane capacitance

axial resistivity of cytoplasm

Greax = 4107 nS/um?

8soma

C,=6-1073 pF/um?

R,=1-10"2 GQum

=5.31-1073 nS/um*

* see table legend (Koch and Zador, 1993)

3-107*to 1.3-107%nS/um* (Fernandez and White, 2010)
47t02.1-10°nS (NeuroElectro:CA1)

11072 pF /um? (Hines and Carnevale, 1997)

17 to 177 pF (NeuroElectro:CAT)

21073 GQum (Golding et al., 2001)

Dendrite

dendrite diameter
dendrite length

Dyepg =2 pm
Lypq = 1400 um

same as Yi et al. (2017)
apical dendrites, 1200 to 1600 y m (Mendoza et al., 2018)

dendrite surface area Agong = 879 - 10> um? 7 Dyona * Laona
dendrite volume Vol ypg = 44 - 103 um? 7 (Dyona /2’ * Lyona
dendritic membrane capacitance  C,,,, = 52.77 pF C, - Agena
dendrite leak reversal potential Lloakdond = 3:51-1072 nS Zreak * Adena
dendrite axial conductance Z4irr =50 nS R, Agena
Soma

soma diameter Dy, =30 um 21 um (Stuart et al., 2016) page 3
soma area (sphere) Agpma = 2.82-10° um? @7r/3) - (Dyppa/2) ; 2.12 - 10° um?* (Zhuravleva et al., 1997)
soma membrane capacitance Cioma = 16.96 pF Co Agpma
soma leaking conductance Lreaksoma = 15 nS Zsoma * Asoma (FErnandez and White, 2010)

Dendritic spine

spine head volume

spine head surface

spine membrane capacitance
spine head leak conductance
Dendritic spine neck

Vol,, = 0.03 um?

A, =466 107" um
C, =28-107 pF
Sleatsy = 1.86 - 106 1S

Bartol et al. (2015)
4z - (3Vol“,/47r)2/3
Cm . Axp

ieak * Asp

spine neck diameter D, =0.1um 0.05t0 0.6 um (Harris et al., 1992)
neck length Lok =0.2 um 0.7 + 0.6 um (Adrian et al., 2017)
neck cross sectional area CSpoere =785 1073 um? 7+ (Dyoeic/2)?

CSpeek! Leek - R

neck resistance A
50 to 550 MQ (275 + 27 MQ) (Popovic et al., 2015)

Sroek =392 18 % 255.1 MQ

The current injected in the soma is filtered in a distance-dependent manner by the dendrite be-
fore it reaches the dendritic spine. Biologically, BaP adaptation is caused by the inactivation of
sodium channels and the difference of sodium and potassium channel expression along the den-
drite (Jung et al., 1997; Golding et al., 2007). We used a phenomenological model, implementing
distant-dependent BaP amplitude attenuation by modifying the axial resistance g“B‘i‘;!” (see Equa-
tion 4 and Equation 5) between the dendrite and the soma as follows (Figure 9c top):

adapt 1.4
gBaPp =1 gdiff : ¢di:t(ds0ma)’ ¢dist(dsama) = 01 + 1 + eo-oz‘(dsama_230-3.‘4m) (6)

where d,,,,, is the distance of the spine to the soma and where the factor 4 is dynamically reg-
ulated based on a resource-use equation from Tsodyks and Markram (1997) with a dampening

factor 4,,, changing the size of the attenuation step 6,,,,,:

;i 1—2 _

A= T - 6detay : A’gulx A IBaP(Z)
. 1= A
j'aux = T - éaux : /laux ' IBaP(t)‘

The BaP attenuation model is based on Golding et al. (20017) data for strongly attenuating neu-
rons. Therefore, the second type of attenuation (weakly attenuating) in neurons is not considered
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s22 (dichotomy in Figure 9a). Figure 9a compares Golding's data to our model and illustrates the effect
s23 Of BaP attenuation in the upper panels of Figure 9a,b.

824 Table 5 shows the BaP attenuation parameters. The plasticity outcomes as function of the
s2s dendritic spine distance from the soma are shown in Figure 3-Figure Supplement 6¢ and Figure
s26 3-Figure Supplement 5e.

a distance-dependent BaP amplitude | faster AP attenuation for juvenile ¢ variables implementing
attenuation (Goldings et al. 2001) rats (Buchanan & Mellor 2007) distance and age effects
9p at 20 Hz 6p at 10 Hz data >
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h h ®0.6
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—_ . . g .
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BT e T : S 90 . (dsoma)
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Figure 9. | AP Evoked by EPSP. a, Model and data comparison for the distance-dependent BaP amplitude attenuation measured in the
dendrite and varying the distance from the soma. The stimulation in panel a is set to reproduce the same stimulation as Golding et al. (2007).
Golding described two classes of neurons: those that are strongly attenuated and those that are weakly attenuated (dichotomy mark
represented by the dashed line). However, in this work we consider only strongly attenuated neurons. b, Attenuation of somatic action potential
from Buchanan and Mellor (2007) and model in response to five postsynaptic spikes delivered at 100 Hz. The value showed for the model is the
spine voltage with distance from the soma set to zero (scale 25 ms, 20 mV). ¢, Top panel shows the 4, used in Equation 6 to modify the axial
conductance between the soma and dendrite. Bottom panel shows the age-dependent changes in the step of the resource-use equation
(Equation 7) that accelerates the BaP attenuation and decreases the sodium currents in Equation Equation 5. d, Probability of evoking an AP
multiplied by the successfully evoked AP (p4p(V,pokeq) - 1(evoked) for the protocol 1Pre, 300 at 5 Hz (2.5 mM Ca). e, Two-pool dynamics with the
same stimulation from panel D showing the vesicle release, the reserve and docked pools, and the evoked AP. f, Probability of evoking an AP for
the protocol 1Pre 300 pulses at different frequencies (3 and 5 Hz have the same probability).

2z Age-dependent BaP adaptation

s2s  Age-dependent BaP attenuation modifies the neuronal bursting properties through the maturation
s20 and expression of potassium and sodium channels (Gymnopoulos et al., 2014), therefore changing
s30 the interaction of hyperpolarizing and depolarizing currents (see Figure 9b) (Grewe et al., 2010;
sa1 Jung et al., 1997). We reproduce Buchanan and Mellor (2007) somatic attenuation profiles (Figure
ez 9h) with our model by including an age-dependent BaP amplitude attenuation factor. We define
33 the attenuation factor 4,,, (Figure 9c bottom), as follows.

=1, 1.391 - 10~*

i - . . age —
/lage - age 5age /lage I BaP(t ) ém 1 + e0-135(age—16.482 days) * (7)
rec

s3a In Equation Equation 5, the age effects are introduced by multiplying the sodium I, and the ex-
a5 ternal I,, currents by the attenuation factor 4,,,.
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AP evoked by EPSP

A presynaptic stimulation triggers a BaP if sufficient depolarization is caused by the EPSPs reach-
ing the soma (Stuart et al., 2016). We included an option to choose whether an EPSP can evoke
an AP using an event generator resembling the previous release probability model p,,, as in the
Equation 1. Like p,,,, the BaPs evoked by EPSPs are estimated before the postsynaptic simulation.
We use a variable V,,,, which is incremented by 1 at each presynaptic time ¢ € (¢, ...,#,) and has
exponential decay:

Veaoke = =222 Veuoke(0) = 0
e ‘ (8)
Veuoke - Vevake + 1

Since the BaPs evoked by EPSPs are triggered by the afferent synapses and are limited by their
respective docked pools (D), we use the previous p,, to define the probability of an AP to occur.
We test the ratio of successful releases from 25 synapses to decide if a BaP is evoked by an EPSP,
setting a test threshold of 80%. Therefore, we express the probability of evoking an AP, p,»(V,,.xe)s
with the following test:

225 l(rand < prel(Veuoked’ [Cﬂ2+]97 D)) >
25

80 %.

Table 5. The Na+ and K+ conductances intentionally do not match the reference because models with passive
dendrite need higher current input to initiate action potentials (Levine and Woody, 1978). Therefore we set it
to achieve the desired amplitude on the dendrite and the dendritic spine according to the predictions of
Golding et al. (2001) and Kwon et al. (2017).

Name Value Reference
Soma parameters for Na+ and K+ channel

0.32 nS/um? (Migliore et al., 1999)

sodium conductance Yne=8-10% nS
see legend commentary
4 2 (Migli t al., 1999
potassium conductance vk =40 nS 048 nS/um" (Migliore et a )
see legend commentary
reversal potential sodium Erevy, =50 mV Migliore et al. (1999)
reversal potential potassium Erevg = =90 mV’ Migliore et al. (1999)

BaP attenuation parameters

5 see Equation 7 and Figure 9b,c bottom
ase Buchanan and Mellor (2007); Golding et al. (2001)
adjusted to fit

attenuation step factor (age)

attenuation step factor S gocay = 17271073 .
7 Buchanan and Mellor (2007); Golding et al. (2001)
- ) adjusted to fit
auxiliary attenuation step factor 8 = 2.304 1073 . )
Buchanan and Mellor (2007); Golding et al. (2001)
) ) adjusted to fit
recovery time for the attenuation factor T =25 |

ree Buchanan and Mellor (2007); Golding et al. (2001)
adjusted to fit

recovery time for the age attenuation factor 7%¢=0.5s .
rec Buchanan and Mellor (2007); Golding et al. (2001)

AP evoked by EPSP
decay time for v, 7, =40 ms Hines and Carnevale (1997)
delay AP evoked by EPSP B yetay_ap = 15 ms Fricker and Miles (2000)

The EPSP summation dynamics on the soma and dendrites depend on the complex neuron
morphology (Etherington et al., 2010; Ebner et al., 2079) which was not implemented by our model.
Therefore, our "AP evoked by EPSP test" intends to give a simplified way to produce BaPs similar
to an integrate-and-fire model (Sterratt et al., 2011).

Previous work suggests that BaPs can be evoked with a ~5 % probability for low-frequencies in
the Dudek and Bear experiment ([Ca?*], = 2.5 mM) (Mayr and Partzsch, 2010). Our model covers
this estimation, but the chance to elicit an AP increases with the frequency (Etherington et al.,
2010). This is captured by the V,,,, (in an integrate-and-fire fashion (Stuart et al., 2016)) as shown
in Figure 9f. The Figure 9d,e show how a 5 Hz stimulation evokes APs. The delay between the
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EPSP and the evoked AP is set to &,,,,_4p = 15ms, similar to the EPSP-spike latency reported for
CA1 pyramidal neurons (Fricker and Miles, 2000).

AMPAr
Markov chain

The AMPAr is modeled with the Markov chain (Figure 10) described by Robert and Howe (2003) and
Coombs et al. (2017) and adapted to temperature changes according to Postlethwaite et al. (2007).
Here, we introduce the additional parameters p2"*4, o4 to cover AMPAr temperature-sensitive
kinetics (Postlethwaite et al., 2007). The corresponding parameters are given in Table 6.

02 03 04
20 ||« 3f||a 40 || a
4k, - [Glu] - p?MPA 3k, - [Glu] - p}‘MPA 2k, - [Glu] - pj’fMPA k, - [Glu] - p?MPA
co k . pAMPA cl 2k .. pAMPA c2 3k .. pAMPA 3 4k .. pAMPA c4
) -1 P ~1° P A
70|46, 71((6, 71|26, 71|36, 71||46,
3k, - [Glu] - p?MPA 3k, - [Glu] - p}“"”’" 2k, - [Glu] - p}‘MPA k, - [Glu] - p?MPA
DO D1 D2 D3 D4
k_, - pAMPA k_, - pAMPA 2. k_, - ppMPA 3k_, - ppMPA
Y2 (32 12 252 Y> 352
2k, - [Glu] - pAMPA ky - [Glu] - pMP4
D,2 D,3 D,4

AMPA
k_y-py

2k—l . pZ\MPA

Figure 10. AMPAr Markov chain with three sub-conductance states and two desensitisation levels. It includes parameters p}‘M"A, ppPA
(binding and unbinding of glutamate) which depend on temperature. Open states are 02, O3 and O4; closed states are CO, C1, C2, C3 and C4;
desensitisation states are DO, D1, D2, D3 and D4; deep desensitisation states are D,2, D,3 and D,4.

865

866

The AMPAr current is the sum of the subcurrents associated to the occupancy of the three
subconductance states 02, O3 and 04 of the Markov chain in Figure 10 and described as follows:

Typrpa = (Erev ppy

desensitization at 35°C
2Pre(delay), 5 mM glu for 20 ms

b
= decay 0.95 (ms) 25.0°C -
= decay 0.61 (ms) 35.0°C Q
Q 50
1mM Glu, 1 ms S 40
< 30
= 20
< 10
c
8 0
0 1 2 3 4 0
S

time (ms)

100 200 300 400
delay (ms)

C

40
30
20
10

0

mean AMPAr open

- Vw) (a2 0247430347y, -04).

desensitization at 25°C

s

2Pre(delay), 5 mM glu for 20 ms

\

0 100 200 300 400

delay (ms)

Figure 11. | Effect of temperature in the AMPAr. a, Probability of AMPAr opening (%) and the decay time at different temperatures in
response to 1 mM glutamate during 1 ms (standard pulse). Postlethwaite et al. (2007) data (our model) suggests that AMPAr decay time at 35°C
is ~ 0.5 ms (~ 0.6 ms) and at 25°C is ~ 0.65 ms (~ 0.95 ms). This shows a closer match towards more physiological temperatures. b, Desensitisation
profile of AMPAr at 35°C showing how many AMPAr are open in response to a glutamate saturating pulse (5 mM Glu during 20 ms) separated by
an interval (x-axis). ¢, Same as in panel b but for 25°C.
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The adaptation of the Markov chain from Robert and Howe (2003) is made by changing the
forward p4*”* and backward p;*"* rates in a temperature-dependent manner matching the decay
time reported by Postlethwaite et al. (2007):

5.134
1 + -0367:(T-28.976°C) *

AMPA _ 10.273 AMPA _
pf | 4 e—0473(T-31.724°C) Py -

The effects of temperature change on AMPAr dynamics are presented in Figure 11, which also
shows that the desensitisation is not altered by temperature changes (Figure 11b,c). The recovery
time from desensitisation is the same as at room temperature (Robert and Howe, 2003). Desensi-
tisation measurements are required to account for a temperature-dependent change in the rates
of the "vertical" transitions in Figure 10, see Postlethwaite et al. (2007). This can be relevant for

presynaptic bursts.

Table 6. Parameter values for the AMPAr Markov chain and glutamate release affecting NMDAr, AMPAr.
Properties of GABA release are the same as those for glutamate.

Name

Value

Reference

Glutamate parameters

duration of glutamate in the cleft
concentration of glutamate in the cleft

glutamate variability
(gamma distribution T')

glu gy, =1 ms

glug,, =1 mM

glu,, =T(1/0.52,0.5%)

Spruston et al. (1995)
Spruston et al. (1995)

Liu et al. (1999)

glutamate signal Glu . gluc, - gl_u“’"”
for AMPAr, NMDAr and copied to GABA neurotransmitter
AMPAr parameters
number of AMPArs Naupa =120 Bartol et al. (2015)
reversal potential Erev,yp, =0mV Bartol et al. (2015)
subconductance 02 Yao =155pS 16.3 pS (Coombs et al., 2017)
subconductance O3 Va3 =26 pS 28.7 pS (Coombs et al., 2017)
subconductance O4 Yas =36.5pS 37.8 pS (Coombs et al., 2017)
glu binding ky=16-10"M"'s7! Robert and Howe (2003)
glu unbinding 1 k_; = 7400 s7! Robert and Howe (2003)
glu unbinding 2 k_,=041s" Robert and Howe (2003)
closing a =2600 s Robert and Howe (2003)
opening B =9600 s~! Robert and Howe (2003)
desensitisation 1 8, = 1500 s7! Robert and Howe (2003)
desensitisation 2 8, =170 57" Robert and Howe (2003)
desensitisation 3 8, =0.003 57! Robert and Howe (2003)
re-desensitisation 1 7 =91s7" Robert and Howe (2003)
re-desensitisation 2 v, =4257! Robert and Howe (2003)
re-desensitisation 3 7o =0.83 57! Robert and Howe (2003)

Postsynaptic Ca2* influx

The effects of experimental conditions on the calcium dynamics are due to receptors, ion channels
and enzymes. A leaky term models the calcium resting concentration in the Equation 9. The cal-
cium fluxes from NMDAr and VGCCs (T, R, L types) are given in Equation 10. The diffusion term
through the spine neck is expressed in Equation 11. Finally, the buffer, the optional dye and the
enzymatic reactions are given in Equation 12 (parameter values given at the Table 7):

. Ca, - C
Ca=—2— "9, 9)
Tca
Canpypa+Ir+Ig+1; (10)
2-F-A,
max(Caoc,Ca/3)—Ca_ (1)
Tcabif f
Buf f., — Dye + enzymes. (12)
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Despite the driving force to the resting concentration, Ca_ = 50 nM, the tonic opening of T-type
channels causes calcium to fluctuate making its mean value dependent on temperature, extracel-
lular calcium and voltage. The effects of this tonic opening in various experimental conditions are
shown in Figure 6-Figure Supplement 2c. To avoid modelling dendritic calcium sources, we use a
dampening term as one-third of the calcium level since calcium imaging comparing dendrite and
spine fluorescence have shown this trend (Segal and Korkotian, 2014). Equation 11 implements
the diffusion of calcium from the spine to the dendrite through the neck. The time constant for the
diffusion coefficient 7, ;. is estimated as described in Holcman et al. (2005). The calcium buffer

and the optional dye are described as a two-state reaction system (Sabatini et al., 2002):

Buf fe, = ki - (Buf fopn = Buf fco) - Ca=kypt" - Buf fe,

Dye = k! . (Fluo5f,,, — Dye) - Ca — kff”;’S - Dye. (13)
Table 7. Postsynaptic calcium dynamics parameters.
Name Value Reference

Buffer and dye

association buffer constant
dissociation buffer constant
buffer concentration

kBT = 0247 uM ' ms™!
Buff _ -1

ku” =0.524 ms

Buf fu0y = 62 uM

Bartol et al. (2015)
Bartol et al. (2015)
76.7 uM (Bartol et al., 2015)

Calcium dynamics

Calcium baseline concentration
Calcium decay time

Calcium diffusion
Calcium diffusion time constant

Ca,, =50nM
Te, = 10 ms

D, = 0.3338 um’*ms~!
Vol 2
P neck
T = 4 =0.5ms
CaDiff ™ D2 Dyeet ' 2D,

Ca

37 +5t0 54 +5nM (Maravall et al., 2000)

50 to 500 ms for with dye (Maravall et al., 2000)

therefore < 50 to 500 ms undyed (unbufered)

0.22 to 0.4 um*ms=" (Bartol et al., 2015; Holcman et al., 2005)

8 ms for a V,, = 0.7 um* (Holcman et al., 2005)

GHK equation

temperature
faraday constant
gas constant

Calcium permeability

Calcium ion valence

T =35°C
F =96.485 C mol™!
R=18.314J K~! mol™!

P, =0.045 um ms™!

Zeg =2

converted to Kelvin in the Equation 14 given the protocol

Hille (1978)

Hille (1978)

adjusted to produce 3 M Calcium in response to a Glu release
supplementary files from Chang et al. (2017)

Hille (1978)

Unlike other calcium-based plasticity models (Graupner and Brunel, 2012) using the dye fluores-
cence decay as an approximation to calcium decay, our model is based on receptor and ion channel
kinetics. Additionally, our model can simulate the dye kinetics as a buffer using Equation 13) when
appropriate. See Figure 12 that highlights differences between calcium and dye dynamics which
is affected by the laser-induced temperature increase (Wells et al., 2007; Deng et al., 2014). We
estimated the calcium reversal potential for the calcium fluxes using the Goldman-Hodgkin-Katz
s0s  (GHK) flux equation described in Hille (1978). The calcium ion permeability, P, was used as a free
parameter adjusting a single EPSP to produce a calcium amplitude of ~ 3 uM (Chang et al., 2017).

892

¢V, T) = z¢, - V,, - F/R- (T +273.15K)

[Ca**], - [Ca**], - e®

1—e® ()

e, (V. [Ca* 1) = —Pey - 20, F - ¢V, T) -

p°

@0,V [Ca“],.) (Equation 14) is used to determine the calcium influx through NMDAr and VGCC
001 in the Equation 15, Equation 16, Equation 17 and Equation 18 using the spine membrane voltage
and calcium internal concentration ([Ca2+],.). Note that for simplicity the calcium external concen-
tration ([Ca**],) was kept fixed during the simulation and only altered by experimental conditions

given by the aCSF composition.
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Figure 12. Differences between dye measurements and simulated calcium. a, Pre and postsynaptic stimuli as used in Tigaret et al. (2016).
b, Calcium imaging curves (fluorescence AF/A) elicited using the respective stimulation protocols above with Fluo5 200 pM (extracted from
Tigaret et al. (2016)). Scale 100 ms, 0.05 AF/A. ¢, Dye simulation using the model. The dye is implemented by increasing temperature to mimic
laser effect on channel kinetics and decreases the interaction between NMDAr and voltage elicited by BaP. Temperature effects over NMDAr are
shown in Korinek et al. (2070). Also, the effects of temperature on calcium-sensitive probes shown in Oliveira et al. (2012) (baseline only, likely
related to T-type channels). Other examples of laser heating of neuronal tissue are given in Deng et al. (2014). Such a dye curve fitting was
obtained by increasing temperature by 10°C to mimic laser-induced heating (Wells et al., 2007; Deng et al., 2014). We achieved a better fit by
decreasing the amplitude of the BaP that reaches the dendrite. Additionally, for fitting purposes, we assumed that a temperature increase lead
to a decrease in BaP amplitude. Scale 0.6 uM dye, 100 ms. d, Calcium simulation without dye. Scale 0.85 uM Ca2*, 100 ms.
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NMDAr - GIluN2A and GIuN2B

Markov chain

In hippocampus, NMDArs are principally heteromers composed of the obligatory subunit GIuN1
and either the GIUN2A or GIUN2B subunits. These N2 subunits guide the activation kinetics of
these receptors with the GIUN1/GLUN2B heteromers displaying slow kinetics (~ 250ms) and the
GIUN1/GIuN2A heteromers displaying faster kinetics (~ 50ms). We modeled both NMDA subtypes.
The NMDAr containing GIuN2A is modeled with the following Markov chain (Popescu et al., 2004)
where we introduce the additional parameters p’f"MDA, pyMPA:

kg - [Glu] ,P?JMDA ky - [Glu] - pJfVMDA ke ‘prVMDA Ky ,pJfVMDA ke pszMnA ky . pNMDA
AO NMDA Al NMDA Az NMDA A3 NMDA A4 NMDA AOI NMDA A()2
kg py k_p-py k¢ py k_g - py k_e - py k_y-py

The NMDAr containing GIUN2B is modeled with a Markov chain based on the above GIuN2A
scheme. We decreased the rates by ~75% in order to match the GIuN2B decay at 25°C as published
in lacobucci and Popescu (2018).

5q - [Glu - p}fVMDA s - [Glul ,pymm 5 ,prVMDA 54 ,pyMDA 5o- prVMDA sy ‘plfVMDA
BO NMDA Bl NMDA BZ NMDA B’i NMDA B4 NMDA BOI NMDA B()2
S_g P} sy py 5S¢ py S_g Py 5o Py s_f oy

The different rates are given in Table 8.

NMDAr and age switch
The age-dependent expression ratio of the subtypes GIUN2A and GIuUN2B (r,,,) was obtained from
experimental data of mouse hippocampus (Sinclair et al., 2016). We added noise to this ratio
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causing ~1 NMDAr subunit to flip towards GIUN2A or GIUN2B (see Figure 13e). The population of
15 NMDAr is divided in the two subtypes according to the ratio plotted in Figure 13b as a function
of age. The ratio to define the number NMDAr subtypes as function of age reads:

0.964

Fage = 0507 4 e st aa + N (0,005)
Nympa- Fage
N, = d| ——
GluN2B = Toun ( Fage + 1 >
NNMDA
NG,MNZAzround (m .
020 The round term in the two previous equations ensures that we have an integer value for the

021 NMDAr subtypes, making the stair shaped curve seen in Figure 13e.

a NMDA temperature effects b NMDA subtype changes C NMDA conductance changes
based on Korinek et al. 2010 based on Sinclair et al. 2016 based on Maki et al. 2014
@ NMDA-mediated EPSP (data)
350 @@ @ receptor decay time (data)
m R O mean GIuN2B decay time o 16} —— model —— model
£ 300 (model) P
- © 14r —— data @ data
w 25018 % < 12|
IS ~N
S 200} z 210
> o
150 | 08}
§ ‘ % 06l 0.4r 2.5mM Ca,
< 100 . . Q L . . . . . J Y=~75,5pS], 8
25 30 35 40 0 10 20 30 40 50 60 03 1.0 3.0 10.0 30.0
temperature (°C) age (days) extracelullar Ca (mM)
NMDA subtypes (N2A, N2B) Effect of Ca/Mg on calcium influx
d Temperature factor for NMDA e distribution (based on Sinclair 2016)
10 ms
< 10}
7t g ol Pre 1 L L “
—_ p;V"”DA 2 6 Post | I—
6l Y— I — N2A
_8 - PgMDA 8 | — N2B 10 ms
&s5¢ 8 ’ Pre | ﬁ
4 / g °l Post e~ M I_
N " C 5L L L L L L 1
25 30 35 0 10 20 30 40 50 60 1.3/0.86  18/1.2  3.0/2.0
temperature (°C) age (days) Ext. Ca (mM) / Mg (mM)

Figure 13. | NMDAr changes caused by age, temperature and extracellular and magnesium concentrations in the aCSF. a Decay time of
the NMDAr-mediated EPSP recorded from neocortical layer II/Ill pyramidal neurons (grey) (Korinek et al., 2010) compared to the decay time
from the GIUN2B channel estimated by our model (yellow) and data from lacobussi's single receptor recording (purple) (lacobucci and Popescu,
2018). b, Comparison of our implementation of GIuN2B:GIuN2A ratio and the GIuN2B:GIuN2A ratio from the mouse CA1 excitatory neurons. ¢,
Comparison of our implementation of NMDAr conductance change in response to the extracellular against data (Maki and Popescu, 2014). d,
Forward and backwards temperature factors implemented to approximate NMDAr subtypes decay times at room temperature (lacobucci and
Popescu, 2018) and temperature changes observed in Korinek et al. (2070). e, NMDAr subtype fluctuations in our model with age. We added
noise to have a smoother transition between different ages. f, Calcium concentration changes for causal and anticausal protocols in response to
different aCSF calcium and magnesium compositions with fixed Ca/Mg ratio (1.5). Scale 50 ms and 5 uM.

.22 NMDAr and temperature

923 We adjusted the GIuN2A and GIuN2B forward and backward rates to follow the temperature effects
022 on NMDAr-mediated EPSP (Korinek et al., 2010), see Figure 13a,d. Because GIuN2B dominates the
025 NMDAr-mediated EPSP, we fit its decay time of the NMDAr-mediated EPSP as function of temper-
e26 ature as reported by Korinek et al. (2010) using logistic functions p}*?4 and p;’*"*. The decay
e27 time comparison is shown in Figure 13a. Then, we applied the same temperature factor p}*?4
926 and pNMP4 for GIUN2A. The decay times of GIUN2A and GIuN2B are similar to those reported by
020 lacobucci and Popescu (2018). The forward and backward factors are described as follows:
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1239.067 pNMDA 3036 4 1621.616

NMDA _ _
Py = —1230.680 + 1 + e-0.099-(T+37.631°C)° b 1 + e—0-106(T-98.999°C) *

NMDAr current and CaZ*-dependent conductance
NMDAr conductance is modulated by external calcium and is modelled according to the next equa-
tions using NMDAr subconductances A,, and A,, (GIuN2A), and B,, and B, (GIuN2B).

58.388
Ynmpa = 33.949 + 1 + e*(ICa?+1,-2.701 mM)
1
BV, [Mg],) = 1+ el ,-0.062V,,

357
NMDA = (By, + By, + Apy + Apn) - BV, [Mg1,) - Ynmpa

INMDA = (EreUNMDA - I/sp) -NMDA

Table 8. NMDAr parameters.

Name Value Reference
NMDAr (GIuN2A)

glutamate binding k, =34 uM~'s! Popescu et al. (2004)
glutamate binding ky=17 uM~'s7! Popescu et al. (2004)
forward rate k. =127 57! Popescu et al. (2004)
forward rate ky =580 57" Popescu et al. (2004)
opening rate k, =2508 57! Popescu et al. (2004)
opening rate k, = 3449 57! Popescu et al. (2004)
closing rate k_; =662 57! Popescu et al. (2004)
closing rate k_,=2167s7" Popescu et al. (2004)
backward rate k_y =2610s7" Popescu et al. (2004)
backward rate k_,=161s7" Popescu et al. (2004)
glutamate unbinding k_,=120s"" Popescu et al. (2004)
glutamate unbinding k_,=60s7" Popescu et al. (2004)
NMDAr (GluN2B)

glutamate binding s, = 0.25k, adapted from GIuN2A (Popescu et al., 2004; lacobucci and Popescu, 2018)
glutamate binding s, = 0.25k, adapted from GIuN2A (Popescu et al., 2004; lacobucci and Popescu, 2018)
forward rate s, = 0.25k, adapted from GIuN2A (Popescu et al., 2004; lacobucci and Popescu, 2018)
forward rate s, =0.25k, adapted from GIUN2A (Popescu et al., 2004; lacobucci and Popescu, 2018)
opening rate s, = 0.25k, adapted from GIUN2A (Popescu et al., 2004; lacobucci and Popescu, 2018)
opening rate s; =025k, adapted from GIUN2A (Popescu et al., 2004; lacobucci and Popescu, 2018)
closing rate s_; =023k, adapted from GIUN2A (Popescu et al., 2004; lacobucci and Popescu, 2018)
closing rate s, =023k_, adapted from GIUN2A (Popescu et al., 2004; lacobucci and Popescu, 2018)
backward rate s_q=023k_, adapted from GIUN2A (Popescu et al., 2004; lacobucci and Popescu, 2018)
backward rate s, =023k_, adapted from GIuN2A (Popescu et al., 2004; lacobucci and Popescu, 2018)
glutamate unbinding s, =023k_, adapted from GIUN2A (Popescu et al., 2004; lacobucci and Popescu, 2018)
glutamate unbinding s, =023k_, adapted from GIUN2A (Popescu et al., 2004; lacobucci and Popescu, 2018)
other parameters

total number of NMDAr Nyypa =15 5-30 (Spruston et al., 1995; Bartol et al., 2015; Nimchinsky et al., 2004)
distribution of GIUN2A and GIuN2B defined by r,,, Sinclair et al. (2016)
NMDAr conductance depending on calcium vy a4 Maki and Popescu (2014)
NMDAr reversal potential EreVyyps =0mV Destexhe et al. (1994)
fraction of calcium carried by NMDAr fea =0.1 Griffith et al. (2016)

We modified the conductance yy,,»4 @s a funtion of extracellular calcium from that reported
by Maki and Popescu (2014). The reported NMDAr conductance at [Ca®*], = 1.8 mM is 53 + 5pS.
Here, we used the higher conductance 91.3 pS for NMDAr (for both subtypes) at [Ca®*], = 1.8 mM
to compensate for the small number of NMDArs reported by Nimchinsky et al. (2004). Hence, we
adjusted Maki and Popescu (20714) data to take into account this constraint: this caused a right-shift
in the NMDA-conductance curve (Figure 13c). The calcium influx Cay,, 4 is modulated by the GHK
factor, Equation 14, as a function of the internal and external calcium concentrations and the spine
voltage:

Caynps = fea Pey - NMDA. (15)

The combined effect of extracellular Magnesium (Jahr and Stevens, 1990) and Calcium concen-
tration are displayed in Figure 13f.
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oaa GABA(A) receptor

022 Since the precise delay of GABA release relative to glutamate is not known, we assumed GABA
0a3 and glutamate release are synchronized for simplicity (see Table 6). We used the GABA(A) receptor
oaa  Markov chain (Figure 14) presented in Busch and Sakmann (1990); Destexhe et al. (1998) and we es-
oas  timated temperature adaptations using the measurements reported by Otis and Mody (1992).

rp - [Gaba] rp - [Gaba]
(&

0 1
r

2
ul Tu2
Tel ~pf"3ﬂ Tol re -pf"“ {m
0, 0,

Figure 14. | GABAr Markov chain model. Closed states (C,, C; and C,) open in response to GABAr and can
go either close again or open (0, and O,)

oss GABA(A)r and temperature

oa7  Becausethe amplitude of GABA(A) currentis altered by the GABAr shift during development (Rinetti-
oas  Vargas et al., 2017), we applied temperature changes only to the closing rates using a logistic func-
eao tion for prABA, estimated by fitting to the measurements from Otis and Mody (1992) (data compar-

oso ison in the Figure 15b,e).
-1.279

GABA _ —-_——
p° =1.470 1+ 0 191-T—32.167)

a 60 F R b 250°C c —— model
0 50l : 25°C 80 - 0 @ data (dendrite)
T 40l < 60 —— model S 25t @ data (axon)
2 closed o — data g
< 30 —— opened < 40 ~ —50
o 20f \ 2 oQ
ét) 10k - $20 ur -75
ok o . r 0 Lk h —100kb . " e o
0 50 100 150 0 50 100 150 10 20 30 40 50 60 70
time (ms) time (ms) age (days)
d e f 350C
o 60F - 80 35°C 60 |
Y s0f 35°C 3 " model < a0} — 5days
© L X R
7] 40 closed o 60 — data s ol 20 days
< 30r —— opened < 40 < — 35days
o 20 ) g ol —— 70 days
< 10} © 20 o
O - ~ 20t
ok ; I I ot ;i I I - ) . . .
0 50 100 150 0 50 100 150 0 50 100 150
time (ms) time (ms) time (ms)

Figure 15. | GABA(A)r current, kinetics and chloride reversal potential. a, States of GABA(A)r Markov chain at 25°C in response to a
presynaptic stimulation. Opened = O, + O,, closed = C, + C; + C,. b, Model and data comparison (Otis and Mody, 1992) for GABA(A)r current at
25°C. Even though data were recorded from P70 at 25°C and P15 at 35°C, we normalize the amplitude to invert the polarity and compare the
decay time. This is done since the noise around P15 can either make GABAr excitatory or inhibitory as shown by E,; data in panel c. ¢, Chloride
reversal potential (Ercelu) fitted to Rinetti-Vargas et al. (2017) data. Note that we used both profiles from axon and dendrite age-depended Ercelu
changes since exclusive dendrite data is scarce. d, States of simulated GABA(A)r Markov chain at 35°C in response to a presynaptic stimulation.
e, Model and data comparison (Otis and Mody, 1992) for GABA(A)r current at 25°C (same normalization as in panel b). f, Change in the

polarization of GABA(A)r currents given the age driven by the E¢!

rev®

o2 GABA(A)r current and age switch

os2  The GABA(A)r-driven current changes during development (Meredith et al., 2003) passing from de-
es3  polarizing (excitatory) to hyperpolarizing (inhibitory) (Chamma et al., 2012). The reversal potential
osa Of chloride ions permeating GABA(A)r shifts from above the membrane resting potential (inward

34 of 64


https://doi.org/10.1101/2021.03.30.437703
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.30.437703; this version posted May 4, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

oss driving force - excitatory) to below the membrane resting potential (outward driving force - in-
oss hibitory) (Rinetti-Vargas et al., 2017). Such effect mediated by chloride ions is associated with the
os7  KCC2 pump (K Cl co-transporter) which becomes efficient in extruding chloride ions during matu-
ose ration (Rinetti-Vargas et al., 2017). To cover the GABA(A)r age-dependent shift, we fit the chloride
oso reversal potential (E€') using the data published by Rinetti-Vargas et al. (2017) (Figure 15c):

rev

cr 243.515
Erev =-92.649 + 1 + £0.091-(age—0.691 days)
Igapa = (0 +0y) - (E,Cef, = Viend) * YGaBA-
960 Table 9 presents the parameters to model the GABAr.

Table 9. GABAr parameters.

Name Value Reference
GABA(A) receptor

number of GABA Ngaps =34 30 (Edwards et al., 1990)
chloride reversal potential see age-dependent equation Rinetti-Vargas et al. (2017)
GABAr conductance Y6apa =36 pS 27 pS (Macdonald et al., 1989)
binding ry =20 10°M 71 57! Busch and Sakmann (1990)
unbinding Fg =4.6-10° 57! Busch and Sakmann (1990)
binding rpy=10-106 M~1s7! Busch and Sakmann (1990)
unbinding Fp=92-10° 57! Busch and Sakmann (1990)
opening rate oot =33+ 10% 571 Busch and Sakmann (1990)
opening rate Frop = 10.6 - 10% 57! Busch and Sakmann (1990)
closing rate ro, =400 57! based on (Busch and Sakmann, 1990; Otis and Mody, 1992)
closing rate r,=98-103 57! based on (Busch and Sakmann, 1990; Otis and Mody, 1992)

s VGCC-T, RandL type

o2  Markov chain

963 A stochastic VGCC model was devised using the channel gating measurements from rat CA1 (2-
osa 8 weeks) pyramidal neurons by Magee and Johnston (1995) at room temperature . Our model
oes has three different VGCC subtypes described by the Markov chains in Figure 16: the T-type (low-
ose VOltage), the R-type (medium-to-high-voltage) and the L-type (high-voltage).

anVep) -y 9C af (V) -/ 0CC

CO Cl C(J Cl
BRWVp) - oy GC€ B (Vsp) - oy 9CC

BRI - oy O laf V) - 27O R0 - 0} T |k Vi) - 0 9C By Vep) - oy O Jaf W) - 0¥ ECC gl W) - oy OCC |af (V) - 0 OCC

GCC L veeoe N
“ﬁ(‘ﬂp)-p;(“ ﬂlL(VW) . p[l’/GCC (V) - oY (l,z(Vsp)'ﬂ;GCC

C o Oy, G O, C o

2 R L veeco L veece 2 T
BRW,,) - ) OCC at(Vp) - py by Vip) - oy BEWp) - oy GC€

Figure 16. From left to right, R-, L-, and T-type VGCCs Markov chain adapted from Magee and Johnston(Magee and Johnston, 1995). The R- (left
scheme) and T- type (right scheme) have a single open state (red colour), respectively, O, and Or. The L-type VGCC (middle) has two open states,
O;,and Oy,.

067 The VGCC Markov chain derived from Magee and Johnston 1995 (Magee and Johnston, 1995) is
oes composed of two gates (h,m) for T- (Figure 17a,d) and R-types (Figure 17b,e) and a single gate for
eso L-type (Figure 17c), as described in the equations below.
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R-type h-gate rates

o** =100
1
Rx _
hinf(I/S[)) - Vsp+39
1+e 92
hR
R inf
a, (V) =
h\sp T,If
_ KR
R _ inf
V) = —
h
R-type m-gate rates
Rx __
pR* =40
1
Rx _
Mg 310
1+e73
Rk
Rx, _ aRx inf
@, = ﬂm 1 — mR*
inf
1
T'f = aR* + ﬂR*
m m
1
R _
My = 3-Vsp
1+e73
R
m;
R _ inf
am(Vsp) - R
m
1 —mR

R _ inf
ﬁ,,, (I/sp) = T—R

m

VGCC and temperature
Figure 17f), as follows:
VGee _
Py o€ =2503 - 5

Table 10. VGCC parameters

0.304

+ ¢1.048:(T=30.668) °

L-type rates

0.83
(XL(VW) = 13.7-Vy,
1+e a1
0.53
ﬁlL(VYlJ) = Vip=11.5
1+e 62
1.86
ﬂZL(VSp) = Vsp—18.8
1+e 67
T-type h-gate rates
TZ* =50
1
T —
hin’;(VSP) - Vsp+70
l+e 65
hT
T _ inf
@, (Vy,) = o
h
1-hnt
T _ inf
B, V) = 7
h
T-type m-gate rates
g =1
Tx _ 1
inf — 32420
l+e 7
m’*
o *r = pr*. inf
m m T%
1- minf
1
T _
Tm (ZT* + ﬂT*
1
T _
minf - -32-Vsp
l+e 7
T
T _ inf
am(I/SP) - TT
— mﬁf

V) = —

m

We used the same temperature factor for every VGCC subtype, respectively 7 and p;“““ (see

3.225
1 + ¢-0330(T-36.279) °

veee

ploeC =0.729 +

Name Value Reference
VGCC

VGCC T-type conductance  yc,r =12 pS same as (Magee and Johnston, 1995)
VGCC R-type conductance  yc,z =17 pS same as (Magee and Johnston, 1995)
VGCC L-type conductance  y.,, =27 pS same as (Magee and Johnston, 1995)

number of VGCCs

3 for each subtype

1 to 20 (Higley and Sabatini, 2012)

973

974

The VGCC subtypes are differently sensitive to temperature, with temperature factors for decay
times ranging from 2 (Iftinca et al., 2006) to 50-fold (Peloquin et al., 2008). It further complicates
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if T-type isoforms are considered. Indeed, they can have temperature factors that accelerate or
slow down the kinetics. For instance, when passing from room to physiological temperatures, the
isoform Ca,3.3 has a closing time ~50 % faster (Iftinca et al., 2006) and the isoform Ca,3.1 becomes
~15 % slower. To simplify, the same temperature factor was adopted to all VGCC subtypes.

VGCC currents
The VGCC currents are integrated to the dendritic spine and estimated using the GHK Equation 14,
as follows:

Ip =yp - ®@¢, - Or (16)
Ip=7r D¢, Og (17)
I =y, ®@c, (O, +0,,) (18)

Table 10 presents the parameters to model the VGCC channels. VGCC rates and temperature fac-
tors are shown in Figure 17.

a T-type, low-voltage m-gate b R-type, high-voltage m-gate C L-type, high-voltage m-gate
- 8 a
o — B} — B} sl
5F — al 6H — af ‘
m m
wn 4t 0 0
2 2 Q10
© 3[ © 4 ©
— — —
27 5 0.5
l -
ok . I ok : . 0.0k :
-100 -50 0 50 -100 -50 0 50 -100 -50 0 50
voltage (mV) voltage (mV) voltage (mV)
d T-type, low-voltage h-gate e R-type, high-voltage h-gate f VGCC temperature factor
0.020 | 0.0100 | 25}
0.015 — o 0.0075 — of |
0 w0 =
I} o} o
4 0.010 [ 4 0.0050 | ]
@© @© ©
—_ —_ y—
0.005 0.0025 |
0.000 L . 0.0000 E . n . .
-100 -50 0 50 -100 -50 0 50 25 30 35
voltage (mV) voltage (mV) temperature (°C)

Figure 17. | VGCC rates and temperature factors. a, Activation («,,(V;,)) and deactivation rates (g,,(V,,)) for the T-type m-gate. b, Activation
(@, (V) and deactivation rates (g,,) for the R-type m-gate. ¢, Activation (2, (V) and both deactivation rates (ﬂZL(VSp) and ﬂzl(VSp)) for the L-type
VGCC. d, Activation (e, (V;,)) and deactivation rates (§,(V,,)) for the T-type h-gate. e, Activation (a,(V;,)) and deactivation rates (,(V;,)) for the
R-type h-gate. f, Temperature factor applied to all the rates, forward change (p;GCC) for the « rates and backward change (p} ““) for the f rates.

982

SK channel

The small potassium (SK) channel produces hyperpolarizing currents which are enhanced in the
presence of intracellular calcium elevations. We included SK channels to incorporate a key negative
feedback loop between spine calcium and voltage due to the tight coupling that exists between SK
channels to NMDAr function (Adelman et al., 2012; Griffith et al., 2016). Although SK channels can
additionally be regulated by metabotropic glutamate receptors and muscarinic receptors (Tigaret
et al., 2016), we did not include these regulatory steps in the model. The SK channel current was
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based on the description from Griffith et al. (2016) as follows:

dm, rCa- PfK — Mg

dt Tox .pfl(
Ca°
Ca)= ——
"= Cov,

Igk =7Vsk - (Eif - Vsp) “my - Ngg.

There is little information on how temperature effects SK channel function, but Van Herck et al.
(2018) suggests a left-ward shift in the SK half-activation when changing from 37°C (hg, = 0.38 +
0.02 uM) to 25°C (hgx = 0.23 + 0.01 uM) ; that is a 65% decrease. Thus, to mimic temperature
dependence of SK, we decided to decrease the decay time of the SK hyperpolarizing current by a
factor of two when passing from physiological to room temperature.

PN = 14937 - - 147.61

+ ¢0.093(T—98.85C) *

piX = 0005 + - 2.205

+ ¢-0334:(T+25.59C)

Table 11 presents the parameters to model the SK channel.

Table 11. SK channel parameters.

Name Value Reference
SK channel

number of SK channels Ng, =15 10-200 (Bock et al., 2019)
SK conductance vsk = 10 pS Maylie et al. (2004)
SK reversal potential ESK =90 mV Griffith et al. (2016)
SK half-activation hgyx =0.333 uM Griffith et al. (2016)
SK half-activation slope ¢ =6 4 (Griffith et al., 2016)
SK time constant Tgx = 6.3 ms Griffith et al. (2016)

Enzymes - CaM, CaN and CaMKIl

To model the enzymes dynamics, we adapted a monomeric CaM-CaMKII Markov chain from Chang
et al. (2019) which was built on the model by Pepke et al. (2010). Our adaptation incorporates a
simplified CaN reaction which only binds to fully saturated CaM. That is, CaM bound to four calcium
ions on N and C terminals (see Markov chain in the Figure 18). A consequence of the Pepke coarse-
grained model is that calcium binds and unbinds simultaneously from the CaM terminals (N,C).
We assumed a lack of dephosphorylation reaction between CaMKIl and CaN since Otmakhov et al.
(2015) experimentally suggested that no known phosphatase affects CaMKIl decay time which is
probably caused only by CaM untrapping (Otmakhov et al., 2015). This was previously theorized in
the Michalski's model Michalski (2013), and it is reflected in Chang data (Chang et al., 2019, 2017).
The structure of the corresponding Markov chain is shown in Figure 18.

Chang et al. (20719) data provides a high-temporal resolution fluorescence measurements for
CaMKIl in dendritic spines of rat CA1 pyramidal neurons and advances the description of CaMKII
self-phosphorylation (at room temperature). We modified Chang's model of CaMKIl unbinding
rates k,, ks, ky, ks to fit CaMKIl dynamics at room/physiological temperature as shown by Chang
et al. (2017) supplemental files. Previous modelling of CaMKIl (Chang et al., 2019; Pepke et al.,
2010) used a stereotyped waveform with no adaptation to model calcium. Our contribution to
CaMKIl modelling was to use calcium dynamics sensitive to the experimental conditions to re-
produce CaMKIl data, therefore, allowing us to capture physiological temperature measurements
from Chang et al. (2077). Note that the CaMKII dynamic has two time scales and we capture only
the fastest timescale which ends after stimulation ceases (at 60 s). The slowest dynamic occurs at
the end of the stimulus, close to the maximum (Figure 19a). This can be caused by the transient
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KN Figure 18. | Coarse-grained model of
CaMO CaM2N CaM, CaMKIl and CaN adapted from

K2e b e Chang et al. (2019) and Pepke et al.

(2010). Reaction from the CaM-Ca

f. <k?”N reactions (first layer) are attributed to

(e 2N

CaM2C CaM4 CaNCaM4 2Ca release and binding from different

CaM2C
Ky

KCaM reactions

ON CHIN . CaN
Ky ky

CaM saturation states CaM2C (2Ca
bound to terminal C), CaM2N (2Ca
bound to terminal N), CaMO0 (no calcium
bound), CaM4(Ca bound to both C and
N terminal). Note that CaN is allowed
to bind only to fully saturated CaM.
Activated CaN is represented by the
KCaMO KCaM?2N state CaNCaM4. Reactions between the

K2N
kb

CaMO ||  CaMO CaM2N CaM2N
kf ky kf Ky

CaM2C CaM4 CaM4
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K2 K2 first (CaM-Ca reactions) and the second
7 Zc layer (KCaM-Ca reactions) represent
b KN b the binding of free/monomeric CaMKI|
KCaM?2C —— — KCaM4 (mKCaM) (Pepke et al., 2010) to
Ky different saturation levels of CaM.
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5 k2

Reactions within the layer KCaM-Ca
represent the binding of calcium to
Calmodulin bound to CaMKII (KCaMO,
KCaM2C, KCaM2N, KCaM4). Transition
of layer KCaM-Ca reactions to layer
KCaM-phosphorylation represents
PCaMO PCaM2N CaMKIl bound to CaM that became
phosphorylated (PCaM states) (Pepke
et al., 2010; Chang et al., 2017, 2019).
PCaM can become self-phosphorylated
(Autonomous layer with P and P2) and
release CaM. Once the KCaM
deactivates from autonomous states, it
returns to free monomeric CaMKiIl
(mKCaM). The CaMKII activity in this
work represent the states (KCaM +
PCaM + P + P2). See Chang et al. (2019)
for further explanation on this system.
CaNCaM4 represents the CaN activity.

kyg||p

CaMKII
b ks

P2

volume increase in the spine as measured by Chang et al. (2017). Table 12 shows the concentra-
tion of the enzymes and Table 13 shows the parameters to model enzymes reactions in shown in
Figure 18.

The CaN concentration was chosen as the total concentration used in a previous model (Stefan
et al., 2008) (1.6 pM) scaled by a factor of 12 due to a higher CaN concentration in dendritic spines
(Goto et al., 1986; Baumgdrtel and Mansuy, 2012) and taking into account the discrepancy between
different CaN concentration studies (Kuno et al., 1992; Goto et al., 1986). Kuno et al. (1992) pro-
poses 9.6 pg/mg (7.0 + 2.6 pg/mg for Aa and AR isoforms) for the catalytic subunit A of CaN (CaNA)
in the hippocampus, while Goto et al. (1986) proposes 1.45 pg/mg (presumably for both isoforms).
There is therefore a lack of consensus on CaN concentration in neurons, which seems to range
between 1 and 10 pg/mg. However, models of CaN in spines (Stefan et al., 2008) use low values of
CaN concentration (eg. 1.6 pM) not specific to dendritic spines without considering that these val-
ues are taken from the whole neuropil. There is little information on CaN concentration in spines,
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but Kuno et al. (1992) note that the concentration of CaN is 50% to 84% higher in synaptosomes
than in neuronal nuclei. With this information in mind, we set CaN spine concentration 20 uM in
our model. CaN was entirely activated through CaM for the following reason: CaNA is activated
by calcium-CaM in a highly cooperative manner (Hill coefficient 2.8-3), whereas the activation of
CaN by calcium (via CaNB) is at most 10% of that achieved with CaM (Stemmer and Klee, 1994). In
other words, CaNA affinity for CaM is 16 nM to 26 pM (Creamer, 2020), while CaNB affinity for
calcium ranges from 15 pM to 24 nM (Kakalis et al., 1995). CaN decay time was modeled using
experimental spine CaN activity dynamics measured in Fujii et al. (2013).

Table 12. Concentration of each enzyme.

Name Value Reference
Enzyme concentrations

free CaM concentration (spine) CaM,,, =30 uM Kakiuchi et al. (1982)
free KCaM concentration (spine) mKCaM,,, =70 uyM Feng et al. (2011); Lee et al. (2009)

free CaN spine concentration (spine) mCaN,,, =20 UM >10 uM (estimation from Kuno et al. (1992))

con

The lack of reactions between CaN and CaMKII

The protein phosphatases responsible for CaMKIl dephosphorylation have not been established
unequivocally (Lisman, 1989). Our model of CaMKIl is based directly on a quantitative model fit
to FRET imaging data (Chang et al., 2017, 2019), which implicitly account for the effects of any
‘hidden’ phosphatases, absorbing their contribution into the decay rates of the CaMKII activity. As
pointed out by Otmakhov et al. (2015), FRET sensor imaging of CaMKII activity unfortunately does
not capture the identity of the phosphatases involved in the dephosphorylation of CaMKIl. More
specifically, Otmakhov et al. (2015) observed no significant changes in the decay constant of their
CaMKIl FRET sensor when selectively inhibiting PP1 and PP2A. Given that these two phosphatases
are widely used in models to determine plasticity, we believe that our model is more aligned with
data of CaMKII activity in vivo.

Yet, our decision to include CaN in the model was determined by the evidence supporting CaN
as the strongest candidate for calcium-sensitive protein phosphatase in the brain (Baumgidrtel and
Mansuy, 2012). Furthermore, the central role of CaN in synaptic plasticity has been demonstrated
both pharmacologically and with genetic manipulation (Onuma et al., 1998; Malleret et al., 2007).

Temperature effects on enzymatic activity

We included temperature factors in the coarse-grained model using Chang's data (Chang et al.,
2019), as shown in Figure 19. For CaMKII, we fit the modified dissociation rates of the phosphoryla-
tion states k,, k; and k5 to match the data on relative amplitude and decay time using the following
logistic function:

161.426

CaMKII __ Bl ——————
0 = 162.171 1+ 0S11T—45475°C) "

For CaN, we fit the Fujii et al. (2013) data at 25°C as seen in Figure 20a. However, since CaN-
CaM dissociation rates at physiological temperatures were not reported, we set the temperature
factor to CaN that fits the outcomes of the protocols we proposed to reproduce. A reference value
from the CaN-AKAP79 complex (Li et al., 2012) showed a Q,, = 4.46 = (2.19 s7'/9.78 s!) which
is nearly the temperature factor used in our model for CaN. Therefore, both the association and
dissociation rates are modified using the following logistic functions:

0.304
CaN __
P = 2503 ~ e

3.225

CaN __
p, " =0729+ 1 4 ¢-0330(T-36279°C) "
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1Pre, 30 at 0.49 Hz (Glu uncanging) 1 mM Ca, 2 mM Mg, P4-7 (mouse hip.)

a Chang et al. 2017 data b simulation room C simulation physiological
temperature temperature
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Figure 19. | CaMKIl temperature changes in the model caused by 1Pre, 30 at 0.49 Hz with glutamate uncaging (no failures allowed),
1mM Ca, 2mM Mg, P4-7 organotypic slices from mouse hippocampus. a, CaMKIl fluorescent probe lifetime change measured by Chang et al.
(2017) for 25°C (blue) and 35°C (red). The decay time (r) was estimated by fitting the decay after the stimulation (30 pulses at 0.49Hz) using a
single exponential decay, y = a-e™"?; z = 1/b. b, Simulation of the CaMKII concentration change (with respect to the baseline) at 25°C in
response to same protocol applied in the panel a. The simulations on the panels b, c, e, f show the mean of 20 samples. ¢, Same as in panel b
but for 35°C. d, Estimated temperature change factor for the dissociation rates k,, k; and ks in the Markov chain in Figure 18. e, Change in the
concentration of the CaMKII states (25°C) which are summed to compose CaMKIl change in the panel b. f, Same as in panel e for 35°C with
reference to the panel c.

1Pre, 100 at 20 Hz, (Glu uncaging) 2 mM Ca, Mg-Free, DIV11-13 (rat cultured hip. neurons)

a room temperature b physiological temperature ¢ temperature change
and Fujii et al. 2014 data (hypothetical)
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Figure 20. | CaN temperature changes in our model caused by 1Pre, 100 at 20 Hz with glutamate uncaging (no failures allowed), 2mM
Ca, Mg-free, 11-13 days in vitro. a, Simulated CaN change (blue solid line) in response to the same stimuli of the CaN measurement from Fujii
et al. (2013) RY-CaN fluorescent probe (green solid line). The decay time (z) estimated from data (y = a - e7"**) is 94.83 s (dashed purple line) and
82.66 s for our model (solid purple line). b, Simulated CaN change for physiological temperature with decay time of 54.44 s. ¢, Temperature
change, p?“” and p$“N, applied to CaN association and dissociation rates.
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Table 13. Parameters for the coarse-grained model published in Pepke et al. (2010) and adapted by Chang
et al. (2019) and this work. Pepke et al. (2010) rate adaptation for the coarse-grained model

adapt(a,b,c,d,Ca) = c+‘;~bCa !

Refer to Figure 18for definition of variables.

REACTIONS

Value

Reference

Coarse-grained model, CaM-Ca reactions

CaMO0 + 2Ca = CaM2C
CaM2N + 2Ca = CaM4
CaMO0 + 2Ca = CaM2N
CaM2C + 2Ca = CaM4
CaM2C = CaMO + 2Ca
CaM4 = CaM2N + 2Ca
CaM2N = CaMO + 2Ca
CaM4 = CaM2C + 2Ca

K€ = adapt(k)$, K2 k)¢

on>"onRofy>

K¢, Ca)

12N = adapt(k!N, k2N KLY

N
of 1> Ken €A

K2 = adapt(klS,, K26 kIS L K2C

ors* KosyKop Ko - CO)

kZN klN

ON _ IN
k adapt(k or 2 Korpo

P of £ kgnN, Ca)
k€ =5.100M 15!

K€ =10 10°M 157!

kN =100-10°M~"s~!

k2N =200 -10°M~"s~!

1c _ -1
k;f/—SOS

C -1
kaf—IOs

N _— -1
ky7, = 2000 s
k2N =500 57!

of f

Pepke et al. (2010)
Pepke et al. (2010)
Pepke et al. (2010)

Pepke et al. (2010)

12t09.6-10°M 57! (Pepke et al., 2010
5t035-10°M~'s~! (Pepke et al., 2010
2510260 - 10°M~'s~!(Pepke et al., 2010
50 to 300 - 10°M~'s~! (Pepke et al., 2010
10 to 70 s~!(Pepke et al., 2010

8.5to 10 s~!(Pepke et al., 2010

1-10%to 4-10° s~!(Pepke et al., 2010

)
)
)
)
)
)
)
0.5-10° to > 1 - 10° s~'(Pepke et al., 2010)

Coarse-grained model, KCaM-Ca reactions

KCaMO + 2Ca = KCaM2C
KCaM2N + 2Ca = KCaM4
KCaMO + 2Ca = KCaM2N
KCaM2C + 2Ca = KCaM4
KCaM2C = KCaMO + 2Ca
KCaM4 = KCaM2N + 2Ca
KCaM2N = KCaMO + 2Ca
KCaM4 = KCaM2C + 2Ca

K2C _ KIC 1, K2C 1 KIC K2C
kf —adapt(kan ,kon ’ka/f’kon ,Ca)

K2N _ KIN [ K2N [ KIN [ K2N
ke = adapt(ky ™, k2N kg Y kP Ca)

K2C _ KIC [,K2C 1KIC 1K2C
kb —adapt(k"f/,kof/,kal,f,kml ,Ca)

K2N _ KIN K2N KIN K2N
ky —adapt(koff ,koff ,koff k2, Ca)
KKIC = 44.. 10°M~'s7!
k‘ﬁzc =44-10°M~'57!

k(ﬁ”" =76-10°M""'s7!
kKN =76 . 106M 57!

KIC _ -1
kt}{zfc =33y 1
kyif =08s

KIN _ -1
ki =300

K2N _ -1
kaff =20s

Pepke et al. (2010)
Pepke et al. (2010)
Pepke et al. (2010)

Pepke et al. (2010)

Pepke et al. (2010
Pepke et al. (2010
Pepke et al. (2010
Pepke et al. (2010
Pepke et al. (2010
0.49 to 4.9 57! (Pepke et al., 2010
Pepke et al. (2010

)
)
)
)
)
)
)
610 60 s~ Pepke et al. (2010)

Coarse-grained model, CaM-mKCaM reactions

CaMO0 + mKCaM = mKCaMO
CaM2C + mKCaM = mKCaM2C
CaM2N + mKCaM = mKCaM2N
CaM4 + mKCaM = mKCaM4
mKCaMO0 = CaM0 + mKCaM
mKCaM2C = CaM2C + mKCaM
mKCaM2N = CaM2N + mKCaM
mKCaM4 = CaM0 + mKCaM

KSaMO =38 10° M5!
KCAM2E = 0.92 - 10°M ™!
KEAMN =012 - 106 M 157!
KCaM4 =30 10°M ' s5~!
kbCEMO =555

kfaMZC =68 5!

kbCaMZN =17s"!

kCaM4 = 1.5 57!

Pepke et al. (2010)

Pepke et al. (2010)

Pepke et al. (2010)

14 to 60 - 10°M~'s~! (Pepke et al., 2010)
Pepke et al. (2010)

Pepke et al. (2010)

Pepke et al. (2010)

1.1to 2.3 s~ (Pepke et al., 2010)

Coarse-grained model, self-phosphorylation reactions

KCaMO0 = PCaM0
KCaM2N = PCaM2N
KCaM2C= PCaM2C
KCaM4 = PCaM4
Fraction of activated CaMKI|
PCaMO0 = P+CaMO0
PCaM2N = P+CaM2N
PCaM2C= P+CaM2C
PCaM4 = P+CaM4
P=mKCaM

P=P2

P2=P

k, =12.6 57!

F=CaMKII/mKCaM,,

k, =033 57!

ky=4-0.17s7!
k,=4-0.0415"!
ks =8-0.017s"!

Chang et al. (2019)

see Equation 19 (Chang et al., 2019)

0.33 57! ; adapted from (Chang et al., 2019)

0.17s~! adapted from (Chang et al., 2019)
0.041s~' adapted from (Chang et al., 2019)
0.017s~'adapted from (Chang et al., 2019)

Calcineurin model, CaM-CaM4 reactions

CaM4+mCaN=>mCaNCaM4

mCaNCaM4=CaM4+mCaN

k‘fjaN =10.75- 10°M~'s7!

kCoN = 0.02 57!

46 - 10°M~'s~! (Quintana et al., 2005)
fit from Fujii et al. 2014 (Fujii et al., 2013)
see Figure 20
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Geometrical Readout

We describe here the geometrical readout mechanism which allows for plasticity outcome assign-
ment. First, we define the following variables which are representative of "active CaMKII" and "ac-
tive CaN™

Active CaN
CaN = CaN4
Active CaMKII
KCaM = KCaM0O+ KCaM?2C + KCaM2N + KCaM4
PCaM = PCaMO0+ PCaM?2C + PCaM2N + PCaM4
CaMKII = KCaM + PCaM + P + P2. (19)

Calcium entry in the spine initiates a cascade of events that ultimately leads to long term plas-
ticity changes. Specific concentrations of CaMKIl and CaN trigger activation functions act,, and act,
when they belong to one of the two polygonal regions (P and D), termed plasticity regions in the
main text:

acty = ap -1y —bp-(1=1p)-act,
actp = ap-Lp—bp-(1=1p)-actp.

The variables act, and act, act as low pass filters of CaMKIl and CaN activities with some memory
of previous passages in the respective plasticity regions. To specify the LTP/LTD rates, termed D

rate

and P, we use the activation functions, act,, and act,, as follows:
o act?,
Plactp) = 1, m
2
D, (actp) = 1 o

D 2 2"
acty, +KD

The Markov plasticity chain (see Figure 21) starts with initial conditions NC =100, LT D = 0 and
LT P = 0. Figure 22 shows how the readout works to predict plasticity for a single orbit. Figure 22a
shows the enzyme's activity alone which is combined to form an orbit as shown in Figure 22b. The
region indicator of the respective orbit is shown in Figure 22c. Simultaneously, Figure 22d depicts
the leaky activation act, and actj, which will define the rate of plasticity induction in Figure 22e
and f. The rates in the plasticity Markov chain will not reset to 0 if the orbit leaves the readout.
The plasticity Markov chain is shown in Figure 22g with the prediction outcome represented as a
weight change (%). Figure 22h shows the rate, P,,, and D,,,, activation profile. The LTP activation
rate is steep, meaning that orbits do not need to spend a long time inside the readout to promote
LTP induction, while the LTD region requires five-fold longer activation times. Table 14 shows the
parameters that define the polygons of the plasticity regions (see Figure 22b).

rate!

Frarelactp) Prare(actp)

LTD NC LTP

D, gre(actp) D, gre(actp)

Figure 21. | Plasticity Markov Chain.

Positioning of the boundaries of the plasticity regions

The tuning of the plasticity region boundaries was based on four different experiments. The LTP
region was defined using Tigaret (Figure 3). The refinement of the LTD region was made using
the simulated dynamics from Inglebert et al. (2020) (Figure 6d, top part of the LTD boundary) and
Dudek and Dudek and Bear (1992, 1993) (Figure 4d and Figure 5f, bottom-left part of the LTD
boundary).
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Table 14. Parameters to define the plasticity readout.

Name

Value

Reference

Leaking variable (a.u.)

rise constant inside the LTD region
rise constant inside the LTP region
decay constant outside the LTD region
decay constant outside the LTP region

— -1
ap, =0.1au.-ms

ap=02au.-ms'
by =2-10" qu.-ms™!

bp=1-10"* au.-ms™!

fitted to cover all protocols in Table 1
fitted to cover all protocols in Table 1
fitted to cover all protocols in Table 1
fitted to cover all protocols in Table 1

Plasticity Markov chain

LTD rate time constant
LTP rate time constant
half occupation LTP
half occupation LTD

tp=18-10"ms
tp=13-10* ms
Kp=13-10* au.
K, =8-10"au.

fitted to cover all protocols in Table 1
fitted to cover all protocols in Table 1
fitted to cover all protocols in Table 1
fitted to cover all protocols in Table 1

Plasticity regions (vertices determining the polygons)

LTP region (CaN,CaMKIl)
LTD region (CaN,CaMKIl)

[6.35,1.4],[10,1.4],[6.35,29.5],[10,29.5]

[6.35,1.4],[6.35,23.25],[6.35,29.5],[1.85,11.32]

[1.85,23.25],[3.76,1.4],[5.65,29.5]

fitted to cover all protocols in Table 1
fitted to cover all protocols in Table 7
fitted to cover all protocols in Table 7
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Figure 22. | Plasticity readout for the protocol 1Pre2Post10, 300 at 5Hz, from Tigaret et al. (2016). a, CaMKIl and CaN activity in response to
protocol 1Pre2Post10. b, Enzymatic joint activity in the 2D plane showing LTP and LTD's plasticity regions. The black point marks the beginning of
the stimulation, and the white point shows the end of the stimulation after 60 s. ¢, Region indicator illustrating how the joint activity crosses the
LTP and the LTD regions. d, The leaky activation functions are used as input to the LTP and LTD, ratesrespectively. The activation function has a
constant rise when the joint-activity is inside the region, and exponential decay when it is out. e, The LTD rate in response to the leaky activation
function, actp, in panel d. Note that this rate profile occurs after the stimulation is finished (60 s). The joint-activity is returning to the resting
concentration in panel A. f, The LTP rate in response to the leaky activation function, actp, in panel D. g, Outcome of the plasticity Markov chain
in response to the LTD and LTP rates. The EPSP change (%) is estimated by the difference between the number of processes in the states LTP
and LTD, LTP - LTD. h, Normalized LTP and LTD rates (multiplied to their respective time constant, ¢, 7p) sigmoids. The dashed line represents
the half-activation curve for the LTP and LTD rates. Note in panel d that the leaky activation function reaches the half-activation K, = 1.3e4.
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Supplemental files

Figure 3-Figure Supplement 1 shows best fit to the Tigaret et al. (2016) data from seven spike-
timing dependent plasticity protocols, for three leading STDP models in the field: classic pairwise
STDP (Song et al., 2000), triplet STDP (Pfister and Gerstner, 2006), and calcium-based Graupner-
Brunel STDP (Graupner and Brunel, 2012) models. Parameters for each model that mimized the
mean-squared error with the data were discovered using Bayesian optimization using the Bayesian
Optimization package in the Julia programming language. Figure 4-Figure Supplement 1 shows vari-
ations of Dudek and Bear (1992) parameters for [Ca?*],, [Mg?*],, temperature and dendritic spine
distance from the soma. Also, it shows the Poisson spike train protocol (as in Figure 7g,h.) for
temperature and age parameters obtained from an estimation of the body temperature regula-
tion during development (or thermoregulation maturation, also called maturation of temperature
homeostasis, estimated in Figure 3-Figure Supplement 1g). Figure 5-Figure Supplement 1 expands
the presynaptic burst strategy hypothesized to recover the LTD in adult slices (Figure 5c) for 900
pairing repetitions. Also, Figure 5-Figure Supplement 1 tries to isolate the contribution of each
age-dependent mechanism (NMDAr, GABAr, BaP efficiency switches) for 3 and 5 Hz predictions
in Dudek and Bear (1993) experiment. We fixed each of the three mechanisms coding for age in
our model at P5 and P50, to observe how they shape the plasticity. Note the experiment in Fig-
ure 6-Figure Supplement 1d-i is only to theoretically show how each age mechanism contributes to
plasticity in Figure 5. Also we compare predictions between different STDP experiments across age.
Figure 3-Figure Supplement 4 presents modifications of Inglebert et al. (2020) STDP experiment
and the reproduction of Mizuno et al. (2001) data. Figure 6-Figure Supplement 2 shows multiple
aspects related to temperature in STDP experiments and the temperature and age choices for the
publications described in Table 1 compared to physiological conditions. We estimate how the rat's
body temperature physiologically evolves in function of age using McCauley et al. (2020) and Wood
et al. (2016) data.

a basic STDP model b triplet STDP model € Graupner-Brunel model
X 907F} B data X 90} Bl data X 90 I data
o o 3 model o ool = model ° 6o == model
)] I )] )] I
: 5 E 5 L
2 301 “ 2 30} 2 30}
% of -I-— % of % of
‘O -30} ‘0 -30f ‘0 -30}
2 . 2 . 2 .
Q ' 0 Q ' 0 Q e 0
Qos‘o’?os ?os“’ 9@7’ Q<66 ® ,Lq(e" 09‘\’ ot ?os“’ 9(97’ Q(‘?f’ ® ,Lq@c’ PSP Qos‘c’ ?(Q’L 9(26 ® ,Lq@c’
@@ o ?0“' Q0 > @@ o ?0“' 90° Q@@ e” 90"‘ Qo™
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Figure 3 - Supplement 1. | Standard models for predicting plasticity fail to account for the data from Tigaret et al. (2076). a-c, Mean
weight change for the Tigaret's data (blue), error bars denote +1 s.d. Plasticity protocols indicated by labels on x-axis. Green bars show mean
plasticity predicted for the same protocols by classic STDP (Song et al., 2000) (panel a), triplet STDP (Pfister and Gerstner, 2006) (panel b), or
Graupner-Brunel calcium-based STDP (Graupner and Brunel, 2012) model (panel c).
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Figure 3 - Supplement 2. | Comparison showing different roles of stochasticity in the model. a, Left, Glutamate concentration from a single
realization of the model (yellow) and averaged Glutamate concentration (purple) from 100 repetitions of the model for 300 pulses train at 5 Hz.
Right, 1Pre1Post10 from Tigaret et al. (2016) using the model (yellow) and a version of the model (purple) in which the glutamate concentration
is the average one (as in Left panel). The time spent (s) is shown for the different glutamate release modes (stochastic and averaged) with an
example trajectory (purple and solid yellow lines). There are no failures in averaged release; therefore, enzymes are over-activated. b, A
comparison between our model and a fully deterministic version for the 1Pre1Post10 from Inglebert et al. 2020(/nglebert et al., 2020). Note the
significant mismatch, which does not allow the deterministic model to reach the LTP region that determines the plasticity outcome. This effect is
mainly caused by the stochastic calcium sources, which the deterministic model fails to reproduce. The black triangle (circle) marks the initial
conditions of the deterministic version (model). This initial condition is reached by letting the model evolve with no input. ¢ The initial conditions
are increasingly different when comparing the model and its deterministic version for rising concentrations of external calcium concentrations.
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Figure 3 - Supplement 3. | Effects of blocking VGCCs. a, Combined enzyme activity of the experiment 1Pre2Post10, 300 at 5 Hz described in
Tigaret et al. (2016) with and without VGCCs (legend in panel c). The arrows indicate time flow, and the grey and black dots represent the initial
conditions. Note the effect of VGCC blocking on the initial conditions. b, Region indicator associated to panel a. ¢ Plasticity prediction for the
simulated experiment with and without VGCCs. Note that when VGCCs are blocked LTP cannot be induced, in agreement with Tigaret et al.
(2016) experimental data.
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Figure 3 - Supplement 4. | Exclusively setting vertical boundaries (no CaMKII selectivity) fails to capture the correct plasticity outcome.
a Combined activity of the protocol 1Pre1Post10, 100 at 0.3 Hz with experimental conditions as in Figure 6¢ considering the polygonal regions
responding only to CaN thresholds. Note that most of the activity resides in the LTD region. The arrows indicate time flow and black dot
represents the initial condition. b, Region indicator related to panel a. ¢, Plasticity prediction shows LTD, instead of LTP. d, Same as a but
considering the plasticity regions sensitivity both to CaMKIl and CaN. e, Region indicator related to panel d. f, Plasticity prediction for panel d
showing LTP agreeing with data described in Figure 6c.
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Varying experimental parameters in Tigaret et al. 2016 - 1Pre2Post(delay)
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Figure 3 - Supplement 5. | Varying Tigaret et al. (2016) experimental parameters. a, Mean synaptic weight change for 1Pre2Post(delay)
varying the temperature. b, Mean synaptic weight change for 1Pre2Post(delay) varying the age. ¢, Mean synaptic weight change for
1Pre2Post(delay) varying the frequency. d, Mean synaptic weight change for 1Pre2Post(delay) varying the [Ca®*],. e, Mean synaptic weight
change for 1Pre2Post(delay) varying the distance from the soma. A similar trend in distal spines was previously found in Ebner et al. (2019). f,
Mean synaptic weight change of 1Pre2Post50 and 2Post1Pre50 when number of pulses increases or decreases. Note the similarity with Mizuno
et al. (2001) in Figure 161c.
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Varying experimental parameters in Dudek and Bear 1992 FDP
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Figure 4 - Supplement 1. | Varying experimental parameters in Dudek and Bear (1992) and Poisson spike train during development. a,
Mean synaptic weight change for the FDP experiment varying the [MgZ*],. Original [Mg2*], in Dudek and Bear (1992) is 1.5 mM (dashed grey
line). b, Mean synaptic weight change for the FDP experiment varying the [Caz*]o. Original [Caz*]0 in Dudek and Bear (1992) is 2.5 mM (dashed
grey line). ¢, Mean synaptic weight change for the FDP experiment varying the distant from the soma. Original distance in Dudek and Bear (1992)
is 200 um (dashed grey line). Changing the distance from the soma modifies how fast BaPs evoked by EPSP will attenuate. Note that LTD is
prevalent for a spine situated far from the soma. d, Mean synaptic weight change for the FDP experiment varying the temperature. Original
temperature in Dudek and Bear (1992) is 35°C (dashed grey line). e, Mean synaptic weight change for the FDP experiment varying the pairing
repetitions at 33° C showing how LTD is enhanced. f, Mean synaptic weight change for the FDP experiment varying the pairing repetitions at
37°C showing how LTD is abolished. g, Mean synaptic weight change for pre and postsynaptic Poisson spike train during 30 s for P5 and 34°C.
The panel shows that there is weak and diffused LTP. h, Mean synaptic weight change for pre and postsynaptic Poisson spike train during 30 s
for P15 and 35°C. The panel shows that there is a start of LTP window forming for slow postsynaptic rates (<1 Hz). i, Mean synaptic weight
change for pre and postsynaptic Poisson spike train during 30 s for P20 and 35°C. The panel shows that a window forms around 10 Hz
postsynaptic rate similar to what is shown by Graupner et al. (2016) and in Figure 7h.
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Figure 5 - Supplement 1. | Duplets, triplets and quadruplets for FDP, perturbing developmental-mechanisms for LFS and HFS in Dudek
and Bear (1993), and age-related changes in STDP experiments (/nglebert et al., 2020; Tigaret et al., 2016; Meredith et al., 2003). a, Mean
synaptic weight change (%) for the duplet-FDP (2Pre50) experiment varying age. The panel shows showing that not only LTD is enhanced but
also LTP. b, Mean synaptic weight change (%) for the triplet-FDP (3Pre50) experiment varying age. The panel shows that LTD magnitude is
enhanced for adult rats and the LTD-LTP transition is shifted leftward. ¢, Mean synaptic weight change (%) for the quadruplet-FDP (4Pre50)
experiment varying age. The panel shows a further leftward shift on the LTD-LTP transition (compared to 3Pre50). d, Mean synaptic weight
change (%) for the 1 Pre 900 at 30 and 3 Hz with Dudek and Bear (1993). Fixing NMDAr at P5 (more GIuN2B than GIuN2A) causes an increase of
LTD and a slight increase of LTP for adult rats compared to baseline (grey solid line). e, Same experiment as panel d but fixing BaP maturation at
P5 (higher BaP attenuation). LTP is abolished, but LTD is not affected. This is because AP induced by the EPSP attenuate too fast for 30 Hz and
are thus not able to produce enough depolarization to activate NMDArs. f, Same experiment as in panel d but fixing GABAr maturation at P5
(excitatory GABAr) which only slighlty enhances LTD (3 Hz) for adult rats. g, Same experiment as panel d but fixing NMDAr at P50 (more GIuN2A
than GIuN2B). LTD appears with decreased magnitude for young rats compared to baseline (grey solid line). h, Same experiment as panel d but
fixing BaP maturation at P50 (less BaP attenuation). LTP is enhanced for young rats because the BaP pairing with the slow closing GIuN2B
produces more calcium influx. i, Same experiment as panel d but fixing GABAr maturation at P50 (inhibitory GABAr) which does not affect the
FDP experiment. j, Mean synaptic weight change (%) for Meredith et al. (2003) single versus burst-STDP experiment for different ages. The data
from Meredith (boxplots) were pooled by the age as shown in the x-axis. The solid line represents the mean, and the shaded ribbon the 2nd and
4th quantiles simulated by the model (same for panels a-f). k, Mean synaptic weight change (%) for Inglebert et al. (2020) STDP experiment in
which the number of postsynaptic spikes increases. The x-axis marker from 14-21 indicates that only this interval was published without further
specification. We use our model to estimate age related changes to Inglebert et al. (2020) protocols. Note that the model does not cover the
1Pre2Post10 properly (model predicts only outcomes near the first data quantile). Notice that single and burst STDP leads to LTD, meanwhile
Meredith et al. (2003) lead to LTP or NC. I, Mean synaptic weight change (%) for Tigaret et al. (2016) STDP experiment which compares single
versus burst STDP. The x-axis marker from 50-55 indicates that only a interval was published without further specification. We use our model to
estimate age related changes to Tigaret et al. (2016) protocols. It is noticeable that each STDP experiment has a different development.
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Figure 6 - Supplement 1. | [Ca?*], and [Mg?*], related modifications for Inglebert et al. (2020) experiment. a, Mean time spent for
anticausal pairing, 1Post1Pre10, at different Ca/Mg concentrations. The contour plots are associated with the Figure 6a-c. b, STDP and
extracellular Ca/Mg. Synaptic weight change (%) for causal (1Pre1Post10, 100 at 0.3 Hz) and anticausal (1Post1Pre10, 150 at 0.3 Hz) pairings
varying [Ca*], from 1.0 to 3 mM (Ca/Mg ratio = 1.5). ¢, Varying frequency and extracellular Ca/Mg for the causal pairing 1Pre1Post10, 100 at 0.3
Hz. Synaptic weight change (%) for a single causal pairing protocol varying frequency from 0.1 to 10 Hz. [Ca%*], was fixed at 1.8 mM (Ca/Mg ratio
=1.5). d, Mean synaptic weight change (%) for Inglebert et al. (2020) STDP experiment showing how temperature qualitatively modifies plasticity.
The dashed lines are ploted in panel b. e, Mean synaptic weight change (%) showing effects 0.5°C from panel a. Black and grey solid lines
represent the same color dashed lines in panel a (30 and 30.5°C). The bidirectional curves, black and grey lines in panel a (dashed) and panel b
(solid), becoming full-LTD when temperature increases to 34.5 and 35°C, respectively yellow and purple lines in panel a (dashed) and panel b
(solid). Further increase abolishes plasticity. f, Mean synaptic weight change (%) for Mizuno et al. (2001) experiment in Mg-Free ([Mg2*],=
10~>mM for best fit) showing the different time requirements to induce LTP and LTD. For LTD, to simulate the NMDAr antagonist D-AP5 which
causes a NMDAr partial blocking we reduced the NMDAr conductance by 97%. Note the similarity with Figure 3-Figure Supplement 5f. g, Mean
synaptic weight change (%) of Inglebert et al. (2020) STDP experiment changing [Ca?*], and Ca/Mg ratio. h, Mean synaptic weight change (%) of
Inglebert et al. (2020) STDP experiment changing pre-post delay time and frequency. Note the similarity with Figure 3-Figure Supplement 5c. i,

Mean synaptic weight change (%) of Inglebert et al. (2020) STDP experiment changing pre-post delay time and age. Age has a weak effect on this
experiment done at [Caz"]0 =2.5mM.
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Figure 6 - Supplement 2. | Temperature and age effects. a, Mean synaptic weight change (%) for Wittenberg and Wang (2006) STDP
experiment for 1Pre1Post10, 70-100 at 5 Hz (see (Table 1)) showing a full LTD window. Our model also reproduces the data showing that when
temperature is increased to 32 — 34°C LTD is abolished (data not shown). b, Mean synaptic weight change (%) for Wittenberg and Wang (2006)
STDP experiment for 1Pre2Post10, 70-100 at 5 Hz (see (Table 1)) showing a bidirectional window. ¢, Mean synaptic weight change (%) for
Wittenberg and Wang (2006) STDP experiment for 1Pre2Post10, 20-30 at 5 Hz (see (Table 1)) showing a bidirectional window. We noticed that for
Wittenberg and Wang (2006) experiment, done in room temperature, the temperature sensitivity was higher than for other experiments. d,
Core temperature varying with age representing the thermoregulation maturation. This function (not shown) was fitted using rat (Wood et al.,
2016) and mouse data (McCauley et al., 2020) added by 1°C to compensate species differences (Wood et al., 2016). The blue and white bars
represent the circadian rhythm as shown in McCauley et al. (2020). However, the "rest rhythm" for young rats (P5-14) may vary. e, Dotted grey
line represents the averaged physiological temperature at different ages in the rat (estimated from mean value of panel d). For the papers the
we fitted by the model, we depict the range of temperature and age used. Note that only few experiments were performed at near physiological
conditions. f, Initial conditions for CaN-CaMKIl resting concentration for different [Ca2*], and temperature values. When [Ca2*], is changed,
temperature is fixed at 35°C, while when temperature is changed, [Ca?*], is fixed at 2 mM.
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Table 1 - Supplement 1. Comparison of recent computational models for plasticity highlighting the

experimental conditions implemented and the experiments in the hippocampus and cortex they reproduce.

See Table 1-Table Supplement 2 for additional details on experimental conditions of experimental works.
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Table 1 - Supplement 2. Comparison of the experimental conditions for the different reproduced datasets in
Table 1-Table Supplement 1 covering experiments from neocortex, hippocampus and striatum

Experimental work Age (days) [Ca%], (Mm) [Mg?*], (Mm) Temperature (°C)
Sjostrom et al. (2007) 12-21 2.5 1 32-34
Wittenberg and Wang (2006) 14-21 2 1 24-30 or 30-34
Wang et al. (2005) embryonic day 17-18 3 2 room
Sjostrom and Hdusser (2006) 14-21 2 1 32-35
Nevian and Sakmann (2006) 13-15 2 1 32-35
Letzkus et al. (2006) 21-42 2 1 34-35
Weber et al. (2016) 49-77 1.25 13 0r0.1 32-35
Fino et al. (2010) 15-21 2 1 34
Pawlak and Kerr (2008) 19-22 2.5 2 31-33
Shen et al. (2008) 19-26 2 1 room
Inglebert et al. (2020) 14-20 1.3-3.0 Ca/1.5 30
Markram et al. (1997) 14-16 2 1 32-34
Rodriguez-Moreno and Paulsen (2008) 9-14 2 2 room
Egger et al. (1999) 12-14 2 1 34-36
Tigaret et al. (2016) 50-55 2.5 1.3 35
Dudek and Bear (1992) 35 2.5 1.5 35
Dudek and Bear (1993) 7-35 2.5 1.5 35
Mizuno et al. (2001) 12-28 2.4 Mg-Free (most experiments) 30
Meredith et al. (2003) 9-45 2 2 24-28
O’Connor et al. (2005) 14-21 2 1 27.5-32
Bittner et al. (2017) 42-63 2 1 35
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