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Abstract:

The progression of precancerous lesions to malignancy is often accompanied by increasing complexity of
chromosomal alterations but how these alterations arise is poorly understood. Here we performed
haplotype-specific analysis of chromosomal copy-number evolution in the progression of Barrett’s
esophagus (BE) to esophageal adenocarcinoma (EAC) on multiregional whole-genome sequencing data of
BE with dysplasia and microscopic EAC foci. We identified distinct patterns of copy-number evolution
indicating multigenerational chromosomal instability that is initiated by cell division errors but propagated
only after p53 loss. While abnormal mitosis, including whole-genome duplication, underlies chromosomal
copy-number changes, segmental alterations display signatures of successive breakage-fusion-bridge cycles
and chromothripsis of unstable dicentric chromosomes. Our analysis elucidates how multigenerational
chromosomal instability generates copy-number variation in BE cells, precipitates complex alterations
including DNA amplifications, and promotes their independent clonal expansion and transformation. In
particular, we suggest sloping copy-number variation as a signature of ongoing chromosomal instability

that precedes copy-number complexity.

These findings suggest copy-number heterogeneity in advanced cancers originates from chromosomal
instability in precancerous cells and such instability may be identified from the presence of sloping copy-

number variation in bulk sequencing data.
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Large-scale chromosomal rearrangements and copy-number alterations are prevalent in cancer and
generally attributed to genomic or chromosomal instability of cancer cells'?. Although much is known
about the patterns of genomic rearrangements in fully formed cancers*> and the biological mechanisms of
genome instability®*®, little is understood about what mechanisms are active during cancer evolution and
how they generate complex cancer genomes.

Genomic analyses of normal tissues have revealed clonally expanded point mutations but not large
structural chromosomal aberrations™'®. Early-stage precancerous lesions also show significantly less

11-15

genome complexity than late-stage dysplasia or cancer™'®!'". These observations have led to the

prevailing view that most chromosomal rearrangements arise late during cancer progression in an episodic

rnannerl 8,19

, in contrast to the gradual accumulation of short sequence variants (single-nucleotide
substitutions or short insertions/deletions)**!. However, the apparently simple genomes of precancerous
lesions at the clonal level does not exclude genome instability or complexity at the cellular level. Cells with
unstable genomes will generate copy-number variation in the progeny?>*, but such variation is invisible at
the population level due to counterbalancing of random copy-number gains and losses in single cells in the
absence of selection (i.e., neutral evolution). Genetic variation is further suppressed by positive selection
(e.g., for oncogene amplifications) or negative selection (against large DNA deletions or aneuploidy in
general®’). Based on these considerations, we expect the footprint of genome instability in somatic genome
evolution to be most visible in small precancerous lesions with in situ clonal expansion of copy-number
variation generated by genome instability. This idea has led us to perform multiregional analysis of Barrett’s

27 to dissect the origin of genome complexity in esophageal adenocarcinoma (EAC).

esophagus (BE)

BE is the only known precursor of EAC and estimated to be present in 60-90% of newly diagnosed
EAC cases™®. In contrast to fully formed EACs with complex chromosomal changes®, BE tissue samples
can contain lesions of different histopathological states with varying genomic complexity’’*'. By analyzing

copy-number alterations in concurrent BE (both non-dysplastic and dysplastic) and early EAC (either

intramucosal or T1) lesions, we reveal copy-number heterogeneity in BE cells before transformation, relate
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copy-number evolution patterns in BE cells to those derived from experimental models of chromosomal

instability**3*

, and provide mechanistic insight into the evolution of EAC genome complexity.
We find that both copy-number heterogeneity and complexity can predate the appearance of

cancers or dysplastic lesions and are present in both single BE cells and BE subclones with intact p53.

Importantly, p53 loss enables episodic but multigenerational genome evolution initiated by catastrophic

32,33 34-36 37,38,

events such as whole genome duplication®>, chromothripsis™ ", and dicentric chromosome formation
We provide evidence that both copy-number heterogeneity and complex copy-number gains in BE cells
reflect multigenerational genome or chromosome instability precipitated by these events. We further
demonstrate that ongoing chromosomal instability underlies both progressive DNA deletions in BE cells
that result in sloping copy-number variation, and distinct oncogenic amplifications in independently

transformed cancers within a single BE field. Together, these findings elucidate how genome instability

drives copy-number evolution to promote tumor progression.

Results

Copy-number heterogeneity suggests early onset of chromosomal instability in precancer BE cells
Endoscopic mucosal resection (EMR) is routinely performed in patients with dysplastic BE. In reviewing
more than 500 formalin-fixed, paraffin-embedded (FFPE) EMR samples, we identified 14 cases showing
unexpected microscopic foci of invasive cancers and one case (Patient 1) with an early cancer removed via
esophagectomy. All cancers were either intramucosal or T1 and all samples were collected before treatment.
Following independent pathologic re-review by two or more pathologists to confirm the diagnoses
(Methods), we delineated and performed laser capture microdissection (LCM) to isolate regions
corresponding to distinct histopathological states’” (Figure 1), including non-intestinalized columnar
metaplasia (COLME), non-dysplastic BE (NDBE), BE indefinite for dysplasia (IND), BE with low-grade
dysplasia (LGD) or high-grade dysplasia (HGD), and intramucosal (IMEAC) or early EAC (Extended
Data Figure 1). We further isolated normal tissue from benign FFPE regions that was used as germline

reference.
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Due to the limited quantity of FFPE DNA from small tissue sections and their lesser quality
compared to DNA from fresh or frozen cells, we first performed low-pass whole-genome sequencing
(WGS) at ~0.1x mean depth to select libraries with sufficient complexity and then performed deeper
sequencing ~20x. The final cohort consisted of 75 BE/EAC (21 COLME/NDBE/IND, 7 LGD, 23 HGD,
and 24 IM/EAC) and 15 reference samples from 15 patients (Extended Data Table 1). the variant calls
generated by standard tools had both high false positive and high false negative detection rates (Methods).
For single-nucleotide variants (both somatic and germline), short insertions/deletions, and rearrangements,
we performed joint variant detection on all samples from each patient to improve variant detection accuracy
(Figure 1). Although the joint analysis is sufficient to detect mutations shared by multiple samples, the
false negative detection of mutations in individual samples due to sequencing dropout still confounds
phylogenetic inference (Methods). To bypass this challenge, we focused on somatic copy-number
alterations (SCNA) for which better accuracy could be achieved.

We determined chromosome-specific DNA copy number and copy-number changepoints based on
haplotype-specific sequence coverage (Methods, Supplementary Data). Parental haplotypes were first

1° and then refined based on allelic

inferred by statistical phasing using a reference haplotype pane
imbalance across all samples from each patient. We used haplotype-specific sequence coverage to first
validate the estimated ploidies and clonal fractions of aneuploid BE/EAC clones and then calculate the
integer DNA copy number of parental chromosomes. The determination of long-range parental haplotype
both enabled phasing of SCNAs to parental chromosomes and ensured the accuracy of SCNA detection.
We further performed segmentation of haplotype-specific DNA copy number and used copy-number
changepoints to refine the list of rearrangements. For data presentation clarity, the copy-number plots in
the main and extended data figures only show data of the altered homolog, except where stated. The
haplotype-specific sequence coverage and copy number of both homologs are provided in Supplementary
Data.

We determined the phylogenetic tree of samples from each patient (Figure 2) based on haplotype-

specific copy-number alterations. SCNAs were first identified independently in each sample and then
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96  assigned to phylogenetic branches based on their presence or absence in all samples. The branch length
97  (horizontal distance between nodes) approximately reflects the SCNA burden estimated using the number
98 ofaltered chromosomes. SCNAs on each branch (labelled in Extended Data Figure 2) are summarized in
99  Extended Data Table 2; SCNAs that affect esophageal cancer genes or identified more than once in the
100  current cohort are annotated in Figure 2. In all but two patients (13 and 14), we identified SCNAs in related
101 BE/EAC genomes affecting a single parental homolog but having distinct changepoints that indicate
102  branching evolution of ancestral chromosomes; these chromosomes are labelled with asterisks near the
103  inferred common ancestor. Whole-genome duplication (WGD) was inferred based on the number of
104  homologous chromosomes with more than one copy*’ and assigned to evolutionary branches based on the
105  WGD status of individual samples (Methods). For SCNAs on branches with WGD, their timing relative to
106  WGD was inferred based on the integer copy-number states. Finally, we confirmed the consistency between
107  SCNA-derived phylogenetic trees and genetic similarities estimated from somatic SNVs (Extended Data
108  Figure 2). The few instances of discrepancy are discussed in Methods.
109 The phylogenetic trees of EAC and precursor BE lesions show several recurrent patterns. First, bi-
110  allelic 7P53 inactivation is a truncal event of the evolutionary branches of cancer or high-grade BE lesions
111 (14/15 patients). By contrast, focal deletion near FHIT (a common fragile site) is often ancestral to all BE
112  and EAC lesions; bi-allelic inactivation of CDKN24 (a frequently inactivated tumor suppressor) can be
113 truncal to either cancer/HGD lesions (Patient 3,5,6,7) or NDBE/LGD lesions (Patient 2,8,9,11,14). Second,
114  evolutionary branches with the highest SCNA burdens are frequently associated with WGD, which is itself
115  also a frequent event (10/15 patients). Third, high-grade dysplastic BE lesions and cancer lesions from the
116  same patient often harbor distinct SCNA breakpoints on single parental chromosomes (13/15 patients) or
117  distinct regions of focal amplification (10/15 patients), indicating copy-number heterogeneity prior to the
118  emergence of aneuploid BE/EAC clones. Finally, we identified more than one early cancer lesion in five
119  patients (Patient 1,2,9,12,15): The distinct cancer foci from each patient often displayed significant genomic
120  divergence but were individually accompanied by precancerous lesions in close proximity (Patient

121 1,9,12,15) and/or showing more genomic similarity (Patients 2,9,12,15). The last observation strongly
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122 suggests that the cancer foci had evolved independently from distinct BE cells within the same BE field,
123  i.e, independent malignant transformation.

124 The observation of significant SCNA diversity in BE and EAC subclones suggests highly dynamic
125  copy-number evolution in precancerous BE cells and predicts copy-number diversity at the single-cell level.
126  We directly tested this hypothesis by performing whole-genome sequencing analysis of 68 single cells
127  isolated from a patient with known HGD by endoscopic cytology brushing immediately before
128 radiofrequency ablation. We performed haplotype-specific copy-number analysis and phylogenetic
129  inference using the same strategy as for bulk samples (Methods). We identified 12 cells with aneuploid
130  genomes and 56 cells with near diploid genomes. Their phylogeny and selected examples of SCNAs in
131  single BE cells or subclones are shown in Figure 3; SCNAs in each cell are listed in Extended Data Table
132 3 and DNA copy-number plots of all cells are available in Supplementary Data. All the aneuploid cells
133 share biallelic 7P53 inactivation through a pathogenic R175H mutation and loss-of-heterozygosity
134  generated by 17p loss, but show significant heterogeneity of chromosomal copy-number changes. The onset
135  of genomic heterogeneity in precancer BE cells following bi-allelic 7P53 inactivation recapitulates the
136  pattern seen in bulk samples and provides direct evidence of dynamic precancer genome evolution driven
137 by chromosomal instability. We next discuss specific patterns of copy-number evolution and their
138  mechanistic implications.

139

140  TP53 inactivation and the onset of genome instability initiates BE genome evolution

141  We observed increasing SCNA burden with disease progression (Figure 4A left; Extended Data Fig. 3A
142  and 3B), but this correlation is mostly attributed to 7P53 mutation status. Samples with 7P53 inactivation
143 show significantly higher SCNA burdens than samples without 7P53 inactivation (Figure 4A,middle;
144  Extended Data Fig. 3C). In particular, two NDBE samples (from Patient 6 and 15) and four LGD samples
145  (from Patient 6 and 7) with bi-allelic 7P53 inactivation show similar SCNA burdens as HGD and EAC
146  samples; by contrast, NDBE and LGD samples without 7P53 inactivation show significantly fewer SCNAs

147  (Extended Data Fig. 3A). These data and the contrasting SCNA burdens in single BE cells with and
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148  without intact p53 (Figure 3A) both reinforce the association between p53 loss and SCNA evolution''!,

149 Prior analyses of ageing esophageal tissues”'® by bulk sequencing revealed uniparental disomy
150 (UPD), or copy-neutral loss of heterozygosity, as the only large segmental SCNA. Consistent with this
151  observation, we observed frequent UPDs in both single BE cells (Extended Data Table 3) and clones
152  (Extended Data Table 4) prior to p53 loss, but only sporadic segmental gains or losses in single BE cells
153  (Figure 3C,D) and almost none in BE clones. Remarkably, we identified UPDs on the 9p terminus with
154  varying boundaries in a subclone of 14 single BE cells (Figure 3E and Supplementary Data). As this
155  variation does not alter total DNA copy number, it can only be revealed by haplotype-resolved copy-number
156  analysis. The varying boundaries of terminal UPD in different cells (arrows in Figure 3E) bear an intriguing
157  similarity to our prior observation of varying terminal deletions attributed to ongoing breakage-fusion-
158  bridge cycles®® (see Extended Data Figure 7 that will be discussed later). The similarity between varying
159  terminal UPDs and varying terminal deletions suggests a plausible common origin from broken
160  chromosomes generated by breakage-fusion-bridge cycles®, with deletions resulting from translocations
161 involving other broken ends and UPDs resulting from homology-dependent invasion of broken ends into
162  the intact homolog followed by a half crossover resolution*' (Extended Data Fig. 4, top).

163 In contrast to the simple SCNA landscape in BE cells with intact p53 is the prevalence of arm-level
164  and complex SCNAs in BE cells and clones after p53 loss. Loss of p53 does not directly cause aneuploidy
165  or chromosomal instability in human cells*?, but abolishes p53-dependent arrest after DNA damage® or
166  prolonged mitosis**. The burst of SCNA complexity after p53 loss is therefore more reflective of an
167 increased frequency of SCNA clonal expansion than an increased rate of SCNA acquisition. Moreover, the
168  observation of sporadic large SCNAs, especially UPDs, in single BE cells with intact p53 indicates that BE
169  cells do acquire DNA breaks, but these breaks do not lead to complex copy-number alterations as seen in
170  BE cells or clones with inactive p53. We next focus on BE cells or clones with inactive p53 and provide
171  evidence supporting that the accumulation of SCNA complexity reflects multigenerational chromosomal
172  instability that is precipitated by sporadic cell division errors but only propagated after p53 inactivation.

173
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174  Whole-genome duplication triggers rapid accumulation of arm-level copy-number changes
175  The most dramatic change in BE cells is whole-genome duplication (WGD). WGD is inferred to be a

#46 and thought to define a particular EAC evolution trajectory”".

176  frequent event in many epithelial cancers
177  We inferred 15 WGD events in bulk BE/EAC lesions from 10/15 patients, including independent WGD
178  occurrences in distinct HGD/EACs from Patient 1,3, and 4 (Figure 2). We further inferred two independent
179  WGDs in single BE cells without presence of cancer (Figure 3A). These observations suggest that WGD
180  may occur frequently during BE progression before the appearance of cancer.

346 and its tumor-promoting capacity”*, how

181 Despite the prevalence of WGD in human cancers
182  WGD impacts tumorigenesis remains incompletely understood. One proposal is that tetraploidization (the
183  event that causes WGD) can precipitate additional genome instability including multipolar cell division or

184  chromosome missegregation®>**

that leads to aneuploidy. Consistent with this model, we inferred that
185  more SCNAs in BE/EAC genomes were acquired after WGD than before WGD (Figure 4A, right), and
186  evolution branches with WGD acquisition had significantly higher SCNA burdens (30 events/branch) than
187  non-WGD branches (pre-WGD: 7.5/branch; post-WGD: 8.8/branch) (Figure 4B, Extended Data Table
188  2). Moreover, a majority of post-WGD SCNAs are arm-level changes (302 out of 428 events) and
189  dominated by losses (256) (Figure 4C), a pattern also seen in single aneuploid BE cells (Figure 3A).

190 The preponderance of chromosome losses after WGD has two implications. First, this pattern
191  cannot be solely explained by increased rates of random chromosome missegregation®” that generates
192  reciprocal gain and loss in a pair of daughter cells. This pattern could reflect a lower fitness of cells with
193  larger chromosome number due to more frequent mitotic delays and defects*. It could arise from multipolar
194  cell divisions that generate three or more progeny cells with predominantly chromosome losses™
195 (Extended Data Fig. SA). Future work is needed to test these hypotheses. Second, extensive chromosome
196  losses after WGD may significantly reduce the number of duplicated chromosomes and cause

197  underestimation of WGD incidence in cancer development, especially in cancers with highly aneuploid

198  genomes. Together, our analysis of arm-level SCNAs in BE cells both confirms WGD as a precursor to
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4931 and highlights the diversity of copy-number outcomes® generated by post-WGD events

199  aneuploidy
200 including multipolar cell division™.

201

202  Segmental copy-number alterations display signatures of dicentric chromosome evolution

203  In contrast to the prevalence of post-WGD arm-level SCNAs, we inferred a similar number of segmental
204  SCNAs in BE/EAC genomes to have occurred prior to (135) and after WGD (126) in samples with WGD
205  acquisition. The fractions of segmental DNA loss and DNA gain are also comparable among pre-, post-,
206  and WGD branches (Figure 4C, right), although branches with WGD acquisition have a higher average
207  SCNA burden (5.9 events) than pre- (1.6) or post-WGD (2.1) branches. These observations indicate that
208  segmental SCNA acquisition is promoted by WGD but also occurs independent of WGD.

209 Segmental SCNAs in BE genomes further display two features of non-randomness. First, SCNA
210  breakpoints are often concentrated on a few chromosomes with complex deletions (chromothripsis) or
211  duplications. Second, distinct SCNAs in related BE/EAC genomes more frequently originate from a single
212 parental chromosome (‘mono-allelic’) than affect both parental chromosomes (‘bi-allelic’) (Figure 4D and
213  Extended Data Fig. 3E). Both features are consistent with one-off or successive SCNA acquisition on
214  individual unstable chromosomes instead of independent SCNA acquisition across the genome. The
215  connection between segmental SCNA acquisition and chromosomal instability is further supported by the
216  observation of larger fractions of deletions (allelic copy number = 0) or duplications (allelic copy number
217 =2 innon-WGD samples and >3 in WGD samples) in samples with inactive p53 than in samples with intact
218  p53 (Figure 4E). Finally, we recognized that many segmental SCNA patterns in BE/EAC genomes are
219  consistent with the outcomes of chromosomal instability from abnormal nuclear structures including
220  micronuclei’* (Extended Data Fig. 5B) and chromosome bridges (Extended Data Fig. 5C)*. We sought
221  to use the genomic signatures of in vitro chromosomal instability to deconvolute segmental copy-number
222 complexity in BE/EAC genomes.

223 The most frequent SCNAs in BE/EAC genomes are gain or loss of large terminal (i.e., spanning a

224 telomere) or internal (with two non-telomeric breakpoints) segments; these alterations are consistent with
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225  the outcomes of dicentric chromosome breakage (Figure 5). Dicentric chromosomes can result from either
226  end-to-end chromosome fusion or incomplete decatenation of sister chromatids®® and lead to a ‘bridge’
227  Dbetween daughter nuclei when the two centromeres segregate to different daughter nuclei. Although
228  dicentric chromosomes can be generated by a variety of mechanisms, the genomic consequences are
229  primarily determined by the formation and breakage of chromosome bridges®’*®. Breakage of a single
230  dicentric chromosome (‘chromatid-type’ bridges) will generate reciprocal gain and loss of a telomeric
231  segment (‘terminal’ SCNAs) (Figure SA). If both sister dicentric chromatids are part of the bridge
232 (‘chromosome-type’ bridges), their breakage can give rise to large segmental gain or loss within a
233  chromosome arm, hereafter referred to as ‘paracentric’ SCNAs (Figure 5B). Both of these outcomes were
234  directly demonstrated in single-cell experiments*®® but originally described by McClintock (summarized in
235  Ref.?) We further observed large SCNAs spanning centromeres (‘pericentric’ SCNAs) that can result from
236  broken ring chromosomes (Figure 5C, first described by McClintock in Ref’®) or multicentric
237  chromosomes. The instances of terminal and large internal SCNAs in our BE/EAC cohort are summarized
238 in Figure 5D and listed in Extended Data Table 5:Tab 1. In total, these events account for ~50% of
239  segmental SCNAs.

240 Although chromosome bridge resolution provides a simple mechanism for single-copy gain or loss
241  of large segments, similar copy-number outcomes may be generated by other processes. For example,
242 terminal deletion or duplication could result from simple chromosomal translocations followed by whole-
243  chromosome losses or gains (Extended Data Fig. 6A). This model, however, produces an equal number
244 of terminal gains (including retentions) and losses, and cannot explain the disparity between terminal gains
245  and losses seen in most samples (Extended Data Fig. 6B). Moreover, as broken bridge chromosomes can
246  form new dicentrics and undergo breakage-fusion-bridge (BFB) cycles that generate a variety of compound
247  copy-number outcomes, the identification of these compound copy-number patterns in BE/EAC genomes
248  provides stronger evidence of chromosome bridges being involved in BE copy-number evolution.

249 The most common outcome of BFB cycles is the presence of DNA duplications near the

250  boundaries of large segmental deletions (Figure 6A,B) or large segmental gains. Instances of these patterns
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251  in BE/EAC genomes are listed in Extended Data Table 5:Tab 2 and also summarized in Figure 5D. The
252  identification of interchromosomal rearrangements between both simple and compound SCNA breakpoints
253  (Figure 6A,B and Extended Data Figure 6C,D) also suggests that these broken ends were generated
254  simultaneously, most likely from the resolution of multichromosomal bridges as seen in experimental
255  models of telomere crisis®’ or chromosome bridge resolution®®.

256 Successive DNA duplications at the broken ends of chromosomes can generate focal amplifications
257  (Figure 6C, top). Remarkably, the amplification on 7q in IMEAC shares a common SCNA boundary with
258  the terminal deletion in HGD. (The same pattern of reciprocal DNA retention and loss is also seen in 17q
259  of these two clones.) This pattern of reciprocal DNA retention and deletion directly recapitulates the
260  outcome of broken bridge chromosomes between daughter nuclei (Figure 5A) that is only visible by
261  multiregional sequencing. Based on this observation, we inferred that the HGD and the IMEAC clones were
262  independently derived from sibling cells each having inherited a broken piece of a dicentric Chr.7 with
263  amplified DNA that was present in their common ancestor.

264 Besides DNA duplications at broken termini, BFB cycles can also generate progressive DNA losses
265  from either sequential breakage or deficient replication of bridge chromatin®. As each new deletion erases
266  the boundary of preceding deletions, progressive DNA losses can only be revealed in different progeny
267 clones (Extended Data Figure 7) but not in a single clone. We observed 11 instances of terminal or
268  paracentric SCNAs with distinct breakpoints in different BE/EAC lesions from the same patient that are
269  consistent with progressive DNA losses (Extended Data Table 6:Tabl). One example of varying 4q-
270  terminal losses (boundaries marked by black arrows) in five lesions from Patient 2 is shown in Figure 6D.
271 In summary, we identified frequent duplications or deletions of large terminal, paracentric, and
272  pericentric segments in BE genomes and attributed them to the formation and breakage of dicentric
273  chromosomes (Figure 5). This mechanistic association is further supported by the observation of (1)
274  additional duplications or progressive DNA losses at SCNA boundaries (Figure 6) reflecting successive
275  BFB cycles (Extended Data Fig. 7); and (2) interchromosomal translocations between SCNA boundaries

276  indicating simultaneous generation of broken chromosome ends. In particular, the observation of reciprocal
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277  DNA loss and gain in distinct BE/EAC clones from the same patient that directly recapitulate the outcome
278  of dicentric bridge resolution between daughter cells (Figure 6C) provides the most compelling evidence
279  of BFB cycles during BE evolution.

280

281  Contemporaneous chromothripsis and BFB cycles generate EAC copy-number complexity

3738 either

282  Besides simple DNA loss and gain, dicentric chromosomes can also undergo DNA fragmentation
283  from chromosome bridge resolution or in micronuclei from chromosome missegregation. These processes
284  generate chromothripsis with distinct oscillating DNA copy number patterns. For chromothripsis from
285  bridge resolution, fragmentation of the bridge chromatin creates oscillating copy number in a fraction of
286  the chromosome arm that was in the bridge, and the region with oscillating copy number is usually adjacent
287  to the boundaries of large terminal or internal SCNAs corresponding to termini of broken bridge
288  chromosomes (Extended Data Fig. 8A). We inferred that 35 instances of chromothripsis were consistent
289  with this pattern (Extended Data Table 7:Tabl1, ‘direct’ in Column N) and show representative examples
290  in Extended Data Fig. 8B-D. For chromothripsis resulting from fragmentation of dicentric chromosomes
291  partitioned into micronuclei, the oscillating copy-number pattern should span whole chromosome arms
292  (“chromosome/arm”) (Extended Data Fig. 8E). We inferred that 25 instances of chromothripsis were
293  consistent with this evolution sequence (Extended Data Table 7:Tab1, ‘downstream’ in Column N). The
294  second scenario is best demonstrated in the example shown in Extended Data Fig. 8F, where the three-
295  state oscillating copy-number pattern (CN=0,1,2) spanning both Chr.17q and 18p together with inter-
296  chromosomal rearrangements indicated chromothripsis of a dicentric translocated chromosome. We
297  additionally identified 40 instances of chromothripsis spanning entire chromosomes or arms that are
298  consistent with micronucleation and 7 instances of regional chromothripsis without a clear relationship to
299  large terminal/internal SCNAs.

300 We further analyzed DNA rearrangements related to chromothripsis but restricted this analysis to
301  ancestral chromothripsis shared by three or more samples for which joint rearrangement detection can

302  achieve good accuracy (see Methods). We identified two examples of chromothripsis involving sub-
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303  chromosomal regions (including arms) from multiple chromosomes (Extended Data Fig. 8F,G) that are
304  consistent with multichromosomal bridge resolution. In two instances of chromothripsis, we further
305  identified clustered rearrangement breakpoints near single SCNA boundaries (Extended Data Fig. 8D,G)
306  that resemble the tandem-short-templates rearrangement pattern observed in chromothripsis from bridge
307  resolution®® and micronucleation®*. These rearrangement patterns provide additional evidence supporting
308 the connection between chromothripsis and chromosomal bridges or subsequent micronuclei.

309 The comparison of SCNAs in related BE/EAC genomes provides further evidence for BFB cycles
310 in BE genome evolution. In the example shown in Figure 7A, the ancestral paracentric deletion shared by
311  all three genomes (LGD2/HGD3/EAC) was followed by regional chromothripsis and BFB amplifications
312  near the centromeric break end in the LGD2 clone and a terminal duplication near the telomeric break end
313  in the EAC clone; both downstream alterations likely arose from secondary BFB cycles after the ancestral
314  paracentric deletion. In the example shown in Figure 7B, the (mostly) non-overlapping segments retained
315 by the HGD and IMEAC genomes is consistent with a random distribution of DNA fragments from a single
316  micronuclear chromosome into a pair of daughter cells**. Other examples of chromothripsis as one of the
317  branching outcomes of BFB cycles are listed in Extended Data Table 6 and Figure 6E.

318 The examples in Figure 7A and 7B illustrate how copy-number breakpoints with either identical
319  (Figure 7A, dotted line) or complementary (Figure 7B, dashed lines) DNA retention and loss in related
320 genomes can inform about the evolutionary sequence of the observed copy-number alterations. This is
321  further demonstrated in the Chr5 example in Figure 7C. The shared copy-number breakpoint (dotted line)
322  with complementary DNA retention and deletion in IMEAC2 and EAC1 indicates a reciprocal distribution
323  of broken chromosome fragments into their ancestors; the paracentric loss in IMEAC2 further suggests a
324  chromosome-type bridge breakage event (Figure SB). Therefore, the chromothripsis alteration with three
325  oscillating copy-number states in EAC1 must have arisen downstream of the ancestral breakage event.
326 The combination of chromothripsis and successive DNA duplications in BFB cycles can explain
327  complex segmental gains and amplifications. Whereas simple BFB cycles generate duplications flanked by

328  large segmental deletions (Figure 5D, Extended Data Fig. 8H), BFB cycles following chromothripsis
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329  generate segmental gains or amplifications with interspersed DNA deletions (Extended Data Fig. 8I).
330 Several copy-number patterns in Patient 1 indicate contemporaneous chromothripsis and BFB
331  amplifications (Figure 7C). On both Chr.lp and Chr.16p, the oscillation between DNA deletion and
332  amplification in EACI suggests an evolution sequence of ancestral chromothripsis followed by downstream
333  BFB amplifications; the same regions in IMEAC2 display terminal duplications (Chr.1p) and a simple
334  terminal deletion (Chr.16p). The presence of a shared copy-number breakpoint on Chr.1p and a common
335  region of terminal deletion on Chr.16p between the EAC1 and IMEAC2 genomes suggests that the distinct
336  copy-number patterns reflect divergent evolutionary outcomes of a single ancestral broken chromosome.
337  Interestingly, the amplified regions on 16p in the EAC1 genome do not contain known oncogenes but are
338  co-amplified with a region on 18q containing GATAG6, a recurrently amplified EAC oncogene. By contrast,
339  the IMEAC2 genome harbors neither amplification but has more amplified GATA4 on Chr.8p. Moreover,
340  the shared boundaries of amplified regions on 8p in both EAC1 and IMEAC?2 indicates that the GATA4
341  amplification was ancestral to both genomes but underwent different downstream evolution. The distinct
342  GATA4 and GATA6 amplifications in these two genomes, likely reflective of positive selection for their
343  combined expression™, highlights how persistent chromosomal instability rapidly generates copy-number
344  heterogeneity and fuels the acquisition of oncogenic amplifications.

345 As DNA amplification is only one out of many possible outcomes of multigenerational copy-
346  number evolution (we operationally defined focally amplified regions to have allelic copy number > 8 that
347  can be attained with at least three rounds of duplications), clonally fixated amplifications are likely
348  reflective of positive selection and expected to contain oncogenes. Among 45 focally amplified regions
349  cach spanning one or multiple loci on a chromosome (Extended Data Table 7:Tab2), 24 encompass
350 putative oncogenes and 29 overlap with regions that are recurrently amplified in cancer. The significance
351  of focal amplification as a mechanism of oncogenic activation during EAC transformation®>*' is further
352  supported by the observation of both recurrent amplifications of EAC oncogenes, including ERBB2 on 17q
353  (5/15 patients) (Extended Data Fig. 8H,I) and GATA6 on 18q (4/15 patients), and sporadic oncogene

354  amplifications that are exclusive to cancer lesions but not their precursors, including /GFIR (Patient 3),
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355  MET (Patient 4), and KRAS (Patient 10).

356 In summary, we found that many complex segmental copy-number alterations in BE/EAC
357  genomes, including focal amplifications, can be deconvoluted into different evolution sequences of
358  sequence duplications generated by BFB cycles and chromothripsis from DNA fragmentation (Figure 7D).
359  Together with observations of terminal/internal SCNAs reflecting simple copy-number outcomes of BFB

360 cycles, these data provide in vivo evidence for the involvement of abnormal nuclear structures including

34-36 37,38

361  micronuclei®" and chromosome bridges®"** in the generation of EAC genome complexity.

362

363  Chromosomal instability generates continuous copy-number variation prior to discrete changes
364  Our analysis of BE/EAC genomes reveals both copy-number complexity and copy-number heterogeneity
365 in BE subclones that indicate multigenerational evolution of unstable chromosomes. Importantly,
366  chromosomal instability first generates copy-number variation in single BE cells. We wondered whether
367  such instability in single BE cells can be discerned prior to copy-number heterogeneity or complexity in
368  BE subclones.

369 If chromosome breakage only generates reciprocal DNA retention and loss between sibling cells,
370  such changes are not visible at the clonal level as there is not net DNA gain or loss. However, we previously
371  demonstrated that chromosomes in both micronuclei and bridges undergo deficient DNA replication
372  leading to net DNA losses’***. If broken chromosomes remain mitotically unstable for multiple generations,
373  successive under-replication of the broken termini can generate varying terminal losses in the progeny
374  population (Figure 8A) that lead to ‘sloping’ copy number variation (Extended Data Figure 7). We
375  identified sloping copy-number variation on three chromosomes in the HGD sample from Patient10 (Figure
376  8B). The constant DNA copy number of the intact homolog (gray) establishes that the sloping copy-number
377  pattern reflects genetic variation instead of technical variability (e.g., due to FFPE DNA degradation).
378  Moreover, the observation of clonal (‘discrete’) copy-number changes on both Chr.9 and Chr.11 in the

379 IMEAC genome within the same regions of sloping copy number in HGD suggests that the IMEAC

380  ancestor was a subclone of HGD. Remarkably, the IMEAC genome does not show clonal copy-number
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381  alterations on 12q that would have been derived from an HGD subclone with varying 12q loss, but contains
382  ahigh-level amplification spanning KRAS on the 12p arm; the amplification was inferred to have originated
383  from the same parental chromosome with sloping copy number variation on the 12q-terminus in HGD. It
384  is tempting to speculate that the KRAS amplification had evolved from an unstable Chr12 missing the g-
385  terminus by chromothripsis and subsequent duplications.

386 To further explore the possibility that sloping copy-number variation in early-stage BE samples
387  precedes clonal SCNAs in late-stage BE subclones, we analyzed the sequencing data of longitudinal BE
388  samples released in a recent study’ (Extended Data Figure 9A). We first confirmed the presence of large
389  segmental SCNAs in both non-dysplastic and dysplastic BE samples prior to transformation and the
390  presence of distinct copy-number alterations in aneuploid BE or early cancer clones indicating copy-number
391  evolution (Extended Data Figure 9B and 10, Extended Data Table 8, Supplementary Data). The
392  observation of extensive copy-number evolution in longitudinal BE samples provides orthogonal evidence
393  of persistent chromosomal instability in BE cells that complements the observation of widespread copy-
394  number heterogeneity in multifocal BE samples. We further identified sloping copy-number variation in 9
395  patients. (Due to the limited sequencing depth, this inference was based on total DNA sequence coverage
396 instead of haplotype-specific coverage.) In Patient 86, we observed sloping copy-number variation on the
397  1qarm in the NDBE sample indicating varying terminal gains (Figure 8C, top); the same region shows a
398  clonal terminal retention in a late-stage HGD sample (Figure 8C, middle). In contrast to the sloping DNA
399  copy number of lp, the 1q arm contains a subclonal paracentric gain that may be related to the
400  chromothripsis at the same 1g-terminal region in another NDBE lesion (Figure 8C, bottom). Together, the
401  observations in both longitudinal and multifocal BE samples suggest ongoing evolution of unstable BE
402  genomes prior to the emergence of EAC clones. As sloping copy-number variation precedes clonal SCNAs,
403 it may ultimately serve as a prognostic marker of BE progression or ongoing genome instability.

404

405 Discussion
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406 We here studied precancer genome evolution in a unique sample set of incipient esophageal
407  adenocarcinomas and adjacent Barrett’s esophagus lesions by haplotype-specific copy-number analysis.
408  We identified recurrent copy-number evolutionary patterns related to both gross karyotype changes and
409  complex segmental alterations including focal amplifications that indicate continuous genome instability in
410 BEcells.

411 We find that arm-level copy-number changes often accumulate in episodic bursts and are consistent
412  with the outcome of whole-genome duplication (WGD) and downstream events including multipolar cell
413  division and micronucleation®***. WGD is frequently followed by extensive chromosome losses, giving
414  rise to highly aneuploid genomes, but can also generate near complete genome duplication. For example,
415  the EAC genome in Patient 7 is a near complete duplication of the LGD2 genome (with odd copy-number
416  states on 4q, 5, and 9q indicating post-WGD losses); the D5 cell in the single-cell collection is close to a
417  complete duplication of the F12 cell (with odd copy-number states on 2p, 9q and post-WGD gains of 17q
418  and 18p). When and how duplicated genomes re-establish stable karyotypes in vitro and in vivo require
419  further investigation.

420 We find several patterns of segmental copy-number alterations in BE/EAC genomes that are
421  consistent with an origin from dicentric chromosome breakage and evolution®®. These include simple
422  segmental copy-number gains and losses consistent with the outcome of a single BFB cycle (Figure 5),
423  compound copy-number gains consistent with successive BFB cycles (Figure 6A-C), and distinct copy-
424  number alterations to a single parental chromosome in related BE/EAC genomes that are consistent with
425  copy-number variation generated by multigenerational BFB cycles (Figure 6C-E). The mechanistic
426  association between BE/EAC genome complexity and BFB cycles is further supported by the presence of
427  regional or arm-level chromothripsis (Figure 7A,C and Extended Data Fig. 8A-F), interchromosomal
428  translocations (Figure 6A,B, Extended Data Fig. 8F,G), and tandem-short-templates rearrangements
429  (Extended Data Fig. 8D,G), all of which were previously identified in vitro®®. Finally, the patterns of
430  progressive DNA deletions (Figure 6D) and sloping copy-number variation (Figure 8B,C) provide strong

431  evidence for ongoing BFB cycles® in BE cells. The sloping copy-number pattern is most simply explained
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432 by the under-replication of a broken chromosome over multiple generations that generates a polyclonal
433  mixture of cells with varying DNA losses. This pattern of polyclonal copy-number variation may be
434  regarded as a signature of ongoing or ‘present’ genome instability that precedes clonal SCNAs that indicate
435  ‘past’ genome instability (Figure 8A).

436 We observe nearly ubiquitous bi-allelic 7P53 inactivation preceding the emergence of aneuploid
437  BE cells or BE clones. This result reinforces prior observations in BE cells®® or from comparative studies
438  of BEs and late EACs''?%*"*° However, cells with intact p53 do occasionally acquire large copy-number
439  alterations. This is demonstrated by the observation of infrequent arm-level or large segmental SCNAs in
440  single BE cells (Figure 3) and even instances of chromothripsis in BE clones (e.g., on Chr9p in Patient 8
441  BEI1-3, Patient 11 LGD, and Patient 6, all samples) inferred to have occurred prior to 7P53 inactivation. In
442  contrast to BE cells with intact p53, the most distinguishing features of p53-null BE cells include (1)
443  massive aneuploidy including whole-genome duplication; and (2) complex segmental gains (with copy-
444  number states above two) that require multiple generations of chromosome breakage and recombination.
445  This observation suggests that the dominant tumor suppressive mechanism of p53 may be the suppression
446  of cell proliferation after chromosome missegregation™*.

447 The abrogation of p53-dependent cell cycle arrest after chromosome missegregation has two
448  implications (Figure 8D). First, arm-level or large segmental SCNAs generated by chromosome
449  missegregation events are more likely to undergo clonal expansion and become visible at the clonal level.
450  Second, and more importantly, it allows single cell division errors such as whole-genome duplication or
451  chromosome bridge formation to precipitate multigenerational instability that both generates copy-number
452  heterogeneity and fuels the acquisition of oncogenic amplifications. Therefore, even without an apparent
453  increase in the rate of events that generate unstable chromosomes, p53 loss marks the onset of rapid
454  accumulation of copy-number heterogeneity and complexity that contrasts with continuous SNV
455  accumulation. This explains the significant differences between SCNAs in ageing esophagus or BEs with
456  intact p53 and in BEs with deficient p53. Interestingly, we observed a novel pattern of copy-number

457  variation in BE cells with intact p53 reflecting uniparental disomy (UPD) alterations with varying
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458  boundaries (Figure 3E). How large segmental UPDs arise in mammalian cells is unknown. The similarity
459  of progressive DNA breakpoints in varying UPDs to those in progressive DNA losses (Figure 6D) suggests
460  that these two patterns may reflect different DNA repair outcomes of broken chromosomes generated by
461  successive BFB cycles (Extended Data Fig. 4). If this model were true, it further implies that cells with
462  intact p53 do tolerate certain types of chromosomal instability but raises the question of how p53 or other
463  selection factors impact the rearrangement outcomes of such instability.

464 The early onset of genome instability during BE progression revealed in our analysis challenges
465  the prevailing view that chromosomal aberrations are exclusive to advanced cancers or only arise late during

466  tumor development. Analyses of advanced tumors by either bulk® or single-cell’’

sequencing usually reveal
467  only truncal or late subclonal alterations, indicating relatively late divergence of different cancer subclones.
468  As late-stage cancers are often dominated by the most aggressive clones, analyses of late-stage cancers
469  cannot reveal copy-number heterogeneity in single cells prior to transformation. By contrast, genetic
470  diversity is more visible in precancerous lesions due to the lack of dominant clones. This explains the
471  observation of significant copy-number differences in multifocal BE clones (Figure 2), copy-number
472  evolution in longitudinal BE samples (Extended Data Fig. 9,10), and sloping copy-number variation in
473  single BE lesions (Figure 8B,C). Moreover, the generation of complex copy-number gains, including focal
474  amplifications, necessitates multigenerational chromosomal instability that invariably creates copy-number
475  heterogeneity (Figures 3, 6, 7). Therefore, complex DNA gains in EACs or dysplastic BEs can be regarded
476  as asignature of ‘past’ chromosomal instability in their ancestor cells.

477 Oncogenic amplifications are a hallmark of advanced EACs. Our analyses demonstrate that these
478  events are frequently present in both early EACs and dysplastic BEs with deficient p53 (Figures 2 and 3).
479  We further identified distinct oncogenic amplifications in different dysplastic BEs or early EACs from the
480  same patient (Figure 2 and 7C), some of which were associated with independently transformed EAC foci.
481  As independent EAC clones may grow into each other to form a single tumor mass or seed different
482  metastatic lesions, both intratumor and primary/metastasis oncogenic amplification heterogeneity®® may be

483  the inherent outcome of chromosomal instability after p53 loss that could have been initiated in precancer
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484  BE cells and persist after transformation.

485 Our model of chromosomal-instability driven copy-number evolution makes several predictions.
486  First, segmental copy-number complexity at the clonal level is preceded by copy-number heterogeneity at
487  the single cell level. This is demonstrated in our study (Figure 3 and 8) but should be further tested by
488  single-cell DNA sequencing of precancerous or ageing tissues. Second, p53 loss enables the accumulation
489  of copy-number heterogeneity in precancer lesions that may differ from late-stage cancers due to the lack
490  of clonal sweep. This prediction can be tested in other cancers with early p53 inactivation and precursor
491 conditions, including serous ovarian cancers'®, basal breast cancers, uterine serous endometrial cancers,
492  pancreatic cancers™, and colitis-associated colorectal cancers'”. Finally, our analysis of SCNAs in BE/EAC
493  genomes suggests a mechanism-based classification of copy-number patterns. Extending this analysis to
494  cancers both with and without 7P53 inactivation will generate new knowledge of tumor evolution dynamics
495  with both diagnostic and therapeutic implications.

496

497  Data availability: All sequencing data generated in the current study were uploaded to Genotypes and
498  Phenotypes (dbGaP) (accession phs002706) with controlled access according to the Protocol approved
499 by the Institutional Review Board of the Brigham and Women’s Hospital. Third-party data that were re-
500 analyzed were obtained from the European Genome-phenome Archive (EGA) through data access

501  agreement approved by the International Cancer Genome Consortium. Processed DNA copy number data

502  and compiled copy-number plots are available at https://github.com/chunyangbao/NG_ESAD7S5.

503

504  Code availability: Usage of published or public bioinformatic packages is stated in Methods with
505 references to either the publications or the repositories of the software packages. All the algorithms and
506  bioinformatic pipelines implemented in this study are described in Methods; scripts and codes are uploaded

507  to https://github.com/chunyangbao/NG ESAD75.
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Figure Legends

Figure 1:

Figure 2:

Figure 3:

Overview of experimental design and bioinformatic analysis. Fifteen patients whose Barrett’s
esophagus tissue samples presented early invasive esophageal adenocarcinomas (EAC) were
selected. After histological review, 75 samples of early cancer (EAC) and precancerous lesions,
including non-dysplastic Barrett’s Esophagus (NDBE), low-grade dysplasia (LGD) and high-
grade dysplasia (HGD), were collected via laser capture microdissection and subjected to
whole-genome sequencing. We perform joint variant detection on samples from each patient
and then determine their phylogeny based on genetic alterations shared by two or more samples
(filled triangles). Based on the phylogeny, we then infer the timing and evolution of copy-
number alterations (both shared and private), including distinct copy-number changes on a

single parental chromosome in related BE/EAC genomes generated by branching evolution.

Phylogeny of early EAC and precursor BE lesions determined by haplotype-specific copy-
number alterations. Phylogenetic trees are grouped based on the timing of whole-genome
duplication (WGD, thick solid line) events. Samples are colored based on their histopathology
grading: non-dysplastic (blue), low-grade dysplasia (orange), high-grade dysplasia (red),
carcinoma (magenta). The branch length (horizontal distance between nodes) approximately
reflects the number of altered chromosomes. For a complete list of alterations along each
phylogenetic branch, see Extended Data Table 2 and Extended Data Figure 2. Annotated
alterations include: (1) recurrent alterations or those affecting known EAC drivers; (2) focally
amplified regions or oncogenes (magenta); (3) chromosomes or chromosome arms (with
asterisks) with divergent copy-number alterations in more than one progeny clones. Note that
Patient 13 contained a splice-site mutation (c.375+5G>C) in TP53 that was assessed to produce
truncated p53%° and also reported to be a recurrent hospot in cancers in a recent study®'. The
colors of annotated chromosomes reflect the complexity of copy-number alterations: simple
deletion/duplication, uniparental disomy, arm-level gain/loss (blue), large segmental (terminal
or internal) copy-number changes or their combinations (orange), complex copy-number
alterations (red), focal amplifications (magenta). For classification of copy-number alterations,

see Extended Data Figure 4.

Copy-number evolution in 56 near diploid and 12 aneuploid BE cells from a high-grade
dysplastic Barrett’s esophagus determined by single-cell sequencing. A. Phylogenetic tree with
annotated haplotype-specific copy number alterations (blue for losses, red for gains). Open
circles represent single cells; large filled circles represent subclones of cells (with annotated

cell counts) with identical copy number; small filled circles represent inferred intermediate
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states (gray for pre-WGD, black for post-WGD). Aneuploid cells are separated into two
branches each inferred to have undergone an independent whole-genome duplication (WGD)
event. B-H. Examples of copy-number alterations before (B-E) and after (F-H) p53
inactivation. Gray and black dots represent haplotype-specific DNA copy number of parental
chromosomes. B. Ancestral 3p uniparental disomy (UPD) shared by all but four cells. C.
Sporadic 3p terminal gain after 3p UPD in one cell. D. Large paracentric deletion on 1p and
UPD at the 1g-terminus shared by five cells. E. Progressive 9p UPD in a subclone of 14 cells.
Only four cells are shown, see Supplementary Data for the others. F. Terminal duplication
after terminal deletion on 9p shared by cell G1 and D11 that is consistent with two rounds of
breakage-fusion-bridge cycles. G. Chromothripsis of Chr.22q shared by cell C5, F2, and F7. H.
Focal amplification spanning the ERBB2 gene on Chr.17 (~40Mb) in cell C5 and F7 (red
circles) that displays the signature copy-number pattern of breakage-fusion-bridge cycles. For a

detailed list of alterations in each cell, see Extended Data Table 3.

Landscape of somatic copy-number alterations (SCNA) in BE and EAC clones. A. Mean
SCNA burden in samples grouped by disease stage (left), TP53 mutation status (middle), and
timing relative to whole-genome duplication (righf). The SCNA burden is measured by the
total number of altered autosomes (both parental homologs, maximum 44) and subdivided into
local deletions or duplications (gray), uniparental disomies (light gray), arm-level SCNAs (dark
gray), and segmental SCNAs (black). In the middle panel, the ‘intact’ TP53 group (“TP53”)
only includes NDBE/LGD samples without detectable 7P53 alterations, but not HGD/EAC
samples. See Extended Data Figure 3 for additional information including the SCNA burden
in each sample. B. SCNA burden along ancestral (having more than one progeny clone) and
terminal (only one progeny clone) phylogenetic branches. The bottom shows the 7P53
mutation status and the relative timing to WGD of each branch. C. Total counts of arm-level
(left) and segmental (right) SCNAs (filled bars for gains, open bars for losses) in evolutionary
branches preceding, concurrent with, or after WGD. Segmental SCNAs only include large
internal/terminal SCNAs but not complex SCNAs that can generate both DNA gain and loss.
The significantly higher burden of arm-level SCNAs in WGD-concurrent branches than pre-
WGD branches (p < 10, Mann-Whitney) that is dominated by chromosome losses (p < 10,
two-sided Fisher’s exact test) is consistent with episodic chromosome losses after
tetraploidization. WGD is also associated with a modest but significant increase of segmental
SCNA burden (p = 0.01, Mann-Whitney; WGD-concurrent vs pre-WGD) and of post-WGD
arm-level SCNAs relative to pre-WGD branches (p = 0.01, Mann-Whitney). These can be
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67 explained by elevated rates of chromosome missegregation after tetraploidization that may also
68 lead to complex segmental changes (e.g., from micronucleation). D. Allelic distribution of

69 segmental SCNAs identified in all samples from each patient. Shown are the number of

70 chromosomes (Chrs.1-22 and X) with single SCNAs (open bars), multiple SCNAs on a single
71 parental homolog (‘mono-allelic’), and multiple SCNAs affecting both homologs (‘bi-allelic’).
72 Mono-allelic and bi-allelic SCNAs with multiple breakpoints are further divided into

73 subcategories based on whether SCNA breakpoints are found in a single BE/EAC genome, or
74 in multiple related BE/EAC genomes. SCNAs (or SCNA breakpoints) concentrating on single
75 parental chromosomes (mono-allelic) is consistent with either single catastrophic events (e.g.,
76 chromothripsis) or successive SCNA acquisition on single unstable chromosomes, whereas

77 SCNAs affecting both parental chromosomes (bi-allelic) are consistent with independent

78 SCNA acquisition. E. Fraction of the germline genome at different copy-number states (from
79 100kb-level allelic copy number). Deletion (dark blue), subclonal deletion/loss (light blue),

80 subclonal gain (light red), or duplication (dark red). There is a marked increase in the fractions
81 of both deleted (CN = 0) and duplicated DNA (CN > 2) in BE/EAC genomes with inactive p53
82 compared to BE genomes with intact p53. Samples with WGD also have a larger fraction of the
83 genome at the single-copy state reflecting DNA loss after WGD.

84  Figure 5: Segmental copy-number alterations in BE/EAC genomes that match the outcomes of dicentric

85 chromosome bridge resolution. A-C. (Left) Different types of dicentric chromosome breakage
86 and their copy-number outcomes: (A) terminal; (B) paracentric; or (C) pericentric segmental
87 copy number changes. The open and filled chromatids may be sister chromatids or different
88 chromosomes. Both A and B were demonstrated in vitro in Umbreit et al. (2020). The model
89 that pericentric copy-number changes may arise from broken dicentric ring chromosomes (C)
90 or multicentric chromosomes (not shown) has not been demonstrated in vitro but is plausible as
91 telomere crisis may lead to multiple critically shortened telomeres. Examples of ring

92 chromosomes (Umbreit et al., 2020) or rearrangements involving multiple chromosomes

93 (Maciejowski et al., 2015) were also observed in the progeny populations of cells that have
94 undergone telomere crisis or bridge induction. (Right) Examples from BE/EAC genomes that
95 recapitulate the copy-number outcomes of bridge resolution. The allelic copy-number plots
96 (25kb bins) show the DNA copy number of the altered chromosome; the intact homolog is not
97 shown. Examples of gain and loss in each group are unrelated. See Downloadable

98 Supplementary Data for the copy-number plots of both homologs in each sample. D.

99 Summary of terminal/internal SCNAs in BE/EAC genomes. The number of instances is shown
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100 next to the copy-number pattern generated by different copy-number outcomes of BFB cycles.

101 See Extended Data Table 5 for the complete list.

102  Figure 6: Segmental copy-number patterns consistent with multigenerational breakage-fusion-bridge

103 cycles. Arabic numbers represent different BFB outcomes that are also labelled in Extended
104 Data Fig. 5D. Schematic diagrams of altered chromosomes are drawn according to the

105 segmental DNA copy number. A. (7op) Terminal deletion -> terminal duplication; (bottom)
106 paracentric deletion -> two duplications near the centromeric break end. B. (Top) Pericentric
107 retention -> terminal duplication at the q-terminus; (middle) paracentric deletion -> whole-
108 chromosome duplication of the centromeric segment; (bottom) terminal gain or pericentric
109 deletion after whole-chromosome gain. Magenta lines represent translocations between broken
110 fragments. See Extended Data Figure 6 for more examples. C. Complementary copy-number
111 gain and loss at a single breakpoint (dashed line) in HGD and IMEAC reflect two broken

112 pieces of a single dicentric chromosome. The focally amplified region on the telomeric end in
113 IMEAC is consistent with preceding BFB amplifications. D. A series of terminal deletions on
114 the same parental chromosome seen in five lesions from Patient 2. The proximal boundaries of
115 the subclonal DNA loss near the 4g-terminus in HGD2 and clonal DNA loss in IMEAC2

116 suggest that IMEAC2 may have evolved from a subclone in HGD2. See Extended Data

117 Figure 7 for an example of the same pattern revealed in experimental BFB evolution. E.

118 Summary of SCNAs in related BE/EAC genomes reflecting divergent/branching BFB

119 outcomes. See Downloadable Supplementary Data for the copy-number plots of each

120 instance.

121  Figure 7: Complex SCNAs in BE/EAC genomes indicating successive chromothripsis and BFB cycles.

122 Arabic numbers represent different BFB outcomes that are also labelled in Extended Data Fig.
123 5D. A. Divergent chromothripsis (in LGD2) and terminal duplication (EAC) occurring

124 downstream of an ancestral paracentric deletion in Patient 6. The dotted line represents the

125 ancestral breakpoint shared by all three genomes; dashed lines represent private SCNA

126 breakpoints. B. Reciprocal distribution of Chr.14q in HGD and IMEAC lesions from Patient
127 11. The bottom shows an enlarged view of the outlined region (dashed box). Except for a small
128 segment near 30Mb, all the other segments retained in the IMEAC genome are lost from the
129 HGD genome. Dashed lines denote SCNA breakpoints with opposite retention and loss in the
130 two genomes. C. Five subchromosomal regions with distinct copy-number patterns in two

131 cancer lesions from Patient 1. For regions on 5p, 1p, and 8p, we infer the SCNAs evolved from

132 a single unstable ancestor chromosome based on shared SCNA breakpoints (dotted lines). For
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133 16p, the SCNAs are related by a common region of terminal deletion with adjacent boundaries
134 (dashed lines). The amplified regions on 16p in EAC1 are joined to the amplified region on 18q
135 spanning GATA6. The order of chromothripsis and amplification is determined based on

136 whether the amplified regions are interrupted by deletions (indicating chromothripsis before
137 amplification) or peppered with DNA losses (indicating chromothripsis after amplification). D.
138 Summary of chromothripsis and DNA amplification instances grouped by copy-number

139 features and the inferred evolutionary sequences. The inference of chromothripsis arising either
140 directly from or downstream of dicentric chromosome breakage is based on the span of

141 oscillating copy-number pattern relative to entire chromosomes; instances with less certainty
142 are annotated accordingly (“possibly downstream” or “likely direct”).

143  Figure 8: Chromosomal instability creates copy-number heterogeneity prior to copy-number complexity.

144 A. Successive BFB cycles can generate progressive DNA losses at the broken ends of

145 chromosomes resulting in a gradual attenuation (sloping) of DNA copy number towards either
146 telomeric (top) or centromeric (bottom) boundaries. Individual broken ends in single cells may
147 acquire terminal duplications that become visible after clonal expansion, but the population
148 average will accrue DNA loss due to deficient DNA replication. B. Sloping DNA copy number
149 on Chrs.9, 11, and 12 (black dots) in the HGD sample from Patient 10. The constant DNA copy
150 number of the other homolog is shown in gray. In the regions of sloping copy-number variation
151 on Chrs.9 and 11 in HGD, we observe clonal copy-number changepoints in IMEAC, suggesting
152 clonal expansion of a subclone/single cell in the HGD sample. C. BE copy-number evolution
153 revealed in longitudinal BE sequencing data published by Killcoyne et al. (2020). In this patient
154 (Patient 86), the NDBE sample at 0 month displays sloping (1p terminus) and subclonal (1q
155 terminus) copy-number variation. A subsequent HGD lesion (at 60 months) from the same

156 patient shows a (sub)clonal paracentric loss on 1p; another NDBE lesion (timing unspecified)
157 showed chromothripsis at the 1g-terminus in the same region of subclonal copy-number gain in
158 the NDBE lesion at 0 month. Both examples indicate copy-number heterogeneity. See

159 Extended Data Fig. 10 for additional examples. D. Evolutionary dynamics of local sequence
160 changes (single-nucleotide variants, short sequence deletions/duplications) and chromosomal
161 structural aberrations during esophageal cancer evolution. Prior to p53 loss, the suppression of
162 clonal expansion of chromosomal structural alterations implies that only alterations that do not
163 disrupt chromosomal instability (local sequence changes, focal deletions/duplications, or

164 uniparental disomies) are detectable at the clonal level. After p53 loss, there is a rapid increase

165 of SCNA burden per cell that is due to both clonal expansion of ancestral SCNAs and SCNA
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166 accumulation during multigenerational evolution of unstable chromosomes, which generates
167 both copy-number heterogeneity and DNA duplications. Although the average mutational

168 burden per cell (of both local and structural alterations) and the total genetic diversity of the
169 tumor clone continue to increase during cell proliferation, the acquisition of cancer drivers can
170 cause clonal dominance or sweep that make minor subclones harder to detect by bulk or even
171 single-cell sequencing. Therefore, analyses of precancer lesions with limited clonal expansion

172 can reveal ancestral genetic heterogeneity that may be undetectable in advanced cancers.
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