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Abstract

Growing cells adopt common basic strategies to achieve optimal resource allocation
under limited resource availability. Our current understanding of such “growth laws”
neglects degradation, assuming that it occurs slowly compared to the cell cycle duration.
Here we argue that this assumption cannot hold at slow growth, leading to important
consequences. We propose a simple framework showing that at slow growth protein
degradation is balanced by a fraction of “maintenance” ribosomes. Consequently, active
ribosomes do not drop to zero at vanishing growth, but as growth rate diminishes, an
increasing fraction of active ribosomes performs maintenance. Through a detailed
analysis of compiled data, we show that the predictions of this model agree with data
from E. coli and S. cerevisiae. Intriguingly, we also find that protein degradation
increases at slow growth, which we interpret as a consequence of active waste
management and/or recycling. Our results highlight protein turnover as an underrated
factor for our understanding of growth laws across kingdoms.

Author summary

The idea that simple quantitative relationships relate cell physiology to cellular
composition dates back to the 1950s, but the recent years saw a leap in our
understanding of such “growth laws”, with relevant implications regarding the
interdependence between growth, metabolism and biochemical networks. However,
recent works on nutrient-limited growth mainly focused on laboratory conditions that
are favourable to growth. Thus, our current mathematical understanding of the growth
laws neglects protein degradation, under the argument that it occurs slowly compared
to the timescale of the cell cycle. Instead, at slow growth the timescales of mass loss
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from protein degradation and dilution become comparable. In this work, we propose
that protein degradation shapes the quantitative relationships between ribosome
allocation and growth rate, and determines a fraction of ribosomes that do not
contribute to growth and need to remain active to balance degradation.

Introduction

“Growth laws” (Scott and Hwa, 2011; Kafri et al., 2016) are quantitative relationships
between cell composition and growth rate. They uncover simple underlying
physiological design principles that can be used to predict and manipulate cell behavior.
One of these laws, sometimes called the “first growth law”, relates steady-state growth
rate to ribosome allocation, and reflects the fact that the biosynthetic rate is set by the
fraction of ribosomes that translate other ribosomes (Scott et al., 2010; Metzl-Raz et al.,
2017). Specifically, the mass fraction φR of ribosomal proteins in the proteome increases
linearly with growth rate λ, independently of nutrient source.

Figure 1 provides a visual summary of the relation φR(λ). Importantly, there is an
empirical offset in this law φR(λ = 0) 6= 0, i.e., the relationship extrapolates to a
nonzero fraction of ribosomes at zero growth. The presence of an offset seems to be
widespread across species (Fig. S1). This offset is commonly interpreted using the
assumption that only a fraction of the total number of ribosomes (sometimes called
“active ribosomes”) is translating and thus producing mass (Scott et al., 2010; Dai et al.,
2016). Additionally, in E. coli, deviations from linearity of this law at slow growth were
explained by a growth-rate dependent fraction of active ribosomes (Dai et al., 2016).
The presence of inactive ribosomes has also been interpreted in the literature as a
’reservoir’, used in order to respond more quickly to nutrient upshifts (Mori M., 2017).
However, the origin and nature of the inactive ribosome pool is under debate (Dai and
Zhu, 2020). Polysome profiling was proposed as a viable approach (Metzl-Raz et al.,
2017) to quantify the fraction of inactive ribosomes, but this technique cannot
distinguish all the different contributions to the inactive ribosomal pool.

Protein degradation and turnover are typically neglected in the frameworks
describing growth laws (Scott et al., 2010). Clearly if degradation time scales fall in the
range of 10-100 h (Goldberg and Dice, 1974; Maurizi, 1992), they are negligible
compared to protein dilution by cell growth when nutrients are abundant. However,
when the population doubling time overlaps with the typical time scale of protein
degradation, the balance between protein production and protein degradation must
impact growth (Maitra and Dill, 2015; Kempes et al., 2016; Santra et al., 2017).
Importantly, prolonged slow- or null-growth regimes are of paramount importance in the
lifestyle of most bacteria (Kempes et al., 2017; DeLong et al., 2010; Long et al., 2021;
Gray et al., 2019; Schink et al., 2019; Biselli et al., 2020), as well as in synthetic biology
applications (Borkowski et al., 2016). Notably, the smallest bacterial species not only
grow slowly but also have a small number of macromolecules (down to ≈ 40 ribosomes)
suggesting that protein turnover matters in slow growth contexts (Kempes et al., 2016).

In E. coli, there are many proteolytic enzymes (Maurizi, 1992; Gottesman, 1996). A
minority of proteins are specifically targeted for degradation in order to regulate their
levels (regulatory degradation), but there also is a basal non-specific degradation
(housekeeping degradation), which is important to eliminate damaged or abnormal
proteins (Maurizi, 1992; Gottesman, 1996). In yeast, protein degradation is based on
multiple systems that are conserved in eukaryotes up to mammals, such as the
proteasome-ubiquitin system (Hochstrasser, 1995) and regulated
autophagy (Nakatogawa et al., 2009). Due to this complexity, protein turnover is still
not well understood, and remains the subject of current debate (Martin-Perez and
Villén, 2017). For our scopes, what will matter is that there is a mean overall protein
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degradation dynamics; this impacts growth, as biosynthesis will need to counterbalance
degradation rather than exclusively contributing to a mass increase.
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Fig 1. Sketch of the growth law relating ribosome mass fraction φR to growth rate λ.
The fraction of ribosomal and ribosome-affiliated proteins (R) increases with increasing
nutrient quality at the expense of the sector of metabolic proteins (P), while a fraction
of the proteome (Q) is kept to be growth rate-independent. Available data for most
organisms show a nonzero intercept φminR > 0 (see Fig. S1). In E. coli (Dai et al., 2016),
the law deviates from linearity at slow growth (λ ≤ 1 h−1), making the intercept φminR

larger.

Here, we propose and explore a generic framework to describe the first growth law
including the role of protein degradation and turnover (Kempes et al., 2016; Santra
et al., 2017). We first go through the standard scenario that does not account for
degradation, showing that it is inconsistent at vanishing growth. We then derive the law
including protein degradation from basic flux-balance principles. Finally, we use our
framework on E. coli and S. cerevisiae data, finding that data and model converge on a
scenario in which, at slow growth, a non-negligible fraction of ribosomes performs
maintenance duties, balancing protein degradation, without contributing to growth.

Results

The standard framework for the first growth law neglects
protein turnover

We start by discussing the standard derivation of the relationship φR(λ), within the
usual model where the protein degradation rate is neglected. The standard framework
neglects protein turnover in all regimes and assumes that only a fraction fa of
ribosomes actively translates the transcriptome, while the remaining subset of
ribosomes does not contribute to protein synthesis (Figure 2a).

Thus, among the total number R of ribosomes, Ri are considered as inactive, and
only Ra = faR active ribosomes elongate the newly synthesized proteins with rate k per
codon and generating a mass flux Jtl. Ribosomes can be inactive for many different
reasons (e.g. ribosomal subunits sequestered in the cytoplasm, ribosomes blocked in
traffic, or carrying uncharged tRNAs). Experimentally, it is challenging to distinguish
between active and inactive ribosomes of different kinds (Zhu et al., 2020), and growth
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Fig 2. (a) The standard framework divides ribosomes into two categories - active and
inactive - and assumes that only the fraction fa of active ribosomes is responsible for
protein production. (b) The plot reports the estimated values fa assuming this model
and using E. coli data from Dai et al. (2016). The red circle represents the extrapolated
point at zero growth.

laws are typically formulated in terms of the total ribosome to total protein mass
fraction φR. After a few rearrangements (see Box 1), we write

λ = γ(φR − φiR) = γφRfa , (1)

where φiR is the mass protein fraction of inactive ribosomes and fa = (1−Ri/R) is the
fraction of actively translating ribosomes, which is in principle a function of the growth
state λ.

The active ribosomes framework predicts an offset in the linear relation φR(λ),
which originates from the fraction of inactive ribosomes φiR at zero growth. When mass
is not produced (λ = 0), in this model there are no ribosomes that are actively
translating proteins, but there exists a non-vanishing fraction of inactive ribosomes.
The following section explains how the prediction that no active ribosomes are present
at vanishing growth is inconsistent with the existence of maintenance protein synthesis.

For the sake of clarity, Table 1 summarizes the notations used throughout this work,
and the values of the parameters used for E.coli or S. cerevisiae.

Box 1. Active ribosomes model

Assuming balanced exponential growth, all cellular components accumulate at the
same rate λ. Neglecting protein turnover, the exponential increase of the total
protein mass M is

dM

dt
= λM . (2)

The mass production term is usually expressed as the product between the number
of actively translating ribosomes Ra, the codon elongation rate k and the mass of
an amino acid maa (Dai et al., 2016):

dM

dt
= maakRa . (3)

Equations (2) and (3) lead to a relation between the growth rate λ and the mass
fraction of Ra. However, the number of actively translating ribosomes Ra is not
easily accessible experimentally. Instead, one can express it in terms of the total
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number of ribosomes, R = Ri +Ra, where Ri is the number of inactive ribosomes.
This gives

λ = γ(φR − φiR) = γφRfa(λ) , (4)

which gives an offset in the first growth law, related to the fraction of active
ribosomes fa(λ).

Table 1. Summary of the symbols used in the text. E. coli data are taken from (Dai
et al., 2016; Belliveau et al., 2021; Milo and Phillips, 2015). S. cerevisiae data are taken
from (Metzl-Raz et al., 2017; An and Harper, 2020; Milo and Phillips, 2015). In the text
we also use symbols for the number of free, active, inactive and transcript-bound
ribosomes, which are Rf , Ra, Ri and Rb, respectively.
Definition and symbol Typical values E. coli Typical value S. cere-

visiae
amino acid mass (maa) 1.8× 10−10pg 1.8× 10−10pg
total protein mass (M) 0.1-1 pg 1-10 pg
mass fraction of ribosomal proteins (φR) 0.05-0.2 0.08-0.3
total ribosomal protein mass (MR = φRM) 0.005-0.5 pg 0.08-3 pg
growth rate (λ) 0-2 h−1 0-0.5 h−1

typical number of aa in a protein (Lp) 300 370
total number of aa in a ribosome (LR) ∼7300 ∼12500
typical protein mass (mp = maaLp) 5× 10−8 pg 7× 10−8 pg
protein mass of a ribosome (mR = maaLR) 1× 10−6 pg 2× 10−6 pg
total number of ribosomes (R = Ri +Rf +Rb) 104 − 105 2-4×105

total number of ribosomes (R = Ri +Ra) 104 − 105 2-4×105

codon elongation rate (k) 8-20 aa/s 10.5 aa/s
Jtl = maakφR mass translational flux 3-30 ×10−7 pg h−1 5.5-20 ×10−7 pg h−1

γ = k/LR inverse time to translate a ribosome 4-10 h−1 3 h−1

Analysis of the slow-growth regime supports a scenario where
protein degradation cannot be neglected

We will now argue, on general grounds, that if protein turnover is not included in a
description of growth laws of slowly-growing cells, the framework becomes inconsistent.

The active ribosomes model (Box 1 and Fig. 2) predicts that the fraction of active
ribosomes fa is always less than 1 and it adapts to the growth state. Note that fa ' 0.8
has been considered as constant (Bremer and Dennis, 1987) at fast growth, but recent
works (Dai et al., 2016) show how the active ribosome fraction drops at growth rates
smaller than 0.5/h. Assuming that the fraction of active ribosomes fa is also a function
of λ, one obtains the relationship

fa(λ) =
λ

γ(λ)φR(λ)
. (5)

Since φR(λ) must be finite for vanishing growth rates, Eq. (5) implies that the fraction
of active ribosomes must vanish, unless the protein synthesis rate γ(λ) falls linearly to
zero. In the case of E. coli, for example, the measured elongation rate k is different from
zero at vanishing growth rate (Dai et al., 2016); given the observed nonzero φmin

R , this
theory would predict the complete absence of active ribosomes (Figure 2), in contrast
with the experimental measurement of a finite translation elongation rate (of active
ribosomes). Note that if the product γfa follows a Michaelis-Menten behavior on
growth rate (Klumpp et al., 2013; Kostinski and Reuveni, 2021), the overall protein
production would vanish as λ approaches zero. This would be inconsistent with the
experimental observations of nonzero elongation rate at vanishing growth (Dai et al.,
2016). We also note that in bacteria maintenance protein synthesis is reported to be
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active even in stationary phase (Gefen et al., 2014). Hence, it is reasonable to expect
that for maintenance purposes, a subset of ribosomes would remain active and the
translation elongation rate γ could be nonzero for growth rates comparable to the time
scales of protein degradation. These considerations suggest that, while combined
scenarios are possible (see below), and inactive ribosomes can also play a role, protein
turnover should not be neglected in a theoretical description of the determinants of the
first growth law and the origin of the offset φminR .

Degradation sets an offset in the first growth law

To discuss the inconsistency in the standard interpretation of growth laws leading to
vanishing active ribosomes (fa = 0) at vanishing growth, we analyze in this section a
simple theory for the first growth law that includes degradation, and in which all
ribosomes are always actively translating. The following sections will move to a model
that includes both protein degradation and the effects of non-translating (”inactive”)
ribosomes. The second part of this study contains a detailed analysis of the available
data. As we will see, including degradation is strictly necessary at doubling times that
are accessible experimentally in both yeast and bacteria (with high-quality data in
E. coli).

The first growth law can be derived from the following total protein mass (M) flux
balance relation, valid for steady exponential growth,

λM = Jtl − Jdeg . (6)

Here, λ is the cellular growth rate, Jtl is the flux of protein mass synthesized by
translation, and we explicitly considered the flux of protein degradation Jdeg. The term
Jtl is proportional to the ribosome current vρ on a transcript, given by the product
between the ribosome speed v and its linear density ρ on an mRNA. This quantity
corresponds to the protein synthesis rate if the ribosomal current along a transcript is
conserved, i.e. if ribosome drop-off is negligible. We assume that ribosome traffic is
negligible, therefore the speed v is independent of ρ and can be identified with the
codon elongation rate k (Li, 2015). In this model, free ribosomal subunits are recruited
to mRNAs and become translationally active via a first-order reaction that depends on
the concentration of free ribosomes (Fig. 3a).

A simple estimate (see Box 2) shows that Jtl = maakR, where maa is the typical
mass of an amino-acid and R the total number of ribosomes. The flux of protein
degradation is determined by the degradation rate η. We first assume that η is a
constant that does not depend on the growth rate and it is identical for all proteins,
which gives Jdeg = ηM . This assumption can be relaxed to study the role of
protein-specific degradation rates (see Methods and Materials), but in this work we
limit our investigation to the average values of these quantities. The following sections
show how experimental data suggests that η is a function of the growth rate λ, and
modify the model accordingly. Using the expressions for Jtl and Jdeg into Eq. (6) and
introducing the parameter γ := k/LR (where LR is the number of amino acids in a
ribosome), we find a simple relation between the ribosomal protein mass fraction φR
and the growth rate λ that involves the degradation rate,

λ = γφR − η . (7)

Note that γ can be interpreted as the inverse of the time needed to translate all the
amino-acids needed to build a ribosome. If ribosome speed is growth-rate
dependent (Klumpp et al., 2013), γ is itself a function of λ. We will come back to this
point in the following.
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Fig 3. Protein degradation determines an offset in the first growth law. (a) Sketch of
the first model of protein production proposed in this work, which includes protein
degradation but no inactive ribosomes. In this model, ribosomes follow a first-order
kinetics to bind the transcripts, and all bound ribosomes contribute to protein synthesis
(mass production). Proteins can be lost by protein degradation or diluted by cell
growth. (b) The law φR(λ) predicted by Eq. (6) shows an offset φmin

R = η/γ. The offset
increases linearly with degradation rate η at a constant ribosome production rate γ. (c)
Varying γ also changes φmin

R but it also affects the slope of φR(λ). Panel (b) reports
φR(λ) for γ = 7.2 h−1 and η = 0, 0.25, 0.5 h−1. Panel (c) fixes η = 0.25 h−1 and varies
γ = 2, 3.6, 7.2 h−1.

Equation (7) gives an alternative formulation of the first growth law. Crucially, this
equation predicts an offset φminR = φR(λ = 0) = η/γ in the law, which we can compare
to the experimental range of observed offsets, φminR ∼ 0.05− 0.08 (Scott et al., 2010; Dai
et al., 2016; Metzl-Raz et al., 2017). Taking γ ≈ 3.6− 7.2 h−1 obtained from k in the
range of measured elongation rates (Dai et al., 2016), this simple estimate returns values
for the degradation rate η that correspond to a range of (mean) protein half-lives
∼ 3− 5 h. These values would correspond to the degradation rates assuming
degradation fully explains the observed offset, but they are not distant to the
experimental values (∼ 10− 100 h). This argument suggests that a significant fraction
of the offset (at least order 10%) is explained by degradation (see below for a refined
estimate based on precise measurements, leading to the conclusion that ∼ 20− 25% of
active ribosomes contribute to the offset).

Figure 3 summarizes this result and shows how different degradation rates set
different offsets in the linear relationship φR(λ) predicted by this model. In this
framework, the offset φminR = η/γ can be interpreted as the ratio between the time
needed for a ribosome to synthesize a new ribosome and the time scale of protein
degradation (or decay), which fixes the size of the ribosome pool in steady growth. In
other words, in this model the whole offset φminR is interpreted as the mass fraction of
”maintenance ribosomes”, which are needed to sustain protein synthesis in
resource-limited conditions. Note that Eq.(7) from the “degradation” model, and Eq.(1)
from the “active ribosomes” model are mathematically equivalent if we identify the
degradation rate η in the first model with the product γφiR in the second. Hence, the
two frameworks give a different interpretation of the mechanisms generating the offset
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in the ribosomal fraction at vanishing growth.

Box 2. The first growth law in the degradation model.

At steady growth, mass balance imposes that the fluxes of mass production Jtl and
degradation Jdeg should be equal

dM

dt
= λM = Jtl − Jdeg. (8)

The biosynthesis flux is proportional to jm, the overall translation rate of the
typical transcript, Jtl = mpNmjm, where mp is the mass of the typical protein, and
Nm is the number of transcripts. Assuming a small translation initiation rate, and
thus a low ribosome density on each transcript (Ciandrini et al., 2013), the overall
translation rate is kρ, and following (Shaw et al., 2003) the density of ribosomes is

ρ =
α
k

1 + (`− 1)αk
, (9)

where ` is the size of the ribosome in units of codons (i.e. ` ≈ 10) and α is the
translation initiation rate. Since initiation is about two orders of magnitudes slower
compared to elongation, (0.1 vs 10 s−1) (Ciandrini et al., 2013), the density can be
approximated as ρ ≈ α/k. Describing initiation as a first-order chemical reaction,
α = α0cf , with cf being the concentration of free ribosomes in solution. Considering
that the total number of ribosomes is given by R = Rb+Rf , we obtain the following
relation between Rf and R (Greulich et al., 2012)

Rf =
kR

k + Lcmα0
, (10)

where we have introduced the concentration of transcript cm. In this theory, the
quantity fb = Rb/R describes the fraction of bound and translating ribosomes. If
the total expected time to elongate a typical protein τe = L/k is large compared
the time that a ribosome remains unused in the cytoplasm τi = 1/α0cm, then
jm ' kρ = α0cf ' kR/(LNm), and the mass production term reads

Jtl = maakR . (11)

The contribution of protein turnover to the mass balance is Jdeg = ηM . Thus,
by using the relations for Jtl and Jdeg in Eq. (6) we obtain λ = γφR− η - Eq. (7) in
the text. Again, it is important to note that φR = MR/M where MR = mRR is the
total mass of ribosomal proteins and mR the protein mass of a single ribosome, and
that γ = k/LR where LR = mR/maa is the number of amino acids in a ribosome.
The quantity γ−1 can hence be interpreted as the typical time needed for a ribosome
to duplicate its protein content.

Compiled degradation-rate data show a tendency of degradation
rates to increase with decreasing growth rate.

Given the differences with the standard framework, we proceeded to test the
degradation model more stringently with data. We compiled data from the literature
relative to degradation rates in E. coli and S. cerevisiae. These data are available as a
Mendeley Data repository (see Methods and Materials). The Methods and Materials
section also contains a discussion of the experimental methods used to measure the
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degradation rate and theory limitations.
Despite of the burst of recent quantitative experiments connected to the discovery of

growth laws, there are no recent systematic and quantitative measurements of protein
degradation in E. coli, but many such measurements are available from classic
studies (Goldberg and Dice, 1974; Maurizi, 1992; Pine, 1970; Nath and Koch, 1971;
Pine, 1973; Mosteller et al., 1980; Larrabee et al., 1980; Schroer and St. John, 1981),
some of them are reported in Figure S2. The most comprehensive summary is found in
ref. (Pine, 1973), therefore we mined these data for average degradation rates (there are
variations in protein-specific degradation rates (Mosteller et al., 1980; Larrabee et al.,
1980; Schroer and St. John, 1981), which we did not consider here). Data from yeast are
reported in Figure S3. Looking at these data, we noticed a general tendency for mean
degradation rates to increase with decreasing growth rate. We note that the simple
degradation model introduced above in Eq.(7), if informed with data, would predict a
mean degradation rate with a growth dependence similar to the experimental data (Fig.
S4c). However, as we mentioned above, this model alone cannot quantitatively explain
the offset in φR(λ). To fill this gap, the next section provides an extended theory, the
main focus of our study, considering both the role of protein degradation and inactive
ribosomes.

A combined model accounting for both active ribosomes and
protein turnover predicts that protein degradation always
increases the fraction of active ribosomes.

The simple setting of the degradation model shown in Figure 3 assumed that the
degradation rate were independent of the growth rate and that inactive ribosomes were
not present. We consider now an extended framework including two additional
ingredients. First, as mentioned above, the data show that η can be a function of the
growth state, but this extension of the model is fairly straightforward, as it amounts to
treating this parameter as a function of λ. Experimental data from both E. coli and
yeast show that the degradation rate and growth rate become comparable at slow
growth (Figure S5), supporting the necessity of including the degradation step in the
model, for growth rates lower than ∼ 0.2h−1. Second, this extended framework also
jointly includes inactive ribosomes, defined as idle ribosomes that do not contribute to
the pool of free ribosomes.

To understand this joint model, we can repeat the procedure followed for the
degradation model, splitting the unbound ribosome pool into free and inactive fractions,
as sketched in Fig. 4a. Only free ribosomes can bind mRNA (and thus become
translationally active). The growth law can be written as

λ = γ(φR − φiR)− η(λ) = γφRfb − η(λ) , (12)

where both the fraction fb of bound/active ribosomes and the role of growth-dependent
protein turnover are taken into account. Note that in this notation the fraction fb of
bound/active ribosomes (“bound” and “active” can be regarded as synonyms for this
model) corresponds to the fraction of active ribosomes fa used in the standard model
without degradation (which assumes that all active ribosomes are bound). Indeed,
fa = fb(η = 0), and we present a more detailed comparison below. We remind that, in
the standard interpretation, ribosomes can be inactive for different reasons (e.g. being
stalled inside a translating mRNA). In our model, inactive ribosomes are sequestered
from the pool of cytoplasmic ribosomes, as opposed to the free cytoplasmic ribosomes
that follow an equilibrium binding kinetics with transcripts as shown in Fig. 4a.

In the combined model, increasing values of the protein degradation rate always
increment the estimates for the active ribosome fraction for a given growth rate and for
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the total ribosome fraction. This is a direct consequence of Eq. (12), since
fb = λ

γφR
+ η

γφR
. This equation implies the inequality

λ

γφR
≤ fb ≤ 1 , (13)

which defines a lower bound (in absence of degradation) and an upper bound (when all
ribosomes are active, including those that do not perform net biosynthesis and perform
maintenance) for the bound/active ribosome fraction at any given growth rate. Below
the lower bound, too few ribosomes are active to sustain a given level of growth, even in
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Fig 4. Protein degradation increases the fraction of active ribosomes. (a) Sketch of the
second model of protein production proposed in this work, which includes both protein
degradation and inactive ribosomes. In this model, only some ribosomes contribute to
net protein synthesis. As the model in figure 3, proteins can be lost by protein
degradation or diluted by cell growth. (b) Experimental data on mean degradation
rates across conditions for E. coli from (Pine, 1973) and for S. cerevisiae
from (J M Gancedo, 1982). The green line is a piece-wise linear fit of the data (see
Materials and Methods) and the cyan line represents the degradation for the standard
model (η = 0).(c) Estimated fraction of active ribosomes in the combined model
(turquoise symbols) compared to the model neglecting degradation rates (solid line -
lower bound). In absence of degradation, the fraction of active ribosomes is estimated
from Eq. (1), fb = λ

γφR
. In presence of degradation, Eq. (12) gives fb = λ

γφR
+ η

γφR
.

Turquoise symbols (crosses for E. coli, circles for S. cerevisiae) show the estimates from
these formulas for experimental values of the other parameters. The model lower bound
(solid line above the shaded area) for the fraction of active ribosomes is the prediction of
the active ribosome model, but incorporating the non-null measured degradation rates
in these estimates determines considerable deviations from this bound, validating the
joint model. Continuous lines are analytical predictions with the constant ratio ansatz,
Eq. (14). For E. coli, estimates are performed using data for ribosome fractions φR and
translation rate γ from (Dai et al., 2016) and degradation rates η from (Pine, 1973). For
S. cerevisiae, estimates are performed using data for ribosome fractions and translation
rate from (Metzl-Raz et al., 2017) and degradation rates from (J M Gancedo, 1982).
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the absence of degradation. Within this region of existence, the bound/active ribosome
fraction depends on the growth rate, following Eq. (12).

Figure 4c shows the bound/active ribosome fraction estimated by the joint model,
using our compiled data for both E. coli and S. cerevisiae (shown in panel b of the same
figure). When taking into account the measured degradation rates, in both cases the
data confirm the better performance of the combined model (turquoise) with respect to
the standard framework that neglects protein turnover (set by the lower bound enclosed
in the shaded area). As detailed in the next section, the relative difference (fb − fa)/fa
between the model with and without protein degradation (lower bound) depends on the
growth rate. The relative fraction is negligible (a few percent) at fast growth, but it
increases to 20% when λ ' 0.15/h, and reaches 100% when λ approaches zero (Fig. 5b).

We note that the published results on S. cerevisiae degradation rates are incoherent
across studies (see again Figure S3). Hence, it would not make sense to attempt a fit
across studies. Instead, we used data from a single study. We chose data from
(J M Gancedo, 1982), as this is the only study with three measurement points in a wide
range of growth rates (from different media). We observe that choosing to use data
from (Martin-Perez and Villén, 2017) would increase the prediction of maintenance
ribosomes. There is higher coherence for E. coli data. Here, we have chosen again to
use data from a single study (Pine, 1973), where the trend is clearest and there are
many conditions. Once again other studies report higher degradation rates (see again
Figure S2), hence the prediction for the fraction of maintenance would increase using
values from other studies. Thus, we can conclude that the estimates reported in Fig. 4
have to be regarded as conservative considering existing data.

We found that the data agree well with the analytical ansatz

fb(λ) = fb0 + (1− fb0)
λ

γφR
, (14)

where fb0 is a constant corresponding to the fraction of active ribosomes at null growth,
where all active ribosomes perform maintenance. For reasons that we will become
clearer below, we name this ansatz “constant-ratio ansatz”.

The constant-ratio ansatz can be validated more directly with data. Indeed,
combining Eq. (14) with Eq. (12), we find the linear relationship

η

γφR
= fb0

(
1− λ

γφR

)
, (15)

which can be verified by plotting that ratio of [η/(γφR)]/[1− λ/(γφR)] versus the
growth rate λ. This plot, shown in Figure S6, shows that the ratio is approximately
equal to a constant, which estimates fb0. The agreement is robust with growth rate for
E. coli, where precise estimates of elongation rates are available, while for S. cerevisiae
the ratio η/(γφR) decreases for fast growth conditions, but we lack experimental data
for the variation of γ across growth conditions. Interestingly, we find that, at slow
growth conditions (λ < 0.2h−1), fb0 ' 0.2 for both E. coli and S. cerevisiae data.

This model also confirms the need of including the presence of inactive ribosomes to
explain the data. In the Methods and Materials we show that a model without inactive
ribosomes (corresponding to fb = fb0 = 1), while capturing the decreasing trend of the
degradation rate with the growth rate, is not quantitatively consistent with the data at
slow growth (see Fig. S4). Additionally, we find that the ansatz of Eq. (14) is equivalent
to stating that the fraction of inactive ribosomes is proportional to maintenance
ribosomes across growth conditions, therefore we decided to term it “constant ratio”
(see Methods and Materials). The constant-ratio ansatz defines a one-parameter family
of curves, where the only parameter is the fraction of active ribosomes at null growth
fb0, which captures the trend of the active ribosome fractions with the growth for
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different growth rates and levels of protein degradation (shown in Figure 4b). From
those relations one obtains a set of curves η(λ) showing how the quantitative relation
between growth and degradation rates depends on the parameter fb0 (Figure S7).

The fraction of active ribosomes increases with protein
degradation due to the added presence of ribosomes devoted to
maintenance

Taken together, the above analyses favour a scenario of biosynthesis where both
degradation and inactive ribosomes cannot be neglected in a wide range of growth rates.
We now proceed to quantify more precisely the maintenance component in the
combined model, i.e. the balance between protein production and degradation, in this
model. To this end, we split active ribosomes into two sub-categories: ”growth”
bound/active ribosomes, whose fraction is fbg, and ”maintenance” bound/active
ribosomes, whose fraction is fbm. The former represents the ribosomes whose protein
production contributes to cellular growth, while the latter corresponds to the actively
translating ribosomes balancing protein degradation. Note that such sub-categories do
not represent functionally different ribosomes but simply a quantification of the
partitioning of protein synthesis into net growth and replacement of degraded proteins.
The two fractions can be defined from the following equations,

fbmfb φR =
η

γ
; fbg fb φR =

λ

γ
, (16)

with fbm + fbg = 1. Taking the ratio of these expressions, we obtain that such
quantities depend only on the ratio η

λ

fbg =
1

1 + η
λ

; fbm =
η
λ

1 + η
λ

. (17)

Equations (17) have a simple interpretation. Without degradation, all ribosomes
contribute directly to growth. Conversely, a fraction of ribosomes needs to be allocated
to re-translate the amino acids from degraded proteins.

Figure 5a compares the model predictions for the maintenance ribosome fraction fbm
as a function of the protein degradation rate and for fixed values of the growth rate λ.
The combined model predicts that the share of active ribosomes committed to
maintenance grows with degradation rate η, with a trend that depends on the growth
rate λ. Equations (17) clearly show that the different curves collapse when plotted as a
function of η/λ (see inset). To illustrate how these predictions relate to data, we first
need to infer the total fraction of bound/active ribosomes. This can be done starting
from the fraction of active ribosomes fa, as previously defined for the model without
degradation in Eq. (5). Comparing with Eq. (12), it is straightforward to relate fb and
fa, by

fb = fa
λ+ η

λ
, (18)

and the fraction of maintenance ribosomes fbm can be computed from Eq.(16) as

fbm =
η

γfbφR
. (19)

Fig. 5a shows how the fractions of maintenance ribosomes derived from experimental
data in S. cerevisiae and E. coli quantitatively lie in the theoretical prediction.

Interestingly, the fraction of active ribosomes devoted to maintenance fbm as given
in Eq. (19) also corresponds to the relative difference (fb − fa)/fb between the predicted
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Fig 5. Maintenance ribosomes are responsible for the increase in active ribosomes in
the presence of degradation. (a) Theoretical curves (in the combined model) of the
maintenance ribosome fraction as a function of the degradation rate η for different fixed
growth rates λ. Crosses and circles are obtained from experimental data in E. coli and
S. cerevisiae respectively. Since fbm is a function of the ratio η/λ only, the inset shows
that such curves collapse if plotted as a function of the degradation-to-growth rate ratio.
(b) Maintenance ribosome fraction as a function of growth rate estimated from data, for
S. cerevisiae and E. coli. The fraction of maintenance ribosomes is mathematically
identical to the relative difference in total active ribosome fraction between the
degradation-only model and the standard framework without degradation. Equivalently,
the fraction of active ribosome increases in the presence of degradation due to
maintenance ribosomes. Degradation data were derived from (Pine, 1973) (E. coli)
and (J M Gancedo, 1982) (S. cerevisiae). Total ribosome fraction data used in Eq.(19)
to estimate fbm come from (Dai et al., 2016) (E. coli) and (Metzl-Raz et al., 2017)
(S. cerevisiae).

fractions of active ribosomes in the models with and without degradation. Therefore,
such observable is crucial to understand the effect of degradation on the fraction of
active ribosomes. We plot this quantity in Fig. 5b, showing that at slow growth a
non-negligible fraction of ribosomes remains active and, approaching the null-growth
state, the vast majority of active ribosomes performs maintenance. Figure 5b shows
that the fractions of maintenance ribosomes estimated from experimental data are very
similar in E. coli and S. cerevisiae, confirming the idea that this quantity might be
dictated by general mass-balance requirements (which is also in line with the fact that
the constant-ratio ansatz is verified in the data with similar ratio for the two organisms).

Discussion and Conclusions

The concepts of maintenance and turnover are central in biosynthesis, and become
particularly relevant for slow-growing cells. It seems natural that they would play a role
in growth laws. While some recent studies on E. coli have focused on biomass recycling
from dead cells (Schink et al., 2019; Biselli et al., 2020), here we provide a
complementary interpretation for the determinants of the ”first growth law” relating
ribosome fraction to growth rate in different nutrient conditions. The idea that protein
degradation would make the relationship between ribosomal sector and growth rate
linear but not proportional was first suggested by Bosdriesz et al. (2015), but this study
only commented briefly on this possibility, and did not explore its implications. The
concepts introduced here clarify some important aspects on the behavior of
slowly-growing E. coli. Specifically the relative fraction of inactive ribosomes must be
smaller than previously expected, in particular at vanishing growth. In this regime, data
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and models converge on a scenario where protein degradation sets an increasing set of
maintenance ribosomes, which become all active ribosomes at vanishing growth. Thus,
in contrast with the widespread notion that at slow growth the fraction of active
ribosome tends to disappear, we suggest that ribosome turnover determines a reservoir
of active ribosomes at vanishing growth.

Our theory is agnostic on the origin of inactive (non-translating) ribosomes, but our
analysis of high-precision E. coli data confirms that, while degradation cannot be
neglected, non-translating ribosomes are also an essential ingredient in order to describe
experimental data (Dai and Zhu, 2020). The non-zero ribosomal proteome fraction at
low growth rates is often interpreted in the literature as a reserve fraction for the cell,
kept inactive in order to prepare for nutrient upshift (Mori M., 2017; Metzl-Raz et al.,
2017). The most direct evidence we have for non-translating ribosomes is the fact that
in E. coli, elongation rate has been measured directly (on one reference gene), with high
precision, and in controlled slow-growth conditions (Dai et al., 2016), and estimating
the total biosynthetic rates using the trend of total ribosome fractions leads to
inconsistent values, when compared to global growth rates. This ”dark matter” problem
remains a central point in the current theories of physiology, and a new generation of
direct and genome wide measurements of per-gene translation rates will be necessary in
bacteria and yeast to unlock this crucial point. Ribosomes can be ”passively” inactive
through several well-accepted mechanisms, including binding of uncharged tRNAs,
traffic, and being unbound (Shachrai et al., 2010). Classic theories of E. coli growth
describe a reduction of translating ribosomes at slow growth as a decrease of the
per-ribosome translation rate (Marr, 1991). Active ribosome segregation mechanisms
have been proposed more recently, but remain to be proved (Dai and Zhu, 2020).

A further question highlighted by our analysis concerns the causes and the
mechanistic determinants of the increase in degradation rates observed at slow growth.
While classic studies have observed this effect (Goldberg and Dice, 1974; Maurizi, 1992;
Pine, 1973), there are several candidate biological mechanisms underlying this change.
Misfolding and protein aggregation occur when translation is slow (Maurizi, 1992), and
one could speculate that enhanced protein degradation contributes to the removal of
waste products. Other hypotheses see protein degradation as a strategy to strengthen
the recycling of amino acids under limited-nutrient conditions, or as a post-translational
control mechanism that would tune the levels of specific proteins (Goldberg and Dice,
1974; Maurizi, 1992; Pine, 1973). We also remark that the observed increase of the
average degradation rate may also result from the variability of the protein mass
fractions in different growth regimes. Here, we did not consider protein-specific
degradation rates. However, we can establish a minimal framework with degradation
rates ηR and ηP that are specific to two corresponding protein sectors φR and φP
(typically representing a ribosomal and a metabolic sector). Equation (7) still holds
redefining η as

η := ηRφR + ηPφP = ηP (1− e φR) , (20)

i.e. as the weighted average of the degradation rates of the corresponding sectors, with
e := 1− ηR/ηP and assuming φR + φP = 1 for simplicity. Equation (20) indicates that
the growth-dependence of η might also emerge from the variability of the mass fractions
φ at different physiological states. Unfortunately no experimental data currently allow
us to validate this scenario, hence we stuck to the most parsimonious assumption of a
common rate. However, we do note that interspecific predictions of the ribosome
abundance based on protein abundance and growth rate use this modification and can
describe data for diverse species (Kempes et al., 2016). This connection highlights the
importance of future work that considers the interplay of shifts in protein abundance,
degradation rates, and transcript partitioning across species. Selective degradation of
nonribosomal proteins under slow growth has been proposed to play an important role in
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determining optimal energy efficiency in slow-growing bacteria (Maitra and Dill, 2015).
Beyond E. coli, we expect that the concepts developed here should be even more

important for our understanding of growth laws in slow-growing bacteria and
eukaryotes. In yeast, protein turnover has been quantified precisely (Christiano et al.,
2014), and protein-specific and regulatory aspects of protein degradation and turnover
are well known. In particular, selective degradation rates for ribosomal and different
kinds of metabolic proteins in different regimes have been reported (Martin-Perez and
Villén, 2017; Christiano et al., 2014; Belle et al., 2006; Helbig et al., 2011), which should
affect the first growth law (Metzl-Raz et al., 2017). Finally, eukaryotic cells have been
reported to activate the expression of autophagy proteins at slow growth, also targeting
ribosomes (Beese et al., 2020). However, these aspects remain unexplored from the
quantitative standpoint. We expect protein turnover to be relevant in other eukaryotic
cells, as post-translational control becomes more common in setting protein
concentrations; for instance, fibroblasts increase degradation rates of long-lived proteins
as they transition from a proliferating to a quiescent state (Zhang et al., 2017).

We have shown that protein degradation should be taken into account to provide
more accurate estimates of the fraction of actively translating ribosomes. Importantly,
expressing the ribosomal fraction φR = Λ/fb as a function of the dimensionless
parameter Λ := (λ+ η)/γ restores the linearity of the first growth law. This fact
highlights the relevance of the relative role of the time scales of ribosome production (γ)
and dilution/degradation (λ+ η) in determining the fractional size of the ribosomal
sector φR. To test these ideas more stringently, an ideal experimental setup would be
capable of informing on ribosomal mass fraction, protein degradation and elongation
rate for a wide range of growth rates. This would make it possible to quantify the
bound/active ribosome fraction fb. Indeed, deviations from linearity in φR(Λ) would
indicate a growth dependence of the fraction of bound/active ribosomes.

In conclusion, our results lead us to conclude that protein turnover is needed to
explain important features of cellular resource allocation underlying the growth laws, in
particular at slow growth, when the time scales of mass loss for protein degradation and
dilution become comparable. In such conditions, differential degradation of proteins
with different functions and expression levels will likely play a role in determining
physiological responses that yet escape our knowledge. We also note that the models
considered in this study do not account for regulatory feedback mechanisms which may
come into play at low growth rates, in response to the stress of limited resources. A new
generation of large-scale studies of protein-specific degradation, starting from E. coli,
may help us building a condensed and quantitative picture of global cell physiology that
includes protein turnover and its impact on cell physiology.

Methods and Materials

Models

We discuss three different models throughout this study. The “degradation model” (Box
2) provides the relation φR(λ) by considering the contribution of protein degradation -
Eq.(7). The “active ribosome” model, leading to Eq.(1), is our formulation of the
standard theory that neglects protein turnover (Dai et al., 2016) (Box 1). The third
model that we develop in the last section comprises both aspects of the previous
theories (protein degradation and existence of a pool of inactive ribosomes) and is
obtained by the procedure explained in Box 2 and considering a total number of
ribosomes R = Rf −Ri −Rb. Thus, Eq.(10) becomes Rf = k(R−Ri)/(k + Lcmα0)
and, upon the same hypotheses explained in Box 2, it leads to Eq. (12).
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Pure degradation model and data

This paragraph discusses the comparison of the degradation model (which neglects the
presence of inactive ribosomes) with data. This model corresponds to the case
fb = fb0 = 1 in Eq. (12). Under this assumption, the dependency of the degradation
rate on the growth rate can be predicted from the data Specifically, assuming the
degradation model -Equation (7)- and using the data from Dai and coworkers, we
derived the following prediction for the growth-rate dependent degradation rate η:

η(λ) = γ(λ)φR(λ)− λ . (21)

The estimated degradation rate, assuming this model, is plotted in Fig. S4. The model
prediction captures the growth-rate dependence of protein degradation rates observed
experimentally, suggesting that deviations from linearity in φR(λ) could originate at
least in part from the increase of degradation rate η at slow growth. However, measured
values for η (Fig. S4b) are about one fifth of the model predictions (Fig. S4c), indicating
that the degradation model alone cannot explain the experimental data, and the
inactive ribosomes present in the standard theory, also play a role, as considered in the
full model in Eq. (12).

We further tested the degradation model in S. cerevisiae, where ribosome allocation
data appear to be compatible with the predictions of the model, but this may be due to
uncertainty in the data. The available data on yeast do not allow a stringent analysis
comparable to the one we could perform for E. coli. Data for ribosome allocation at slow
growth rates is lacking (Metzl-Raz et al., 2017), and precise measurements of translation
rates –comparable to the analysis of Dai et al. (2016) are not available. Additionally,
degradation data across growth conditions are not abundant. However, by taking
degradation rate data from J M Gancedo (1982), and a range of translation rates from
Boehlke and Friesen (1975) it was possible for us to show that the observed data for the
first growth law are in line with the prediction of the model. The results of this analysis
(Fig. S3) suggest that in this case degradation may fully explain the offset of the first
growth law, but more precise experimental data would be needed to establish this point.

Constant-ratio ansatz

This paragraph further illustrates the meaning of the constant-ratio ansatz introduced
in the joint model Eq. (14), which implies that the ratio between inactive ribosomes and
ribosomes devoted to maintenance is constant. After multiplying Eq. (15) by φR and

using definition (16) we obtain φbmR = fb0(φR − φbgR ) or equivalently

φbmR = fb0(φiR + φbmR ), where we used φR = φiR + φbmR + φbgR . It follows that
1/fb0 = 1 + φiR/φ

bm
R and thus that in this ansatz the ratio between inactive and

ribosomal mass fraction remains constant.

Data sets

Growth rate, protein mass fractions, elongation rates

We used data from Metzl-Raz et al. (2017) (S. cerevisiae), Dai et al. (2016)
(E. coli), Fraenkel and Neidhardt (1961) (A. aerogenes), Alberghina et al. (1975)
(N. crassa), Brown and Rose (1969) (C. utilis), Cook (1963) (E. gracilis) in Figures 4,
S1 and S4.

A more detailed analysis on E. coli was performed using the Dai et al. data (Dai
et al., 2016). These data include high-quality direct measurements of translation
elongation rates, growth rates, and RNA/protein ratios (φR), in a wide set of conditions,
including slow growth, forming the pillar of several published studies. In this study, all
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the slow growth points were obtained in controlled steady conditions, and the authors
show that they are in agreement with those obtained from sporadic previous studies
using several different experimental methods. In this data set, the point at zero growth
corresponds to the stationary phase reached in bulk after the steady-growth condition
with 20h doubling time.

Degradation rates

We compiled two data sets from the literature relative to degradation rates in E. coli
and S. cerevisiae. These data are available as a Mendeley Data repository at the
following address http://dx.doi.org/10.17632/85pxpdsx38.2.

For E. coli, we considered data of the average protein degradation rate from Pine
(1970); Nath and Koch (1970); Pine (1973); Mosteller et al. (1980); Larrabee et al.
(1980); J M Gancedo (1982). For S. cerevisiae, we considered data from J M Gancedo
(1982); Helbig et al. (2011); Christiano et al. (2014); Martin-Perez and Villén (2017).
We note that it is difficult to estimate experimental errors form these studies, but the
reported data in most cases correspond to averages over many measured proteins, hence
we expect the statistical error to be small. On the most recent datasets Helbig et al.
(2011); Christiano et al. (2014); Martin-Perez and Villén (2017) we estimated the error
bars as standard errors of the mean, and they are smaller than the symbols used in the
plots. In E. coli we could only extract the error bar for the point obtained
from Mosteller et al. (1980), see Fig. S2. We report the data point η = 0.03/h at
λ = 0.52/h from Larrabee et al. (1980), which is the mean degradation rate estimated
from the experiment with the largest number of proteins analysed (359) and following
the method explained in that publication. Alternatively, another experiment from the
same article would provide a lower bound (as fast-degraded proteins were removed from
the analysis) of the mean η = 0.02/h for λ = 0.52/h. However, based on our re-analysis
of the data presented in this publication, the error bar we would estimate for this point
is almost twofold the mean value and we decided to not report it.

These studies can be divided into two categories according to their experimental
design:

1. studies that provide a distribution of degradation rates by measuring the half-life
of hundreds or thousands of proteins. Out of these studies, we estimated the mean
degradation rate as the average of this distribution. In E. coli, Mosteller et al.
(1980); Larrabee et al. (1980) provide a distribution of degradation rates by
combining pulse-chase experiments with 2-D gel electrophoresis. We note that
these authors measure u 100 degradation rates, but there are more than 4000
E. coli proteins. In S. cerevisiae, Helbig et al. (2011); Christiano et al. (2014);
Martin-Perez and Villén (2017) measure the half-lives of thousands of protein by
combining metabolic labelling and mass spectrometry. Christiano et al. (2014);
Martin-Perez and Villén (2017) perform SILAC experiments, which are based on
amino acid labelling, while Helbig et al. (2011) uses stable heavy nitrogen isotopes
for labelling.

2. studies that measure total protein content breakdown and use data analysis to
infer the mean degradation rate. All such studies never measure directly the
degradation dynamics of specific proteins, but only the dynamics of total protein
content. In E. coli, Pine (1970); Nath and Koch (1970); Pine (1973) provide a
single mean degradation rate. Nath and Koch (1970) also attempts to estimate
the rate of two distinct protein classes, respectively fast-degrading and
slow-degrading types. In S. cerevisiae, J M Gancedo (1982) uses the same type of
set-up. All these studies perform pulse-chase experiments by labelling completely
the proteome of the cell by incorporation of radioactively-labelled amino acids.
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After switching to incorporation of unlabelled amino acids, the total amount of
labelled protein can either stay constant or decrease due to degradation. For all
these studies, we performed our own data analysis on the the provided raw data
and estimated the mean degradation rate from the rate of decrease of the labelled
total cell protein. We describe below the methods of our data analysis.

Data analysis

We begin this section by considering the work of Pine (1973), our main source in the
main text for degradation rates across growth conditions. In this case, we have followed
the author’s estimates since the raw data are provided only for few conditions, but we
have re-examined critically their assumption. The authors estimate the mean
degradation rate by assuming that the labelled cell protein decreases with a single
degradation rate. Mathematically, this means that

PL(t) = P 0
L exp(−ηt) , (22)

with PL(t) being the amount of labelled protein at time t after the pulse period. This
allows to estimate η as

η = −1

t
log

(
PL(t)

P 0
L

)
, (23)

or any equivalent combination. We note that this method provides a good estimate even
if the degradation rate differs from protein to protein. To see this, we re-write equation
(22):

PL(t) =
∑
i

P 0
Li exp (−ηit) (24)

where the sum runs over all the proteins in the cell. By considering the initial fraction of
proteins having degradation rate η, we can write this in terms of the distribution P (η).

log

(
PL(t)

P 0
L

)
=

∫
P (η) exp (−ηt) dη = 〈exp (−ηt)〉 , (25)

where the sign 〈·〉 indicates performing an average.
Since approximately

〈exp (−ηt)〉 ≈ exp (−〈η〉t) , (26)

the previous equation still holds in the mean,

〈η〉 ≈ − log

(
PL(t)

P 0
L

)
1

t
. (27)

Jensen’s inequality implies that this estimate always underestimates the true mean
degradation rate, hence, the experimental data points shown in Fig. 4 could be
considered as lower bounds.

For Nath and Koch (1970); Pine (1970), we estimated the mean degradation by the
dividing the cell protein content in three classes, one of which consists of stable proteins.
The other two classes represent respectively fast and slow degrading proteins. This
approach is directly inspired by the ideas of Nath and Koch (1970).

The total protein content will decay in general according to the following equation:

PL(t) = P 0
fast exp (−ηfastt) + P 0

slow exp (−ηslowt) + P 0
stable (28)

or as a fraction of initial amount of labelled protein
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PL(t)

P 0
L

= ffast exp (−ηfastt) + fslow exp (−ηslowt) + fstable (29)

with ffast, fslow and fstable being the probability that a protein belongs to one of the
three classes.

The mean degradation rate will be:

〈η〉 = ffastηfast + fslowηslow (30)

To estimate this, we must infer the parameters ffast,ηfast, fslow and ηslow from
equation (29). In practice, we are able to reduce the number of parameters on a
case-by-case basis.

Nath and Koch (1970) and J M Gancedo (1982) perform this analysis themselves,
and assume that the slow class is indeed slow enough to approximate the exponential to
a linear function. They derive equation (29) and obtain:

− 1

P 0
L

dPL(t)

dt
= ffastηfast exp (−ηfastt) + fslowηslow (31)

They fit ffast, ηfast and fslowηslow to the experimental curve. We are able to extract
the mean degradation rate out of these parameters.

Pine (1970) do not perform this analysis. By performing it ourselves, we find that
using only two classes fits the data well using the following expression:

PL(t)

P 0
L

= ffast exp (−ηfastt) + (1− ffast) (32)

We extract ffast and ηfast from the fit and use it to compute the mean degradation
rate.

Data interpolation and extrapolation

Many estimates and calculations in the main text require the combined knowledge of
ribosomal protein fractions, degradation rates and translation elongation rates, all the
same growth rate. We obtained all these observables from different sources, and
unfortunately combined measurements from the same dataset are almost never available.

In order to use different measurements in our calculations, we interpolated the data
in different ways. In the following, we list all the operations that we performed on the
data for this purpose:

1. in Figure 4 and 5, we performed a saturated linear fit (linear for slow growth,
constant for fast growth) on degradation data from Pine (1973), and used the
continuous interpolation of these data to obtain degradation rates at the same
growth rates measured by Dai et al. (2016);

2. we performed a saturated linear fit on J M Gancedo (1982) degradation data and
used it to obtain degradation rates at the growth rates measured by Metzl-Raz
et al. (2017);

3. in Figure 4, we obtained continuous curves of the active ribosomal fraction by
performing a polynomial fit on the ribosomal fraction data, the translation
elongation rate data by Dai et al. (2016) and the ribosomal fraction data by
Metzl-Raz et al. (2017). This was done in order to avoid the effect of noisy
measurements. Note that no such interpolation was done to obtain the points
(crosses and circles) shown in 4;
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4. for S. cerevisiae, translation elongation rates measurements across growth
conditions are not available. Ref. Metzl-Raz et al. (2017) argues that the
elongation rate is likely constant across growth conditions. We followed this
assumption and set the elongation translation equal to the inverse of the slope of
the first growth law measured in Metzl-Raz et al. (2017).
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Fig S1. The first growth law typically shows an offset in data. (a) Data on ribosomal
mass fraction for E. coli and S. cerevisiae. (b) Data on RNA/protein ratios for other
organisms. Data from Metzl-Raz et al. (2017) (S. cerevisiae), Dai et al. (2016) (E.
coli), Fraenkel and Neidhardt (1961) (A. aerogenes), Alberghina et al. (1975)
(N.crassa), Brown and Rose (1969) (C. utilis), Cook (1963) (E. gracilis).

0.0 0.5 1.0 1.5
growth rate (h 1)

E.coli B U  Trp
E.coli K12 Leu  Thr
E.coli B

E.coli RM312
E.coli CHS73

0.0 0.5 1.0 1.5
growth rate (h 1)

0.00

0.02

0.04

0.06

(h
1
)

de
gr

ad
at

io
n 

ra
te E. coli 9723

E. coli B
E. coli W

Fig S2. (a) Degradation rate across growth conditions from Pine (1973) as used in the
main text. (b) Degradation rate across different growth conditions from other studies
using different strains and techniques, Nath and Koch (1970) (E. coli B U−1

Trp−1), Mandelstam (1958) (E. coli K12 Leu−1 Thr−1), Pine (1970) (E. coli
B), Mosteller et al. (1980) (E. coli RM132 ), Larrabee et al. (1980) (E. coli CHS73 ).
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Fig S3. The degradation-only model is compatible with data for S. cerevisiae, given
the uncertainty in the parameters. (a) Mean degradation rate across growth conditions
from J M Gancedo (1982); Helbig et al. (2011); Martin-Perez and Villén (2017);
Christiano et al. (2014) respectively using strains CJM13, CEN.PK113-7D DBY10144
and BY4742. The dashed line indicates the average of all the shown points (which are
averages in a single condition). The dashed arrow lines highlight the increasing trends
of degradation rates with decreasing growth rates in two data sets. (b) The range of
predicted ribosomal fractions of the model, plotted next to data points from Metzl-Raz
et al. (2017) that uses strain BY4742. The model requires as inputs degradation rates
and translation elongation rates. As a value for the degradation rate, we have taken the
mean value, shown in panel a as a dashed line in the left subpanel, as well as a linear fit
of the degradation rate from J M Gancedo (1982) (green hexagons in panel a, central
subpanel in panel b), and a sigmoid fit for Martin-Perez and Villén (2017) (red circles in
panel a, right-hand subpanel in panel b), see also Methods and Materials. We then
considered a range of physiologically relevant translation elongation rates (3-8 aa s−1)
from ref. (Boehlke and Friesen, 1975). The shaded area represents the prediction of the
model for such range.
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Fig S4. The model with degradation and no inactive ribosomes captures qualitatively,
but not quantitatively the trend of degradation rates in E. coli. (a) Sketch of the first
model of protein production proposed in this work, which includes protein degradation
but no inactive ribosomes. In this model, ribosomes follow a first-order kinetics to bind
the transcripts, and all bound ribosomes contribute to protein synthesis (mass
production). (b) Degradation rate across growth conditions from Pine (1973). (c)
Degradation rate estimated from Dai et al. (2016) using the model in the first panel.
The model captures the qualitative trend of the degradation rate across growth
conditions, but fails quantitatively by overestimating the rates by a factor of 4.
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Fig S5. Ratio of degradation rate to growth rate from experimental data on mean
degradation rates across conditions for E. coli from Pine (1973) and for S. cerevisiae
from J M Gancedo (1982) (see also panel (b) figure 4).
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Fig S6. Experimental support of the constant-ratio ansatz -Eq. (15) in the main text.
The plot shows that the ratio [η/(γΦR)] / [1− λ/(γφR)], evaluated from the available
E. coli and S. cerevisiae data (see Methods and Materials), is compatible with a
constant fb0 ' 0.2, across growth conditions, especially for the (much more precise)
E. coli data.
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Fig S7. Mean degradation rates across growth conditions as predicted by the model
with the constant-ratio ansatz for the fraction of bound/active ribosomes. The plot
shows degradation rates as predicted by the model equation η = fbφrγ − λ with fb
equal to the constant-ratio ansatz from Eq. (14). φR and γ are taken from E. coli data
given in Dai et al. (2016).
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