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State-of-the-art Ca?* imaging studies that monitor large-scale neural dynamics can produce
video datasets that tally up to ~100 TB in size (~10 days transfer over 1 Gbit/s ethernet).
Processing such data volumes requires automated, general-purpose and fast computational
methods for cell identification that are robust to a wide variety of noise sources. We present
EXTRACT, an algorithm that is based on robust estimation theory and uses graphical
processing units (GPUs) to extract neural dynamics from a typical Ca®** video in computing
times up to ~10-times faster than imaging durations. We extensively validated EXTRACT on
simulated and experimental data and processed 199 public datasets (~12 TB) from the Allen
Institute in a day. Showcasing its superiority over past cell extraction methods at removing
noise contaminants, neural activity traces from EXTRACT allow more accurate decoding of
animal behavior. Overall, EXTRACT is a powerful computational tool matched to the present

challenges of neural Ca** imaging studies in behaving animals.

INTRODUCTION
State-of-the-art neural Ca®* imaging experiments, such as those using fluorescence

macroscopes’?, can generate up to ~300 MB of data per second, or >1 TB per hour of recording.
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Faced with such data volumes, neuroscientists need computational tools that can quickly process
extremely large datasets without resorting to analytic shortcuts that sacrifice the quality of results.
A pivotal step in the analysis of many large-scale Ca* imaging studies is the extraction of
individual cells and their activity traces from the raw video data. The quality of cell extraction is
critical for subsequent analyses of neural activity patterns, and, as shown below, superior analytics

for cell extraction lead to superior biological results and conclusions.

Prior methods for cell extraction identified neurons as regions-of-interest (ROIs) by
manual®*’, semi-automated® or automated image segmentation®", which in turn allowed Ca*
activity in each ROI to be determined using either the identified spatial masks or multivariate
regression. Other cell extraction methods, including independent components analysis (ICA),
non-negative matrix factorization (NMF), and constrained non-negative matrix factorization
(CNMF), simultaneously infer cells’ shapes and dynamics using a matrix factorization'°. In these
now widely used methods, the Ca?* movie is treated as a matrix that can be approximated as the
product of lower dimensional spatial and temporal matrices. The detailed assumptions about this
factorization differ between the approaches and influence their relative strengths and limitations.
Together, extant cell extraction methods have enabled Ca?* imaging studies with a wide variety of
microscopy modalities and model species, but they have generally neither been created for nor

validated on TB-scale datasets.

Notwithstanding the many past successes of Ca?* imaging, neuroscientists face important
computational challenges as Ca*" imaging technology continues to progress rapidly. Many datasets
contain noise that is not Gaussian-distributed, including background Ca?* signal contaminants from
neuropil or neural processes, weakly labeled or out-of-focus cell bodies, and neurons that occupy

overlapping sets of pixels?'. For simplicity, prior algorithms have typically used signal estimators to
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infer cellular Ca* traces by assuming Gaussian-distributed contamination'61822-25  Thys, these
prior methods poorly handle the non-Gaussian contaminants found in real experimental situations,
impeding the detection of cells and inference of their Ca?* activity patterns. To mitigate the resulting
estimation errors, past research has proposed video processing methods to be applied prior to*2*
or during cell extraction''®, Other mitigation strategies involve post-processing of the estimated
Ca?* activity traces after cell extraction?*?®. However, a reliance on specific image processing
routines can restrict a cell extraction algorithm’s utility to the particular imaging conditions or
modalities for which these routines were designed, and post-processing of traces generally adds
greatly to the total processing time, which is not a practical option with 10-100 TB datasets. To
date, no cell extraction algorithm (i) addresses the challenges of Ca?* imaging within a single,
generally applicable conceptual framework and (ii) is demonstrably capable of handling the field’s

burgeoning data volumes.

An important recent direction in data analytics for neuroscience has been to use deep
learning approaches?®°, notwithstanding that they are usually much slower than traditional
statistical methods. However, if trained on data from a range of imaging modalities, deep learning
can provide accurate cell extraction results for in-distribution datasets, i.e., cell-types and imaging
conditions that were represented in the training set. However, the mammalian brain purportedly
has >5000 neuron-types®', and neural imaging conditions are variable across different instruments,
modalities, fluorescence labeling conditions, noise distributions, surgical preparations, and
animals—even within the same lab. Unfortunately, the degree to which extant deep learning based
approaches to cell extraction need retraining for experimental conditions not represented in the
training set has not been formally examined. This is a crucial issue, as optimization and retraining
are unlikely to be feasible for every neuron-type and set of experimental conditions. Moreover,

deep learning approaches are prone to hallucinations®?, which, in the context of Ca* imaging, can
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lead to inferences of Ca?" activity that do not exist**. By comparison, statistical models do not
require training data that are representative of the signal distributions and instead are usually
based on easily explainable assumptions about the noise distributions. Further, due to their relative
simplicity, cell extraction methods based on statistical models typically have much faster run
speeds®. Overall, while deep learning approaches to cell extraction represent a very promising
frontier, they do not yet fulfill the goal of having a cell extraction algorithm that is simultaneously
robust, verifiably applicable to many different imaging conditions, and sufficiently fast to process

the largest Ca?* imaging datasets.

Here we present a broadly applicable, fast cell extraction method that addresses the
experimental limitations of real Ca?" imaging datasets and efficiently processes the largest
available such datasets, while avoiding assumptions specific to particular imaging modalities or
fluorescence labeling patterns. Using the theoretical framework of robust estimation, we describe a
minimally restrictive model of data generation and derive a statistically robust method to identify
neurons and their fluorescence activity traces. Robust estimation is widely used in statistics, as it
provides a potent means of analyzing data that suffers from contamination, such as outlier data
points, whose statistical properties differ from those of an assumed noise model (typically
Gaussian). Instead of modeling the contamination statistics, robust estimation provides statistical

estimates that have quality guarantees even in the case of the worst possible contamination.

One obtains these guarantees by constructing a statistical estimator that selectively
downgrades the importance of contaminated, outlier observations, to which non-robust estimators
generally assign undue weight*3. In the presence of Gaussian-distributed noise plus
non-Gaussian outliers, non-robust estimators can suffer enormous errors, whereas a suitable

robust estimator can have negligible error®. In cell extraction, robust estimation can formally
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account for spatiotemporally varying, non-Gaussian contaminants and infer neural activity with high
fidelity, without having to explicitly model the contaminants in Ca?* imaging experiments. The result
is a modality-agnostic approach that makes minimal assumptions about the data. We term the

algorithm EXTRACT (for EXTRACT is a tractable and robust automated cell extraction technique).

EXTRACT performs quickly and accurately due to its native support for graphical
processing units (GPUs) and custom-designed fast convex solver. The resulting efficiency allows
EXTRACT to handle individual Ca* movies up to ~12 TB in size, up to 2 orders-of-magnitude
larger than the validated range of prior cell-extraction algorithms®. For a typical imaging study,
processing times with EXTRACT are an order-of-magnitude briefer than the imaging session. Even
with Ca?" videos from recent fluorescence mesoscopes, EXTRACT runtimes on a standard

personal computer are comparable to imaging durations.

We first extensively validated EXTRACT on simulated data and benchmarked it against
other algorithms in 33 computational experiments spanning a wide range of challenging imaging
conditions. We then analyzed experimental data from conventional, multi-plane, and mesoscopic
two-photon imaging studies in head-fixed behaving mice, one-photon miniaturized microscopy
studies in freely behaving mice, and the Allen Brain Observatory two-photon Ca?* imaging
datasets®. When studying data from behaving animals, we focused on how EXTRACT led to
superior biological results, due to the improved quality of the Ca?" activity traces as compared to
those from prior algorithms. Specifically, we show enhanced identification of anxiety-encoding cell
populations in the ventral hippocampus, improved identification of anatomically clustered neural
activity in the striatum, and more accurate predictions of mouse location via decoding of

hippocampal neural ensemble activity, all using Ca?* activity traces from EXTRACT.
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RESULTS

A defect of conventional cell extraction: L, loss is suboptimal for realistic datasets.

We first illustrate the substantial shortcomings of conventional cell sorting algorithms by using a toy
model in which the Ca?* movie, M, contains a single neuron, has a field-of-view h X w pixels in

size, and is n.. frames in duration (Fig 1A; Fig. S1A-D). Without loss of spatial information, we

refer to the two spatial dimensions using a single scalar variable whose values have a 1:1

correspondence to points in the x-y plane. In this notation we can describe M as an n

X n.
xels times

array, where T ixels equals the total number of pixels, hw. Within this description, the column vector

xel
s (of size npixels) denotes the cell’s spatial profile, and the row vector t (of size ntimes) denotes its
Ca?* activity trace. Initially, t is unknown. Our goal is to obtain an optimal estimate of the cell’s
activity trace, t such that the square of the residual deviation, (t* - 2‘)2, from its directly measured

activity, t, is minimized. Unfortunately, unlike with e.g., intracellular electrical recordings of neural

activity, we do not have a single and direct measurement, t*, of the cell’s activity trace. Instead, we

have a set of experimental readouts, in the form of fluorescence traces from the pixels of a Ca®*
movie, from which we must infer t. Therefore, since we cannot directly optimize t to minimize

(t* — 2‘)2, it has been conventional in the field to solve a substitute problem that both approximates

the original goal and is mathematically tractable'®'819.23.26,

This substitute problem is that of ‘movie reconstruction’. Namely, one estimates the trace, t
so the outer product, s%, well approximates the Ca?* movie, M, and minimizes the magnitude of the
residual, R = M—s;:. This is usually done by minimizing the sum of the squared elements of R with

respect to 2 In other words, one minimizes an L, (i.e., quadratic) loss function on the residual; the

resulting estimator is referred to as an 'L, estimator’. This widespread method of estimating Ca*
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activity rests on an implicit assumption that R is Gaussian-distributed. If M contains the cell’s

activity plus additive Gaussian noise, then the L, estimator is optimal in that it reconstructs an

estimated movie, M = stA:, which differs from the real movie only by irreducible noise®.

However, in reality, Ca?* imaging data are corrupted not just by Gaussian noise but also
other contaminants, such as from neuropil Ca?* activity, out-of-focus neurons, or cells with
overlapping pixels. In the realm of optimization problems, this situation is unusual in that signals
from one cell may also constitute noise contaminants that degrade the estimated activity trace of
an overlapping cell (See Supplementary Note 1). For instance, if one adds to our toy model with
one cell a partially overlapping ‘distractor’ cell, whose spatial profile was not identified by the cell
extraction algorithm, this simple addition greatly impedes the estimation of Ca*" signals from the

first cell. Specifically, using an L, loss function can lead to crosstalk from the distractor cell in the

estimated trace, t , for the first cell—even when regularization enforcing sparsity is used (Fig.
1B-D; Fig. S1A-D). Thus, traditional L, estimators of neural signals'®%? can be inaccurate in

realistic scenarios.

Robust statistical estimation of neural Ca?* dynamics

We start our presentation of robust estimation by first relaxing the common assumption that noise
is Gaussian-distributed. Signal contaminants may exist with spatially irregular and temporally
non-stationary properties; this can occur when neighboring cells occupy overlapping sets of pixels
or when Ca?" signals arise from neuropil or out of focus cells, leading to signal sources that are
absent from or poorly represented in the extracted set of cells’ spatial filters. Especially when the
cells of interest are quiet, such signal contaminants can greatly exceed the Ca?* signals we aim to
extract. Second, we note that since nearly all fluorescent Ca?* reporters have a rectified dynamic

range, positive-going [Ca*] fluctuations are reported far more strongly than negative-going
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fluctuations of [Ca?'] or fluorescence levels below baseline values. Based on these points, we
model the noise distribution as having two components, each of which can vary spatiotemporally
(Fig. 1E,F). The first noise component is assumed to be Gaussian-distributed and to affect a
fraction, 1 — e(x, t), of the pixel intensity measurements. The second component has an unknown
distribution, H, and affects the remaining fraction, e(x,t), of the measurements. We assume
nothing about H, except that it yields non-negative measurement values, due to the rectification of
the Ca*" indicator. (More precisely, H has support on [k(x, t), ©), where k(x, t) is a non-negative
parameter that is linked to the severity of the contamination; typically, k is on the order of 1 s.d. or
less of the baseline noise fluctuations that persist after pre-processing, but, as discussed below,
EXTRACT estimates spatiotemporally varying values of k(x, t) in an adaptive manner; Methods).
With this noise model, what is a suitable loss function for estimating cells’ Ca?* signals? The
reliance on Ca?* movie data, rather than direct measurements of neuronal dynamics, and the lack

of a prescribed noise distribution for H prevents identification of an optimal loss function for

estimating the Ca®" activity trace, t However, by using the theory of robust statistics®**°, we can
find a loss function that is optimal in a different sense, namely that it achieves the best MSE under
the worst possible probability distribution that the unknown noise could ever assume. This loss
function smoothly transitions between a quadratic function and a linear function, with the transition
occurring at the positive value, k(x,t), that should depend on the prevalence, e(x,t), of the
unknown noise component (Fig. 1F; Fig. S1F). We call this the one-sided Huber loss function, in
reference to the traditional Huber loss function in which non-Gaussian, outlier noise contaminants
can have either sign. Our loss function is thus tailor-made for the rectified signals of Ca®* imaging,
and it leads to mathematically provable upper bounds on the worst-case estimation errors in the
limit of scalar estimation, i.e., the case of sparsely labeled neurons with uniform spatial profiles

(Proposition 1 in Methods). A key consequence of using this loss function is that, when the first
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derivative of the total loss is computed across all data points for the sake of minimization, any

datum at which the residual is more than k contributes only a fixed value, %LC:K , to the derivative,

namely the same as if the datum had a residual of exactly k. (This fact leads, below, to an

appealing geometric interpretation for how our robust solver operates).

The simplest approach to robust regression uses fixed*® values of e(x,t) = € and
k(x,t) = x for all pixels and frames. However, given that real Ca®* movies have spatiotemporally
varying levels of noise and contamination, we need a more sophisticated loss function, in which the
matrices €: = €(x,t) and k: = x(x, t) vary in space and time and must be estimated from the movie
(Fig. 1D; Fig. S1C, D). To do this, one iteratively seeks better estimates of € and k in a closed
loop, while concurrently performing robust estimation with the heterogeneous k (Methods). In this
way, one can let the data dictate, across each frame and time bin, how the loss function should
differ from its conventional L, form to accommodate the instantaneous, non-Gaussian contaminant
components. Returning to our toy model with one cell of interest and one distractor cell, our robust
loss function can estimate the first cell's Ca?" trace accurately, while ignoring signals from the
distractor (Fig. 1C,D; Fig. S1B,D).

To illustrate the utility of robust regression with adaptive estimation of k, we simulated a set
of 20 Ca®* movies, each containing 600 cells with non-negative Ca?* signals (Fig. 1G; Fig. S1E).
The movies contained Gaussian noise, but a small portion of it (5%) was correlated across nearby
cells (Methods). Using the cells’ ground truth spatial profiles, we obtained estimates of the cells’
Ca?" activity traces via robust regression using either a fixed k or adaptively varying values of k.
For comparison, we also used an L, estimator to compute estimated Ca?* traces that constitute the
non-negative least squares (NNLS) solution to the Ca?" movie reconstruction. In our comparisons,

we considered two cases. In the first case, the spatial profiles of all the cells were input to the cell
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extraction algorithms. In the second case, the spatial profiles of only 80% of the cells were input to
the extraction algorithm, and 20% were deemed distractor cells whose spatial profiles were not
input. These distractor sources of Ca** activity lead to non-Gaussian noise distributions. Notably, in
both cases, NNLS vyielded the best reconstruction of the Ca* movie, whereas robust regression
with adaptive estimation of k provided the smallest error on the estimated Ca?* traces (Fig. 1G).
This underscores the differences between the two estimation problems—that of reconstructing the
movie vs. estimating the traces—and that robust regression outperforms NNLS even when the
noise distribution deviates only slightly from independent Gaussian noise at each pixel. Robust
regression with fixed k values yielded modest gains over NNLS; however, these gains were only
obtainable over a limited range of k values, which a user would have to know a priori to choose k
appropriately.

To complement these results, we performed additional studies of simulated movies in which
the pixels occupied by target cells included non-Gaussian noise contaminants arising from varying
percentages of target and distractor cells. In these cases, robust estimation with adaptive

estimation of k was needed to extract neural signals most accurately for the target cells (Fig. S1E).

Geometric interpretation of robust regression

Our robust loss function, the one-sided Huber loss, is designed to minimize the influence of outlier,
non-Gaussian contaminants on the estimated solution to the problem of Ca?* movie reconstruction.
The custom robust solver that we created to minimize this loss function has an intuitive geometric
interpretation (Fig. 1H-M; Supplementary Note 2). The minimization is achieved by iterating the
following pair of steps, comprising an adjustment to the dataset followed by a regression. In the
first step, any outlier data points for which the residual from the prior round of regression exceeds k
are moved to the robustness boundary, defined as the set of data points with a positive residual

equal to x (Fig. 11-L). This step is a geometric implementation of the statement that outlier points
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. d L. .
should all have the same impact, d_zlx—}c’ on the loss minimization. Second, a least-squares

regression is computed for the adjusted dataset. These two steps are iterated until the process
converges. In this way, the robust regression detects and weights outlier data points, which can
arise, e.g., from the activity of distractors, so as to reduce their effects on signal estimates (Fig.

1H, I).
The geometric interpretation of our custom solver for performing regressions with a
one-sided Huber loss function also has implications for the estimation of cells’ spatial profiles. To

this point, we have discussed the determination of cells’ estimated activity traces, 2 given cells’

known spatial profiles. However, for the analysis of real Ca* movies, the cells’ spatial profiles must
also be estimated. Our extraction algorithm outputs both t and s and it finds these estimates
through iterative, alternating estimates of t using fixed s and then vice versa. The estimation of;

given a fixed t is also done using regression with a one-sided Huber loss, which minimizes the
impact of movie pixels at which a target cell’s activity is represented but with low signal-to-noise

ratio (SNR), and of outlier data points reflecting times when there was Ca?" activity in distractor
cells overlapping the target cell (Fig. 1J-L). Notably, for ; estimation, unlike for 2‘ estimation, we

use a fixed value for k, for which lower k values lead robust regression to minimize the weights in s

assigned to low SNR pixels, which often lie at the cell periphery (Fig. 1M). By comparison, cell

extraction by NNLS led to estimates of s that included pixels that were nearby but outside the cell
perimeter and had no clear Ca?* signal, whereas robust regression using k ~1 s.d. of the movie

noise led to estimated spatial profiles that were comparable to the cells’ actual boundaries (Fig

1M). Thus, the use of a robust loss function in the filter estimation assigns higher weights in s to

pixels from the movie that are highly informative about the cell’s activity.

11
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Introducing EXTRACT: A pipeline for cell extraction using robust regression.

Using our loss function and robust estimation, we now treat real data by going beyond our toy
model and introduce the EXTRACT pipeline. We consider a Ca?* movie, M, that is a linear
combination of background signal contaminants plus Ca?" signals from an unknown number of
cells, each of which contributes to the movie an activity trace given by the product of its spatial and
temporal weights (Fig. 1E). We accomplish cell extraction by first performing a simple (and
optional) pre-processing of the movie frames, followed by 3 main computational stages (Fig. 2A). A
conference paper® outlined our initial ideas for EXTRACT, but the EXTRACT pipeline described
here and the implementations of each stage are new, use a new customized optimization solver
(Methods; Supplementary Note 2), and are now rigorously validated against other cell extraction
methods (below). Crucially, here we use adaptive estimation of k = x(x,t), unlike our

proof-of-concept study®.

The pre-processing step applies a high-pass spatial filter to M to reduce background
fluorescence and then subtracts from each pixel value its baseline fluorescence level (Methods).
The first main stage of computation, ‘Robust cell finding’, identifies cells in the movie. The second
main stage, ‘Cell refinement’, hones the estimates of cells’ spatial profiles and activity traces. The
third stage, ‘Final robust regression’, performs one final regression to reconstruct M and obtain a
final set of estimated Ca* traces using the last set of spatial profiles provided by the Cell
refinement stage. As with the toy model above, for which an L, loss function led to crosstalk from a
distractor cell, robust estimation allows the proper isolation of individual neurons from real data,
even when there is substantial spatial overlap in cells’ profiles and temporal overlap in their activity

patterns.

The cell-finding stage uses a simple, iterative procedure to find cells and applies robust

estimation to determine each cell’'s spatial profile and activity trace (Fig. 2B). At each iteration, the

12
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algorithm finds a seed pixel that attains the movie’s maximum fluorescence intensity, and it
initializes a candidate cell image at the seed pixel (Methods). The algorithm then alternatively
improves its determinations of the cell’'s spatial profile and activity trace via robust estimation (Fig.
2B). After the estimates of the spatial profile and activity trace stabilize, the cell’s inferred activity
trace is subtracted from the movie, and in the next iteration the steps above repeat for another cell.
The cell-finding procedure ends when the peak value for the activity trace of the seed pixel fails to
reach a threshold value, which is set as a fixed multiple of the standard deviation of the
background noise. Notably, the use of robust estimation for cell finding is important for providing

the subsequent cell refinement stage a set of good initialization values (Supplementary Note 1).

After cell finding, the ‘Cell-refinement’ stage improves the estimates of cells’ spatial and
temporal contributions to the movie data, by accounting concurrently for all the identified cells using
multivariate robust estimation (Fig. 2C; Methods). This stage is also an iterative procedure, and
each iteration has 3 steps. First, all Ca?" traces are simultaneously updated using robust
estimation, while holding fixed the cells’ spatial profiles. Second, all spatial profiles are concurrently
updated via robust estimation, while holding fixed the activity traces. Third, a validation procedure
checks a set of predetermined metrics for every putative cell and removes any cell with metrics that
fail to meet user-set criteria. This 3-step procedure repeats for a fixed number of iterations, and the
algorithm outputs the final estimates of cells’ spatial profiles and activity traces. Compared to L,
estimation, the use of robust estimation in the Cell refinement stage allows faster convergence and
better discarding of spurious or duplicate cells (Supplementary Note 3). The resulting spatial
profiles are then used in the ‘Final robust regression’ module to estimate the final Ca** activity
traces (Fig. 2D). This regression is performed with additional adaptive estimation procedures for

cells’ baselines to ensure high quality output (Methods).
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Crucially, to perform these computations efficiently, we developed a custom fast solver for
robust estimation that combines the computational cost of a first-order optimization algorithm with a
convergence behavior approaching that of second-order optimization algorithm, such as Newton’s
method (Proposition 2 in Methods; Supplementary Note 2). Our solver is expressly adapted for
and benefits greatly from computational acceleration provided by multiple graphical processing
units (GPUs) and parallel computation. Internally, the solver uses the alternating direction method
of multipliers®® (ADMM), which enforces mathematical constraints by separating optimization and
constraint enforcement into two distinct problems, each of which can be solved via matrix

multiplications and projections (Supplementary Note 2).

Performance evaluations using large-scale simulated Ca?* activity datasets
To validate EXTRACT and benchmark it against other cell extraction methods, we created a set of
large-scale, simulated Ca?* video datasets (~4 TB total), allowing us to evaluate cell extraction
performance quantitatively and in greater depth than prior studies (see Table S1 for a list of 33
different computational experiments and benchmarks). We simulated Ca®* videos with varying
densities of cells and levels of cell overlap (Fig. 3A-E), across a density range slightly beyond that
seen in real datasets (e.g., compare the insets of Figs. 3E and 4A). The simulated activity traces
had discrete non-binary Ca?* events with exponentially decaying waveforms (Fig. 3A; Methods).
The movies also contained additive Gaussian-distributed noise that was uncorrelated between
pixels, mimicking photon shot noise, plus varying levels of spatiotemporally correlated noise
contamination, mimicking blood vessel contamination and/or neuropil Ca?* activation.

When picking cell extraction algorithms to compare with EXTRACT, there were at least 15
options from the peer-reviewed published literature with openly available code (see
Supplementary Note 1), making it impractical to run them all through a broad range of systematic

comparisons. Therefore, from among the most widely used cell extraction routines described in

14


https://paperpile.com/c/TEGYul/2Jpg
https://doi.org/10.1101/2021.03.24.436279
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.24.436279; this version posted August 17, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

peer-reviewed publications, we categorized algorithms into 3 categories: i) early-stage algorithms
based on independent component analysis; ii) more recent, state-of-the-art algorithms that
optimize reconstruction of the Ca?* movie as a product of cells’ spatial filters and activity traces;
iii) post-processing tools for improving estimated Ca?* traces given a set of spatial filters. Based on
its current and past use by hundreds of neuroscience labs, we picked PCA/ICA' to represent the
first category. In the second category, we chose CAIMANZ, which is widely used and has options
for analyzing one- or two-photon Ca?* movies, unlike a similar algorithm with a different
implementation. For the third category, we chose SEUDO, a state-of-the-art approach for
improving Ca?* trace estimation. To assess algorithmic performance, we supplemented standard
measures of cell finding accuracy, such as precision and recall, with metrics that quantify various
aspects of the cells’ estimated activity traces, such as the level of crosstalk from neighboring cells

and the estimation accuracy of signal amplitudes (Methods, Fig. 3).

To start, we simulated large-scale one- and two-photon Ca?* movies across varying cell
densities, levels of neuropil contamination and correlated neural Ca?* activity (Figs. 3A-D; S2, S3,
S4A). Notably, whereas EXTRACT makes no assumptions about Ca®" event distributions or
waveforms, CAIMAN is based on an assumption that Ca?* transients have exponentially decaying
waveforms. Thus, our simulated movies gave CAIMAN an inherent advantage, in that its
formulation explicitly models the exponential Ca?* event waveform. Notwithstanding this advantage

to CAIMAN, EXTRACT outperformed CAIMAN in all scenarios tested.

Prior to detailed benchmarking, we ensured that each algorithm was run with a set of near
optimal hyperparameters for the simulated datasets. To this end, we processed a representative
movie with CAIMAN and EXTRACT using >1000 different hyperparameter configurations for each

method, chosen via an extensive grid-search (Methods). Then, we computed the precision and
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recall of cell finding for each algorithm with each hyperparameter set (Figs. 3B; S4A). Whereas
EXTRACT’s cell-finding accuracy was almost impervious to the choice of hyperparameters, with
CAIMAN the cell-finding accuracy depended sensitively on the hyperparameter values. Even when

fully optimized, CAIMAN fell short of EXTRACT’s cell-finding capabilities (Fig. 3B; S4A).

In subsequent experiments, we used the optimized hyperparameter sets for CAIMAN and
EXTRACT to benchmark cell finding and Ca** trace estimation accuracies on simulated one- and
two-photon Ca?* videos with a wide range of different conditions (Figs. 3C,D; S3). When analyzing
one-photon movies with CAIMAN, we ran it with the option implementing the CNMF-E algorithm?,
its preferred option for one-photon datasets. Especially with higher densities of cells—potentially
representative of cutting-edge, real datasets—cell finding and trace estimation accuracies for
CAIMAN but not EXTRACT declined substantially. Sometimes, EXTRACT’s trace estimation
accuracy even surpassed that of a non-negative least squares (NNLS) regression using the cells’
ground truth spatial filters (Fig. 3A). Notably, estimated traces from CAIMAN commonly included
false-negative and false-positive Ca?* events (Fig. S2). The latter had exponentially decaying

waveforms, making it hard to recognize these as false-positives based solely on their time courses.

Next, we tested whether the accuracy of EXTRACT arose from its use of robust regression,
or perhaps merely from a favorable implementation of a software pipeline for video preprocessing
cell extraction. To examine this point, we implemented an L, solver in the EXTRACT software
simply by using a fixed, effectively infinite value for k, which converts the robust solver into a NNLS
solver. When then compared the performance of EXTRACT, run as normal with adaptive
estimation, to that of the NNLS solver run in EXTRACT software. With simulated one- and
two-photon Ca?* movies with varying cell densities, EXTRACT outperformed the L, solver at both

cell-finding and trace estimation (Figs 3E, S4B-E). The use of robust estimation also allowed the
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cell-refinement stage to converge more quickly (Fig. S4B; Supplementary Note 3).

Past work reported that L, solvers can identify spatial filters and demix Ca?* signals from
cells that partially overlap'. To examine an extreme case of this scenario, we simulated a small,
one-photon Ca?" movie depicting an unusual scenario in which the image of an out-of-focus cell
has an enlarged footprint that fully covers that of an in-focus cell (Fig 3F). EXTRACT correctly
estimated both cells’ spatial filters and Ca®* traces. Although at first blush this scenario might seem
unrealistic, multi-plane one-photon movies can contain out-of-focus cells with enlarged footprints.

To our knowledge, EXTRACT is the first extraction method to be tested in such a scenario.

Next, we compared EXTRACT to SEUDO, a state-of-the-art post-processing approach to
trace estimation®. While a post-processing method cannot correct any inaccuracies in cell-finding,
it might be able to improve the accuracy of Ca?* trace estimation. To benchmark SEUDO, we
simulated two-photon Ca* movies with varying levels of neuropil contamination, cell density, and
Ca?* trace signal-to-noise ratio (SNR). We processed these movies with EXTRACT and CNMF®, a
MATLAB implementation of CAIMAN, to find cell’s spatial filters. Then, we used either SEUDO,
robust regression, or NNLS to estimate the Ca?" activity traces using the spatial filters from
EXTRACT or CNMF. Notably, SEUDO improved the Ca?" traces estimated by CNMF by removing
some residual crosstalk, but the results fell short of robust regression (Figs. 3G,H; S5). SEUDO
was also very slow and scaled poorly to movies with many cells (Fig. S5D). Further, when we
attempted to use SEUDO to improve the estimated traces from EXTRACT, the results were inferior
to those of either NNLS or EXTRACT (Fig. 3G,H, S5). Consequently, we concluded that the spatial
filters from robust estimation led to more accurate Ca?* trace estimation and that post-processing

with SEUDO is not a suitable substitute.

Finally, we tested how EXTRACT would perform under challenging experimental conditions,
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such as those with slow imaging speeds, highly synchronized neural firing, and residual brain
motion that had not been removed by image registration preprocessing (Fig. S6). We found that
EXTRACT could resolve cells even when neural activity was nearly perfectly synchronized,
providing that the imaging duration was sufficiently long to observe each cell fire individually at
least once (Fig. S6A,B). EXTRACT also tolerated downsampling in time to frame rates as slow as
2-3 Hz (Fig. S6C). Finally, EXTRACT could tolerate image displacements up to about the radius of
an individual cell (Fig S6D). (Notwithstanding, we still recommend image registration prior to the

application of EXTRACT).

The full list of our benchmarking studies can be found in Table S1, whereas additional

experiments and methodological details are discussed in Supplementary Notes 1, 3, and 4.

A native implementation on (multiple) GPUs enables fast runtimes

EXTRACT’s main components are novel estimation algorithms that are customized for the
challenge of cell extraction and that rely heavily on elementary matrix algebra. Thanks to several
widely used software packages, such as the Intel Math Kernel Library, modern computers can
perform matrix algebra operations in a highly optimized manner, which allows EXTRACT to
achieve fast, scalable, and computationally efficient cell extraction. Our software implementation of
EXTRACT also has native support for computation on graphical processing units (GPUs), enabling
even greater efficiency for matrix operations.

When designing EXTRACT, we aimed to create a pipeline that can not only process the
large neural recordings widely being acquired today with fluorescence mesoscopes?' but also scale
well to even larger datasets, such as those with a million neurons®. To achieve this, we endowed
EXTRACT with automated RAM and GPU memory management, such that mesoscope movies

with large fields-of-view are spatially partitioned in way that both minimizes the loss of accuracy
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due to stitching effects and takes advantage of fast GPU matrix operations by allowing the
partitions to contain thousands of cells (Supplementary Note 2). In contrast, although CAIMAN
has been run in a parallelized way across 100 CPUs, the number of cells per partition is often 1-2
orders of magnitude smaller®. Overall, unlike past methods, EXTRACT is expressly designed to
leverage the distinctive computational capabilities of GPUs while minimizing the processing time
and errors that can arise from stitching together the results from many spatial partitions that slightly
overlap.

To benchmark performance speed, we evaluated runtimes on datasets of varying sizes. For
this purpose, we started with a Ca?* video (4 mm? field-of-view; 1024 X 1024 pixels; 30 Hz frame
rate; 200,000 time bins; ~800 GB) acquired from the neocortex of a live mouse on a laser-scanning
two-photon mesoscope' expressing the jGCaMP8s Ca?* indicator in pyramidal neurons (Fig. 4A;
Methods). To test extraction runtimes on raw datasets of different sizes, we used portions of this
video, which covered subsets of the movie’s field-of-view or full duration.

To evaluate runtimes for CAIMAN and EXTRACT (run on either CPUs or GPUs), we
created two datasets with 10,000 (40 GB) and 30,000 (120 GB) frames, respectively. (As context,
prior work® on cell extraction termed movies with similar sizes ‘medium’ and ‘large’, although these
sizes are relatively small given present experimental capabilities and far smaller than the movie of
Fig. 4A). For these datasets, we determined the runtimes of EXTRACT and CAIMAN as a function
of the numbers of CPUs and GPUs used (Fig. 4B) and of the spatial field-of-view (Fig. 4C).
CAIMAN was slower than EXTRACT when both algorithms were run on CPUs, and, when
EXTRACT was run on multiple GPUs, it was nearly an order-of-magnitude faster than CAIMAN.

Next, we checked runtime performance as a function of movie duration. For movies
covering the full 4 mm? field-of-view, EXTRACT, but not CAIMAN, was able to process the entire

original movie of 200,000 time bins (800 GB) (Fig. 4D). By comparison, for movies of durations
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>30,000 frames, CAIMAN returned a memory error and was unable to process the data. To
examine how the individual components of EXTRACT contributed to its overall runtime, we
determined runtimes for each EXTRACT module, using 2 GPUs and movies with either 10,000 or
100,000 frames (Fig. 4E). Notably, the time needed to upload the ~400 GB movie from a hard drive
to the computer’s random access memory (RAM) took a much larger proportion of the total runtime
than for the ~40 GB movie. This led us to hypothesize that the scalability of EXTRACT to even
larger, future datasets might be limited by upload and hard drive readout speeds, rather than
algorithmic constraints.

To test this idea, we emulated futuristic, enormous datasets (~45 TB), ~50 times larger than
present mesoscope videos, by concatenating more than one copy of the movie from Fig 4A in the
spatial (Fig. 4F) or temporal (Fig. 4G) dimensions. Algorithmic runtimes scaled as expected, i.e.,
quadratically with the width of the field-of-view and linearly with movie duration (Fig. 4F, G). The
calculated runtime per cell stayed constant as the field-of-view increased, and decreased as the
movie duration grew, approaching ~0.6—-0.7 s per cell per GPU for a 1 hr recording. These results
show that, unlike CAIMAN, EXTRACT can process movies that are far beyond the very largest
Ca?* videos presently available and is thus suited to handle the rapidly approaching deluge of
neuroscience data.

Finally, to highlight that EXTRACT’s custom solver for robust regression plays a key role in
its scalability to massive datasets, we did an experiment using a set of simulated Ca?* videos with
varying fields-of-view and numbers of cells (Fig. S6E). Across this set of videos, we determined the
runtimes for EXTRACT’s custom solver (run as a non-negative least-squares estimator, i.e., in the
limit x —» o) and compared these to the runtimes for MATLAB’s built-in non-negative least squares
solvers (Methods). EXTRACT’s solver consistently outperformed and was nearly ~100 times faster

than MATLAB’s non-negative least squares solver, for movies of just 0.4 mm in width (Fig. S6E).
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Thus, EXTRACT'’s superior speed and scalability to large Ca*" videos rely significantly on the

speed of its internal, custom designed solver (Supplementary Note 2).

Fast, comprehensive cell extraction from the Allen Brain Observatory data repository

After validating EXTRACT on both artificial and real data taken by two-photon imaging, we tested
how well EXTRACT could process an entire repository of Ca?* imaging data. To perform this test at
a large scale, we applied EXTRACT to the publicly available Ca** imaging data repository from the
Allen Institute Brain Observatory*® (Fig. 5). We downloaded 199 sessions of in vivo two-photon
Ca?" imaging data from GCaMP6-expressing cells across different visual cortical areas of behaving
mice.

The repository’s software development kit (SDK) has estimated spatial profiles for cells from
each movie. The spatial profiles are regions-of-interest (ROI) estimates for each cell based on its
morphology. Each cell's Ca?* trace comes from a linear regression of the Ca®* movie onto the cell’'s
ROI, after subtracting an estimate of background Ca?* activity in the neuropil. Owing to the lack of a
non-negativity constraint, these traces will exhibit negative-going noise fluctuations and potentially
lower SNR values than traces estimated when non-negativity is enforced. Therefore, to make
even-handed comparisons with EXTRACT, we took cells’ spatial profiles from the Allen SDK and
performed a non-negative least squares regression against the same pre-processed version of the
Ca?" movie as used in EXTRACT. With this approach, we benchmarked the Allen SDK and three
other cell extraction methods using 199 movies from the repository with diverse attributes. The
latter three methods were EXTRACT, a conventional L, solver, and non-negative least squares

regression applied using cells’ spatial profiles as obtained from EXTRACT.

Using a common set of hyperparameters, EXTRACT consistently identified nearly all cells

found by the Allen SDK and many more that the SDK missed (Fig. 5A-G). For a typical movie,
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EXTRACT identified >97% of cells found by the SDK while also finding 3-4 times more cells (and
some dendrites) than the Allen SDK (Fig. 5G). Visual curation of the cells identified by EXTRACT
led to an estimated cell-finding precision of 96% (Methods). EXTRACT all found more cells than
the L, solver (Fig. 5F,G) and led to better trace quality than all the other methods (Fig. 5H). An
in-depth study of 5 randomly chosen movies showed that hyperparameter optimization allowed

EXTRACT to find all the cells found by the SDK.

Next, we quantified runtimes of EXTRACT on the 199 Allen movies. For movies that were
~64 min long, EXTRACT had runtimes that were 0.11 + 0.03 (s.d.) of each movie’s acquisition
time (Fig. 51,J). By comparison, CAIMAN reportedly had runtimes comparable to image acquisition
times for movies of a similar scale, even when parallelized across 112 CPUs in a high-performance
cluster (see Fig. 8 in Ref. ?°). This observation suggests EXTRACT provides an order-of-magnitude
or more speed improvement using only a single GPU on a standard desktop computer.

As the Allen SDK movies were all ~1 hr in duration and covered an equivalent spatial area,
the main factor leading to runtime differences was the number of cells in each movie. This led to a
linear relationship (R? = 0.91) between runtime and the number of cells in a movie, namely 3.4 min
plus 8 min per thousand cells (Fig. 5K). This equals 0.64 s per cell per GPU for a 1 hr movie,

consistent with the results of Fig. 4 and confirming EXTRACT’s speed on a widely used database.

Spatiotemporally clustered Ca?" activity in striatal spiny projection neurons of active mice

As a first test of whether EXTRACT can yield superior biological results, we studied Ca®* imaging
data that we previously acquired in the dorsomedial striatum of freely behaving mice with a
head-mounted, miniature epi-fluorescence microscope®. Each video is a recording of Ca®* activity,
as reported using the GCaMP6m Ca?* indicator, in spiny projection neurons of either the direct or

indirect pathway of the basal ganglia (dSPNs and iSPNs, respectively). We compared results from
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EXTRACT to those from PCA/ICA, the original MATLAB implementation of CNMF-E, and the

Python version of the CNMF-E algorithm as implemented in CAIMAN?°2® (Fig. 6).

When we inspected the estimated Ca?* activity traces, our observations fit well with those
from simulation experiments (Figs. 3, S2). Notably, traces from PCA/ICA sometimes omitted Ca®*
transients that were plainly visible by simple inspection of the movie data (Fig. 6C, cyan dots).
Further, activity traces from both PCA/ICA and CNMF-E exhibited crosstalk between neighboring
cells (Fig. 6C, red dots). We quantitatively confirmed these observations by computing values of
the trace quality metrics for all cells and mice (Fig. 6D, E). The MATLAB and CAIMAN
implementations of CNMF-E yielded very similar but not identical results (Fig. 6D—F), both of which
tend to overestimate cells’ spatial footprints (Fig. 6A, middle panel), in line with simulation results

using NNLS (Fig. 1M), the core algorithm in CAIMAN and CMNF-E.

We next examined whether differences arising in cell extraction quality might impact
neurophysiological assessments. Our own prior study of striatal SPNs found that mouse
locomotion led to activation of SPNs in a spatiotemporally clustered manner®. However,
assessments of clustered activity are likely to be influenced by missing Ca?* transients or crosstalk
between spatially adjacent cells. For instance, crosstalk could elevate estimates of cells’
co-activation. Omitted Ca?* transients might lead to underestimates of spatiotemporal clustering. To
investigate, we used a spatial coordination metric (SCM), defined similarly to as in Ref. 40, to
quantify the extent of spatially clustered activity in the striatum at each time frame (Methods). We
compared results obtained by analyzing the activity traces from EXTRACT, PCA/ICA, and both
versions of CNMF-E for a common set of cells. SCM values for the trace outputs of EXTRACT had
significantly higher correlation coefficients with the mouse’s locomotor speed then the traces from

other methods (Fig. 6F). We also verified that EXTRACT works well with two-photon Ca?* videos of
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dSPN and iSPN activity (Fig. S7). Overall, our results show that superior cell extraction can lead to

neurophysiological signatures that relate more precisely to animal behavior.

EXTRACT detects dendrites and their Ca?* activity

Some past cell extraction algorithms often do not provide sensible results when applied to Ca*
videos of dendritic activity. Thus, we tested and validated EXTRACT on videos of dendritic Ca®*
activity in cerebellar Purkinje cells and neocortical pyramidal neurons in live mice (Fig. S8).
Although the default mode of EXTRACT discards candidate cells whose spatial areas or
eccentricities are uncharacteristic of cell bodies (Fig. S9), the user can opt to retain candidate
sources of Ca?* activity without regard for their morphologies, thereby allowing EXTRACT to
identify active dendrites. For example, in large-scale movies of Purkinje neuron dendritic Ca*
spiking activity acquired with a two-photon mesoscope’, EXTRACT identified the dendritic trees of
>500 cells per mouse, and the extracted spatial forms had the anisotropic shapes that are
characteristic of these cells’ dendritic trees, which are highly elongated in the rostral-caudal
dimension'® (Fig. S8A, B). We also used EXTRACT to analyze Ca?* videos acquired by
conventional two-photon microscopy in apical dendrites of layer 2/3 or layer 5 cortical pyramidal
cells in live mice (Fig. S8C, D). EXTRACT identified ~850-900 dendritic segments per mouse, and,
as expected, they had a wide variety of shapes and temporally sparse Ca?* transients. For both
cerebellar and neocortical neurons, we found no limitations to the dendrite shapes that EXTRACT
could identify, and it readily identified large numbers of dendritic segments without making
assumptions about dendrite morphology or spatial continuity on the imaging plane as discussed

elsewhere'.

EXTRACT improves identification of anxiety-encoding cells in ventral hippocampus

As another test of whether EXTRACT can improve biological findings, we examined the Ca*
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activity of pyramidal neurons in the CA area of the ventral hippocampus (Fig. 7A). We tracked the
dynamics of these cells in freely behaving mice navigating a 4-arm elevated plus maze (EPM, Fig.
7B). The EPM had 2 enclosed and 2 open arms, arranged conventionally on the perpendicular
linear paths of the maze. The EPM assay is based on rodents’ innate aversion to open, brightly lit
spaces and is widely used to investigate anxiety-related behavior*’. A subset of ventral CA1
neurons, termed ‘anxiety cells’, show enhanced activity when the mouse is in anxiogenic regions of
the EPM, namely the open arms***. We used EXTRACT and CNMF-E to obtain Ca?" activity

traces of ventral CA1 cells and compared their encoding of the open and closed arms (Fig. 7C).

In Ca?* traces from both EXTRACT and CNMF-E, a subset of cells responded differentially
when the mouse was in the open versus the closed arms (Fig. 7D). Namely, distinct subsets of
ventral CA1 cells were active when the mouse occupied the two different arm-types, in accord with
past reports of their anxiety-related coding***3. However, Ca?* traces from EXTRACT generally
exhibited a purer form of coding, in that the traces were typically silent when the mouse was in one
arm-type but had high activity levels in the other arm-type. Traces from CNMF-E tended not to
distinguish the two arm-types as clearly (Fig. 7E). Traces from EXTRACT also corresponded more
precisely to Ca?* activation events that were plainly apparent in the movies (Fig. 7E, lower panel).

To quantify these observations, we compared the arm-coding cells identified using the
traces from the two different extraction algorithms. Notably, EXTRACT yielded significantly more
arm-coding cells than CNMF-E, even when the analysis was restricted to cells identified by both
algorithms (Fig. 7F; Wilcoxon signed-rank test, p < 0.05). To assess how well the activity traces
from the two algorithms reflected events in the Ca?* video data, we computed mean values of the
trace quality metric for all cells and mice. Activity traces from EXTRACT had superior trace quality
metric values than those from CNMF-E (Fig. 7G,H; Wilcoxon signed-rank test, p<10~® for n=665

matched cells, p = 0.03 for n=6 mice), showing that EXTRACT more accurately captured the Ca*
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dynamics present in the movie data.

Finally, we evaluated how well the sets of activity traces from the two algorithms allowed
one to estimate the mouse’s behavior using decoders of neural ensemble activity. We divided the
EPM into 5 spatial bins (Fig. 71) and trained support vector machine (SVM) classifiers to predict the
spatial bin occupied by the mouse, based on the neural ensemble activity pattern at each time step
(Methods). We compared the decoder accuracies using a distinct subset of the data than that
used for decoder training. Strikingly, for every mouse, decoders based on traces from EXTRACT

outperformed the decoders based on traces from CNMF-E (for both common and all cells, Fig. 7J).

DISCUSSION
Here we have introduced the first major data analytic pipeline in systems neuroscience that is
based on the mathematical framework of robust statistics*. Our contributions to this framework
include: the one-sided Huber loss function (Fig. 1F), which we expressly developed to handle the
rectified nature of Ca?* activity; adaptive estimation of kappa, the parameter describing the levels
and spatiotemporal variations of non-Gaussian noise contaminants in the Ca?* movie (Fig. 1F, G);
an implementation of multivariate robust regression using ADMM (Supplementary Note 2); a
geometric interpretation of robust regression as applied to the estimation of neural activity traces
and spatial profiles (Fig. 1l1-L); and proofs providing guaranteed upper bounds on worst-case
estimation errors (Methods). Based on these elements, we created an open-source computational
pipeline, EXTRACT, in which cell finding, cell refinement, and the estimation of Ca?* activity traces
are all implemented using multivariate robust regression with a one-sided Huber loss (Fig. 2).
Although it is commonplace to use the word ‘robust’ to describe results or analyses that are
resilient to the presence of noise or perturbations, such colloquial usage does not refer to the
formal theory of robust statistics®**® that was first developed in the 1950s. Prior work on cell

extraction algorithms in neuroscience used the term ‘robust’ colloquially®®?, but, traditionally,
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robust estimators should exhibit certain formal properties*, including being able to handle a large
percentage of outlier data points, providing correct results in the absence of outliers, generalizing
well to diverse datasets, resisting the influence of extreme outliers, and computational and

operational simplicity. EXTRACT exhibits all of these properties.

EXTRACT is a versatile method for analyzing a broad range of Ca** imaging datasets

EXTRACT provides a superior means of analyzing somatic or dendritic Ca®* data acquired with
conventional, multi-plane or large-scale two-photon microscopes, or with head-mounted
epi-fluorescence microscopes (Figs. 4-7; S7, S8). This broad applicability stems from one major
factor, namely that the theoretical framework on which EXTRACT is based makes minimal

assumptions about the nature of the data.

The estimation framework on which EXTRACT is based does not model noise sources;
instead it aims to isolate cellular Ca?* signals from contamination sources while staying agnostic to
the latter’'s exact form. This approach leads to formal robustness and great flexibility. Here, the
minimization of a robust loss function, the new one-sided Huber loss, together with adaptive
estimation of k, the parameter describing the extent of non-Gaussian noise contaminants, enables
automated detection of outlier data points in a way that is adaptively updated from the data itself.
This allows EXTRACT to handle a high-percentage of outlier data points. However, when the noise
contaminants approximate statistically independent, Gaussian-distributed noise at each image
pixel, the loss function used in EXTRACT adapts itself to behave like a linear regression loss and
thereby achieves the optimal statistical efficiency of a standard maximum likelihood estimator®. In
an opposite extreme case, when the data suffer from large contaminants due to Ca®" activity in
overlapping cells or neuropil, the EXTRACT loss function modifies its robustness parameter so as
to reject these contaminants. Further, EXTRACT makes no assumptions about cell morphology

and/or the temporal waveforms of Ca?" activity, which allows EXTRACT to generalize well and to
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detect activity in somata or dendrites of many different neuron classes. Its fast and scalable solver
is geometrically interpretable (Fig. 1H-L) and provides computational simplicity. Thus, EXTRACT

satisfies the formal hallmarks of robust statistical analyses.

Several prior methods for cell extraction took a different approach and used explicit models
of neural attributes to separate cellular Ca®" activity from strong background contaminants. For
instance, CNMF-E seeks to infer neural Ca?* activity while modeling background activity as a linear
combination of the residual activity within nearby pixels®. Minian is also based on the CNMF
method and, like CNMF-E, is mainly intended for analyses of one-photon Ca®* imaging datasets?.
It applies several image processing steps to the movie data, carefully initializes cell locations, and
then applies the CNMF method. Other authors have applied post hoc denoising of Ca*" activity
traces, by taking a set of previously identified neurons and re-estimating the Ca?* activity traces in
a way that seeks to minimize crosstalk and contamination®®*2. Common to all these prior
approaches are efforts to either model the noise sources or to remove them, based on certain
assumptions about the data. Unfortunately, as we found throughout our benchmark studies using
simulated data, explicit modeling of the background noise distribution fails—even when the model
assumptions are perfectly met (Figs. 3A-D; S2, S3), i.e., with Gaussian noise, exponentially
decaying Ca* signals, and Gaussian-shaped cell filters. This failure is due to (a) the non-Gaussian
contaminants introduced by overlapping cells, and (b) the spatially correlated, non-homogenous

levels of Gaussian noise that stem from cells’ nonbinary, continuously valued spatial profiles.

By comparison, EXTRACT makes few assumptions about the data and little use of image
processing. Thus, while our robust estimation framework has not been fine-tuned to work optimally
under specific statistical conditions, it is designed to yield high fidelity results across a wide
spectrum of data statistics, as is expected from a robust estimator. Moreover, traditional robust

estimation approaches, including our prior work®, lacked adaptive x estimation and do not
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automatically adapt to different levels of non-Gaussian contamination. This capability greatly
enhances EXTRACT’s ability to achieve excellent analytic performance on datasets from a variety

of brain areas and imaging modalities (Fig. 1G).

It is worth noting that EXTRACT’s robustness and its ability to generalize to multiple
imaging modalities stands in direct contrast to recent deep network-based approaches for cell
extraction®, which have very slow runtimes and seem to require network re-training for new
datasets, neuron-types or imaging modalities. Still lacking are comprehensive studies that prove
the ability of deep network approaches to provide trustworthy cell extraction results for datasets
with statistics that differ from those of the data used to train the network. It will be crucial to perform
careful studies of the hallucinations that will inevitably arise and infect the analytic results of deep
network-based cell extraction®3®. Rigorous studies of this kind will also need to evaluate Ca*
activity traces with metrics that are more sophisticated than correlation coefficients between
estimated and ground truth fluorescence activity traces, which can be highly dominated by periods
of cellular inactivity, do not isolate hallucinated or crosstalk activity, and overly reflect the level of
concordance between the estimated and actual decay time-constant of Ca?* transients. While the
future of cell extraction may eventually lie in this direction, current deep network approaches to cell
extraction remain early-stage. A potentially attractive future possibility is that perhaps deep network

cell extraction methods might be trained on EXTRACT’s robust traces.

Notwithstanding, neuroscientists should recognize that robust estimators do have certain
limitations. Under conditions with very low optical SNR, the estimator trades robustness for fidelity,
causing it to behave more like an L, estimator (Methods). Although EXTRACT applies spatial
filtering during pre-processing and cell finding steps to enhance the input SNR, for movies with
extremely low SNR, robust estimators do not boost performance of trace estimation much beyond

that of least-squares. This stems from the fact that, in a low SNR movie, fluorescence signals in
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individual pixels have large variances that typically are larger than the non-Gaussian contaminants
and thereby dominate the errors in the estimated Ca*" traces. Nonetheless, the outputs from
EXTRACT should still be sensible due to its model-agnostic nature; in the low SNR scenario, k
adaptively takes on a large value that allows the regression to approximate least-squares

regression, selectively using pixels with the highest SNR for filter estimation (Fig. 1K-M).

An efficient implementation for fast cell extraction that scales well to large datasets

Owing to recent advances in optical technologies, such as fluorescence mesoscopes and
multi-arm microscopes that can monitor multiple brain areas concurrently, Ca?* imaging data is now
routinely collected at a scale of several terabytes per publication’?%4047 Notably, time-lapse
studies with multiple imaging sessions for each animal can readily produce datasets of this
magnitude ‘%4748 Such datasets are so large that the raw data from a single original research study
are typically not shared on the most commonly used public data repositories. Aside from issues of
data sharing, the sheer volume of leading-edge datasets necessitates faster processing algorithms

to avoid a major bottleneck in the pace of systems neuroscience research.

To handle the most massive datasets, we developed EXTRACT and showed that it can
process typical Ca?* movies in times that are as much as ~10-fold briefer than the movie durations
(Fig. 51-K). EXTRACT's built-in support for multiple GPUs substantially accelerates processing,
allowing cell extraction from a 1 hr movie in ~0.6-0.7 s per cell per GPU. For a Ca?* movie with a
thousand cells, analyzed with 2 GPUs, this translates to ~6 min of processing, or ~10% of the

movie duration. This represents an order-of-magnitude speedup over past methods (Fig. 4).

On large datasets, EXTRACT performed quickly in all regimes, and runtimes scaled
gracefully as dataset sizes (Fig. 4). On the Allen Institute Brain Observatory data, EXTRACT ran in

~11% of the time of a typical recording session; this enabled batch processing of ~212 hours of
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recordings in less than a day (Fig. 51-K). On two-photon mesoscope recordings, EXTRACT ran
much faster than the widely used CAIMAN method and successfully analyzed datasets ~10 times
bigger than the maximum sizes that CAIMAN could handle (Fig. 4B-D). With these recordings,
EXTRACT was not limited by RAM and/or GPU memory, did not require a high-performance

cluster, and needed only a typical desktop PC to handle futuristic, 12 TB datasets (Fig. 4F, G).

The accelerated computation from EXTRACT'’s use of GPUs does not require any special
handling, such as explicit parallelization or algorithmic variations. EXTRACT runs the same code
on CPUs and GPUs, if the latter are available to the user. With any suitable MATLAB compatible
GPU installed on the analysis computer, one can readily use EXTRACT with GPU processing to
achieve major speed-ups over the CPU runtime. GPUs typically cost a fraction of the analysis
computer, and nowadays most pre-configured computers include GPUs that have computing
capability. In addition to faster runtimes, EXTRACT’s built-in GPU support implies that, since its
computationally intensive tasks are run on the GPU, the user can run other CPU-demanding
software at the same time. We have tested EXTRACT on a variety of computing platforms,
including laptops, desktops, and high-performance clusters (Methods), which gives researchers
the freedom to choose their computing resources based on their experimental needs,
unconstrained by EXTRACT software. Further, EXTRACT does not require pre-installation of other
computing packages than MATLAB and thus is readily compatible with high-performance

computing platforms.

EXTRACT enables improved scientific results

The identification of neurons from movie data is a crucial step in neuroscience experiments that
rely on Ca* imaging techniques for large-scale recording of neural dynamics. Extraction of
individual cells and their activity traces reduces the raw data to a set of time series, the accuracy of

which is crucial for the success of all subsequent analyses. Thus, EXTRACT aims to achieve
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high-fidelity results by avoiding extraneous image processing as much as possible (and the
existing preprocessing steps are fully interpretable in terms of their effects to the movie,
Supplementary Note 1) while also improving the inference of cellular activity and removing
non-Gaussian contaminants through robust statistical estimation. Unlike some past approaches to
cell detection, we found that EXTRACT works well with Ca?* videos of dendritic activity, which often
do not provide as many fluorescence photons as videos of somatic activity. Further, our results
from two separate biological experiments highlight that the use of EXTRACT can lead to improved

scientific results (Figs. 6,7).

First, we evaluated EXTRACT, CNMF-E (Python and MATLAB implementations), and
PCAJ/ICA using Ca?" imaging data taken from striatal spiny projection neurons (SPNs) (Fig. 6),
which exhibit spatially clustered activity patterns during animal locomotion*®. When we analyzed
these activity patterns, EXTRACT provided higher quality traces (Fig 6D,E) that led to higher
correlations between the spatially clustered activity and the animal’s locomotor speed (Fig 6F).
This fits with our observations that EXTRACT made the fewest mistakes during the cell extraction

process, as seen by comparing the traces from all 3 algorithms to the raw data (Fig. 6C).

Second, we characterized anxiety-related representations in the ventral hippocampus of
mice behaving within an elevated plus-maze for studies of anxiety (Fig. 7). Using the neuronal Ca?*
traces from EXTRACT, we identified significantly more cells with anxiety-related coding than when
we used the outputs of CNMF-E (Fig. 7E,F). The use of EXTRACT also led to superior decoding
analyses (Fig. 71-J), in that the traces from EXTRACT enabled better estimates than CNMF-E of
the animals’ locomotor trajectories (Fig. 7J). These results confirm that accurate biological findings
require accurate reconstructions of neuronal activity and show that EXTRACT improves the results
from downstream computational analyses, especially when the raw data may have substantial

noise or fluorescence contaminants.
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OUTLOOK

Ca?" imaging technology continues to progress rapidly, with new tools emerging for multi-color Ca*
imaging of multiple cell-types and volumetric Ca?* imaging?'*°. Techniques for high-speed optical
voltage imaging are also making rapid strides and provide direct access to neural membrane
voltage dynamics. Because EXTRACT makes so few assumptions about data statistics, future
versions of the algorithm should be applicable to the data from these emerging imaging modalities

with only straightforward modifications*.

To increase the numbers of neurons that can be tracked simultaneously, new imaging
approaches are arising in which cells from multiple planes in tissue are deliberately superposed in
the raw video data®-%3; the cells and their activity traces must then be disentangled in offline
analyses. EXTRACT's capability for high-fidelity isolation of individual cells, even when cells greatly
overlap one another in the raw images (Fig. 3C—F), should facilitate multi-plane imaging by
allowing a greater number of planes to be sampled concurrently while still being able to

computationally extract the individual neurons from dense sets of overlapping cells.

Another ongoing set of advancements concerns interventional experiments in which neural
activity or animal behavior is manipulated in real-time, based on recorded patterns of neural
activity. Irrespective of whether such online interventions are implemented in a closed- or
open-loop form, they generally require specialized versions'** of cell extraction algorithms that
have data processing delays corresponding to only one or only a few image frames in duration, but
typically at the cost of notably diminished estimation accuracy. Robust regression-based cell
extraction, such as with a future real-time version of EXTRACT, seems especially well suited for
such applications, as it does not need acausal information from the movie to estimate Ca?" traces,

unlike methods that apply a decaying exponential kernel to Ca?* traces’.

Beyond cell extraction from Ca?* movies, we expect that the general framework of robust
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regression will have broad applications across neuroscience for analyses of many types of
recording data, both optical and electrophysiological. Moreover, the scalability of EXTRACT (and
algorithms inspired by it) to datasets approaching the petabyte scale will likely be a crucial feature

of future analytic pipelines.
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METHODS

MICE

All procedures were approved by the Stanford University Administrative Panel on Laboratory
Animal Care (APLAC). Ca?* imaging studies in ventral hippocampus used male double-transgenic
CaMKII-GCaMP6s mice (tetO-GCaMP6s-2Niell/J: Camk2a-tTA-1Mmay/DboJ, Jackson Laboratory,

stock #007004 and #024742 respectively) aged 12-16 weeks at the start of experimentation®®.

For Ca?* imaging studies of cerebellar Purkinje cell dendritic trees, we used mice that were
a cross of PCP2-Cre driver mice with a BI6-129 genetic background and Ai148 transgenic mice®;
the resulting double transgenic mice (PCP2-cre/TIGRE-loxP-stop-loxP-CAG-tTA2-TRE-GCaMP6f
[Ai148]) expressed the GCaMP6f Ca?* indicator selectively in Purkinje cells. We discuss the mouse

preparation for each experiment below in the corresponding section.

NOTATION FOR MATHEMATICAL VARIABLES
Throughout the methods section, we denote the size of the imaging field-of-view as h X w, in units

of pixels. We refer to the scalar product hw as T ixels We use boldface characters for arrays and

xels
non-boldface characters for scalars. As in the main text, we denote the movie matrix as M
(flattened in space, so that M is a two-dimensional matrix), the matrix of spatial weights (cell

images) as S, and the matrix of temporal weights (Ca*" traces) as T.

THEORY BEHIND EXTRACT’S ROBUST SOLVER
Starting with the model described in the main text (Figure 1E), the common goal of cell extraction

cell A

A
routines is to reconstruct an estimated movie, M = sktk, where n . corresponds to the number
k=1
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of estimated cells, ;k € R ™" and 2k € R ™ denote the estimated spatial profile and Ca®" activity
trace for the k'th cell, n . is the number of pixels in the movie, and n . is the number of movie
pixels times

frames. This problem differs from the toy example in Figure 1A-D in two key details. First, both the
cells’ spatial profiles and Ca?" activity traces need to be jointly estimated. Second, the number of
cells in the movie is unknown and should be estimated from the data.

To solve this estimation problem, most existing approaches®?° (Supplementary Note 1)

aim to minimize the L, loss on reconstruction of the movie,

A A N 2
(sktk) =arg min ||M - M(sk, tk)||

)
sk'tk F

where ||. I, denotes the Frobenius norm. To detect cells that are spatially localized and have
connected spatial profiles, the cell extraction process often starts with an initialization stage®’,
termed ‘cell finding’. This is followed by refinement stages, in which one of ;k or 2k is held fixed and

the other is updated by minimizing the movie reconstruction loss'®?, a subproblem that constitutes

a constrained linear regression.

Unlike traditional regression methods, EXTRACT uses the one-sided robust Huber loss
function, which defines a robust version of the regression problem (Fig. 1F, H-L). In this section,
we introduce and motivate the robust regression framework (Algorithm 1 below), which is used by

EXTRACT as a subroutine to update its estimates of cells’ spatial profiles and Ca?* activity traces.

Theory of robust estimation in the presence of large non-negative contaminants

Here, we introduce our signal estimation approach, based on the theory of robust M-estimation.
This theory is well-developed for symmetric and certain asymmetric contamination regimes3#35454¢,
However, prior theoretical work does not readily suggest an optimal estimator that is suitable for

estimating Ca?* signals, which are largely rectified (i.e., positive-going), under conditions with
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spatiotemporally varying levels of noise contamination that is also positively rectified. Thus,
extending on the theory of robust M-estimation developed in our prior work®, which uses a
one-sided Huber loss function suited to conditions of asymmetric contamination, we first introduce
a simple mathematical abstraction for treating contaminants that vary across time bins and cells.
Then, we propose a fast solver that minimizes the robust loss using matrix multiplications that are
amenable to parallel processing, e.g., over multiple GPUs. This solver adaptively estimates cells’
baseline levels of Ca?" activity from the movie data and also adaptively updates the estimated level
of non-Gaussian contamination. Finally, we provide a convergence proof for the generalized solver
and discuss our adaptive method for estimating contamination levels. To start, we consider
univariate estimation using the robust one-sided Huber loss function. We then discuss the

generalization to multivariate regression.

Given the nature of signal contaminants in Ca?* imaging datasets, we created a noise
model based on the observation that most fluctuations in the fluorescence background are well
modeled as being Gaussian-distributed. This type of noise stems from the stochastic emission,
propagation and detection of photons, which are all Poisson processes, implying that the numbers
of detected photons are Gaussian-distributed when there are large numbers of photons. However,
the fluorescence background also contains other sources of noise or contamination, such as from
neuropil Ca?* activity, out-of-focus cells, and residual activity of overlapping cells that are not
detected and well accounted for by the cell extraction method. This latter category of contamination
is very distinct from normally distributed noise; namely, it is non-negative (or above the signal
baseline), its characteristics can be highly irregular, and it may take on large values. Hence, we
model the data generation process as having an additive noise source that is normally distributed a
fraction 1 — e of the time, but which is free to be any positive value greater than a threshold

otherwise:
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o, = {N(0,1) with probability 1 — €, H_with probability e,

H_ € {All distributions with support [k, o]}, k > 0.

Here, Y, denotes an experimental observation, which deviates from B*, the true value of the
measured quantity, due to corruption with an additive noise term, c. This noise term, c, is
normally distributed with 1 — € probability and according to an unknown distribution, HK, with
probability €. For the sake of generality, we allow HK to be any probability distribution with support

over the range [k, o), for a value k > 0. When «x is estimated adaptively, it is determined for each
cell and time bin directly from the movie data, as part of the loss minimization process (see below).
Hence, € can be interpreted as setting the extent or severity of ‘gross contamination’. If € is small,
the noise will be close to Gaussian-distributed. On the other hand, as € nears one, the noise
distribution deviates from a normal distribution to an arbitrary extent. The parameter x can be
interpreted as a threshold for automated detection of pixels with outlier levels of fluorescence
activity, as detailed in Fig. 1F, H-L and Supplementary Note 2. We denote the full distribution of

the noise as FH , subscripted by HK.

K

n
samples

o we form an estimate, E , of the true

Given a set of experimental observations {r}

parameter, B*, by considering an equivariant M-estimator:

n
A samples

B =arg min ;1 Py, — B).
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Typically, M-estimators are characterized by estimator functions, L|JK, that are defined as the

derivative of P qJKépK'. Here we consider L|JK with specific properties that enable efficient

optimization and allow general theoretical guarantees.

We define a set, ¥ = {lIJKllIJK is a monotonically increasing function}, which implies that
each member of W is a derivative of a convex function®. If we choose a set of estimator functions,

qJKeLP, finding a point estimate, E , is equivalent to solving the following first-order condition for E:

n
samples

U, —B) = 0.

i=1
We seek an M-estimator for our noise model that is robust to variations in the noise distribution (HK

in particular), in the sense of minimizing the worst-case deviation from the true parameter, B*, as
measured by the mean squared error. Following our prior work®, we define an estimator function,

Y, as follows:

V) ={y, if y<wkx if y2x,

where x is defined in terms of the contamination level, €, according to

B0 + 2 = (1)

in which ®(-) and ¢(:) denote the cumulative distribution and density functions for a standard
normal variable. LAY is the estimator function for the one-sided Huber loss, p (). Clearly,

q;oe ¥, and therefore the loss function, pK(.), is convex. When the value of k is the same for all

movie pixels, Ref.* provides an asymptotic minimax result for qJO :
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Proposition 1. The one-sided Huber function, lIJO , yields an asymptotically unbiased M-estimator,

i.e., an estimator that is unbiased in the limit of an infinite number of data samples, for the family of

noise distributions, F = {(1 — e)® + eHK}, that denotes a weighted mixture of Gaussian and
non-Gaussian noise contaminants with weights (1 — €) and e, respectively. Further, L|JO minimizes

the worst-case asymptotic variance in F, i.e.,

v, =arg infq;ely sup,,_. V(, F).

Proof: A proof is provided in our prior work®. Here, we reproduce it with more elaboration. First, to
obtain an M-estimator, we use the law of large numbers to obtain the first-order condition,

EF[LIJO(O' —¢)] = 0, with o denoting the underlying noise variable from a noise distribution,

F=(1-¢ed+ €H . In the limit of an infinite number of samples, ¢ approaches the bias of the

estimator and is zero for an unbiased estimator. The condition for unbiasedness is:

0= E[¥,(0)] = (1 = O [W(®)] + €&, [¥,(0)]

= (1 - e){} op(o)do + Kofo(p(c)do}+ e{f ch(o)do + Kofo h(o)do}

—00 —00

K

= (1 -ef{- e(x) + x — xkP()}+ e{f ch(o)do + Kofo h(o)dc}

= 1-ex{—1/1 - ¢ + 1} + e{f ch(o)do + K}° h(o)do}

—Q0

= — ek + e{} ch(o)do + k — K} h(o)do}

—0Q0 —00

= e{} ch(o)do — } Kh(G)dG}= 0

—00 —0Q0

Here, we used the identity ®(x) + @(x)/x = 1/(1 — €) during the transition from the third to fourth

row, and the fact that support of H is [k, o) in the final row.
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Next, we calculate the variance of the unbiased estimator, with the formula
V(LlJO, F) = EF[L|J(2)]/E[1|J'O]2. This formula can be calculated similarly to as in the original work® by
Huber, i.e., by considering the Taylor expansion around the first-order optimality condition. A
straightforward calculation® leads to V(LIJO, F)y=[1 - E)CI)(K)]_l. Notably, this is a constant over
the contamination class, HK, meaning that it does not depend on the specific form of the

distribution, only the contamination level .

Now, we define the following distribution F, by its density function, fO:

fo ) =0 =), ify <x, (1 - €)e(x) exp(— ky + k), if y = x.

F0 is indeed Gaussian for y < x and integrates to one, thus F0 € F. Since the variance of

estimators within family F is constant, and since FO is an estimator within this class, we arrive at:
VFEF, V(Y F) = V(y, F) = SupFeFV(LLIO, F) = V(wo, FO) (2).

This relates the worst-case variance of qJO across all possible noise distributions within the F family.
The next step is to relate the variances of all estimators given a common noise distribution, Fo'
Specifically, the application of the Cauchy-Schwartz inequality to the variance formula yields

2

E_ V]

F()

Ve Fy) = E P T )

0

where IF) =0 - @) =V, F) is the Fisher information for estimation of B*, i.e., the

minimum asymptotic variance of our estimate, ﬁ . Then, we obtain
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VU, V(U F) < VO F) = inf VOB F) = V(L|JO, FO). (3)

Hence, for the noise distribution Fo’ we have related the variance of all possible estimators, s, with

that of the optimal estimator, ¥,- Now, we are ready to combine the results of Egs. (2) and (3):

sup FEFV(lIJO' F) - V(q’o' F 0) = inf q;V(lIJ' F 0) '
To connect back to the original statement, we note the following:

inf_, sup,, VO, F) > inf V(P F) = sup, V(b F),

which implies the equality:

inprEqJ sup,_. Vi, F) = supFeFV(l]JO, F)
= inque\p sup,_. Vg, F) = supFeFV(ljJO, F) .

This says that 1IJ0 minimizes the worst-case asymptotic variance in F, concluding the proof.

We now discuss the multivariate regression that we use to estimate the spatial and

temporal weight matrices, § and T. We llustrate the simple case of solving for one row of

X
cells n

n. . Xn n . . . .
S eR ™" ““oronecolumnof T € R " The experimental observations comprise the set of

n
samples

i1 depending on the

data samples, {xi, yi} , Where n._ refers to either n

r
mples xels 0 nframes

subproblem of interest, y, = xiT B* +o, where B* e R is the true value of the parameter,

N n *
B €R “", to be estimated, and o are noise components. We estimate 8 as
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n
~ samples

B =argmin f(B)=arg min X b 0, =% B) 4)

Classical M-estimation theory establishes, under certain regularity conditions, that the minimax
optimality in the univariate case carries over to multivariate regression; we refer the reader to Ref.*®
for details. Here, because these regularity conditions do not always apply to neural recordings, we
opted to validate multivariate robust regression with a one-sided Huber loss function by performing
extensive computational experiments (Table S1). We discuss below and in Supplementary Note 2

how Kk are estimated from the movies in an adaptive manner.

Solving the robust regression problem with a fast, custom solver.
We seek to solve the robust regression problem of Eq. (4) in a large-scale setting, namely that of
Ca?" videos with wide fields-of-view and extended durations. Hence, the solver for our problem

should ideally be tractable for a large value of N s and yield results that are as accurate as

mple.
possible. To this end, we propose a fast optimization method that has a step cost equal to that of
gradient descent, while making use of second-order information and exhibiting convergence

behavior similar to that of Newton’s method:

Algorithm 1: Fast robust solver

function robust_solve(X,Y,k,8) //X = [xl, xn]T,Y = [yl, yn]T

Compute: X = X' x)"'x", g¥ =x"y
Initialize B©: = g*°, set t = 0.
While |18 - g'|| >8:
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(t+1) _ ol ®

B B” - X max(0,y — XB

— k)

b. tet + 1.

Return ﬁ(t).

Unlike in Ref. *°, here we allow k to be a vector with potentially varying entries, and we initialize

[2(0): = BLS, which in practice significantly speeds convergence.

Algorithm 1 is used to solve the two subproblems of cell extraction, i.e., estimation of cells’
spatial profiles (while Ca?* traces are held fixed) and the estimation of Ca?* activity traces (while
cells’ spatial profiles are held fixed.) Owing to the matrix operations in Algorithm 1, these
subproblems can be quickly solved on GPUs by vectorizing them across the entire Ca?* movie
(Supplementary Note 2). Below we present a proposition and then its proof regarding the

convergence of the solver described in Algorithm 1.

Proposition 2. Let ﬁ be the solution of Algorithm 1 for the problem in Eq. (4), and let Amax and

n
samples

Amm > 0 denote the extreme eigenvalues of Y XX, and let max, I inI ZSk. Assume that for a
i=1

subset of indices Sc {1, 2, .., n}, EIAS > 0 such that Y, xiTﬁ < K = AS, and denote the extreme
eigenvalues of Y, xl,xiT by Y, and Y, > 0 satisfying }\maxymax/}\fmn < 2. If the initial point ﬁo is
i€Es

close to the true minimizer, i.e., || B,— [A?||2§k/AS, then Algorithm 1 converges linearly,

fB) — fB=|1 - 252 + === [1(8°) — FB)]

min
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Proof:
This proof is similar to the one we provided earlier for the solver in our prior work® using a

homogenous k. We consider the following objective function,

n
A samples

B =argmin f(B)=arg min % p 0, =% B).

We start by assuming || B — f?llzgk/AS for some B, the variable over which we are minimizing.

Then, we have for Vi€S,

v=x B =y - x BB Bl < At Ix I IB-BI, < x,
where we used the fact that the dot product between two vectors can be upper-bounded by the
product of their norms and the assumptions || B8 —f?llzsk/Asand max, I xillzsk. Notably, the
inequality that v, — xl,TB <K is also the condition that a particular sample 7 is in the quadratic

regime of the loss function, i.e., contributes to the Hessian calculations. However, though we have
shown that for all VieS, the /i th sample contributes to the Hessian calculation, the inverse
statement is not necessarily true. In other words, there may be other samples contributing to the

Hessian, leading to the following property of the Hessian:

2 T T
VB = D XX, =) XX, = yml,nl,

. T ic
i1y—x B<x =

which says that in the ball B = {B: || B —ﬁ’ ||2SA/k}, the objective function f is ymin-strongly

convex. Yet, strong convexity implies smoothness, i.e., v’ f=y 1 for vVBEB.
Assuming that the current iterate is B(t), our approach takes a step of the following form:
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(t+1).

BV =g — (') vr(BY).

By ymax-smoothness, we can write

(t+1) (t+1) (t+1)

t t t t 2
FBD) < B + VB 1B - By + 2= gV - Y,
t t - t - ¢ 2
< FB) - vr B 0B + == o) I,
®© 1 Oy *  Yoar © 2
< SE) =N B N, + oV ED I

= fB —{ —— }n VFB) I,

mm

By y_. -strong convexity, for any and B’

FBYZFB) + VBB~ Bl +—21 B — B2

The second inequality follows from setting ' = B — 1/ymme(ﬂ), which is the minimizer of the

right-hand side. Choosing B' = [A} above yields

f(B).

Using this and the smoothness inequality above, we write

(t+1)

) — FB<FBY) - f(i%)—{;

max

Y A2
fB - Am—ff}ll Vi) I,

< B - f® - 2vmm{ - zy;—;f‘}(f(ﬁ“)) - f®)

= {1 - o 4 ”"}(f(ﬂ“)) 8)

max min

Y Y
This is linear convergence with coefficient 1 — 2% S + '"x—'" as long as the condition,

max min
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is satisfied. This concludes the proof.

Empirically, we found that the fast solver retains fast convergence even outside the realm

covered by this proof and is compatible with the ADMM framework (Supplementary Note 2).

Relation between our fast solver and Newton’s method for the robust estimation problem

cells cell

For a convex function f: ]Rn - R, unconstrained Newton update on the parameter g € Rn

entails

-1

Y -7 8™ v, 1.

t+1) _

B

n
samples

In our algorithm, within the update step above we approximate the Hessian as X'x = xl,xl,T ,
=1

i=

instead of ) xixl_T (Supplementary Note 2). This implies that our solver is second-order and so its

ies'
convergence behavior should be similar to that of Newton’s method. However, there is one caveat:
the second-derivative of the one-sided Huber loss is not continuous. Hence, one cannot expect a

quadratic rate of convergence; this issue of a non-continuous second derivative is commonly

encountered in robust estimation®*. Nevertheless, Algorithm 1 converges very quickly in practice.

Setting k Adaptively in Robust Estimation

To estimate k adaptively, we first estimate the contamination level, ¢, for individual cells and each

cells

time bin. For a given time bin, assume that X, € R “"“ is the weight of the cell’'s spatial footprint at

cells

pixel i, Y, is the fluorescence in pixel i, and B € R “" is the set of estimated Ca?* activity traces for
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the cells occupying pixel i. To compute the contamination level for each cell, we first examine the
residuals, =Y, —xiT[A?, at each pixel. Then, we compute the fraction of positive residuals,

averaged across all the pixels occupied by a particular cell of interest, j:

10 >0)
i€L .

p, = ——— , where Lj is set of pixels occupied by the cell j.
1

In practice, we do not update k at every iteration of the solver in Algorithm 1; hence, we will use a

distinct variable, g, to denote the iterations of the adaptive updates of k. Specifically, we update

the estimated probability of non-Gaussian contamination for cell j using:

(@ (@
L@ @ L= He®p (5)
j j PO —ap(0) [+ 90 /00 )]

q 9

where a = 0.05 sets the update rate and Kj() and e],( are initial values or prior estimates

(q+1) and e(q+1 ( (q). In

D and e

(Supplementary Note 2). The estimates, k S

), replace the prior ones, Kj
practice, we start with a value of Kj(O) that is initialized to a user-provided value (by default, 0.7 sd

of median pixel activity). Then, we compute the corresponding contamination level ej(o). Next, we

first update the contamination level using Eq. (5) and obtain the corresponding k using Eq. (1).

Overall, we summarize the procedure to estimate k below:

Algorithm 2: Estimation of «:

o Use k" to solve for B.

e Compute the residuals r using the estimate, B .
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e Estimate the non-zero residual probability, p.

e Find € using Eq. (5) and compute x® using Eq. (1).

e Return k.

Interpretation of the robust loss function as an automated detector of outlier data points.

The specific form of the fixed-point solver in Algorithm 1 allows us to define a variable that
functions as a detector of outlier data points (Supplementary Note 2):
U=M-ST—-k=71—-kK.
If it were the case that vij : U < 0 for all data points at pixel coordinates (i, j), then a minimization
iy
of the one-sided Huber loss function would be equivalent to a least-squares minimization.
However, when there are outlier data points that make the least-squares solution suboptimal, the
optimization of robust loss function involves an automated subtraction of outliers. To elaborate, for

outlier data points with Ul_j > 0, the values of the pixel fluorescence are projected to the outlier

detection margin, r = k (Fig. 1H-L). Then, any residual activity beyond the margin, i.e., r > k,
which cannot be reasonably explained as reflecting either neural activity or a Gaussian noise

component, is subtracted from the movie to obtain:

=M- max(U,0) = (Mifr <k, ST+ kifr > k.

robust

Once the outlier contributions are subtracted in this way, the least-squares estimates of cells’ Ca*

activity traces or spatial profiles are obtained from Mm o This procedure has a simple geometric

bu.
interpretation; namely, minimization of the robust loss function involves subtraction from the movie

of any unexplainable (i.e., with support on [k(x, t), 0)) residual fluorescence activity (Figs. 1I-L).
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Regardless of the value of the non-Gaussian positive contaminant, if its support is within
[k(x, t), ), then the contaminant noise will be deemed an outlier and projected to the outlier
detection margin, r = k. This geometrical interpretation also applies to the original, symmetric
Huber loss function®, but to our knowledge has not been previously discussed in the published
literature. This principled treatment of outlier data points is what provides EXTRACT with the key
properties of robustness, as described above in the introduction to this work, as opposed to prior
colloquial usages of the word ‘robustness’ in the neuroscience literature?®2°. Here, we go beyond
prior uses of robust regression approaches in the published statistics literature, in that our solvers
can mitigate large contaminants that vary in both space and time. In other words, the adaptive
estimation of x used here is important for our application of robust regression to analyses of
large-scale neural recordings, as the use of a homogenous k leads to suboptimal estimation of

Ca?" activity traces (Fig. 1G).

EXTRACT ALGORITHM
The EXTRACT pipeline applies our one-sided Huber loss function to the cell extraction problem.
The pipeline has a modular structure, which affords the user operational flexibility and comprises

four base modules:

1. Preprocessing module.
2. Cell finding module.
3. Cell refinement module.

4. Final robust regression module.

The first module transforms the Ca?* video into a standardized format for the downstream modules;
it also performs an optional spatial filtering of the movies, with the goal of removing noise and

making the videos more suitable for cell extraction. The main goal of the second and third stages is
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to accurately estimate cells’ spatial filters; the user has the option of running these two stages on a
temporally downsampled movie. For faster processing speed, cell finding and refinement are, by
default, run without adaptive estimation of k and cells’ baseline activity values, which take on fixed,

user-defined values (e.g., the default, baseline activity value is AF/F0 = 0, below which cell activity

is truncated to zero). This default is motivated by our observation that use of adaptive estimation
within these intermediate modules generally does not lead to substantially different results,
although the user can select to adaptively estimate these quantities if desired. By comparison, the
goal of the final robust regression is to accurately estimate cells’ activity traces, which should thus
be performed without temporal downsampling and with adaptive estimation of k and cells’ baseline
activity values. When running the EXTRACT pipeline, the user can choose to bypass one or more
of the above modules, e.g., to perform their own pre-processing, provide their own initialization
parameters for cells’ spatial footprints that are later refined, or perform the final robust regression

with a set of spatial filters, S, provided by the user.

Definition of signal-to-noise ratio (SNR)

Before discussing the details of the EXTRACT pipeline, we first define the signal-to-noise ratio
(SNR) for a given signal as the signal’s maximum value divided by the s.d. of the noise. We
estimate the noise s.d by obtaining the power spectral density of the signal with a Fourier
transform, integrating the spectral power across the upper half of the frequency range (where most
of the Ca?" trace comprises noise fluctuations), and extrapolating the power found there to the rest
of the spectrum. We compute the SNR at an individual image pixel by considering the time-varying

fluorescence from that pixel as the signal.
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EXTRACT preprocessing module

This module takes the input Ca®* movie, which is presumed to have undergone motion-correction
but no other preprocessing, and puts it into a standardized format for efficient and effective
processing. The movie is first re-expressed in terms of the relative fluorescence changes that occur

at each pixel (AF). (A normalization by baseline fluorescence levels, F,, is applied to each cell’s

activity trace only after the final robust regression, right before EXTRACT delivers its final outputs,

so that the traces provided are expressed in units of AF/FO). This is followed by an optional spatial

high-pass filtering, which can be beneficial in some cases for removing contaminants that may
exist at low spatial frequencies, such as from neuropil Ca®* activation.

The spatial high-pass filter used in this second step is a fourth-order high-pass Butterworth
filter that is designed in the frequency domain, with a cutoff set by the user-provided average cell
radius. To design this filter, we first model cells’ spatial footprints as 2D Gaussian functions, with

the cell radius equal to twice the s.d. of the Gaussian function. We set the corner frequency, W, of

the high-pass filter to the spatial frequency corresponding to twice the s.d., i.e., w_= % , Where

cell

Tl is the user-defined cell radius. Then, the cutoff frequency of the Butterworth filter is determined

by dividing the corner frequency by a dimensionless factor that is set by the user (the default value
is 5). The user has the option to set the amount of spatial filtering to be distinct in the x and y
spatial directions, i.e., for cases in which the neuron-type has an anisotropic morphology, such as
with Ca?* spikes in Purkinje neuron dendritic trees (Fig. S8). The resulting high-pass filter is applied
to each frame of the Ca®" movie in the spatial frequency domain and then transformed back to real
space. The EXTRACT preprocessing module can also perform an optional spatial low-pass filtering
of the raw movie data, for the sake of smoothing and boosting the SNR of cellular signals, for use

only by the cell finding module. Like the high-pass filter, this low-pass filter is also a fourth-order
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Butterworth, for which the cut-off frequency is set by multiplying the corner frequency (see above)

by another user-set, dimensionless constant (the default value is 2).

EXTRACT Cell Finding Module

In the cell finding module, we first compute a ‘smoothed’ maximum projection image of the whole
movie, which we obtain as follows. For each movie pixel in M, we first identify the time point at

which the Ca?* activity of the pixel reaches its maximum value. We record this information in an

array w eRn”m”’”, here M s stands for the total number of pixels in the movie. We compute the

mple.

n.
smoothed maximum projection image, mp €R ™", as

1
mp i =N Z Mi w’
I jeneighbors(i) ' J

where Ni is the number of pixels that neighbor the /'th pixel. In other words, for each pixel i, we

average its fluorescence values over the time points at which the neighboring pixels reached their
maximum fluorescence amplitudes. The function, neighbors(-), selects the neighboring pixels of a
given pixel; this is done in practice by creating a binary circular mask around the query pixel with a
radius of 2 pixels and returning the indices that are nonzero. This procedure for determining the
maximum projection image has the property that, for pixels that lie within cells, it reports values
close to the maximum value attained at each pixel (owing to the co-activation of neighboring pixels
that lie within the same cell); whereas, for pixels that lie outside cells, the smoothing procedure

typically yields much lower values.

At every iteration of the cell finding module, a seed pixel is chosen as the brightest pixel in
the smoothed maximum projection array, mp, and then a cell image centered at the seed pixel is

initialized. This initialization is done either by generating a Gaussian shape with a radius equal to a
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user-defined estimate of the cell radius. Alternatively, the initialization is done by first computing the
Pearson’s correlation coefficient between the seed pixel’'s fluorescence trace and the traces of
other pixels, with the movie, and then truncating to zero the spatial map of correlation coefficients
for all pixels for which the correlation coefficient with the seed pixel was below 0.5 the maximum

correlation coefficient. This latter method to initialize the cell image is the default option.

With the resulting estimate of the cell image, the cell's activity trace is obtained by
performing a univariate robust regression of the cell image against the movie data. Next, the cell
image is re-estimated using a univariate robust regression, by regressing the cell's estimated
activity trace against the movie. This alternating estimation scheme is repeated either 10 times, or
until the relative changes in the cell image and trace estimates are <1% between iterations, as
measured by the L, norm. For these univariate robust regressions, we optimize the one-sided
Huber loss using our custom solver (see Algorithm 1 above), with a non-negativity constraint on
both the cell image and the activity trace. Since each regression is univariate in this module, the
non-negativity constraint is easily enforced by solving the optimization problem first without it, and
then applying the non-negativity constraint at the end, which yields the optimum non-negative
solution. After obtaining the cell image, s, and the trace, ¢, for the identified cell, we subtract the
contribution of this cell (i.e., by setting M « M — st). We then re-compute the smoothed maximum

projection, mp, for only the pixels that were affected by the activity subtraction.

At the end of each iteration, we apply a quality check to both the image and the activity
trace of the identified cell, to decide whether to include it in the set of identified cells. We discard
cells that occupy an abnormal number of pixels given the expected area of a typical cell (as
computed from the user-provided estimate of a cell’s radius). We also compute the trace SNR for

each cell, and discard it if the trace SNR is less than the user-provided threshold.
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We terminate cell finding if any of the following conditions are met: (1) The maximum
allowed number of iterations set by the user has been exceeded; (2) The pixel-wise SNR in the
current seed pixel is lower than the user-provided SNR threshold; (3) The running yield, defined as
the fraction of good cells over the last 10 iterations, is less than 1 in 10. The cell finding module
outputs the spatial and temporal weights of the identified components in two matrices: the spatial
weights matrix §, whose columns contain the (flattened) cell images, and T, the temporal weights

matrix, whose rows contain the corresponding Ca?* traces.

EXTRACT Refinement Module
In the refinement module, we alternatively update the entire matrix of spatial weights and the entire
matrix of temporal weights, by performing multivariate regressions of each matrix against the movie
data, with the constraints that the estimates of both § and T must be non-negative, as in the cell
finding module. We perform these regressions using the fast custom solver of Algorithm 1, together
with a consensus optimization method based on dual ascent, termed the ‘alternating direction
method of multipliers’ (ADMM®). We use ADMM because it allows us to add the non-negativity
constraints in a straightforward manner, with our fast solver, robust_solve(-), as a subroutine
within ADMM. Supplementary Note 2 has further details.

When solving for S, we compute a binary mask B that is obtained by convolving each cell
image with a disk filter of a radius equal to the average cell radius, followed by binary thresholding.

We then add the following constraint:
Sl,j = 0if Bl,j = 0.

This constraint ensures that the estimation of each component is restricted to a local

neighborhood, preventing artifacts that might otherwise arise due to strongly correlated Ca?* activity
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between spatially separated portions of the movie. This locality constraint defines a convex set,

hence it can be added to the estimation problem without violating convexity.

Overall, given M and T, the S-estimation step solves the following problem:

minimizes » P, M — ST)ij

ij U
subject to
S >0,

Sl,j = OlfBij = 0.

Given M and §, the T-estimation step solves the following problem:

minimizeT » pK.(M - ST)ij

ij ij
subject to
T > 0.

After each alternating estimation step, which involves first solving for T given S, and then for
S given T, we compute several quality metrics and discard the subset of cells for which any of the
computed metrics are worse than certain user-set thresholds. In particular, we compute the

following quality metrics:

Trace SNR: We compute the trace SNR for each component given its Ca?* trace. We eliminate

cells whose trace SNR is below the trace SNR threshold.
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Area of the cell image: We compute the area of each cell image by summing the number of pixels
with spatial weight >0.1 times the maximum weight. If the calculated area is smaller than a lower

threshold or higher than an upper threshold, then the cell is discarded.

Duplicate cells: We check whether cells are duplicates by separately examining (a) the similarities
of cell images, and (b) the overall similarities of cells’ spatiotemporal profiles. For the former check,
we first smooth the cell images by convolving them with a two-dimensional Gaussian kernel with o
equal to half the average cell radius. After this, we compute Pearson’s correlation coefficients
between pairs of smoothed cell images and then apply a binary threshold at 0.8. We then treat this
thresholded correlation matrix as a graph adjacency matrix, and we find the connected
components using MATLAB’s graphconncomp() function. For each set of connected components,
we identify the component with the most edges in the set, and we mark it as a duplicated cell.
Although this procedure identifies only one cell per iteration within a highly similar set of cells, we
have empirically found it to be effective in eliminating duplicates across iterations of cell refinement.
For identification of duplicates based on spatiotemporal similarity, we follow the same procedure,
but we fuse the spatial and temporal similarity through the following two steps: (1) We obtain a
temporal correlation matrix by first pre-conditioning the temporal matrix, T, with the matrix of
correlations between smoothed cell images and then computing the Pearson’s correlation
coefficients between pairs of components in the pre-conditioned T. This allows us to enforce spatial
proximity within the computations of trace similarity. (2) We obtain a spatiotemporal similarity matrix
via an element-wise multiplication of the temporal correlation matrix with the spatial correlation
matrix computed above. A binary thresholding is applied to the resulting correlation matrix at 0.95
to obtain the graph adjacency matrix, and the above steps are repeated for this procedure to

identify duplicates.
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Spatial corruption metric: We compute a spatial corruption metric that measures the lack of local
smoothness within a cell’s spatial profile. We do this using a heuristic that compares the variance
of spatial weights for each cell to a “local variance” for the same cell. We compute the variance as
the empirical variance of the spatial weights that are larger than 10°. We compute the local
variance as the squared L, distance between a pixel's spatial weight and its weight after applying a
2D low-pass filter based using a square kernel with uniform weights over 4 x 4 image
neighborhood. The spatial corruption metric is the ratio of the local variance to the variance of
spatial weights. Intuitively, better looking cell spatial weights have negligible local variance when
compared to the variance, so the spatial corruption metric will be small for these cells. In the
algorithm, the default threshold value for spatial corruption is set at 1.5, based on the typical

distribution of spatial corruption metric values across many different datasets.

Spatiotemporal match metrics: We use a quality metric that is intended to assess the
spatiotemporal contribution of the cell, relative to its surrounding, with respect to the power of the
cell signal. This metric looks at the mean gap (averaged over movie frames) between a cell’'s
fluorescence trace and nearby fluorescence activity in its spatial vicinity, by removing the portion of
the estimated activity belonging to a cell that is also represented in its surroundings. Our
implementation for this metric can be found in our codebase inside the function
find_spurious_cells(), which can be referred to for full details on how the various fluorescence
activity traces are computed. This metric must be > 0.01 for EXTRACT to accept the identified cell
in the output, though we keep this metric off by default for most movies to prevent prolonged

runtimes.

EXTRACT Final Robust Regression Module
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As noted above, the cell finding and refinement steps are usually performed on a temporally
downsampled version of the Ca?* movie and without adaptive estimation of x and/or cells’ baseline
activity values. The final set of Ca*" activity traces, however, should generally be obtained from the
original movie, without downsampling, and with adaptive estimation. In other words, the final robust

regression module solves the following optimization problem:

minimizeT » P M — ST)U

i v

subjectto V. V. ;T >b,
i=1.n =

where the cell baselines, bi , and robustness parameters, K are adaptively computed from the

.
movie. As in the cell refinement module, the final robust regression is performed using the fast

custom solver of Algorithm 1, along with ADMM (See Supplementary Notes 1, 2).

Algorithmic Output

EXTRACT provides 3 main options for the final set of estimated Ca®" activity traces, termed
‘non-negative’, ‘baseline_adjusted’, or ‘no_constraint’ in the software Github. In all cases, the
robust solver operates under the constraint that Ca?* signals must be non-negative until the end of
the cell refinement process. The motivation for this constraint is that EXTRACT considers activity
below each cell’'s baseline level to be noise, where the baseline is determined by the cell’'s
time-averaged, mean fluorescence level. The algorithm truncates all activity below this baseline,
leading to intermediate non-negative activity traces, which are then used to estimate cells’ spatial
profiles accurately using mainly the Ca?* events. Then, based on the option selected, EXTRACT
performs a final robust estimation to solve for the activity traces using the final set of cells’ spatial

profiles, which may include the noise baseline depending on the solver type chosen.
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Getting Started with EXTRACT

To help users get started with EXTRACT, we designed six tutorials (Figure S9) to familiarize the
users with the hyperparameters of different modules in EXTRACT. These tutorials also include
additional functions to pre-process Ca?* imaging movies, including a wrapper code for motion
correction, and to visualize the cell extraction results. The details are provided in our user manual

(Supplementary Note 5) and the tutorial codes can be found in our Github repository®.

SIMULATION BENCHMARK
Simulated Ca*" Imaging Datasets
To benchmark the performance of different cell extraction algorithms, we created artificial datasets
designed to be representative of the Ca?" activity of cortical pyramidal neurons. In all cases, the
simulated Ca?" videos had a frame-rate of 10 fps. Here we summarize the process of creating the
Ca?* videos; Supplementary Note 4 lists the default values of the simulation parameters and has
additional details for how these parameters were varied across the many different computational
experiments that we performed (Table S1). Generation of the artificial Ca?* videos involved 3 steps.
In the first step, we simulated Ca?* traces of neurons with exponentially decaying, optical
spike waveforms. To achieve this, we first simulated Ca?" event trains for each cell by assuming
that the probability of a Ca?* event occurrence in each time bin was governed by a Bernoulli

random variable with a probability of 0.01, corresponding to a Ca* event rate of T omt = 0.1 Hz.

Since real Ca?" events can report the occurrences of multiple action potentials or spike bursts via
their amplitudes, for our simulations we next generated a set of randomly determined, discretely
valued yet non-binary Ca?* amplitudes for each of the Ca?* events in the video. The minimum Ca?*
event amplitude, corresponding to the occurrence of a single action potential, was set by

multiplying a user-defined value of the s.d. of the noise level within individual pixels of the movie,
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O ivel with a parameter called the ‘minimum SNR’ per cell, SNR . This allowed us to set randomly

the amplitudes, Tamp , for each Ca?* event using the model:

T =0+N)- o

amp

SNR (6)

pixel min

where N_ = Poisson (Aspike) is a Poisson random variable with Aspike > 0 setting the characteristic

variations in amplitude. In this model, if Asp = 0, the Ca?" events all take on equal amplitudes,

ike

whereas if Asp > 0, the Ca®" events have discretely valued but randomly varying amplitudes.

ike
Then, we built in refractory periods by deleting spikes that occurred exactly one frame after a prior
spike. Since the simulated firing rates were low, such deletions occurred with extremely low

probability and barely altered the net rates of Ca?* events. Finally, having set the amplitudes of all

Ca?* events, we convolved the resulting event trains with an exponentially decaying temporal
kernel of the form exp(— %), with T = 10 time bins. This corresponds to a decay time constant of 1

s, roughly comparable to that of e.g., GCaMP6m* or jGCaMP7s®. For simulated movies of
independent spiking across the different cells in the movie, the resulting Ca?* traces were then

incorporated into the artificial movie (see below).

However, to simulate movies with correlated neural spiking, instead of generating the
activity trace of each cell independently, we synchronized the instantaneous firing probabilities

within groups of cells, such that each cell fires Poymen of its Ca?" events jointly with the group. Each

cell can participate in many different groups. To simulate high levels of correlated activity, for each
time point we clustered randomly chosen cells (i.e., without regard to their spatial locations) into
groups of a randomly chosen size, uniformly distributed between 50—-100 cells. Then, for each time

we assigned a new Ca®" event to each

event’

point, with an adjusted firing probability Pomeh Xr
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neuron such that every cell in the group had a synchronized Ca®* event at that time point. The
amplitudes of the synchronized Ca*" events were set independently for the different cells in the
group using Eq. (6) above. We independently adjusted the baseline event rate of each cell to keep
its mean firing rate constant at 0.1 Hz. We enforced a refractory period by deleting all spikes that

initiated exactly one frame after a previous spike. Finally, as above we convolved the Ca?* event

trains with an exponentially decaying temporal kernel, exp(— f), with T = 10 time bins.

In the second step of movie generation, we created the spatial profiles of individual cells.
We used a square field-of-view, with each pixel having a width of 1.6 ym in the specimen plane. In
nearly all experiments, with the exception of Experiment 21 (Table S81), we created each cell’'s
fluorescence image by randomly sampling a two-dimensional Gaussian distribution that was
oriented in a random direction relative to the x-y coordinate axes of the movie. For each cell, we
approximated its effective diameter as the width of this Gaussian, for which the s.d. was selected
randomly from a uniform distribution ranging between 3.5—4.5 pixels. We then truncated to zero all
pixels of the Gaussian spatial profiles that had values <5% of the peak value. We then randomly
set the centroid of each cell from a uniform spatial distribution across the field-of-view. However,

we required that no pair of cells could have their centroids <4 pixels (6.4 um) of each other.

For one experiment, Experiment 21, we compared the performance of several cell
extraction algorithms using Ca®* movies with donut-shaped neurons. In this case, we used the

functional form in Ref. ' to simulate the spatial profile for donut shaped neurons:

(\/x2+yz—10)2

f(x'y) = EXp(— 40 ’

where x and y are in units of pixels. Donut-shaped spatial profiles were truncated and distributed

across the field-of-view as described above for all other computational experiments (Table S1).
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In the third and the final step, we generated the noise components of the synthetic Ca*
movie by randomly sampling values from a Gaussian distribution that were uncorrelated for each
spatial pixel and time point, with a s.d. that was assigned according to the desired mean pixel-wise
SNR for the simulated movie. This uncorrelated Gaussian noise models the stochastic emission,
propagation and detection of photons, which are governed by Poisson processes at the level of
individual photons but which approximate Gaussian processes in large photon numbers. In addition
to this spatiotemporally uncorrelated noise, we also added correlated noise to the movie,

representing non-negative neuropil contamination, by applying a spatial bandpass filter (4th-order

1 4
S5nr and 5mnr

cell cell

Butterworth filter with low and high cutoff frequencies of , respectively, where T

u

is the mean cell radius used in the simulations) to i.i.d. samples of Gaussian noise at each movie
pixel and then convolving the resultant with a temporal kernel identical to that used for the Ca*
transients in the neural activity traces. The total Gaussian noise at each movie pixel was
determined as a weighted sum of the uncorrelated (95% weight) and correlated (5%) noise traces.
Finally, for simulations of one-photon fluorescence Ca?* movies, we added non-Gaussian
background Ca?" activity by simulating out-of-focus cells with varying diameters that were uniformly
distributed between 50-180 pm. (Please see Supplementary Note 4 for more detailed information
about each computational experiment and how background Ca?* activity traces were generated). In
all cases, we generated the final synthetic Ca?* movie by taking the product of the matrix of all
cells’ spatial weights and that of their Ca?* traces (including background cells when appropriate,
e.g., for simulating one-photon Ca* imaging movies; Supplementary Note 4), and then adding to
the resulting noiseless movie the matrix holding the total time-dependent noise values for each

pixel.
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Systematic evaluations of cell extraction quality

For the different cell extraction algorithms evaluated in this paper, we benchmarked several
aspects of cell extraction quality, such as the ability to accurately estimate cells’ spatial footprints
and Ca?* activity traces. To quantify the results, we defined several metrics that used the known
ground truth underlying the simulated Ca?** videos. In addition, we defined one metric of trace
quality that focuses on the similarity of a cell’s estimated Ca?* trace to the Ca?" activity seen in the

movie for the same cell.

Evaluating the cell-finding accuracy in simulations

Substantial prior research tested the quality of cell-finding and focused on an algorithm’s ability to
find human-annotated cells within a set of Ca*" videos"'°?%6'  Owing to this body of research,
several quality metrics that quantify cell-finding accuracy have become relatively standardized and
are summarized here (Figure 3). The cell-finding ‘Precision’ is defined as the number of correctly
identified cells, divided by the total number of cell candidates that the algorithm outputs. The
cell-finding ‘Recall’ is defined as the number of correctly identified neurons, divided by the total
number of true cells in the movie. The ‘F1 score’ for cell-finding is a joint summary metric that is

defined as the harmonic mean of the Recall and the Precision:

2
Flscore = ———.

Precision  Recall

All three of these metrics range from 0-1, with 1 being the best score. We emphasize that
Precision and Recall must be considered as a pair, for it is easy for an algorithm to achieve a
perfect score in either one of the two individual metrics, but there is nearly always a crucial
trade-off between the two. Thus, assessments of which algorithms achieve superior cell-finding

performance should be made by examining the Precision-Recall (PR) curve (Figure 3B, S4A),
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which quantitatively describes the trade-off between the two metrics. Thus, use of the F1 score
helps to find the optimal point in the PR curve that maximizes the harmonic mean of the two

constituent metrics.

Trace quality metrics for use with simulated datasets

We used two different metrics to quantify the quality of trace estimation from simulated Ca?* videos,
namely the accuracy of crosstalk mitigation and that of signal amplitude estimation. The former
metric operates at the level of Ca?* events and quantifies how well individual Ca®* events are
identified, which requires both the correct identification of a cell’s Ca?* signals and suppression of
crosstalk from neighboring cells. The latter metric quantifies how well the exact amplitudes of a
cell’'s Ca?* transients are estimated. A key distinction between the two metrics here is that the
crosstalk mitigation accuracy does not assess whether Ca?* signal amplitudes are correctly
estimated, whereas signal amplitude estimation accuracy does not assess how well contamination

from other sources is suppressed within a cell’'s estimated Ca?"* activity trace.

To evaluate the levels of crosstalk in a set of estimated Ca?" activity traces, our metric
examines the number of false positive Ca** events that must be tolerated to identify a given level of
true positive Ca?" events. We create a PR curve for Ca?* event detection for each cell and compute
the area under the curve (AUC). This AUC value is then averaged across all cells identified by the

cell extraction algorithm, yielding the value of the crosstalk mitigation accuracy.

To extract Ca?* events from cellular activity traces, we applied an exponential deconvolver
(with an exponential decay time-constant matching the ground truth value for the simulations) to
the set of estimated activity traces provided by the cell detection algorithm. We swept the detection
threshold from high to low values across the range 1-0, in units of each cell's peak Ca?" signal.

Then, to compute Ca?* event Recall and Precision metrics, we matched ground truth Ca®* events to
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the set of detected Ca?* events by using a greedy matching scheme. Specifically, we computed a
matrix of temporal intervals between the sets of ground truth and detected events, applied a
matching threshold so that the time intervals of matched events had to be < 3 image frames, and
then matched the events greedily in an iterative manner. With the set of matched events in hand,
we computed the Recall as the ratio of correctly detected Ca** events to the total number of ground
truth Ca?* events. We determined the Precision as the ratio of correctly matched events to the total
number of detected Ca?* events. As we swept the Ca®* event detection threshold from high to low
values, we maintained the Recall values of Ca®* events that were matched at previous, higher
values of the detection threshold, and greedily increased the Recall values as new Ca®" events

were matched for the new, lower detection threshold.

To compute the signal estimation accuracy, we computed Pearson's correlation coefficient
between the ground truth Ca?" trace and the estimated Ca?' trace at the time bins at which the
ground truth events occurred. Unlike correlation coefficients computed across the entire movie
duration, as has been previously used as a trace quality metric®®, in our metric we focused on
signal estimation by dissecting away the effects of crosstalk. Overall, we quantified two important

aspects of trace quality, crosstalk and event amplitude, with separate quality metrics.

A trace quality metric applicable to real experiments

To assess the quality of trace estimation for real Ca?* videos, we formulated a ‘trace quality metric’
that does not require the use of ground truth activity traces but remains interpretable. With
simulated datasets, we found that this trace quality metric followed the general trends as the
crosstalk and trace accuracy metrics described above, arguing for its validity and utility

(Figure S3).

66


https://paperpile.com/c/TEGYul/M9kX
https://doi.org/10.1101/2021.03.24.436279
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.24.436279; this version posted August 17, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

The trace quality metric is a relative measure that compares two or more estimated
versions of the same signal, extracted using different algorithms, for a cell that is matched across
the outputs of the different cell extraction algorithms. To compute this metric, we first matched cells
across the outputs of the different algorithms and extracted Ca?" events through exponential
deconvolution as described above. To avoid penalizing algorithms that are highly sensitive to weak
Ca?* events, we compared the different algorithms using only the highest amplitude Ca** events
that were detected by the algorithms under evaluation, with the number of Ca?* events considered

set equal to the smallest number of events found by any of the algorithms.

For each cell, we used a consensus spatial profile, computed as the intersection of the
spatial profiles found for this cell by the different algorithms under evaluation. We then converted
this consensus spatial footprint into a binary spatial mask. Notably, the use of the consensus
spatial profile ensures that comparisons across algorithms are performed across the same set of
movie pixels. Using this mask, and the cell’s activity trace estimated by each algorithm, we found
the set of time points at which the Ca? events had amplitudes >90% of the maximum event
amplitude, and across these time points we averaged the fluorescence values for each pixel lying
within the mask. This yielded an estimated spatial profile characterizing the cell’s activation pattern,
calculated separately for each extraction algorithm. Then, we determined the Pearson's correlation
coefficients between the masked portions of the raw or preprocessed Ca?* movie and the
corresponding cell spatial profiles, across the set of estimated Ca?* event times. To compute the
value of the trace quality metric, we computed the sum of these correlation coefficients, weighted

by each the amplitude of each event Ca?* across the set of matched cells.
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Benchmarking tests with published cell extraction algorithms

Using simulated datasets, we benchmarked the performance of EXTRACT against those of several
other cell extraction algorithms. For tests involving the cell extraction routine, CNMF, we used the
CNMF code available at the open-source CalmAn-MATLAB Github repository®?. To evaluate
CAIMAN, a Python implementation of CNMF, we used CAIMAN version 1.9.10, downloaded from
the open-source CAIMAN Github repository®. To evaluate the post-processing tool, SEUDO, we
used the published (and currently only) version from the SEUDO Github repository®*. In some tests,
we compared the performance of robust regression to that of non-negative least squares
regression, both of which we performed using our implementation of Algorithm 1 (above) in
MATLAB. During these tests, we observed that the standard linear regression functions, /sqlin()
and Isqnonneg(), built into MATLAB were very slow. Hence, we wrote our own regression routine in
MATLAB (Supplementary Note 2), which was up to two orders-of-magnitude faster than
MATLAB’s native regression routines. Supplementary Note 4 has further details about each

computational experiment performed to benchmark the different algorithms tested.

Making performance comparisons between different cell extraction algorithms required us
to match the cells output by the different algorithms to the ground truth underlying the simulated
Ca?" movie. To do this, we wrote custom MATLAB code (provided in the EXTRACT Github)
implementing a greedy matching method to identify matched pairs of cell spatial profiles that
represent the same actual cell. This method relies on the two-dimensional matrix of Pearson's
correlation coefficients computed between the set of ground truth spatial profiles and the spatial
profiles of the detected cells. We greedily determined matched cell pairs by iteratively identifying
the cell pair with the highest correlation coefficient, removing the two corresponding spatial profiles
from the sets of ground truth and detected cells, and then repeating the process until no there were

no more cell pairs with correlation coefficients above a minimum threshold value (typically 0.7). In
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some cases, we also compared 2 or more different algorithms using real datasets; in these cases,
we applied the greedy matching algorithm to all possible pairs of algorithms and then determined

the set of cells that were consistently matched across all the algorithms under evaluation.

To tune the hyperparameters of the aforementioned algorithms, we optimized the
cell-finding metrics described. Notably, the determination of the PR curve for cell-finding is
computationally extensive. Even for a single Ca®* movie, it took about a week to find the PR curve
for cell finding for either CAIMAN or EXTRACT, as we tested >1000 hyperparameter combinations
for each algorithm (Figure 3B). Given this protracted testing duration, we initiated our studies of
CAIMAN by starting with hyperparameter values taken from the demos in the CAIMAN Github
repository?® and then performing a grid-search across 1000 different sets of crucial

hyperparameters.

In subsequent computational experiments with EXTRACT, CAIMAN or CNMF (Table S1),
we started with a near optimal set of hyperparameters as determined via the experiments of Figure
3B and then made modest adjustments to the algorithm’s hyperparameter values so that the
number of cells identified was roughly the same as the number of cells in the movie. This involved
setting the ‘minimum SNR’ hyperparameter values of these algorithms, the total number of cells to
be initialized, and hyperparameters characterizing levels of spatial corruption or thresholds of cell
size. (For computational experiments with simulated one-photon Ca*" videos, the minimum SNR
parameter in CAIMAN was replaced with min_pnr and min_corr, hyperparameters from CNMF-E#
to be used with one-photon datasets, and we used CAIMAN’s default value of 1.4 for the ‘ring
radius’ hyperparameter.) We also initialized CAIMAN with the movie frame rate and the ground
truth decay times of the cells’ optical spike waveforms. CAIMAN’s autoregressive system

parameter was set to be p=1, consistent with the data generation process for exponential traces. In
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principle, these choices gave CAIMAN an unfair advantage over EXTRACT, because CAIMAN was
able to model the correct shape of the simulated optical spike waveforms, which EXTRACT does
not do. Hence, the superior performance of EXTRACT over that of CAIMAN (Figures 3, S2, S3)

showcases the power and utility of the robust estimation framework.

For studies of the SEUDO post-processing routine, we first performed a hyperparameter
grid search on a set of Ca** movies; this process took more than a week but identified several
options for the hyperparameter set that provided reasonable results, whereas about 60% of the
hyperparameter configurations that we tried for SEUDO led to estimated Ca*" traces that were
actually worse than those that we input to SEUDO. We therefore identified a hyperparameter
configuration that generalized well between different Ca®** movies and levels of signal

contamination and then used it for subsequent computational experiments.

CELL EXTRACTION WITH REAL IMAGING DATA
Implementations of CAIMAN, CNMF-E, ICA, and EXTRACT

To run CNMF-E%, we used the original author’s implementation, taken from a Github repository
called CNMF_E®. We based our implementation of CNMF-E on the demo script given in the
Github for running it on large data, taking most settings from this script. For both analyses of both
striatal and ventral CA1 imaging data, we used gSig = 3, gSiz = 2*gSig, min_pnr=2.5, and min_corr
= 0.7. To run CAIMAN, we used the optimal hyperparameter set found via the studies of Figure 3B,
but with the exception that we used p=2, min_corr = 0.7, min_pnr = 8, ring_size_factor = 1 after

performing a local optimization around the default hyperparameter values.

To run PCA/ICA’®, we used the authors’ published version, which is available on MATLAB’s

FileExchange forums. This method first performs a principal components analysis (PCA) to reduce
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the dimensions of the data and then runs independent components analysis (ICA) to unmix the
components spatiotemporally. In all our studies, we ran ICA with y = 0.1 (which sets the
contribution of temporal information in the ICA step), its recommended value in the original paper’®.
We used a maximum of 750 fixed-point iterations for the ICA step. In our studies with simulated
data, we set both the number of principal components and the number of independent components

to 1.5 times the number of ground truth cells.

We ran EXTRACT mainly using the default values of the hyperparameters, as provided in
the EXTRACT Github®. However, we optimized a small subset of the hyperparameters that are
worth tuning for the analysis of specific datasets, including cell_min_snr, thresholds.T_min_snr,
avg_cell_radius, cellfind_max_steps, etc. To test and showcase the utility of robust regression
across a variety of analyses, we ran the solver and implementation of robust regression within
EXTRACT using a variety of configurations. For the studies of Figures 4 and 5, we used adaptive
estimation of k during the final robust regression (see above). However, using a uniform fixed value
of K speeds up cell extraction. For the studies of Figure 6, we used a fixed x = 1. For Figure 7,
we used adaptive estimation of k in the cell finding, refinement and final robust regression stages.
To perform the speed benchmarking of Figure 4, we allowed both CAIMAN and EXTRACT to
temporally downsample the Ca?* movies by a factor of 8, to 3.75 Hz. To ensure fair comparisons,

we arranged the numbers of initialized cells to achieve 4500 initialized cells/mm?.

Detection of Ca** Transients

To analyze the quality of Ca?* traces estimated for real datasets, we first detected the times of Ca*
transient events within the estimated activity traces. CAIMAN and CNMF-E provide Ca?" event
times and amplitudes within their outputs. To find Ca?* events within the traces output by either

PCA/ICA or EXTRACT, we used the same exponential deconvolver as used for analyses of
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simulated datasets as described above. The exponential decay time of the deconvolver was set to
approximately match the decay time of the Ca?' indicator used in each real experiment. The
thresholds for detection of Ca?* events were 50 for studies of striatum (Figure 6) and 3o for studies
of hippocampus (Figure 7), where o denotes the s.d. of the baseline noise in the deconvolved
traces. Below, we provide further details about the analysis of each experimental dataset

examined.

TWO-PHOTON MESOSCOPE IMAGING

Movie Acquisition

We recorded movies of Ca?* activity in the V1 cortical area (and adjacent regions) of C57BL/6J
mice (Jax: 000664)%®, genetically modified to express the soma-targeted Ca?* indicator
jGCamp8s-Ribo via the CaMk2a promoter in cortical pyramidal neurons (Figure 4), using an
upgraded version of our two-photon fluorescence mesoscope’. This mesoscope, now equipped
with faster electronics and more advanced array detectors, employs multiple time-multiplexed
illumination beams to scan a 4 mm? area of brain tissue, generating high-resolution two-photon
images at 30 frames per second. For this study, the largest Ca?* movie acquired was 800 GB,

covering a 4 mm? field of view and consisting of 200,000 frames.

Viral expression of Ca** indicator and surgical preparation

To express jGCamp8s-Ribo in pyramidal cells, we made a viral construct based on the
p-AAV-syn-jGCaMP8s-WPRE construct (Addgene plasmid #162374) and the pyc126m
ribosome-targeting sequence (Addgene plasmid #158777). The HHMI Janelia Viral Tools facility

produced the virus, AAV2/PHP.eB-Camkll-jGCamP8s-Ribo.

To deliver the virus, we injected adult C57BL/6J mice (12—16 week old, male and female)
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with AAV2/PHP.eB-Camkll-jGCamP8s-Ribo (500 nL of 7E12 GC/mL virus injected at each of
3 sites around the right cortical area V1; injection site coordinates of —3.4 AP, 2.6 ML; —-2.7 AP, 2.2
ML; -2.7 AP, 2.9 ML). To do this, we anesthetized mice with isoflurane (4-5% induction, 1-2%
maintenance, both in O,) and held them in a stereotactic frame for the entire surgery. Body
temperature was maintained using a heating pad. We used a SU-P2000 micropipette puller (World
Precision Instruments, WPI) to pull a glass capillary (1B100F-4, WPI) and preloaded the virus into
the micropipette. We performed a craniotomy centered on the injection coordinates using a round
carbide bur (0.7 mm in diameter; Fine Science tools # 19007-07). We infused 500nL of the viral
solution at each injection site at a rate of 150 nL/min. We waited for 5 min after each injection and

then slowly removed the glass capillary.

Next, we created a cranial window by removing a 5-mm-diameter skull flap (centered at AP
-2.5 AP, 2.7 ML) that was positioned over the right visual cortical area V1 and surrounding cortical
tissue. We covered the exposed cortical surface with a 5-mm-diameter glass cover slip
(#1 thickness, 64-0700, CS-5R, Warner Instruments) that was attached to a circular steel annulus
(1 mm thick, 5 mm outer diameter, 4.5 mm inner diameter; #50415K22 McMaster). We secured the
annulus to the cranium with ultraviolet-light curable cyanoacrylate glue (Loctite 4305). To enable
head-fixation during imaging sessions, we also cemented a metal head plate to the cranium using

dental acrylic. Imaging sessions began at 4 weeks after viral infusion.

Speed Benchmarking

We processed the mesoscope movies of Figure 4 with CAIMAN and EXTRACT. With both
algorithms, we divided the field-of-view area into spatial patches and performed an 8-fold temporal
downsampling for the cell-finding and refinement stages. Both algorithms process the individual
patches separately and have internal processes to stitch the results together prior to outputting

their final results. When running CAIMAN, we set the width of the spatial patches to be either 80 or
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120 (Figure 4B-D) pixels wide, with 10 pixels overlap. With EXTRACT (Figure 4B-E), we
processed most 2 mm X 2 mm movies on a single GPU using either 16 spatial patches (with each
patch slightly wider than 256 pixels, accounting for the overlap), or on multiple GPUs using 36
patches (each about 180 pixels in width). To allow fair comparisons with CAIMAN, in Figure 4C,D
we ran both algorithms on 18 CPU cores; with EXTRACT, we used up to 108 image patches, each
about 100 pixels in width. In other cases, the size of the spatial patches used with EXTRACT
depended on the RAM requirements. To emulate even larger datasets for the analyses of Figure

4F,G, we concatenated two or more portions of this movie in space and time.

PROCESSING ALLEN DATASET

Ca? videos from the Allen Brain Observatory (Figure 5) were originally 512 x 512 pixels in size
and about ~1 h in duration®, but before running EXTRACT we downsampled them to 256 x 256
pixels. We processed 199 movies as a batch, for which the key hyperparameters were tuned on a
typical movie. For the cell-finding and cell-refinement stages of EXTRACT, we temporally
downsampled the movies by a factor of 6, down to 5Hz, for but not for the final robust regression.
We capped the total number of cells EXTRACT that could initialize at either 1000 or 5 times the

number of cells found by the Allen SDK®", whichever value was smaller.

Given that the Allen SDK uses an unconstrained L, regression in its final estimation of Ca?*
activity traces, for the sake of making even-handed comparisons we first sought an improved set of
traces based on the cellular spatial profiles provided by the SDK. Specifically, we took these spatial
profiles and performed a non-negative least-squares (NNLS) regression to obtain a set of
estimated Ca?" activity traces. We then compared these traces to those provided by EXTRACT,
using robust regression and adaptive k estimation. We also took the spatial profiles provided by

EXTRACT and similarly performed a NNLS regression. In this way, we were able to isolate the
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distinct benefits of using robust regression for determinations of cells’ spatial profiles and activity

traces (Figure 5H). We then calculated trace quality metric values as explained above.

ANALYSES OF STRIATAL SPINY PROJECTION NEURAL ACTIVITY

For analyses of striatal neural activity, we used published datasets of Ca* activity in spiny
projection neurons, and to compute the spatial coordination index of neural activity we followed
closely the approach published in the original paper.

We first computed a matrix of centroid distances between each pair of cells in a movie and
detected Ca?* events from the output traces. To make even-handed comparisons between different
cell extraction algorithms, we examined an equal number of Ca?* events from the traces output by
the different cell extraction algorithms under evaluation. To do this, for each cell we first identified
the algorithm that output the smallest number of Ca?* events. We then selected the same number
of Ca?* events from the traces provided by the other algorithms for the same cell, with the events
chosen to be those with the largest amplitudes. Finally, we created a binarized event trace in which
we marked the as ‘active’ the 1-s-period surrounding each Ca®" event. The motivation for this
temporal expansion is that it improves the identification of spatially clustered neural activity, which
may not be perfectly synchronous, as described previously for these striatal recordings*’. For each
time point, using the centroid distance matrix, we obtained a histogram of pairwise centroid
distances for all pairs of active cells at each time point. We also performed the same computations
using shuffled versions of the same data in which the cells’ identification numbers were randomly
permuted. From these shuffled datasets, we obtained a null distribution by aggregating the
histograms of pairwise distances over 100 different permutations. For each time point, we then
compared the histogram of pairwise distances for the real data to the null distribution using a
one-sample Kolmogorov-Smirnov test with one tail, performed using MATLAB'’s kstest() function.

This allowed us to test statistically whether the pairwise centroid distances in the real data were
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less than expected by chance. We took the negative base-10 logarithm of the resulting p-value as
the spatial coordination metric (SCM). We compared the correlations between SCM values and the
mouse’s locomotor speed using the sets of cells that were matched across the outputs of CNMF-E,

CAIMAN, ICA, and EXTRACT (Figure 6F).

DETECTION OF DENDRITIC Ca** ACTIVITY

For the analyses of Figure S8, involving dendritic activity in cerebellar Purkinje and neocortical
pyramidal neurons®, we set the ‘dendritic awareness’ parameter in EXTRACT to 1. The default
setting for this parameter is 0; however, when this parameter is set to 1, EXTRACT no longer
discards candidate sources of Ca?" activity whose spatial areas or eccentricity values are
uncharacteristic of cell bodies. This setting allows EXTRACT to detect Ca?* activity sources, such

as dendritic segments, with a wide range of shapes.

The Ca* imaging data used for Figure S8C,D were acquired in studies of dendritic
excitation in neocortical pyramidal neurons®, for which processed data are publicly available®. To
process the raw Ca?* movies, we first temporally downsampled the Ca** videos from 31 fps to 7.75
fps and ran EXTRACT on the downsampled movies. For studies of Purkinje neuron dendrites, we
first sought to initialize EXTRACT with a reasonable set of candidate dendrites. To determine this
set, we first denoised the movie by performing a factor analysis, through a singular value
decomposition of the movie. We discarded the noise components of the movie, as determined
through the factor analysis, and spatiotemporally smoothed the resultant by convolving the movie
with a filter that was 3 time bins in duration and 3 pixels wide in both spatial dimensions. We ran
EXTRACT on the denoised, low-pass filtered movie version and used the resulting set of dendritic
spatial profiles as the starting point for another iteration of EXTRACT, as performed on a denoised

version of the movie that was spatially filtered as before but not temporally smoothed. Within both
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iterations of EXTRACT, we used the algorithm’s internal Butterworth spatial filtering in the
pre-processing module, but with greater filtering along the rostral-caudal dimension then the
medial-lateral dimension, to account for the rostral-caudal elongation of the Purkinje cell dendritic
trees. After the second iteration of EXTRACT, we visually inspected the results and retained the

larger dendritic segments with substantial Ca** activity.

ANALYSES OF VENTRAL HIPPOCAMPUS NEURAL ACTIVITY

Surgical Procedures

For microendoscopic Ca?* imaging studies of mouse ventral hippocampus, we conducted all
surgeries under aseptic conditions using a digital stereotaxic frame (David Kopf Instruments). We
used double-transgenic mice (tetO-GCaMP6s-2Niellld (JAX: 024742)* crossed with
Camk2a-tTA-1Mmay/DboJ (JAX: 007004)°) that expressed GcaMP6s in hippocampal pyramidal
neurons (and in other neural populations). We anesthetized the mice with isoflurane (5% induction,
1-2% maintenance, both in O,) in the stereotactic frame for the entire surgery. Body temperature
was maintained using a heating pad. A craniotomy centered on the injection coordinates was
performed using a trephine drill (1.0 mm in diameter). To prevent increased intracranial pressure
due to the insertion of the microendoscope, we aspirated brain tissue until the white fibers of the
corpus callosum became visible. Next, we slowly lowered a custom 0.6-mm-diameter
microendoscope probe (Grintech GmBH) to the stereotaxic coordinates —3.40mm AP, —3.75mm
ML, -3.75mm DV. We fixed the implanted microendoscope to the skull using
ultraviolet-light-curable glue (Loctite 4305). To ensure stable attachment of the implant, we inserted
two small screws into the skull above the contralateral cerebellum and contralateral sensory cortex
(18-8 S/S, Component Supply). We applied Metabond (Parkell) around both screws, the implant

and the surrounding cranium. Lastly, we applied dental acrylic cement (Coltene, Whaledent) on top
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of the Metabond, for the joint purpose of attaching a metal head bar to the cranium and to further
stabilize the implant. After surgery, we maintained the animal’s body temperature using a heating

pad until it fully recovered from anesthesia.

Mice recovered for 3-6 weeks, at which point we checked the brightness of GCaMP6s
expression using a miniature microscope (nVista HD, Inscopix, Inc.). If the expression was
sufficiently bright, a baseplate for repetitive mounting of the miniature microscope was fixed onto

the skull using blue-light curable composite (Pentron, Flow-It N11VI).

Ca? Imaging Sessions

During imaging studies of ventral CA1 pyramidal neurons, 6 individual mice explored a standard
elevated plus maze, comprising an elevated platform (72 cm above the floor) with two opposing
open (35cm x8cm), and two opposing closed arms [35 cm x 8cm, wall height: 23 cm] for a
duration of 10 min for 4 mice and 20 min for 2 other mice. To start the assay in a uniform manner,
we placed each mouse in the center of the platform (8 x 8 cm) facing a closed arm. Ambient

illumination in the open arms was 350-400 Lux.

Classification of Arm-coding Cells in the Ventral Hippocampus

We wrote custom MATLAB software to determine mouse trajectories within the elevated plus
maze, and we manually verified the accuracy of the estimated locations. For each mouse and
arm-type of the maze (viz., closed vs. open), we computed the mean value of each cell's Ca*
activity trace across all time bins in which the mouse occupied a given arm. For each cell, we
determined the difference, d, between the mean Ca*" activity levels for when the mouse occupied
closed vs. open arms of the maze. To perform shuffle controls, we performed the same
computations after circularly shifting the Ca?* trace of each cell by a random number of time bins.

We computed the activity differences, d, between open and closed arms of the maze for 1000
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different circular permutations, yielding a null distribution of d values for the shuffled datasets. We
classified a cell as closed- or open-arm coding, respectively, if its d value computed for the real
data was at the 95™ or higher percentile, or at the 5th or lower percentile, of the d values in the null
distribution. Cells with d values (determined from real data) that fell within the 5%—95% percentile

range were classified as non-coding.

Decoding of Mouse Locations from the Ca** Traces of Ventral CA1 Pyramidal Neurons

To quantify the mouse’s position in the elevated plus maze, we divided it into 5 spatial bins: left
arm, right arm, upper arm, lower arm and the stem. For our decoding analyses of the neural
activity, we first obtained the times and amplitudes of the Ca?" events by applying the
deconvolution and event detection routines described above to the traces output by the cell
extraction algorithms. We then temporally smoothed the deconvolved activity traces with a 0.5 s
running average, to avoid having traces in which many time bins exhibited no Ca*" activity. Ca*

event thresholds were set as noted above.

To create decoders, we trained support vector machines (SVM) to predict the spatial bins of
the mouse’s location based on the smoothed Ca** event traces. We used the templateLinear()
function in MATLAB with SVM learners, using ridge regularization with the regularization level set
through cross-validation studies. To prevent information leakage between the train and test sets
due to the smoothing of Ca?* event rates, we selected random time intervals (each 50 time bins =
2.5 s in duration), which in total comprised ~30% of the full datasets, to be used for decoder
testing. We used the remainder of the data for decoder training. In this way, we created 100
different divisions of the data from each imaging session into testing and training subsets, and we

averaged the decoding performance across these 100 instances.
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COMPUTER HARDWARE

To perform the benchmarking studies of Figures 3, S1-S6, and figures in Supplementary Note 1
and 3, we used a combination of several computers as detailed in Supplementary Note 4. For the
studies of Figure 4A-D, we used a desktop computer with two NVIDIA GeForce RTX 3090 GPUs
and an Intel Core(TM) i9-10980XE processor with 18 CPU cores. For Figure 4B, we ran
EXTRACT on Stanford’s High Performance Computing cluster (Sherlock) with 4-8 V100S_PCIE
GPUs. For Figure 4E,H, we used a desktop computer with an Nvidia Geforce RTX 3090 Ti GPU
and an Intel Core i9-9900X Skylake X 10-Core processor. For Figure 4F,G and Figure 5, we used
a desktop computer with two NVIDIA GeForce RTX 3080 Ti GPUs and an Intel Core(TM)
i9-10980XE processor with 18 CPU cores. For Figures 6,7, and S7, we used a desktop computer
with an Intel® Xeon(R) CPU E5-2637 v4 @ 3.50GHz x 16 processor and a single NVIDIA GTX
1080 GPU to process EXTRACT and CNMF-E outputs. We processed the CAIMAN outputs of
Figure 6 with an Intel Core i9-9900X Skylake X 10-Core processor. For Figure S8, we used a
desktop computer with Intel Core i9-9900X Skylake X 10-Core processor and a Nvidia Geforce

RTX 2070 GPU.

DATA AND STATISTICAL ANALYSIS
We performed all data analyses, statistical analyses, and simulations using MATLAB (Mathworks;
version R2017b for processing Figures 6 and 7, version R2019a for the rest). All statistical tests

were two-sided.

DATA AND CODE AVAILABILITY

The EXTRACT code is available in an open Github repository®®. The data are available from the

corresponding authors upon request. We used open source software for extracting individual cells
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and their activity traces from Ca?* videos using principal component and then independent

component analysis’™, constrained non-negative matrix factorization®2%® and extended CNMF-E®.
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FIGURE CAPTIONS

Figure 1. A robust estimation framework for extracting cells from Ca?* video datasets.

(A) To showcase a basic limitation of using standard L, estimation to infer Ca®* activity, we
simulated an example movie with one cell of interest plus one distractor cell, which is not explicitly
accounted for during the estimation process, i.e., with a corresponding spatial filter. Both cells had
binary-valued images. The value of e characterizes the time-dependent severity with which
fluorescence photons from the distractor cell are detected in movie pixels that overlap with the
image of the cell of interest. We analyzed the inference of Ca?" activity in the presence of the

distractor cell.

(B) Examples of actual, ground truth Ca?* traces for both cells in (A).

(C) Example results showing that L, estimation leads to inferred Ca?* activity for the cell of interest
that is contaminated by the activity of the distractor cell. The addition of an L, regularization penalty

shrinks the inferred activity toward zero uniformly but does not mitigate the crosstalk.

(D) With robust estimation, the activity trace of the cell of interest is accurately reconstructed
without explicit knowledge of either the existence or the spatiotemporal characteristics of the
distractor. Further, robust estimation infers the time-dependent level of contamination, €, from the

distractor cell onto the image of the cell of interest.

(E) Our computational model of a Ca®" video dataset represents the detected photons as
originating from spatially localized cellular sources with time-dependent emission intensities, plus
noise. Top, A movie dataset is treated as a three-dimensional matrix, M, that can be decomposed
into cells’ fluorescence emissions plus contributions from noise. The first component is the product

of the set of the cells’ spatial images, represented as a three-dimensional matrix, §, and their
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activity traces, represented as a two-dimensional matrix, T. The noise component, X, is additive,
can vary over space and time, and can have non-Gaussian components. Middle, A schematic
representation of the problem of inferring the cells’ time dependent fluorescence emission
amplitudes for a single time bin, i.e., one column of T, given M and S. Each frame of the movie, M,
is represented as a sum of the individual cell images, with each one weighted by the cell’s scalar
valued Ca?* activity at the selected time bin, plus noise. Bottom, A simple application of the above
model to a movie frame with one cell. Unlike conventional statistical approaches in which noise is
assumed to be Gaussian-distributed, here the noise can have an unknown, non-negative

contamination component that is subject to no other assumptions.

(F) Using a framework for robust statistical estimation, we identify a loss function, p, that achieves
optimal estimates with the least possible mean squared error (MSE) given the worst possible form
for the unknown noise distribution with support on [k,*). p has a quadratic dependence for negative
arguments and for positive arguments below a threshold value, k. For arguments greater than x, p
rises linearly; this is what renders robust estimation relatively impervious to occasional but large
non-negative noise contaminants, which typically skew conventional estimation procedures. Given
the movie, M, and an estimate of either its spatial or temporal components, § or T, estimating the
other component simply involves minimizing the residuals between the estimated and actual movie

data (see Methods).

(G) We compared 3 different approaches for estimating Ca®* traces. For each method, we allowed
the extraction algorithm to use the cells’ ground truth spatial profiles and computed the root mean
square error (RMSE) between the estimated and actual Ca?* traces. We assessed results using
fixed (red curves) or adaptively varying (blue curves) values of k. We also examined non-negative

least squares (NNLS) regression (purple lines). The datasets comprised simulated Ca* movies
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with 600 cells each. The graph has plots of RMSE™" as a function of either the fixed value of k or
the initial k value when adaptive k(x, t) estimation was used. The movie contained only Gaussian
noise, a small portion (5%) of which was correlated across nearby cells. Solid lines: results for
trace estimation when the movie reconstruction was performed using all cells’ spatial profiles.
Dashed lines: results when 20% of the cells were designated as distractors, whose spatial profiles

were not provided to the regression algorithm. Error bars: s.d. across 20 simulated movies.

(H-L) To illustrate in more detail how robust estimation successfully handles contaminants, these
panels depict analyses of a simulated movie with one target cell and one contaminant
(representing e.g. neuropil activation). Unlike in (A), ground truth images of both the cell and the

contaminant are continuously valued.

(H, I) To estimate the cell’'s activity trace, each frame is examined independently. For pixels at
which the cell's spatial filter, S, is non-zero, the pixel values from the filter are regressed against
those from the movie frame. Some of these pixels, (H), may overlap the footprint of the unknown
contaminant (3 example pixels of this kind are marked with red dots), but others are occupied
solely by the cell of interest (4 example pixels marked with green dots). The cell’'s activity level in
each movie frame is determined as the slope of the regression. Each datum in the regression plot,
(), corresponds to one pixel in the cell’'s spatial filter; the x-axis value denotes the pixel’s value in
the spatial filter, §; the y-axis value denotes the pixel's brightness in the movie frame under
analysis. The slope of the regression gives the cell’s estimated activity in this frame. Unlike
conventional linear regression, our implementation of robust regression uses an iterative approach
that handles outlier data points (i.e., from contaminant pixels) through two geometrically
interpretable steps. First, outlier data points (depicted in red; defined as those points whose

orthogonal distance to the regression line determined in the previous iteration is more than ) are

91


https://doi.org/10.1101/2021.03.24.436279
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.24.436279; this version posted August 17, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

projected to the edge of the non-outlier zone (green shading; red ellipses at the edge of the green
shading mark the projected values of the 3 red outlier points). Second, a conventional
least-squares regression is performed, but using the projected values determined in step one for
the outlier data points. This two-step process is iteratively repeated until the regression results
converge. Crucially, by projecting outlier data points to the edge of the non-outliner zone, robust

regression is ‘robust’ or impervious to the exact values of the outlier data.

(J-L) To estimate the cell’s spatial filter, the fluorescence activity within each pixel of the movie is
considered separately. Some pixels report the cell’'s dynamics at a high SNR, whereas other pixels
report the dynamics at low SNR values (see example pixels in (J) marked in navy blue and cyan,
respectively). To determine each pixel's contribution to the cell’s spatial filter, the cell's estimated
activity trace is regressed against the trace of the pixel’'s fluorescence dynamics (K). The cell’s
activity level in each movie frame is determined as the slope of the regression. Each datum in the
regression plot, (K), corresponds to one time point in the movie; the x-axis value denotes the cell’s
estimated activity level at that time point, T; the y-axis value denotes the pixel's brightness at that
same time point. The slope of the regression gives the pixel’s weight in the cell’s spatial filter. Thus,
pixels with high SNR reports of the cell’s activity yield regressions with substantial values of the
slope, (K), whereas low SNR pixels yield lower values of the slope, (L). As for trace estimation,
(H, 1), estimation of the spatial filter relies on a robust regression implemented in an iterative
manner with two main steps, projection of the outlier points to the edge of the non-outlier zone
(green shading in (K, L)) followed by a conventional linear regression using the projected values
(red and green ellipses) of the outlier data points. There are two main classes of outlier points.
Time bins at which the pixel reports contaminants from Ca*" activity sources outside the cell fall

near the y-axis (red data points in (K, L)). Additionally, for low SNR pixels, (L), the variance
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between the pixel's activity level and the estimate based on the cell’s activity trace can sometimes

exceed x (green data points above the green shading).

(M) A demonstration, using the same movie simulation protocol as in (G), that varying the
robustness margin, k, changes the estimated boundaries of the cells. Cell boundaries (orange
lines) are shown for analyses of identical Ca?* video data with different k values. For small
values, robust regression rejects from a cell’s spatial filter the pixels with low SNR versions of the
cell’s activity trace, as evidenced by the estimated cell boundaries lying within the actual ground
truth boundaries (purple lines; defined as contours 1.5 o from the centroid of each
Gaussian-shaped cell). As k increases, the estimated boundaries expand and can even lie outside

the actual cell boundaries. NNLS is equivalent to robust regression with an infinite value of k.
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Figure 2. Automated identification of neurons and their Ca** activity traces with EXTRACT

(A) The EXTRACT algorithm comprises an optional stage for preprocessing of the raw Ca®* videos,
followed by 3 primary stages of cell extraction. The preprocessing stage filters fluorescence
fluctuations at coarse spatial scales that arise from neuropil Ca?* activity. The robust cell finding
stage identifies and then extracts individual cells in an iterative manner, using robust estimation to
infer each cell's spatial and temporal weights. In the cell refinement stage, these weights are
updated through iterative, alternating refinement of first the spatial and then the temporal weights,
again using robust estimation. To attain the final estimated set of Ca?" activity traces, the final
robust regression stage employs adaptive estimations of each cell's baseline activity level and

time-dependent «k value.

(B) Robust cell finding is an iterative procedure that identifies individual cells in a successive
manner. At each iteration, a seed pixel is chosen that attains the maximum fluorescence values
among all the pixels, and a cell image is initialized around it. Next, this image and the cell’s activity
trace are iteratively updated via alternating applications of robust estimation. When this process
converges, the cell’'s estimated fluorescence contributions to the Ca** video are subtracted from the
movie, and then the entire process repeats for another cell. This procedure continues until the
identified seed pixel has a maximum instantaneous SNR that falls below a minimum threshold, as

determined by examining the s.d. of the pixel’s intensity fluctuations across the entire movie.

(C) Cell refinement is also an iterative procedure. At each iteration, the set of estimated Ca** traces
is updated via robust estimation while holding fixed the cell images; the cell images are then
updated using robust estimation while holding fixed the activity traces; a set of quality metrics is
computed for each putative cell, and putative cells for which one or more metric values lies below a

minimum threshold are eliminated from EXTRACT’s final output.
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(D) The final robust regression is a trace regression (see Figure 11), performed using the spatial

filters obtained from the cell refinement stage.
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Figure 3. Benchmarking EXTRACT vs. state-of-the-art methods on simulated Ca** movies.

(A—H) To evaluate EXTRACT against other widely used cell extraction methods, we created
datasets of simulated one- and two-photon Ca?* videos (~4 TB in total), over a range of imaging
conditions. Table S1 describes 33 different numerical experiments we did. lllustrative results from

experiments 12, 7, 2, 28 and 17 are respectively shown in panels (B), (C, D), (E), (F), and (G, H).

(A) Left, An example simulated one-photon movie with 600 cells (left) is shown, with the cells’
footprints encircled in purple. 6 example cells whose activity patterns are shown in the right panel
are encircled in white. Right, Ground truth (GT; black traces) and estimated Ca?* activity traces
obtained from EXTRACT (blue traces), CAIMAN (red traces), and via a non-negative least-squares
regression of the cells’ ground truth spatial filters against the Ca?* movie (GT-NNLS; purple traces),

for the 6 numbered labels in the left panel.

(B) To compare the cell finding capabilities of EXTRACT and CAIMAN, we simulated a two-photon
Ca? movie with 600 cells. We then performed a precision-recall (PR) curve analysis by varying
each algorithm’s hyperparameters in a nearly exhaustive manner (via grid search) and plotting the
cell identification metrics, i.e., 1—precision and recall, for each method and set of hyperparameter
values (Methods). EXTRACT was nearly impervious to the choice of hyperparameters and yielded
a higher value of the area under the PR curve (AUC). Notably, EXTRACT achieved a 100% rate of
identifying true positive cells with a 97% precision; CAIMAN reached the same mark only with a
70% precision. Dashed lines: median values of the true positive rate for each method, across the
range of false positive rates and using a variable x-axis bin size to account for variations in the

density of data points.

(C, D) We used 6 different quality metrics to compare the cell finding (C) and trace estimation (D)

capabilities of EXTRACT and CAIMAN on simulated one-photon Ca?* videos across a wide range
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of cell densities. Error bars: s.d. over 20 simulated movies for each cell density value. For all 6

quality metrics, EXTRACT outperformed CAIMAN, especially for movies with high cell density.

(C) The cell-finding precision is defined as the number of correctly identified cells divided by the
total number of candidate cells returned by the algorithm. Recall is defined as the number of
correctly identified cells divided by the total number of actual cells in the movie. F1 score is a

summary metric equal to the harmonic mean of the precision and recall.

(D) Under realistic, non-ideal conditions, the detection threshold needed to capture 100% of the
real Ca?* events also leads to a non-zero rate of false positive detection, which in turn depends on
the severity of crosstalk between overlapping sources of Ca?" signals. To assess the accuracy of
crosstalk mitigation, we computed the area under the PR curve describing the tradeoff between the
detection of true and false positive Ca?* events as the Ca*" event detection threshold is varied
(Methods). To compute the accuracy of signal amplitude estimation, for each cell identified in the
movie we computed the Pearson's correlation coefficient between the estimated and actual Ca*
traces at the (actual) occurrence times of the cell's Ca®* events. We then determined the mean
correlation coefficient, averaged across all identified cells. Finally, we computed a trace quality
metric (TQM; validated in Figure S3) that assesses both signal amplitude estimation and crosstalk
mitigation but does not require ground truth data and so can also be applied to real experimental
data (Figures 5H, 6D,E and 7G, H). The TQM is determined as the mean Pearson's correlation
coefficient, averaged across all detected cells, between a template of each cell’'s image and the

individual Ca®* movie frames at the times of the cell’s detected Ca** events (Methods).

(E) To assess whether EXTRACT’s superior cell finding arises primarily from its use of a robust
loss function, or, alternatively, from other aspects of its computational implementation, we

compared EXTRACT to the use of a traditional L, loss function, which we implemented in the
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EXTRACT pipeline by using a fixed robustness margin, k, of a very high value (x = 100). Thus,
this comparison selectively isolates the performance impact of using the robust loss function.
Across simulated one-photon Ca?* videos with 3 different cell densities, EXTRACT consistently
achieved more accurate cell finding, showing the virtue of using robust regression. Insets: Cropped

maximum projection images showing typical levels of cell overlap at the 3 density levels.

(F) We tested whether EXTRACT can facilitate cell extraction in even the extreme scenario in
which the image footprint of one cell is fully encapsulated by that of another cell, we simulated a
Ca?* video with such two cells. EXTRACT correctly identified both cells and accurately estimated

their Ca?* traces without crosstalk.

(G, H) To evaluate the Ca?* activity traces from EXTRACT to those produced by a state-of-the-art
post-processing algorithm intended to improve cell activity traces that may suffer from cross-talk,
we simulated two-photon Ca?* movies and performed cell extraction using CNMF and EXTRACT.
Next, we ran the SEUDO post-processing algorithm to obtain putatively denoised traces, initializing
SEUDO with the spatial filters provided by EXTRACT and CNMF. For comparison, we also tested
the quality of Ca?* traces found by using the same spatial filters together with either a robust or a
conventional NNLS regression. For the resulting 7 different scenarios, we determined the accuracy
of signal estimation (G) and crosstalk mitigation (H) for the estimated Ca?* traces. EXTRACT
achieved the highest values of both quality metrics, without any post-processing. The application of

SEUDO after EXTRACT lowered both quality metrics.

Box-and-whisker plots in (E), (G), and (H) show results from 20 different conditions, denoted by
individual data points; red lines denote median values; boxes span the 25th to 75th percentiles;
whiskers extend to 1.5 times the interquartile range. Statistical comparisons between results of

different algorithms were two-sided Wilcoxon signed-rank tests (*p < 0.05, **p < 1072, ***p < 1073).
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Figure 4. Fast and scalable processing of large-scale imaging datasets with EXTRACT.

(A-D) To benchmark EXTRACT’s speed and scalability relative to the Python implementation of
the CNMF algorithm (CAIMAN), we studied large-scale Ca?* videos of densely labeled cortical
pyramidal cells expressing soma-targeted jGCaMP8s that were acquired at 30 Hz using a

laser-scanning two-photon mesoscope' with a 2 mm x 2 mm field-of-view (FOV).

(A) Maximum projection image of a Ca®" video (~2 hr duration; 200,000 frames) from the
mesoscope. Inset: Magnified view of the tissue area boxed in red, showing a region with densely
labeled neocortical pyramidal neurons (~6000 cells per mm?). The blue solid lines mark the

boundaries of cells found by EXTRACT.

(B, C) Left, we first determined EXTRACT and CAIMAN runtimes on movies of short duration
(10,000 frames), using variable numbers of GPUs and CPU computing cores with a fixed FOV (2
mm X 2 mm), (B), or across a range of FOV sizes but with fixed computing resources (specified in
the legend), (C). Runtimes for both algorithms declined with greater use of distributed computing
(B) and increased with larger FOV (C). Right, we performed the same tests on movies with 30,000
frames. CAIMAN, but not EXTRACT, showed longer runtimes with more CPU cores, (B), indicative
of a deleterious phenomenon called memory thrashing. For both short and long movies, the speed

differences between two algorithms became more apparent as the FOV got larger, (C).

(D) To evaluate runtime scaling on large movies, we processed movies with 2,000-200,000
frames. On a desktop computer with 256 GB RAM memory, CAIMAN failed to process movies
bigger than 120 GB (~30,000 frames). Notably, for movies with >10,000 frames, EXTRACT was

faster when run on 2 GPUs than on 18 CPU cores.
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(E) To determine how the EXTRACT runtime reflects the times consumed by its internal substeps
(Fig. 2A), we processed movies with a 2 mm x 2 mm FOV and either 10,000 or 100,000 frames
using 1 GPU. The pie charts show the relative time consumed by each EXTRACT module. Notably,
for movies with 100,000 frames, the movie upload times increased the most dramatically. Error

bars: s.d. over 36 spatial partitions of the full 2 mm x 2 mm video.

(F, G) To further test the scalability of EXTRACT, we created synthetic datasets by dividing or
concatenating video data from the 2 mm x 2 mm, 200,000 frame video from (A), in both space and
time. We processed the resulting movies with EXTRACT using 2 GPUs and analyzed the times
spent on each step of EXTRACT. In line with results in (E), movie upload times dominated those of
the other steps. (F) Top, as the FOV became larger, EXTRACT used more spatial partitions, and
each partition consumed a similar runtime. Bottom, after uploading the movies, EXTRACT required
~0.7 s per cell per 1 hr recording per GPU, i.e., 0.35 s with 2 GPUs. (G) Top, as the number of
frames increased, EXTRACT took longer to process each partition. Bottom, with increasing number
of frames, EXTRACT runtimes per cell per hour of recording per GPU decreased to ~0.65 s,
implying increased efficiency with longer movies. Black points in (F, G) show results from individual

spatial partitions of the movie.
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Figure 5. EXTRACT analyses of the Allen Brain Observatory Ca®* imaging datasets.

(A—C) Cell maps obtained by applying EXTRACT or the Allen Software Development Kit (SDK) to
data from an example imaging session from the Allen Institute Brain Observatory. 86 cells colored
green are those found by the SDK; EXTRACT also found all of these cells. Additional cells found
by EXTRACT are colored blue; in total, EXTRACT identified 243 neurons. Estimated Ca?" activity

traces for the 10 neurons marked with numerals in (A) are shown in (B, C).

(D, E) Spatial images, (D), and estimated Ca?* activity traces, (E), for 20 example cells that were

identified by EXTRACT but not the Allen SDK.

(F-K) To benchmark EXTRACT’s speed and cell extraction accuracy across diverse conditions, we
ran EXTRACT on 199 movies from the Allen SDK in 23.1 hrs. To assess the unique contribution of
the robust loss to the cell extraction quality, as in Fig. 3, we also processed the same datasets

using EXTRACT but with the robust regression replaced with a conventional L, loss function.

(F) Venn diagram showing the net numbers of regions of interest output by EXTRACT, the Allen
SDK, and the L, solver determined over 199 imaging datasets. (See Methods for how cells were

matched across the different output sets).

(G) Box-and-whisker plots characterizing, for each of the 199 imaging sessions, the (left) fraction of
cells found by the Allen SDK that were also found by EXTRACT or the L, solver, and (right) the
numbers of cells found by these two methods divided by the number found by the SDK. We used
hyperparameters that were optimized for a single imaging session and then applied uniformly to
the other 198 sessions. EXTRACT consistently surpassed the L, solver, detected nearly all cells
found by the Allen SDK, and identified ~3.5 times the numbers of Ca?" sources as the SDK. In

panels (G) and (H), *** denotes p < 10~ using a two-sided Wilcoxon signed-rank test,
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(H) Box-and-whisker plots of the trace quality metrics (Fig. 3; Methods) for the estimated Ca**
activity traces, averaged across all cells identified by the EXTRACT, the L, solver, and the Allen
SDK. Statistically, EXTRACT yielded higher quality traces than the Allen SDK, the L, solver, and
from the application of a non-negative least squares (NNLS) regression performed using the spatial
filters from EXTRACT. Mean and s.e.m. values for EXTRACT: 0.280 + 0.002, EXTRACT + NNLS:

0.277 + 0.002, L, solver: 0.276 =+ 0.002, and Allen SDK: 0.2640 + 0.002.

(I) Box-and-whisker plot of the EXTRACT runtime (including the movie upload time) using a single
GPU, divided by the movie duration across the 199 imaging sessions. Runtimes were typically ~10

times faster than the duration of each Ca?* movie.

(J) Box-and-whisker plots showing the runtimes of each of EXTRACT’s modules relative to the

Ca?* movie duration for the 199 movies.

(K) Scatter plot of EXTRACT runtimes using 1 GPU versus the number of cells found by
EXTRACT. Each datum shows results from one of the 199 movies. Red line: Linear regression to
the data (

= 3.4mins + 0.008* Nce o R? = 0.91), implying that it took ~11.4 mins to find

t
runtime i

1000 cells, or ~0.65 s per cell per movie hour per GPU, in accord with results of Fig. 4.

Box-and-whisker plots in (G—-J) show results from 199 movies; red lines denote median values;
boxes span the 25th to 75th percentiles; whiskers extend to 1.5 times the interquartile range; data

points denote results from individual movies.
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Figure 6. Evaluations of EXTRACT, CNMF-E, and ICA for the analysis of Ca®** imaging data

from direct and indirect pathway striatal spiny projection neurons (dSPNs and iSPNs).

(A) Example maps of direct pathway spiny projection neurons (dSPNs) virally expressing
GCaMP6m, as identified by EXTRACT, CNMF-E, and ICA from a representative, freely behaving
mouse. 20 example cells found by each of the algorithms are marked with numerals. Data are from
Ref.*°. Note the greater size of the cells’ spatial footprints as estimated by CNMF-E, in accord with

illustrations in Fig. 1M.

(B) Estimated Ca?* activity traces for the 20 example cells marked in panel (A).

(C) Magnified views of the Ca?" activity traces for an individual example cell, a dSPN, as
determined by the 3 different algorithms, allowing detailed qualitative assessments of the outputs
at specific time points. Instances of missed Ca?* activity (MA), crosstalk from a nearby cell (CT)
and correctly identified Ca?* transients (OK) are highlighted on the traces; alongside are image
frames from the Ca?* videos at the relevant time points, with the cell of interest shown in green and
its immediate neighbors shown in gray. A spatial bandpass filter was applied to the images frames
to enhance visualization (Methods). Colored dots mark mistakes in the estimated Ca*" activity
trace; green dots mark instances in which the Ca*" activity trace is correct. Traces from ICA
commonly exhibited missed Ca?* transients. Traces from ICA and CNMF-E both had visible
crosstalk from nearby cells, which led to incorrect estimation of Ca* event amplitudes and
identification of false-positive events. (Compare Events A and B, for which CNMF and ICA wrongly

estimated the Ca?* event amplitudes).

(D, E) To test the quality of dSPN and iSPN Ca?* traces, we calculated trace quality metrics (Fig. 3,
Methods) for cells matched across 4 algorithms (EXTRACT, ICA, CNMF-E, and CAIMAN).

(D) Scatter plots show values of the trace quality metric for individual cells (black data points) for
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EXTRACT and the other 3 methods. EXTRACT consistently yielded higher quality traces across
nearly all of the matched cells. (E) Plots (black lines and points) of the mean trace quality metric for
individual mice, averaged over all cells extracted in each mouse, for the 4 different extraction

algorithms. Colored bars show the mean values, averaged across mice.

(F) As in Ref.*, for each time point of the Ca?* videos we computed a spatial coordination metric
(SCM) that characterized the extent to which neurons exhibited spatially clustered activity
(Methods). Ca*" activity traces from EXTRACT yielded significantly greater Spearman correlation

coefficients between the SCM values and locomotor speeds.

Data in (D-F) were from an identical set of 9 mice (for dSPNs) or or 11 mice (iISPNs). *p < 0.05,

**p <10, ***p < 1073 n.s. = not significant; two-sided Wilcoxon signed-rank tests.
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Figure 7. EXTRACT enables superior identification of anxiety-coding cells in ventral CA1.

(A) We used the integrated, miniature fluorescence microscope and an implanted microendoscope
to image the somatic Ca?* activity of pyramidal neurons expressing the Ca?* indicator GCaMP&6s in

the ventral portion of the CA1 hippocampal subfield in freely behaving mice.

(B) Mice navigated an elevated plus maze (EPM) consisting of two open arms and two arms

enclosed with walls.

(C, D) We analyzed the Ca?" videos using EXTRACT or CNMF-E, a variant of CNMF that is better
suited for one-photon Ca?* imaging. Panel (C) shows a map of pyramidal cells found by one or both
of the two algorithms. A majority of detected cells were found by both algorithms, although
EXTRACT identified a greater number of cells. 20 example cells found by both methods are
marked with yellow numerals; panel (D) shows Ca?" activity traces for these cells, as estimated by
EXTRACT and CNMF-E. 10 of the neurons (left) were preferentially active when the mouse was in
one of the closed arms (periods marked in light green). The other 10 cells (right) were preferentially

active when the mouse was in one of the open arms (periods marked in pink).

(E) Many pyramidal cells in ventral CA1 were preferentially active when the mouse was in either
the closed or open arms of the maze, as illustrated across this panel for an example cell that was
more active when the mouse was in a closed arm. Left, Maps of the EPM showing the mouse’s
locations (black dots) at which the cell exhibited a Ca?* transient, as detected using EXTRACT and
CNMF-E. The area of each dot is proportional to the peak magnitude of the corresponding Ca?
transient. Right, The cell’s traces of Ca?" activity, as determined by the two extraction algorithms.
The abbreviation ‘OK’ above the traces marks Ca?* transients (green dots) that were correctly
found by both methods. ‘CT’ marks instances of crosstalk in the trace from CNMF-(pink dots). The

pink and light green shading respectively indicate periods when the mouse was in the open and

105


https://doi.org/10.1101/2021.03.24.436279
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.24.436279; this version posted August 17, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

closed arms of the maze. Images below the traces are from individual image frames and show the
activity of the example cell (outlined in green) and its immediate neighbors (outlined in gray). Note
the false transients reported by CNMF-E when the mouse is in the open arm, yielding the incorrect

impression that the cell is active on both the closed and open arms.

(F) We identified cells that encoded the arm-type of the EPM using the Ca*" traces output by each
algorithm for the recordings from 6 different imaging sessions (N = 3 mice) (Methods). EXTRACT
yielded a greater proportion of cells that encoded the arm-type than CNMF-E, across all extracted
cells and for cells found by both methods (Wilcoxon signed-rank test; *p < 0.05). Black data points

and lines denote data from individual imaging sessions.

(G, H) Trace quality metrics (Fig- 3, Methods) computed for cells matched across the outputs of
EXTRACT and CNMF-E from 6 different imaging sessions. (G) Scatter plot of the trace quality
metric for individual cells (black data points) for EXTRACT and CNMF-E. EXTRACT consistently
yielded higher quality traces for nearly all cells. (H) Values of the mean trace quality metric for
individual mice (black lines and points), averaged over all cells found in each mouse, for the 2

different algorithms. Colored bars show the mean values, averaged across 6 imaging sessions.

(I, J) We divided the EPM into 5 spatial bins. We used support vector machine classifiers to predict
the mouse’s spatial bin based on the Ca?" events detected in traces from either EXTRACT or
CNMF-E. Panel | shows the locomotor trajectory of an example mouse, color-coded so each of the
5 bins is shown in a distinct color. Panel (J) shows mean decoder accuracies (colored bars),
averaged over 6 imaging sessions with 3 different mice and 100 random splits of the data into
decoder training and testing portions. EXTRACT led to superior classification of mouse location.

Black data points and lines denote results from individual imaging sessions.

In (F), (H), (J), * indicates p<0.05, two-sided Wilcoxon signed-rank test, n = 6 imaging sessions.
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Table S1: List of 33 computational experiments performed to benchmark EXTRACT

| No | Experiment description | Figure Panels | Algorithms
I. Benchmarks testing the need for the robust estimation framework
1 Need for the robust estimation of Ca2+ activity traces Fig 1G, Fig S1E| EXTRACT, Inan et al., 2017
2 Need for the robust loss function in cell extraction Fig 3E EXTRACT
3 Validation of cell refinement procedures with a robust Fig S4B EXTRACT
loss function
4 Faster cell refinement with robust loss function under iid | Fig A5 EXTRACT
Gaussian noise
5 Need for the robust estimation of cells’ spatial profiles and Fig S4C,D EXTRACT
activity baselines '
6 Changing the robustness parameter during cell finding Fig S4E EXTRACT
Il. Benchmarking EXTRACT against the state-of-the-art cell extraction algorithms
7 Bgnghmarking EXTRACT against CAIMAN on movies F!g 3A,CD, EXTRACT, CAIMAN
with independently firing neurons Fig S2, S3A
8 Benc_:hmarklr)g EXTRACT agglnst CAIMAN on low SNR Fig S38B EXTRACT, CAIMAN
movies with independently firing neurons
9 Bgnchmarkmg EXTRACT against CAIMAN on movies Fig S3C EXTRACT, CAIMAN
with correlated neurons
10 Bgnch_markmg E.XTRACT.age_unst CAIMAN on movies Fig S3D EXTRACT, CAIMAN
with high neuropil contamination and correlated neurons
11 Bgnchmarkmg EXTRACT against CAIMAN on movies Fig A8 EXTRACT, CAIMAN
with short duration
12 Hyperparameter search and precision-recall curves Fig 3B, S4A EXTRACT, CAIMAN
13 | Suboptimality of averaging pixel activities inside ROls Fig A2 EXTRACT
14 Benchmarking SEUDO on ground truth cell profiles Fig A10 EXTRACT, SEUDO
15 | Benchmarking SEUDO on mismatched cell profiles and | Fig A10 EXTRACT. SEUDO
varying levels of neuropul contamination ’
16 Benchmarking SEUDO on mismatched cell profiles with Fig A10 EXTRACT. SEUDO
varying levels of profile qualities '
17 Comparison of EXTRACT against SEUDO as post- Fig 3G,H, EXTRACT. CNMF. SEUDO
processing tools on movies with varying cell SNRs S5A.B.C.E.F ’ ’
18 Comparilson of EXTRACT aga_lnst SE_UDO as pos.tj Fig S5E,F EXTRACT, CNMF, SEUDO
processing tools on movies with varying cell densities ’
Comparison of EXTRACT against SEUDO as post- )
19 | processing tools on movies without a substantial neuropil | Fig SS5E,F EXTRACT, CNMF, SEUDO
contamination . .
20 Compal_’lson§ of MATLAB based cell extraction algorithms Fig A EXTRACT, CNMF, ICA
on movies with varying SNRs
21 Comparisons of MATLAB based cell extraction algorithms
parisons , 9 Fig A9 EXTRACT, CNMF, ICA
on movies with varying SNRs and donut shaped neurons
lll. Validation experiments for EXTRACT’s constraints and algorithmic choices
22 Empirical validation of the theoretical Ca?* activity trace Fig A1 EXTRACT
estimation errors
23 Empirical validation of the non-negativity constraint Fig A3 EXTRACT
24 Empirical validation of the spatial high-pass filtering Fig A4 EXTRACT
25 Emp!rlc_al validation of .the temporal downsampling during Fig S6C EXTRACT
cell finding and cell refinement
IV. Benchmarks testing the limits of EXTRACT
26 Comparisons with varying cell radii Fig A6 EXTRACT, CNMF, ICA
27 Robustness to increased spatiotemporal correlations Fig S6A,B EXTRACT, CAIMAN
28 Demixing of activities in the extreme limit: cells Fig 3F EXTRACT
encapsulated by other cells
29 | Testing robust trace estimation under rigid motion Fig S6D EXTRACT
with ground truth spatial profiles
30 Testing_ EXTRACT’_S _ceII fin_ding and trace estimation Fig A7 EXTRACT, CNMF
capabilities under rigid motion
V. Speed benchmarks for the fast solver
31 EXTRACT as a fast NNLS solver Fig S6E EXTRACT
32 Scalability of EXTRACT’s solver with increasing FOV Fig S6E EXTRACT
33 Benchmarking _EXTRACT s speed against SEUDO as Fig S5D EXTRACT, SEUDO
a post-processing tool

Table S1
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Table S1. List of 33 computational experiments performed to benchmark EXTRACT.

To benchmark EXTRACT, we ran 33 separate computational experiments, in which we evaluated
the performance of EXTRACT against those of two other widely used cell extraction algorithms,
CAIMANZ (both the MATLAB and Python implementations) and PCA-ICA', and a state-of-the-art
algorithm for denoising neural Ca?* activity traces, SEUDO?. The table contains a description of
each experiment, the algorithms compared, and the figure panels. Appendix Figs. 1-4 are in

Supplementary Note 1, and Appendix Figs. 5-10 are in Supplementary Note 3.
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Figure S1. Evaluations of activity trace estimation, using either robust regression with

adaptive x estimation or conventional regression methods.

(A, B) We simulated the same scenario as in Fig. 1, with one neuron of interest (outlined in black)
and another overlapping ‘distractor’ neuron (outlined in red). We simulated ground truth Ca*
activity traces for both cells, shown in black and red, respectively, under the assumption that their
dynamics were independent and the traces had an SNR value of 5 (Methods). Panels (A) and (B)

differ only with regard to the degree of spatial overlap in the two cells’ footprints.

(C, D) For the two scenarios shown in (A) and (B), in panels (C) and (D), respectively, we inferred
the Ca?* activity trace for the neuron of interest using either robust regression (green traces) or

L,-regression with L,-regularization (pink traces).

For the robust regression, we systematically varied the robustness margin, k, which characterizes
the expected level of non-Gaussian noise contamination, between 0.2—100 (fop 5 traces). We also
performed a version of robust regression in which the value of k was estimated in an adaptive
manner (bottom trace). Smaller values of k led to reduced Ca? transient amplitudes in the inferred
activity trace; this effect was substantially more pronounced at times when the distractor cell was
active. Consequently, reduced values of k suppressed crosstalk from the distractor more than it
suppressed the estimated activity of the cell of interest. Varying k in an adaptive manner across
time yielded the best result, in accord with the fact that the level of crosstalk from the distractor cell

also varied across time and was maximal when the distractor cell was most active.

For L,-regularized L,-regression, we varied the regularization penalty, A, between 0-0.3. Larger
values of A indiscriminately suppressed the contributions of both the distractor cell and the cell of

interest to the inferred activity trace.
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(E) We repeated the analysis of Fig. 1G, but with four different relative proportions of target and
distractor cells (20%, 40%, 60% and 80% target cells, respectively, for the results shown left to
right in the four columns of the figure panel; 600 cells per movie). More distractor cells leads to
more (non-Gaussian) crosstalk in the activity traces of the target cells. We evaluated results from
robust regression using either fixed®® (red curves) or adaptively varying values of k (blue curves),
and from a traditional non-negative matrix factorization (NMF) of the movie data under an
assumption of Gaussian noise (dashed gray curves). For each data point, the x-axis value of all
plots denotes either the fixed value of x used (red points) or the k value used to initialize the
adaptive k estimation (blue points). We evaluated the algorithms using 3 different performance
metrics, the correlation coefficient between the estimated and ground truth activity traces (bottom
row), the accuracy of signal amplitude estimation (middle row), and the accuracy of crosstalk
mitigation (top row). (The caption to Fig. 3D has the definitions of the latter two performance
metrics). Because NMF does not involve x, for each graph the mean performance of NMF is
marked with a horizontal line. Robust regression with adaptive x estimation led to the most
accurate estimation of Ca?* traces, which was nearly insensitive to the initial value of x in all cases.

Error bars: s.d. across 20 simulated movies.

(F) Plot of the mathematical relationship between the level of non-Gaussian noise contamination, e,
and the ground truth value of the robustness margin, kgr, in our robust estimation framework (see
Supplementary Note 2). When the level of non-Gaussian contamination is near zero, the
robustness margin becomes large, implying that regression with our robust loss function behaves
similarly to an L,-estimator. However, when € is high, indicating high levels of non-Gaussian noise
contamination, the robustness margin attains low values, skewing the loss function to reject

positively valued contaminants.
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Figure S2. Example sets of estimated Ca* traces for a simulated one-photon Ca* video.

Using the one-photon Ca?* video of Fig. 3A with 600 neurons, we extracted neurons and their
activity traces using either EXTRACT, CNMF-E (as implemented in CAIMAN), or a non-negative
least squares regression using the cells’ ground truth spatial filters (GT-NNLS). For 15 example
neurons, this figure shows the actual, ground truth Ca?" activity traces (black traces) and the 3
different estimated traces (colored traces) for each of the neurons. Cells 1-6 are the same as
those in Fig. 3A, but plotted over an extended duration. Estimated traces from CNMF-E exhibited a
lot of false positive activity, as well as missed Ca?* transients, i.e., false negative Ca?" activity. For
visualization purposes only, we normalized all traces by their peak values to account for differences
between the algorithms in how they calculate the amplitudes of AF/F activity. The magnitude of the

vertical scale bar refers to the AF/F activity levels in the ground truth traces.
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Figure S3. Performance evaluations of cell extraction and trace estimation by EXTRACT and

CAIMAN.

To compare the performances of EXTRACT (blue curves), CAIMAN (red curves) and non-negative
least squares regression using the cells’ actual (ground truth) spatial footprints (GT-NNLS; purple
curves), we simulated one- and two-photon Ca?* imaging datasets over a wide range of different
conditions. The field-of-view was fixed at 400 um x 400 ym, but the simulated datasets had varying
cell densities, levels of spatially correlated spiking, neuropil contamination levels, and SNR values
for the Ca?" activity traces (see Table S1). The left three columns of plots show performance
metrics for cell finding; since the NNLS approach used the cells’ actual spatial footprints, there
were no cell-finding metrics for this method. The right three columns show metrics for the
estimation of Ca?" activity traces. In all metrics, EXTRACT outperformed CAIMAN, especially for

datasets with high cell densities. See Fig. 3 and Methods for definitions of performance metrics.

(A, B) Performance metrics for simulated one- and two-photon Ca?* videos with independently
spiking cells and 5% correlated noise (see Section Simulated Ca? Imaging Datasets in Methods).
The simulated Ca?* transients had a minimum SNR value of 4 in the videos of (A) and 2.5 in those

of (B).

(C, D) Performance metrics for simulated one- and two-photon Ca?" videos of neurons with
correlated spiking and Ca* transients with a minimum SNR value of 4. In (C), the level of

spatiotemporally correlated noise was 5%, and in (D) it was 30%.

Error bars: s.d. across 20 simulated movies.
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Figure S4. The superior performance of EXTRACT arises from its reliance on robust

regression methods, not just a superior software implementation of cell extraction routines.

(A) Additional results for the computational experiment of Fig. 3B, which compares the cell finding
capabilities of EXTRACT (blue data) and CAIMAN (red data) via a precision-recall (PR) curve
analysis for cell identification while varying each algorithm’s hyperparameters in a nearly
exhaustive manner (Methods). The top row of plots shows the PR curves across different values
of the threshold used to determine when an algorithm has successfully found a cell, as applied to
the Pearson’s correlation coefficient between the cell’'s estimated and actual spatial footprints. (In
Fig. 3B, we used a threshold value of 0.5). The bottom row of plots shows a magnified view of the
leftmost side of each plot in the top row, showcasing that EXTRACT was nearly impervious to the
choice of hyperparameters and consistently yielded higher values of the area under the PR curve

(listed for each algorithm beneath each column of plots).

(B) To test whether the superiority of EXTRACT might arise from a better implementation of the cell
extraction pipeline, rather than its use of robust statistics, we compared EXTRACT (blue data)
against a conventional L, solver (red data) that was implemented identically as EXTRACT but
without the use of robust regression (realized in practice by setting k = 100; Methods). We
simulated one- and two-photon Ca?" movies with 600 cells and 5% correlated noise, and we
examined the performance metric values of EXTRACT and the L, solver across iterations of cell
refinement, for both cell finding (left three columns) and Ca?* trace estimation (right two columns).
Crucially, the use of robust regression consistently led to higher values of all performance metrics
and generally reduced the number of iterations needed for convergence. See Fig. 3 and Methods

for definitions of the performance metrics.
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(C, D) Plots of crosstalk mitigation accuracy, (C), and signal amplitude estimation accuracy, (D), for
4 different approaches to cell extraction. In all 4 approaches, we first ran EXTRACT to obtain the
cells’ spatial filters using its robust regression methods. To find the final set of Ca?* traces, we then
performed the final regression using either: EXTRACT with adaptive k and baseline estimation
(blue data); conventional least squares (L,) regression (purple data); non-negative least squares
(NNLS) regression (implemented in EXTRACT by setting x = 100; red data); NNLS regression
with adaptive baseline estimation (orange data). With all 4 approaches, we used varying levels of
L, regularization during determination of the cell's Ca?* activity traces. All raw movie data were
pre-processed identically, with identical spatial highpass filtering, prior to the application of the 4
different cell extraction methods. In the left plots of each panel, we varied the value of the L,
regularization parameter. In the right plots, we varied the minimum SNR value of the cells’ Ca**
transient amplitudes (Methods). Higher values of the L, regularization parameter lead to sparse
assignment of Ca?* events between neighboring cells, which is beneficial for discarding duplicates.
NNLS performed the poorest, and its results do not even appear in one of the graphs because they
are so low. Whereas, NNLS with adaptive baseline estimation outperformed least-squares,
showing the utility of estimating the cells’ baseline activity values separately from the estimation of

Ca?* transients. EXTRACT performed best.

(E) Plot of the F1 score for cell finding, for the simulated one-photon movie datasets of Fig. 3A,
across varying k values, without adaptive k estimation. The graph shows that cellfinding benefits
from the use of relatively small k values, which promotes the discarding of false-positive candidate

cells. Error bars: s.d. across 20 simulated movies.
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Figure S5. Post-processing Ca®* activity traces with SEUDO did not improve trace

estimation quality when cell filters were accurately estimated with robust regression.

We evaluated a state-of-the-art approach to post-processing of Ca?* activity traces, SEUDO?, by
comparing metrics of activity trace quality for Ca®* traces that were estimated in one of seven
different ways, by using: (i) EXTRACT; (ii) CNMF; SEUDO using as inputs the cells’ spatial filters
provided by (iii) EXTRACT or (iv) CNMF; non-negative least squares regression (NNLS) using
cells’ spatial filters provided by (v) EXTRACT or (vi) CNMF; (vii) robust regression using spatial

filters provided by CNMF.

(A—C) To optimize SEUDO, we first simulated a two-photon Ca?* movie with high levels of neuropil
contamination (Supplementary Note 4) and then extracted cells with CNMF or EXTRACT. Then,
we initialized SEUDO with the cell filters from CNMF, (A), and EXTRACT, (B), and performed a grid
search across the space of hyperparameters used by SEUDO. The graphs show the cumulative
distributions of signal amplitude estimation accuracies (left plots) and crosstalk mitigation
accuracies (right plots) across all sets of SEUDO hyperparameters, starting with spatial filters from
CNMF (top plots) or EXTRACT (botfom plots). The vertical dashed lines in each plot mark the
accuracy metric values of CNMF or EXTRACT without using SEUDO. When used with CNMF,
SEUDO required fine-tuning of its hyperparameters but was able to improve the estimated Ca*
activity traces. When used with EXTRACT, SEUDO degraded the estimated activity traces in all
cases. Panel C has scatter plots showing values of the two trace quality metrics for each set of
SEUDO hyperparameters, when SEUDO was applied to spatial filters from CNMF (top) or
EXTRACT (bottom). Each datum corresponds to an individual set of hyperparameter values. The

data points labeled with a red x mark the SEUDO hyperparameter sets used in (E), (F) and in Fig.
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3G, H and were picked to maximize the accuracy of crosstalk mitigation while also providing a

signal estimation accuracy within 0.5% of this metric’s highest value.

(D) Plots of the speed of robust regression relative to that of SEUDO, across two-photon Ca?
movies (160 um x 160 pm field-of-view) of varying densities of target cells (fop; 1000 movie
frames) or duration (bottom; 50 target cells). In all cases, the number of distractor cells plus target
cells tallied to 150. SEUDO took 1 to 2 orders of magnitude longer to run and scaled far more
poorly with large datasets than the fast robust solver we introduced for EXTRACT?®®. For instance,
with 150 cells, EXTRACT’s robust solver, as run on 1 GPU, was ~75 times faster than SEUDO, as

run on 18 CPU cores. Error bars: s.d. over 10 movies.

(E, F) To benchmark the 7 approaches to trace estimation listed above, we simulated two-photon
Ca?* movies with varying levels of the activity trace SNR, numbers of cells, and levels of neuropil
contamination (Methods). Numbers of cells and SNR levels are given in each graph; the graphs
with green and blue axes are for movies, respectively, with and without neuropil contamination.
Box-and-whisker plots show the values of the trace quality metrics obtained for 20 different movies,
denoted by individual data points; red lines denote median values; boxes span the 25th to 75th
percentiles; whiskers extend to 1.5 times the interquartile range. Statistical comparisons between
algorithms were two-sided Wilcoxon signed-rank tests (*p < 0.05, **p < 1072 ***p < 107%),

EXTRACT performed best under all conditions tested when both metrics were evaluated.
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Figure S6. EXTRACT retains high performance across diverse experimental conditions.

(A, B) We evaluated the capability of EXTRACT to find cells, A, and estimate Ca?* traces, B, when
cells’ activity patterns were spatiotemporally correlated. For this test, we simulated two-photon Ca?*
movies (400 um x 400 pm; 600 cells) with varying levels of synchronized spiking across all cells in
the field-of-view (Methods). Movies had either 1000 or 5000 image frames (termed short and long
movies, respectively). With higher levels of synchronized spiking, the recall metric for cell finding
declined, as did the signal amplitude estimation accuracy, although these effects were mitigated for
movies of the longer duration. Error bars: s.d. over 20 movies. See Fig. 3 and Methods for
definitions of the performance metrics. Inset: Cropped maximum projection image showing a

typical level of cell overlap at the density level used for these simulation studies (3750 cells/mm?)

(C) We examined the extent to which cell finding by EXTRACT was impervious to a use of
temporally downsampled Ca* movies as inputs. We simulated two-photon Ca?* movies with a
30 Hz frame rate and Ca?** transients with an exponential decay time-constant of 1 s, at 3 different
SNR values for the Ca?* traces. We ran EXTRACT on different versions of these movies with
varying degrees of temporal downsampling. The top row of graphs shows the precision (left) and
recall (right) of cell finding for downsampling factors ranging from one (no downsampling) to 30
(one sample every second). EXTRACT found cells well with sampling frequencies as low as 2 Hz,
which is about the Nyquist frequency for sampling at the Ca®* transient decay rate. The bottom
graph shows the processing speed of EXTRACT, normalized to its processing speed for the

30-Hz-movie, as a function of the downsampling factor. Error bars: s.d. over 10 movies.

(D) To evaluate the extent to which Ca®* trace estimation by EXTRACT was resilient to the
presence of brain motion in the Ca?* movies, as manifested by rigid lateral displacements of the

field-of-view, we simulated two-photon Ca?" movies with varying degrees of rigid motion (400 ym x
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400 pm; 600 cells). Lateral displacements of the specimen comprised a sudden lateral jump in a
randomly chosen direction, followed by an exponential relaxation in time back to the original
position. Jumps were introduced at a randomly chosen 5% of the movie frames (Methods). For
each movie, we initialized trace estimators for 80% of the cells in the movie and obtained the
estimated Ca?* traces via robust regression implemented in EXTRACT. The graphs show
performance metrics for Ca®" trace estimation as a function of the maximum amplitude for the
sudden jumps. EXTRACT was resilient to the presence of jumps of ~6.5 ym, about half the width of
a cell, but, when larger jumps were introduced into the Ca?* movies, crosstalk mitigation declined
and true Ca®" signals were incorrectly rejected as outliers. Thus, while EXTRACT can
accommodate moderate levels of brain motion artifact, we recommend correcting for brain motion
by performing image registration across all frames of a Ca?* movie as a pre-processing step before

running EXTRACT. Error bars: s.d. over 20 movies.

(E) To test whether our custom fast ADMM-based solver (Supplemental Note 2) provides accurate
results even when the density of cells is high (which increases the complexity of the regression due
to the presence of highly correlated predictors), we compared the non-negative traces provided by
our solver (in the limit xk—oo, practically x = 100) with those provided by the Isqglin solver of
MATLAB (Mathworks). The plots show the speed of our solver relative to that of the MATLAB
solver, across Ca®" movies with varying densities of cells (fop; 160 um x 160 um field-of-view) and
movie widths (bottom; cell density fixed at 3,906 cells/mm?). EXTRACT was both faster and scaled
better with increasing dataset size. Error bars are s.d. over 20 and 10 movies for the top and

bottom graphs, respectively.
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Figure S7. EXTRACT detects spiny projection neurons in multi-plane two-photon imaging

data acquired in dorsal striatum.

(A) We re-analyzed previously published datasets* in which we had used dual-color, multi-plane
two-photon imaging to track the Ca®* dynamics of spiny projection neurons of the basal ganglia’s
direct and indirect pathways (dSPNs and iSPNs) in the dorsomedial striatum of head-fixed mice at
liberty to walk or run on awheel. Both neuron-types expressed GCaMP6m, but only dSPNs
expressed an additional red fluorophore, tdTomato. Within each mouse we sampled SPN Ca?

dynamics within four different optical focal planes spaced 15 um apart in the axial dimension.

(B) We ran EXTRACT on the Ca» imaging data acquired from each of the four different planes.
Following cell extraction, we identified each neuron as either an iSPN or a dSPN according to

whether the cell expressed tdTomato or not, in addition to GcaMP6m.

(C) An example cell identified in all four planes. After running EXTRACT, we merged multiple
instances of single cells on different planes based on correlations among spatial and temporal

components across planes.

(D-F) The identified components of a representative set of 10 dSPNs and 10 iSPNs. (D) Cell
images for iSPNs (left) and dSPNs (right). (E) Ca= traces of the dSPNs shown in (A) with matching

cell IDs. (F) Ca> traces of the iSPNs shown in (A) with matching cell IDs.

(G, H) We used support vector classifiers in conjunction with regularized linear regression to detect
movement and predict the locomotor speed simultaneously, using the detected events from the
AF/F traces of the algorithm output. (G) When we deployed this method for iSPNs and dSPNs
separately, we observed that the estimated locomotor speed tracked very closely the actual speed

on a held-out test portion of the data with both populations. (H) We quantitatively measured the
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prediction performance by computing the Pearson’s correlation coefficient between the predicted
and the actual locomotor speed on randomly held-out test data over repeated runs. By using either

iSPN or dSPN population activity, we could reach reasonably high correlation values, consistent

with Ref.4,
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Figure S8. EXTRACT identifies dendritic Ca=> activity in cerebellar Purkinje and neocortical

pyramidal neurons in live mice.

(A, B). Cell maps of cerebellar Purkinje neuron dendritic trees (left panels), along with the
extracted spatial forms (middle panels) and corresponding Ca= traces (right panels) for 10 example
cells in each of two mice, as obtained by applying EXTRACT to Ca= activity datasets acquired in
live mice with a two-photon mesoscope'. EXTRACT found the dendritic trees of 507, (A), and 646,

(B), Purkinje neurons in the two mice.

(C, D) Analogous panels to those in (A), (B) but for Ca=» videos acquired with a conventional
two-photon microscope in the layer 1, apical dendrites of neocortical pyramidal neurons in live
mice. EXTRACT found 860 dendritic segments, (C), and 905, (D), dendritic segments for layer 2/3

and layer 5 pyramidal neurons, respectively, in the two mice.
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Figure S9. A visual guide to EXTRACT’s internal workings and hyperparameters.

We designed six tutorials to help new users adopt EXTRACT, each of which provides a deep look
into a distinct aspect of EXTRACT. Besides the cell extraction routine, EXTRACT’s Github
repository®® includes helper functions to facilitate pre-processing of Ca®* imaging movies and
visually inspect the cell extraction results. Supplementary Note 5, a detailed user manual, utilizes

the six tutorials and discusses the codebase.
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