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Abstract 

How functional MRI (fMRI) data are analyzed depends on the researcher and the toolbox used. It 

is not uncommon that the processing pipeline is rewritten for each new dataset. Consequently, code 

transparency, quality control and objective analysis pipelines are important for improving reproducibility 

in neuroimaging studies. Toolboxes, such as Nipype and fMRIPrep, have documented the need for and 

interest in automated pre-processing analysis pipelines. Recent developments in data-driven models 

combined with high-resolution neuroimaging datasets have strengthened the need not only for a 

standardized preprocessing workflow but also for a reliable and comparable statistical pipeline. Here, we 

introduce fMRIflows: a consortium of fully automatic neuroimaging pipelines for fMRI analysis, which 

performs standard preprocessing, as well as 1st- and 2nd-level univariate and multivariate analyses. In 

addition to the standardized pre-processing pipelines, fMRIflows provides flexible temporal and spatial 

filtering to account for datasets with increasingly high temporal resolution and to help appropriately 

prepare data for advanced machine learning analyses, improving signal decoding accuracy and reliability. 

This paper first describes fMRIflows’ structure and functionality, then explains its infrastructure and 

access, and lastly validates the toolbox by comparing it to other neuroimaging processing pipelines such 

as fMRIPrep, FSL and SPM. This validation was performed on three datasets with varying temporal 

sampling and acquisition parameters to prove its flexibility and robustness. fMRIflows is a fully 

automatic fMRI processing pipeline that uniquely offers univariate and multivariate single-subject and 

group analyses as well as pre-processing.  

 

Keywords: Python, neuroimaging, data processing, pipeline, reproducible research 
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1 Introduction 

Functional magnetic resonance imaging (fMRI) is a well-established neuroimaging method used to 

analyze activation patterns in order to understand brain function. A full fMRI analysis includes 

preprocessing of the data, followed by statistical analysis and inference of the results, usually separated 

into 1st-level analysis (the statistical analysis within subjects) and 2nd-level analysis (the group analysis 

between subjects). The goal of preprocessing is to identify and remove nuisance sources, measure 

confounds, apply temporal and spatial filters and to spatially realign and normalize images to make them 

spatially conform (Caballero-Gaudes and Reynolds, 2017). A good preprocessing pipeline should 

improve the signal-to-noise ratio (SNR) of the data, ensure the validity of inference and interpretability 

of results (Ashburner, 2009), reduce false positive and false negative errors in the statistical analysis and 

therefore improve the statistical power. 

Even though the consequences of inappropriate preprocessing and statistical inference are well 

documented (Strother, 2006; Power et al., 2017b), most fMRI analysis pipelines are still established ad-

hoc, subjectively customized by researchers to each new dataset (Carp, 2012). This usage can be 

explained by the circumstance that most researchers, by habit or lack of time, stick with the 

neuroimaging software at-hand or reuse and modify scripts and code snippets from colleagues and 

previous projects, and do not always adapt their processing pipelines to the newest standard in 

neuroimaging processing. Rehashing processing pipelines is associated with problems like persisting 

bugs in the code and delays in updating individual analysis steps to the most recent standards. This can 

lead to far-reaching consequences. Of course, the constant updating of pipelines to the newest standards 

and software also bears the risk of introducing new bugs and might lead to the pitfall of blindly trusting 

new untested procedures. 

One solution to tackle this issue will require code transparency, good quality control and collective 

development of well-tested objective analysis pipelines (Gorgolewski et al., 2016). Recent years have 

brought some important reformations to the neuroimaging community that go in this direction. 

First, the introduction of Nipype (Gorgolewski et al., 2011) made it easier for researchers to 

switch between different neuroimaging toolboxes, such as AFNI (Cox and Hyde, 1997), ANTs (Avants 

et al., 2011), FreeSurfer (Fischl, 2012), FSL (Jenkinson et al., 2012), and SPM (Friston et al., 2006). 

Nipype together with other software packages such as Nibabel (Brett et al., 2018) and Nilearn (Abraham 

et al., 2014) opened up the whole Python ecosystem to the neuroimaging community. Code can be 

shared between researchers via online services such as GitHub (https://github.com), and the whole 

neuroimaging software ecosystem can be run on any machine or server through the use of container 

software such as Docker (https://www.docker.com) or Singularity (https://www.sylabs.io). Combined 

with a continuous integration service such as CircleCI (https://circleci.com) or TravisCI (https://travis-

ci.org), this allows the creation of easy-to-read, transparent, shareable and continuously tested open-

source neuroimaging processing pipelines. 
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Second, the next major advancement in the neuroimaging field was the introduction of a common 

dataset standard, such as the NIfTI standard (https://nifti.nimh.nih.gov/). This was important for the 

formatting of neuroimaging data. The neuroimaging community gathered together in a consortium to 

define a standard format for the storage of neuroimaging datasets, the so-called Brain Imaging Data 

Structure (BIDS) (K. J. Gorgolewski et al., 2016). A common data structure format facilitates the sharing 

of datasets and makes it possible to create universal neuroimaging toolboxes that work out of the box on 

any BIDS-conforming dataset. Additionally, through services like OpenNeuro (K. J. Gorgolewski, 

Esteban, Schaefer, Wandell, & Poldrack, 2017), a free online platform for sharing neuroimaging data, 

one can test the robustness and flexibility of a new neuroimaging toolbox on hundreds of different 

datasets. 

Software toolboxes like MRIQC (Esteban et al., 2017) and fMRIPrep (Esteban et al., 2019) have 

shown how fruitful this new neuroimaging ecosystem can be and have highlighted the importance and 

need for good quality control and high-quality preprocessing workflows with consistent results from 

diverse datasets. Given the recent developments in the field of data-driven analyses to decode brain states 

from fMRI time series, there is an increased need for reliable and reproducible statistical analysis of 

fMRI data, the fundamental input of more advanced machine learning methods, such as Multi-Voxel 

Pattern Analysis (MVPA) and Convolutional Neuronal Networks (CNNs). Here, we propose an 

alternative to existing workflows developing to a fully automated pipeline for univariate and multivariate 

individual and group analyses.      

fMRIflows provides flexible temporal and spatial filtering, to account for two recent findings in 

the data-driven model field. First, flexible spatial filtering can become of importance when performing 

multivariate analysis, as it has been shown that the correct spatial band-pass filtering can improve signal 

decoding accuracy (Sengupta et al., 2018). Second, correct temporal filtering during pre-processing is 

important and can lead to an improved signal-to-noise ratio (SNR), especially for fMRI datasets with a 

temporal sampling rate below one second (Viessmann et al., 2018), but only if the filter is applied 

orthogonally to the other filters during pre-processing to ensure that previously removed noise is not 

reintroduced into the data (Hallquist et al. 2013; Lindquist et al., 2019). Due to technical improvements 

in imaging recording through acceleration techniques such as GRAPPA (Griswold et al., 2002) and 

simultaneous multi-slice/multiband acquisitions (Feinberg et al., 2010; Moeller et al., 2010; Feinberg and 

Setsompop, 2013), faster sampling rates became possible, to the point that respiratory and cardiac signals 

can be sufficiently sampled in the BOLD signal. This creates new challenges for the pre-processing of 

functional images, especially when the external recording of those physiological sources cannot be 

readily achieved.       

fMRIflows presents a consortium of fully automatic neuroimaging pipelines for fMRI analysis, 

performing standardized pre-processing, as well as 1st- and 2nd-level statistical analyses for univariate 

and multivariate analysis, with the additional creation of informative quality-control figures. fMRIflows 

is predicated on the insights and code base of MRIQC (Esteban et al., 2017) and fMRIPrep (Esteban et 
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al., 2019), extending their functionality with regard to the following aspects: (a) flexible temporal and 

spatial filtering of fMRI data, i.e. low- or band-pass filtering allowing for the exclusion of high-

frequency oscillations introduced through physiological noise (Viessmann et al., 2018); (b) accessible 

and modifiable code base; (c) automatic computation of 1st-level contrasts for univariate and multivariate 

analysis; and (d) automatic computation of 2nd-level contrasts for univariate and multivariate analysis.  

In this paper, we (1) describe the different pipelines included in fMRIflows and illustrate the 

different processing steps involved, (2) explain the software structure and setup, and (3) validate 

fMRIflows’ performance by comparing it to other widely used neuroimaging toolboxes, such as 

fMRIPrep (Esteban et al., 2019), FSL (Jenkinson et al., 2012) and SPM (Friston et al., 2006). 

 

2 Materials and Methods 

2.1.1 fMRIflows’ processing pipelines 

The complete code base of fMRIflows is open access and stored conveniently in six different 

Jupyter notebooks on https://github.com/miykael/fmriflows. The first notebook does not contain any 

processing pipeline, but rather serves as a user input document that helps to create JSON files, which will 

contain the execution-specific parameters for the five processing pipelines contained in fMRIflows: (1) 

anatomical preprocessing, (2) functional preprocessing, (3) 1st-level analysis, (4) 2nd-level univariate 

analysis and (5) 2nd-level multivariate analysis. Each of these five pipelines stores its results in a sub-

hierarchical folder, specified as an output folder by the user. In the following section, we explain the 

content of those six Jupyter notebooks. 

 

Specification preparation 

Each fMRIflows processing pipeline needs specific input parameters to run. Those parameters range 

from subject ID and number of functional runs per subject to requested voxel resolution after image 

normalization, etc. Each notebook will read the relevant specification parameters from a predefined 

JSON file that starts with the prefix “fmriflows_spec”. There is one specification file for the anatomical 

and functional preprocessing, one for the 1st and 2nd level univariate analysis, and one for the 2nd-level 

multivariate analysis. For an example of these three JSON files, see Supplementary Note 1. The first 

notebook contained in fMRIflows, called 01_spec_preparation.ipynb, can be used to create those JSON 

files, based on the provided dataset and some standard default parameters. It does so by using Nibabel 

v2.3.0 (Brett et al., 2018), PyBIDS v0.8 (Yarkoni et al., 2019) and other standard Python libraries. It is 

up to the user to change any potential processing parameter should they be different from the used 

default values.Anatomical preprocessing 

The anatomical preprocessing pipeline is contained within the notebook 02_preproc_anat.ipynb and 

uses the JSON file fmriflows_spec_preproc.json for parameter specification such as voxel resolution. If a 

specific value is not set, fMRIflows normalizes to an isometric voxel resolution of 1 mm3 by default. 
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However, the user can also choose an anisometric voxel resolution that varies in all three dimensions. 

Additionally, the user can decide to have a fast or precise normalization. The precise normalization can 

take up to eight times as long as the fast approach but can provide a more precise alignment. Visual 

inspection on performed normalization is always desirable since both normalization algorithms may fail 

in case of a noisy dataset or undetected artifacts. For an example of the JSON file content, see 

Supplementary Note 1. 

The anatomical preprocessing pipeline only depends on the subject-specific T1-weighted (T1w) 

anatomical images as input files. The individual processing steps are visualized in Figure 1 and consist 

of: (1) image reorientation, (2) cropping of field of view (FOV), (3) correction of intensity non-

uniformity (INU), (4) image segmentation, (5) brain extraction and (6) image normalization. For a more 

detailed description of the steps involved in this processing pipeline, see Supplementary Note 2. 

 

 

Figure 1: Depiction of fMRIflows’ anatomical preprocessing pipeline. Arrows indicate dependency 
between the different processing steps and data flow. Name of each node describes functionality, with 
the corresponding software dependency mentioned in brackets. 
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Functional preprocessing 

The functional preprocessing pipeline is contained within the notebook 03_preproc_func.ipynb and 

uses the JSON file fmriflows_spec_preproc.json for parameter specification. As for specification 

parameters, users can indicate if slice-time correction should be applied or not, and if so which reference 

timepoint should be used. The user can also indicate to which isometric or anisometric voxel resolution 

functional images should be sampled to, and if the sampling is into subject or template space. For the 

template space, the ICBM 2009c nonlinear asymmetric brain template is used (Fonov et al., 2011). 

Furthermore, users can specify possible values for low-, high- or band-pass filters in the temporal or 

spatial domain. Additionally, to investigate nuisance regressors, users can specify the number of 

CompCor (Behzadi et al., 2007) or independent component analysis (ICA) components they want to 

extract and which threshold values they want to use to detect outlier volumes. The implications of those 

parameters will be explained in more detail in the following sections. For an example of the JSON file 

content, see Supplementary Note 1. 

Inputs of the functional preprocessing pipeline depend on the output files from the anatomical 

preprocessing pipeline, as well as the subject-specific functional images and accompanying descriptive 

JSON file that contains information about the temporal resolution (TR) and slice order of the functional 

image recording. This JSON file is part of the BIDS standard and therefore should be available in the 

BIDS conform dataset. The individual processing steps are schematized in Figure 2 and consist of: (1) 

image reorientation, (2) non-steady-state detection, (3) creation of functional brain mask, (4) slice time 

correction, (5) estimation of motion parameters, (6) two-step estimation of coregistration parameters 

between functional and anatomical image, (7) finalization of motion parameters, (8) single-shot spatial 

interpolation applying motion correction, coregistration and if specified normalizing images to the 

template image, (9) construction and application of brain masks, (10) temporal filtering and (11) spatial 

filtering. It is important to mention that the functional preprocessing is done for each functional run 

separately to prevent inter-run contaminations. For a more detailed description of the steps involved in 

this processing pipeline, see Supplementary Note 3. 
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Figure 2: Depiction of fMRIflows’ functional preprocessing pipeline. Arrows indicate dependency 
between the different processing steps and data flow. The name of each node describes the functionality, 
with the corresponding software dependency mentioned in brackets. Steps that can be grouped into 
specific sections are contained within a red box to facilitate understanding of the pipeline. The color of 
the arrows indicates if the connection stays within a section (red) or not (blue). Nodes depicted as gray 
boxes indicate that they can be run multiple times with iterating input values, i.e. performing a spatial 
smoothing with an FWHM value of 4 and 8mm. 
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1st-level analysis 

The first-level analysis pipeline is contained within the notebook 04_analysis_1st-level.ipynb and 

uses the JSON file fmriflows_spec_analysis.json for parameter specification. As for specification 

parameters, users can indicate which nuisance regressors to include in the GLM, if outliers should be 

considered, and if the data is already in template space or if this normalization should be done after the 

estimation of the contrasts. Users can also specify other GLM model parameters, such as the high-pass 

filter value and the type of basis function that should be used to model the hemodynamic response 

function (HRF). Additionally, the users will also specify a list of contrasts they want to be estimated, or 

if they want to create specific contrasts for each stimulus column in the design matrix, and/or for each 

session separately, which then later might also be used for multivariate analysis. For an example of the 

JSON file content, see Supplementary Note 1. 

The 1st-level analysis pipeline depends on a number of outputs from the previous anatomical and 

functional preprocessing pipelines, i.e. the TSV (tab separated value) file containing motion parameters 

and confound regressors, a text file indicating the number of non-steady-state volumes removed from the 

functional image, and a text file containing a list of indexes identifying outlier volumes. Additionally, the 

1st-level analysis pipeline also requires BIDS conform events files containing information on the applied 

experimental design, including types of conditions and their respective onsets and durations. The 

individual processing steps included in the 1st-level analysis consist of: (1) collecting preprocessed files 

and model relevant information, (2) model specification and estimation, (3) univariate contrast 

estimation, (4) optional preparation for multivariate analysis, (5) optional spatial normalization of 

contrasts (Figure 3). All of the relevant steps, that is model creation, estimation and contrast computation 

are performed with SPM version 12. For a more detailed description of the steps involved in this 

processing pipeline, see Supplementary Note 4. 
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Figure 3: Depiction of fMRIflows’ 1st-level analysis pipeline. Arrows indicate dependency between 
the different processing steps and data flow. The name of each node describes the functionality, with the 
corresponding software dependency mentioned in brackets. Sections that can be grouped into specific 
sections are contained within a red box to facilitate understanding of the pipeline. The color of the arrows 
indicates if the connection stays within a section (red) or not (blue). Nodes depicted in green are optional 
and can be run if spatial normalization was not yet performed during preprocessing. 
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2nd-level univariate analysis 

The second-level univariate analysis pipeline is contained within the notebook 05_analysis_2nd-

level.ipynb and uses the JSON file fmriflows_spec_analysis.json for parameter specification. Users can 

specify the probability value used as a cutoff for the threshold of the GM probability tissue map in 

template space that is later used during the model estimation. Additionally, users can specify voxel- and 

cluster-threshold topological thresholding of the statistical contrast, as well as relevant AtlasReader 

(Notter et al., 2019) parameters for the creation of the output tables and figures. 

The 2nd-level univariate analysis pipeline depends only on the estimated contrasts from the 1st-

level univariate analysis. No further contrast specification is required as fMRIflows currently only 

implements a simple one-sample T-test. The individual processing steps included in the 2nd-level 

univariate analysis consist of: (1) gathering of the 1st-level contrasts, (2) creation and estimation of the 

2nd-level model, (3) estimation of contrast estimation, (4) topological thresholding of contrasts, (5) 

results creation with AtlasReader. As for the 1st-level analysis, all of the relevant model creation, 

estimation and contrast computations are performed with SPM12. For a more detailed description of the 

steps involved in this processing pipeline, see Supplementary Note 5. 

 

2nd-level multivariate analysis 

The second-level multivariate analysis pipeline is contained within the notebook 

06_analysis_multivariate.ipynb and uses the JSON file fmriflows_spec_multivariate.json for parameter 

specification. Users can define a list of classifiers to use for the multivariate analysis, the sphere radius 

and the step size of the searchlight approach. To perform a 2nd-level analysis of searchlight results users 

can decide between a classical GLM approach testing against chance level and a more recommended 

permutation-based method as described in Stelzer, Chen, & Turner (2013) with the option of determining 

the number of permutations. Additionally, users can specify voxel- and cluster-threshold topological 

thresholding of the statistical contrast, as well as relevant AtlasReader parameters for the creation of the 

output tables and figures. 

The 2nd-level multivariate analysis pipeline depends on the estimated contrasts from the 1st-level 

multivariate analysis, the associated CSV file containing a list of the corresponding contrast labels and a 

list of binary classification identifiers. In contrast to the other notebooks, this notebook uses Python 2.7 

to accommodate the requirements of PyMVPA v2.6.5 (Hanke et al., 2009). The individual processing 

steps included in the 2nd-level multivariate analysis consist of: (1) data preparation for the analysis with 

PyMVPA, (2) searchlight classification, (3) computation of group analysis using a T-test, (4) 

computation of group analysis according to Stelzer et al. (2013), and (5) results creation with 

AtlasReader. For a more detailed description of the steps involved in this processing pipeline, see 

Supplementary Note 6. 
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2.1.2 Infrastructure and access to fMRIflows 

The source code of fMRIflows is available at GitHub (https://github.com/miykael/fmriflows) and 

is licensed under the BSD 3-Clause “New” or “Revised” License. The code is written in Python v3.7.2 

(https://www.python.org), stored in Jupyter Notebooks v4.4.0 (Kluyver et al., 2016) and distributed via 

Docker v18.09.2 (https://docker.com) containers that are publicly available via Docker Hub 

(https://hub.docker.com). The usage of Docker allows the user to run fMRIflows on any major operating 

system, with the following command: 

 

docker run -it -p 9999:8888 -v /home/user/ds001:/data miykael/fmriflows 

 

The first flag -it indicates that the docker container should be run in interactive mode, while the 

second flag -p 9999:8888 defines the port (here 9999) that we want to use to access the Jupyter Notebooks 

via the web-browser. The third flag, -v /home/user/ds001:/data tells fMRIflows the location of the BIDS-

confirm dataset that should be mounted in the docker container, here located at /home/user/ds001. Once 

the docker container is launched, the interactive Jupyter Notebooks can be accessed through the web 

browser. Further detailed documentation can be found in the github repository. 

fMRIflows uses many different software packages for the individual processing steps. 

Specifically, this entails the following: Nipype v1.1.9 (Gorgolewski et al., 2011), FSL v5.0.9 (Smith et 

al., 2004), ANTs v2.2.0 (Avants et al., 2011), SPM12 v7219 (Penny et al., 2011), AFNI v18.0.5 (Cox 

and Hyde, 1997), Nilearn v0.5 (Abraham et al., 2014), Nibabel v2.3.0 (Brett et al., 2018), PyMVPA 

v2.6.5 (Hanke et al., 2009), Convert3D v1.1 (https://sourceforge.net/p/c3d), AtlasReader v0.1 (Notter et 

al., 2019) and PyBIDS v0.8 (Yarkoni et al., 2019). In addition to some standard Python libraries, 

fMRIflows also uses Numpy (Oliphant, 2007), Scipy (Jones et al., 2001), Matplotlib (Hunter, 2007), 

Pandas (McKinney and others, 2010) and Seaborn (http://seaborn.pydata.org). 

With every new pull request pushed to the GitHub repository of fMRIflows, a test instance on 

CircleCI (https://circleci.com) is deployed to test the complete code base for execution errors. This 

framework allows the continuous integration of new code to fMRIflows, and guarantees the general 

functionality of the software package. Outputs are not controlled for their correctness. 

 

2.1.3 Validation of fMRIflows 

fMRIflows was validated in two phases. In Phase 1, we validated the proficiency of the toolbox by 

applying it on different kinds of fMRI datasets conforming to the BIDS standard (K. J. Gorgolewski et 

al., 2016) available via OpenNeuro.org (Gorgolewski et al., 2017). Insights during this phase allowed us 

to improve the code base and make fMRIflows robust to a diverse set of datasets. In Phase 2, we 

compared the performance of the toolbox to similar neuroimaging preprocessing pipelines such as 

fMRIPrep, FSL, and SPM. To better understand where fMRIflows overlaps or diverges from comparable 
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processing pipelines, we investigated the preprocessing, subject-level and group-level outcomes for all 

four toolboxes, run on three different datasets. 

 

Phase 1: Proficiency validation 

To investigate the capabilities and flaws of the initial implementation of the toolbox, fMRIflows 

was run on different datasets, either available publicly via OpenNeuro.org or available privately to the 

authors. Such an approach allowed the exploration of datasets with different temporal and spatial 

resolutions, SNRs, FOVs, numbers of slices, scanner characteristics, and other sequence parameters, 

such as acceleration factors and flip angles. 

 

Phase 2: Performance validation 

To validate the performance of fMRIflows, we used three different task-based fMRI datasets and 

compared its preprocessing to the three neuroimaging processing pipelines/software packages fMRIPrep, 

FSL and SPM. The comparison was done on preprocessing, subject-level and group-level outputs. 

Because of differences in how FSL and SPM perform subject- and group-level analyses and due to the 

lack of such routines in fMRIPrep, all subject- and group-level analyses for the performance validation 

were performed using identical Nistats routines. 

The three datasets (see Table 1) were all acquired on scanners with a magnetic field strength of 3 

Tesla and differ in many sequence parameters, most notably in the temporal resolution with which they 

were recorded. This is especially important as we aim to highlight that the right handling of temporal 

filtering is crucial for datasets with a temporal resolution below 1000ms. 

 

Table 1: Overview of the datasets used to validate fMRIflows. 
Dataset TR2000 TR1000 TR600 

Temporal resolution 2000ms 1000ms 600ms 

Spatial resolution 3.5 x 3.5 x 3.3 2.0 x 2.0 x 2.4 3.0 x 3.0 x 3.0 

Number of slices 36 64 24 

Slice Order Descending Unknown Interleaved 

Coverage Whole brain Whole brain Slab 

Volumes per run 275 453 600 

Number of runs 4 4 6 

Acceleration Factor None 4 3 

Magnetic strength 3 Tesla 3 Tesla 3 Tesla 

Number of subjects 12 20 17 

Sequence type 2D-EPI Multi-Band SMS 

Task Audio-visual memory task Mixed gamble task Audio-visual observation task 

Data Availability  OpenNeuro.org 
 (ds001345, v 1.0.1) 

 OpenNeuro.org 
 (ds001734, v.1.0.4) 

 OpenNeuro.org (will be made   
available after publication of 

experimental work) 
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Dataset TR2000 has a comparably low temporal sampling and spatial resolution. It serves as a 

standard dataset, recorded with a standard EPI scan sequence. The dataset and paradigm are described in 

more detail in Notter et al. (under review). In short, participants performed a continuous recognition task 

and indicated for each image whether it is old or new. When the image was presented for the first time 

(new) it was either presented with no sound (unisensory visual context) or together with a sound 

(multisensory context). 

Dataset TR1000 has a rather high temporal sampling and spatial resolution and serves as an 

advanced dataset, recorded with a scan sequence using a multiband acceleration technique. The dataset 

and paradigm are described in more detail in Botvinik-Nezer et al. (2019). In short, participants 

performed a mixed gambling task in which they were asked to either accept or reject a possible monetary 

gain or loss. 

Dataset TR600 has a very high temporal sampling with a moderate spatial resolution and serves 

as an extreme dataset, recorded with scan sequences using a simultaneous multi-slice (SMS) acceleration 

technique (Feinberg et al., 2010). This dataset was collected for another project. In short, participants 

were shown auditory, visual or audiovisual stimuli containing either an animal (as an image or sound), 

pure noise or both together. Participants performed a discrimination task in which they had to indicate if 

they perceived a stimulus with an animal in it or not, independent of the stimuli modality. The stimuli 

were either presented in a unisensory or multisensory context. 

 

All participants of the Datasets TR2000 and TR600 have been included in the performance 

validation, while only the first 20 out of the 120 total participants of the Dataset TR1000 were used in 

order to reduce computation time and make this dataset comparable to the other two. Datasets TR2000 

and TR1000 are already publicly available through the OpenNeuro platform. Dataset TR600 is in 

preparation to be published on OpenNeuro as well. Until then, this dataset is available upon request to 

the corresponding author. 

The pre-processing pipelines with fMRIflows, fMRIPrep, FSL and SPM were based on the 

default parameters and only differed in the following points from their standard implementations: (1) 

Functional images were resampled to an isometric voxel resolution according to the dominant resolution 

dimension within a dataset; (2) Spatial smoothing of the functional images is applied after preprocessing 

of the images, using a Nilearn routine and a smoothing kernel with a Full Width at Half Maximum 

(FWHM) of 6mm, in order to keep the approaches comparable, as spatial smoothing is not included in 

the fMRIPrep workflow; (3) Anatomical images in the FSL pipeline were first cropped to a standard 

FOV, followed by brain extraction using FSL’s BET before FSL’s FEAT was launched; (4) In the case 

of FSL, the normalization from structural to standard space was done using a non-linear warping 

approach with 12 degrees of freedom and a spline interpolation model; (5) In the case of SPM, the 
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template brain for the normalization was its standard tissue probability brain TPM, while for fMRIflows, 

fMRIPrep and FSL, the ICBM 2009c nonlinear asymmetric brain template was used. 

The statistical inference was not performed on any of the investigated toolboxes to prevent the 

introduction of a software-specific bias. The 1st- and 2nd-level analysis was performed using Nistats, 

Nilearn and other Python toolboxes and only differed between the toolboxes in the following ways: (1) 

the estimated motion parameters added to the design matrix during the 1st-level analysis differed for each 

toolbox as they were based on the software-specific preprocessing routine; (2) the number of volumes 

per run used during the 1st-level analysis of fMRIflows might differ slightly from the other approaches, 

as the fMRIflows routine removes non-steady state volumes during the preprocessing; (3) SPM used its 

own tissue probability map to create a binary mask restricted to gray matter voxels during the group 

analysis, while the other three toolboxes used the ICBM 2009c gray matter probability map instead. 

To compare the unthresholded group statistic maps between the toolboxes, we created for each 

pairwise combination of preprocessing approach a Bland-Altman 2D histogram plot, as described by 

(Bowring, Maumet, & Nichols, 2018). These plots show the difference between the statistic value (y-

axis), against the mean statistic value (x-axis) for all voxels within the intersection of the respective brain 

mask. In other words, it summarized in a 2D histogram plot, for each voxel how much higher the 

statistical value in toolbox B is (y-axis), in comparison to toolbox A’s statistical value (x-axis). 

The complete lists of parameters, the scripts to perform preprocessing, 1st- and 2nd-level analysis 

and the scripts to create individual figures can be found on the fMRIflows GitHub page 

(https://github.com/miykael/fmriflows/tree/master/paper). Derivatives generated for the validation in 

phase 2 can be inspected and downloaded on NeuroVault (Gorgolewski et al., 2015) under the following 

links: (1) Standard deviation maps of temporal averages after preprocessing 

(https://identifiers.org/neurovault.collection:5645), (2) temporal SNR maps after preprocessing 

(https://identifiers.org/neurovault.collection:5713), (3) binarized 1st-level activation count maps 

(https://identifiers.org/neurovault.collection:5647), (4) 2nd-level activation maps 

(https://identifiers.org/neurovault.collection:5646). 

 

2.2 Results 

2.2.1 Summary of outputs obtained by fMRIflows’ processing pipelines 

Output generated after executing the anatomical preprocessing pipeline 

After the execution of the anatomical preprocessing pipeline, the following files are generated for 

each subject: (1) image of the inhomogeneity-corrected full head image, (2) image of the extracted brain, 

(3) binary mask used for the brain extraction, (4) individual tissue probability maps for gray matter 

(GM), white matter (WM), cerebrospinal fluid (CSF), skull and head, (5) normalized anatomical image 

in template space (6) reverse-normalized template image in subject space, (7) plus the corresponding 
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transformation matrices used for output 5 and 6. Each anatomical preprocessing output folder also 

contains (8) the ICBM 2009c brain template used for the normalization, sampled to the requested voxel 

resolution. 

In addition to these files, the following three informative figures are generated: (1) tissue 

segmentation, (2) brain extraction and (3) spatial normalization of the anatomical image. A shortened 

version of those three figures, as well as their explanation, are shown in Figure 4. 

 

Figure 4: Summary of output figures generated by fMRIflows after executing the anatomical 
preprocessing pipeline. (Top) Coronal view of the image segmentation output, showing gray matter 
tissue in green, white matter tissue in beige, and cerebrospinal fluid in blue. (Middle) Sagittal view of the 
brain extraction output, showing the extracted brain image in red, and the original anatomical image in 
gray. (Bottom) Axial view of the spatial normalization output, showing the normalized brain image 
highlighted in yellow, overlaid over the ICBM 2009c brain template in gray. Regions in red and blue 
show negative and positive deformation discrepancies between the normalized subject image and the 
template. 

 

Output generated after executing the functional preprocessing pipeline 

After the execution of the functional preprocessing pipeline, the following files are generated 

separately for each subject, each functional run and each temporal filtering: (1) text file indicating which 

volumes were detected as outliers, (2) tabular separated (TSV) file containing all extracted confound 

regressors, (3) text file containing the six motion parameter regressors according to FSL’s output 

scheme, (4) binary masks for the brain, (5) masks for anatomical and functional component based noise 

correction, (6) functional mean image, and (7) completely preprocessed functional images, separated by 

spatial smoothing approaches. Each subject folder also contains (8) one text file per functional run 

indicating the number of non-steady-state volumes at the beginning of the run. 

The following is a more detailed description of the multiple confounds fMRIflows estimates 

during functional preprocessing: 

Confounds based on motion parameters: In addition to the head motion parameters created 

during preprocessing, fMRIflows also computes (1) 24-parameter Volterra expansion of the motion 
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parameters (Friston et a., 1996) using custom scripts and (2) Framewise Displacement (FD) component 

(Power et al., 2012) using Nipype. 

Confounds based on global signal: Functional images before spatial smoothing were used to 

compute confound regressors, such as (1) DVARS, which represents the spatial standard deviation of the 

signal after temporal differencing, to identify motion-affected frames (Power et al., 2012), using Nipype 

and (2) four global signal curves representing the average signal in the total brain volume (TV), GM, 

WM and CSF, using Nilearn. 

Detection of outlier volumes: The user can specify which of the six signal curves for FD, 

DVARS and average signal in TV, GM, WM and CSF to use to identify outlier volumes (see Figure 5A). 

Those are volumes that have larger fluctuations in the signal values in a given volume, compared to the 

z-scored standard deviation throughout the time course. The exact threshold for each curve can be 

adapted by the user, but its default value is set to a z-value of 3.27, representing 99%, for the FD, 

DVARS and TV signal. The identification number of each outlier volume is stored in a text file that 

might be used in the 1st-level pipeline during the GLM model estimation to remove the effect of those 

volumes from the overall analysis, also known as censoring (Caballero-Gaudes and Reynolds, 2016). 

Confounds based on signal components: Using the temporal filtered functional images, two 

different kinds of approaches are performed to extract components that could be used for denoising or 

dimensionality reduction of the data. The first approach is called CompCor (Behzadi et al., 2007) and 

uses principal component analysis (PCA) to estimate the main sources of noise within specific confound 

regions. Regions are either defined by their temporal or anatomical characteristics. The temporal 

CompCor approach (tCompCor) considers the 2% most variable voxels within the confound brain mask 

as sources of confounds. The anatomical CompCor approach (aCompCor), considers voxels within twice 

eroded WM and CSF brain masks as sources of confounds. The user can specify how many aCompCor 

and tCompCor components should be computed, but the default value is set to five each. The second 

approach uses independent component analysis (ICA) to perform source separation in the signal (Figure 

6). Using Nilearn’s CanICA routine, fMRIflows computes by default the top ten independent 

components throughout the confound masks. The number of confounds to extract can be adjusted by the 

user. It is the user's responsibility to evaluate appropriately whether residual artifacts are present and 

need to be removed.  

Storage of confound information: All of the confound curves computed after functional 

preprocessing are stored in a TSV file to allow for easy access. 

Diverse set of overview figures: To allow for visual inspection of the numerous outputs generated 

after the execution of the functional preprocessing pipeline, fMRIflows creates many informative 

overview figures. These overviews cover the motion parameters used for head motion correction, the 

anatomical and temporal CompCor components, FD, DVARS, the average signal in TV, GM, WM and 

CSF, and the ICA components. fMRIflows also creates a brain overview figure showing the extent of the 

different masks applied during functional preprocessing, a spatial correlation map between the ICA 
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components and the individual voxel signal, and a carpet plot according to (Power, 2017) and (Esteban et 

al., 2019). To better visualize underlying structures in the carpet plot the time series traces are sorted by 

their correlation coefficients to the average signal within a given region, allowing for a positive or 

negative time lag of 2 volumes. A shortened version of all these figures, as well as their explanations, are 

shown in Figures 5-7. 

 

 

Figure 5: Example of general output figures generated by fMRIflows after executing the functional 
preprocessing pipeline. The dataset used to generate these figures was recorded with a TR of 600ms 
and had a total of 600 volumes per run. Preprocessing included a low-pass filter at 0.2 Hz. Distribution 
plots on the right side of the figures in parts A and B represent value frequency in y-direction. A) 
Depiction of the nuisance confounds FD, DVARS and TV. Detected outlier volumes are highlighted with 
vertical black bars. B) Estimation of translation head motion after application of low-pass filtering at 0.2 
Hz in color, and before temporal filtering in light gray. C) Depiction of brain masks used to compute 
DVARS (red), temporal (green) and anatomical (blue) CompCor confounds, overlaid on the mean 
functional image (grey). 

 

Output generated after executing the 1st-level analysis pipeline 
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After the execution of the 1st-level analysis, the following files are generated for the univariate 

analysis: (1) contrasts and statistical map of the specified contrasts, (2) SPM.mat file containing the 

information relevant for the model, (3) visualization of the design matrix used in the 1st-level model 

depicting the regressor for the stimuli, motion and confounds, and (4) glass brain plot for each estimated 

contrast thresholded at the top 2% of positive and negative values created with AtlasReader to provide a 

general overview of the quality of contrasts. The multivariate analysis part of this notebook creates: (1) 

one contrast image per condition and session which later can be used as samples for the multivariate 

analysis, and (2) a label file identifying the condition of each contrast. 

 

 

Figure 6: Example of ICA output figures generated by fMRIflows after executing the functional 
preprocessing pipeline. The dataset used to generate these figures was recorded with a TR of 600ms 
and had a total of 600 volumes per run. A) Correlation between the first three ICA components and the 
functional image over time (left) and the corresponding power density spectrum with frequency on the x-
axis (right). The first component most likely depicts respiration at 0.6 Hz, while the third component is 
most likely visual activation induced by the visual stimulation task during data acquisition. B) 
Correlation strength between a given ICA component and the location in the brain volume for the first 
three ICA components. 

 

Output generated after executing the 2nd-level analysis pipeline 

After the execution of the 2nd-level univariate analysis, the following files are generated, 

individually for each contrast and spatial and temporal filter that was applied: (1) contrasts and statistical 
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map of one-sample t-test contrast, (2) SPM.mat file containing the information relevant for the model, 

(3) thresholded statistical maps with corresponding AtlasReader outputs (i.e. glass brain plot to provide a 

result overview, cross section plot showing each significant cluster individually, informative tables 

concerning the peak and cluster extent of each cluster). 

After the execution of the 2nd-level multivariate analysis, the following files are generated, for 

each specified comparison individually: (1) subject-specific permutation files needed for correction 

according to (Stelzer et al., 2013), (2) group-average prediction accuracy maps as well as corresponding 

feature-wise maps representing chance level acquired via a bootstrapping approach (Stelzer et al., 2013), 

(3) group-average prediction accuracy maps after correction for multiple comparisons and (4) 

thresholded statistical result maps with corresponding AtlasReader outputs (i.e. glass brain plot to 

provide a result overview, cross section plot showing each significant cluster individually, informative 

tables concerning the peak and cluster extent of each cluster). 

 

 

Figure 7: Example of a carpet plot figure generated by fMRIflows after executing the functional 
preprocessing pipeline. The dataset used to generate this figure was recorded with a TR of 600ms and 
had a total of 600 volumes per run. This panel shows the signal after preprocessing for every other voxel 
(y-axis), over time in volumes (x-axis). The panel shows voxels in the gray matter (top part), white 
matter (between blue and red line) and CSF (bottom section). The data was standardized to the average 
signal and ordered within a given region according to the correlation coefficient between a voxel and the 
average signal of this region. 

 

2.2.2 Results of phase 1: Proficiency validation 

Due to differences in scanner hardware, scan protocols, research requirements and expertise of the 

person who records the images, fMRI datasets can come in many different shapes and forms. We ran 

fMRIflows on several datasets to make sure that it is capable of dealing with differences inherent to each 
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of them. In this section, we summarize the main issues we encountered during this process and describe 

how we tackled each of them. 

 

Image orientation 

fMRIflows reorients all anatomical and functional images at the beginning of the preprocessing 

pipeline to the neurological convention RAS (right, anterior, superior) to prevent failures of 

coregistration between anatomical and functional images due to orientation mismatches within subjects. 

 

Image extent 

Some datasets have unusually large image coverage along the inferior-superior axis, which means 

that their anatomical images also often contain part of the participant’s neck. This can lead to unwanted 

outcomes in certain neuroimaging routines, as they were not tested for such additional tissue coverage. 

This is most pronounced in the case of FSL’s BET routine, which has difficulty finding the center and 

extent of the brain, or SPM’s segmentation routine which depends on the distribution of the voxel 

intensities within the whole volume. To prevent these and other unforeseen behaviors, fMRIflows uses 

FSL’s robustfov routine to restrict all anatomical images to the same spatial extent. 

 

Image inhomogeneity 

Depending on the scan sequence protocol or the scanner hardware itself, some datasets can contain 

strong image intensity inhomogeneities, caused by an inhomogeneous bias field during data acquisition. 

This can have a negative effect on many different neuroimaging routines, most pronounced in brain 

extraction and image segmentation. To tackle this issue, fMRIflows uses ANTs’ N4BiasFieldCorrection 

routine, which allows the analysis of datasets with even low image quality and strong image 

inhomogeneity. In the anatomical preprocessing pipeline, inhomogeneity correction is applied to 

improve the final output image. In the functional preprocessing pipeline, inhomogeneity correction is 

only applied to improve the estimation and extraction of different tissue types but does not directly 

change the values in the final output image. 

 

Brain extraction 

Different brain extraction routines were explored to ensure: 1) that the extraction is sufficiently 

robust to handle different kinds of datasets, 2) that it is neither too conservative nor liberal with the 

removal of non-brain tissues, and 3) that it has an overall reasonably fast computation time. The best and 

most consistent results were achieved using SPM’s image segmentation routine, followed by specific 

thresholding and merging of the GM, WM and CSF probability maps. FSL’s BET routine was not robust 

enough to lead to stable results on all tested datasets. While ANTs’ Atropos routine led to comparably 

good results, we went with SPM because of the much faster computation time. 
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Image interpolation 

For the single-shot spatial interpolation during normalization, we used ANTs and explored 

NearestNeighbor, BSpline and LanczosWindowedSinc (Lanczos, 1964) interpolation. NearestNeighbor 

interpolation led to unnatural-looking voxel-to-voxel value transitions. BSpline led in general to good 

results, but had issues, especially with datasets that did not have full brain coverage and introduced some 

rippling low-value fluctuations at the borders of non-zero voxels. LanczosWindowedSinc interpolation 

led to the best outcome by minimizing the smoothing effects and preventing the introduction of 

additional confounds reaffirming the observations from fMRIPrep (Esteban et al., 2019). 

 

2.2.3 Results of phase 2: Performance validation 

The performance validation of fMRIflows was conducted on three different task-based fMRI 

datasets, as described in Table 1. The preprocessing of fMRIflows was compared to other neuroimaging 

processing pipelines such as fMRIPrep, FSL and SPM. We tested fMRIflows’ preprocessing pipeline 

with and without a temporal low-pass filter of 0.2 Hz to better understand performance differences 

between toolboxes and to stress the importance of adequate temporal filtering when processing fMRI 

datasets with high temporal resolution. 

 

Estimated spatial smoothness after functional preprocessing 

Each preprocessing step that resamples a functional image, such as slice time correction, motion 

correction, and spatial or temporal interpolation has the potential to increase the spatial smoothness in the 

data. The less smoothness is introduced during preprocessing, the closer the data are to their initial 

version. We used AFNI’s 3dFWHMx to estimate the average spatial smoothness (FWHM) of each 

functional image after preprocessing to compare the amount of data manipulation that was applied to the 

raw data (see Figure 8). As this FWHM value depends on the voxel resolution of a given dataset, we 

normalized it by the volume of the voxel to achieve a common FWHM value per 1mm3. 

Overall, the estimated spatial smoothness after preprocessing with fMRIflows (without a low-pass 

filter) is comparable to the one with fMRIPrep, while SPM’s is in general significantly lower and FSL’s 

is slightly higher. The differences with respect to SPM are probably due to the fewer numbers of 

resampling steps involved in SPM’s preprocessing pipeline. The differences with respect to FSL are 

probably due to the interpolation method used during image resampling. While the FSL preprocessing 

pipeline uses the spline interpolation, fMRIflows and fMRIPrep use the LanczosWindowedSinc 

interpolation, which is known to minimize the smoothing during interpolation. The application of a 

temporal low-pass filter at 0.2 Hz during fMRIflows’ preprocessing leads to a significantly higher spatial 

smoothness for the TR600 dataset when compared with the other approaches. This effect might also be 

present in the TR1000 dataset. However, there the difference between the fMRIflows preprocessing with 

and without low-pass filtering is not significant. This increased spatial smoothness for the approach that 
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uses a low-pass filter makes sense, as the goal of the temporal low-pass filter itself is to smooth the time 

series values. This temporal smoothing forcibly also increases the spatial smoothness at each individual 

time point. 

 

 

Figure 8: Investigation of estimated spatial smoothness after functional preprocessing of three 
different datasets, processed with varying approaches. The five different preprocessing approaches 
fMRIflows with (blue) and without (orange) a low-pass filter at 0.2 Hz, fMRIPrep (green), FSL (red) and 
SPM (violet) are plotted separately for the dataset TR2000 (left), TR1000 (middle) and TR600 (right). 
The violin plots indicate the overall distribution of the normalized smoothness estimates of each 
functional image (depicted in individual dots: TR2000=48 dots, TR1000=80 dots, TR600=102 dots). The 
red horizontal line represents the median value, while the horizontal black lines indicate the 25 and 75 
percentiles of the value distribution respectively. Two-sided t-tests were computed for each pair of 
approaches used and each dataset. Significant differences between groups are indicated with *: p<0.05 
and ***: p<0.001. 

 

Performance check of spatial normalization 

We computed the standard deviation map for each population, based on the temporal average map 

of each preprocessed functional image, to compare the performance of spatial normalization of the 

different preprocessing methods on the three different datasets (see Figure 9). 
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The averaged standard deviation maps after fMRIflows’ and fMRIPrep’s preprocessing are very 

similar, which is not surprising as fMRIflows uses the same ANTs normalization routine with very 

similar parameters. The main difference lies in the fact that fMRIflows applies a brain extraction on the 

functional images as well, which is not performed with fMRIPrep.  

 

 

Figure 9: Depiction of standard deviation maps of the temporal averages of three different 
datasets, after multiple functional preprocessing approaches. Preprocessing was done with 
fMRIflows (with a temporal low-pass filter at 0.2 Hz; without a low-pass filter looks identical), 
fMRIPrep, FSL and SPM (from top to bottom) separated for the TR2000 (left), TR1000 (middle) and 
TR600 (right) dataset. The color value represents the standard deviation value over all subjects. The 
color scale is the same within a dataset and was set manually to highlight the border effects in gray 
matter regions. Regions with high inter-subject variability are shown in yellow, while regions with low 
inter-subject variability are shown in blue. The outline of the brain and subcortical white matter regions 
is delineated in red and is based on the ICBM 2009c brain template, except for the analysis with SPM 
where it is based on SPM’s tissue probability map template. 

 

Temporal signal-to-noise ratio (tSNR) after preprocessing 
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We computed the voxel-wise temporal SNR according to (Smith et al., 2013) to assess the amount 

of informative signal contained in the data after preprocessing. This measurement serves as a rough 

estimate to compare different preprocessing methods but did not allow a direct comparison between 

datasets, as the tSNR value is a relative measurement that depends highly on the paradigm presented, the 

initial spatial and temporal resolution of the functional images, as well as the MRI scan sequence specific 

parameters such as acceleration factors (Smith et al., 2013). Using Nipype’s TSNR routine, we first 

removed 2nd-degree polynomial drifts in each functional image and estimated tSNR maps by computing 

each voxel’s temporal mean, dividing it by its temporal standard deviation, and multiplying it by the 

square root of the number of time points recorded in a given run. By averaging the tSNR maps over the 

population, we get a general tSNR map per preprocessing method for each dataset (see Figure 10). 
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Figure 10: Depiction of temporal signal-to-noise ratio maps of three different datasets, after 
multiple functional preprocessing approaches. Preprocessing was done with fMRIflows (with and 
without a temporal low-pass filter at 0.2 Hz), fMRIPrep, FSL and SPM (from top to bottom) separated 
for the TR2000 (left), TR1000 (middle) and TR600 (right) dataset. The color value represents the tSNR 
value as computed with the Nipype routine TSNR. The color scale was set manually and differs between 
datasets, but is held constant between different preprocessing methods. 

 

In general, preprocessing with fMRIflows without a temporal low-pass filter led to similar average 

tSNR maps as preprocessing with fMRIPrep. Overall, preprocessing with FSL led to slightly increased 

average tSNR values, while preprocessing with SPM led to slightly decreased average tSNR maps. The 

additional application of a low-pass filter at 0.2 Hz in all three datasets led to increased tSNR values after 

preprocessing with fMRIflows. This effect was more pronounced for higher temporal resolution (as in 

Dataset TR1000 and TR600). The color scales in Figure 10 were set manually so that the fMRIflows 

(without a low-pass filter) approach shows comparable intensities for the three datasets. 

 

Performance check after 1st-level analysis 

To investigate the effect of the different preprocessing methods on the 1st-level analysis, we 

carried out a within-subject statistical analysis using Nistats. The activation maps were estimated using a 

general linear model (GLM). The GLM included a constant term, the stimuli regressors convolved with a 

double-gamma canonical hemodynamic response function, six motion parameters (three translation and 

three rotation), and a high-pass filter at 100Hz, represented by a set of cosine functions, and no temporal 

derivatives. The input data were smoothed using a kernel with a FWHM of 6mm, using a Nilearn 

routine. The analysis pipelines between the preprocessing methods and datasets were kept as identical as 

possible and differed only in the number of time points contained in the dataset and the estimated motion 

parameters. The statistical map for each participant was binarized at z = 3.09, which corresponds to a 

one-sided test value of p < 0.001. The population average of these maps is shown in Figure 11. 

The results show that the thresholded activation count maps between the fMRIflows approach 

without a low-pass filter, fMRIPrep, FSL and SPM do not differ too much between each other, for all 

three datasets. In contrast to the other preprocessing methods, however, the preprocessing with 

fMRIflows with a low-pass filter at 0.2 Hz drastically increased the size and fraction value of the 

thresholded activation count maps, for the datasets TR1000 and TR600. Thus, appropriate temporal 

filtering increased the statistics for datasets with higher temporal resolution remarkably. For a more 

detailed comparison between all the toolboxes, see Supplementary Note 7. 
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Figure 11: Depiction of binarized 1st-level activation count maps, thresholded at p<0.001, after 
multiple functional preprocessing approaches. Preprocessing was done with fMRIflows (with and 
without a temporal low-pass filter at 0.2 Hz), fMRIPrep, FSL and SPM (from top to bottom) separated 
for the TR2000 (left), TR1000 (middle) and TR600 (right) dataset. Activation count maps were 
normalized to the ICBM 2009c brain template. Color code represents the fraction of participants that 
show significant activation above a p-value threshold at 0.001 and corrected for false positive rate (FPR). 

 

Performance check after 2nd-level analysis 

To investigate the effect of the different preprocessing methods on the 2nd-level analysis, we 

carried out a between-subject statistical analysis using Nistats and computed a one-sample t-test for each 

preprocessing method and dataset. The unthresholded group-level T-statistic maps of each analysis were 

then compared to each other on a voxel-by-voxel level using Bland-Altman 2D histograms (Bowring et 

al., 2018), see Figure 12. 
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Figure 12: Bland-Altman 2D histograms of three different datasets, comparing unthresholded 
group-level T-statistic maps between multiple processing approaches. Datasets TR2000 (top), 
TR1000 (middle) and TR600 (bottom) were used for the comparison. Density plots show the relationship 
between the average T-statistic value (horizontal) and the difference of T-statistic values (vertical) at 
corresponding voxels for different pairwise combinations of toolboxes. The difference of T-statistics was 
always computed in contrast to a preprocessing with fMRIflows using a low-pass filter at 0.2 Hz, while 
the average T-statistics in horizontal direction investigated the preprocessing with (from left to right) 
fMRIflows without a low-pass filter, fMRIPrep, FSL and SPM. Distribution plots next to the x- and y- 
axis depict the occurrence of a given value in this domain. The color code within the figure indicates the 
number of voxels at this given overlap, from a few (blue) to many (yellow). The yellow horizontal line at 
zero indicates no value differences between corresponding voxels. The red dashed line depicts the 
horizontal density average. 
 

The results shown in Figure 12 indicate no pronounced differences between the preprocessing with 

fMRIflows with a low-pass filter at 0.2 Hz and the other four approaches for the analysis of the TR2000 

dataset. Increased variability in the y-direction indicated a decrease in voxel-to-voxel correspondence, 

which might be explained by different spatial normalization implementations. The fact that the average 

horizontal density value (red dashed line) is close to the zero line (in yellow) indicated that the different 

preprocessing methods led to comparable group-level results with the TR2000 dataset. The Bland-

Altmann plots for the TR1000 and TR600 datasets showed a clear increase of t-statistic when the 

preprocessing was done with fMRIflows with a low-pass filter at 0.2 Hz, compared to any other method. 

This effect was stronger for higher t-values. For a more detailed comparison between all the toolboxes, 

see Supplementary Note 8. 
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2.3 Discussion 

fMRIflows is a fully automatic fMRI analysis pipeline, which can perform state-of-the-art 

preprocessing, including 1st-level and 2nd-level univariate analyses as well as multivariate analyses. The 

goal of such an autonomous approach is to improve the objectiveness of the analyses, maximize 

transparency, facilitate ease of use, and provide accessible and updated analysis approaches to every 

researcher, including users outside the field of neuroimaging. While the predefined analysis pipelines 

help to reduce the number of error-prone manual interventions to a minimum, it also has the advantage of 

decreasing the number of analytical degrees of freedom available to a user to its minimum (Carp, 2012). 

This constraint in flexibility is important as it helps to control the variability in data processing and 

analysis (Botvinik-Nezer et al., 2020). fMRIPrep showed a clear need for such analysis-agnostic 

approaches and was therefore chosen to provide much of the groundwork for fMRIflows. Our pipeline 

provides a reliable methodological framework for analyzing functional magnetic resonance imaging 

(fMRI) data and for obtaining statistical results to be used for advanced multivariate analysis techniques. 

fMRIflows achieves: 1) high SNR after preprocessing, (2) reproducible within-subject t-statistics, and (3) 

reproducible between-subject t-statistics. The flexibility for the user to perform both spatial and temporal 

filtering is particularly important in the context of datasets that had a temporal sampling equal to or 

below 1000ms or if the statistical output will be used for more advanced analyses, such as MVPA. 

fMRIflows also improved the overall computation time needed to perform preprocessing and 1st and 2nd-

level analyses. Indeed, Nipype provides a parallel execution feature of processing pipelines, which is not 

yet possible with FSL or SPM. fMRIPrep uses the same boost of parallelism but is overall much slower 

if the default execution of FreeSurfer’s recon-all routine is performed. However, fMRIflows does not yet 

support parallel computation via a job scheduler on a computation cluster, which is currently possible 

with fMRIPrep. 

 

In comparison with other neuroimaging software/pipelines like fMRIPrep, FSL and SPM, 

fMRIflows achieved comparable or improved results in (1) SNR after preprocessing, (2) within-subject t-

statistics, and (3) between-subject t-statistics. These results were more obvious in the context of datasets 

that had a temporal sampling equal to or below 1000ms, and if a low-pass filter at 0.2 Hz was applied.  

The inclusion of many informative visual reports allows direct quality control and verification of 

the performed processing steps, as fMRIflows’ outputs provide a general quality assessment even though 

it is not as detailed and rigorous as MRIQC (Esteban et al., 2017). In contrast to other software packages, 

fMRIflows uses an adapted visualization of the carpet plot proposed by (Power, 2017) to highlight the 

underlying temporal structure and voxel-to-voxel correlations within different brain tissue regions and/or 

throughout the brain. Such approaches help to observe general signal trends and sudden abrupt signal 

changes throughout the brain, but the exact implications of these modified carpet plots need to be further 

investigated. 
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Being an open-source project, shared via GitHub, facilitates the transparency in the development 

of fMRIflows. Users can inspect the complete history of the changes and have access to all discussions 

connected to the software. Code adaptations and additional support for new usage will be proposed by 

the user community, which will make the adaptation to the newest standards easy and straightforward. In 

addition to the version-controlled system used on GitHub, a continuous integration scheme with CircleCi 

will ensure continuous functionality. 

 

Results of fMRIflows’ validation phase 1 suggest that the software is capable of analyzing 

different types of datasets, independently of the extent of head coverage, original image orientation, and 

spatial or temporal resolution. By increasing the user base and testing fMRIflows on many more datasets, 

new adaptations might be required and hidden bugs could emerge. Users can observe any changes done 

to the software in the future directly on GitHub and are encouraged to state any questions or comments in 

connection with the software on the community-driven neuroinformatics forum NeuroStars 

(https://neurostars.org). 

Further development of the software will involve (1) moving away from an SPM dependency for 

the 1st and 2nd-level modeling, (2) using the more flexible FitLins toolbox 

(https://github.com/poldracklab/fitlins) to make the results conform with the BIDS statistical models 

proposal (BEP002), and (3) implementing an fMRIflows BIDS-App to further improve the toolbox’s 

accessibility. 

 

Data Availability 

The TR2000 (ds001345, v1.0.1) and TR1000 (ds001734, v.1.0.4) datasets are freely available 

from OpenNeuro.org. The TR600 dataset will be made available via OpenNeuro.org after publication of 

the experiments for which it was acquired. Interested parties can in the interim contact the corresponding 

authors.   
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