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Abstract

How functional MRI (fMRI) data are analyzed depends on the researcher and the toolbox used. It
is not uncommon that the processing pipeline is rewritten for each new dataset. Consequently, code
trangparency, quality control and objective analysis pipelines are important for improving reproducibility
in neuroimaging studies. Toolboxes, such as Nipype and fMRIPrep, have documented the need for and
interest in automated pre-processing analysis pipelines. Recent developments in data-driven models
combined with high-resolution neuroimaging datasets have strengthened the need not only for a
standardized preprocessing workflow but also for areliable and comparable statistical pipeline. Here, we
introduce fMRIflows. a consortium of fully automatic neuroimaging pipelines for fMRI analysis, which
performs standard preprocessing, as well as 1st- and 2nd-level univariate and multivariate analyses. In
addition to the standardized pre-processing pipelines, fMRIflows provides flexible temporal and spatial
filtering to account for datasets with increasingly high temporal resolution and to help appropriately
prepare data for advanced machine learning analyses, improving signal decoding accuracy and reliability.
This paper first describes fMRIflows’ structure and functionality, then explains its infrastructure and
access, and lagtly validates the toolbox by comparing it to other neuroimaging processing pipelines such
as fMRIPrep, FSL and SPM. This validation was performed on three datasets with varying temporal
sampling and acquisition parameters to prove its flexibility and robustness. fMRIflows is a fully
automatic fMRI processing pipeline that uniquely offers univariate and multivariate single-subject and

group analyses as well as pre-processing.
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1 Introduction

Functional magnetic resonance imaging (fMRI) is a well-established neuroimaging method used to
analyze activation patterns in order to undersand brain function. A full fTMRI analysis includes
preprocessing of the data, followed by satistical analysis and inference of the results, usually separated
into 1%-level analysis (the statistical analysis within subjects) and 2"-level analysis (the group analysis
between subjects). The goal of preprocessing is to identify and remove nuisance sources, measure
confounds, apply temporal and spatial filters and to spatially realign and normalize images to make them
spatialy conform (Caballero-Gaudes and Reynolds, 2017). A good preprocessing pipeline should
improve the signal-to-noise ratio (SNR) of the data, ensure the validity of inference and interpretability
of results (Ashburner, 2009), reduce false positive and false negative errors in the statistical analysis and
therefore improve the statistical power.

Even though the consequences of inappropriate preprocessing and statistical inference are well
documented (Strother, 2006; Power et al., 2017b), most fMRI analysis pipelines are still established ad-
hoc, subjectively customized by researchers to each new dataset (Carp, 2012). This usage can be
explained by the circumstance that most researchers, by habit or lack of time, stick with the
neuroimaging software at-hand or reuse and modify scripts and code snippets from colleagues and
previous projects, and do not aways adapt their processing pipelines to the newest standard in
neuroimaging processing. Rehashing processing pipelines is associated with problems like persisting
bugs in the code and delays in updating individual analysis steps to the most recent standards. This can
lead to far-reaching consequences. Of course, the constant updating of pipelines to the newest standards
and software also bears the risk of introducing new bugs and might lead to the pitfall of blindly trusting
new untested procedures.

One solution to tackle thisissue will require code transparency, good quality control and collective
development of well-tested objective analysis pipelines (Gorgolewski et al., 2016). Recent years have
brought some important reformations to the neuroimaging community that go in this direction.

First, the introduction of Nipype (Gorgolewski et al., 2011) made it easier for researchers to
switch between different neuroimaging toolboxes, such as AFNI (Cox and Hyde, 1997), ANTs (Avants
et a., 2011), FreeSurfer (Fischl, 2012), FSL (Jenkinson et a., 2012), and SPM (Friston et al., 2006).
Nipype together with other software packages such as Nibabel (Brett et al., 2018) and Nilearn (Abraham
et d., 2014) opened up the whole Python ecosystem to the neuroimaging community. Code can be

shared between researchers via online services such as GitHub (https://qgithub.com), and the whole

neuroimaging software ecosystem can be run on any machine or server through the use of container
software such as Docker (https.//www.docker.com) or Singularity (https.//www.sylabs.io). Combined

with a continuous integration service such as CircleCl (https://circleci.com) or TravisCl (https.//travis-

ci.org), this allows the creation of easy-to-read, transparent, shareable and continuously tested open-

source neuroimaging processing pipelines.
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Second, the next magjor advancement in the neuroimaging field was the introduction of a common
dataset standard, such as the NIfTI standard (https://nifti.nimh.nih.gov/). This was important for the
formatting of neuroimaging data. The neuroimaging community gathered together in a consortium to

define a standard format for the storage of neuroimaging datasets, the so-called Brain Imaging Data
Structure (BIDS) (K. J. Gorgolewski et al., 2016). A common data structure format facilitates the sharing
of datasets and makes it possible to create universal neuroimaging toolboxes that work out of the box on
any BIDS-conforming dataset. Additionally, through services like OpenNeuro (K. J. Gorgolewski,
Esteban, Schaefer, Wandell, & Poldrack, 2017), a free online platform for sharing neuroimaging data,
one can test the robustness and flexibility of a new neuroimaging toolbox on hundreds of different
datasets.

Software toolboxes like MRIQC (Esteban et al., 2017) and fMRIPrep (Esteban et al., 2019) have
shown how fruitful this new neuroimaging ecosystem can be and have highlighted the importance and
need for good quality control and high-quality preprocessing workflows with consistent results from
diverse datasets. Given the recent developmentsin the field of data-driven analysesto decode brain states
from fMRI time series, there is an increased need for reliable and reproducible statistical analysis of
fMRI data, the fundamental input of more advanced machine learning methods, such as Multi-Voxel
Pattern Analysis (MVPA) and Convolutional Neuronal Networks (CNNs). Here, we propose an
aternative to existing workflows developing to a fully automated pipeline for univariate and multivariate
individual and group analyses.

fMRIflows provides flexible temporal and spatial filtering, to account for two recent findings in
the data-driven model field. First, flexible spatial filtering can become of importance when performing
multivariate analysis, as it has been shown that the correct spatial band-pass filtering can improve signa
decoding accuracy (Sengupta et a., 2018). Second, correct temporal filtering during pre-processing is
important and can lead to an improved signal-to-noise ratio (SNR), especially for fMRI datasets with a
temporal sampling rate below one second (Viessmann et a., 2018), but only if the filter is applied
orthogonally to the other filters during pre-processing to ensure that previously removed noise is not
reintroduced into the data (Hallquist et al. 2013; Lindquigt et al., 2019). Due to technical improvements
in imaging recording through acceleration techniques such as GRAPPA (Griswold et al., 2002) and
simultaneous multi-slice/multiband acquisitions (Feinberg et al., 2010; Moeller et al., 2010; Feinberg and
Setsompop, 2013), faster sampling rates became possible, to the point that respiratory and cardiac signals
can be sufficiently sampled in the BOLD signal. This creates new challenges for the pre-processing of
functional images, especially when the external recording of those physiological sources cannot be
readily achieved.

fMRIflows presents a consortium of fully automatic neuroimaging pipelines for fMRI analysis,
performing standardized pre-processing, as well as 1st- and 2nd-level statistical analyses for univariate
and multivariate analysis, with the additional creation of informative quality-control figures. fMRIflows
is predicated on the insights and code base of MRIQC (Esteban et al., 2017) and fMRIPrep (Esteban et
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al., 2019), extending their functionality with regard to the following aspects: (a) flexible temporal and
spatia filtering of fMRI data, i.e. low- or band-pass filtering allowing for the exclusion of high-
frequency oscillations introduced through physiological noise (Viessmann et al., 2018); (b) accessible
and modifiable code base; (c) automatic computation of 1%-level contrasts for univariate and multivariate
analysis; and (d) automatic computation of 2"-level contrasts for univariate and multivariate analysis.

In this paper, we (1) describe the different pipelines included in fMRIflows and illudrate the
different processing steps involved, (2) explain the software structure and setup, and (3) validate
fMRIflows performance by comparing it to other widely used neuroimaging toolboxes, such as
fMRIPrep (Esteban et al., 2019), FSL (Jenkinson et al., 2012) and SPM (Friston et al., 2006).

2 Materialsand Methods

2.1.1 fMRIflows' processing pipelines
The complete code base of fMRIflows is open access and stored conveniently in six different
Jupyter notebooks on https://github.com/miykael/fmriflows. The first notebook does not contain any

processing pipeline, but rather serves as a user input document that helpsto create JSON files, which will
contain the execution-specific parameters for the five processing pipelines contained in fMRIflows: (1)
anatomical preprocessing, (2) functional preprocessing, (3) 1%-level analysis, (4) 2"-level univariate
analysis and (5) 2"-level multivariate analysis. Each of these five pipelines stores its results in a sub-
hierarchical folder, specified as an output folder by the user. In the following section, we explain the

content of those six Jupyter notebooks.

Specification preparation
Each fMRIflows processing pipeline needs specific input parameters to run. Those parameters range
from subject ID and number of functional runs per subject to requested voxel resolution after image
normalization, etc. Each notebook will read the relevant specification parameters from a predefined
JSON file that starts with the prefix “fmriflows spec”. There is one specification file for the anatomical
and functional preprocessing, one for the 1% and 2™ level univariate analysis, and one for the 2"-level
multivariate analysis. For an example of these three JSON files, see Supplementary Note 1. The first
notebook contained in fMRIflows, called 01 spec preparation.ipynb, can be used to create those JSON
files, based on the provided dataset and some standard default parameters. It does so by using Nibabel
v2.3.0 (Brett et al., 2018), PyBIDS v0.8 (Yarkoni et al., 2019) and other standard Python libraries. It is
up to the user to change any potential processing parameter should they be different from the used
default values. Anatomical preprocessing

The anatomical preprocessing pipeline is contained within the notebook 02_preproc_anat.ipynb and
uses the JSON file fmriflows_spec_preproc,json for parameter specification such as voxel resolution. If a

specific value is not set, fMRIflows normalizes to an isometric voxel resolution of 1 mm® by defauilt.
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However, the user can also choose an anisometric voxel resolution that varies in all three dimensions.
Additionally, the user can decide to have a fast or precise normalization. The precise normalization can
take up to eight times as long as the fast approach but can provide a more precise alignment. Visua
inspection on performed normalization is always desirable since both normalization algorithms may fail
in case of a noisy dataset or undetected artifacts. For an example of the JSON file content, see
Supplementary Note 1.

The anatomical preprocessing pipeline only depends on the subject-specific T1-weighted (T1w)
anatomical images as input files. The individual processing steps are visualized in Figure 1 and consist
of: (1) image reorientation, (2) cropping of field of view (FOV), (3) correction of intensity non-
uniformity (INU), (4) image segmentation, (5) brain extraction and (6) image normalization. For a more

detailed description of the steps involved in this processing pipeline, see Supplementary Note 2.

Reorient Tmage (Nipype)

Crop FOV (FSL)
N4 Bias Ticld
Correction (ANTs)

Scgmentation (SPM) ’

Extract Brain (Nilearn)

y
Normalization (ANTSs)

Figure 1: Depiction of fMRIflows anatomical preprocessng pipeline. Arrows indicate dependency
between the different processing steps and data flow. Name of each node describes functionality, with
the corresponding software dependency mentioned in brackets.
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Functional preprocessing

The functional preprocessing pipeline is contained within the notebook 03_preproc_func.ipynb and
uses the JSON file fmriflows spec preprocjson for parameter specification. As for specification
parameters, users can indicate if slice-time correction should be applied or not, and if so which reference
timepoint should be used. The user can also indicate to which isometric or anisometric voxel resolution
functional images should be sampled to, and if the sampling is into subject or template space. For the
template space, the ICBM 2009c nonlinear asymmetric brain template is used (Fonov et a., 2011).
Furthermore, users can specify possible values for low-, high- or band-pass filters in the temporal or
spatial domain. Additionally, to investigate nuisance regressors, users can specify the number of
CompCor (Behzadi et al., 2007) or independent component analysis (ICA) components they want to
extract and which threshold values they want to use to detect outlier volumes. The implications of those
parameters will be explained in more detail in the following sections. For an example of the JSON file
content, see Supplementary Note 1.

Inputs of the functional preprocessing pipeline depend on the output files from the anatomical
preprocessing pipeling, as well as the subject-specific functional images and accompanying descriptive
JSON file that contains information about the temporal resolution (TR) and slice order of the functional
image recording. This JSON file is part of the BIDS standard and therefore should be available in the
BIDS conform dataset. The individual processing steps are schematized in Figure 2 and consigt of: (1)
image reorientation, (2) non-steady-state detection, (3) creation of functional brain mask, (4) dice time
correction, (5) estimation of motion parameters, (6) two-step estimation of coregistration parameters
between functional and anatomical image, (7) finalization of motion parameters, (8) single-shot spatial
interpolation applying motion correction, coregistration and if specified normalizing images to the
template image, (9) congtruction and application of brain masks, (10) temporal filtering and (11) spatial
filtering. It is important to mention that the functional preprocessing is done for each functional run
separately to prevent inter-run contaminations. For a more detailed description of the steps involved in

this processing pipeline, see Supplementary Note 3.


https://doi.org/10.1101/2021.03.23.436650
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.23.436650; this version posted July 13, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

—

e

£ e
Shee 1

!l

e ] ™
A A Boundars

% 1acar
¥ Boundary-sas

Facad - = T
\ Registration (FSL | K L{)rrecmn[bPM} /

—

-

e

i DT

(AFNI & Nilaarn)

y
Spatial Filter (Nilearn) ﬂ

Figure 2: Depiction of fMRIflows functional preprocessing pipeline. Arrows indicate dependency
between the different processing steps and data flow. The name of each node describes the functionality,
with the corresponding software dependency mentioned in brackets. Steps that can be grouped into
specific sections are contained within a red box to facilitate understanding of the pipeline. The color of
the arrows indicates if the connection stays within a section (red) or not (blue). Nodes depicted as gray
boxes indicate that they can be run multiple times with iterating input values, i.e. performing a spatia

smoothing with an FWHM value of 4 and 8mm.
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1st-level analysis

The first-level analysis pipeline is contained within the notebook 04 analysis 1st-level.ipynb and
uses the JSON file fmriflows spec analysisjson for parameter specification. As for specification
parameters, users can indicate which nuisance regressors to include in the GLM, if outliers should be
considered, and if the data is already in template space or if this normalization should be done after the
estimation of the contrasts. Users can also specify other GLM model parameters, such as the high-pass
filter value and the type of basis function that should be used to model the hemodynamic response
function (HRF). Additionally, the users will also specify a list of contrasts they want to be estimated, or
if they want to create specific contrasts for each stimulus column in the design matrix, and/or for each
session separately, which then later might also be used for multivariate analysis. For an example of the
JSON file content, see Supplementary Note 1.

The 1st-level analysis pipeline depends on a number of outputs from the previous anatomical and
functional preprocessing pipelines, i.e. the TSV (tab separated value) file containing motion parameters
and confound regressors, atext file indicating the number of non-steady-state volumes removed from the
functional image, and atext file containing a list of indexes identifying outlier volumes. Additionally, the
1st-level analysis pipeline also requires BIDS conform events files containing information on the applied
experimental design, including types of conditions and their respective onsets and durations. The
individual processing steps included in the 1st-level analysis consigt of: (1) collecting preprocessed files
and model relevant information, (2) model specification and estimation, (3) univariate contrast
estimation, (4) optional preparation for multivariate analysis, (5) optional spatial normalization of
contrasts (Figure 3). All of the relevant steps, that is model creation, estimation and contrast computation
are performed with SPM version 12. For a more detailed description of the steps involved in this

processing pipeline, see Supplementary Note 4.
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Univariate Analysis

Load Nuisance
Regressors (Python)

Collect Preprocessed
Files (Nipype)

Collect Model Parameters (Nipype)

Specity Model (Nipype)

Create 1st-level Model (SPM)
Estimate lst-level Model (SPM)
Estimate Univariate Contrasts (SPM)
1

Normalize Univariate Contrasts

Normalize Univariate Contrasts (ANTs)

Multivariate Analysis Preparation

Create Smgle Condition Contrast Tast (Python)
Save Condition Order to Tile (Python)

Estimate Simgle Condition Contrasts (SPM)

@mgh Condition Contrasts (ANTs)

Figure 3: Depiction of fMRIflows 1st-level analysis pipeline. Arrows indicate dependency between
the different processing steps and data flow. The name of each node describes the functionality, with the
corresponding software dependency mentioned in brackets. Sections that can be grouped into specific
sections are contained within ared box to facilitate understanding of the pipeline. The color of the arrows
indicates if the connection stays within a section (red) or not (blue). Nodes depicted in green are optional
and can be run if spatial normalization was not yet performed during preprocessing.
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2nd-levd univariate analysis

The second-level univariate analysis pipeline is contained within the notebook 05_analysis 2nd-
level.ipynb and uses the JSON file fmriflows spec analysisjson for parameter specification. Users can
specify the probability value used as a cutoff for the threshold of the GM probability tissue map in
template space that is later used during the model estimation. Additionally, users can specify voxel- and
cluster-threshold topological thresholding of the datigtical contrast, as well as relevant AtlasReader
(Notter et al., 2019) parametersfor the creation of the output tables and figures.

The 2nd-level univariate analysis pipeline depends only on the estimated contrasts from the 1st-
level univariate analysis. No further contrast specification is required as fMRIflows currently only
implements a simple one-sample T-test. The individual processing steps included in the 2nd-level
univariate analysis consist of: (1) gathering of the 1st-level contrasts, (2) creation and estimation of the
2nd-level model, (3) estimation of contrast estimation, (4) topological thresholding of contrasts, (5)
results creation with AtlasReader. As for the 1st-level analysis, all of the relevant model creation,
estimation and contrast computations are performed with SPM12. For a more detailed description of the

stepsinvolved in this processing pipeline, see Supplementary Note 5.

2nd-level multivariate analysis

The second-level multivariate analysis pipeline is contained within the notebook
06_analysis multivariate.ipynb and uses the JSON file fmriflows spec_multivariatejson for parameter
specification. Users can define a ligt of classifiers to use for the multivariate analysis, the sphere radius
and the step size of the searchlight approach. To perform a 2nd-level analysis of searchlight results users
can decide between a classical GLM approach testing againgt chance level and a more recommended
permutation-based method as described in Stelzer, Chen, & Turner (2013) with the option of determining
the number of permutations. Additionally, users can specify voxel- and cluster-threshold topological
thresholding of the statistical contrast, as well as relevant AtlasReader parameters for the creation of the
output tables and figures.

The 2nd-level multivariate analysis pipeline depends on the estimated contrasts from the 1st-level
multivariate analysis, the associated CSV file containing alist of the corresponding contrast labels and a
list of binary classification identifiers. In contrast to the other notebooks, this notebook uses Python 2.7
to accommodate the requirements of PyMVPA v2.6.5 (Hanke et al., 2009). The individual processing
steps included in the 2nd-level multivariate analysis consist of: (1) data preparation for the analysis with
PyMVPA, (2) searchlight classification, (3) computation of group anaysis using a T-test, (4)
computation of group analysis according to Stelzer et a. (2013), and (5) results creation with
AtlasReader. For a more detailed description of the steps involved in this processing pipeline, see

Supplementary Note 6.

11
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2.1.2 Infrastructureand accessto fM RIflows

The source code of fMRIflows is available at GitHub (https://github.com/miykael/fmriflows) and
is licensed under the BSD 3-Clause “New” or “Revised” License. The code is written in Python v3.7.2
(https://www.python.org), stored in Jupyter Notebooks v4.4.0 (Kluyver et al., 2016) and distributed via

Docker v18.09.2 (https://docker.com) containers that are publicly available via Docker Hub

(https://hub.docker.com). The usage of Docker allows the user to run fM RIflows on any major operating

system, with the following command:

docker run -it -p 9999:8888 -v /home/user/ds001:/data miykael/fmriflows

The first flag -it indicates that the docker container should be run in interactive mode, while the
second flag -p 9999:8888 defines the port (here 9999) that we want to use to access the Jupyter Notebooks
via the web-browser. The third flag, -v /home/user/ds001:/data tells fMRIflows the location of the BIDS-
confirm dataset that should be mounted in the docker container, here located at /home/user/dsD01. Once
the docker container is launched, the interactive Jupyter Notebooks can be accessed through the web
browser. Further detailed documentation can be found in the github repository.

fMRIflows uses many different software packages for the individual processing seps.
Specifically, this entails the following: Nipype v1.1.9 (Gorgolewski et al., 2011), FSL v5.0.9 (Smith et
al., 2004), ANTs v2.2.0 (Avants et al., 2011), SPM12 v7219 (Penny et al., 2011), AFNI v18.0.5 (Cox
and Hyde, 1997), Nilearn v0.5 (Abraham et al., 2014), Nibabel v2.3.0 (Brett et a., 2018), PyMVPA
v2.6.5 (Hanke et al., 2009), Convert3D v1.1 (https://sourceforge.net/p/c3d), AtlasReader v0.1 (Notter et
a., 2019) and PyBIDS v0.8 (Yarkoni et a., 2019). In addition to some standard Python libraries,
fMRIflows also uses Numpy (Oliphant, 2007), Scipy (Jones et al., 2001), Matplotlib (Hunter, 2007),
Pandas (McKinney and others, 2010) and Seaborn (http://seaborn.pydata.org).

With every new pull request pushed to the GitHub repository of fMRIflows, a test instance on

CircleCl (https:/circleci.com) is deployed to test the complete code base for execution errors. This

framework allows the continuous integration of new code to fMRIflows, and guarantees the general
functionality of the software package. Outputs are not controlled for their correctness.

2.1.3 Validation of fMRIflows

fMRIflows was validated in two phases. In Phase 1, we validated the proficiency of the toolbox by
applying it on different kinds of fMRI datasets conforming to the BIDS standard (K. J. Gorgolewski et
al., 2016) available via OpenNeuro.org (Gorgolewski et al., 2017). Insights during this phase allowed us
to improve the code base and make fMRIflows robust to a diverse set of datasets. In Phase 2, we
compared the performance of the toolbox to similar neurocimaging preprocessing pipelines such as

fMRIPrep, FSL, and SPM. To better understand where fM RIflows overlaps or diverges from comparable
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processing pipelines, we investigated the preprocessing, subject-level and group-level outcomes for all

four toolboxes, run on three different datasets.

Phase 1: Proficiency validation

To investigate the capabilities and flaws of the initial implementation of the toolbox, fMRIflows
was run on different datasets, either available publicly via OpenNeuro.org or available privately to the
authors. Such an approach alowed the exploration of datasets with different temporal and spatial
resolutions, SNRs, FOV's, numbers of slices, scanner characteristics, and other sequence parameters,

such as acceleration factors and flip angles.

Phase 2: Performance validation

To validate the performance of fMRIflows, we used three different task-based fMRI datasets and
compared its preprocessing to the three neuroimaging processing pipelines/software packages fMRIPrep,
FSL and SPM. The comparison was done on preprocessing, subject-level and group-level outputs.
Because of differences in how FSL and SPM perform subject- and group-level analyses and due to the
lack of such routines in fMRIPrep, all subject- and group-level analyses for the performance validation
were performed using identical Nistats routines.

The three datasets (see Table 1) were all acquired on scanners with a magnetic field strength of 3
Tesla and differ in many sequence parameters, most notably in the temporal resolution with which they
were recorded. This is especially important as we aim to highlight that the right handling of temporal

filtering is crucial for datasets with atemporal resolution below 1000ms.

Table 1: Overview of the datasets used to validate fM RIflows.

Dataset TR2000 TR1000 TR600

Temporal resolution ~ 2000ms 1000ms 600ms

Spatial resolution 35x35x33 20x2.0x24 3.0x3.0x30

Number of slices 36 64 24

Slice Order Descending Unknown Interleaved

Coverage Whole brain wWhole brain Slab

Volumes per run 275 453 600

Number of runs 4 4 6

Acceleration Factor None 4 3

Magnetic strength 3Teda 3Tesla 3Teda

Number of subjects 12 20 17

Sequence type 2D-EPI Multi-Band SMS

Task Audio-visual memory task Mixed gambletask  Audio-visual observation task

Data Availability OpenNeuro.org OpenNeuro.org OpenNeuro.org (will be made
(dsD01345, v 1.0.1) (ds001734, v.1.0.4) available after publication of

experimental work)
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Dataset TR2000 has a comparably low temporal sampling and spatial resolution. It serves as a
standard dataset, recorded with a standard EPI scan sequence. The dataset and paradigm are described in
more detail in Notter et al. (under review). In short, participants performed a continuous recognition task
and indicated for each image whether it is old or new. When the image was presented for the first time
(new) it was either presented with no sound (unisensory visual context) or together with a sound
(multisensory context).

Dataset TR1000 has a rather high temporal sampling and spatial resolution and serves as an
advanced dataset, recorded with a scan sequence using a multiband acceleration technique. The dataset
and paradigm are described in more detail in Botvinik-Nezer et a. (2019). In short, participants
performed a mixed gambling task in which they were asked to either accept or reject a possible monetary
gainor loss.

Dataset TR600 has a very high temporal sampling with a moderate spatial resolution and serves
as an extreme dataset, recorded with scan sequences using a sSmultaneous multi-slice (SMS) acceleration
technique (Feinberg et al., 2010). This dataset was collected for another project. In short, participants
were shown auditory, visual or audiovisual stimuli containing either an animal (as an image or sound),
pure noise or both together. Participants performed a discrimination task in which they had to indicate if
they perceived a stimulus with an animal in it or not, independent of the stimuli modality. The stimuli

were either presented in a unisensory or multisensory context.

All participants of the Datasets TR2000 and TR600 have been included in the performance
validation, while only the first 20 out of the 120 total participants of the Dataset TR1000 were used in
order to reduce computation time and make this dataset comparable to the other two. Datasets TR2000
and TR1000 are aready publicly available through the OpenNeuro platform. Dataset TR600 is in
preparation to be published on OpenNeuro as well. Until then, this dataset is available upon request to
the corresponding author.

The pre-processing pipelines with fMRIflows, fMRIPrep, FSL and SPM were based on the
default parameters and only differed in the following points from their standard implementations: (1)
Functional images were resampled to an isometric voxel resolution according to the dominant resolution
dimension within a dataset; (2) Spatial smoothing of the functional images is applied after preprocessing
of the images, using a Nilearn routine and a smoothing kernel with a Full Width at Half Maximum
(FWHM) of 6mm, in order to keep the approaches comparable, as spatial smoothing is not included in
the fMRIPrep workflow; (3) Anatomical images in the FSL pipeline were first cropped to a standard
FOV, followed by brain extraction using FSL's BET before FSL’s FEAT was launched; (4) In the case
of FSL, the normalization from dructural to standard space was done using a non-linear warping

approach with 12 degrees of freedom and a spline interpolation model; (5) In the case of SPM, the
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template brain for the normalization was its standard tissue probability brain TPM, while for fMRIflows,
fMRIPrep and FSL, the ICBM 2009c nonlinear asymmetric brain template was used.

The satistical inference was not performed on any of the investigated toolboxes to prevent the
introduction of a software-specific bias. The 1%- and 2"™-level analysis was performed using Nistats,
Nilearn and other Python toolboxes and only differed between the toolboxes in the following ways: (1)
the estimated motion parameters added to the design matrix during the 1%-level analysis differed for each
toolbox as they were based on the software-specific preprocessing routineg; (2) the number of volumes
per run used during the 1%-level analysis of fMRIflows might differ slightly from the other approaches,
as the fMRIflows routine removes non-steady state volumes during the preprocessing; (3) SPM used its
own tissue probability map to create a binary mask restricted to gray matter voxels during the group
analysis, while the other three toolboxes used the ICBM 2009c¢ gray matter probability map instead.

To compare the unthresholded group statistic maps between the toolboxes, we created for each
pairwise combination of preprocessing approach a Bland-Altman 2D histogram plot, as described by
(Bowring, Maumet, & Nichols, 2018). These plots show the difference between the datistic value (y-
axis), against the mean satistic value (x-axis) for all voxels within the intersection of the respective brain
mask. In other words, it summarized in a 2D hisogram plot, for each voxel how much higher the
dtatistical value in toolbox B is (y-axis), in comparison to toolbox A’s statistical value (x-axis).

The complete lists of parameters, the scripts to perform preprocessing, 1%- and 2"-level analysis
and the scripts to create individual figures can be found on the fMRIflows GitHub page

(https://github.com/miykael /fmriflows/tree/master/paper). Derivatives generated for the validation in
phase 2 can be inspected and downloaded on NeuroVault (Gorgolewski et al., 2015) under the following
links: (1) Standard deviation maps of temporal averages after  preprocessing

(https://identifiers.org/neurovault.collection:5645), (2) temporal SNR maps &fter preprocessing

(https://identifiers.org/neurovault.collection:5713), (3) binarized 1st-level activation count maps

(https://identifiers.org/neurovault.collection:5647), 4 2nd-level activation maps

(https://identifiers.org/neurovault.collection:5646).

2.2 Reaults

2.2.1 Summary of outputs obtained by fMRIflows processing pipelines

Output generated after executing the anatomical preprocessing pipeline

After the execution of the anatomical preprocessing pipeline, the following files are generated for
each subject: (1) image of the inhomogeneity-corrected full head image, (2) image of the extracted brain,
(3) binary mask used for the brain extraction, (4) individual tissue probability maps for gray matter
(GM), white matter (WM), cerebrospinal fluid (CSF), skull and head, (5) nhormalized anatomical image

in template space (6) reverse-normalized template image in subject space, (7) plus the corresponding
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transformation matrices used for output 5 and 6. Each anatomical preprocessing output folder also
contains (8) the ICBM 2009c brain template used for the normalization, sampled to the requested voxel
resolution.

In addition to these files, the following three informative figures are generated: (1) tissue
segmentation, (2) brain extraction and (3) spatial normalization of the anatomical image. A shortened

version of those three figures, as well astheir explanation, are shown in Figure 4.

sub: 01 - y-axis

sub 01 - x- axls

sub 01 - z-axis

a t\ w’

Figure 4: Summary of output figures generated by fMRIflows after executing the anatomical
preprocessng pipdine. (Top) Coronal view of the image segmentation output, showing gray matter
tissue in green, white matter tissue in beige, and cerebrospinal fluid in blue. (Middle) Sagittal view of the
brain extraction output, showing the extracted brain image in red, and the original anatomical image in
gray. (Bottom) Axial view of the spatial normalization output, showing the normalized brain image
highlighted in yellow, overlaid over the ICBM 2009c brain template in gray. Regions in red and blue
show negative and positive deformation discrepancies between the normalized subject image and the
template.

Output generated after executing the functional prepr ocessing pipeline

After the execution of the functional preprocessing pipeline, the following files are generated
separately for each subject, each functional run and each temporal filtering: (1) text file indicating which
volumes were detected as outliers, (2) tabular separated (TSV) file containing all extracted confound
regressors, (3) text file containing the six motion parameter regressors according to FSL's output
scheme, (4) binary masks for the brain, (5) masks for anatomical and functional component based noise
correction, (6) functional mean image, and (7) completely preprocessed functional images, separated by
spatial smoothing approaches. Each subject folder also contains (8) one text file per functional run
indicating the number of non-steady-state volumes at the beginning of the run.

The following is a more detailed description of the multiple confounds fMRIflows estimates
during functional preprocessing:

Confounds based on maotion parameters. In addition to the head motion parameters created

during preprocessing, fMRIflows also computes (1) 24-parameter Volterra expansion of the motion
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parameters (Friston et a., 1996) using cusom scripts and (2) Framewise Displacement (FD) component
(Power et al., 2012) using Nipype.

Confounds based on global signal: Functional images before spatial smoothing were used to
compute confound regressors, such as (1) DVARS, which represents the spatial standard deviation of the
signal after temporal differencing, to identify motion-affected frames (Power et al., 2012), using Nipype
and (2) four global signal curves representing the average signal in the total brain volume (TV), GM,
WM and CSF, using Nilearn.

Detection of outlier volumes: The user can specify which of the six signal curves for FD,
DVARS and average signal in TV, GM, WM and CSF to use to identify outlier volumes (see Figure 5A).
Those are volumes that have larger fluctuations in the signal values in a given volume, compared to the
z-scored standard deviation throughout the time course. The exact threshold for each curve can be
adapted by the user, but its default value is set to a z-value of 3.27, representing 99%, for the FD,
DVARS and TV signal. The identification number of each outlier volume is stored in a text file that
might be used in the 1%-level pipeline during the GLM model estimation to remove the effect of those
volumes from the overall analysis, also known as censoring (Caballero-Gaudes and Reynolds, 2016).

Confounds based on signal components. Using the temporal filtered functional images, two
different kinds of approaches are performed to extract components that could be used for denoising or
dimensionality reduction of the data. The first approach is called CompCor (Behzadi et al., 2007) and
uses principal component analysis (PCA) to estimate the main sources of noise within specific confound
regions. Regions are either defined by their temporal or anatomical characteristics. The temporal
CompCor approach (tCompCor) considers the 2% most variable voxels within the confound brain mask
as sources of confounds. The anatomical CompCor approach (aCompCaor), considers voxels within twice
eroded WM and CSF brain masks as sources of confounds. The user can specify how many aCompCor
and tCompCor components should be computed, but the default value is set to five each. The second
approach uses independent component analysis (ICA) to perform source separation in the signal (Figure
6). Using Nilearn's CanlCA routine, fMRIflows computes by default the top ten independent
components throughout the confound masks. The number of confounds to extract can be adjusted by the
user. It is the user's responsibility to evaluate appropriately whether residual artifacts are present and
need to be removed.

Storage of confound information: All of the confound curves computed after functional
preprocessing are stored ina TSV fileto allow for easy access.

Diverse set of overview figures To allow for visual inspection of the numerous outputs generated
after the execution of the functional preprocessing pipeline, fMRIflows creates many informative
overview figures. These overviews cover the motion parameters used for head motion correction, the
anatomical and temporal CompCor components, FD, DVARS, the average signal in TV, GM, WM and
CSF, and the ICA components. fMRIflows also creates a brain overview figure showing the extent of the

different masks applied during functional preprocessing, a spatial correlation map between the ICA
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components and the individual voxel signal, and a carpet plot according to (Power, 2017) and (Esteban et
al., 2019). To better visualize underlying structures in the carpet plot the time series traces are sorted by
their correlation coefficients to the average signal within a given region, alowing for a positive or
negative time lag of 2 volumes. A shortened version of all these figures, as well as their explanations, are
shown in Figures 5-7.
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Figure 5: Example of general output figures generated by fM RIflows after executing the functional
preprocessng pipeline. The dataset used to generate these figures was recorded with a TR of 600ms
and had atotal of 600 volumes per run. Preprocessing included a low-pass filter at 0.2 Hz. Distribution
plots on the right side of the figures in parts A and B represent value frequency in y-direction. A)
Depiction of the nuisance confounds FD, DVARS and TV. Detected outlier volumes are highlighted with
vertical black bars. B) Estimation of translation head motion after application of low-pass filtering at 0.2
Hz in color, and before temporal filtering in light gray. C) Depiction of brain masks used to compute
DVARS (red), temporal (green) and anatomical (blue) CompCor confounds, overlaid on the mean
functional image (grey).

Output generated after executing the 1st-level analysis pipeline
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After the execution of the 1st-level analysis, the following files are generated for the univariate
analysis. (1) contrasts and statistical map of the specified contrasts, (2) SPM.mat file containing the
information relevant for the model, (3) visualization of the design matrix used in the 1st-level model
depicting the regressor for the stimuli, motion and confounds, and (4) glass brain plot for each estimated
contrast thresholded at the top 2% of positive and negative values created with AtlasReader to provide a
general overview of the quality of contrasts. The multivariate analysis part of this notebook creates. (1)
one contrast image per condition and session which later can be used as samples for the multivariate

analysis, and (2) alabel file identifying the condition of each contrast.
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Figure 6: Example of ICA output figures generated by fMRIflows after executing the functional
preprocessng pipeline. The dataset used to generate these figures was recorded with a TR of 600ms
and had atotal of 600 volumes per run. A) Correlation between the first three ICA components and the
functional image over time (left) and the corresponding power density spectrum with frequency on the x-
axis (right). The first component most likely depicts respiration at 0.6 Hz, while the third component is
most likely visual activation induced by the visual simulation task during data acquisition. B)
Correlation strength between a given ICA component and the location in the brain volume for the first
three ICA components.

Output generated after executing the 2nd-level analysis pipeline
After the execution of the 2nd-level univariate analysis, the following files are generated,
individually for each contrast and spatial and temporal filter that was applied: (1) contrasts and statistical
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map of one-sample t-test contrast, (2) SPM.mat file containing the information relevant for the model,
() thresholded datistical maps with corresponding AtlasReader outputs (i.e. glass brain plot to provide a
result overview, cross section plot showing each significant cluster individualy, informative tables
concerning the peak and cluster extent of each cluster).

After the execution of the 2nd-level multivariate analysis, the following files are generated, for
each specified comparison individually: (1) subject-specific permutation files needed for correction
according to (Stelzer et al., 2013), (2) group-average prediction accuracy maps as well as corresponding
feature-wise maps representing chance level acquired via a bootstrapping approach (Stelzer et al., 2013),
(3) group-average prediction accuracy maps after correction for multiple comparisons and (4)
thresholded statistical result maps with corresponding AtlasReader outputs (i.e. glass brain plot to
provide a result overview, cross section plot showing each significant cluster individually, informative

tables concerning the peak and cluster extent of each cluster).
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Figure 7: Example of a carpet plot figure generated by fMRIflows after executing the functional
preprocessing pipeline. The dataset used to generate this figure was recorded with a TR of 600ms and
had atotal of 600 volumes per run. This panel shows the signal after preprocessing for every other voxel
(y-axis), over time in volumes (x-axis). The panel shows voxels in the gray matter (top part), white
matter (between blue and red line) and CSF (bottom section). The data was standardized to the average
signal and ordered within a given region according to the correlation coefficient between a voxel and the
average signal of thisregion.

2.2.2 Results of phase 1: Proficiency validation

Due to differences in scanner hardware, scan protocols, research reguirements and expertise of the
person who records the images, fMRI datasets can come in many different shapes and forms. We ran
fMRIflows on several datasets to make sure that it is capable of dealing with differences inherent to each
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of them. In this section, we summarize the main issues we encountered during this process and describe

how we tackled each of them.

Image orientation
fMRIflows reorients all anatomical and functional images at the beginning of the preprocessing
pipeline to the neurological convention RAS (right, anterior, superior) to prevent failures of

coregistration between anatomical and functional images due to orientation mismatches within subjects.

Image extent

Some datasets have unusually large image coverage along the inferior-superior axis, which means
that their anatomical images also often contain part of the participant’s neck. This can lead to unwanted
outcomes in certain neuroimaging routines, as they were not tested for such additional tissue coverage.
This is most pronounced in the case of FSL’s BET routine, which has difficulty finding the center and
extent of the brain, or SPM’s segmentation routine which depends on the distribution of the voxel
intensities within the whole volume. To prevent these and other unforeseen behaviors, fMRIflows uses

FSL’ s robustfov routine to restrict all anatomical images to the same spatial extent.

I mage inhomogeneity

Depending on the scan sequence protocol or the scanner hardware itself, some datasets can contain
strong image intensity inhomogeneities, caused by an inhomogeneous bias field during data acquisition.
This can have a negative effect on many different neuroimaging routines, most pronounced in brain
extraction and image segmentation. To tackle this issue, fMRIflows uses ANTS N4BiasFieldCorrection
routine, which allows the analysis of datasets with even low image quality and strong image
inhomogeneity. In the anatomical preprocessing pipeline, inhomogeneity correction is applied to
improve the final output image. In the functional preprocessing pipeline, inhomogeneity correction is
only applied to improve the estimation and extraction of different tissue types but does not directly

change the values in the final output image.

Brain extraction

Different brain extraction routines were explored to ensure: 1) that the extraction is sufficiently
robust to handle different kinds of datasets, 2) that it is neither too conservative nor liberal with the
removal of non-brain tissues, and 3) that it has an overall reasonably fast computation time. The best and
most consistent results were achieved using SPM’s image segmentation routine, followed by specific
thresholding and merging of the GM, WM and CSF probability maps. FSL's BET routine was not robust
enough to lead to stable results on all tested datasets. While ANTS' Atropos routine led to comparably

good results, we went with SPM because of the much faster computation time.
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Imageinterpolation

For the single-shot spatial interpolation during normalization, we used ANTs and explored
NearestNeighbor, BSpline and LanczosWindowedSinc (Lanczos, 1964) interpolation. NearestNeighbor
interpolation led to unnatural-looking voxel-to-voxel value transitions. BSpline led in general to good
results, but had issues, especially with datasets that did not have full brain coverage and introduced some
rippling low-value fluctuations at the borders of non-zero voxels. LanczoswWindowedSinc interpolation
led to the best outcome by minimizing the smoothing effects and preventing the introduction of
additional confounds reaffirming the observations from fMRIPrep (Esteban et al., 2019).

2.2.3 Results of phase 2: Performance validation

The performance validation of fMRIflows was conducted on three different task-based fMRI
datasets, as described in Table 1. The preprocessing of fMRIflows was compared to other neuroimaging
processing pipelines such as fMRIPrep, FSL and SPM. We tested fMRIflows preprocessing pipeline
with and without a temporal low-pass filter of 0.2 Hz to better understand performance differences
between toolboxes and to stress the importance of adequate temporal filtering when processing fMRI

datasets with high temporal resolution.

Egimated spatial smoothnessafter functional preprocessng

Each preprocessing step that resamples a functional image, such as dlice time correction, motion
correction, and spatial or temporal interpolation has the potential to increase the spatial smoothness in the
data. The less smoothness is introduced during preprocessing, the closer the data are to their initial
verson. We used AFNI’'s 3dFWHMX to estimate the average spatial smoothness (FWHM) of each
functional image after preprocessing to compare the amount of data manipulation that was applied to the
raw data (see Figure 8). As this FWHM value depends on the voxel resolution of a given dataset, we
normalized it by the volume of the voxel to achieve acommon FWHM value per 1mm®.

Overall, the estimated spatial smoothness after preprocessing with fMRIflows (without a low-pass
filter) is comparable to the one with fMRIPrep, while SPM’s isin general significantly lower and FSL's
is dlightly higher. The differences with respect to SPM are probably due to the fewer numbers of
resampling steps involved in SPM’s preprocessing pipeline. The differences with respect to FSL are
probably due to the interpolation method used during image resampling. While the FSL preprocessing
pipeline uses the spline interpolation, fMRIflows and fMRIPrep use the LanczoswWindowedSinc
interpolation, which is known to minimize the smoothing during interpolation. The application of a
temporal low-pass filter at 0.2 Hz during fMRIflows' preprocessing leads to a significantly higher spatial
smoothness for the TR600 dataset when compared with the other approaches. This effect might also be
present in the TR1000 dataset. However, there the difference between the fMRIflows preprocessing with

and without low-pass filtering is not significant. This increased spatial smoothness for the approach that
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uses a low-pass filter makes sense, as the goal of the temporal low-pass filter itself is to smooth the time

series values. This temporal smoothing forcibly also increases the spatial smoothness at each individual

time point.
Methods k¥
[] fMRIflows (0.2 Hz)
1.8+ I fMRIflows (no LP) I —
D MRIPrep . ..L:
B FsL J &8
1.7 \ (1]
@sem ) \ i 4 .
-'.-‘-\ a2 1
1.6 ( A A L " A
" A <2 [
5 A% o K £
~ 154 l I:"E @ - il
= [ ! ~ :E;‘ ;::'
= | o ol (&)
L 7] o ?o" t?
1.4 ﬂ 2 ‘? g
1.3 s i &
g |
%k
1.2
* ok
1.1 * 5k %
I 1 I
TR2000 TR1000 TR600
Dataset

Figure 8: Investigation of estimated spatial smoothness after functional preprocessing of three
different datasets, processed with varying approaches. The five different preprocessing approaches
fMRIflows with (blue) and without (orange) alow-passfilter at 0.2 Hz, fMRIPrep (green), FSL (red) and
SPM (violet) are plotted separately for the dataset TR2000 (left), TR1000 (middlie) and TR600 (right).
The violin plots indicate the overall distribution of the normalized smoothness estimates of each
functional image (depicted in individual dots: TR2000=48 dots, TR1000=80 dots, TR600=102 dots). The
red horizontal line represents the median value, while the horizontal black lines indicate the 25 and 75
percentiles of the value distribution respectively. Two-sided t-tests were computed for each pair of
approaches used and each dataset. Significant differences between groups are indicated with *: p<0.05
and ***: p<0.001.

Performance check of spatial normalization
We computed the standard deviation map for each population, based on the temporal average map
of each preprocessed functional image, to compare the performance of spatial normalization of the

different preprocessing methods on the three different datasets (see Figure 9).
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The averaged standard deviation maps after fMRIflows’ and fMRIPrep’s preprocessing are very
similar, which is not surprising as fMRIflows uses the same ANTs normalization routine with very
similar parameters. The main difference lies in the fact that fMRIflows applies a brain extraction on the

functional images as well, which is not performed with fMRIPrep.

TR2000 TR1000 TR600

FSL fMRIPrep  fMRIflows

SPM

50 250 150 500 150 500

Figure 9: Depiction of standard deviation maps of the temporal averages of three different
datasets, after multiple functional preprocessing approaches. Preprocessing was done with
fMRIflows (with a temporal low-pass filter at 0.2 Hz; without a low-pass filter looks identical),
fMRIPrep, FSL and SPM (from top to bottom) separated for the TR2000 (left), TR1000 (middle) and
TR600 (right) dataset. The color value represents the standard deviation value over all subjects. The
color scale is the same within a dataset and was set manually to highlight the border effects in gray
matter regions. Regions with high inter-subject variability are shown in yellow, while regions with low
inter-subject variability are shown in blue. The outline of the brain and subcortical white matter regions
is delineated in red and is based on the ICBM 2009c brain template, except for the analysis with SPM
where it isbased on SPM’ s tissue probability map template.

Temporal signal-to-noiseratio (tSNR) after preprocessing
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We computed the voxel-wise temporal SNR according to (Smith et al., 2013) to assess the amount
of informative signal contained in the data after preprocessing. This measurement serves as a rough
estimate to compare different preprocessing methods but did not alow a direct comparison between
datasets, as the tSNR value is a relative measurement that depends highly on the paradigm presented, the
initial spatial and temporal resolution of the functional images, as well asthe MRI scan sequence specific
parameters such as acceleration factors (Smith et a., 2013). Using Nipype's TSNR routine, we first
removed 2"-degree polynomial drifts in each functional image and estimated tSNR maps by computing
each voxel’'s temporal mean, dividing it by its temporal standard deviation, and multiplying it by the
square root of the number of time points recorded in a given run. By averaging the tSNR maps over the

population, we get ageneral tSNR map per preprocessing method for each dataset (see Figure 10).

TR2000 TR1000 TR600

(LP: None) (LP: 0.2Hz)
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Figure 10: Depiction of temporal signal-to-noise ratio maps of three different datasets, after
multiple functional preprocessing approaches. Preprocessing was done with fMRIflows (with and
without a temporal low-pass filter at 0.2 Hz), fMRIPrep, FSL and SPM (from top to bottom) separated
for the TR2000 (left), TR1000 (middle) and TR600 (right) dataset. The color value represents the tSNR
value as computed with the Nipype routine TSNR. The color scale was set manually and differs between
datasets, but is held constant between different preprocessing methods.

In general, preprocessing with fMRIflows without a temporal low-pass filter led to similar average
tSNR maps as preprocessing with fMRIPrep. Overall, preprocessing with FSL led to dlightly increased
average tSNR values, while preprocessing with SPM led to slightly decreased average tSNR maps. The
additional application of alow-passfilter at 0.2 Hz in all three datasets led to increased tSNR values after
preprocessing with fMRIflows. This effect was more pronounced for higher temporal resolution (as in
Dataset TR1000 and TR600). The color scales in Figure 10 were set manually so that the fMRIflows
(without a low-pass filter) approach shows comparable intensities for the three datasets.

Performance check after 1st-level analysis

To investigate the effect of the different preprocessing methods on the 1%-level analysis, we
carried out a within-subject statistical analysis using Nigtats. The activation maps were estimated using a
general linear modd (GLM). The GLM included a constant term, the stimuli regressors convolved with a
double-gamma canonical hemodynamic response function, six motion parameters (three translation and
three rotation), and a high-pass filter at 100Hz, represented by a set of cosine functions, and no temporal
derivatives. The input data were smoothed using a kernel with a FWHM of 6mm, using a Nilearn
routine. The analysis pipelines between the preprocessing methods and datasets were kept as identical as
possible and differed only in the number of time points contained in the dataset and the estimated motion
parameters. The statistical map for each participant was binarized at z = 3.09, which corresponds to a
one-sided test value of p < 0.001. The population average of these mapsis shown in Figure 11.

The results show that the thresholded activation count maps between the fMRIflows approach
without a low-pass filter, fMRIPrep, FSL and SPM do not differ too much between each other, for all
three datasets. In contrast to the other preprocessing methods, however, the preprocessing with
fMRIflows with a low-pass filter at 0.2 Hz drastically increased the size and fraction vaue of the
thresholded activation count maps, for the datasets TR1000 and TR600. Thus, appropriate temporal
filtering increased the statistics for datasets with higher temporal resolution remarkably. For a more
detailed comparison between all the toolboxes, see Supplementary Note 7.
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Figure 11: Depiction of binarized 1%-level activation count maps, thresholded at p<0.001, after
multiple functional preprocessing approaches. Preprocessing was done with fMRIflows (with and
without a temporal low-pass filter at 0.2 Hz), fMRIPrep, FSL and SPM (from top to bottom) separated
for the TR2000 (left), TR1000 (middle) and TR600 (right) dataset. Activation count maps were
normalized to the ICBM 2009c brain template. Color code represents the fraction of participants that
show significant activation above a p-value threshold at 0.001 and corrected for false positive rate (FPR).

Performance check after 2nd-level analyss

To investigate the effect of the different preprocessing methods on the 2"™-level analysis, we
carried out a between-subject datistical analysis using Nistats and computed a one-sample t-test for each
preprocessing method and dataset. The unthresholded group-level T-datistic maps of each analysis were
then compared to each other on a voxel-by-voxel level using Bland-Altman 2D histograms (Bowring et
al., 2018), see Figure 12.
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Figure 12: Bland-Altman 2D histograms of three different datasets, comparing unthresholded
group-level T-dtatistic maps between multiple processing approaches. Datasets TR2000 (top),
TR1000 (middle) and TR600 (bottom) were used for the comparison. Density plots show the relationship
between the average T-statistic value (horizontal) and the difference of T-statistic values (vertical) at
corresponding voxels for different pairwise combinations of toolboxes. The difference of T-statistics was
always computed in contrast to a preprocessing with fMRIflows using a low-pass filter at 0.2 Hz, while
the average T-datistics in horizontal direction investigated the preprocessing with (from left to right)
fMRIflows without a low-pass filter, fMRIPrep, FSL and SPM. Distribution plots next to the x- and y-
axis depict the occurrence of a given value in this domain. The color code within the figure indicates the
number of voxels at this given overlap, from a few (blue) to many (yellow). The yellow horizontal line at
zero indicates no value differences between corresponding voxels. The red dashed line depicts the
horizontal density average.

The results shown in Figure 12 indicate no pronounced differences between the preprocessing with
fMRIflows with alow-pass filter at 0.2 Hz and the other four approaches for the analysis of the TR2000
dataset. Increased variability in the y-direction indicated a decrease in voxel-to-voxel correspondence,
which might be explained by different spatial normalization implementations. The fact that the average
horizontal density value (red dashed line) is close to the zero line (in yellow) indicated that the different
preprocessing methods led to comparable group-level results with the TR2000 dataset. The Bland-
Altmann plots for the TR1000 and TR600 datasets showed a clear increase of t-statistic when the
preprocessing was done with fMRIflows with a low-pass filter at 0.2 Hz, compared to any other method.
This effect was stronger for higher t-values. For a more detailed comparison between all the toolboxes,

see Supplementary Note 8.
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2.3 Discussion

fMRIflows is a fully automatic fMRI analysis pipeline, which can perform state-of-the-art
preprocessing, including 1%-level and 2™-level univariate analyses as well as multivariate analyses. The
goal of such an autonomous approach is to improve the objectiveness of the analyses, maximize
trangparency, facilitate ease of use, and provide accessible and updated analysis approaches to every
researcher, including users outside the field of neuroimaging. While the predefined analysis pipelines
help to reduce the number of error-prone manual interventions to a minimum, it also has the advantage of
decreasing the number of analytical degrees of freedom available to a user to its minimum (Carp, 2012).
This congtraint in flexibility is important as it helps to control the variability in data processing and
analysis (Botvinik-Nezer et al., 2020). fMRIPrep showed a clear need for such analysis-agnostic
approaches and was therefore chosen to provide much of the groundwork for fMRIflows. Our pipeline
provides a reliable methodological framework for analyzing functional magnetic resonance imaging
(fMRI) data and for obtaining statistical results to be used for advanced multivariate analysis techniques.
fMRIflows achieves. 1) high SNR after preprocessing, (2) reproducible within-subject t-statistics, and (3)
reproducible between-subject t-gatistics. The flexibility for the user to perform both spatial and temporal
filtering is particularly important in the context of datasets that had a temporal sampling equal to or
below 1000ms or if the statistical output will be used for more advanced analyses, such as MVPA.
fMRIflows also improved the overall computation time needed to perform preprocessing and 1% and 2"-
level analyses. Indeed, Nipype provides a parallel execution feature of processing pipelines, which is not
yet possible with FSL or SPM. fMRIPrep uses the same boost of parallelism but is overall much slower
if the default execution of FreeSurfer’s recon-all routine is performed. However, fMRIflows does not yet
support parallel computation via a job scheduler on a computation cluster, which is currently possible
with fMRIPrep.

In comparison with other neuroimaging software/pipelines like fMRIPrep, FSL and SPM,
fMRIflows achieved comparable or improved resultsin (1) SNR after preprocessing, (2) within-subject t-
statistics, and (3) between-subject t-statistics. These results were more obvious in the context of datasets
that had atemporal sampling equal to or below 1000ms, and if alow-passfilter at 0.2 Hz was applied.

The inclusion of many informative visual reports allows direct quality control and verification of
the performed processing steps, as fMRIflows' outputs provide a general quality assessment even though
it is not as detailed and rigorous as MRIQC (Esteban et al., 2017). In contrast to other software packages,
fMRIflows uses an adapted visualization of the carpet plot proposed by (Power, 2017) to highlight the
underlying temporal structure and voxel-to-voxel correlations within different brain tissue regions and/or
throughout the brain. Such approaches help to observe general signal trends and sudden abrupt signal
changes throughout the brain, but the exact implications of these modified carpet plots need to be further
investigated.
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Being an open-source project, shared via GitHub, facilitates the transparency in the development
of fMRIflows. Users can inspect the complete history of the changes and have accessto al discussions
connected to the software. Code adaptations and additional support for new usage will be proposed by
the user community, which will make the adaptation to the newest standards easy and straightforward. In
addition to the version-controlled system used on GitHub, a continuous integration scheme with CircleCi

will ensure continuous functionality.

Resaults of fMRIflows' validation phase 1 suggest that the software is capable of analyzing
different types of datasets, independently of the extent of head coverage, original image orientation, and
spatial or temporal resolution. By increasing the user base and testing fM RIflows on many more datasets,
new adaptations might be required and hidden bugs could emerge. Users can observe any changes done
to the software in the future directly on GitHub and are encouraged to state any questions or commentsin
connection with the software on the community-driven neuroinformatics forum NeuroStars

(https://neurostars.orq).

Further development of the software will involve (1) moving away from an SPM dependency for
the 1% and 2™level modeling, (2) wusing the more flexible FitLins toolbox
(https://github.com/poldracklablfitlins) to make the results conform with the BIDS datistical models

proposal (BEP002), and (3) implementing an fMRIflows BIDS-App to further improve the toolbox’s

accessibility.

Data Availability

The TR2000 (ds001345, v1.0.1) and TR1000 (ds001734, v.1.0.4) datasets are freely available
from OpenNeuro.org. The TR600 dataset will be made available via OpenNeuro.org after publication of
the experiments for which it was acquired. Interested parties can in the interim contact the corresponding

authors.
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