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Bigger	Picture	
• Gene knockout (KO) experiments, using genetically altered animals, are a proven powerful approach 

to elucidate the role of a gene in a biological process. However, systematic KO experiments 
targeting many genes are usually prohibitive due to limited experimental and animal resources. 
Here, we present scTenifoldKnk, an efficient virtual KO tool that allows the systematic deletion of 
many genes individually. scTenifoldKnk uses single-cell RNA sequencing (scRNAseq) data from wild-
type (WT) samples to predict gene function in a cell type-specific manner. We show that predictions 
made by scTenifoldKnk recapitulate findings from real-animal KO experiments. scTenifoldKnk has 
proven to be a powerful and effective approach for elucidating gene function, prioritizing KO 
targets, predicting experimental outcomes before real-animal KO experiments are conducted. 
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Highlights	
• scTenifoldKnk performs virtual KO experiments using scRNAseq data. 
• scTenifoldKnk only requires data from WT samples; no data is needed from KO samples. 
• Predictions made by scTenifoldKnk recapitulate findings from real-animal KO experiments. 

Data	Science	Maturity	Level	

 

eTOC	blurb	
scTenifoldKnk is a machine learning workflow performing virtual KO experiments to predict gene 
function. It constructs gene regulatory networks using single-cell RNA sequencing data from wild-type 
samples and then computationally deletes target genes. Real-data applications demonstrate that 
scTenifoldKnk recapitulates findings of real-animal KO experiments and accurately predicts gene 
function in analyzed cells. 

Summary	
Gene knockout (KO) experiments are a proven, powerful approach for studying gene function. However, 
systematic KO experiments targeting a large number of genes are usually prohibitive due to the limit of 
experimental and animal resources. Here, we present scTenifoldKnk, an efficient virtual KO tool that 
enables systematic KO investigation of gene function using data from single-cell RNA sequencing 
(scRNAseq). In scTenifoldKnk analysis, a gene regulatory network (GRN) is first constructed from 
scRNAseq data of wild-type samples, and a target gene is then virtually deleted from the constructed 
GRN. Manifold alignment is used to align the resulting reduced GRN to the original GRN to identify 
differentially regulated genes, which are used to infer target gene functions in analyzed cells. We 
demonstrate that the scTenifoldKnk-based virtual KO analysis recapitulates the main findings of real-
animal KO experiments and recovers the expected functions of genes in relevant cell types.	

Introduction	
Gene knockout (KO) experiments are a proven approach for studying gene function. A typical KO 
experiment involves the phenotypic characterization of organisms following the deletion of a target 
gene. For example, in KO mice, a gene is knocked out, i.e., made inoperative by deleting one or more 
alleles using genetic techniques. Phenotypic characterization of KO animals provides insight into how 
the target gene functions within the biological context that KO animals present. Notably, gene functions 
can be inferred by contrasting phenotypes between KO and wild-type (WT) animals and identifying 
differences. At the molecular level, gene expression may serve as a quantitative phenotype. The state of 
gene expression is regulated in a coordinated manner in all living organisms, exhibiting synchronized 
patterns of transcription that can be depicted using a gene regulatory network (GRN). Co-regulations are 
often seen among genes associated with the same biological processes and pathways or regulated by 
the same master transcription factors (TFs).1 If one gene is knocked out, functionally related genes can 
mediate a homeostatic response. Thus, in unraveling regulatory mechanisms and synchronized patterns 
of cellular transcriptional activities, network analysis of gene expression provides mechanistic insights. 

The advent of single-cell technology has greatly improved cellular phenotyping resolution. For example, 
high-throughput droplet-based single-cell RNA sequencing (scRNAseq) makes it possible to profile 
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transcriptomes of thousands of individual cells in a single experiment. The application of single-cell 
technology in KO experiments allows investigators to probe gene function in a cell type-specific manner. 
To fully understand the regulatory mechanisms and gene function, it would be ideal for applying 
scRNAseq in the context of systematic KO experiments that involve the deletion of many genes 
individually. This unique coupling of scRNAseq with large-scale gene KO in an organism would allow the 
function of many genes in various cell types to be studied at a single-cell level of resolution. However, 
limited resources tend to prohibit this kind of experiment, especially when multiple genes are targeted 
and multiple tissues and cell types are involved. To this end, Perturb-seq, and other conceptually similar 
protocols,2,3 have been developed to achieve the aforementioned goal. Although these protocols may 
allow the study of gene functions in many cells in a massively parallel fashion, they require the creation 
of large-scale CRISPR libraries,4 which presents a major technical challenge. For these reasons, 
computational methods serve as a possible solution for prohibitive, systematic KO experiments.5-7 We 
propose that new computational methods may take advantage of the synchronized expression of genes 
in given samples to construct GRNs and predict gene functions. The topology of those GRNs is known to 
serve as a basis to accurately predict perturbations caused by gene KO.8 

Here we present a machine learning workflow, scTenifoldKnk, that can be used to perform virtual KO 
experiments to predict gene functions. scTenifoldKnk utilizes expression data from scRNAseq of the WT 
samples as input and constructs a denoised single-cell GRN (scGRN). The WT scGRN is copied and then 
converted to a pseudo-KO scGRN by artificially zeroing out the weight of outward edges of the target 
gene in the adjacency matrix. Next, by comparing the two scGRNs (WT vs. pseudo-KO), scTenifoldKnk 
reveals changes in transcriptional regulatory programs and assesses the impact of KO on the WT scGRN. 
This information is then used to elucidate the functions of the KO gene in analyzed cells through 
enrichment analysis.  

ScTenifoldKnk is computationally efficient enough to allow the method to be applied to systematic KO 
experiments. In such a systematic study, we assume that thousands of genes in analyzed cells will be 
knocked out one by one. As mentioned, due to the experimental and biological limitations, such 
systematic KO experiments would be extremely difficult, if not impossible, to conduct in a real-animal 
experimental setting. The other application features of scTenifoldKnk include: scTenifoldKnk requires no 
data from KO samples, as it only utilizes scRNAseq data from WT samples, and scTenifoldKnk can 
perform multi-gene KO analysis, i.e., knocking out more than one gene at a time. 

The remainder of this paper is organized as follows. We first present an overview of the workflow of 
scTenifoldKnk. We then use simulated data to demonstrate its basic functions, followed by using existing 
data generated from authentic-animal KO experiments to highlight the use of scTenifoldKnk. These 
existing data sets contain scRNAseq expression matrices from both WT and KO samples. Although KO 
data sets were available, they were not used by scTenifoldKnk as input. Instead, the KO data sets were 
specifically used as positive controls to show that scTenifoldKnk can produce expected results. We also 
show the use of scTenifoldKnk to reveal the functions of genes underlying three different Mendelian 
diseases. Finally, we show two cases of systematic KO using scTenifoldKnk. 

Results	
Result	1:	The	scTenifoldKnk	workflow	
ScTenifoldKnk takes a single gene-by-cell count matrix from the WT sample as input. The workflow 
constructs a WT scGRN from the input count matrix and then generates a pseudo-KO scGRN by knocking 
out a gene from the WT scGRN. Eventually, it employs a network comparison method to compare the 
pseudo-KO and WT scGRNs to identify differentially regulated (DR) genes. These DR genes are virtual-KO 
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perturbed genes—the two terms will be used interchangeably throughout this paper. From the enriched 
function of these virtual-KO perturbed genes, the function of the KO gene (i.e., the gene that is virtually 
knocked out) can be inferred. scTenifoldKnk is implemented with a modular structure containing three 
core modules illustrated in Figure 1. The three steps are summarized as follows. 

Step	1:	Constructing	scGRN	with	scRNAseq	data	from	WT	samples	
With the scRNAseq data from a WT sample, scTenifoldKnk first constructs an scGRN using a pipeline we 
proposed previously, namely, scTenifoldNet.9 This network construction step contains three sub-steps 
(Figure 1A): 

Substep	1.1.	Subsampling	cells	randomly	
Denote 𝑿 as the scRNAseq expression data matrix, which contains the expression levels for 𝑝 genes and 
𝑛 cells. Then, 𝑚 (< n) cells in 𝑋 are randomly sampled to form 𝑋ʹ using an m-out-of-n bootstrap 
procedure. This subsampling process repeats 𝑡 times to create 𝑡 subsets of cells 𝑿!" , … , 𝑿#" . 

Substep	1.2.	Constructing	a	GRN	for	each	subsampled	set	of	cells	
For each 𝑿$", principal component (PC) regression is run 𝑝 times to construct a GRN. Each time the 
expression level of one gene is used as the response variable and the expression levels for the remaining 
genes as dependent variables. The constructed GRN from 𝑿$" is stored as a signed, weighted and 
directional graph, represented with a 𝑝 × 𝑝 adjacency matrix 𝑾$, each of whose columns stores the 
regression coefficients for the PC regression of a gene. 𝑾$  is then normalized via dividing by the 
maximal absolute value. 

Substep	1.3.	Denoising	adjacency	matrices	to	obtain	the	final	GRN	
Tensor decomposition is used to denoise the adjacency matrices {𝑾$} obtained from the PC regression 
step. First, the collection of {𝑾$} for 𝑡 GRNs is processed as a third-order tensor Ξ, containing 𝑝 × 𝑝 × 𝑡 
elements. Next, the CANDECOMP/PARAFAC (CP) decomposition is applied to decompose Ξ	into 
components. Then, Ξ is reconstructed using top 𝑑	components to obtain denoised tensors Ξ%. Denoised 
{𝑾$} in Ξ%  are collapsed by taking the average of edge weights to obtain the final averaged matrix, 𝑾%. 

Step	2:	Generating	pseudo-KO	scGRN	by	virtually	knocking	out	a	gene	
In the last step, the scRNAseq expression data matrix from the WT sample, 𝑿, is first used to construct 
the WT scGRN. In this step named virtual KO, the adjacency matrix of the WT scGRN, 𝑾%, is copied, and 
then the entire row of 𝑾%  corresponding to the target gene is set to 0 (Figure 1B). In this way, the 
virtual KO operation is performed on 𝑾%  directly. The modified 𝑾%  is denoted as 𝑾%0 , that is, the 
adjacency matrix of pseudo-KO scGRN. 

Step	3.	Comparing	scGRNs	to	identify	virtual-KO	perturbed	genes	
In this step, we assume that WT and pseudo-KO scGRNs, 𝑾%  and 𝑾%0 , have been obtained. A quasi-
manifold alignment method is then used to align 𝑾%  and 𝑾%0  (Figure 1C, see Experimental Procedures 
for details). All genes included in the two scGRNs are projected in k-dimensional space, where k << p. 
After the projection, each gene has two low-dimensional representations: one is in respect to 𝑾%  and 
the other 𝑾%0 . For each gene 𝑗, 𝑑&  is the Euclidean distance between the gene’s two projections. The 
greater 𝑑&, the more significant the differential regulation. Genes were sorted according to the value of 
the distance to produce a ranked gene list, which was used as input of the gene set enrichment analysis 
(GSEA).10 Finally, a χ2 test is applied to detect significant DR genes, i.e., virtual-KO perturbed genes.  

A more detailed description of scTenifoldKnk modules is provided in the Experimental Procedures 
section. 
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Result	2:	Virtual	KO	analysis	using	simulated	scRNAseq	data	
We first used the simulated data to validate the relevance of our method. For this purpose, we 
generated a synthetic scRNAseq data set using the simulator SERGIO—a single-cell expression simulator 
guided by GRNs.11 To simulate the data, we supplied SERGIO with five predefined GRNs of different 
sizes, containing 5, 10, 25, 40, and 20 genes, respectively. The simulated scRNAseq data set was a sparse 
matrix (70% zeros) of 3,000 cells and 100 genes. We applied the PC regression method to the simulated 
data and constructed an scGRN. As expected, in the scGRN, genes were clearly clustered into five 
distinct modules (see Figure 2A for the adjacency matrix), mirroring the predefined modules given by 
the generative model of SERGIO. Genes in the same module were supposed to be functionally related or 
under the same regulation. Because SERGIO simulates gene expression in steady-state cells, we only 
used it to simulate co-expression modules rather than the regulatory processes of some upstream 
regulators acting on these modules. We regarded the constructed network as the WT scGRN. Next, we 
set the weight of the 20th gene (gene #20) in the WT scGRN to zero to produce the pseudo-KO scGRN. 
Gene #20 belongs to the third module, which includes a total of 25 genes. We then used scTenifoldKnk 
to compare the pseudo-KO scGRN with the WT scGRN to identify genes significantly differentially 
regulated due to the KO. These genes were predicted likely to be perturbed along with gene #20. 
Because we knew the KO effect was due to the deletion of gene #20, we expected that the identified 
genes to be those closely correlated with gene #20. Indeed, as expected, scTenifoldKnk showed all 
significant genes were from the third module (Figure 2B & 2C, top), in which gene #20 is located. We 
repeated the analysis using genes #50 and #100 as two additional examples. Again, the results were as 
expected (Figure 2B & 2C, middle and bottom). Thus, we concluded that when a member gene is 
knocked out from a tightly regulated module, other member genes in the same module should be 
detected by scTenifoldKnk. Algorithmically, genes in the same module with the KO gene were detected 
because their projected positions in low-dimensional latent representations of WT and pseudo-KO 
networks changed more than other genes not in the same module (see Experimental Procedures for 
details). 

Result	3:	scTenifoldKnk	virtual	KO	analysis	recapitulates	results	of	real	KO	
experiments	
As a virtual KO tool, scTenifoldKnk is expected to recapitulate results obtained from real KO 
experiments. To prove this, we applied scTenifoldKnk to scRNAseq data from three in vivo KO 
experiments. In all three cases, the scRNAseq data sets of the original studies contained expression 
matrices from both WT and KO samples. 

It is noteworthy that comparisons between predictions made by scTenifoldKnk and the main findings of 
original papers were by no means “fair” comparisons. This is because scTenifoldKnk was blinded to all 
information except the scRNAseq data from the WT samples. In contrast, to characterize functions of 
target genes, original in vivo KO studies used scRNAseq data from both WT and KO samples, as well as 
other empirical data from bulk RNAseq, flow cytometry, and immunostaining assays. Nevertheless, we 
obtained an overall consistency in the KO gene functions between those predicted using scTenifoldKnk 
and those reported in the original papers. Supplementary Table S1 gives a summary of comparisons. 

Virtual	vs.	real	KO	experiment	1:	Nkx2-1	is	required	for	the	transcriptional	control,	
development,	and	maintenance	of	alveolar	type-1	and	type-2	cells	
NK homeobox 2-1 (Nkx2-1) is highly expressed in lung epithelial cells of alveolar type I (AT1) and type II 
(AT2). AT1 cells cover 95% of the gas exchange surface and are 0.1 μm thick to allow passive oxygen 
diffusion into the bloodstream. Nkx2-1 is essential at all developmental stages of AT1 cells. Loss of Nkx2-
1 results in the impairment of three main defining features of AT1 cells, molecular markers, expansive 
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morphology, and cellular quiescence.12 AT2 cells are cuboidal and secrete surfactants to reduce surface 
tension. Mutations in Nkx2-1 interrupt the expression of Sftpb and Sftpc, two genes related to AT2 cell 
function and molecular identity.12,13 

To examine the molecular and cellular changes caused by the Nkx2-1-/- KO, Little et al.12 generated a 
comprehensive set of data (GEO: GSM3716703) using the lung samples from WT and Nkx2-1-/- KO mice. 
Using bulk RNAseq and immunostaining assays, they observed that the expression of marker genes of 
AT1 and AT2 cells was downregulated in the Nkx2-1 mutant cells. They also found that the expression of 
marker genes for gastrointestinal cells was upregulated in Nkx2-1-/- mutant AT1 cells, which form dense 
microvilli-like structures apically. Using ChIP-seq, they found that Nkx2-1 binds to a set of genes 
implicated in regulating the cytoskeleton, membrane composition, and extracellular matrix. Little et al. 
also generated scRNAseq data for 2,312 and 2,558 epithelial cells from lung samples of the WT and 
Nkx2-1-/- KO mice, respectively.12 

We obtained the scRNAseq data, generated by Little et al.,12 and used the expression matrix of 8,647 
genes × 2,312 cells from WT mice as the input for scTenifoldKnk. We constructed the WT scGRN and 
then knocked out Nkx2-1. The final report of scTenifoldKnk analysis contained 171 significant genes 
[False Discovery Rate (FDR) < 0.05, Supplementary Table S2]. These virtual-KO perturbed genes included 
7 out of 32 marker genes of AT1 cells (Egfl6, Ager, Cldn18, Icam1, Crlf1, Gprc5a, and Aqp5) and 25 out of 
38 marker genes of AT2 cells (highlighted in Supplementary Table S2). The functional enrichment test, 
Enrichr,14 indicated that these genes were enriched for functional categories: epithelial to mesenchymal 
transition led by the WNT signaling pathway members, surfactant homeostasis, lamellar body, and cell 
adhesion molecules. These enriched functions were consistent with and related to the functions of AT2 
cells. Next, we applied the interaction enrichment analysis to the 171 significant genes. The interaction 
enrichment analysis was provided and based on the STRING protein-protein interaction database.15 We 
found that these genes appear in a fully connected component in the STRING interaction network (p-
value < 0.01, STRING interaction enrichment test), indicating a closely related functional relationship 
between those genes. We subsequently performed GSEA analysis,10 to evaluate the extent of 
perturbation caused by the Nkx2-1 KO at the transcriptome-wide level. GSEA analysis identified gene 
sets containing marker genes of AT1 and AT2 cells (FDR < 0.01 in both cases). Specifically, AT1 and AT2 
marker genes were among the topmost perturbed genes caused by the deletion of Nkx2-1. GSEA 
analysis also showed that the Nkx2-1-/- KO impacted genes with functions related to intestinal microvilli 
(Figure 3A), cell cycle, and the cytoskeleton. These results are consistent with those reported in the 
original study.12  

Virtual	vs.	real	KO	experiment	2:	Trem2	regulates	microglial	cholesterol	metabolism	
The Triggering Receptor Expressed on Myeloid cells 2 (Trem2) is a single-pass transmembrane immune 
receptor selectively expressed in microglia within the central nervous system. Trem2 is known to be 
involved in late-onset Alzheimer’s disease and plays a role in modulating proliferation, survival, immune 
response, calcium mobilization, cytoskeletal dynamics, mTOR signaling, autophagy, and energy 
metabolism.16 The function of Trem2 is known to be mediated via signaling transducer Hcst and adaptor 
Tyrobp.17 Trem2 is also known to play a role in regulating lipid metabolism, with most studies focusing 
on lipids in the form of either lipoprotein particles or cell surface-exposed signals, such as candidate 
Trem2 ligands.18 By comparing WT and Trem2–/– KO mice, Poliani et al.19 showed that Trem2 regulates 
many genes, such as Apoe and Lpl, which control lipid transport and catabolism in microglia. Trem2 was 
also found to modulate gene expression of macrophages in adipose and control blood cholesterol 
metabolism in obese mice,20 further linking the function of Trem2 to lipid metabolism. To examine 
whether Trem2 mediates myelin lipid processing in microglia, Nugent et al.21 isolated and characterized 
Cd11b+/Cd45low microglial cells from Trem2+/+, Trem2+/–, and Trem2–/– mice, fed with a 0.2% 
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demyelinating cuprizone diet for 12 weeks. They analyzed a comprehensive set of analytical data using 
FACS, bulk RNAseq, scRNAseq, and lipidomics. They reported that Trem2 upregulates Apoe and other 
genes involved in cholesterol transport and metabolism, causing robust intracellular accumulation of a 
storage form of cholesterol upon chronic phagocytic challenge. Trem2 was also shown to regulate the 
expression of genes associated with cell damage response, lysosome and phagosome function, 
Alzheimer’s disease, and oxidative phosphorylation.21 

To perform the virtual KO analysis, we obtained scRNAseq data from WT (Trem2+/+) mice.21 The 
expression matrix contained data of 7,715 genes and 765 Cd11b+/Cd45low microglial cells. We used this 
WT expression matrix as the input and used scTenifoldKnk to knock out Trem2. The final results of 
scTenifoldKnk analysis contained 128 virtual-KO perturbed genes (FDR < 0.05, Supplementary Table S3). 
The Enrichr analysis showed that the identified gene list was enriched with genes associated with 
Alzheimer’s disease, oxidative phosphorylation, lysosome, TYROBP causal network, metabolic pathway of 
LDL, HDL and TG, and microglia pathogen phagocytosis pathway. Such an enrichment indicates that the 
proteins attend to be functionally connected. These virtual-KO perturbed genes were highly interactive 
with each other, as shown by their positions on the STRING interaction network. The network of virtual-
KO perturbed genes had significantly more interactions than expected (p-value < 0.01, STRING 
interaction enrichment test), which indicates that gene products exhibited more interactions among 
themselves than what would be expected for a random set of proteins of similar size, drawn from the 
genome. This result suggests that the identified virtual-KO perturbed genes are closely related to shared 
functions. Collectively, these scTenifoldKnk findings provide insight into understanding Trem2 functions 
by revealing the list of genes perturbed following Trem2 deletion (Figure 3B). These inferred functions 
are consistent with those reported in the original study.21 

Virtual	vs.	real	KO	experiment	3:	Hnf4a	and	Hnf4g	stabilize	enterocyte	identity	
Hepatocyte nuclear factor 4 alpha and gamma, Hnf4a and Hnf4g, are TFs that regulate gene expression 
in the gut epithelium. Hnf4a and Hnf4g function redundantly, and thus, an independent deletion of one 
paralog causes no gross abnormalities.22,23 Hnf4a and Hnf4g double-KO Hnf4agDKO mice exhibit fluid-
filled intestines indicative of an intestinal malfunction.22 Epithelial cells in the Hnf4agDKO mutants fail to 
differentiate. Using bulk RNAseq data, Chen et al.22 compared gene expression in duodenal epithelial 
cells isolated from WT mice and Hnf4aKO, Hnf4gKO and Hnf4agDKO mutants. They identified 2,892 DE 
genes in the Hnf4agDKO mutant but only 560 and 77 in the Hnf4aKO and Hnf4gKO mutants, respectively 
[FDR < 0.05, absolute log2(fold change) > 1]. The DE genes identified in the Hnf4agDKO enterocytes were 
enriched for functions in digestive metabolisms such as lipid metabolism, microvillus, and absorption, as 
well as enterocyte morphology, cytoplasm, Golgi apparatus, and immune signaling. Hnf4agDKO 
epithelium exhibited a robust shift in the transcriptome away from differentiated cells toward 
proliferating and Goblet cells, suggesting that Hnf4agDKO impairs enterocyte differentiation and 
destabilize enterocyte identity. To validate their findings, Chen et al.22 used scRNAseq to measure gene 
expression in intestinal villus epithelial cells. They obtained scRNAseq data for 4,100 and 4,200 cells 
from Hnf4agWT and Hnf4agDKO respectively and confirmed that compared to the WT, mutant epithelial 
cells show increased Goblet cell-enriched genes, such as Agr2, Spink4, Gcnt3 and S100a6, and decreased 
expressions of enterocyte-enriched genes, such as Npc1l1, Apoc3, Slc6a19 and Lct (Figure 3C left panel). 
The Hnf4agDKO mutant cells also showed increased expression for genes in the BMP/SMAD signaling 
pathway and decreased expression of genes involved in lipid metabolism, microvillus and absorption, 
and genes related to the cytoplasm.22 

We obtained the scRNAseq expression matrix of 4,100 cells from the Hnf4agWT samples used as input for 
scTenifoldKnk. We constructed the WT scGRN of 2,591 genes and then virtually knocked out both Hnf4a 
and Hnf4g genes at the same time. The final result of scTenifoldKnk analysis contained 65 virtual-KO 
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perturbed genes (FDR < 0.05, Supplementary Table S4). These genes were enriched with electron 
transport chain, fat digestion and absorption, cholesterol metabolism, chylomicron assembly, and 
cytoplasmic vesicle lumen. A search of the STRING database indicated that all virtual-KO perturbed 
genes form a fully connected network module. The interaction enrichment test showed that such a 
complete interconnection of 65 genes is less likely to be expected by chance (p-value < 0.01). 
Furthermore, GSEA analysis revealed that these virtual-KO perturbed genes were enriched with 
canonical marker genes of enterocytes (12 out of 132, Figure 3C), which is consistent with the finding of 
the original study.22 

Interestingly, the number of significantly perturbed genes following the double-KO of Hnf4a and Hnf4g 
(65) was less than the single-KO of Nkx2-1 (171) or Trem2 (128). To examine the cause of this difference, 
we analyzed the relationship between the number of significantly perturbed genes and the degree (i.e., 
the number of connections) of the KO gene in the network (Supplementary Figure S1). We found a 
positive correlation between the two metrics (Pearson’s r=0.75, P = 0.03). Hnf4a and Hnf4g exhibited a 
lower degree (i.e., fewer connections) than Nkx2-1 and Trem2, which may explain why KO of Hnf4a and 
Hnf4g produced fewer perturbed genes. 

Result	4:	scTenifoldKnk	virtual	KO	analysis	detects	functions	of	genes	
causative	of	Mendelian	disorders	
Mendelian diseases are a family of diseases caused by the loss or malfunctioning of a single gene. For 
many Mendelian diseases, we know a great deal about their genetic basis and pathophysiological 
phenotypes.25 We decided to use three Mendelian diseases, namely cystic fibrosis, Duchenne muscular 
dystrophy, and Rett syndrome, as “positive controls.” We tested the performance of scTenifoldKnk by 
determining whether it accurately predicted gene functions and hence inferred the molecular 
phenotypic consequences when the causative gene of each of these Mendelian diseases was virtually 
knocked out. As described in more detail below, in each case, we performed scTenifoldKnk analysis 
using existing scRNAseq data generated from cell types that are most relevant to the disease conditions 
(Supplementary Table S1). 

Cystic	fibrosis	
Cystic fibrosis (CF) is one of the most common autosomal recessive diseases.26 It is caused by mutations 
in CFTR, a gene encoding for a transmembrane conductance regulator,27,28 which functions as a channel 
across the membrane of cells that produce mucus, sweat, saliva, tears, and digestive enzymes. The CFTR 
protein also regulates the function of other channels. CFTR is expressed in epithelial cells of many 
organs, including the lung, liver, pancreas, and digestive tract.29 The most common CFTR mutation that 
causes CF is the deletion of phenylalanine 508 (ΔF508), which disrupts the function of the chloride 
channels, preventing patients from regulating the flow of chloride ions and water across cell 
membranes.27 The truncated CFTR protein leads to a reduction of surfactants. It causes the build-up of 
sticky, thick mucus that clogs the airways, increasing the risk of bacterial infections and permanent lung 
damage.30 

To test scTenifoldKnk, we obtained scRNAseq data from 7,326 pulmonary alveolar type II (AT2) cells in 
the GEO database (access number: GSM3560282). The original data sets were generated by Frank et 
al.31 to study the lineage-specific development of alveolar epithelial cells in mice. The original study was 
not directly focused on CF. Nevertheless, with the downloaded data, we constructed a WT scGRN that 
contained 7,107 genes. We then used scTenifoldKnk to knock out Cftr. The final results of scTenifoldKnk 
contained 17 virtual-KO perturbed genes: Cftr, Birc5, Cldn10, Cxcl15, Dcxr, Hmgb2, Lamp3, Mgst1, Npc2, 
Pclaf, Pglyrp1, Sftpa1, Sftpb, Sftpc, Smc2, Tspan1 and Tubb5 (FDR < 0.05, Figure 4A, Supplementary 
Table S5). Among them, Sftpa1, Sftpb, and Sftpc have functions associated with ABC transporter 
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disorders and surfactant metabolism. Sftpb and Sftpd encode for surfactant proteins implicated in CF 
and innate immunity.32,33 Ctsh encodes for cathepsin H, a cysteine peptidase, which is involved in the 
processing and secretion of the pulmonary surfactant protein B.34 GSEA analysis of the ranked gene list 
was conducted using gene sets of the MGI mammalian phenotypes database as a reference. The result 
showed that the gene list scTenifoldKnk produced was significant in terms of ion transmembrane 
transporter activity, abnormal surfactant secretion, and alveolus morphology (FDR < 0.01 in all cases, 
Figure 4A). These results are consistent with the known pathophysiological changes resulting from the 
loss of Cftr function in the lungs. 

To test the specificity of scTenifoldKnk, we decided to use genes that show highly similar expression 
profiles to that of Cftr to repeat the analysis. The selection of these genes was made by computing for 
each gene both the mean and variance of their expression levels across cells. Five closest genes to Cftr—
Akap7, Zranb1, Krcc1, Mta1 and Rps8—were selected. These selected genes may not necessarily have 
any functions related to that of Cftr in alveolar type II cells. When scTenifoldKnk was applied to predict 
perturbation profiles caused by their deletion, we found none of the sets of predicted functions similar 
to those specific functions (i.e., ion transmembrane transporter function, abnormal surfactant secretion, 
and alveolus morphology) associated with Cftr. Principal component analysis (PCA) confirmed that 
perturbation profiles of Mta1, Akap7 and Zranb1 differ most from that of Cftr, while the perturbation 
profiles of Krcc1 and Rps8 are relatively similar to that of Cftr (Supplementary Figure S2). Both Krcc1 and 
Rps8 have been reported to play a role in regulating cellular plasticity and fibrotic process.35,36  

Duchenne	muscular	dystrophy	
Duchenne muscular dystrophy (DMD) arises as a result of mutations in the open reading frame of 
DMD.37,38 The DMD gene encodes dystrophin, a large cytoskeletal structural protein, mostly absent in 
DMD patients.39 The absence of dystrophin results in a disturbance of the linkage between the 
cytoskeleton and the glycoproteins of the extracellular matrix, generating an impairment of muscle 
contraction, eventually leading to muscle cell necrosis (Figure 4B, left).39,40 

We obtained the scRNAseq data of 5,159 muscle cells from the mouse limb (quadriceps) in the GEO 
database (GSM4116571). The original data was generated to study gene expression patterns in skeletal 
muscle cells.41 The original study was not focused on DMD. We used scRNAseq data from normal tissue 
to construct the WT scGRN of 9,783 genes. We subsequently performed the scTenifoldKnk virtual KO 
analysis to predict the molecular phenotype due to the impact of the Dmd KO. The final results of 
scTenifoldKnk included 190 virtual-KO perturbed genes (FDR < 0.05, Supplementary Table S6). These 
genes were enriched with functions related to beta-1 integrin cell surface interaction, contractile actin 
filament bundle, actomyosin, extracellular matrix receptor interaction, and extracellular matrix 
organization (Figure 4B, middle). GSEA analysis against the MGI mammalian phenotype database 
generated the following top hits (FDR < 0.01): abnormal collagen fibril morphology, abnormal skeletal 
muscle morphology, and abnormal skeletal muscle fiber morphology (Figure 4B, right). These phenotype 
terms are consistent with known effects of the loss of DMD function in muscle cells, verifying that 
scTenifoldKnk can predict phenotypic effects caused by gene KO pertinent to the biological context. 

Rett	syndrome	
The third Mendelian disease we considered was the Rett syndrome (RTT, MIM 312750), which is a 
severe neurodevelopmental disease.42,43 RTT is known to be caused by mutations in Mecp2, a 
transcriptional repressor required to maintain normal neuronal functions.44,45 Mecp2 deficiency in the 
brain decreases the expression level of genes involved in the Bdnf signaling pathway, mediated by 
repressing Rest.46  
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We obtained scRNAseq data generated from mouse neurons (SRA database access numbers: 
SRX3809326 and SRX3809327) for the mouse brain atlas project.47 The two data sets contain 2,054 and 
2,156 neurons, respectively, derived from two CD1 P19 female mice that served as biological replicates. 
We analyzed the two data sets independently to see whether scTenifoldKnk could, as expected, produce 
similar results with data gathered from biological replicates. Two scGRNs containing 8,652 and 8,555 
genes were constructed first. The scTenifoldKnk analysis of virtual KO of Mecp2 produced 377 and 322 
virtual-KO perturbed genes, respectively (FDR < 0.05, Supplementary Table S7 & S8), including 211 
shared genes. The number of shared genes was significantly greater than random expectation (p-value < 
10-5, hypergeometric test), indicating a high overlap rate between results of scTenifoldKnk analyses 
when applied to the two data sets from biological replicates. We also compared two ranked gene lists 
generated from the analysis of two replicate data sets. If scTenifoldKnk results are robust, we expected 
that the relative positions of the same genes in the two ranked lists should be more similar to each 
other than with a list of randomly ranked genes. Indeed, we found the correlation between rankings of 
two reported lists was positive (Spearman’s correlation coefficient ρ = 0.68) and highly significant (p-
value < 10-12). 

Many of these 211 genes were found to be targets of Rest. The enriched functions include axon, 
synaptic vesicle cycle, GABA synthesis, release, reuptake and degradation, syntaxin binding, and 
transmission across chemical synapses. GSEA analyses using ranked gene list as input showed BDNF 
signaling pathway was highly significant (FDR < 0.01, for both replicates, Supplementary Figure S3). 
These results are consistent with previous experimental results. For example, it is known that the most 
prominent alterations in gene products due to Mecp2 KO are related to synapses and synaptic vesicle 
proteins.48 At the phenotypic level, the Mecp2 KO causes early defects in GABAergic synapses and 
mediates autism-like stereotypies and RTT phenotypes.49,50 Mutations in syntaxin-1 are known to elicit 
phenotypes similar to those found in RTT.51  

Result	5:	Additional	evaluations	of	scTenifoldKnk-based	virtual	KO	analysis	
scTenifoldKnk attempts to infer the impact of knocking out a gene, given an input gene-by-cell 
expression matrix. This is done by first building a GRN and then “deleting” the gene from the GRN and 
aligning the resulting reduced GRN to the original GRN using manifold alignment. Manifold alignment is 
an essential step that cannot be replaced by simply picking up genes strongly linked with the KO gene. 
To confirm this, we revisited the outputs of Trem2-KO and Dmd-KO analyses to check whether DR genes 
are strongly linked with Trem2 and Dmd, respectively. For Trem2, for example, we examined the 
correlation between each gene’s DR distance  (estimated via manifold alignment after virtual KO of 
Trem2) and the edge weight of the link between the gene and Trem2. We found that the correlation was 
positive and significant (Spearman’s ρ = 0.69, p-value < 0.001), which was not unexpected as genes 
strongly linked with Trem2 are supposed to be strongly impacted. However, the relationship is not 
linear—absolute values of the edge weights of most significant DR genes (i.e., genes with the largest DR 
distances) are variable, ranging from 0.075 to 0.40 (Figure 5A). The same trend was found with the Dmd-
KO results (Spearman’s ρ = 0.53, p-value < 0.001, Figure 5B), with absolute values of the edge weights of 
most significant DR genes ranging from 0.025 to 0.37. These results indicate that significant DR genes 
identified using scTenifoldKnk are not necessarily always those strongly linked with the KO gene. Thus, 
scTenifoldKnk is not simply analyzing the adjacency matrix of the original GRN for the given KO gene to 
see which genes it is strongly connected to. Instead, many genes weakly linked with the KO were also 
identified as significant DR genes. We attributed this effect to the adoptaion of manifold alignment in 
scTenifoldKnk. 

Next, we note that scTenifoldKnk is designed to predict DR genes rather than differentially expressed 
(DE) genes. DR genes might be differentially expressed upon the gene KO. To examine the expression-
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level changes of virtual-KO perturbed genes, we performed a systematic comparison between the 
scTenifoldKnk results and the results of DE analysis across the three analyzed data sets: Trem2, Nkx2-1, 
and Hnf4ag. For each data set, we started by computing the DE statistics for all genes. Specifically, we 
obtained the fold change (FC) of each gene’s expression in WT samples related to KO samples (WT/KO) 
using the DE analysis package MAST.24 Then, we compared FC between significant DR genes and non-
significant DR genes. We found that significant DR genes, or perturbed genes predicted by 
scTenifoldKnk, tend to have a larger FC value [p-value < 0.05 for all three cases (Trem2, Nkx2-1, and 
Hnf4ag), one-sided t-tests with log2-transformed FC values] than non-significant DR genes or non-
perturbed genes (Supplementary Figure S4). Thus, the expression of DR genes predicted by 
scTenifoldKnk is more likely to be downregulated in samples of the real KO experiments. 

Finally, we performed the analysis to evaluate the robustness of virtual KO analysis against cell sampling, 
using the microglial Trem2 KO as an example. We randomly selected 500 cells each time and repeated 
the process ten times. For each subsampled data, we applied scTenifoldKnk to knock out Trem2 and 
obtain a perturbation profile, i.e., a ranked list of genes sorted according to the DR distance. We found 
that the perturbation profiles of 10 subsamples are significantly positively correlated (average 
Spearman’s ρ = 0.55, Supplementary Figure S5). GSEA analyses with these perturbation profiles 
produced similar enriched gene sets. 

Result	6:	Systematic	KO	of	all	genes	individually	in	a	given	sample	to	obtain	
the	KO	perturbation	profile	landscape	
As mentioned, scTenifoldKnk is designed and implemented to be computationally efficient. Indeed, we 
benchmarked the performance of scTenifoldKnk. After the WT scGRN is generated, scTenifoldKnk can 
complete virtual KO analysis at a rate of one minute per gene, as benchmarked on a PC with 2.9 GHz 
CPU and 16 GB RAM. That is to say, for a given data set of 6,000 genes, scTenifoldKnk can knock out all 
of these genes individually in 4 to 5 days. The process can also be split and run in parallel to increase the 
speed of computing. The outcome of such a systematic KO experiment is a collection of perturbation 
profiles of all genes. For each gene (e.g., gene 𝛿), the perturbation profile of the gene (i.e., gene 𝛿) is a 
vector of distances of all other genes ({𝛿'}) produced by scTenifoldKnk. The distance value quantifies 
the level of a gene (i.e., a gene in {𝛿'}) being perturbed by the deletion of the KO gene (i.e., gene 𝛿). 
Figure 6A illustrates an analytic flowchart when scTenifoldKnk is used in a systematic KO experiment. 
For a given WT scGRN with n genes, scTenifoldKnk can be used to delete individual genes from 1 to n. 
For the i-th gene deletion, 𝐺$(), scTenifoldKnk produces a KO perturbation profile for the i-th gene. The 
KO perturbation profile is a vector of distances: 4𝑑$,!, 𝑑$,+, . . . 𝑑$,,6

-
, where i = 1, 2, …, n. Combining all 

genes’ KO perturbation profiles into an n × n matrix, called KO perturbation profile matrix, is followed by 
t-SNE embedding and clustering of genes. 

To demonstrate the use of the systematic KO functionality, we downloaded scRNAseq data from the 
brain immune atlas and obtained the expression matrix of 6,853 genes and 5,271 microglial cells (see 
Experimental Procedures). These microglial cells were derived from WT homeostatic mice.52 After 
knocking out all genes, we obtained the KO perturbation landscape of all 6,853 genes, as shown in the t-
SNE embedding (Figure 6B). Each point represents a perturbation profile caused by the KO of a gene. 
Genes with similar perturbation profiles will be closely located in the low dimensional embedding. 
Therefore, examining genes situated closely will allow us to discover potential functional associations 
between them.53 We selected three clusters of different sizes to explore the member of genes in each 
cluster and the functional relationships between these genes (Figure 6B). We found that all three 
clusters contain genes that show a significantly higher level of functional associations than expected by 
chance (p-value < 0.01, STRING interaction enrichment tests). Cluster 1 contains 16 genes (Figure 6C). 
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According to the STRING database, 12 of these genes (Apoc1, Apoe, Clec12a, Clec4n, Cp, Fth1, Lilrb4, 
Mrc1, Ms4a6c, Ms4a7, Pilra, and Pla2g7) are functionally associated with each other, as supported by 
evidence from published literature.54-56 All these supporting references are related to the microglia 
study. The remaining four genes (Htra3, Tgfbi, Pf4, and Ifitm2) are not connected to this 12-gene sub-
network. 

Nevertheless, a new study showed that Htra3 is overexpressed in repopulating microglia.57 Therefore, 
these “isolated” genes may be worthy of further scrutiny for their functions in microglia with the 
potential links to the other genes in the 12-gene sub-network. Cluster 2 contained 123 genes associated 
with the “Immune System Pathway” (FDR = 0.019, Reactome database), and Cluster 3 had 149 genes 
related to “Metabolism of RNA pathway” (FDR = 2e-4, Reactome database). Instead of using genes’ KO 
perturbation profiles to produce the landscape of the gene-gene relationship (as shown in Figure 6B), 
genes’ expression information can also be used to make such a landscape. Indeed, we applied t-SNE to 
the UMI count matrix and obtained the embedding plot of genes (Figure 6D). The difference between 
the embedding plot derived from the gene KO perturbation profile and the one derived from gene 
expression is noticeable (cf. Figure 6B vs. 6D). The latter had no structure among genes. Genes clustered 
together in the three example clusters in Figure 6B were found to be scattered in the embedding 
derived from gene expression (Figure 6D). Performing clustering on such an unstructured data cloud did 
not produce any meaningful results. Subsequently, we calculated the average distance between genes 
that belonged to the same KEGG gene sets. We found that, across all KEGG gene sets, the average 
distance in the embedding derived from KO perturbation profiles was significantly smaller than that in 
the embedding derived from the expression profile (Supplementary Figure S6). Similarly, an embedding 
plot of genes can be produced using genes’ network properties. We conducted additional analysis and 
generated the embedding derived from the genes’ profile of the weight of edges in the WT scGRN 
(Figure 6E). The same pattern was uncovered—that is, the average distance is smaller in the embedding 
derived from the KO perturbation profile than in that derived from the scGRN edge weight 
(Supplementary Figure S6). These results suggest that gene sets identified using the gene KO 
perturbation profile were more likely to be functionally connected than gene sets identified using other 
types of gene profiles. 

Result	7:	Characterization	of	a	multifunctional	gene	using	scTenifoldKnk	
following	systematic	KO	of	the	gene	in	multiple	cell	types	
ScTenifoldKnk can be used to knock out a gene in different cell types systematically. In this way, it is 
possible to identify cell-type-specific functions of the gene and functions shared across multiple cell 
types. Here we use MYDGF (Myeloid-Derived Growth Factor) as an example KO gene to illustrate such 
an application. MYDGF, also known as C19orf10, is a 142-residue protein broadly expressed in multiple 
tissues and cell types.58,59 Mydgf has been shown in a mouse model to enhance cardiac myocyte 
survival, tissue repair, and angiogenesis caused by myocardial infarction.60 To elucidate MYDGF’s 
function, we downloaded multiple human scRNAseq data sets from the PanglaoDB database.61,62 From 
the downloaded data sets, we extracted cells from 45 different cell types. Subsequently, a virtual KO of 
MYDGF for each of these cell types and recovered 45 cell-type-specific perturbation profiles was 
performed. We first examined the perturbation profile of endothelial cells, in which the function of 
MYDFG has been studied.63 GSEA analysis with the ranked list of genes showed that the enriched 
functions of MYDGF include cell cycle, VEGFA-VEGFR2 pathway, and Intra-Golgi traffic and activation 
(Figure 7A). These results are consistent with previous findings,63 suggesting that scTenifoldKnk can 
recapitulate results from a cell-type-specific gene function study. We also concatenated perturbation 
profiles of 45 different cell types. There were 1,294 genes expressed across all tested cell types. From 
those genes, 364 were predicted as perturbed in all the cases. As expected, several cell types exhibited 
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perturbation profiles similar to that of endothelial cells (Figure 7B). When using the Spearman’s ρ to 
measure the similarity between the perturbation profiles observed in endothelial cells and that 
observed in other cell types, these are the most similar cell types: T-cell (ρ = 0.59), hepatocyte (ρ = 0.45), 
podocyte (ρ = 0.33), and cardiomyocyte (ρ = 0.32). Indeed, previous studies show that Mydgf can 
regulate cell proliferation through the activation of Akt signaling pathways in those cells.63-66 In contrast, 
two cell types, proximal tubule cell (ρ = 0) and Leydig cell (ρ = -0.08), differed the most from endothelial 
cells, suggesting that Mydgf might play a very different role in these two cell types. In addition, a tSNE 
plot was produced to show the difference between cell types (Supplementary Figure S7). GSEA analysis 
identified enriched functions, including AKT signaling, endothelial NOS activation, apoptosis, muscle 
contraction, and ALK2 pathway (Figure 7C).67 These findings are consistent with the fact that 
overexpression of Mydgf increases AKT phosphorylation and cell proliferation via AKT/MAPK signaling 
pathways.66 Identified functions were also related to promoting survival and growth, as previously 
reported.60,68-70 In summary, we used Mydgf as an example gene to demonstrate that scTenifoldKnk can 
be used to knock out a gene across multiple cell types in order to identify shared as well as cell type-
specific functions of the KO gene. 

Discussion	
Gene expression is almost always under coordinated regulation in cells of living organisms. Inferring 
GRNs is the key to a better understanding of such coordinated regulation. However, inferring GRNs is a 
challenging process—there are always many unknown variables in the system, and the power of 
inference is limited by the sample size. The development of single-cell technology has brought new “oil” 
to network science. We have previously shown that scRNAseq information can be leveraged to fuel the 
machine learning algorithms for reliable scGRN construction.9 In a GRN, the regulatory effect manifests 
as observable synchronized patterns of expression between genes. These genes are associated with the 
same biological process, pathway, or under the control of the same set of TFs.71 When a gene involved in 
a process is perturbed (e.g., knocked out), the expected first responders for such perturbation are those 
functionally closely related to the KO gene. Thus, modeling influence patterns in a GRN, such as using 
topological models to approximate perturbation patterns,8 can be used to predict gene function and 
prioritize target genes, which is helpful before expensive experimental measurements are undertaken. 
Thus, in principle, GRN-based perturbation analysis may contribute to the planning and designing of 
real-animal experimental work. Indeed, there is evidence showing that gene expression data need not 
necessarily be collected from perturbation experiments for GRN-based analysis to be successful.72,73 

Our contribution is to provide a computationally efficient scGRN-based perturbation analytical system. 
By performing scTenifoldKnk virtual KO analyses with a series of existing scRNAseq data, we showed 
that scTenifoldKnk could predict gene function by identifying KO responsive genes. Overall, the inferred 
molecular functions of target genes are consistent with those enriched in genes reported in those 
original KO experiments. We also tested scTenifoldKnk using data from different cell types known to be 
affected in Mendelian diseases. While these diseases represent conditions caused by distinct genes and 
involve other dysregulated molecular processes, scTenifoldKnk demonstrated its value in all cases. 
Finally, we showed two case studies of systematic KO experiments. 

Despite some apparent limitations associated with the virtual KO method, we start by discussing its 
advantages. First, the virtual KO method, as we implemented in scTenifoldKnk, is species agnostic—it 
works with scRNAseq data from humans and animal models. This feature gives the method a huge 
advantage for KO experiments focusing on human samples. In the lack of human KO samples, the KO 
animals are used as surrogates. The evolutionary divergence between humans and animal models is 
assumed to play a minor role in shaping orthologue gene function—but we know this is not always the 
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case. While applying scTenifoldKnk to human scRNAseq data, researchers can avoid many pitfalls caused 
by extending the conclusions from animal KO experiments to humans. Second, scTenifoldKnk allows any 
gene to be knocked out for functional analysis as long as the gene expression is detectable in the WT 
sample. One may want to knock out all genes or a set of genes one by one to obtain a perturbation 
profile for each of the KO genes. Genes have similar perturbation profiles that are most likely to share 
molecular functions or are involved in the same signaling pathways. Genes with known functions can be 
used as positive controls to gauge the performance of scTenifoldKnk in the tested system. Third, 
scTenifoldKnk can be used to study the effects of gene KO across multiple cell types. Given that typical 
scRNAseq experiments generate expression data for various cell types, scTenifoldKnk can be used to 
predict the function of any KO gene in different cell types, allowing detection of diverse phenotypes 
associated with the KO gene. Finally, scTenifoldKnk can be used to study the function of essential genes, 
for which the gene KO causes lethal outcomes, making it impossible to establish the KO animals. When 
scTenifoldKnk is applied to these essential genes, especially with embryonic expression data of the 
genes from the WT samples, developmental functions of these genes can be studied. 

scTenifoldKnk can be used in extended research areas beyond KO experiments. For example, biologists 
often need to know whether a genetic manipulation or perturbation will have an effect or not. 
scTenifoldKnk can be applied to make the prediction, suggest novel targets, and prioritize known targets 
before in vivo or in vitro studies. One may use drugs to block the transcription of predicted target genes 
in a candidate pathway. If the drug has an effect, one will conclude that the drug works on that pathway 
involved; otherwise, the pathway is not affected. The scTenifoldKnk-based analysis may apply to the 
follow-up research of genome-wide association studies (GWASs). GWASs have successfully detected 
associations between variants and phenotypes; however, a phenotypic trait is usually associated with 
many variants, presumably influencing gene expression regulation. scTenifoldKnk may be used to help 
geneticists to assess functional consequences to prioritize actionable gene targets. With example data 
sets, we showed that scTenifoldKnk could recapitulate major findings reported in real-KO experiments. 
We also showed the landscape of KO perturbation profiles of all genes in a given system. Experimentally, 
such systematic perturbation analysis has only been performed in yeast.74 With scTenifoldKnk, 
systematic KO analysis in silico can be performed in a cell-type-specific manner in any given organismal 
systems. 

Limitations of scTenifoldKnk are inherited from being a virtual KO method. scTenifoldKnk cannot be used 
to predict the consequence of gene overexpression, which is also a commonly used method for gene 
function study. Also, as the power of scTenifoldKnk is rooted from the WT scGRN, the regulatory 
network from the WT sample, the prediction of scTenifoldKnk may “favor” regulatory rather than 
structural genes, as the latter tends to have smaller degree in the network. Nevertheless, it is still 
possible to adjust some details in the implementation of scTenifoldKnk to make it better fit user 
analytical needs. For example, instead of knocking out a target gene by setting its values to zeros in the 
adjacency matrix, a random shuffle of a gene’s expression values in the expression matrix may be used 
prior to the scGRN construction to mimic gene dysregulation. 

Prediction of gene expression responses to perturbation using scRNAseq data is an active research 
area.75 To the best of our knowledge, there are two software tools that have been developed for this 
purpose: scGen and CellOracle.6,7 scGen is a package implemented in Python, using TensorFlow 
variational autoencoders combined with vector arithmetic to predict gene expression changes in cells.6 
scGen works like a neural network-empowered regression tool that predicts the changes of gene 
expression in cells in response to specific perturbations such as disease and drug treatment. scGen 
requires training data sets from samples before and after being exposed to the same perturbation. 
CellOracle is a workflow, developed in Python with several R dependencies, that integrates scRNAseq 
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and single-cell chromatin accessibility data (scATAC-seq) data to infer GRN and predict the changes of 
gene expression in response to specific perturbations. CellOracle constructs a GRN that accounts for the 
relationship between TFs and their target genes based on sequence motif analysis using the information 
provided by the scATAC-seq data. After that, the constructed GRN is further refined using regularized 
Bayesian regression models to remove weak connections and is adjusted to infer the context-dependent 
GRN using the scRNAseq data. Compared to scGen and CellOracle, scTenifoldKnk has a different, 
minimalistic design, specifically focusing on virtual KO. Unlike scGen, scTenifoldKnk does not need 
training data. Also, unlike CellOracle, scTenifoldKnk does not require information from scATAC-seq data. 

Overall, we provide cogent evidence that scTenifoldKnk represents a powerful and efficient tool for 
conducting virtual KO analysis. The highly efficient implementation of scTenifoldKnk allows systematic 
deletion of many genes from any given scRNAseq data sets. The prediction power offered by 
scTenifoldKnk enables the accurate prediction of perturbations in regulatory networks caused by the 
deletion of a gene, so that the KO gene’s functions can be revealed in a cell type-specific manner. We 
anticipate that scTenifoldKnk will be adopted and widely applied in the predictions of gene function in 
single-cell biomedical research. 

Experimental	Procedures	
Resource	Availability	
Lead	Contact	
Further information and requests for resources and reagents should be directed to and will be fulfilled 
by the lead contact, James J. Cai (jcai@tamu.edu). 

Materials	Availability	
This study did not generate new unique reagents. 

Data	and	Code	Availability	
The source code of scTenifoldKnk is available at https://github.com/cailab-tamu/scTenifoldKnk. 
scTenifoldKnk has been implemented in R, Python, Julia, and Matlab. The R package is available at the 
CRAN repository at https://cran.r-project.org/web/packages/scTenifoldKnk/. The Matlab application is 
available in scGEAToolbox 80. 

The	scTenifoldKnk	workflow	
scTenifoldKnk is a machine learning workflow for virtual KO experiments with scRNAseq data. It utilizes 
a scRNAseq expression matrix from a WT sample as input, without using any data from a KO sample, to 
predict regulatory network changes and perturbed genes caused by the KO of a gene. The input 
expression matrix is assumed to have been properly normalized. 

Construction	of	the	WT	scGRN	
To construct scGRNs, scTenifoldKnk uses the method we previously proposed for scTenifoldNet.9 The 
procedure of scGRN construction consists of three steps: cell subsampling, principal component (PC) 
regression, and tensor decomposition. 

(1) Cell subsampling: Initially, scTenifoldNet builds several subsets of cells via random sampling. Denote 
𝑿 ∈ ℝ,×/	as the scRNAseq data matrix that reflects gene expression levels for 𝑝 genes in 𝑛 cells. A sub-
sample set of cells is constructed via randomly sampling m (< n) cells in 𝑿. By repeating this subsampling 
process for t times, t sub-sample sets of cells are derived, denoted as 	𝑿!" , … , 𝑿#"  ∈ ℝ1×/. 
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(2) Network construction: For each 𝑿$", scTenifoldNet builds a GRN with an adjacency matrix 𝑾$  via PC 
regression, where a PC analysis (PCA) is applied to the original explanatory variables, and then the 
response variable is regressed on a few leading PCs. Since PC regression only utilizes d PCs as the 
covariates in regression, where d << min(m, n), it mitigates over-fitting and reduces the computation 
time. To build an scGRN, each time scTenifoldNet focuses on one gene (referred to as the response 
gene) and applies PC regression. The expression level of the response gene is used as the response 
variable, and the expression levels of other genes are used as the explanatory variables in PC regression. 
scTenifoldNet repeats this process for another p - 1 times, with one different gene as the response gene 
each time. In the end, scTenifoldNet collects the coefficients of p regression models together and forms 
a p × p adjacency matrix 𝑾$, whose (i, j) entry saves the coefficient of the i-th gene on the j-th gene. 𝑾$  
could reflect the interaction strengths between each pair of genes. 

(3) Network denoising: The adjacency matrices of the 𝑡 networks 𝑾!, … ,𝑾# can be stacked to form a 
third-order tensor Ξ ∈ ℝ(/×/×#). To remove noise and construct an overall adjacency matrix, 
scTenifoldNet applies CANDECOMP/PARAFAC (CP) tensor decomposition to Ξ to extract important 
latent factors. More specifically, scTenifoldNet approximates Ξ by Ξ4: 

Ξ ≈ Ξ4 =;𝜆5𝑎5 ∘ 𝑏5 ∘ 𝑐5 ,
4

56!

 

where ∘ denotes the outer product, 𝑎5 ∈ ℝ/, 𝑏5 ∈ ℝ/, and 𝑐5 ∈ ℝ# are unit-norm vectors, and 𝜆5  is a 
scalar. The reconstructed tensor Ξ4 ∈ ℝ(/×/×#) includes 𝑡 denoised adjacency matrices, and by taking 
the average of them, scTenifoldNet obtains the overall stable adjacency matrix. After further 
normalizing its entries by dividing them by their maximum absolute value, scTenifoldNet generates the 
final adjacency matrix of scGRN for the given sample. For later use, denote it as 𝑾%. 

(4) Adjusting edge weights of the directed network: We provided an option to adjust edge weights for 
the constructed scGRN. PC regression constructs directed networks. To obtain the strictly directed 
network, with a given, denoised network 𝑾%, for each gene pair (i, j) and (j, i), only the entry with a 
larger absolute weight is kept. More specifically, we defined the (i, j) entry for the strictly directed 
network 𝑾7 by 𝑊7(i, j) = 	𝑊%(i, j),	if |𝑊%(i, j)| > |𝑊%(j, i)|	and 𝑊7(i, j) 	= 	0	otherwise. Note that if 
|𝑊%(i, j)| < |𝑊%(j, i)|,	then we set 𝑊7(i, j) = 0, then the information in 𝑊%(i, j) is removed. To keep the 
information of 𝑊%(i, j), instead of removing the information completely, we defined a new parameter λ. 
Using this new parameter, we can integrate 𝑾%  and 𝑾7 to generate an “interpolated network” 𝑾8, 
which contains part of the information of 𝑊9(i, j).	Given parameter λ, 𝑾8 is define as: 

𝑾8 = λ𝑾: + (1 − λ)𝑾9, 

where 𝜆 ∈ [0,1].	It is easy to check that when 𝜆 = 0, we get the original denoised network 𝑾%  and 
when 𝜆 = 1, it is to go back to the strictly directed network 𝑾7. 

Deletion	of	the	KO	gene	from	the	WT	scGRN	
We propose the virtual KO method that directly works on the WT scGRN (Figure 1B). The adjacency 
matrix 𝑾%  represents the scGRN constructed using the WT data. In the virtual KO method, the entire 
row of the adjacency matrix 𝑾%  for the gene is set to zero. We denote the adjacency matrix of the 
scGRN generated as 𝑾%0 . 
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Comparison	between	the	WT	and	pseudo-KO	scGRNs	
After obtaining 𝑾%  and 𝑾%0 , two comparable low-dimensional feature vectors of each gene in the two 
networks are built and then compared to detect affected genes. Our approach of creating low-
dimensional feature vectors was inspired by manifold alignment and its application;76-78 our approach is 
referred to as quasi-manifold alignment because the adjacency matrices used here are not symmetric 
matrices while they are required to be symmetric in the original procedure. Here 𝑾%  and 𝑾%0  serve as 
the inputs for manifold alignment and the outputs are the low-dimensional features 𝐹 ∈ ℝ/×;	and 𝐹Q ∈
ℝ/×; of genes before and after knocking out the target gene, where k << p. Before giving the details of 
the alignment procedure, we point out that 𝑾%  and 𝑾%0  may include negative values, which reflect the 
negative correlation between genes. Before doing alignment, we add 1 to all entries in 𝑾%  and 𝑾%0 ,	and 
the range of 𝑾%  and 𝑾%0  is transformed from [-1,1] to [0,2].  

To perform quasi-manifold alignment, we first construct a joint adjacency matrix 𝑾 by combining 𝑾%  

and 𝑾%0  together, where 𝑾 = R
𝑾%

<
+
𝐼

<
+
𝐼 𝑾0%

T. We can treat 𝑾 as the adjacency matrix of a joint network 

formed by linking the corresponding genes in two networks. The off-diagonal block of this matrix 
reflects the corresponding genes between two networks. 𝜆 is a tuning parameter. In practice, we select 

𝜆 as the mean of the row summations of 𝑾%  and 𝑾%0 . We further build 𝔽 = [𝐹𝐹Q] ∈ ℝ
+/×;	, and the 

manifold alignment problem of two networks characterized by the adjacency matrices 𝑾%  and 𝑾%0  is 
equivalent to the manifold learning problem that finds the low dimensional features 𝔽 for the joint 
network characterized by the adjacency matrix 𝑾. For the sake of convenience, we denote 𝔽$ ∈ ℝ; as 
the i-th row of 𝔽 that reflects the projection corresponding to the i-th gene in the large network. The 
next step is to build a “Laplacian” matrix 𝑳 = 𝑫 −𝑾, where 𝑫 is a diagonal matrix with 𝐷$$ =
	∑ (𝑾)&,$,
&6! . Denote 𝑓!, 𝑓+, … , 𝑓; as the eigenvectors corresponding to the 𝑘 smallest nonzero 

eigenvalues of 𝑳. Note that	𝑳 is not a symmetric matrix. We found that the usual solution of 
symmetrizing 𝑳 does not work well with either simulated or real data. We, therefore, use asymmetric 
matrix 𝑳 in our quasi-manifold alignment procedure. Since 𝑳 is not symmetric, there may be imaginary 
parts in the eigen decomposition. Based on our experiment, taking only the real part of eigenvectors 
with respect to the eigenvalue that has the smallest real part will give better overall results. The final 
low dimensional representation is 𝔽 = [𝑅𝑒(𝑓!), 𝑅𝑒(𝑓+), … , 𝑅𝑒(𝑓;)], where 𝑅𝑒(𝑓) means the real part of 
𝑓. 

Test	for	significance	of	virtual-KO	perturbed	genes	
The virtual-KO perturbed genes are identified as genes with significant differences in their regulatory 
patterns in two scGRNs constructed from the WT and KO data. The method for testing the significance 

of the difference for each gene is described here. With 𝔽 = ^𝐹𝐹Q_ = [𝑅𝑒(𝑓!), 𝑅𝑒(𝑓+), … , 𝑅𝑒(𝑓;)] obtained 

in manifold alignment, for each gene, we calculate the distance dj between its two projected feature 
vectors from two networks. The rankings of dj are used to help identify significant genes. To avoid 
arbitrariness in deciding the number of selected genes, we proposed a χ2 test. Specifically, since 𝑑&+ is 
calculated by taking the summation of squares of the differences of projected representations of two 
samples, its distribution could be approximately χ2. Instead of 𝑑&+, we use the scaled FC, 𝑑𝑓 ⋅ 𝑑&+/𝑑+bbb, as 
the test statistic for each gene 𝑗 to adjust the scale of the distribution, where 𝑑𝑓 is the degree of 
freedom. 𝑑𝑓 ⋅ 𝑑&+/𝑑+bbb approximately follows a χ2-distribution with the 𝑑𝑓 if the gene does not perform 
differently before and after knocking out the target gene. By using the upper tail (P[X>x]) of the χ2 
distribution and the Benjamini–Hochberg (B–H) FDR correction for multiple testing correction,79 we 
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assigned a p-value for each gene. To determine 𝑑𝑓, since the number of the selected significant genes 
will increase as 𝑑𝑓 increases, we choose 𝑑𝑓 = 1 to make a conservative selection of genes with high 
confidence. 

Gene	functional	annotation	and	enrichment	tests	
As described above, to predict the function of a given gene, the gene was virtually knocked out using 
scTenifoldKnk. The output of scTenifoldKnk represents the perturbation profile of the KO gene, which is 
a ranked list of virtual-KO perturbed genes, subject to Enrichr and GSEA functional enrichment tests.10,14 
GSEA enrichment analysis was performed using the DR distances transformed using Box-Cox 
transformation and standardized using Z-score transformation. In brief, an enrichment score (ES) was 
calculated by walking down the list of genes ranked by the DR distance (proportional to the 
perturbation), increasing a running-sum statistic when we encounter a gene that is in a given gene set 
and decreasing when is not. The final enrichment score is equal to the maximum deviation from zero 
encountered in the random walk and corresponds to a weighted Kolmogorov–Smirnov-like statistic. The 
reference gene sets used for functional enrichment tests included KEGG_2019_Human, 
KEGG_2019_Mouse, GO_Biological_Process_2018, GO_Cellular_Component_2018, 
GO_Molecular_Function_2018, BioPlanet_2019, WikiPathways_2019_Human, 
WikiPathways_2019_Mouse, and Reactome_2016. Top genes in the ranked list were tested for 
significance (see above), and significant genes were used as input for the Enrichr analysis 14. The full 
ranked gene list was used as input for GSEA analysis 10. To remove redundant results produced by the 
GSEA analysis, identified significant functional terms and gene sets were grouped according to the 
overlap of leading-edge genes. More specifically, for a given pair of identified gene sets, if Jaccard index, 
𝐽 = |>∩@|

|>∪@|
, is greater than 0.8, where A and B are leading-edge genes of the two gene sets, then this pair 

of gene sets were grouped together. The functional annotation of grouped gene sets was reported 
under the same enriched function group. In this way, non-redundant function groups of identified gene 
sets were created and used for functional inference of the KO gene. GSEA analysis was also conducted 
against gene sets made of marker genes obtained from PanglaoDB.61 The protein interaction enrichment 
tests were performed using the web tool provided by the STRING database.15 The CSV files of gene set 
enrichment results are available for downloading from the Github website of scTenifoldKnk. 

Systematic	KO	analysis	
Systematic KO analysis was performed with the microglial scRNAseq data from the brain immune atlas. 
Data used in the systematic KO analysis was obtained from the brain immune atlas 
(https://www.brainimmuneatlas.org), a scRNAseq resource for assessing and capturing the diversity of 
the brain immune compartment, as published in ref.52 Data was generated using the 10x Genomics 
Chromium platform, including more than 61,000 CD45+ immune cells from whole brains or isolated dura 
mater, subdural meninges, and choroid plexus of mice. The downloaded data, referred to as the full 
aggregate data set (combining cells of whole brain and choroid plexus cells from WT + Irf8 KO mice), 
was stored in the file named filtered_gene_bc_matrices_mex_irf8_fullAggr.zip. The downloaded matrix 
was processed, and the sub-matrix contained 5,271 microglia from the WT mice. For all genes, the KO 
perturbation profile of each gene, i.e., a vector of DR distances, was transformed using Box-Cox 
transformation and then was standardized using z-score transformation. The processed KO perturbation 
profiles of all genes were combined into one matrix for t-SNE embedding. 

Acknowledgments	
A sincere thank you to Dr. Jingshu Chen and Dr. Andrew Hillhouse for technical support and the editing 
team members of the English 320 course project, Kamryn Watson, Kanza Akhtar, Marisa Morris, and 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2022. ; https://doi.org/10.1101/2021.03.22.436484doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.22.436484
http://creativecommons.org/licenses/by/4.0/


   
 

19 
 

Mary Frances Nance, for proofreading of this paper. This research was funded by Texas A&M University 
X-Grant (2019), T3-Grant (2019), and DoD GW200026 for J.J.C., the Allen Endowed Chair in Nutrition & 
Chronic Disease Prevention, NIH R01-ES025713, R01-CA202697, R35-CA197707 grants for R.S.C., and 
Texas A&M Institute of Data Science (TAMIDS) Data Resource Development Program Award (2020) for 
D.O. and Y.Z. 

Author	Contributions	
J.J.C. conceived the study, designed the workflow, and implemented the Matlab version of the software. 
D.O. designed the workflow, performed data analysis, and implemented the R version of the software. 
Y.Z. and G.L. contributed to the workflow design. Q.X. and Y.Y. contributed to the preparation and 
analysis of testing data sets. Y.T., R.S.C., and J.Z.H contributed to the concept development and the 
writing of the manuscript. J.J.C. and J.Z.H. supervised the data analysis. 

Declaration	of	Interests	
D.O., Y.Z., G.L., Y.Y, J.Z.H. and J.J.C. are listed as inventors on a patent application related to this work. 

Figure	Titles	and	Legends	

 

Figure 1. Overview of scTenifoldKnk workflow. ScTenifoldKnk is designed to perform virtual KO 
experiments with data from scRNAseq. The workflow of scTenifoldKnk consists of three main modules, 
namely, network construction, virtual KO, and manifold alignment. (A) Network construction. This 
module consists of three steps: cell subsampling, principal component regression, and tensor 
decomposition/denoising. (B) Virtual KO. This module starts by duplicating the WT adjacency matrix, 
𝑾%, to make 𝑾%0 = 𝑾%. Then, the entire row of  𝑾%0  corresponding to the KO gene is set to zero. The 
modified  𝑾%0 is pseudo-KO scGRN. (C) Manifold alignment. This method is used to learn latent 
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representations of two networks, 𝑾%  and 𝑾%0 , and align them based on their underlying manifold 
structures. The distance between a gene’s projections with respect to the two scGRNs on the low-
dimensional latent representation is used to measure the level of differential regulation of the specific 
gene. A ranked gene list, in which genes are sorted according to the value of the distance, can be used 
as input to perform GSEA analysis. The significantly DR genes are identified as virtual-KO perturbed 
genes. 

 

Figure 2. Simulations show that scTenifoldKnk specifically detects regulatory modules that include the 
KO gene. (A) Heatmap of a 100 × 100 adjacency matrix of scGRN constructed from simulated scRNAseq 
data of 100 genes and 3,000 cells. The color is scaled according to the normalized PC regression 
coefficient values between gene pairs. The network contains five predefined co-regulated modules of 
different sizes, indicated by the blocks of gene pairs with a high correlation. The number of genes of 
each module is 5, 10, 25, 40, and 20, respectively. (B) Normalized (Box-Cox) and standardized (Z-score) 
distance was measured for each gene after manifold alignment and their associated -log10(p-value) 
after DR testing in the simulated network. Red and black dots indicate whether genes are significant or 
not after false discovery correction. Assuming genes in the same module should be detected as 
significant genes, sensitivity is defined as = TP/(TP+FN), and specificity as = (TN)/(TN+FP), where T, P, F, 
and N stands for true, positive, false, and negative, respectively. Balanced accuracy is defined as the 
average sensitivity and specificity values. (C) QQ-plots of expected (under the uniform distribution) vs. 
observed p-values of genes given by the DR tests. 
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Figure 3. scTenifoldKnk virtual KO analysis recapitulates the findings of real KO experiments. (A) The 
schematic diagram (left top) shows the original KO experimental procedure and the virtual KO of Nkx2-1. 
GSEA plots (left bottom) show three enriched functions associated with virtual-KO perturbed genes 
upon the deletion of Nkx2-1. Gene rank indicates the position of each gene in the ranked gene list 
produced by scTenifoldKnk. The egocentric plot (right) shows the connections between the KO gene 
(Nkx2-1) and significant virtual-KO perturbed genes (FDR < 0.05). Nodes are color-coded by each gene’s 
membership association with enriched functional groups, as reported in the Enrichr analysis. The 
displayed gene sets were subsequently selected—i.e., only those with functions related to phenotypes 
reported in the corresponding original study are shown. The number of genes in the functional groups is 
given in the parentheses of the egocentric plot legend. (B) Same as A but for Trem2. (C) Same as A but 
for Hnf4a and Hnf4g. 
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Figure 4. scTenifoldKnk virtual KO reveals functions of Mendelian disease genes in relevant cell types. 
(A) Virtual KO of Cftr in pulmonary alveolar type II cells identifies gene expression program changes 
associated with cystic fibrosis. GSEA analysis identifies significant gene sets, including regulation of ion 
transmembrane transporter, abnormal alveolus morphology, and abnormal surfactant secretion. Gene 
rank indicates the position of each gene in the ranked gene list produced by scTenifoldKnk. QQ-plot of 
genes and interconnection of virtual-KO perturbed genes in STRING are given. The egocentric plot (right) 
shows the connections between the KO gene (Nkx2-1) and significant virtual-KO perturbed genes (FDR < 
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0.05). Nodes are color-coded by each gene’s membership association with enriched functional groups, 
as reported in the Enrichr analysis. The displaying gene sets were subsequently selected—i.e., only those 
with functions related to the Mendelian disease phenotype are shown. (B) Virtual KO of Dmd in 
muscular cells identifies gene expression program changes associated with Duchenne muscular 
dystrophy. GSEA analysis identifies significant gene sets, including abnormal skeletal muscle morphology 
and abnormal collagen fibril morphology. Gene rank indicates the position of each gene in the ranked 
gene list produced by scTenifoldKnk. QQ-plot of genes and interconnection of virtual-KO perturbed 
genes in STRING are given. The egocentric plot (right) shows the connections between the KO gene 
(Dmd) and significant virtual-KO perturbed genes (FDR < 0.05). Nodes are color-coded by each gene’s 
membership association with enriched functional groups, as reported in the Enrichr analysis. The 
displaying gene sets are selected—only those with functions related to the Mendelian disease 
phenotype are shown. 

 

Figure 5. Correlation between genes’ DR distance and the edge weight of links between genes and the 
KO in scGRN. (A) Results from the microglial Trem2-KO analysis. Each dot represents a gene. The 
number of genes per unit area is shown with colors according to the density. The X-axis shows the Z 
score-normalized DR distance. For a given gene, the greater the distance, the more significant the gene 
is perturbed upon virtual KO. Significantly perturbed genes (FDR < 0.05) are shown in red asterisks. (B) 
Same as (A) but for Dmd in skeletal muscle cells. 
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Figure 6. scTenifoldKnk enables a systematic KO experiment in microglia and the establishment of a 
KO perturbation profile landscape. (A) An illustration of systematic virtual-KO analysis using 
scTenifoldKnk. Two KO genes are shown as an example. Due to the difference in their profiles, two 
genes are embedded in two different locations, indicated by the red arrows, in the dimensionality 
reduction visualization. (B) t-SNE embedding of 6,853 genes expressed in microglia based on these 
genes’ perturbation profiles. Genes in three clusters in the embedding are highlighted. In the zoom-in 
view of each cluster, the connections between genes are retrieved from the STRING database. (C) 
STRING sub-network of 12 genes (Apoc1, Apoe, Clec12a, Clec4n, Cp, Fth1, Lilrb4, Mrc1, Ms4a6c, Ms4a7, 
Pilra, and Pla2g7) in Cluster 1 highlighted in B. References of three studies,54-56 in which the associations 
between genes were established, are given. (D) Same as B except the t-SNE embedding is based on 
genes’ expression profiles. The locations of genes in Cluster 1 are highlighted in red. (E) same as B 
except the t-SNE embedding is based on genes’ edge weight profile in the scGRN. 
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Figure 7. scTenifoldKnk virtual KO predicts shared and type-specific functions of MYDGF across cell 
types. (A) Results of GSEA analysis with ranked gene lists generated by virtual KO of MYDGF in 
endothelial cells. Significant gene sets include cell cycle, apoptosis, VEGFA-VEGFR2 pathway, and 
MAPK6/4 signaling pathway. (B) Correlation matrix showing similarity between MYDGF perturbation 
profiles of 45 cell types. (C) Heatmap showing GSEA enrichment scores for gene sets. Each row is a gene 
set in BioPlanet database. Rows are sorted in reverse order of average GSEA enrichment score across 
cell types. Names of several gene sets with functions known to be associated with MYGDF are shown. 

Supplementary	Tables	
Supplementary Table S1. Summary of real-data applications of scTenifoldKnk analysis.  

Supplementary Table S2. 171 genes perturbed by the virtual-KO of Nkx2-1 in alveolar cells. The 
STRING interaction network of perturbed genes is available at the permalink: https://version-11-
0b.string-db.org/cgi/network?networkId=bECocSTVt8bZ 

Supplementary Table S3. 128 genes perturbed by the virtual-KO of Trem2 in microglial cells. The 
STRING interaction network of perturbed genes is available at the permalink: https://version-11-
0b.string-db.org/cgi/network?networkId=bEZKYpHcHsns 

Supplementary Table S4. 65 genes perturbed by the virtual-KO of Hnf4a and Hnf4g in intestinal cells. 
The STRING interaction network of perturbed genes is available at the permalink: https://version-11-
0b.string-db.org/cgi/network?networkId=bGGZHJwMOcny  

Supplementary Table S5. 17 genes perturbed by the virtual-KO of Cftr in alveolar type II cells. The 
STRING interaction network of perturbed genes is available at the permalink: https://version-11-
0b.string-db.org/cgi/network?networkId=bbh2WkHUgVGT  
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Supplementary Table S6. 190 genes perturbed by the virtual-KO of Dmd in skeletal muscle cells of the 
mouse limb. The STRING interaction network of perturbed genes is available at the permalink: 
https://version-11-0b.string-db.org/cgi/network?networkId=bY1kGZIAZ55e 

Supplementary Table S7. 377 genes perturbed by the virtual-KO of Mecp2 in mouse neurons 
(Biological replicate 1). The STRING interaction network of perturbed genes is available at the 
permalink: https://version-11-0b.string-db.org/cgi/network?networkId=bUTs7s0SjR9E 

Supplementary Table S8. 322 genes perturbed by the virtual-KO of Mecp2 in mouse neurons 
(Biological replicate 2). The STRING interaction network of perturbed genes is available at the 
permalink: https://version-11-0b.string-db.org/cgi/network?networkId=bRZ7FLRdM1Ic  
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