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Bigger Picture

e Gene knockout (KO) experiments, using genetically altered animals, are a proven powerful approach
to elucidate the role of a gene in a biological process. However, systematic KO experiments
targeting many genes are usually prohibitive due to limited experimental and animal resources.
Here, we present scTenifoldKnk, an efficient virtual KO tool that allows the systematic deletion of
many genes individually. scTenifoldKnk uses single-cell RNA sequencing (scRNAseq) data from wild-
type (WT) samples to predict gene function in a cell type-specific manner. We show that predictions
made by scTenifoldKnk recapitulate findings from real-animal KO experiments. scTenifoldKnk has
proven to be a powerful and effective approach for elucidating gene function, prioritizing KO
targets, predicting experimental outcomes before real-animal KO experiments are conducted.
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Highlights

e scTenifoldKnk performs virtual KO experiments using scRNAseq data.

e scTenifoldKnk only requires data from WT samples; no data is needed from KO samples.

e Predictions made by scTenifoldKnk recapitulate findings from real-animal KO experiments.

Data Science Maturity Level

o o eee Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem

eTOC blurb

scTenifoldKnk is a machine learning workflow performing virtual KO experiments to predict gene
function. It constructs gene regulatory networks using single-cell RNA sequencing data from wild-type
samples and then computationally deletes target genes. Real-data applications demonstrate that
scTenifoldKnk recapitulates findings of real-animal KO experiments and accurately predicts gene
function in analyzed cells.

Summary

Gene knockout (KO) experiments are a proven, powerful approach for studying gene function. However,
systematic KO experiments targeting a large number of genes are usually prohibitive due to the limit of
experimental and animal resources. Here, we present scTenifoldKnk, an efficient virtual KO tool that
enables systematic KO investigation of gene function using data from single-cell RNA sequencing
(scRNAseq). In scTenifoldKnk analysis, a gene regulatory network (GRN) is first constructed from
scRNAseq data of wild-type samples, and a target gene is then virtually deleted from the constructed
GRN. Manifold alignment is used to align the resulting reduced GRN to the original GRN to identify
differentially regulated genes, which are used to infer target gene functions in analyzed cells. We
demonstrate that the scTenifoldKnk-based virtual KO analysis recapitulates the main findings of real-
animal KO experiments and recovers the expected functions of genes in relevant cell types.

Introduction

Gene knockout (KO) experiments are a proven approach for studying gene function. A typical KO
experiment involves the phenotypic characterization of organisms following the deletion of a target
gene. For example, in KO mice, a gene is knocked out, i.e., made inoperative by deleting one or more
alleles using genetic techniques. Phenotypic characterization of KO animals provides insight into how
the target gene functions within the biological context that KO animals present. Notably, gene functions
can be inferred by contrasting phenotypes between KO and wild-type (WT) animals and identifying
differences. At the molecular level, gene expression may serve as a quantitative phenotype. The state of
gene expression is regulated in a coordinated manner in all living organisms, exhibiting synchronized
patterns of transcription that can be depicted using a gene regulatory network (GRN). Co-regulations are
often seen among genes associated with the same biological processes and pathways or regulated by
the same master transcription factors (TFs).! If one gene is knocked out, functionally related genes can
mediate a homeostatic response. Thus, in unraveling regulatory mechanisms and synchronized patterns
of cellular transcriptional activities, network analysis of gene expression provides mechanistic insights.

The advent of single-cell technology has greatly improved cellular phenotyping resolution. For example,
high-throughput droplet-based single-cell RNA sequencing (scRNAseq) makes it possible to profile
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transcriptomes of thousands of individual cells in a single experiment. The application of single-cell
technology in KO experiments allows investigators to probe gene function in a cell type-specific manner.
To fully understand the regulatory mechanisms and gene function, it would be ideal for applying
scRNAseq in the context of systematic KO experiments that involve the deletion of many genes
individually. This unique coupling of scRNAseq with large-scale gene KO in an organism would allow the
function of many genes in various cell types to be studied at a single-cell level of resolution. However,
limited resources tend to prohibit this kind of experiment, especially when multiple genes are targeted
and multiple tissues and cell types are involved. To this end, Perturb-seq, and other conceptually similar
protocols,>® have been developed to achieve the aforementioned goal. Although these protocols may
allow the study of gene functions in many cells in a massively parallel fashion, they require the creation
of large-scale CRISPR libraries,* which presents a major technical challenge. For these reasons,
computational methods serve as a possible solution for prohibitive, systematic KO experiments.>’ We
propose that new computational methods may take advantage of the synchronized expression of genes
in given samples to construct GRNs and predict gene functions. The topology of those GRNs is known to
serve as a basis to accurately predict perturbations caused by gene KO.2

Here we present a machine learning workflow, scTenifoldKnk, that can be used to perform virtual KO
experiments to predict gene functions. scTenifoldKnk utilizes expression data from scRNAseq of the WT
samples as input and constructs a denoised single-cell GRN (scGRN). The WT scGRN is copied and then
converted to a pseudo-KO scGRN by artificially zeroing out the weight of outward edges of the target
gene in the adjacency matrix. Next, by comparing the two scGRNs (WT vs. pseudo-KO), scTenifoldKnk
reveals changes in transcriptional regulatory programs and assesses the impact of KO on the WT scGRN.
This information is then used to elucidate the functions of the KO gene in analyzed cells through
enrichment analysis.

ScTenifoldKnk is computationally efficient enough to allow the method to be applied to systematic KO
experiments. In such a systematic study, we assume that thousands of genes in analyzed cells will be
knocked out one by one. As mentioned, due to the experimental and biological limitations, such
systematic KO experiments would be extremely difficult, if not impossible, to conduct in a real-animal
experimental setting. The other application features of scTenifoldKnk include: scTenifoldKnk requires no
data from KO samples, as it only utilizes scRNAseq data from WT samples, and scTenifoldKnk can
perform multi-gene KO analysis, i.e., knocking out more than one gene at a time.

The remainder of this paper is organized as follows. We first present an overview of the workflow of
scTenifoldKnk. We then use simulated data to demonstrate its basic functions, followed by using existing
data generated from authentic-animal KO experiments to highlight the use of scTenifoldKnk. These
existing data sets contain scRNAseq expression matrices from both WT and KO samples. Although KO
data sets were available, they were not used by scTenifoldKnk as input. Instead, the KO data sets were
specifically used as positive controls to show that scTenifoldKnk can produce expected results. We also
show the use of scTenifoldKnk to reveal the functions of genes underlying three different Mendelian
diseases. Finally, we show two cases of systematic KO using scTenifoldKnk.

Results
Result 1: The scTenifoldKnk workflow

ScTenifoldKnk takes a single gene-by-cell count matrix from the WT sample as input. The workflow
constructs a WT scGRN from the input count matrix and then generates a pseudo-KO scGRN by knocking
out a gene from the WT scGRN. Eventually, it employs a network comparison method to compare the
pseudo-KO and WT scGRNs to identify differentially regulated (DR) genes. These DR genes are virtual-KO


https://doi.org/10.1101/2021.03.22.436484
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436484; this version posted January 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

perturbed genes—the two terms will be used interchangeably throughout this paper. From the enriched
function of these virtual-KO perturbed genes, the function of the KO gene (i.e., the gene that is virtually
knocked out) can be inferred. scTenifoldKnk is implemented with a modular structure containing three
core modules illustrated in Figure 1. The three steps are summarized as follows.

Step 1: Constructing scGRN with scRNAseq data from WT samples

With the scRNAseq data from a WT sample, scTenifoldKnk first constructs an scGRN using a pipeline we
proposed previously, namely, scTenifoldNet.® This network construction step contains three sub-steps
(Figure 1A):

Substep 1.1. Subsampling cells randomly

Denote X as the scRNAseq expression data matrix, which contains the expression levels for p genes and
n cells. Then, m (< n) cells in X are randomly sampled to form X' using an m-out-of-n bootstrap
procedure. This subsampling process repeats t times to create t subsets of cells X7, ..., X}.

Substep 1.2. Constructing a GRN for each subsampled set of cells

For each Xj, principal component (PC) regression is run p times to construct a GRN. Each time the
expression level of one gene is used as the response variable and the expression levels for the remaining
genes as dependent variables. The constructed GRN from X; is stored as a signed, weighted and
directional graph, represented with a p X p adjacency matrix W;, each of whose columns stores the
regression coefficients for the PC regression of a gene. W; is then normalized via dividing by the
maximal absolute value.

Substep 1.3. Denoising adjacency matrices to obtain the final GRN

Tensor decomposition is used to denoise the adjacency matrices {W;} obtained from the PC regression
step. First, the collection of {W;} for t GRNs is processed as a third-order tensor Z, containingp X p X t
elements. Next, the CANDECOMP/PARAFAC (CP) decomposition is applied to decompose E into
components. Then, Z is reconstructed using top d components to obtain denoised tensors =;. Denoised
{W;}in £, are collapsed by taking the average of edge weights to obtain the final averaged matrix, W .

Step 2: Generating pseudo-KO scGRN by virtually knocking out a gene

In the last step, the scRNAseq expression data matrix from the WT sample, X, is first used to construct
the WT scGRN. In this step named virtual KO, the adjacency matrix of the WT scGRN, W, is copied, and
then the entire row of W, corresponding to the target gene is set to O (Figure 1B). In this way, the
virtual KO operation is performed on W directly. The modified W is denoted as W, that is, the
adjacency matrix of pseudo-KO scGRN.

Step 3. Comparing scGRNs to identify virtual-KO perturbed genes

In this step, we assume that WT and pseudo-KO scGRNs, W ; and m, have been obtained. A quasi-
manifold alignment method is then used to align W; and W:i (Figure 1C, see Experimental Procedures
for details). All genes included in the two scGRNs are projected in k-dimensional space, where k << p.
After the projection, each gene has two low-dimensional representations: one is in respect to W, and
the other W;. For each gene j, d; is the Euclidean distance between the gene’s two projections. The
greater d;, the more significant the differential regulation. Genes were sorted according to the value of
the distance to produce a ranked gene list, which was used as input of the gene set enrichment analysis
(GSEA).X° Finally, a x? test is applied to detect significant DR genes, i.e., virtual-KO perturbed genes.

A more detailed description of scTenifoldKknk modules is provided in the Experimental Procedures
section.
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Result 2: Virtual KO analysis using simulated scRNAseq data

We first used the simulated data to validate the relevance of our method. For this purpose, we
generated a synthetic scRNAseq data set using the simulator SERGIO—a single-cell expression simulator
guided by GRNs.! To simulate the data, we supplied SERGIO with five predefined GRNs of different
sizes, containing 5, 10, 25, 40, and 20 genes, respectively. The simulated scRNAseq data set was a sparse
matrix (70% zeros) of 3,000 cells and 100 genes. We applied the PC regression method to the simulated
data and constructed an scGRN. As expected, in the scGRN, genes were clearly clustered into five
distinct modules (see Figure 2A for the adjacency matrix), mirroring the predefined modules given by
the generative model of SERGIO. Genes in the same module were supposed to be functionally related or
under the same regulation. Because SERGIO simulates gene expression in steady-state cells, we only
used it to simulate co-expression modules rather than the regulatory processes of some upstream
regulators acting on these modules. We regarded the constructed network as the WT scGRN. Next, we
set the weight of the 20" gene (gene #20) in the WT scGRN to zero to produce the pseudo-KO scGRN.
Gene #20 belongs to the third module, which includes a total of 25 genes. We then used scTenifoldKnk
to compare the pseudo-KO scGRN with the WT scGRN to identify genes significantly differentially
regulated due to the KO. These genes were predicted likely to be perturbed along with gene #20.
Because we knew the KO effect was due to the deletion of gene #20, we expected that the identified
genes to be those closely correlated with gene #20. Indeed, as expected, scTenifoldKnk showed all
significant genes were from the third module (Figure 2B & 2C, top), in which gene #20 is located. We
repeated the analysis using genes #50 and #100 as two additional examples. Again, the results were as
expected (Figure 2B & 2C, middle and bottom). Thus, we concluded that when a member gene is
knocked out from a tightly regulated module, other member genes in the same module should be
detected by scTenifoldKnk. Algorithmically, genes in the same module with the KO gene were detected
because their projected positions in low-dimensional latent representations of WT and pseudo-KO
networks changed more than other genes not in the same module (see Experimental Procedures for
details).

Result 3: scTenifoldKnk virtual KO analysis recapitulates results of real KO

experiments

As a virtual KO tool, scTenifoldKnk is expected to recapitulate results obtained from real KO
experiments. To prove this, we applied scTenifoldKnk to scRNAseq data from three in vivo KO
experiments. In all three cases, the scRNAseq data sets of the original studies contained expression
matrices from both WT and KO samples.

It is noteworthy that comparisons between predictions made by scTenifoldKnk and the main findings of
original papers were by no means “fair” comparisons. This is because scTenifoldKnk was blinded to all
information except the scRNAseq data from the WT samples. In contrast, to characterize functions of
target genes, original in vivo KO studies used scRNAseq data from both WT and KO samples, as well as
other empirical data from bulk RNAseq, flow cytometry, and immunostaining assays. Nevertheless, we
obtained an overall consistency in the KO gene functions between those predicted using scTenifoldKnk
and those reported in the original papers. Supplementary Table S1 gives a summary of comparisons.

Virtual vs. real KO experiment 1: Nkx2-1 is required for the transcriptional control,
development, and maintenance of alveolar type-1 and type-2 cells

NK homeobox 2-1 (Nkx2-1) is highly expressed in lung epithelial cells of alveolar type | (AT1) and type Il
(AT2). AT1 cells cover 95% of the gas exchange surface and are 0.1 um thick to allow passive oxygen
diffusion into the bloodstream. Nkx2-1 is essential at all developmental stages of AT1 cells. Loss of Nkx2-
1 results in the impairment of three main defining features of AT1 cells, molecular markers, expansive
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morphology, and cellular quiescence.? AT2 cells are cuboidal and secrete surfactants to reduce surface
tension. Mutations in Nkx2-1 interrupt the expression of Sftpb and Sftpc, two genes related to AT2 cell
function and molecular identity.}?*3

To examine the molecular and cellular changes caused by the Nkx2-17" KO, Little et al.? generated a
comprehensive set of data (GEO: GSM3716703) using the lung samples from WT and Nkx2-17- KO mice.
Using bulk RNAseq and immunostaining assays, they observed that the expression of marker genes of
AT1 and AT2 cells was downregulated in the Nkx2-1 mutant cells. They also found that the expression of
marker genes for gastrointestinal cells was upregulated in Nkx2-17- mutant AT1 cells, which form dense
microvilli-like structures apically. Using ChIP-seq, they found that Nkx2-1 binds to a set of genes
implicated in regulating the cytoskeleton, membrane composition, and extracellular matrix. Little et al.
also generated scRNAseq data for 2,312 and 2,558 epithelial cells from lung samples of the WT and
Nkx2-17- KO mice, respectively.*?

We obtained the scRNAseq data, generated by Little et al.,’? and used the expression matrix of 8,647
genes x 2,312 cells from WT mice as the input for scTenifoldKnk. We constructed the WT scGRN and
then knocked out Nkx2-1. The final report of scTenifoldKnk analysis contained 171 significant genes
[False Discovery Rate (FDR) < 0.05, Supplementary Table S2]. These virtual-KO perturbed genes included
7 out of 32 marker genes of AT1 cells (Egfl6, Ager, Cldn18, Icam1, Crif1, Gprc5a, and Agp5) and 25 out of
38 marker genes of AT2 cells (highlighted in Supplementary Table S2). The functional enrichment test,
Enrichr,** indicated that these genes were enriched for functional categories: epithelial to mesenchymal
transition led by the WNT signaling pathway members, surfactant homeostasis, lamellar body, and cell
adhesion molecules. These enriched functions were consistent with and related to the functions of AT2
cells. Next, we applied the interaction enrichment analysis to the 171 significant genes. The interaction
enrichment analysis was provided and based on the STRING protein-protein interaction database.’® We
found that these genes appear in a fully connected component in the STRING interaction network (p-
value < 0.01, STRING interaction enrichment test), indicating a closely related functional relationship
between those genes. We subsequently performed GSEA analysis,® to evaluate the extent of
perturbation caused by the Nkx2-1 KO at the transcriptome-wide level. GSEA analysis identified gene
sets containing marker genes of AT1 and AT2 cells (FDR < 0.01 in both cases). Specifically, AT1 and AT2
marker genes were among the topmost perturbed genes caused by the deletion of Nkx2-1. GSEA
analysis also showed that the Nkx2-17- KO impacted genes with functions related to intestinal microvilli
(Figure 3A), cell cycle, and the cytoskeleton. These results are consistent with those reported in the
original study.?

Virtual vs. real KO experiment 2: Trem2 regulates microglial cholesterol metabolism
The Triggering Receptor Expressed on Myeloid cells 2 (Trem2) is a single-pass transmembrane immune
receptor selectively expressed in microglia within the central nervous system. Trem2 is known to be
involved in late-onset Alzheimer’s disease and plays a role in modulating proliferation, survival, immune
response, calcium mobilization, cytoskeletal dynamics, mTOR signaling, autophagy, and energy
metabolism.® The function of Trem2 is known to be mediated via signaling transducer Hcst and adaptor
Tyrobp.” Trem2 is also known to play a role in regulating lipid metabolism, with most studies focusing
on lipids in the form of either lipoprotein particles or cell surface-exposed signals, such as candidate
Trem?2 ligands.*® By comparing WT and Trem27~ KO mice, Poliani et al.'® showed that Trem2 regulates
many genes, such as Apoe and Lpl, which control lipid transport and catabolism in microglia. Trem2 was
also found to modulate gene expression of macrophages in adipose and control blood cholesterol
metabolism in obese mice,?° further linking the function of Trem2 to lipid metabolism. To examine
whether Trem2 mediates myelin lipid processing in microglia, Nugent et al.2! isolated and characterized
Cd11b*/Cd45™" microglial cells from Trem2*/*, Trem2*/~, and Trem2”/~ mice, fed with a 0.2%
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demyelinating cuprizone diet for 12 weeks. They analyzed a comprehensive set of analytical data using
FACS, bulk RNAseq, scRNAseq, and lipidomics. They reported that Trem2 upregulates Apoe and other
genes involved in cholesterol transport and metabolism, causing robust intracellular accumulation of a
storage form of cholesterol upon chronic phagocytic challenge. Trem2 was also shown to regulate the
expression of genes associated with cell damage response, lysosome and phagosome function,
Alzheimer’s disease, and oxidative phosphorylation.?

To perform the virtual KO analysis, we obtained scRNAseq data from WT (Trem2**) mice.?* The
expression matrix contained data of 7,715 genes and 765 Cd11b*/Cd45"°" microglial cells. We used this
WT expression matrix as the input and used scTenifoldKnk to knock out Trem2. The final results of
scTenifoldKnk analysis contained 128 virtual-KO perturbed genes (FDR < 0.05, Supplementary Table S3).
The Enrichr analysis showed that the identified gene list was enriched with genes associated with
Alzheimer’s disease, oxidative phosphorylation, lysosome, TYROBP causal network, metabolic pathway of
LDL, HDL and TG, and microglia pathogen phagocytosis pathway. Such an enrichment indicates that the
proteins attend to be functionally connected. These virtual-KO perturbed genes were highly interactive
with each other, as shown by their positions on the STRING interaction network. The network of virtual-
KO perturbed genes had significantly more interactions than expected (p-value < 0.01, STRING
interaction enrichment test), which indicates that gene products exhibited more interactions among
themselves than what would be expected for a random set of proteins of similar size, drawn from the
genome. This result suggests that the identified virtual-KO perturbed genes are closely related to shared
functions. Collectively, these scTenifoldKnk findings provide insight into understanding Trem2 functions
by revealing the list of genes perturbed following Trem2 deletion (Figure 3B). These inferred functions
are consistent with those reported in the original study.?

Virtual vs. real KO experiment 3: Hnf4a and Hnf4g stabilize enterocyte identity
Hepatocyte nuclear factor 4 alpha and gamma, Hnf4a and Hnf4g, are TFs that regulate gene expression
in the gut epithelium. Hnf4a and Hnf4g function redundantly, and thus, an independent deletion of one
paralog causes no gross abnormalities.?? Hnf4a and Hnf4g double-KO Hnf4ag”° mice exhibit fluid-
filled intestines indicative of an intestinal malfunction.?? Epithelial cells in the Hnf4ag”*°® mutants fail to
differentiate. Using bulk RNAseq data, Chen et al.?? compared gene expression in duodenal epithelial
cells isolated from WT mice and Hnf4a*°, Hnf4g*° and Hnf4ag”® mutants. They identified 2,892 DE
genes in the Hnf4ag®*°® mutant but only 560 and 77 in the Hnf4a"° and Hnf4g*® mutants, respectively
[FDR < 0.05, absolute log2(fold change) > 1]. The DE genes identified in the Hnf4ag”*® enterocytes were
enriched for functions in digestive metabolisms such as lipid metabolism, microvillus, and absorption, as
well as enterocyte morphology, cytoplasm, Golgi apparatus, and immune signaling. Hnf4ag”*®
epithelium exhibited a robust shift in the transcriptome away from differentiated cells toward
proliferating and Goblet cells, suggesting that Hnf4ag®*® impairs enterocyte differentiation and
destabilize enterocyte identity. To validate their findings, Chen et al.?2 used scRNAseq to measure gene
expression in intestinal villus epithelial cells. They obtained scRNAseq data for 4,100 and 4,200 cells
from Hnf4ag"™ and Hnf4ag®*° respectively and confirmed that compared to the WT, mutant epithelial
cells show increased Goblet cell-enriched genes, such as Agr2, Spink4, Gent3 and $100a6, and decreased
expressions of enterocyte-enriched genes, such as Npc1/1, Apoc3, Slc6a19 and Lct (Figure 3C left panel).
The Hnf4agP*°® mutant cells also showed increased expression for genes in the BMP/SMAD signaling
pathway and decreased expression of genes involved in lipid metabolism, microvillus and absorption,
and genes related to the cytoplasm.?

We obtained the scRNAseq expression matrix of 4,100 cells from the Hnf4ag"™ samples used as input for
scTenifoldKnk. We constructed the WT scGRN of 2,591 genes and then virtually knocked out both Hnf4a
and Hnf4g genes at the same time. The final result of scTenifoldKnk analysis contained 65 virtual-KO
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perturbed genes (FDR < 0.05, Supplementary Table S4). These genes were enriched with electron
transport chain, fat digestion and absorption, cholesterol metabolism, chylomicron assembly, and
cytoplasmic vesicle lumen. A search of the STRING database indicated that all virtual-KO perturbed
genes form a fully connected network module. The interaction enrichment test showed that such a
complete interconnection of 65 genes is less likely to be expected by chance (p-value < 0.01).
Furthermore, GSEA analysis revealed that these virtual-KO perturbed genes were enriched with
canonical marker genes of enterocytes (12 out of 132, Figure 3C), which is consistent with the finding of
the original study.??

Interestingly, the number of significantly perturbed genes following the double-KO of Hnf4a and Hnf4g
(65) was less than the single-KO of Nkx2-1 (171) or Trem2 (128). To examine the cause of this difference,
we analyzed the relationship between the number of significantly perturbed genes and the degree (i.e.,
the number of connections) of the KO gene in the network (Supplementary Figure S1). We found a
positive correlation between the two metrics (Pearson’s r=0.75, P = 0.03). Hnf4a and Hnf4g exhibited a
lower degree (i.e., fewer connections) than Nkx2-1 and Trem2, which may explain why KO of Hnf4a and
Hnf4g produced fewer perturbed genes.

Result 4: scTenifoldKnk virtual KO analysis detects functions of genes

causative of Mendelian disorders

Mendelian diseases are a family of diseases caused by the loss or malfunctioning of a single gene. For
many Mendelian diseases, we know a great deal about their genetic basis and pathophysiological
phenotypes.? We decided to use three Mendelian diseases, namely cystic fibrosis, Duchenne muscular
dystrophy, and Rett syndrome, as “positive controls.” We tested the performance of scTenifoldKnk by
determining whether it accurately predicted gene functions and hence inferred the molecular
phenotypic consequences when the causative gene of each of these Mendelian diseases was virtually
knocked out. As described in more detail below, in each case, we performed scTenifoldKnk analysis
using existing scRNAseq data generated from cell types that are most relevant to the disease conditions
(Supplementary Table S1).

Cystic fibrosis

Cystic fibrosis (CF) is one of the most common autosomal recessive diseases.?® It is caused by mutations
in CFTR, a gene encoding for a transmembrane conductance regulator,?”-?® which functions as a channel
across the membrane of cells that produce mucus, sweat, saliva, tears, and digestive enzymes. The CFTR
protein also regulates the function of other channels. CFTR is expressed in epithelial cells of many
organs, including the lung, liver, pancreas, and digestive tract.?’ The most common CFTR mutation that
causes CF is the deletion of phenylalanine 508 (AF508), which disrupts the function of the chloride
channels, preventing patients from regulating the flow of chloride ions and water across cell
membranes.?’ The truncated CFTR protein leads to a reduction of surfactants. It causes the build-up of
sticky, thick mucus that clogs the airways, increasing the risk of bacterial infections and permanent lung
damage.*®

To test scTenifoldKnk, we obtained scRNAseq data from 7,326 pulmonary alveolar type Il (AT2) cells in
the GEO database (access number: GSM3560282). The original data sets were generated by Frank et
al.3! to study the lineage-specific development of alveolar epithelial cells in mice. The original study was
not directly focused on CF. Nevertheless, with the downloaded data, we constructed a WT scGRN that
contained 7,107 genes. We then used scTenifoldKnk to knock out Cftr. The final results of scTenifoldKnk
contained 17 virtual-KO perturbed genes: Cftr, Birc5, Cldn10, Cxcl15, Dcxr, Hmgb2, Lamp3, Mgst1, Npc2,
Pclaf, Pglyrp1, Sftpal, Sftpb, Sftpc, Smc2, Tspanl and Tubb5 (FDR < 0.05, Figure 4A, Supplementary
Table S5). Among them, Sftpal, Sftpb, and Sftpc have functions associated with ABC transporter
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disorders and surfactant metabolism. Sftpb and Sftpd encode for surfactant proteins implicated in CF
and innate immunity.3233 Ctsh encodes for cathepsin H, a cysteine peptidase, which is involved in the
processing and secretion of the pulmonary surfactant protein B.3* GSEA analysis of the ranked gene list
was conducted using gene sets of the MGl mammalian phenotypes database as a reference. The result
showed that the gene list scTenifoldKnk produced was significant in terms of ion transmembrane
transporter activity, abnormal surfactant secretion, and alveolus morphology (FDR < 0.01 in all cases,
Figure 4A). These results are consistent with the known pathophysiological changes resulting from the
loss of Cftr function in the lungs.

To test the specificity of scTenifoldkKnk, we decided to use genes that show highly similar expression
profiles to that of Cftr to repeat the analysis. The selection of these genes was made by computing for
each gene both the mean and variance of their expression levels across cells. Five closest genes to Cftr—
Akap7, Zranb1, Krccl, Mtal and Rps8—were selected. These selected genes may not necessarily have
any functions related to that of Cftr in alveolar type Il cells. When scTenifoldKnk was applied to predict
perturbation profiles caused by their deletion, we found none of the sets of predicted functions similar
to those specific functions (i.e., ion transmembrane transporter function, abnormal surfactant secretion,
and alveolus morphology) associated with Cftr. Principal component analysis (PCA) confirmed that
perturbation profiles of Mtal, Akap7 and Zranb1 differ most from that of Cftr, while the perturbation
profiles of Krcc1 and Rps8 are relatively similar to that of Cftr (Supplementary Figure S2). Both Krcc1 and
Rps8 have been reported to play a role in regulating cellular plasticity and fibrotic process.3>%®

Duchenne muscular dystrophy

Duchenne muscular dystrophy (DMD) arises as a result of mutations in the open reading frame of
DMD.?"* The DMD gene encodes dystrophin, a large cytoskeletal structural protein, mostly absent in
DMD patients.?® The absence of dystrophin results in a disturbance of the linkage between the
cytoskeleton and the glycoproteins of the extracellular matrix, generating an impairment of muscle
contraction, eventually leading to muscle cell necrosis (Figure 4B, left).3%%0

We obtained the scRNAseq data of 5,159 muscle cells from the mouse limb (quadriceps) in the GEO
database (GSM4116571). The original data was generated to study gene expression patterns in skeletal
muscle cells.** The original study was not focused on DMD. We used scRNAseq data from normal tissue
to construct the WT scGRN of 9,783 genes. We subsequently performed the scTenifoldKnk virtual KO
analysis to predict the molecular phenotype due to the impact of the Dmd KO. The final results of
scTenifoldKnk included 190 virtual-KO perturbed genes (FDR < 0.05, Supplementary Table S6). These
genes were enriched with functions related to beta-1 integrin cell surface interaction, contractile actin
filament bundle, actomyosin, extracellular matrix receptor interaction, and extracellular matrix
organization (Figure 4B, middle). GSEA analysis against the MGl mammalian phenotype database
generated the following top hits (FDR < 0.01): abnormal collagen fibril morphology, abnormal skeletal
muscle morphology, and abnormal skeletal muscle fiber morphology (Figure 4B, right). These phenotype
terms are consistent with known effects of the loss of DMD function in muscle cells, verifying that
scTenifoldKnk can predict phenotypic effects caused by gene KO pertinent to the biological context.

Rett syndrome

The third Mendelian disease we considered was the Rett syndrome (RTT, MIM 312750), which is a
severe neurodevelopmental disease.*”** RTT is known to be caused by mutations in Mecp2, a
transcriptional repressor required to maintain normal neuronal functions.*** Mecp2 deficiency in the
brain decreases the expression level of genes involved in the Bdnf signaling pathway, mediated by
repressing Rest.*®


https://doi.org/10.1101/2021.03.22.436484
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436484; this version posted January 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

We obtained scRNAseq data generated from mouse neurons (SRA database access numbers:
SRX3809326 and SRX3809327) for the mouse brain atlas project.*’” The two data sets contain 2,054 and
2,156 neurons, respectively, derived from two CD1 P19 female mice that served as biological replicates.
We analyzed the two data sets independently to see whether scTenifoldKnk could, as expected, produce
similar results with data gathered from biological replicates. Two scGRNs containing 8,652 and 8,555
genes were constructed first. The scTenifoldKnk analysis of virtual KO of Mecp2 produced 377 and 322
virtual-KO perturbed genes, respectively (FDR < 0.05, Supplementary Table S7 & S8), including 211
shared genes. The number of shared genes was significantly greater than random expectation (p-value <
107, hypergeometric test), indicating a high overlap rate between results of scTenifoldKnk analyses
when applied to the two data sets from biological replicates. We also compared two ranked gene lists
generated from the analysis of two replicate data sets. If scTenifoldKnk results are robust, we expected
that the relative positions of the same genes in the two ranked lists should be more similar to each
other than with a list of randomly ranked genes. Indeed, we found the correlation between rankings of
two reported lists was positive (Spearman’s correlation coefficient p = 0.68) and highly significant (p-
value < 10%?).

Many of these 211 genes were found to be targets of Rest. The enriched functions include axon,
synaptic vesicle cycle, GABA synthesis, release, reuptake and degradation, syntaxin binding, and
transmission across chemical synapses. GSEA analyses using ranked gene list as input showed BDNF
signaling pathway was highly significant (FDR < 0.01, for both replicates, Supplementary Figure S3).
These results are consistent with previous experimental results. For example, it is known that the most
prominent alterations in gene products due to Mecp2 KO are related to synapses and synaptic vesicle
proteins.* At the phenotypic level, the Mecp2 KO causes early defects in GABAergic synapses and
mediates autism-like stereotypies and RTT phenotypes.*>*® Mutations in syntaxin-1 are known to elicit
phenotypes similar to those found in RTT.*!

Result 5: Additional evaluations of scTenifoldKnk-based virtual KO analysis
scTenifoldKnk attempts to infer the impact of knocking out a gene, given an input gene-by-cell
expression matrix. This is done by first building a GRN and then “deleting” the gene from the GRN and
aligning the resulting reduced GRN to the original GRN using manifold alignment. Manifold alignment is
an essential step that cannot be replaced by simply picking up genes strongly linked with the KO gene.
To confirm this, we revisited the outputs of Trem2-KO and Dmd-KO analyses to check whether DR genes
are strongly linked with Trem2 and Dmd, respectively. For Trem2, for example, we examined the
correlation between each gene’s DR distance (estimated via manifold alignment after virtual KO of
Trem2) and the edge weight of the link between the gene and Trem2. We found that the correlation was
positive and significant (Spearman’s p = 0.69, p-value < 0.001), which was not unexpected as genes
strongly linked with Trem2 are supposed to be strongly impacted. However, the relationship is not
linear—absolute values of the edge weights of most significant DR genes (i.e., genes with the largest DR
distances) are variable, ranging from 0.075 to 0.40 (Figure 5A). The same trend was found with the Dmd-
KO results (Spearman’s p = 0.53, p-value < 0.001, Figure 5B), with absolute values of the edge weights of
most significant DR genes ranging from 0.025 to 0.37. These results indicate that significant DR genes
identified using scTenifoldKnk are not necessarily always those strongly linked with the KO gene. Thus,
scTenifoldKnk is not simply analyzing the adjacency matrix of the original GRN for the given KO gene to
see which genes it is strongly connected to. Instead, many genes weakly linked with the KO were also
identified as significant DR genes. We attributed this effect to the adoptaion of manifold alignment in
scTenifoldKnk.

Next, we note that scTenifoldKnk is designed to predict DR genes rather than differentially expressed
(DE) genes. DR genes might be differentially expressed upon the gene KO. To examine the expression-
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level changes of virtual-KO perturbed genes, we performed a systematic comparison between the
scTenifoldKnk results and the results of DE analysis across the three analyzed data sets: Trem2, Nkx2-1,
and Hnf4ag. For each data set, we started by computing the DE statistics for all genes. Specifically, we
obtained the fold change (FC) of each gene’s expression in WT samples related to KO samples (WT/KO)
using the DE analysis package MAST.?* Then, we compared FC between significant DR genes and non-
significant DR genes. We found that significant DR genes, or perturbed genes predicted by
scTenifoldKnk, tend to have a larger FC value [p-value < 0.05 for all three cases (Trem2, Nkx2-1, and
Hnf4ag), one-sided t-tests with log2-transformed FC values] than non-significant DR genes or non-
perturbed genes (Supplementary Figure S4). Thus, the expression of DR genes predicted by
scTenifoldKnk is more likely to be downregulated in samples of the real KO experiments.

Finally, we performed the analysis to evaluate the robustness of virtual KO analysis against cell sampling,
using the microglial Trem2 KO as an example. We randomly selected 500 cells each time and repeated
the process ten times. For each subsampled data, we applied scTenifoldKnk to knock out Trem2 and
obtain a perturbation profile, i.e., a ranked list of genes sorted according to the DR distance. We found
that the perturbation profiles of 10 subsamples are significantly positively correlated (average
Spearman’s p = 0.55, Supplementary Figure S5). GSEA analyses with these perturbation profiles
produced similar enriched gene sets.

Result 6: Systematic KO of all genes individually in a given sample to obtain

the KO perturbation profile landscape

As mentioned, scTenifoldKnk is designed and implemented to be computationally efficient. Indeed, we
benchmarked the performance of scTenifoldKnk. After the WT scGRN is generated, scTenifoldKnk can
complete virtual KO analysis at a rate of one minute per gene, as benchmarked on a PC with 2.9 GHz
CPU and 16 GB RAM. That is to say, for a given data set of 6,000 genes, scTenifoldKnk can knock out all
of these genes individually in 4 to 5 days. The process can also be split and run in parallel to increase the
speed of computing. The outcome of such a systematic KO experiment is a collection of perturbation
profiles of all genes. For each gene (e.g., gene §), the perturbation profile of the gene (i.e., gene §) is a
vector of distances of all other genes ({§}) produced by scTenifoldKnk. The distance value quantifies
the level of a gene (i.e., a gene in {67}) being perturbed by the deletion of the KO gene (i.e., gene 6).
Figure 6A illustrates an analytic flowchart when scTenifoldKnk is used in a systematic KO experiment.
For a given WT scGRN with n genes, scTenifoldKnk can be used to delete individual genes from 1 to n.
For the i-th gene deletion, GiKO, scTenifoldKnk produces a KO perturbation profile for the i-th gene. The

T
KO perturbation profile is a vector of distances: [di,l, diz,... di,n] , wWherei=1,2, ..., n. Combining all
genes’ KO perturbation profiles into an n x n matrix, called KO perturbation profile matrix, is followed by
t-SNE embedding and clustering of genes.

To demonstrate the use of the systematic KO functionality, we downloaded scRNAseq data from the
brain immune atlas and obtained the expression matrix of 6,853 genes and 5,271 microglial cells (see
Experimental Procedures). These microglial cells were derived from WT homeostatic mice.>? After
knocking out all genes, we obtained the KO perturbation landscape of all 6,853 genes, as shown in the t-
SNE embedding (Figure 6B). Each point represents a perturbation profile caused by the KO of a gene.
Genes with similar perturbation profiles will be closely located in the low dimensional embedding.
Therefore, examining genes situated closely will allow us to discover potential functional associations
between them.>® We selected three clusters of different sizes to explore the member of genes in each
cluster and the functional relationships between these genes (Figure 6B). We found that all three
clusters contain genes that show a significantly higher level of functional associations than expected by
chance (p-value < 0.01, STRING interaction enrichment tests). Cluster 1 contains 16 genes (Figure 6C).
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According to the STRING database, 12 of these genes (Apocl, Apoe, Clec12a, Clec4n, Cp, Fth1, Lilrb4,
Mrc1, Msda6c, Ms4a7, Pilra, and Pla2g7) are functionally associated with each other, as supported by
evidence from published literature.>*>® All these supporting references are related to the microglia
study. The remaining four genes (Htra3, Tgfbi, Pf4, and Ifitm2) are not connected to this 12-gene sub-
network.

Nevertheless, a new study showed that Htra3 is overexpressed in repopulating microglia.”” Therefore,
these “isolated” genes may be worthy of further scrutiny for their functions in microglia with the
potential links to the other genes in the 12-gene sub-network. Cluster 2 contained 123 genes associated
with the “Immune System Pathway” (FDR = 0.019, Reactome database), and Cluster 3 had 149 genes
related to “Metabolism of RNA pathway” (FDR = 2e-4, Reactome database). Instead of using genes’ KO
perturbation profiles to produce the landscape of the gene-gene relationship (as shown in Figure 6B),
genes’ expression information can also be used to make such a landscape. Indeed, we applied t-SNE to
the UMI count matrix and obtained the embedding plot of genes (Figure 6D). The difference between
the embedding plot derived from the gene KO perturbation profile and the one derived from gene
expression is noticeable (cf. Figure 6B vs. 6D). The latter had no structure among genes. Genes clustered
together in the three example clusters in Figure 6B were found to be scattered in the embedding
derived from gene expression (Figure 6D). Performing clustering on such an unstructured data cloud did
not produce any meaningful results. Subsequently, we calculated the average distance between genes
that belonged to the same KEGG gene sets. We found that, across all KEGG gene sets, the average
distance in the embedding derived from KO perturbation profiles was significantly smaller than that in
the embedding derived from the expression profile (Supplementary Figure S6). Similarly, an embedding
plot of genes can be produced using genes’ network properties. We conducted additional analysis and
generated the embedding derived from the genes’ profile of the weight of edges in the WT scGRN
(Figure 6E). The same pattern was uncovered—that is, the average distance is smaller in the embedding
derived from the KO perturbation profile than in that derived from the scGRN edge weight
(Supplementary Figure S6). These results suggest that gene sets identified using the gene KO
perturbation profile were more likely to be functionally connected than gene sets identified using other
types of gene profiles.

Result 7: Characterization of a multifunctional gene using scTenifoldKnk

following systematic KO of the gene in multiple cell types

ScTenifoldKnk can be used to knock out a gene in different cell types systematically. In this way, it is
possible to identify cell-type-specific functions of the gene and functions shared across multiple cell
types. Here we use MYDGF (Myeloid-Derived Growth Factor) as an example KO gene to illustrate such
an application. MYDGF, also known as C190rf10, is a 142-residue protein broadly expressed in multiple
tissues and cell types.>®>° Mydgf has been shown in a mouse model to enhance cardiac myocyte
survival, tissue repair, and angiogenesis caused by myocardial infarction.®® To elucidate MYDGF's
function, we downloaded multiple human scRNAseq data sets from the PanglaoDB database.®>%2 From
the downloaded data sets, we extracted cells from 45 different cell types. Subsequently, a virtual KO of
MYDGF for each of these cell types and recovered 45 cell-type-specific perturbation profiles was
performed. We first examined the perturbation profile of endothelial cells, in which the function of
MYDFG has been studied.®® GSEA analysis with the ranked list of genes showed that the enriched
functions of MYDGF include cell cycle, VEGFA-VEGFR2 pathway, and Intra-Golgi traffic and activation
(Figure 7A). These results are consistent with previous findings,®® suggesting that scTenifoldKnk can
recapitulate results from a cell-type-specific gene function study. We also concatenated perturbation
profiles of 45 different cell types. There were 1,294 genes expressed across all tested cell types. From
those genes, 364 were predicted as perturbed in all the cases. As expected, several cell types exhibited
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perturbation profiles similar to that of endothelial cells (Figure 7B). When using the Spearman’s p to
measure the similarity between the perturbation profiles observed in endothelial cells and that
observed in other cell types, these are the most similar cell types: T-cell (p = 0.59), hepatocyte (p = 0.45),
podocyte (p = 0.33), and cardiomyocyte (p = 0.32). Indeed, previous studies show that Mydgf can
regulate cell proliferation through the activation of Akt signaling pathways in those cells.®*%® In contrast,
two cell types, proximal tubule cell (p = 0) and Leydig cell (p =-0.08), differed the most from endothelial
cells, suggesting that Mydgf might play a very different role in these two cell types. In addition, a tSNE
plot was produced to show the difference between cell types (Supplementary Figure S7). GSEA analysis
identified enriched functions, including AKT signaling, endothelial NOS activation, apoptosis, muscle
contraction, and ALK2 pathway (Figure 7C).®” These findings are consistent with the fact that
overexpression of Mydgf increases AKT phosphorylation and cell proliferation via AKT/MAPK signaling
pathways.® Identified functions were also related to promoting survival and growth, as previously
reported.®>®79 |n summary, we used Mydgf as an example gene to demonstrate that scTenifoldKnk can
be used to knock out a gene across multiple cell types in order to identify shared as well as cell type-
specific functions of the KO gene.

Discussion

Gene expression is almost always under coordinated regulation in cells of living organisms. Inferring
GRNs is the key to a better understanding of such coordinated regulation. However, inferring GRNs is a
challenging process—there are always many unknown variables in the system, and the power of
inference is limited by the sample size. The development of single-cell technology has brought new “oil”
to network science. We have previously shown that scRNAseq information can be leveraged to fuel the
machine learning algorithms for reliable scGRN construction.® In a GRN, the regulatory effect manifests
as observable synchronized patterns of expression between genes. These genes are associated with the
same biological process, pathway, or under the control of the same set of TFs.”* When a gene involved in
a process is perturbed (e.g., knocked out), the expected first responders for such perturbation are those
functionally closely related to the KO gene. Thus, modeling influence patterns in a GRN, such as using
topological models to approximate perturbation patterns,® can be used to predict gene function and
prioritize target genes, which is helpful before expensive experimental measurements are undertaken.
Thus, in principle, GRN-based perturbation analysis may contribute to the planning and designing of
real-animal experimental work. Indeed, there is evidence showing that gene expression data need not
necessarily be collected from perturbation experiments for GRN-based analysis to be successful.”%”3

Our contribution is to provide a computationally efficient scGRN-based perturbation analytical system.
By performing scTenifoldKnk virtual KO analyses with a series of existing scRNAseq data, we showed
that scTenifoldKnk could predict gene function by identifying KO responsive genes. Overall, the inferred
molecular functions of target genes are consistent with those enriched in genes reported in those
original KO experiments. We also tested scTenifoldKnk using data from different cell types known to be
affected in Mendelian diseases. While these diseases represent conditions caused by distinct genes and
involve other dysregulated molecular processes, scTenifoldKnk demonstrated its value in all cases.
Finally, we showed two case studies of systematic KO experiments.

Despite some apparent limitations associated with the virtual KO method, we start by discussing its
advantages. First, the virtual KO method, as we implemented in scTenifoldKnk, is species agnostic—it
works with scRNAseq data from humans and animal models. This feature gives the method a huge
advantage for KO experiments focusing on human samples. In the lack of human KO samples, the KO
animals are used as surrogates. The evolutionary divergence between humans and animal models is
assumed to play a minor role in shaping orthologue gene function—but we know this is not always the
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case. While applying scTenifoldKnk to human scRNAseq data, researchers can avoid many pitfalls caused
by extending the conclusions from animal KO experiments to humans. Second, scTenifoldKnk allows any
gene to be knocked out for functional analysis as long as the gene expression is detectable in the WT
sample. One may want to knock out all genes or a set of genes one by one to obtain a perturbation
profile for each of the KO genes. Genes have similar perturbation profiles that are most likely to share
molecular functions or are involved in the same signaling pathways. Genes with known functions can be
used as positive controls to gauge the performance of scTenifoldKnk in the tested system. Third,
scTenifoldKnk can be used to study the effects of gene KO across multiple cell types. Given that typical
scRNAseq experiments generate expression data for various cell types, scTenifoldKnk can be used to
predict the function of any KO gene in different cell types, allowing detection of diverse phenotypes
associated with the KO gene. Finally, scTenifoldKnk can be used to study the function of essential genes,
for which the gene KO causes lethal outcomes, making it impossible to establish the KO animals. When
scTenifoldKnk is applied to these essential genes, especially with embryonic expression data of the
genes from the WT samples, developmental functions of these genes can be studied.

scTenifoldKnk can be used in extended research areas beyond KO experiments. For example, biologists
often need to know whether a genetic manipulation or perturbation will have an effect or not.
scTenifoldKnk can be applied to make the prediction, suggest novel targets, and prioritize known targets
before in vivo or in vitro studies. One may use drugs to block the transcription of predicted target genes
in a candidate pathway. If the drug has an effect, one will conclude that the drug works on that pathway
involved; otherwise, the pathway is not affected. The scTenifoldKnk-based analysis may apply to the
follow-up research of genome-wide association studies (GWASs). GWASs have successfully detected
associations between variants and phenotypes; however, a phenotypic trait is usually associated with
many variants, presumably influencing gene expression regulation. scTenifoldKnk may be used to help
geneticists to assess functional consequences to prioritize actionable gene targets. With example data
sets, we showed that scTenifoldKnk could recapitulate major findings reported in real-KO experiments.
We also showed the landscape of KO perturbation profiles of all genes in a given system. Experimentally,
such systematic perturbation analysis has only been performed in yeast.”* With scTenifoldKnk,
systematic KO analysis in silico can be performed in a cell-type-specific manner in any given organismal
systems.

Limitations of scTenifoldKnk are inherited from being a virtual KO method. scTenifoldKnk cannot be used
to predict the consequence of gene overexpression, which is also a commonly used method for gene
function study. Also, as the power of scTenifoldKnk is rooted from the WT scGRN, the regulatory
network from the WT sample, the prediction of scTenifoldKnk may “favor” regulatory rather than
structural genes, as the latter tends to have smaller degree in the network. Nevertheless, it is still
possible to adjust some details in the implementation of scTenifoldKnk to make it better fit user
analytical needs. For example, instead of knocking out a target gene by setting its values to zeros in the
adjacency matrix, a random shuffle of a gene’s expression values in the expression matrix may be used
prior to the scGRN construction to mimic gene dysregulation.

Prediction of gene expression responses to perturbation using scRNAseq data is an active research
area.” To the best of our knowledge, there are two software tools that have been developed for this
purpose: scGen and CellOracle.®’ scGen is a package implemented in Python, using TensorFlow
variational autoencoders combined with vector arithmetic to predict gene expression changes in cells.®
scGen works like a neural network-empowered regression tool that predicts the changes of gene
expression in cells in response to specific perturbations such as disease and drug treatment. scGen
requires training data sets from samples before and after being exposed to the same perturbation.
CellOracle is a workflow, developed in Python with several R dependencies, that integrates scRNAseq
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and single-cell chromatin accessibility data (scATAC-seq) data to infer GRN and predict the changes of
gene expression in response to specific perturbations. CellOracle constructs a GRN that accounts for the
relationship between TFs and their target genes based on sequence motif analysis using the information
provided by the scATAC-seq data. After that, the constructed GRN is further refined using regularized
Bayesian regression models to remove weak connections and is adjusted to infer the context-dependent
GRN using the scRNAseq data. Compared to scGen and CellOracle, scTenifoldKnk has a different,
minimalistic design, specifically focusing on virtual KO. Unlike scGen, scTenifoldKnk does not need
training data. Also, unlike CellOracle, scTenifoldKnk does not require information from scATAC-seq data.

Overall, we provide cogent evidence that scTenifoldKnk represents a powerful and efficient tool for
conducting virtual KO analysis. The highly efficient implementation of scTenifoldKnk allows systematic
deletion of many genes from any given scRNAseq data sets. The prediction power offered by
scTenifoldKnk enables the accurate prediction of perturbations in regulatory networks caused by the
deletion of a gene, so that the KO gene’s functions can be revealed in a cell type-specific manner. We
anticipate that scTenifoldKnk will be adopted and widely applied in the predictions of gene function in
single-cell biomedical research.

Experimental Procedures
Resource Availability

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled
by the lead contact, James J. Cai (jcai@tamu.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability

The source code of scTenifoldKnk is available at https://github.com/cailab-tamu/scTenifoldKnk.
scTenifoldKnk has been implemented in R, Python, Julia, and Matlab. The R package is available at the
CRAN repository at https://cran.r-project.org/web/packages/scTenifoldKnk/. The Matlab application is
available in scGEAToolbox .

The scTenifoldKnk workflow

scTenifoldKnk is a machine learning workflow for virtual KO experiments with scRNAseq data. It utilizes
a scRNAseq expression matrix from a WT sample as input, without using any data from a KO sample, to
predict regulatory network changes and perturbed genes caused by the KO of a gene. The input
expression matrix is assumed to have been properly normalized.

Construction of the WT scGRN

To construct scGRNs, scTenifoldKnk uses the method we previously proposed for scTenifoldNet.®’ The
procedure of scGRN construction consists of three steps: cell subsampling, principal component (PC)
regression, and tensor decomposition.

(1) Cell subsampling: Initially, scTenifoldNet builds several subsets of cells via random sampling. Denote
X € R™P as the scRNAseq data matrix that reflects gene expression levels for p genes in n cells. A sub-
sample set of cells is constructed via randomly sampling m (< n) cells in X. By repeating this subsampling
process for t times, t sub-sample sets of cells are derived, denoted as Xj, ..., X; € R™*?,
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(2) Network construction: For each X}, scTenifoldNet builds a GRN with an adjacency matrix W' via PC
regression, where a PC analysis (PCA) is applied to the original explanatory variables, and then the
response variable is regressed on a few leading PCs. Since PC regression only utilizes d PCs as the
covariates in regression, where d << min(m, n), it mitigates over-fitting and reduces the computation
time. To build an scGRN, each time scTenifoldNet focuses on one gene (referred to as the response
gene) and applies PC regression. The expression level of the response gene is used as the response
variable, and the expression levels of other genes are used as the explanatory variables in PC regression.
scTenifoldNet repeats this process for another p - 1 times, with one different gene as the response gene
each time. In the end, scTenifoldNet collects the coefficients of p regression models together and forms
a p x p adjacency matrix W, whose (i, j) entry saves the coefficient of the i-th gene on the j-th gene. W*
could reflect the interaction strengths between each pair of genes.

(3) Network denoising: The adjacency matrices of the t networks W2, ..., Wt can be stacked to form a
third-order tensor & € R®>*P*Y_To remove noise and construct an overall adjacency matrix,
scTenifoldNet applies CANDECOMP/PARAFAC (CP) tensor decomposition to E to extract important
latent factors. More specifically, scTenifoldNet approximates Z by Zp:

R
~ Eg = E Ar@y o by o ¢y,
r=1

where o denotes the outer product, a, € R?, b, € RP, and ¢, € R¢ are unit-norm vectors, and A, is a
scalar. The reconstructed tensor Zp € R®>PXD) jncludes t denoised adjacency matrices, and by taking
the average of them, scTenifoldNet obtains the overall stable adjacency matrix. After further
normalizing its entries by dividing them by their maximum absolute value, scTenifoldNet generates the
final adjacency matrix of scGRN for the given sample. For later use, denote it as W ;.

[1]

(4) Adjusting edge weights of the directed network: \We provided an option to adjust edge weights for
the constructed scGRN. PC regression constructs directed networks. To obtain the strictly directed
network, with a given, denoised network W 4, for each gene pair (i, j) and (j, i), only the entry with a
larger absolute weight is kept. More specifically, we defined the (i, j) entry for the strictly directed
network W by W;(i,j) = Wy(,j), if W43, )| > [W4(,1)| and W;(i,j) = 0 otherwise. Note that if
[Wa(i,7)] < |W4(,1)], then we set W (i,j) = 0, then the information in W, (i, j) is removed. To keep the
information of W; (i, j), instead of removing the information completely, we defined a new parameter A.
Using this new parameter, we can integrate W; and Wy to generate an “interpolated network” W;,
which contains part of the information of Wy(i, j). Given parameter A, W; is define as:

W; =W+ (1-)Wyg,

where A1 € [0,1]. It is easy to check that when A = 0, we get the original denoised network W ; and
when A4 = 1, it is to go back to the strictly directed network W.

Deletion of the KO gene from the WT scGRN

We propose the virtual KO method that directly works on the WT scGRN (Figure 1B). The adjacency
matrix W, represents the scGRN constructed using the WT data. In the virtual KO method, the entire
row of the adjacency matrix W, for the gene is set to zero. We denote the adjacency matrix of the
scGRN generated as W,.
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Comparison between the WT and pseudo-KO scGRNs

After obtaining W, and m, two comparable low-dimensional feature vectors of each gene in the two
networks are built and then compared to detect affected genes. Our approach of creating low-
dimensional feature vectors was inspired by manifold alignment and its application;”®”® our approach is
referred to as quasi-manifold alighnment because the adjacency matrices used here are not symmetric
matrices while they are required to be symmetric in the original procedure. Here W, and W/d serve as
the inputs for manifold alignment and the outputs are the low-dimensional features F € RP*¥ and F €
RP*¥ of genes before and after knocking out the target gene, where k << p. Before giving the details of
the alignment procedure, we point out that W; and W:i may include negative values, which reflect the
negative correlation between genes. Before doing alighment, we add 1 to all entries in W, and W;i, and

the range of W, and m is transformed from [-1,1] to [O,2].

To perform quasi-manifold alignment, we first construct a joint adjacency matrix W by combining W,

A
_ Wa I
and W, together, where W = 1 i . We can treat W as the adjacency matrix of a joint network
-1 Wy
2

formed by linking the corresponding genes in two networks. The off-diagonal block of this matrix
reflects the corresponding genes between two networks. A is a tuning parameter. In practice, we select

A as the mean of the row summations of W, and W . We further build F = [g] € R?P*k and the

manifold alignment problem of two networks characterized by the adjacency matrices W, and W;i is
equivalent to the manifold learning problem that finds the low dimensional features [F for the joint
network characterized by the adjacency matrix W. For the sake of convenience, we denote F; € R¥ as
the i-th row of F that reflects the projection corresponding to the i-th gene in the large network. The
next step is to build a “Laplacian” matrix L = D — W, where D is a diagonal matrix with D;; =
7:1(W)j,i- Denote fi, f2, .-, fx as the eigenvectors corresponding to the k smallest nonzero
eigenvalues of L. Note that L is not a symmetric matrix. We found that the usual solution of
symmetrizing L does not work well with either simulated or real data. We, therefore, use asymmetric
matrix L in our quasi-manifold alignment procedure. Since L is not symmetric, there may be imaginary
parts in the eigen decomposition. Based on our experiment, taking only the real part of eigenvectors
with respect to the eigenvalue that has the smallest real part will give better overall results. The final
low dimensional representation is F = [Re(f;), Re(f3), ..., Re(f)], where Re(f) means the real part of

f.

Test for significance of virtual-KO perturbed genes
The virtual-KO perturbed genes are identified as genes with significant differences in their regulatory

patterns in two scGRNs constructed from the WT and KO data. The method for testing the significance

of the difference for each gene is described here. With [F = [II;] = [Re(f1), Re(f,), ..., Re(fi,)] obtained

in manifold alignment, for each gene, we calculate the distance d; between its two projected feature
vectors from two networks. The rankings of d; are used to help identify significant genes. To avoid
arbitrariness in deciding the number of selected genes, we proposed a x? test. Specifically, since djz is
calculated by taking the summation of squares of the differences of projected representations of two
samples, its distribution could be approximately x. Instead of d]-z, we use the scaled FC, df - d]-z/ﬁ, as
the test statistic for each gene j to adjust the scale of the distribution, where df is the degree of
freedom. df - djz/ﬁ approximately follows a x>-distribution with the df if the gene does not perform
differently before and after knocking out the target gene. By using the upper tail (P[X>x]) of the x?
distribution and the Benjamini—Hochberg (B—H) FDR correction for multiple testing correction,” we
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assigned a p-value for each gene. To determine df, since the number of the selected significant genes
will increase as df increases, we choose df = 1 to make a conservative selection of genes with high
confidence.

Gene functional annotation and enrichment tests
As described above, to predict the function of a given gene, the gene was virtually knocked out using
scTenifoldKnk. The output of scTenifoldKnk represents the perturbation profile of the KO gene, which is
a ranked list of virtual-KO perturbed genes, subject to Enrichr and GSEA functional enrichment tests.201
GSEA enrichment analysis was performed using the DR distances transformed using Box-Cox
transformation and standardized using Z-score transformation. In brief, an enrichment score (ES) was
calculated by walking down the list of genes ranked by the DR distance (proportional to the
perturbation), increasing a running-sum statistic when we encounter a gene that is in a given gene set
and decreasing when is not. The final enrichment score is equal to the maximum deviation from zero
encountered in the random walk and corresponds to a weighted Kolmogorov-Smirnov-like statistic. The
reference gene sets used for functional enrichment tests included KEGG_2019 Human,
KEGG_2019 Mouse, GO _Biological Process 2018, GO_Cellular_Component 2018,
GO_Molecular_Function_2018, BioPlanet 2019, WikiPathways 2019 Human,
WikiPathways 2019 Mouse, and Reactome _2016. Top genes in the ranked list were tested for
significance (see above), and significant genes were used as input for the Enrichr analysis '*. The full
ranked gene list was used as input for GSEA analysis *°. To remove redundant results produced by the
GSEA analysis, identified significant functional terms and gene sets were grouped according to the
overlap of leading-edge genes. More specifically, for a given pair of identified gene sets, if Jaccard index,
ANB
J= :AUB:'
of gene sets were grouped together. The functional annotation of grouped gene sets was reported
under the same enriched function group. In this way, non-redundant function groups of identified gene
sets were created and used for functional inference of the KO gene. GSEA analysis was also conducted
against gene sets made of marker genes obtained from PanglaoDB.5! The protein interaction enrichment
tests were performed using the web tool provided by the STRING database.’ The CSV files of gene set
enrichment results are available for downloading from the Github website of scTenifoldKnk.

is greater than 0.8, where A and B are leading-edge genes of the two gene sets, then this pair

Systematic KO analysis

Systematic KO analysis was performed with the microglial scRNAseq data from the brain immune atlas.
Data used in the systematic KO analysis was obtained from the brain immune atlas
(https://www.brainimmuneatlas.org), a scRNAseq resource for assessing and capturing the diversity of
the brain immune compartment, as published in ref.>? Data was generated using the 10x Genomics
Chromium platform, including more than 61,000 CD45+ immune cells from whole brains or isolated dura
mater, subdural meninges, and choroid plexus of mice. The downloaded data, referred to as the full
aggregate data set (combining cells of whole brain and choroid plexus cells from WT + Irf8 KO mice),
was stored in the file named filtered_gene_bc_matrices_mex_irf8 fullAggr.zip. The downloaded matrix
was processed, and the sub-matrix contained 5,271 microglia from the WT mice. For all genes, the KO
perturbation profile of each gene, i.e., a vector of DR distances, was transformed using Box-Cox
transformation and then was standardized using z-score transformation. The processed KO perturbation
profiles of all genes were combined into one matrix for t-SNE embedding.
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Figure 1. Overview of scTenifoldKnk workflow. ScTenifoldKnk is designed to perform virtual KO
experiments with data from scRNAseq. The workflow of scTenifoldKnk consists of three main modules,
namely, network construction, virtual KO, and manifold alignment. (A) Network construction. This
module consists of three steps: cell subsampling, principal component regression, and tensor
decomposition/denoising. (B) Virtual KO. This module starts by duplicating the WT adjacency matrix,
W, to make W, = W . Then, the entire row of W corresponding to the KO gene is set to zero. The
modified W:,lis pseudo-KO scGRN. (C) Manifold alignment. This method is used to learn latent

19


https://doi.org/10.1101/2021.03.22.436484
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.22.436484; this version posted January 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

representations of two networks, W, and W:i, and align them based on their underlying manifold
structures. The distance between a gene’s projections with respect to the two scGRNs on the low-
dimensional latent representation is used to measure the level of differential regulation of the specific
gene. A ranked gene list, in which genes are sorted according to the value of the distance, can be used
as input to perform GSEA analysis. The significantly DR genes are identified as virtual-KO perturbed
genes.
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Figure 2. Simulations show that scTenifoldKnk specifically detects regulatory modules that include the
KO gene. (A) Heatmap of a 100 x 100 adjacency matrix of scGRN constructed from simulated scRNAseq
data of 100 genes and 3,000 cells. The color is scaled according to the normalized PC regression
coefficient values between gene pairs. The network contains five predefined co-regulated modules of
different sizes, indicated by the blocks of gene pairs with a high correlation. The number of genes of
each module is 5, 10, 25, 40, and 20, respectively. (B) Normalized (Box-Cox) and standardized (Z-score)
distance was measured for each gene after manifold alignment and their associated -log10(p-value)
after DR testing in the simulated network. Red and black dots indicate whether genes are significant or
not after false discovery correction. Assuming genes in the same module should be detected as
significant genes, sensitivity is defined as = TP/(TP+FN), and specificity as = (TN)/(TN+FP), where T, P, F,
and N stands for true, positive, false, and negative, respectively. Balanced accuracy is defined as the
average sensitivity and specificity values. (C) QQ-plots of expected (under the uniform distribution) vs.
observed p-values of genes given by the DR tests.
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Figure 3. scTenifoldKnk virtual KO analysis recapitulates the findings of real KO experiments. (A) The
schematic diagram (left top) shows the original KO experimental procedure and the virtual KO of Nkx2-1.
GSEA plots (left bottom) show three enriched functions associated with virtual-KO perturbed genes
upon the deletion of Nkx2-1. Gene rank indicates the position of each gene in the ranked gene list
produced by scTenifoldKnk. The egocentric plot (right) shows the connections between the KO gene
(Nkx2-1) and significant virtual-KO perturbed genes (FDR < 0.05). Nodes are color-coded by each gene’s
membership association with enriched functional groups, as reported in the Enrichr analysis. The
displayed gene sets were subsequently selected—i.e., only those with functions related to phenotypes
reported in the corresponding original study are shown. The number of genes in the functional groups is
given in the parentheses of the egocentric plot legend. (B) Same as A but for Trem2. (C) Same as A but
for Hnf4a and Hnf4g.
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Figure 4. scTenifoldKnk virtual KO reveals functions of Mendelian disease genes in relevant cell types.
(A) Virtual KO of Cftr in pulmonary alveolar type Il cells identifies gene expression program changes
associated with cystic fibrosis. GSEA analysis identifies significant gene sets, including regulation of ion
transmembrane transporter, abnormal alveolus morphology, and abnormal surfactant secretion. Gene
rank indicates the position of each gene in the ranked gene list produced by scTenifoldKnk. QQ-plot of
genes and interconnection of virtual-KO perturbed genes in STRING are given. The egocentric plot (right)
shows the connections between the KO gene (Nkx2-1) and significant virtual-KO perturbed genes (FDR <
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0.05). Nodes are color-coded by each gene’s membership association with enriched functional groups,
as reported in the Enrichr analysis. The displaying gene sets were subsequently selected—i.e., only those
with functions related to the Mendelian disease phenotype are shown. (B) Virtual KO of Dmd in
muscular cells identifies gene expression program changes associated with Duchenne muscular
dystrophy. GSEA analysis identifies significant gene sets, including abnormal skeletal muscle morphology
and abnormal collagen fibril morphology. Gene rank indicates the position of each gene in the ranked
gene list produced by scTenifoldKnk. QQ-plot of genes and interconnection of virtual-KO perturbed
genes in STRING are given. The egocentric plot (right) shows the connections between the KO gene
(Dmd) and significant virtual-KO perturbed genes (FDR < 0.05). Nodes are color-coded by each gene’s
membership association with enriched functional groups, as reported in the Enrichr analysis. The
displaying gene sets are selected—only those with functions related to the Mendelian disease
phenotype are shown.
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Figure 5. Correlation between genes’ DR distance and the edge weight of links between genes and the
KO in scGRN. (A) Results from the microglial Trem2-KO analysis. Each dot represents a gene. The
number of genes per unit area is shown with colors according to the density. The X-axis shows the Z
score-normalized DR distance. For a given gene, the greater the distance, the more significant the gene
is perturbed upon virtual KO. Significantly perturbed genes (FDR < 0.05) are shown in red asterisks. (B)
Same as (A) but for Dmd in skeletal muscle cells.
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Figure 6. scTenifoldKnk enables a systematic KO experiment in microglia and the establishment of a
KO perturbation profile landscape. (A) An illustration of systematic virtual-KO analysis using
scTenifoldKnk. Two KO genes are shown as an example. Due to the difference in their profiles, two
genes are embedded in two different locations, indicated by the red arrows, in the dimensionality
reduction visualization. (B) t-SNE embedding of 6,853 genes expressed in microglia based on these
genes’ perturbation profiles. Genes in three clusters in the embedding are highlighted. In the zoom-in
view of each cluster, the connections between genes are retrieved from the STRING database. (C)
STRING sub-network of 12 genes (Apocl, Apoe, Clec12a, Clecdn, Cp, Fth1, Lilrb4, Mrc1, Ms4a6c, Ms4a?7,
Pilra, and Pla2g7) in Cluster 1 highlighted in B. References of three studies,>>® in which the associations
between genes were established, are given. (D) Same as B except the t-SNE embedding is based on
genes’ expression profiles. The locations of genes in Cluster 1 are highlighted in red. (E) same as B
except the t-SNE embedding is based on genes’ edge weight profile in the scGRN.
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Figure 7. scTenifoldKnk virtual KO predicts shared and type-specific functions of MYDGF across cell
types. (A) Results of GSEA analysis with ranked gene lists generated by virtual KO of MYDGF in
endothelial cells. Significant gene sets include cell cycle, apoptosis, VEGFA-VEGFR2 pathway, and
MAPK6/4 signaling pathway. (B) Correlation matrix showing similarity between MYDGF perturbation
profiles of 45 cell types. (C) Heatmap showing GSEA enrichment scores for gene sets. Each row is a gene
set in BioPlanet database. Rows are sorted in reverse order of average GSEA enrichment score across
cell types. Names of several gene sets with functions known to be associated with MYGDF are shown.

Supplementary Tables

Supplementary Table S1. Summary of real-data applications of scTenifoldKnk analysis.

Supplementary Table S2. 171 genes perturbed by the virtual-KO of Nkx2-1 in alveolar cells. The
STRING interaction network of perturbed genes is available at the permalink: https://version-11-
Ob.string-db.org/cgi/network?networkld=bECocSTVt8bZ

Supplementary Table S3. 128 genes perturbed by the virtual-KO of Trem2 in microglial cells. The
STRING interaction network of perturbed genes is available at the permalink: https://version-11-
Ob.string-db.org/cgi/network?networkld=bEZKYpHcHsns

Supplementary Table S4. 65 genes perturbed by the virtual-KO of Hnf4a and Hnf4g in intestinal cells.
The STRING interaction network of perturbed genes is available at the permalink: https://version-11-
Ob.string-db.org/cgi/network?networkld=bGGZHJwMOcny

Supplementary Table S5. 17 genes perturbed by the virtual-KO of Cftr in alveolar type Il cells. The
STRING interaction network of perturbed genes is available at the permalink: https://version-11-
Ob.string-db.org/cgi/network?networkld=bbh2WkHUgVGT
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Supplementary Table S6. 190 genes perturbed by the virtual-KO of Dmd in skeletal muscle cells of the
mouse limb. The STRING interaction network of perturbed genes is available at the permalink:
https://version-11-0b.string-db.org/cgi/network?networkld=bY1kGZIAZ55e

Supplementary Table S7. 377 genes perturbed by the virtual-KO of Mecp2 in mouse neurons
(Biological replicate 1). The STRING interaction network of perturbed genes is available at the
permalink: https://version-11-0b.string-db.org/cgi/network?networkld=bUTs7s0SjRIE

Supplementary Table S8. 322 genes perturbed by the virtual-KO of Mecp2 in mouse neurons
(Biological replicate 2). The STRING interaction network of perturbed genes is available at the
permalink: https://version-11-0b.string-db.org/cgi/network?networkld=bRZ7FLRdM1Ic
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