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ABSTRACT10

Humans adapt their locomotion seamlessly in response to changes in the body or the environment. We do not understand
how such adaptation improves performance measures like energy consumption or symmetry while avoiding falling. Here,
we model locomotor adaptation as interactions between a stabilizing controller that reacts quickly to perturbations and a
reinforcement learner that gradually improves the controller’s performance through local exploration and memory. This model
predicts time-varying adaptation in many settings: walking on a split-belt treadmill (i.e. with both feet at different speeds), with
asymmetric leg weights, or using exoskeletons — capturing learning and generalization phenomena in ten prior experiments
and two model-guided experiments conducted here. The performance measure of energy minimization with a minor cost
for asymmetry captures a broad range of phenomena and can act alongside other mechanisms such as reducing sensory
prediction error. Such a model-based understanding of adaptation can guide rehabilitation and wearable robot control.

11

Introduction12

Humans readily adapt their locomotion to diverse environmental conditions and bodily changes1–3 (Fig. 1a), but the computa-13

tional principles underlying such adaptation are not fully understood. While crucial adaptation phenomena have been uncovered14

through careful experiments2, 3, 3–8 and a handful of models have been proposed to explain individual experiments2, 9, 10, an15

integrative understanding of adaptation across paradigms and timescales is missing. Moreover, existing adaptation models are16

not implemented on a bipedal physics-based agent, and therefore do not encompass the stability-critical nature of adapting17

locomotion while avoiding falling. In this work, we put forth an integrative model of locomotor adaptation combining stabiliz-18

ing control, performance-improving reinforcement learning, and performance-based memory updates. Our model predicts19

locomotor adaptation phenomena across paradigms in ten prior studies and two prospective experiments conducted in this study.20

Theories of motor adaptation have predominantly been developed for discrete episodic tasks such as reaching with the21

arm11–13. Adaptation principles that explain such episodic tasks may not be sufficient for explaining continuously cascading22

stability-critical tasks such as locomotion, multi-fingered manipulation, and many activities of daily living. In episodic tasks like23

reaching where the arm’s state is re-set at the end of each episode, the errors during one episode do not dynamically propagate24

to the next episode. In contrast, in continuously cascading tasks like locomotion, errors can have short-term and long-term25

consequences to stability unless otherwise controlled14–17. Prior accounts of locomotor adaptation2, 9, 18 do not consider the26

interaction with locomotor dynamics, perhaps assuming that dynamic stability is ensured by a distinct mechanism. For instance,27

metabolic energy reduction-based accounts2, 19 treated adaptation to be a univariate optimization process – implicitly assuming28

that changes on one step do not affect the next step through the dynamics. Similarly, error-based learning models developed29

for arm reaching11–13, when applied to locomotor adaptation9, 10, 18, 20, 21, do not usually interact with the locomotor dynamics;30

these models fit the kinematic symmetry error transients, without considering how these errors might affect stability. Here, we31

put forth a model that explains how humans adapt continuously during walking while maintaining dynamic stability.32

Improving some aspect of performance is a driving force for motor adaptation and learning. However, we do not33

understand which performance objectives explain diverse locomotor adaptation phenomena. Minimization of different types of34

error11, 12, 22–24 (e.g., sensory prediction error, task error, proprioceptive conflict) or minimization of metabolic energy2, 7, 8, 25
35

have been separately posited as performance objectives underlying locomotor adaptation. However, these performance36

objectives often do not generalize across settings. Metabolic energy minimization can explain steady state adaptation in some37

experimental settings25, 26 but does not in other settings27. Similarly, while error-based learning models can be fit to asymmetry38
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changes in some tasks3, 4, 6, 10, 18, 24, they cannot make predictions for tasks where there is no changes in the symmetry28, 29. A39

computational model that precisely specifies the performance objectives such as energy, sensory prediction error, proprioceptive40

conflict, etc. would help identify the performance objectives that predict locomotor adaptation phenomena across tasks. Here,41

we put forth such a predictive model of locomotor adaptation allowing comparisons between the predictive ability of difference42

performance objectives, finding that energy minimization predicts the broadest range of phenomena.43

In this work, we contribute a model of adaptation which causally links the body dynamics, stabilizing control policy,44

learning algorithm, performance goal, internal model of performance, and memory of control. We model adaptation as an45

exploration-driven gradient-based improvement of a stabilizing controller, explaining how humans improve their locomotor46

performance continuously while maintaining stability. Our model predicts adaptation phenomena in ten prior experimental47

studies and two model-guided experiments conducted here. The model captures learning phenomena such as fast timescale48

response followed by slow timescale adaptation, savings, faster de-adaptation, generalization, non-learning in some situations,49

and the effect of noise and prior experience. By modifying the performance objective, we show that our modeling framework50

can help compare theories of locomotor adaptation such as minimizing energy, sensory prediction error (via proprioceptive51

realignment), or kinematic task error (e.g., asymmetry) in their ability to explain phenomena.52

53

Results54

A modular and hierarchical model of locomotor adaptation55

We posit a modular and hierarchical model of locomotor adaptation (Fig. 1b-d) in which a controller keeps the human stable,56

a gradient-based reinforcement learner modifies this stabilizing controller to improve performance, an internal model learns57

to predict performance in a new environment, and a memory mechanism stores the improved walking strategies and deploys58

them when advantageous. The model is modular in that there are separate but interacting modules performing distinct tasks59

(stabilizing control, gradient estimation, gradient-based learning, memory update); the model is hierarchical in that some60

modules operate at and explain phenomena at distinct timescales that are hierarchically separated. We test the ability of the61

computational model to predict experimentally observed locomotor adaptation phenomena in a number of experiments: see our62

repository LocAd30 for the code implementing the model.63

A critical constraint on human locomotion is being stable i.e. not falling down, despite internal and external perturbations.64

Thus, a stabilizing controller forms the inner-most level of our hierarchical model16, 17, 31 (Fig. 1b). We posit that during65

locomotion in a familiar setting, humans use a previously learned controller, which we call a ‘default controller,’ stored as a66

motor memory. We further posit that the structure of this default controller constrains how humans adapt to a novel situation.67

We characterized this default controller by modeling how humans respond to small deviations from nominal walking on the68

treadmill16, 17, 31. This controller can be decomposed into a feedforward component, not dependent on the biped’s state, and69

other state-dependent feedback terms (see Methods). We used effectively the same initial default controller for all the locomotor70

adaptation tasks considered here (see Methods and Supplementary Methods). This is possible because the controller is robust to71

substantial noise and uncertainty as we have previously shown16, 17, allowing the human to move stably in novel environments.72

It has been hypothesized that the nervous system chooses movements that optimize some performance objective, for73

instance, reducing energy expenditure8, 32–36 or reducing left-right asymmetry3, 18, 24, 37 (Fig. 1b). We posit that when faced74

with a novel circumstance, humans gradually change their default stabilizing controller to optimize performance. This75

performance improvement is achieved through gradient-based reinforcement learning in an outer loop around the stabilizing76

controller (Fig. 1b,c). We found that allowing the reinforcement learner to adapt just the feedforward terms of the controller,77

leaving the stabilizing feedback terms unchanged, is sufficient to explain the observed phenomena. The learner estimates the78

gradient descent direction using ‘intentional’ exploratory noise2, 13, 38 in the neighborhood of the default controller, contributing79

to increasing the step-to-step variability16, 17, 31. While the term ‘reinforcement learning’ has a multitude of algorithmic80

specifications39, here we use this term as shorthand for the proposed local exploration-based learning algorithm.81

Motor adaptation involves memorization and retrieval of control policies. Here, we posit a module in the outer loop that82

forms longer-term motor memories40, 41 of the controllers being learned, parameterized by the settings in which they were83

learned. This stored memory is used when encountering a setting similar to one previously encountered (Fig. 1b,d), interpolating84

and generalizing between settings via function approximation39. Stored memory is only used when it may improve performance85

and does not conflict with gradient descent (Fig. 1d). Conversely, stored memory is updated when the current controller’s86

performance is better than that of the motor memory. See Methods and the model’s implementation in code, LocAd30, for87

further details.88

We have posited that the gradual modification of a stabilizing controller for performance optimization is a primary mecha-89

nism for locomotor adaptation. Adaptation may also result from other mechanisms such as recalibration to reduce sensory90

prediction error11, 22, 42, 43. Here, we extend the aforementioned framework, showing that the model can incorporate sensory91

error-based adaptation mechanisms, replacing the feedback controller of Fig. 1b by a more general sensorimotor transformation92
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(see Fig. 9 and Methods).93

94

Predicting fast and slow timescale learning in many locomotor settings95

The model predicted locomotor adaptation phenomena in many different conditions, including a split-belt treadmill, an96

asymmetrically added leg mass, external assistance, exoskeleton-based perturbations, and abrupt treadmill speed changes (Fig.97

2). For the reinforcement learner, we tested minimizing four performance objectives: only energy expenditure, only asymmetry98

(specifically, step length asymmetry, defined below), a weighted sum of energy and asymmetry, and a kinematic task error.99

For the results below, we use energy expenditure alone or energy expenditure with a small step length asymmetry penalty as100

the performance objective as these give qualitatively similar results, we use the latter when the performance objective is not101

explicitly mentioned. Minimization of other objectives are discussed in their own separate sections later.102

The most popular experimental paradigm used to investigate human locomotor adaptation is walking on a split-belt103

treadmill4, 6, 7, 44, which has two side-by-side belts that can be run at different speeds. Most humans have never experienced this104

novel situation. Humans adapt to walking on a split-belt treadmill on the timescale of seconds, minutes, and hours, exhibiting105

stereotypical changes in their walking motion1, 45, 46 and the model predicts these changes (Fig. 2a).106

Specifically, within a few strides of split-belt walking, humans start walking with high negative step length asymmetry4, 44 –107

that is, the step length onto the slow belt is longer than the step length onto the fast belt (see Fig. 2a and Supplementary Fig. 1e).108

This is the fastest timescale of adaptation, sometimes called ‘early adaptation.’ This negative step length asymmetry becomes109

close to zero over a few hundred strides (about ten minutes), and then becomes slightly positive with more time7. The model110

predictions have all these fast and slow transients both when minimizing just energy or energy plus a step length asymmetry111

(Fig. 2a and Fig. 8a). The model predicts an immediate initial increase in energy cost upon encountering the split-belt condition,112

which then reduces to a lower steady state gradually, as found in prior experiments6. When the split-belt condition is removed,113

the model predicts a fast-timescale transient to large positive step length asymmetry (a learning after-effect) and then a slow114

de-adaptation back to normal walking. The model predicts this de-adaptation to be faster than the adaptation, as found in115

experiments4, 7, 44 (Fig. 2a). The model also predicts that steady state is reached more quickly for step time asymmetry, and116

that the energy cost is more sensitive to step time asymmetry compared to step length asymmetry (Supplementary Fig. 3), as117

suggested by some prior experiments6, 47.118

Human adaptation proceeds analogously when they are made to walk with an extra mass attached asymmetrically to just119

one ankle, as characterized by a prior experiment5. The model predicts the qualitative features of such adaptation, whether the120

performance objective is just energy or has an additional symmetry term (Fig. 2b). In both experiments5 and in our model, the121

walking gait becomes asymmetric in step lengths and then, during slow timescale adaptation, gradually tends toward symmetry;122

when the extra mass is removed, the asymmetry jumps to the opposite side, and then gradually de-adapts to normal walking.123

The model predicts the step frequency changes while walking at varying speeds on a ‘tied-belt’ treadmill – which is just124

regular treadmill with one belt, or equivalently, a split-belt treadmill with equal belt speeds (Fig. 2c). In prior experiments28 in125

which the belt speed was changed every 90 seconds, humans quickly adapt their step frequency within 2 seconds and then126

slightly adjust their step frequency over a longer timescale — with the initial fast transient either overshooting or undershooting127

the ultimate steady state frequency slightly. In previous work28, the overshooting and undershooting transients required separate128

fits, whereas our model predicts both with the same framework.129

The model captures empirical findings of how humans adapt to exoskeleton assistance. In some prior experiments29, 48,130

humans were provided with time-periodic ankle torque impulses via a robotic exoskeleton (Fig. 2d). If the time period of131

these external impulses was close to the human stride period and the impulse magnitude was in the right range, the humans132

changed their stride frequency to entrain to this external impulse frequency, as predicted by the model (Fig. 2d-ii). Both133

model and experiment show entrainment that approximately aligns the external impulse with the transition from one step to134

the next (Fig. 2d-iii). The model can show entrainment whether the external impulse frequency is faster or slower than the135

stride frequency29, 48, as found in prior experiment, while some prior models have shown that entrainment29 is possible for136

higher frequencies with just a feedback controller without learning. Rather than provide such time-periodic assistance, if the137

external assistive forces from the exoskeleton are a simple function of current body state (and not too noisy), the learner predicts138

successful adaptation toward the new optimum (Supplementary Fig. 4). We consider other such exoskeleton adaptation studies139

later in this manuscript (e.g., Fig. 4).140

141

Lesions in simulation identify modules responsible for the fast and slow adaptation transients142

We can analyze which hypothesized modules in the model are responsible for explaining specific observations by the computa-143

tional analog of ‘lesion experiments’: that is, turning off specific modules and noting what experimentally observed adaptation144

feature is degraded or lost. The following observations apply to all but the exoskeletal entrainment of the previous section, but145

we center the discussion on split-belt walking.146

The fastest transient (early adaptation i.e., the initial response immediately upon experiencing the new condition) is entirely147
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due to the default controller and the natural dynamics of the biped. Turning off both the reinforcement learner and the memory148

mechanism still results in the fast timescale initial response due to the stabilizing controller (Fig. 4a). Recent experiments149

partially corroborate this prediction, showing that providing gait stability through other means (e.g., handrail) affects this initial150

transient49, 50, though such experiments may have changed other aspects of the gait than just stability.151

Turning off the default stabilizing controller by setting all feedback gains to zero often makes the biped fall to the ground152

when the novel condition is initiated. Lowering the feedback gains to near zero results in falling or substantially degraded153

learning (Fig. 3a-b). Thus, the stabilizing controller is critical for effective locomotor adaptation. Further, this exercise of154

lowering the feedback gains closer to zero leaves a large fraction of the initial transients intact – showing that the feedforward155

component of this default controller is substantially responsible for the initial transient (Fig. 3a).156

The slow adaptation transient when first exposed to the novel condition is due to the reinforcement learner improving157

performance. Turning off the reinforcement learner and the memory mechanism with zero learning rates results in the fast158

timescale initial response due to the stabilizing controller (Fig. 4a), but no slow timescale adaptation response. Thus, the159

stabilizing controller alone cannot explain the slow transients. Turning on the reinforcement learner results in the slow timescale160

adaptation response. Changing the learning rate for the reinforcement learner modulates the speed of this slow adaptation (Fig.161

4b). In the first exposure to these novel situations, there is not yet any memory to call upon, and therefore, memory specific to162

the novel situation does not contribute to the first adaptation.163

De-adapting to a familiar situation (equal belt speeds) after exposure to a novel situation will involve the use of stored164

memory of the familiar situation. Specifically, in split-belt walking, our model predicts that the de-adaptation will be faster than165

adaptation due to the use of stored motor memory of walking with tied-belts (Fig. 2a)6, 45. Turning off this memory use, the166

de-adaptation is slower than adaptation (Fig. 4c). During first adaptation to a novel setting, the slow transients are governed by167

gradient descent, whereas during de-adaptation back to a familiar setting, the slow transients are sped up due to the summing of168

gradient descent and progress toward stored memory (Fig. 1d).169

170

Explaining savings, generalization, and anterograde non-interference171

‘Savings’ refers to the faster re-learning of a task that has previously been experienced. In prior experimental work, such172

faster re-learning during a second split-belt adaptation experience was observed1, 51, despite having a prolonged tied-belt173

period between the two adaptation periods (Fig. 5) — this intervening tied-belt period allows for full ‘washout’, complete174

de-adaptation in terms of observable variables. Here, our model qualitatively predicts such empirically observed savings (see175

Fig. 5 and Supplementary Table 1 for statistics). Such faster re-learning in the model is due to the motor memory mechanism,176

which stores how the controller changes under different situations. Motor memories are formed during first exposure to a novel177

condition, and then when exposed to this condition again, the re-learning is faster due to gradient descent and memory use178

acting synergistically (Fig. 1d). Because the motor memories are task-dependent, memories for split-belt adaptation do not179

decay entirely during tied-belt washout as the two tasks are non-overlapping. This persistent memory from the first exposure to180

split-belt walking results in the observed savings.181

‘Generalization’ is when adaptation under one task condition results in savings or faster adaptation for a different task182

condition. Humans exhibit generalization during locomotor adaptation and our model predicts this phenomenon (Supplementary183

Fig. 6a-b). Specifically, in one prior experiment52, humans exposed to a split-belt trial A showed savings for a split-belt trial184

B with a smaller speed difference between both belts than A. Thus, experience with task A sped up adaptation to task B,185

suggesting that humans generalized from A to B. Further, it was observed52 that such savings for task B from experiencing task186

A (with the larger belt-speed difference) was higher than the savings obtained if the first adaptation experience was with task B187

instead. Our model predicts both these generalization phenomena (Supplementary Fig. 6a-b) due to the motor memory being188

continuously parameterized with respect to continuous-valued task parameters (here, belt speeds), so that the controller for189

intermediate conditions are interpolated even if they are never directly encountered. Such generalization cannot be predicted by190

models in which memories are stored discretely without interpolation2.191

‘Anterograde interference’ is when adapting to one task makes you worse at adapting to the ‘opposite’ task: opposite192

locomotor adaptation tasks could be split-belt walking tasks with belt speeds switched. Contrary to arm reaching adaptation193

studies where such anterograde interference is observed41, our model predicts that such interference need not happen in194

locomotion: that is, adapting to one perturbation need not make you worse at adapting to the ‘opposite’ perturbation if there is a195

sufficient tied-belt washout period between the two adaptation phases (Fig. 6a). This non-interference can be explained by the196

memory mechanism incorporating a function approximation, so that it can meaningfully extrapolate the learned controllers to197

the opposite perturbation as well. Such non-interference was indeed found in prior locomotor experiments51.198

To further test the model’s predictions on how prior experience shapes adaptation, we performed prospective experiments199

here: we tested adaptation to two opposite split-belt tasks A and B without a washout period (see Fig. 6b), while prior200

experiments had a substantial washout period between the split-belt phases51. We found that the model predicted both the201

increased initial step length asymmetry transient due to the recent adaptation to the opposite task and the insignificant changes202
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to adaptation time-constants (see Fig. 6b and Supplementary Table 1 for comparisons and statistics).203

More generally, our model qualitatively captures effects of different split-belt adaptation protocols, for instance, capturing204

the time course of step length asymmetry when the split-belt phase is introduced gradually or abruptly, and whether these205

adaptation phases are short or extended18, 20 (Supplementary Fig. 5). Having a longer duration adaptation phase in which the206

perturbation grows gradually may sometimes result in less savings than a shorter adaptation phase in which the perturbation207

began abruptly and remains constant (Supplementary Fig. 5). In previous work, an explicit memory of errors was used to208

explain some of these results9, but we have provided an alternative explanation via different model assumptions. In these cases209

(Supplementary Fig. 5), we found that the adaptation to different kinds of exposure to gradual and abrupt conditions can depend210

on protocol-specific parameters (e.g., duration of different phases, perturbation magnitude, learning rates); this suggests that211

one must be cautious of claiming general trends based on limited experiments.212

The model predicts how the size and duration of perturbations affects adaptation1, 18, 52. In split-belt walking, both in model213

and in prior experiment52, being exposed to a larger belt-speed split results in larger initial transients and more positive final214

asymmetry (Supplementary Fig. 6c). Being exposed to a condition for a shorter period of time results in smaller savings than215

being exposed to the condition for longer18 (Supplementary Fig. 5).216

217

Degraded learning, non-learning, and making non-learners adapt via experience218

The human motor system has sensory noise and motor noise that is not fully observable, and is thus distinct from intentional219

exploratory noise. The results presented thus far were obtained with low levels of sensorimotor noise. When the sensorimotor220

noise is less than a critical threshold, it preserves the qualitative results despite degrading the gradient approximation and221

thus degrading the effective learning rate (Fig. 4d). Large enough sensorimotor noise for fixed exploratory noise destroys222

the reinforcement learning entirely, resulting in no kinematic adaptation or energy reduction upon first exposure (Fig. 4d),223

potentially explaining why some populations with movement disorders may have impaired learning53.224

Prior adaptation experiments involving exoskeleton assistance found that some humans were able to adapt spontaneously225

whereas others did not2, 8, 27. The non-spontaneous learners, when exposed to broad experience with a lower associated226

metabolic cost, were able to adapt toward the energy optimum2, 8. In our model, both spontaneous learning and non-learning227

was possible depending on the size of sensorimotor noise: low noise resulted in spontaneous learning and high noise resulted in228

non-learning. As in experiment2, 8, the model’s non-learners could be made to adapt toward a lower energy cost by giving them229

broad experience on the energy landscape, giving them experience of a lower energy cost to be stored in memory. In our model,230

this adaptation upon providing experience stems from motor memory formation and later memory use in addition to improving231

performance through gradient descent.232

In addition to intrinsic sensorimotor noise, adaptation to external devices such as exoskeletons or treadmills could also233

be degraded by ‘device noise’. Our model predicts that split-belt adaptation can be degraded via such device noise when234

implemented as noisy belt speed fluctuations that are large enough (Fig. 7a). To test this model prediction prospectively,235

we performed human subject experiments and compared the post-adaptation after-effects of noise-free and noisy split-belt236

protocols. We found that participants had lower after-effects after the noisy adaptation condition, as predicted by the model; see237

Fig. 7a and Supplementary Table 1. This device-noise-based degradation may seem in conflict with earlier experiments by238

Torres-Oviedo and Bastian20, who compared adaptation in a split-belt protocol under noise-free and noisy belt speed conditions239

and found that the noisy version had higher adaptation as judged by the post-adaptation after-effects. However, our model240

also captures this improved adaptation due to different implementation of device noise in prior experiments20 by incorporating241

that specific protocol in the model (Fig. 7b), thus reconciling the seemingly conflicting findings. These results illustrate that242

the details of the noise pattern (e.g., magnitude and temporal correlations, see Methods) and the adaptation protocol used are243

important to determine the impact of device noise on adaptation, i.e., there are many ways to add device noise and some may244

enhance learning and others may degrade it.245

Aside from noise-based explanations, we provide one more potential cause for initial non-learning observed in some246

exoskeleton studies: delay between human action and exoskeleton response. Many exoskeleton adaptation experiments in247

which participants did not spontaneously adapt2, 8, 27 had an exoskeleton controller that provided assistance or resistance based248

on the participant’s previous walking step, resulting in a delay between action and energetic consequence. We showed that such249

delays can degrade or even stop gradient descent-based learning (Supplementary Fig. 7), making adaptation not obligatory.250

The gradient estimate is degraded due to poor credit assignment: when there is delay, the reinforcement learner in our model251

associates the effect with an incorrect cause, as the learner’s inductive bias assumes no such delays.252

253

Alternative to energy minimization: Comparing to minimizing asymmetry254

To explain split-belt adaptation, researchers have treated the left-right asymmetry in step length as the error being corrected,255

fitting equations with one or two time constants to describe the observed decrease in this asymmetry1, 9, 10. Here, we examined256

what predictions our model makes if step length asymmetry is used in our optimization framework as the only performance257
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objective, a variant of another study24 in which foot contact time symmetry was optimized. We find that minimizing asymmetry258

does not capture the slow timescale transients in either tied-belt or split-belt locomotion. First, for changing treadmill speeds259

during tied-belt locomotion28, minimizing asymmetry predicts the fast timescale changes in step frequency due to the default260

controller, but further slow timescale changes observed in experiment are not predicted by an asymmetry-minimizing objective261

alone. During split-belt adaptation, minimizing just step length asymmetry, our model predicts convergence to pure step length262

symmetry (Fig. 8a). This is in contrast to recent experiments which suggest eventual convergence to positive step length263

asymmetry45. In general, minimizing asymmetry is insufficient as the lone performance objective in an optimization framework,264

as perfect symmetry admits infinitely many locomotion patterns54 and does not result in isolated local minima required for265

stereotypy. Thus, minimizing asymmetry alone cannot predict the many steady state locomotor phenomena predicted by266

minimizing energy during normal locomotion28, 33, 55. As a corollary, when placed in any symmetric situation with a symmetric267

body (e.g., slopes or bilaterally symmetric exoskeletons), minimizing asymmetry will result in zero slow timescale adaptation268

of the controller even if the mechanical environment is changed substantially, in contrast to experimental findings2, 8, 27. While269

minimizing asymmetry alone does not explain diverse locomotor phenomena, minimizing a heuristically weighted combination270

of energy and asymmetry, with a small weight on the asymmetry, retains the qualitative predictions of minimizing energy, while271

sometimes allowing a better quantitative match (Fig. 2a-b and Fig. 8a). Future experiments could delineate the extent to which272

humans have symmetry as an explicit objective in addition to energy56, given that energy54 and other performance objectives273

such as proprioceptive realignment (as shown below) may also indirectly promote symmetry22, 42.274

275

Alternative to energy minimization: Comparing to minimizing generalized task error276

In low-dimensional adaptation tasks such as reaching with the arm to a target, the task error to be minimized is unambiguous;277

for instance, in reaching tasks with visuomotor rotation, the error is defined as angular distance to the reach target9, 12. However,278

in higher-dimensional tasks like locomotion, analogous definitions of task error as deviation from desired body kinematics279

is not uniquely defined: for instance, the total task error could be defined as a weighted sum of the error from desired body280

states, with errors for different states weighted differently — but such a weighting would not be uniquely specified. Here, we281

considered a few such relative weightings and made model predictions for minimizing such kinematic task errors as the only282

performance objective (see Methods and Fig. 8b) via the exploration-driven gradient descent of Fig. 1b.283

The resulting predictions were not entirely consistent with experiment. Different relative weightings resulted in distinct284

behaviors, all of which fell short of fully capturing the experimental findings: the weighting that results in eventual positive step285

length asymmetry, as seen in experiment, corresponded to energy increase in contrast to experiments, and on the other hand, the286

weighting that results in monotonic energy decrease has a steady state with substantial negative step length asymmetry, again in287

contrast to experiments (Fig. 8c). A purely kinematic performance objective was similarly found to not explain exoskeleton288

adaptation in prior experiments, where participants achieved entrainment to exoskeleton impulses48 or changed their walking289

frequency8 without plateauing at the unassisted walking kinematics.290

291

Alternative to performance optimization: Comparison with proprioceptive realignment292

Proprioceptive realignment has been proposed as a potential mechanism accounting for the adaptation seen in split-belt293

locomotion22, 42 and for arm reaching tasks with visuomotor perturbations57, 58. Vasquez et al42 characterized the (proprio-294

ceptively) perceived speed of the legs after a split-belt adaptation, effectively finding that humans perceived the fast leg as295

being systematically slower than reality or the slow leg as faster than reality or both. A causal mechanism relating this sensory296

recalibration to locomotor adaptation has not previously been proposed, and a mathematical model could help establish if297

proprioceptive realignment could result in symmetry changes consistent with experiment.298

We put forth a mathematical model of proprioceptive realignment via sensory recalibration using our framework, which299

enables linking body dynamics, sensory feedback (both proprioception and vision), and motor action. In our model, the two300

legs are expected to be on the same surface and proprioceptive deviations from this sensory prediction are perceived as an301

error to be corrected by recalibrating proprioception; while only proprioception is recalibrated, vision is used as a common302

sensory signal to estimate the proprioceptive conflict between the two legs (see Methods and Fig. 9a). This is a type of sensory303

prediction error12, 58, as it is due to a difference between the sensory feedback and what the nervous system expects. This model304

results in recalibrated estimates of leg speeds such that on a split-belt treadmill, the fast leg feels slower and slow leg feels305

faster than reality, as in experiment42 (Fig. 9c), with the recalibration growing in time. The model produces no recalibration306

when walking on a tied-belt, as in experiment42. We incorporated this recalibrating proprioceptive sensing as feedback input to307

the stabilizing controller without changing other aspects of the default controller to predict what proprioceptive realignment308

alone can predict.309

Proprioceptive realignment as implemented here falls short of explaining qualitative features of split-belt locomotor310

adaptation. Specifically, while the initial negative step length asymmetry produced by the default controller is decreased311

by proprioceptive realignment, the steady state of the adaptation still has substantial negative asymmetry (Fig. 9d), falling312
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substantially short of experimentally observed symmetry6, 59 and positive step length asymmetry7, 45, which is predicted by313

energy optimization. Interestingly, the model shows coincidental metabolic energy decrease as a result of proprioceptive314

realignment (Fig. 9e), but this energy decrease is not accompanied by kinematic changes observed in experiment. Thus, while315

proprioceptive realignment could potentially be a partial cause of split-belt adaptation, it does not explain all the associated316

adaptation phenomena, as also suggested by recent experiments60. Beyond split-belt adaptation, proprioceptive realignment317

cannot explain how humans respond to tied-belt speed changes28, as experiments did not find significant proprioceptive318

realignment in the tied-belt condition42. Finally, proprioceptive realignment via interaction with vision, as implemented here,319

cannot explain adaptation to purely mechanical changes to the body or the environment such as an added mass or an exoskeleton.320

321

Interaction with explicit feedback322

Our framework is meant to model implicit adaptation and learning, but can accommodate explicit adaptation mechanisms323

acting in parallel. One potential way to speed up locomotor adaptation is to provide explicit verbal instruction to the participant324

about the desired behavior or provide visual feedback on the error between desired and actual behavior10 (Fig. 10a). Indeed,325

providing visual feedback on step length asymmetry to participants on a split-belt treadmill and asking them to reduce this326

asymmetry hastened the progress toward symmetry — compared to adaptation without this feedback10. Removing this visual327

feedback partway through adaptation results in the increased symmetry being largely wiped out, so that the asymmetry goes328

back approximately to where it would have been without the explicit feedback. We were able to capture this phenomenon (Fig.329

10c-d) by adding a separate module for explicit control that acts in parallel to the feedback controller in memory (Fig. 10a), as330

hypothesized in some prior work10, 23. This demonstration is simply to show that the implicit learner of Fig. 1b can be readily331

modified to accommodate explicit mechanisms without degrading the implicit learner’s performance. This demonstration also332

shows that kinematic behavior changes due to explicit corrections need not, by themselves, be sufficient to modify implicit333

learning, as seen in experiments10, 21.334

335

336

Discussion337

We have presented a model for locomotor adaptation that captures observed experimental phenomena in ten different stud-338

ies3–8, 18, 20, 28, 48, 51, 52, and predicts phenomena observed in two prospective experiments conducted in this study. Across339

these studies, our model captures adaptation transients in both the short timescale of seconds and long timescale of many340

tens of minutes. Our model also enabled us to compare different adaptation mechanisms, specifically energy optimization341

via reinforcement learning, proprioceptive realignment, and reducing sensory prediction error22, 42, 58, 61, delineating how the342

hypotheses differ or coincide in their predictions and allowing testing through future prospective experiments. We have shown343

how humans could adapt to perturbations to the body or the environment, while walking stably and continuously without falling344

or stopping, as models of non-continuous episodic tasks such as arm reaching do not show how this is possible.345

Predictive models of motor learning such as the one proposed here could be used to improve motor learning in the real346

world. We have made predictions about conditions that may degrade or accelerate learning consistent with prior experiments.347

Given this, future hypotheses for improving learning could be tested computationally within our modeling framework before348

testing via prospective experiments. We have tested the model by performing two such prospective experiments here, one for349

examining anterograde interference and another for the effect belt noise. Further such experiments may either provide further350

evidence supporting the model or information that could help improve the model. If the goal is to improve learning to use a351

device (such an exoskeleton or a treadmill), the device parameters and their sequencing can be optimized in simulation to352

reduce the time duration to learning steady state.353

Our model suggests explanations for why humans may adapt reliably in some novel situations (for instance, during split-belt354

walking4, 6, 20) and not others (for instance, some exoskeleton studies2, 8, 19, 62). One might wonder if common principles underlie355

such reliable adaptation in one class of devices and unreliable adaptation in another class, given that both devices are interacting356

with the same human motor control system. First, we note that both exoskeletons and split-belt treadmills share a core dynamical357

similarity: they are both mechanical devices that contact the body, applying forces and performing positive or negative work of358

different specifications45. Second, our results also suggest that the two classes of devices are not fundamentally different with359

respect to motor learning, but that the differences may be due to dynamical properties of treadmills versus current exoskeletons360

and their controllers. Our model suggests ways in which we can make participants less reliable learners on split-belt treadmills361

and reliable learners on exoskeletons and prostheses. Specifically, our model predicts that split-belt adaptation can be degraded362

by noisy belt speed variations (Fig. 7) — which we confirmed with our prospective experiment. We also noted that many363

exoskeleton studies that did not show obligatory adaptation involved exoskeleton controllers that had a one step delay between364

human action and the device response2, 8, 19. We showed that gradient descent can be substantially degraded or entirely stopped365

in the presence of such delays (Supplementary Fig. 7), whereas there can be reliable learning in exoskeletons with no delay366
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or noise (Supplementary Fig. 4); this prediction can be tested by systematically manipulating the device delay in future367

experiments. In summary, we suggest that humans may exhibit better adaptation to exoskeletons if the device has low noise, has368

simple consistent dynamics from step to step, and does not have substantial delay between human action and device response.369

A corollary to the prediction that lowering device noise improves learning reliability is that increasing baseline human370

exploratory variability compared to unresolved sensorimotor or device noise may improve learning reliability. It is an open371

question whether baseline exploration as used by the nervous system in implicit learning can be manipulated by an experimenter372

via purely external means (that is, via sensory or mechanical perturbations or other biofeedback) — in a manner that results373

in more reliable learning. One study that increased variability externally did not find better learning63, while another study374

increased learning20: our model was able to recapitulate the increased learning in the latter study. Another study performed a375

manipulation that increased both variability and learning37. It is unclear if this increased variability specifically corresponds to376

increased exploration because both studies changed the sensory or the mechanical environment, which could have increased377

variability by increasing unresolved sensorimotor noise. Further, according to our model, such increased variability comes with378

a higher energetic cost at steady state2 as well as potentially higher fall risk, so future work could use our model in concert with379

targeted experiments to delineate how humans trade-off these competing objectives of exploration, energy, and stability.380

Our model naturally predicts the various qualitative features of short timescale and long timescale responses to perturbations381

without fitting to the adaptation phenomena being explained. This is in contrast to the single rate or dual rate or memory382

of errors models of adaptation9, 18, 46, which when applied to locomotor adaptation without including bipedal dynamics and383

control, do require fits or specific assumptions to capture the direction of both the slow and the fast timescale transients. Here,384

we predict the short timescale response to sudden perturbations as simply the response of the default stabilizing controller to385

those perturbations, and this prediction obtains the correct direction or sign of the response without fits to the data it tries to386

predict. For instance, our model naturally predicts that the immediate transient upon a split-belt perturbation or a leg mass387

addition is negative step length asymmetry (Fig. 2-4). Similarly, we have shown that a substantial part of slow timescale motor388

adaptation can be predicted by performance optimization, with energy consumption as the performance objective. This model389

obtains the correct direction of the slow adaptation without any fits to the adaptation data. In contrast, in the traditional dual390

rate or memory of errors adaptation models9, 11, 18, the direction of slow adaptation is toward zeroing the error and, therefore, is391

dictated by how error is defined. Thus, while descriptive models9, 11, 18 may be fit to short and long timescale transients in some392

locomotor adaptation experiments, they do not make predictions of the transients from more primitive assumptions. In addition,393

we have shown that some common ways of defining error, when coupled with locomotor dynamics, may result in predictions394

that disagree with experiments.395

Our accounting of savings and memory is complementary to previous work that have addressed savings or other related396

phenomena via memory mechanisms centering on context inference for error-based learning or for performance improve-397

ment2, 41, 46, 64. These previous works did not consider the interaction of performance improvement and stabilizing control in a398

complex task such as locomotion41, 46, 64, as here, or when considering locomotion, did not consider locomotor dynamics and399

control2. Our memory model is also different from models that adapt the ‘error sensitivity’ (learning rate) of adaptation via400

a memory of sensory errors9, which can capture savings in the form of faster adaptation rates, but is similar to other linear401

time-invariant state-space models46 in that neither model can capture savings in rate after a complete washout65.402

We have argued that predicting human locomotor adaptation phenomena may require the following functional components:403

a stabilizing controller, an optimizing reinforcement learner, a gradient estimator, a memory mechanism, and possibly a module404

that reduces sensory errors. Like all mathematical models of complex phenomena (famously in string theory66), there may405

be multiple realizability: the same architectural hypothesis can be expressed in different terms, grouping some components406

together, dividing components into their sub-components, or have different realizations of similar function. No matter this407

multiple realizability, we have shown that a necessary feature of locomotor adaptation is exploration in the neighborhood of408

a stabilizing controller. Further, the framework implies the existence of a hierarchical separation of timescales of the model409

components67. Specifically, the step-to-step stabilizing controller has the fastest timescale, matching the timescale of the410

bipedal dynamics to prevent falling; the timescale of gradient estimation must be slower than the step-to-step dynamics so411

that the estimated gradient is reliable; finally, the timescale of the local reinforcement learner must be slower than the gradient412

estimator, so that the learner does not change the parameters too quickly for the gradient estimate to be reliable. Human motor413

learning proceeds over multiple timescales1, 46, and our approach thus provides a natural functional account of the hierarchy of414

these timescales from the necessity of stable learning67.415

Our model of locomotor adaptation is hierarchical and modular. Evidence for the hypothesis of hierarchical and modular416

motor control goes back to hundred year old experiments in which decerebrate cats produced coordinated repetitive movements417

but not goal-directed movements68. It is thought that fast timescale motor responses may be mediated in part by spinal circuits418

while longer-timescale control, adaptation, and context-dependent responses may be achieved by interaction of the cerebellum419

and motor-related areas of the cerebrum3, 24, 69, 70. In our model, we have separated the fast timescale stabilizing controller and420

the slow timescale adaptation mechanisms into distinct interacting modules, so that damage to just the slow timescale adaptation421
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module in the model could still preserve the fast timescale stabilizing response. Such preservation of fast timescale response422

to treadmill speed changes with degraded slow adaptation to a split-belt condition was found in participants with cerebellar423

damage71, 72. Indeed, such studies have established that one locus of such slow timescale motor adaptation, especially involving424

sensory recalibrations and internal model change, is the cerebellum3, 11, 12, 71–74. Thus, while our model is meant to be at the425

Marr level 1 and 2 (computational and algorithmic levels)75, it could inform interpretation of data on neural underpinnings.426

Conversely, neural data may allow us to fine-tune our model architecture: for instance, modules in the model may contain427

sub-modules responsible for distinct aspects of behavior which may be neurally dissociable (e.g., spatial and temporal slow428

adaptation44, 74). Some studies have suggested preservation of ‘reinforcement learning’ despite cerebellar ataxia11, 13, 76, but429

such studies examined learning from explicit visual or auditory feedback, which is distinct from the implicit reinforcement430

learning we have proposed for energy optimization.431

Human motor control strategies in highly practiced and learned tasks tend to approximate optimal controllers77, and here432

we have provided an account for how humans gradually learn such optimal controllers in a novel environment. A related433

learning paradigm is that the nervous system gradually learns an inverse model of the task dynamics from unsuccessful434

trials, and then uses the inverse model to achieve the task78. However, such inversion does not have a unique solution in435

high-dimensional tasks such as locomotion: human bodies have infinitely many ways to solve a movement task26 and thus must436

usually optimize another performance objective to obtain a unique solution. Here, gradient descent of the stabilizing controller437

implicitly accomplishes both the inversion and the optimization, as the resulting controller performs the task while optimizing438

performance.439

Our model demonstrates that a local exploration-based search strategy and a simple linear controller structure is sufficient440

to describe the continuous adaptation of locomotion by human adults to changes to their body and their environment, starting441

from a known default stabilizing controller, learned under normal conditions. Our approach may lend itself to comparison with442

the recently popularized framework of deep reinforcement learning79–81, which use more expressive controller approximations443

(deep neural networks) with orders of magnitude more parameters. These methods do not assume initialization with a default444

controller but instead employ highly exploratory search involving thousands of discrete walking episodes, often involve falling445

and resetting the initial condition at the end of each episode. Thus, these learning methods operate in a different regime from446

our model and are not aimed at explaining gradual human locomotor adaptation.447

Most learning requires trial and error, but attempting to improve locomotion via simple trial and error without a stabilizing448

controller as an inductive bias can result in falling or other learning instabilities. The stabilizing controller in our model allows449

safe exploration and adaptation, and turning off the stabilizing feedback while the gait is adapted results in falls or at least450

substantially degrades learning (Fig. 3). This shows that what control policy the learning acts on determines the effectiveness451

and safety of the adaptation. We also found that a number of alternative choices can result in falling: prioritizing energy452

optimization over the near future rather than over a longer time-horizon, too high a learning rate, and updating the gradient453

estimate too quickly. We have posited the use of exploratory variability for reinforcement learning or optimization, as also454

suggested in a few studies2, 11, 13, 38, including experimental evidence for the role of exploration in improving error-based455

learning38. It was not known how such exploration could be implemented to adapt while walking continuously, without ignoring456

the locomotor dynamics, stability, and the continuous nature of locomotion (i.e., not treating each step as an independent457

episode). Indeed, using simple trial and error to perform optimization, for instance, using an exploration-driven search458

depending on just the previous step2, 13, works for episodic arm reaching but will result in falling or non-learning for walking459

with continuous locomotor dynamics. Thus, here, we have put forth a framework for predicting how humans adapt their walking460

to different conditions while continuing to be stable.461

We have tested our model against a wide variety of adaptation studies, providing broad empirical support for the model’s462

predictive ability. Future work can involve the design of targeted experiments to test the different components of this model463

(e.g., performance objective, adaptation algorithm)82, as these components contain heretofore untested assumptions about464

locomotor adaptation. Here, we have compared the predictive ability of performance objectives such as energy, symmetry,465

and sensory prediction error, determining what each can predict when acting alone. Future experiments can systematically466

manipulate the energy landscape, sensory feedback (e.g., vision), and unforeseen perturbations during adaptation to delineate467

how these performance objectives are traded off by the human nervous system83 — our model, which allows these adaptation468

mechanisms to act simultaneously, can provide a framework for interpreting such experiments. Here, we have shown the469

sufficiency of exploration-based gradient estimation and gradient descent with a fixed learning rate in predicting diverse470

adaptation phenomena. Future experiments can compare the predictions of gradient descent versus alternative descent or471

adaptation algorithms (e.g., gradient descent with momentum39 or learning rate adaptation9) in long timescale trials that472

either have gradually time-varying conditions or alternate between different conditions at various switching frequencies. Such473

prospective experiments would allow us to characterize the relation between the adaptation direction in experiment and the474

model-predicted gradient directions, thus helping to modify the model to capture a broader range of experiments. Future work475

can also test the generality of our framework to other motor adaptation tasks41, 77, 84, including the model’s ability to explain476
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savings, generalization, interference, non-learning, and other important phenomena; this application of our model to other477

motor tasks will require appropriate modifications to the dynamical model and the default controller.478

Our focus has been on capturing qualitative phenomena and we did not obtain a quantitative fit by minimizing the error479

between model predictions and experiment. Consistent with this preference, we used a simple biped model with simplified480

actuation, sensing, and default controller structure, which was sufficient for broad qualitative predictions but may limit ability481

to produce detailed quantitative predictions; indeed, model simplicity may be a sound reason to not seek quantitative fits. While482

we have captured a wide variety of experimental phenomena from diverse labs, future work could use a higher dimensional483

musculoskeletal56 and sensorimotor model and test it against other prior experimental data not considered here60, 85–87 in484

addition to the aforementioned prospective experiments. In these future studies, we would seek quantitative fits to many aspects485

of the experimentally observed adaptation behavior (e.g., detailed kinematics, kinetics, energetics, variability), not just the time486

course of one or two variables (as is typical) and without experiment-specific parameter tuning.487

Model-based predictions of locomotor adaptation, such as enabled here, have potential applications to improving human-488

machine interactions including robotic prostheses and exoskeletons, making such devices intrinsically more learnable or489

devising protocols for accelerating their learning56, 86, 88. Comparisons of learning in healthy and impaired human populations53
490

using our modeling framework provides a means of identifying how distinct hypothesized modules of locomotor adaptation491

may be affected, potentially informing targeted rehabilitation.492
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Methods493

In this Methods section, we first describe the mathematical structure of each component of our modular and hierarchical494

locomotor adaptation model (Fig. 1), how the components interact, and how this framework is applied to each task setting;495

the human experiments are described at the end. Human participant research reported herein was approved by the Ohio State496

University Institutional Review Board and all participants provided informed consent.497

Stabilizing feedback controller498

The mathematical biped model, approximating the human walker, is controlled on a step-to-step basis by a feedback controller.499

The biped model and the stabilizing feedback controller16, 26, 31, 89 are described in greater detail later in this Methods section500

(see also Supplementary Methods). Here, we describe the general structure of the feedback controller necessary to understand501

our modeling framework. The feedback controller is a function that relates the control variables u (e.g., forces and torques)502

to the the state variables s (positions and velocities). Here, the state s is a vector with as many elements as there are state503

variables (nstate elements) and analogously u is a vector with ncontrol elements. The control variables have nominal values504

unominal, sometimes referred to as a ‘feedforward’ term, which the biped uses in the absence of any perturbations at steady state.505

Analogously, the state variables also have nominal values snominal in the absence of any external perturbations. Then, on step j,506

the control variables u j are assumed to be related to the state s j by the linear equation:507

u j = unominal +K · (s j − snominal), (1)

where K is an ncontrol × nstate matrix of feedback gains. This equation 1 is equivalent to the simpler linear expression508

u j = a+K · s j, which has fewer parameters because the two vector variables unominal and snominal in equation 1 are replaced by509

the one vector variable a = unominal −K · snominal. This vector a may be considered the full ‘feedforward component’ of the510

controller, in that it contains all terms that do not directly depend on current state. We use the version including unominal and511

snominal in equation 1, in order to demonstrate the learner’s ability to automatically ignore redundant parameters. The linearity512

of equation 1 is a simplifying assumption, justified by the ability of linear controllers to explain human step to step locomotor513

control16, 25, 31, 89 and its sufficiency for the adaptation phenomena explained by the framework here. The framework itself does514

not rely on this assumption of linearity.515

Local reinforcement learning for performance improvement516

When faced with a novel situation, the reinforcement learner changes the parameters of the stabilizing controller to make progress517

toward a defined objective, expressed as minimizing a scalar objective function or performance objective J evaluated over each518

stride. The learnable parameters p characterizing the stabilizing controller include unominal, K, and snominal, i.e. the nominal519

control and state values as well as the feedback gains. In this study, we only allow the nominal values p = [unominal;snominal] to520

change during learning. This is because there is a one-to-one mapping between these nominal or feedforward terms and the521

overall gait kinematic changes we are trying to predict, so allowing the nominal values to change gives the model sufficient522

flexibility to produce different kinematics. We keep the feedback gains K fixed, as the primary role of the feedback term523

is to keep the system stable despite fast timescale perturbations away from the current gait pattern. Given the robustness524

of the controller to substantial perturbations16, 17, this stabilizing role is satisfied by fixed feedback gains K. Indeed, as525

assumed, we find that changing them is not necessary for the major phenomena discussed herein; allowing just the feedforward526

term to change3 is sufficient (e.g., Fig. 2a-d). Allowing the feedback gains K to change may be necessary for even more527

stability-challenging perturbations, where the robustness of the default controller no longer is sufficient — such changes to K528

can be accomplished with the same framework but would require incorporating the locomotor task constraints explicitly into529

the performance objective (e.g., not drifting off a finite treadmill, not falling, traveling a certain distance), as otherwise the530

feedback gains may be chosen in a manner that makes the walker unstable. During learning, we allow the unominal and snominal531

to change independently for the left and right steps, enabling adaptation to asymmetric conditions.532

Fixing the overall structure of the controller during learning to that in equation 1 makes this initial controller structure an533

inductive bias for learning; that is, it constrains exploration-based learning both by providing an initial condition and restricting534

the space of controllers explored.535

On each stride i (every two steps), we denote pi to be the current best estimate of the controller parameters. We posit that536

before encountering a novel condition, the body uses the previously learned controller for normal walking, which we have537

characterized using data from normal walking16, 31, 89. We term this the ‘default controller’ with parameters pdefault, so that on538

the first stride, the parameters are p1 = pdefault. Given the controller parameters pi on stride i, the reinforcement learner chooses539

the controller parameters for the next stride pi+1 as the sum of two terms: the old controller parameters from the previous stride540

(pi) and a small change along the negative of the gradient estimate of the performance objective:541

pi+1 = pi −αg(gi), (2)
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where gi is the current gradient estimate on the ith stride (see equation 7 for how it is estimated) and αg is a scalar learning rate542

for the gradient descent. Rather than executing the next stride using this new pi+1, we posit that the nervous system uses a543

perturbed version p̂i+1:544

p̂i+1 = pi+1 +νi+1 (3)

where νi+1 is an exploratory motor noise term, assumed to be multivariate Gaussian noise with standard deviation σ , uncorrelated545

across time. We posit that the exploratory noise ν is intentionally generated by the nervous system, allowing it to estimate546

the local gradient of the performance objective J with respect to the parameters p, and more generally, build a local internal547

model of the system, serving as persistent excitation in the parlance of system identification90, 91. This exploration-based548

estimation of the gradient is in contrast with other simulation-based ways of estimating the gradient, for instance, algorithmic or549

automatic differentiation, also called backpropagation24, 79. In addition to this exploratory motor noise, there may be additional550

unavoidable sensory and motor noise that the nervous system cannot resolve, which we consider later separately92, 93. The551

proposed reinforcement learning procedure directly updates the parameters of the control policy via gradient descent, so it552

may be considered a variant of policy gradient reinforcement learning, where the gradient is estimated as below entirely from553

exploratory steps94. Because the gradient is updated from limited and noisy data (see below), it is a stochastic gradient descent554

on the control policy. We term this learning ‘local’ because of its reliance on the information obtained via local exploration in555

the neighborhood of the controller to make gradual progress toward the optimum. In this formulation, the learnable parameters p556

are changed every stride, so that the effect of the left and the right step control on the performance objective can be experienced557

separately before being incorporated into the parameter change. This assumption of once-a-stride parameter change is not558

essential; the learning framework can be used with continuous phase-dependent control25, 31 with more frequent or continuous559

updates of control parameters.560

Asymptotic gradient estimate561

Estimating the gradient of the performance objective J with respect to the parameters p is equivalent to building a local linear562

model relating changes in parameters p to changes in performance J. This can be understood by noting that a local linear563

model is the same as a first order Taylor series, and the gradient ∇x f of a function f (x) about x0 appears as the coefficient of564

the variable x in this first order Taylor series as follows:565

f (x) = f (x0)+∇x f · (x− x0)+higher order terms ≈ some constant+∇x f · x. (4)

The performance J on a given stride will not only depend on the controller parameters p, but the entire system trajectory,566

which is uniquely determined by the initial system state and the subsequent control actions given by p. So, we posit a linear567

model that includes dependence on both si and pi. On stride i, if the initial state is si, the parameters are pi, and the performance568

over that stride is Ji, a linear model relating these quantities is given by:569

Ji = Fsi +Gpi +H. (5)

Here, coefficient matrix G is the gradient of the performance Ji on the current stride with respect to the learning parameters pi570

and the coefficient matrix F is the gradient with respect to initial state si. Building a linear model of Ji with respect to only pi,571

ignoring the dependence on state si can lead to incorrect gradient estimates and unstable learning.572

Performing gradient descent using the matrix G as the gradient is equivalent to reducing the performance of a single stride573

Ji, without considering the long-term implications. Minimizing just the single-stride performance Ji may result in unrealistic574

optima for some performance objectives: turning off the actuators and falling may be optimal when only minimizing energy575

over one step. So, for non-transient tasks such as steady walking, we hypothesize that the human prioritizes the long term or576

steady state performance J∞ = limi→∞ Ji. This asymptotic or long-horizon performance averages over the noise on any one577

stride.578

To estimate the gradient with respect to long term performance, the nervous system needs to be able to predict the future.579

Thus, to predict the long-term consequences of the parameters pi, we posit that the nervous system maintains an internal580

forward model of the dynamics, that is, how the initial state si and the parameters pi for a stride affects the state at the end of581

the stride, equal to the initial state for the next stride si+1. This internal model of the dynamics is also assumed to be linear for582

simplicity:583

si+1 = Asi +Bpi +C. (6)

Given such an internal model of the dynamics, the nervous system can estimate the future consequences of parameter changes584

to the steady state (by effectively simulating the internal model to steady state) and thus infer the relevant gradient of J∞, given585

by:586

g = ∇J∞ = G+F(I −A)−1B, (7)
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where the first term G gives the gradient of the short term energy cost over one step, while the second term corrects for the fact587

that the steady state value of s will be different from the current initial state si. This internal model framework also allows588

the nervous system to minimize performance over an intermediate time horizon by computing and using the gradient of the589

mean energy cost over the next few strides. We found that minimizing expected performance over just one or two strides into590

the future can result in unstable learning for energy optimization. In conventional reinforcement learning94, a discount factor591

0 < γ < 1 is used to modify the function minimized to ∑
∞
i=1 γ i−1Ji, which prioritizes near term performance and down-weights592

performance in the future. We did not use such a discount factor here, but using γ ≈ 1 is analogous to the asymptotic limit we593

have chosen, and γ much less than one will give results similar to optimizing over just the next few strides.594

We update the matrices A, B, C, F , G, H on each stride by estimating the linear model via ordinary least squares to best fit595

the state, the action, and the performance (si, pi,Ji) over a finite number of previous steps. We used a rolling estimate over 30596

steps for all the results presented herein. This gradient estimator needs to have the property that relatively prioritizes recent597

history90, as otherwise, the gradient cannot adapt to novel locomotor situations in a timely manner. Using a finite history allows598

rapid adaptation to sudden changes. Also, we use a linear internal model though the full biped dynamics are nonlinear; a linear599

internal model is sufficient when adaptation is gradual and the model is constantly updated to be a good approximation about600

the current operating point.601

Learning happens as long as the gradient estimate, however computed, gives a reasonable descent direction on average —602

that is, gives direction in which to change the control policy to lower the performance objective value. Operating on inaccurate603

gradients can result in learning instabilities (distinct from instability in the movement dynamics), as can large gradient steps.604

This learning instability can be prevented in two different ways. First, when the linear models in equations 5 and 6 are inaccurate,605

as estimated by their residual being outside of the 95% confidence interval at steady state, the learning rate is set to zero. A606

second approach to avoiding learning instability is a trust region approach, wherein the maximum gradient-based step-size is607

limited to a fraction the exploratory noise. We tested both approaches and they give qualitatively similar results.608

Forming motor memories and employing them when useful609

We posit a modular memory unit to capture the fact that humans form and maintain memories of previously learned tasks40, as610

opposed to having to re-learn the tasks each time. First, we discuss our model of how such stored ‘motor memories’ are used,611

and later in this section, we discuss how these motor memories are formed and updated based on experience.612

Consider that the human had some past experience in the current task, and used controller parameters pmemory with613

associated performance objective values Jmemory. We posit that humans move toward this memory with some learning rate as614

follows:615

pi+1 = pi +αg (−gi)+αm(pmemory − pi), (8)

where (pmemory − pi) is the vector direction toward the memory and αm is the rate at which memory is approached. We posit616

that the controller parameters being learned move toward the memory only when Jmemory < Jcurrent, that is, when progressing617

toward the memory improves the performance. Secondly, to ensure that progress toward memory does not destroy gradient618

descent even if Jmemory was inaccurately approximated, we posit that the learning rate αm is modulated via a truncated cosine619

tuning so that memory is used only when the direction toward memory does not oppose the direction of the negative gradient620

(Fig. 1d). In Supplementary Methods, we elaborate mathematically on why this modulation of the rate toward memory is621

necessary and sufficient to avoid convergence to a sub-optimal memory.622

We conceive of a ‘motor memory’ as a pair of functions Fp(λ ) and FJ(λ ) that output the controller parameters pmemory =623

Fp(λ ) and the corresponding performance objective value Jmemory = FJ(λ ) respectively, given the task parameters λ (Fig.624

1d). The task parameters λ could be continuous-valued, for instance, walking speed or assistance level of an exoskeleton,625

or discrete-valued41, for instance, treadmill versus overground walking or presence versus absence of an exoskeleton. As a626

simple example, the task parameter could be treadmill belt speed vbelt, and the stored motor memory functions Fp(vbelt) outputs627

controller parameters for each walking speed and FJ(vbelt) outputs the corresponding performance objective value. In this case,628

the nervous system could infer the belt speed vbelt from the sensory stream55, by fusing proprioception (which can infer the629

speed of head relative to foot, vhead/foot) and vision (which can sense the speed of head relative to lab, vhead/lab), so that the630

belt speed is given by: vbelt = vfoot/lab = vhead/lab − vhead/foot. For simplicity, we assume that this task parameter inference is631

independent of any potential perceptual recalibration22, 42, which is addressed separately in a later section on proprioceptive632

realignment.633

The memory functions Fp and FJ are built over time to approximate the best controllers learned during previous experiences634

of similar tasks. We posit representations of motor memories via function approximation: in this manuscript, for simplicity,635

the stored controller parameters pmemory are linear functions of the task parameters unless otherwise specified, anchored at a636

nominal tied-belt condition. Such interpolating function approximations for memory are in contrast to discrete memories of637

experiences without interpolation2: these two assumptions have different testable implications for generalization of learning.638

13/32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2024. ; https://doi.org/10.1101/2021.03.18.435986doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435986
http://creativecommons.org/licenses/by/4.0/


The memory functions Fp and FJ have memory parameters µ , which determine the function approximation, for instance, the639

slope and intercept of a linear functions FP(λ ,µ): here, we allow the slopes of the linear function to change to approximate new640

experiences, while keeping the intercept at a nominal tied belt walking speed fixed. Analogous to our previous hypothesis that641

the controller parameters are updated via gradient descent, we posit that these memory parameters are also updated via gradient642

descent, so that the memory function better approximates controller parameters to be stored. That is, we posit that the nervous643

system performs: µi+1 = µi −αmf ∇µ L, where L is a measure of how well the memory approximates the current controller pi644

and αmf is the learning rate for memory formation; we used the root mean squared error over all controller parameters being645

approximated. This memory update happens when the current controller pi is better than what is already stored in the memory646

i.e., when Jcurrent < Jmemory or when the direction toward the memory is not a descent direction. This ensures that memory647

formation and memory use are mutually exclusive (Fig. 1d).648

Minimal walking biped: dynamics, control, energy, and performance649

Dynamics. We consider a minimal model of bipedal walking (Supplementary Fig. 1a), consisting of a point-mass upper body650

and simple legs that can change length and apply forces on the upper body26, 54. The total metabolic energy cost of walking for651

this biped is defined as a weighted sum of the positive and negative work done by the stance legs on the upper body and the652

work done to swing the legs forward54, 95. For this biped, the periodic energy-optimal walk on solid ground is the inverted653

pendulum walking gait26, 54, 96, in which the body vaults over the foot in a circular arc on each step (Supplementary Fig. 1b),654

with the transition from one step to the next achieved via push-off by the trailing leg, followed by a heel-strike at the leading leg655

(Supplementary Fig. 1c). We use this irreducibly minimal low-dimensional biped model26, 54 to illustrate the predictive ability656

of our modeling framework for simplicity and transparency. Further, we show that the simple model is sufficient for explaining657

the major documented locomotor adaptation phenomena in the literature. The locomotor adaptation modeling framework herein658

can be generalized to a more complex multibody multimuscle model of a human. The parameters of this biped model were not659

fit to any data from the adaptation phenomena we seek to explain (see Supplementary Methods). When showing metabolic660

energy cost transients for the model, we show two versions (e.g., in Fig. 2a), one that reflects average metabolic rate over each661

stride and one that would be measured via indirect calorimetry, which is a low-pass filtered version of the stride-wise cost97.662

Stabilizing feedback control. The biped has two control variables for each leg, namely, step length and push-off magnitude663

(Supplementary Fig. 1d), for a total of four discrete control actions per stride. These control variables are modulated to keep the664

biped stable, despite external or internal noisy perturbations and despite a change in the mechanical environment e.g., walking665

on a split-belt treadmill or with an exoskeleton. The controller keeps the biped stable despite large changes in the body and666

environment, including external perturbations; this ability to be unaffected by unforeseen changes before any changes to the667

controller parameters is called robustness, so that the controller is termed ‘robust’16, 17, 98. The values of these control variables668

on each step are decided by a discrete controller, as described below, derived from our prior human experiments on steady669

walking16, 17, 31 without fitting any parameters to the data from the adaptation experiments we seek to explain. The body state si670

at midstance at step i includes the forward position in the lab frame, the forward velocity in the belt and the lab frame, and671

the running sum (i.e., discrete integral) of the forward position in the lab frame. The control variables ui at step i are changed672

by the following linear control rule as a function of the preceding midstance state si: ui = unominal +K · (si − snominal), where673

K is a matrix of feedback gains16, 31. The velocity dependence of the control gains ensures that the walker doesn’t fall, the674

position dependence promotes station-keeping17, 31, and integral dependence reduces error due to systematic changes in the675

environment, for instance, changing the treadmill belt speeds or going from a tied to a split treadmill. These terms make the676

controller a discrete PID controller (proportional-integral-derivative). The nominal periodic motion at each speed is governed677

by the feedforward push-off and step length values, and these are selected so as to have the same speeds and step lengths as678

a typical human (Supplementary Fig. 2). The default values for the control gain matrix K are then obtained by fitting the679

dynamics of the model biped to the step to step map of normal human walking on a treadmill16, 17, 31, 89. Mathematical details680

and parameter values are provided in the Supplementary Methods. All variables in equations and figures are non-dimensional,681

unless otherwise mentioned: lengths normalized by leg length ℓ, masses normalized by total body mass, and time normalized682

by
√

ℓ/g, where g is acceleration due to gravity54.683

Different locomotor task settings. The biped model described above is expressive enough to capture the different task684

settings for which we seek to model adaptation: walking with different exoskeleton assistance protocols, at varying belt speeds685

(tied or split-belt), and with asymmetric leg masses. Here, we briefly describe how the different conditions are simulated by686

changing the external environment and force it exerts on the biped. See Supplementary Methods for mathematical details.687

The biped model described above allows the individual treadmill belt speeds to be changed as a function of time (Fig. 2a,c).688

This generality is sufficient to simulate both split-belt and tied-belt treadmill walking conditions. The total metabolic cost689

computed accounts for individual belt-speed changes because all components of the metabolic cost, namely, push-off work,690

the heel-strike work, and the leg swing cost are computed by incorporating the relevant belt-speeds and effective leg masses.691
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For split-belt walking protocols, we usually use non-dimensional belt speeds of 0.5 for the fast belt and 0.25 or 0.3 for the692

slow belt for many but not all computational results (Figs. 2a, 4, 5, 6,7, 8): these walking speeds and their durations may be693

different from precise experimental conditions but the qualitative features we illustrate are insensitive to such differences in694

speeds chosen. We simulated exoskeletons as external devices in parallel to the leg that produce forward forces, or equivalently,695

ankle torques (Figures 2d and 4e). Walking with periodic exoskeleton input used the perturbation as an additional input state in696

the controller. For predicting adaptation to foot mass change (Fig. 2b), we incorporated the simplest leg swing dynamics: a697

point-mass foot, propelled forward with an initial impulse and the foot mass coasting forward passively until heel-strike. For698

the tied-belt walking, we used the belt speed as the task parameter; for split-belt studies, we used the individual belt speeds as699

the task parameters; for the added leg mass study, we used the added leg mass as the task parameter. To track gait asymmetry,700

we use the following two objectives of left-right asymmetry4, namely step length asymmetry and step time asymmetry, defined701

as follows:702

step length asymmetry =
Dfast −Dslow

Dfast +Dslow
and step time asymmetry =

Tfast −Tslow

Tfast +Tslow
, (9)

where the fast and the slow step lengths (Dfast and Dslow) are defined at heel strike as in Supplementary Fig. 1e and the step703

times Tfast and Tslow are the stance times when on the fast and slow belts respectively. We use analogous objectives when the704

biped walks with an asymmetric foot mass. There can be other ways of quantifying asymmetry and we chose asymmetry705

objectives that are commonly used to empirically track adaptation4, 5, 45. A zero value indicates symmetry with respect to these706

measures, but does not imply perfect left-right symmetry of the entire motion.707

All computational work was performed in MATLAB (version 2022a). See Supplementary Methods and our codebase708

implementing these simulations, LocAd30, shared via a public repository. Data from prior manuscripts5, 6, 8, 18, 20, 28, 45, 48, 51, 99, 100
709

are plotted in Figures 2, 6a, and 7b and Supplementary Figures 2, 4, 6, as cited in place, to illustrate how model-based710

predictions agree qualitatively with experimental results in prior studies.711

Alternative to performance optimization: Comparison with proprioceptive realignment712

Experimental evidence during split-belt adaptation suggests some recalibration of proprioception by the two legs42 and has713

been argued to be at least partially responsible for kinematic adaptation22, 42 based on correlation of timescales between such714

realignment and adaptation. No mathematical model been been previously proposed for how such realignment may happen.715

Without such a mathematical model, it is impossible to know whether the direction of adaptation due to such realignment will716

be consistent with or opposing that observed in experiment. Here, we first present such a mathematical model and then test the717

extent to which it explains adaptation on a split-belt treadmill. We implement this proprioceptive realignment as a sensory718

recalibration of the input to the stabilizing controller, replacing the gradient-based reinforcement learner (Fig. 9a-b).719

Recalibration takes place when there is substantial conflict between what is expected by the nervous system and what is720

sensed11. The key missing hypothesis in extending such sensory recalibration to locomotor adaptation lies in the question:721

what error is the nervous system using to drive recalibration during locomotion? We hypothesize that, given the typical walking722

experienced in daily life, the nervous system expects the two legs to be on a common surface: this expectation results in a723

sensory conflict on a split-belt treadmill with both feet experiencing unequal belt speeds.724

When the walking surface has fixed speed and the visual environment is uniform, the walking speed can be estimated by the725

nervous system by two sensory modalities101: vision (based on visual flow) and proprioception (by integrating joint angles726

and angle rates from muscle spindles and Golgi tendon organs). On a treadmill in a lab, vision has information about how the727

head moves with respect to the lab, so we identify the visual speed with vbody/lab. Proprioception has information about how728

fast the body parts move relative to the stance foot on the belt, so we identify proprioception with vbody/belt. Thus, the body729

has information to implicitly estimate the belt speed via the following equation: vbelt/lab = vbody/lab − vbody/belt. On a split-belt730

treadmill, all these speeds will be belt-specific, e.g., vbelt,1/lab and vbelt,2/lab. The expectation that both legs contact a common731

surface can be expressed as the equality of these individual belt speeds: vbelt,1/lab = vbelt,2/lab. We posit that deviations from this732

equality result in slow recalibration. Consistent with much of the arm reaching literature, we recalibrate only the proprioceptive733

sense, hence the term proprioceptive realignment.734

Say, v̄body/belt,1 and v̄body/belt,2 are the proprioceptively obtained sensory information from the two legs without recalibration,735

and v̂body/belt,1 and v̂body/belt,2 are the recalibrated versions. The two versions are related by:736

v̂body/belt,1 = v̄body/belt,1 −∆v1 and v̂body/belt,2 = v̄body/belt,2 −∆v2, (10)

where ∆v1 and ∆v2 are the recalibrative corrections. We describe this recalibration as happening via a state observer with two737

timescales: a fast timescale process estimating a common belt speed v̂common using proprioceptive information from both legs738

and a slow timescale process estimating the recalibrative corrections ∆v1 and ∆v2 for each leg separately. The common belt739
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speed estimate is updated every step j via a state observer as follows:740

v̂common( j+1) = v̂common( j)+acommon
(
v̄body/lab ( j)− v̄body/belt,k ( j)− v̂common( j)

)
(11)

where k equals 1 or 2 for odd and even step number given by j, respectively, and acommon is a rate constant proportional to the time741

spent on each step – but we treat as constant for simplicity. This equation results in convergence of v̂common to the average belt742

speed. The recalibration ∆vk is the current estimated perturbation of the individual belt speed from the estimated common speed743

v̂common. This recalibration is updated on every stride i as: ∆vk(i+1) = ∆vk(i)+a∆

(
v̄body/lab − v̄belt,k/lab − v̂common −∆vk(i)

)
.744

Here, the rate constant a∆ is much smaller than acommon, reflecting the slower timescale at which the perturbation estimate745

∆v̂k is updated. Here, v̂1 is updated on odd steps and v̂2 is updated on even steps. This perturbation estimate ∆vk eventually746

converges to the deviation of the actual belt speed from the common speed. These state observer equations for recalibration747

are similar to estimating the belt speed via a state estimator reflecting an expectation that tied-belt changes are much more748

likely than split-belt changes, modeled by the noise covariance matrix for belt speed changes having large diagonal elements749

(governing co-variation of belt speeds) and small off-diagonal elements (governing belt speed differences). Further, while we750

have introduced the latent variables vcommon and ∆vk in the above description, the recalibration equations can be written without751

such latent variables. The recalibrated proprioceptive information (v̂body/belt,1 and v̂body/belt,2) is used in the stabilizing controller752

instead of the direct proprioception. In the Results, we show effects of 50% and 100% recalibration: 100% corresponds to753

using the full correction ∆vk and 50% uses 0.5∆vk in the recalibration equation 10.754

Alternative to energy minimization: Comparison with reducing kinematic task error755

Minimizing kinematic task error first requires defining what the desired or expected kinematics are. To define this, we first756

note that slow timescale error minimization is not thought to underlie tied-belt walking adaptation, or at least the timescales of757

adaptation to tied-belt speed changes are much faster than for split-belt adaptation28. So, we posit that the nervous system758

treats tied-belt walking — or walking on the same surface with both legs — as the normal state of affairs, basing the desired759

kinematics on an implicit assumption of tied-belt walking. The nervous system estimates the common belt speed v̂common as in760

the previous section, using visual flow and proprioception from both legs (see eq. 11 and Fig. 8b). This common belt speed761

v̂common is then used to make a prediction for the body midstance state ŝcommon based on memory, which is compared with762

actual sensory information s̄ to compute the task error E = ŝcommon − s̄.763

In simple tasks such as arm reaching, where both the error and the action is one-dimensional, it is possible to reduce error764

via a simple ‘error-based learning model’ with a single or dual rate process46 or via learning rate adaptation9. However, in765

tasks such as walking in a novel environment, because body state and the number of actuators is high-dimensional, the nervous766

system may not have a priori inverse model to produce the motor actions that reduce the error. So, a simple one-dimensional767

error based learning model is not appropriate. We instead model the error reduction as proceeding analogous to energy reduction768

via gradient descent using exploratory variability to estimate gradients, as a special case of the framework in Fig. 1. The769

kinematic task error being minimized may also be considered a kind of sensory prediction error, as the error from the kinematic770

state predicted or expected by the nervous system given the belt speed estimate.771

Interaction with explicit control772

The mechanisms proposed herein are for implicit adaptation, but these mechanisms allow for explicit (conscious) control acting773

in parallel to implicit adaptation. We show how our model can be extended to interact with explicit input by implementing774

an visually-informed explicit control module for the reduction of step length asymmetry10. On each step, the explicit control775

module outputs a correction to the desired step length proportional to the step length asymmetry on the previous stride, with the776

intention of reducing the step length asymmetry on the current step. This output from the explicit control module is added to777

the desired step length output from the implicit adaptation module (the default adaptation mechanisms here), so that the net778

total control input is used by the stabilizing controller. The additive and parallel nature of the implicit and explicit modules are779

as proposed for explicit control in arm reaching studies23. The architecture of the interaction between the implicit adaptation780

and explicit control is such that the implicit module is only aware of its own output and not that of the explicit module; thus, the781

implicit module optimizes the objective with respect to its own output.782

Prospective experiments783

The computational model we put forth here can be used to design prospective experiments, augmenting experimenter intuition.784

Here, we conducted two model-guided experiments to test predictions of the model that are surprising when compared to the785

existing literature: (1) on the effect of environment noise on locomotor adaptation, and (2) on the effect of an immediately786

preceding counter-perturbation on a subsequent adaptation.787

Twenty five participants (19 male, 6 female, self-reported sex, age 21.9 ± 3 years, mean ± s.d.) participated with informed788

consent and the experiments were approved by the Ohio State University IRB. Participants were assigned randomly into two789
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groups: sixteen participants performed experiment 1 (12 male, 4 female, age 21.7 ± 3 years) and nine participants (6 male, 3790

female, age 22.3 ± 3 years) performed experiment 2. Both experiments involved walking on a split-belt treadmill (Bertec Inc.),791

with the details of the protocol provided below. Foot movement was tracked via a Vicon T20 motion capture system (Vicon792

Nexus 1.x). Sex or age were not used as an explanatory variable in any analysis, as the computational model tested does not793

include such variables.794

Experiment 1 was designed to test the model prediction that when the belt noise level was sufficiently high, learning can795

be degraded, which is surprising relative to a prior finding that a modest level of belt noise can slightly enhance learning796

as measured by after-effects20. For this experiment, the participants were sub-divided into two groups of eight: one group797

performed a no-noise abrupt protocol (Fig. 7a), in which participants started walking under tied-belt conditions at 0.9 m/s,798

then adapted to split-belt condition of 0.6 m/s and 1.2 m/s kept constant for 10 minutes, followed by three minutes of tied-belt799

walking at 0.6 m/s; the second group had an identical protocol except the split-belt condition involved continuously changing800

belt speed for just the fast belt, fluctuating in a piecewise linear manner with zero mean and 0.2 m/s standard deviation (normally801

distributed). The consecutive grid points of the piecewise linear noise were separated by 1.2 seconds, roughly equal to a stride802

period, so that the noise value was different two strides apart (the noise in20 was changed every 3 seconds, and thus had greater803

temporal correlation); speed changes had 0.1-0.2 m/s2 accelerations. The noise standard deviation was set at a lower level in804

simulation (0.04 m/s) to ensure stability. The post-adaptation after-effect in step length asymmetry after baseline subtraction,805

averaged over the first 8 strides (about 10 seconds) was used as a measure of adaptation similar to prior work20. We compared806

these after-effects between the noise and no-noise case, testing the hypothesis that the noise case has lower after-effects.807

Experiment 2 was designed to test the model prediction regarding savings, specifically whether experiencing a counter808

perturbation B beforehand, interferes with adaptation to perturbation A. Previous experiment had found that if B and A were809

separated by a washout period, the adaptation to A was not significantly affected compared to not having experienced B. Our810

model had a distinct prediction for when A immediately followed B, without a washout period W. So, participants performed811

this experimental protocol T-B-A (Fig. 6) in which 4 minutes of walking on a tied-belt at 0.9 m/s (T) was followed by a split-belt812

condition with belt speeds of 0.6 and 1.2 m/s for 10 minutes (B), immediately followed by the opposite split-belt condition 1.2813

and 0.6 m/s for 10 minutes. Equivalent to comparing the A of protocols T-A and T-B-A by symmetry, we compared the initial814

transient and the time-constant of the two adaptation periods B and A in T-B-A: the B of T-B-A was without prior split-belt815

experience and the A of T-B-A is the adaptation phase just after a counter-perturbation.816

Data availability. The experimental data generated in this study have been deposited in the Dryad database with DOI:817

10.5061/dryad.kh18932gq. Source data are provided with this paper. Other human experimental data or results referred to818

herein are available in previously published manuscripts5, 6, 8, 18, 20, 28, 45, 48, 51, 52, 99, 100.819

Code availability. Code associated with this paper, LocAd30, is available at: https://github.com/SeethapathiLab/820

LocAd821
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Figure 1. A hierarchical framework for locomotor adaptation. a. Humans are able to adapt readily to numerous locomotor
task settings, both familiar and novel. b. Description of the proposed hierarchical framework, containing three components: (i)
the inner loop, represents a fast timescale response due to the stabilizing feedback controller (blue), aimed at avoiding falling;
(ii) an outer loop, represents reinforcement learning (red) that tunes the parameters of the inner loop controller to improve some
performance objective; (iii) storing and using memories of the learned controllers (green). Alternative adaptation mechanisms
may include different performance objectives within the same framework (energy, symmetry, task error) or may replace the
feedback controller by a sensorimotor transformation with a state estimator followed by the controller (Fig. 9). c.
Reinforcement learning by mining exploratory noise to estimate gradient and improve the controller. Initially, the controller
parameters p1 and p2 are near the optimum of the initial performance landscape (blue). When conditions change, the
performance contours change (blue to orange) as does the optimum. Exploratory noise in the controller parameters, allows the
learner to estimate the gradient of the performance objective and follow the negative of this gradient to improve performance. d.
Memory takes in task parameters and returns the stored controller parameters pmemory and the associated performance value
Jmemory. We describe how memory is used in concert with gradient-based learning. The control parameters pi are updated
toward memory pmemory when doing so improves performance (memory use); memory is updated toward the current
parameters otherwise. Updates toward memory is degraded if these updates are not aligned with the gradient, and this
degradation is mediated by a modified cosine tuning.
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Figure 2. Hierarchical model predicts locomotor adaptation in multiple task settings. a. Split-belt walking6, 45, that is,
with the two belts going at different speeds. Model qualitatively predicts experimental transients in step length asymmetry and
metabolic energy during adaptation and de-adaptation. b. Walking with an additional mass on one foot5. Model qualitatively
predicts experimental transients in step length asymmetry during adaptation and de-adaptation. Adaptation phases are shaded
in blue in panels a and b. c. Walking on a treadmill with abrupt speed changes every 90 seconds28. Model qualitatively predicts
experimentally observed step frequency changes. Transients have a fast and slow timescale, with the fast timescale change
sometimes undershooting and sometimes overshooting the steady state (red and green detail). Without learning, with just the
feedback controller (gray), the fast transient is preserved but the slow transient is replaced by a (noisy) constant. d-i. Walking
with an exoskeleton that provides periodic propulsive impulses48. d-ii. Stride period converges to the perturbation period,
implying entrainment. Different trajectories starting from different initial conditions are shown. d-iii. Perturbation phase
converges to zero (heel-strike) in both model predictions and experiment. Different model trajectories show trials starting from
different initial conditions. All quantities are non-dimensional. Source data are provided as a Source Data file.
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Figure 3. Significance of the stabilizing feedback controller: avoiding falling and improving learning. a) The default
controller provides robust stability to the biped despite noise and environmental changes. Substantially lowering the feedback
gains, all by the same factor, reduces the effective adaptation rate and increases gait variability. The sensory noise in these
simulations is fixed across these feedback gain conditions and is applied to velocity feedback to the feedback controller.
Adaptation phases are shaded in blue. b) Lowering the feedback gains even further results in falling of the biped upon
introducing the split-belt perturbation. Three walking patterns are shown: normal tied-belt walking that has symmetric step
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shown relative to the respective stance belt frame for visualization purposes (so that the split-belt trajectories for the different
stance phases are with respect to different frames). Source data are provided as a Source Data file.
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Figure 4. Effect of learning rate, memory and sensory noise: Model captures degraded learning, non-learning, and
improving with guided experience. a. Stabilizing feedback controller alone only captures the fast learning transient. Addition
of reinforcement learner is needed to capture the slow transients. b. Increasing the learning rate parameter speeds up learning
(for a range of learning rates). c. Progress toward memory makes de-adaptation faster than adaptation. d. Increasing sensory
noise degrades learning for fixed learning rate and fixed exploratory noise, resulting in less learning and less energy reduction.
Split-belt adaptation phases are denoted by green shaded region in panels a-d. e. Model captures experimental phenomena2, 8

wherein a human does not adapt to an exoskeleton that provides step-frequency-dependent assistance upon first encounter, but
adapts toward the energy optimal frequency when provided with broad experience across a range of frequencies via a
metronome-tracking condition. On the right two panels, blue indicates baseline condition without any assistance, red indicates
exoskeleton assistance condition, and green indicates metronome-tracking condition in addition to exoskeleton assistance. In
the rightmost panels, the ‘exo on’ condition (red) shows no adaptation before broad experience (green), but shows adaptation
after the broad experience. All quantities are non-dimensional. Source data are provided as a Source Data file.
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Figure 5. Savings. ‘Savings’ refers to the phenomenon that humans re-adapt faster to a condition (say, split-belt walking) if
they have experienced the condition before, even if they have fully de-adapted to normal walking in the intervening time. a) A
treadmill protocol with two split-belt adaptation periods with an intervening tied-belt washout de-adaptation phase (W) that
brings all the externally observable state variables as well as the current controller back to baseline — but not the internal
memory state, which remembers the past learning. First adaptation (blue shaded region) and re-adaptation (red shaded region)
transients are shown. b) The model with memory predicts this experimentally observed savings phenomenon51. Step length
asymmetry changes are faster during re-adaptation compared to the first adaptation. The re-adaptation has a smaller initial
transient compared to the first adaptation. The time-constants of first adaptation and re-adaptation are computed by fitting a
single exponential to the step length asymmetry transients, showing that re-adaptation has a faster time-constant. Source data
are provided as a Source Data file. See Supplementary Table 1 for statistical details of comparisons. All box-plots show the
median (red bar), 25-75% percentile (box) range (whiskers), and individual data points (pink circles).
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Figure 6. Interference. ‘Anterograde interference’ refers to the phenomenon where humans sometimes adapt slower to a
condition A when they were previously exposed to the opposite condition B, that is, with the belt speed differences reversed
between the two belts. a) We performed simulations of two split-belt adaptation protocols: first, T-A-T-A-T-A, alternating
between tied-belt conditions T and the split-belt condition A, and second, T-A-T-B-T-A, where one of the A phases is replaced
with the opposite condition B. We compare the adaptation between the two protocols during the final A phase (denoted as
yellow shaded region). We find that the two protocols are not significantly different in their initial response to the perturbation
or the early change in the step length asymmetry for the final adaptation period (yellow shaded region), as shown by Malone et
al51. b) To test if this non-interference remains in the absence of washout, we performed prospective experiments in the
absence of such a tied-belt washout phase: we compared protocols T-A with T-B-A with both simulations and human
participant experiments. In experiments, we found that the initial step length asymmetry (first step of A) was significantly
higher when B was present and the time constant of adaptation during A was not significantly different under the two
conditions. This confirmed our model simulations, which predicted that the initial transients for A will be higher after B. The
model also predicted no statistically significant difference in the adaptation rate constant in the presence of inter-participant
variability of magnitude similar to that in the experiment. Box-plot shows median, 25-75% percentile and range. Source data
are provided as a Source Data file. All box-plots show the median (red bar), 25-75% percentile (box) range (whiskers), and
individual data points (pink circles). The time-series shows median as thick colored line and light gray lines are individual
participant data overlaid. See Supplementary Table 1 for statistical details of comparisons.
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Figure 7. Split-belt learning can be degraded or enhanced depending on noise structure. a) Split-belt adaptation with and
without belt-noise are compared. Adaptation phases are shaded in light green. The speed fluctuations in the noisy split-belt
condition are continuous and piecewise linear and happen roughly every step. Model predicts that when the belt noise is high
enough, adaptation can be degraded, as judged by lower post-adaptation after-effects. The post-adaptation after-effects shown
are the initial step length asymmetry when the tied-belt condition starts after the split-belt adaptation. We performed
model-guided prospective human experiments that confirmed these predictions: p value showing significant difference is from
one-tailed t-test (unpaired, t(d f ) =−2.41(14), p = 0.0151). b) Torres-Oviedo and Bastian20 found that appropriately
structured noise accompanied by gradual speed change can enhance adaptation, as measured by post-adaptation after-effects:
box plot with these prior experimental results20 shows mean (red line) and standard error (box). Our model captures this
behavior. All box-plots show the median (red bar), 25-75% percentile (box) range (whiskers), and individual data points (pink
circles). See Supplementary Table 1 for full statistical details of comparisons. Source data are provided as a Source Data file.
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Figure 8. Alternatives to energy minimization: minimizing asymmetry or kinematic task error. a) As an alternative to an
energy objective, minimizing step length asymmetry as the only objective during split-belt adaptation results in a perfectly
symmetric gait in the model, which conflicts with the positive step length asymmetry found in experiment as well as when
predicted by an energy minimization45. b) As another alternative to an energy objective, we formalize the minimization of
kinematic task error as minimizing deviation from preferred walking kinematics defined for each speed. A single common belt
speed is estimated by a state estimator using sensed body speeds relative to the lab and the belt (vision and proprioception).
The task error is deviation from kinematics at that estimated speed under tied-belt conditions, drawn from memory. c) Model
predictions for minimizing just task error without an energy objective; two different weightings are used for different
components of the kinematic error (red and yellow). Energy minimization is shown for comparison (blue). For the task error
predictions, one of either step length asymmetry or energy trends disagree with split belt adaptation experiments45: either the
step length asymmetry stops well short of symmetry while decreasing energy somewhat (yellow), or the energy transients are
not monotonically decreasing (red). Source data are provided as a Source Data file. Light green shaded region in all panels is
the period of split-belt adaption.
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b) Replacing the feedback controller by a sensorimotor transformation that includes sensory recalibration

Figure 9. Alternative to energy minimization: Sensory recalibration via proprioceptive realignment. a) As an alternative
to energy minimization, we considered sensory recalibration via proprioceptive realignment as a hypothesis for adaptation.
This recalibration realigns the proprioception from the two legs to conform with the expectation that both legs usually are on
the same surface with a common speed, rather than surfaces with different speeds. The proprioceptive recalibrator takes in the
sensory information from proprioceptors of the two legs and vision and computes a recalibrated version of the proprioceptive
information. b) The recalibrated sensory information is used by the the stabilizing controller, so the direct feedback controller
of Fig. 1 is replaced by a more general sensorimotor transformation. c) Proprioceptive correction for each leg shown as a
function of time for a particular split-belt protocol. This correction is subtracted from the initial proprioceptive estimate to
obtain the recalibrated proprioception. The correction for the fast leg is positive and that for the slow leg is negative. 100%
recalibration corresponds to completed proprioceptive realignment and 50% recalibration is close to that observed in
experiment42. d) Using the recalibrated proprioception as feedback in the stabilizing controller results in the reduction of step
length asymmetry, but even 100% recalibration does not result in symmetry or positive step length asymmetry. Thus, the model
predicts that proprioceptive realignment cannot be fully responsible for split-belt adaptation. e) Proprioceptive realignment also
reduces energy coincidentally even without energy being an explicit objective in this situation. Source data are provided as a
Source Data file. Light blue shaded region in panels c-e is the period of split-belt adaption.

31/32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2024. ; https://doi.org/10.1101/2021.03.18.435986doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.18.435986
http://creativecommons.org/licenses/by/4.0/


a) Protocols with explicit asymmetry feedback for voluntary asymmetry reduction
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Figure 10. Interaction with explicit feedback. a) Three different split-belt protocols are compared. Protocol 0 which is a
typical split-belt protocol with no explicit feedback about step length asymmetry. In protocols 1 and 2, participants are shown
visual feedback of step length asymmetry on a screen and asked to reduce it explicitly, either partly through the adaptation
phase (protocol 1) or partly through the de-adaptation phase (protocol 2). b) Explicit control is modeled as a module that adds
to the nominal step length of the ‘implicit controller’ and this correction is proportional to the step length asymmetry on the
previous step. The explicit and implicit modules are in parallel, and the implicit learner only knows about the motor command
from the implicit feedback controller that it tunes. Having the explicit feedback improves progress to symmetry during c)
adaptation and d) de-adaptation but this symmetry improvement is lost when the explicit feedback is removed, as found in
experiment10. Source data are provided as a Source Data file.
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