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Abstract

G protein coupled receptors (GPCRs) are valuable therapeutic targets for many
diseases. A central question of GPCR drug discovery is to understand what
determines the agonism or antagonism of ligands which bind them. Ligands exert their
action via the interactions in the ligand binding pocket. We hypothesised that there is
a common set of receptor interactions made by ligands of diverse structures that
mediate their action and that among a large dataset of different ligands, the
functionally important interactions will be over-represented. We computationally
docked ~2700 known (B2AR ligands to multiple B2AR structures, generating ca 75,000
docking poses and predicted all atomic interactions between the receptor and the
ligand. We used machine learning (ML) techniques to identify specific interactions that
correlate with the agonist or antagonist activity of these ligands. The interpretation of
ML analysis in human understandable form allowed us to construct an exquisitely
detailed structure-activity relationship that identifies small changes to the ligands that
invert their activity and thus helps to guide the drug discovery process. This approach

can be readily applied to any drug target.
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Introduction

G-protein-coupled receptors (GPCRs) remain a therapeutically important family of
proteins with over 100 receptors targeted by 500 drugs approved for clinical use'. The
human B2-adrenoceptor (82AR) responds to stimulation by the endogenous agonist
ligands adrenaline and noradrenaline by inducing Gs-mediated cAMP signalling and
is a valuable target for small molecule smooth muscle relaxants used to treat asthma
and other pulmonary diseases?3. Endogenous agonist activity can be readily inhibited
by so-called antagonist drugs that prevent receptor activation by occupying the binding
pocket without activation and blocking agonist access. A large number of ligands have
been developed to target p-adrenoceptors (BAR) over the last 60 years since the

pioneering discovery of beta-blockers by Sir James Black®"”.

All GPCRs share a common architecture of a bundle of seven transmembrane helices
(TMs), with the ligand binding pocket accessible from the extracellular space and an
intracellular effector binding site that becomes available following transition into an
active receptor conformation®. One of the key features of GPCRs is that they are highly
dynamic and adopt many distinct conformations that are important for engagement of
signalling partners, e.g. activation of the Gs protein or arrestins®. It is generally thought
that ligands control GPCR activity by preferentially stabilising active or inactive
conformations'®. With 35 reported structures with 13 diverse ligands in inactive and
active states reported, B2AR is one of the best studied GPCRs from a structural

perspective.

Structure-based drug design has become an integral part of the modern drug
discovery process. Approaches to link ligand structure to its activity are generally
based on the ligand chemical structure (similar chemical structure have similar activity
paradigm) or by considering the interactions between the ligand and the receptor.
Structural Interaction Fingerprints that describe the interactions of ligands with
proteins'''3 have proven to be a very successful approach to score binding poses of
ligands. A number of different interaction fingerprints have been developed, with more
complex ones that incorporate atomic interactions and different types of non-covalent
interactions having superior performance’®. Several studies have attempted to link
structural properties of the ligands and the interactions they make to the receptor to

their functionality, based on available crystallographic structures and complemented
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with ligand docking'®'” or MD simulations'. These studies show significant promise
in using interaction fingerprints to rationalise the link between structure and function,
however the results of these studies were limited to the experimentally available
structural data that cover only a very small fraction of known B2AR ligands. This limited
their general ability to generate the new chemical knowledge needed to answer the

key question in the drug discovery pipeline — what is the next molecule to make?

Ligands exert their action on GPCRs via the interactions they make in the ligand
binding pocket. We hypothesised that despite the observed structural diversity of
ligands targeting a particular receptor, there should be common interacting atoms
within the ligand binding pocket that mediate their action. Given this hypothesis, we
reasoned that among a large dataset of different ligands and their respective binding
poses, the functionally important atomic interactions the ligands make with a particular
receptor will be over-represented. To investigate this hypothesis, we assembled a
database of ~2700 known B2AR ligands and computationally docked them to multiple
experimentally determined B2AR structures, generating ca 75,000 docking poses
(Figure 1A and B). For each of the docking poses, we generated a detailed Atomic
Interaction Fingerprint (AlIF), which comprises of a list of all the pairs of atoms involved
in the interaction between a receptor and a ligand and a classification of each pairwise
interaction as one of fifteen types of bond. In total, there were ca 1,100 possible
interaction descriptors that we interchangeably call features (Figure 1C) in our dataset.
Using pairwise correlation and Machine Learning (ML) approaches, we identified
specific interactions between the ligands and the B.AR that correlated with their
reported agonist or antagonist activity at the receptor (Table S1). In addition to a
common set of interactions that were present for both ligand types, agonists make
specific contacts with the amino acid residues H9326463 KQ72.68x67  52()3542x43
S204543x44  52(7°46x461  H2065°8x%8 gnd K30573%3# in transmembrane helices TM2,
TM5, TM6, TM7 while antagonists make specific interactions with W286648x48 and
Y31674342in TM6 and TM7. This approach successfully identifies the key features of
the ligands in terms of the individual interactions they make with the receptor to exert
their pharmacological action. Importantly, we were able to discover more subtle
relationships where small changes to the ligand result in significant changes to their
pharmacology, the so called activity cliffs encountered in every drug discovery

program. This method represents a novel strategy for understanding the molecular
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mechanism of drug action on receptors and provides a valuable tool to guide the drug

design process.

Results

B2AR agonists are on average bigger and more lipophilic compared to

antagonists.

To construct our dataset of currently known (B2AR ligands we searched all available
open access repositories such as GPCRdb, ChEMBL, DrugBank, Guide to
Pharmacology and ZINC. The curated database included 2683 unique B2AR ligands,
of which 1317 had reported pharmacological action (987 agonists and 330
antagonists/ inverse agonists). The remaining 1366 were classified as “known binders”

with no assigned pharmacological activity (Figure 1A).

To understand if there are any obvious differences between agonists and antagonists,
we compared their physicochemical (PC) properties predicted using OpenBabel
software'. We found that many PC property values for agonists were statistically
different from those for antagonists (unpaired t-test, p < 0.0001), for example,
molecular weight (MW) and lipophilicity (logP) (Figure 2A and B, respectively). The
MW of ~70% of agonist ligands was in the 350-550 g/mol range, with an average of
469 = 108 g/mol. In contrast, the antagonist ligands were typically smaller, with ~70%
within a range of 200-400 g/mol (average 358 + 108 g/mol). The logP values of ~70%
of agonists are in the range 3-7, with an average of 4.6 + 1.6, whereas ~70% of
antagonist ligands had logP values in the range 0-5 (average 3.1 + 1.4). Taken
together, the B2AR agonists profiled here tended to be more lipophilic and bigger in
size. On the other hand, endogenous agonists adrenaline and noradrenaline are small
and water soluble, suggesting that size and lipophilicity are not an intrinsic prerequisite
of all agonists. We observed an identical linear correlation between the molecular
weight and lipophilicity for both agonists and antagonists (Figure 2C), suggesting that
that bigger compounds are more lipophilic. The likely explanation is that drug
discovery efforts have focused on developing B2AR agonists formulated for the
treatment of asthma. They are delivered to the lungs via inhalation with higher

hydrophobicity increasing their duration of action at the target tissue. Therefore,


https://doi.org/10.1101/2021.03.18.434755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.434755; this version posted February 1, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

although the observed differences in size and hydrophobicity are present in our data

set, they are unlikely to have a functional role.

Generating Atomic Interaction Fingerprints based on Molecular Docking Poses

To obtain structural information on how ligands in the curated dataset interact with the
receptor (ie, ligand binding poses), we performed molecular docking using the open-
source AutoDock Vina software’®. Three B2AR structures were studied: the active
conformational states i) PDB 3SNG6 stabilised by the Gs protein?® and ii) PDB 4LDE
stabilised by a nanobody?', and iii) the inactive conformational state PDB 5JQH??. We
obtained ~75,000 binding poses in total, ~25,000 poses for each PDB (up to 10 poses
for ligand, for 2683 compounds) (Figure 1B). Each ligand binding pose was used to
generate an atomic interaction fingerprint (AIF) using Arpeggio software®?, in total we
obtained ~75,000 AIF files (Figure 1C). Each AIF included ~60 unique interactions on
average between the atoms of the ligand and atoms of the receptor. When the type of
atoms of each ligand and the type of bond formed are considered, this resulted in over

1,100 possible types of interaction across the complete ligand dataset.

It is important to consider that the obtained AIF fingerprint dataset contains noise
because not all of the predicted docking poses are likely to be relevant or functionally
important. The limitations of the ligand docking algorithms result in multiple alternative
binding poses with very similar “quality scores”, with only one of the top ten solutions
likely to correspond to the experimentally observed binding pose. While
crystallographic structures typically represent one ligand binding pose, they tend to
represent the lowest energy state of the system. On the other hand, molecular
dynamics simulation and biophysical experiments suggest that ligands are dynamic
when bound to the receptor?*. Therefore, it is important to consider multiple ligand
docking poses in the analysis. We rationalised that in a large dataset of different
ligands and their respective binding poses, the functionally important atomic
interactions between the ligands and the receptor will be over-represented while the

influence of the noise (irrelevant binding poses) would average out.

We improved the signal-to-noise ratio within our dataset by excluding irrelevant
binding poses using prior knowledge based on crystallographic data (Figure 1C,
filtering panel). The majority (ca 97%) of B2AR ligands have a prevalent 3-hydroxy-
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amine motif that makes specific interactions with the receptor. We therefore excluded
poses that did not display this ionic interaction between the oxygen of D113332x32 gnd
the nitrogen atom of ethanolamine of the ligands and the hydrogen bond between the
oxygen atom of N3127-3%38 gnd either the NH or beta-hydroxyl groups in the ligand
scaffold; these have been observed in every experimental crystallographic structure
of the B2AR. After applying this filter, we obtained ~31,500 atomic interactions files
(~10,500 poses and AlF files for each PDB), reducing the size of the original dataset
by ~55%. We refer to this as the “filtered dataset”. As the filtering step also removed
~3% of ligands in our dataset that did not contain the 3-hydroxy-amine motif or did not
produce suitable poses, we have also included in our analysis the “full dataset”

consisting of ~75,000 AIF files with no filtering for comparison.

Data-driven analysis reveals key interactions that drive agonism and

antagonism of ligands

We constructed a ligand-receptor interaction matrix, organising the atom-atom
interactions and their types in the columns and each binding pose in rows for each
PDB. We defined the ligand binding site as all residues that interact with at least one
ligand binding pose in the dataset resulting in 30 residues in total (Table S2). The
atoms of the ligand binding site provide a constant reference coordinate system to
describe ligand-receptor interactions. We defined atomic interaction between specific
atoms of the receptor, and the specific atom (C, N, O, etc) in the ligand and the nature
of the interacting bond (polar, ionic, hydrophobic, etc). This strategy allowed us to
encode the ligand-receptor interaction matrix that accommodates diverse ligands

irrespective of their structural scaffold.

Using Pearson’s pairwise correlation between the independent variables describing
the presence or absence of an atomic interaction and the dependent variable denoting
agonist/antagonist properties of the ligands, we identified atom-atom interactions (or
features) that associated with agonism or antagonism in the filtered dataset. From
about 100 commonly observed interactions, we find that the most representative
interactions for agonist ligands are hydrophobic/aromatic contacts involving K97268x67,
F194ECL2 H206558x%8 gnd K30573%34 and polar/ionic/hydrogen bond contacts with
S203%4243 520454344 52(7546x641 gnd H296°°8%%8 The antagonists made specific
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hydrophobic/aromatic  contacts  with  W2866484  and  Y316’4¥42 and
polar/ionic/hydrogen bond contacts with Y31674342 (Figure 3A and Table S3).

While the majority of interactions had the same impact on receptor function (mediating
agonism or antagonism) for all atoms of the individual residue, in some cases
(D1133'32X32, D19245'51X51, F19345'52X52, T195 ECL2’ F2896'51X51, F2906.52x52’ Y3087'35X34,
N3127-3938) this depended on the individual atoms of the residue and the nature of the
interacting bond (Table S3). For example, the polar/ionic/hydrogen contact of the
carbonyl oxygen (OD1, as defined by the Protein Data Bank format®®) of D113332x32
with an oxygen atom of a ligand is predictive of agonism while interaction with a
nitrogen atom is predictive of antagonism. Contacts made by hydroxyl oxygen (OD2)
of D113332x32 have the opposite effect: interaction with a nitrogen atom of the ligand
corresponds to agonism, whilst interaction with an oxygen atom results in antagonism.
In another example, polar contacts of the sidechain nitrogen (ND2) of N3127-39x38 wjith
oxygen atoms in the ligand corresponded to agonism whilst interaction with nitrogen

leads to antagonism.

The full dataset was a more complex challenge as it contains more noise in terms of
the number of different poses and also a more diverse range of ligands. Nonetheless
we also observed around 100 common interactions, which were mostly the same as
those determined for the filtered dataset. However, several interactions changed their
relative importance (Figure 3B); for example, the importance of S204%4344 gs a
determinant of agonism was reduced, while W313740x3 became more predictive of
agonism. However, the core set of agonist-associated interactions made with
82035.42x43’ 82075.46x461 and, F194ECL2’ H2966'58X58, K3057.32x31 and K972.68x67 remained

the same.

To validate the performance of the Pearson’s pairwise correlation, we computed the
maximum Matthews Correlation Coefficient (MCC) which measures the quality of
binary classifications when the classes are of different sizes as in our case (ca 75%
are agonists). For the filtered dataset, taking the maximum MCC with a cut-off score
of 0.37, we obtained a pharmacological classification (agonist or antagonist) with a
MCC of 0.43 that corresponds to the accuracy of prediction of 79% (Figure S1A). For
the full dataset (cut-off = 0.51), the MCC and accuracy decreased to 0.29 and 67%,

respectively (Figure S1B). An important consideration for interpretation of the
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prediction accuracy is that the training dataset may contain errors: compounds that
are “wrongly” assigned to a particular class (e.g., agonist or antagonist). Therefore,

we would not expect the predictors to be 100% accurate during the validation step.

As the pairwise correlation approach identifies the relative importance of individual
interactions, we applied ML strategies (see methods for details) that can detect more
complex patterns in the data than pairwise correlation analysis. We trained a Random
Forest Classifier (RFC)? on the filtered dataset and XGBoost?’ on the full dataset.
RFC constructs a multitude of decision trees and averages them to improve the
predictive performance and control overfitting, reaching MCC values in training of 0.81
and an accuracy of 92% on the filtered dataset (Figure S2 and S4A). The XGBoost
algorithm that iteratively constructs optimised decision trees guided by the results of
the previous steps performed remarkably well on the full dataset (Figure S3 and S4B),
with a prediction performance on the holdout set of 0.78 MCC and 93% accuracy after
full Bayesian optimisation. This suggests that there are predictive patterns in both the
filtered and full dataset not captured by a simple predictor based on pairwise

correlations.

It is, however, a considerable challenge to interpret what the ML algorithms have
actually learned. We extracted the feature importance for RFC trained on the filtered
dataset (Figure 4A,B) and the feature importance for XGBoost trained on the full
dataset (Figure 4C,D), using the Shapley Additive Explanations (SHAP) values which
reflect the contribution of each feature to the prediction. In most cases, the presence
of a particular interaction is predictive of agonism or antagonism. However, in a
minority of cases, the absence of the interaction was more important for predictions
(e.g., 193/CB-1/C hydrophobic).

Overall, while the relative order of importance of individual features varied depending
on the model, we observed the same set of interactions that were predictive of
agonism or antagonism for both models (Table S4). The application of pairwise
correlation analysis and ML methods allowed us to identify the key interactions

associated with agonism or antagonism of ligands (Figures 3 and 5).
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Discussion

While an observation that on average agonists are larger and more hydrophobic could
potentially be used to distinguish them from antagonists in BAR ligand dataset, the
pharmacological action of ligands on GPCRs is far more specific than a simple function

of their size or hydrophobicity.
Specific ligand-receptor interactions determine their pharmacological activity

While ML algorithms can successfully classify compounds into agonists and
antagonists, understanding what their decision is based on and translating this
information into the language humans can understand is crucial for their usefulness
for drug discovery?8. Studying the ligand binding poses of thousands of ligands docked
in the B2AR binding pocket allowed us to identify the key ligand-receptor interactions
which dictate a molecule’s propensity to cause agonism or antagonism. The
structurally diverse nature of the test set that consisted of all ligands with reported
activity in publicly accessible databases allowed us to identify several “hot spots”
mediating the agonism or antagonism of ligands acting on B2AR. Agonism was
mediated by residues in TM2 and TMS5, and further facilitated by residues in TM6 and
TMY. It is entirely plausible that certain ligands can successfully pull these TM regions
together causing receptor activation in the process. In contrast, our data suggest that
antagonism is mediated by the interaction of ligands with W286%4848  the so called
toggle switch, that has long been proposed to play a key role in the activation of
GPCRs?%20. The second mediator of antagonism is Y316743*42 which is involved in the
so called 3-7 lock that has previously been identified as important for GPCR
activation3'. Engaging these key residues in the ligand binding pocket likely prevent

the conformational rearrangements necessary for activation of the receptor.
Potential for developing more fine-grained models of ligand activity

While the assembled data classify compounds as agonist or antagonist, the
pharmacological activity of compounds covers a spectrum from a very strong
antagonist (aka inverse agonist) to that of a very strong agonist (aka full agonist).
Another class of GPCR ligands, so called biased ligands, changes the balance
between activating G protein and arrestin signalling pathways, with a potential to
increase their therapeutic benefits®2. It is likely that such partial and biased ligands

would also show a distinct AIF that is somewhat different from the all-inclusive agonist
10
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AIF we have identified in the current work. However, a large experimental dataset of
partial or biased agonists would be needed to explore this hypothesis, ideally collected
in a uniform screen to minimise experimental and interpretational bias. The analysis
of the learning performance of RFC and XGBoost classifiers (Figure S4) suggest that
reasonable performance is achieved with a limited dataset (ca 300-450 compounds),
although further increases in the dataset size resulted in improved performance. It is
likely that an even larger dataset would be required to predict continuous rather than

binary structure-activity relationship from AlFs.

Our methodology can be readily applied to any receptor (or drug target) for which an
extensive set of ligands has been developed and characterised, and where in silico
docking experiments can be performed. This can include data already in the public
domain or through examining the results of an in house (e.g., commercial) drug-target
screening campaign. The advantage here is that in many cases the same signalling
assay will have been used to profile all the compounds, improving the consistency of
the dataset. This would allow the relative importance of each atom-atom interaction to
be assessed as a modifier of signalling output. Also, it may be possible to isolate
functional readouts (e.g. B—arrestin versus G protein) and therefore make predictions
about functional bias. Further tantalising possibilities include the use of automated
internet meta search of publications and patents to assemble such datasets and
reduce the number of compounds described as “known binders” if they are not

available yet.
Potential for developing predictors of pharmacological activity for novel ligands

Being able to understand which atoms of the ligand drive agonist or antagonist activity
significantly increases the value of in silico docking campaigns. Importantly, it opens
doors to a more rational engineering of ligands with improved and optimised
pharmacological properties — facilitating the design of new ligands not present in the
large virtual libraries and thus opening up a chemical space many orders of magnitude

larger than the largest virtual libraries available.

From a computation perspective, it is a relatively straight-forward task to generate a
prediction of ligand pharmacological activity based on the model learned and the
predicted binding pose of the ligand and the corresponding AlF. However, large scale

docking experiments produce multiple possible ligand binding poses, and the existing
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scoring functions do not allow for reliable identification of the “correct” binding pose.
The structural diversity of the ligands complicates the analysis even further as
overlaying of the predicted binding pose with the available experimental data is not

always informative.

Our data strongly support the hypothesis that individual atomic interactions are
correlated with ligand pharmacological activity. This is learned from a large dataset of
ligand binding poses, where “correct’” binding poses are a minority but machine
learning methods we used identified the structure-activity relationship because
“‘wrong” binding poses averaged themselves out. Prediction of pharmacological
activity, on the other hand, is 100% dependent on having a correct binding pose for
the ligand. This is a problem that has not yet been solved in a satisfactory manner,
and it limits the performance of any structure-based activity prediction method. It is
clear that the future progress in our ability to predict the pharmacological activity of
novel ligands will be closely correlated with our ability to correctly predict their ligand

binding poses.

Conclusions

These results strongly support the hypothesis that the interatomic interactions
between the receptor and its ligands are central to differentiate between their agonist
and antagonist effects at the B2AR. The overview obtained of the interatomic
interactions between receptor and ligand which correlates with an action will help the
synthesis of new previously unseen compounds with a specific pharmacological
activity. The growth of GPCR ligand databases provides a rich data source to facilitate
the application of this approach to other GPCRs, while conceptually this approach

could be applied to any drug target.

The ability to predict the pharmacological action of a ligand based on its ligand binding
pose will significantly advance drug discovery projects contributing to a reduction of
attrition during drug development. The tools presented have the potential to focus the
efforts of chemists proposing new candidate molecules based on existing scaffolds
and offers the opportunity to identify completely new scaffolds that may be more

amendable to modifications from large scale docking experiments, thus opening up a
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chemical space many orders of magnitude larger than the largest virtual libraries

available.
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Figure 1. Workflow of the project. (A) Source of beta-adrenoceptor ligands available

at open access repositories which comprise our 2683 compound dataset. (B)

Molecular docking of test ligands to active and inactive 2AR structures was performed

using Autodock Vina. (C) Interatomic interaction fingerprint (AlF) calculations were

made using Arpeggio. In case of the “filtered dataset”, the generated AlFs were filtered

based on the presence of ionic interactions with D113332x32 gnd N3127-39x38,
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Figure 2. Physicochemical (PC) properties of the ligands (agonist in blue and
antagonist in orange) predicted using OpenBabel software. (A) Molecular weight
(MW) in g/mol, (B) lipophilicity (log P) and (C) correlation between lipophilicity and
molecular weight. Spearman correlation coefficient is 0.62 for agonist and 0.76 for

antagonists.

18


https://doi.org/10.1101/2021.03.18.434755
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.434755; this version posted February 1, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 3

A) FILTERED DATASET

H2966.58
K3057.32
W31 37.40

AGONIST ANTAGONIST
o
m u ~ ECL2 W109328  T110%20
[ F193 BED [vies Y3167-43
= [ 7195 "'.. V7336 | [ T1183%7
@ A2005-3° ...,'OY\O 0.:. _‘- —
32045-44 M . nm 1942.65 ™2
Hg3264
S$207546
H2966'58 V297659 ..‘..:E m 13097-36
293 [EEED IBEE
K3057-% ™6 ™7
B) FULL DATASET
AGONIST ANTAGONIST
m ECL2 W109328 | T11032
m m V114333
T118337 :;:::: [ 7195 "._': V117338
™ : a . 194265 TM2
5203°42 V29765 D) | 1007
6.5 90552 | 9651 | m Y316743
$207546 () Fasotsa) Fasst
2 T™e ™7

Figure 3. Schematic representation of the interactions predicted using the
pairwise correlation approach. (A) filtered dataset and (B) full dataset. The type of
interaction is summarised in squared shape for hydrophobic and aromatic contacts,
round shape for the polar, ionic and hydrogen bond contacts, and the combination of
both. The dotted purple lines represent ionic and/or hydrogen bond contacts. The

ethanolamine moiety of the BI-167107 ligands is highlighted in light blue.
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Figure 4. Feature importance of the RFC (A,B) and XGBoost ML (C,D) models
applying SHAP value method. (A,C) The x-axis is the average magnitude change in
model output when a feature is “hidden” from the model. Higher SHAP values indicate
higher importance of the feature. (B,D) Local SHAP values per sample (each ligand
pose) sorted by the mean absolute SHAP value method. Grey represents a value of
0, thus indicating the absence of a particular atomic interaction for a specific sample.
Black represents a value of 1, thus indicating the presence of a particular atomic
interaction for a specific sample. The x-axis shows how the presence or absence of
an atomic feature increases or decreases the likelihood of a sample being classified
as an antagonist. The data are plotted for all samples in the dataset, showing the
distribution of importance values. The units of the x-axis using RFC and XGBoost are

log odds.
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Figure 5. Schematic representation of the interactions for the machine learning
approach. (A) RFC for the filtered dataset and (B) XGBoost for full dataset. The type
of interaction is summarised in squared shape for hydrophobic and aromatic contacts,
round shape for the polar, ionic and hydrogen bond contacts, and the combination of
both. The dotted purple lines represent ionic and/or hydrogen bond contacts. The
black outlines represent the atomic interactions with higher feature importance. The

ethanolamine moiety of the BI-167107 ligands is highlighted in light blue.
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Methods

Dataset preparation

A dataset was compiled using the primary open access repositories GPCRdb'?,
ChEMBLS3, ZINC*, DrugBank® and Guide to Pharmacology®. This dataset yielded a
total of 2,643 unique B2AR ligands, of which 1317 have reported pharmacological
action, while 1,326 compounds are binders with undetermined activity profiles. We
classify ligands with known activity as either agonists (including partial and full

agonists) or antagonists (including inverse agonists).

Each ligand was assigned an internal ID (ranging from 1 to 2,643), and its
corresponding SMILES string (line notation encoding its molecular structure) and
pharmacological action (agonist/antagonist/binder) were retrieved from the relevant
databases. The International Chemical Identifier key (InChlKey) was used as a unique
identifier to distinguish between ligands across the dataset’. Both InChlKey and
physicochemical properties appended for all compounds were acquired using the

software Open Babel v3.1.18.

Protein structures and ligand preparation and Docking

The active-state protein coordinates were extracted from two crystal structures of
human B2AR bound to an ultrahigh-affinity agonist (BI167107) coupled with the Gs
protein® or/and with a G protein-mimicking nanobody (Nb6B9)'° from the Protein Data
Bank (PDB code: 3SN6 and 4LDE, respectively). The inactive-state protein
coordinates were extracted from the human B2AR bound to the inverse agonist
carazolol (PDB code: 5JQH)'".

Receptor structures were aligned to use the same grid box of 22 x 22 x 32 A at the
orthosteric binding site, protonated and charged, yielding a protein input file for

subsequent docking experiments using UCSF Chimera'.

The SMILES representation of ligands along with their internal ID were protonated and

converted to a spatial data file (SDF) and pdbqt formats using Obabel.

The semi-flexible molecular docking was carried out using the software AutoDock

Vina'3 and generated up to 10 poses for every compound. In total, 2,643 compounds
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were docked in three (-adrenoceptor structures, yielding almost 27,000 docking

poses.

Interaction fingerprint calculations and filtering

The inter-atomic receptor-ligand interaction fingerprints (AlFs) were calculated for all
docking poses generated for each compound using the software Arpeggio'* executed
in Docker environment'®, a software container platform. This method accounts for the
presence of up to 15 subtypes of interatomic interactions, classified by atom type,
distance and angle constraints. The output was presented as binary values, with a 1

denoting the presence of a particular defined interaction and 0 indicating an absence.

A Python script was written to filter the Arpeggio results (to generate the “filtered
dataset”) by imposing minimum constraints that enforced certain features deemed
essential for B2AR ligand binding, which it eliminated all irrelevant binding poses
(around 50% rows). Criteria important for binding were based on prior knowledge
derived from the literature, in particular the presence of the ionic/polar interaction

between D113332and N31273° with the ethanolamine moiety of the ligands.

Generation of interaction matrix

A Python script was written to process each docking pose to generate a single MxN
matrix for each PDB, where M are ligand poses (samples as ‘ligand internal
ID_docking pose number’) and N are the specific atomic interaction (features as
‘receptor residue number/interacting atom — ligand interacting atom and interaction
type’ (e.g. ‘lig 752_04’ and ‘301/0 - N Polar’ respectively)), present in the whole ligand
set. The value 1 corresponds to the occurrence of a particular type of interaction and
0 to the non-occurrence of a particular type of interaction. As the AlF files generated
by Arpeggio only contained the interaction present for a particular docking pose, the
imputation of missing data was handled by setting any undefined (NaN) values to 0.
Finally, we excluded the 3 subtypes of interactions reported by Arpeggio: Clash, VdW
Clash and Proximal from subsequent analysis as they provided very little information
but represented around 60% of the columns. We also included pharmacological action
label (“agonist” or “antagonist”, if known, or “binder” if not known) for each ligand

binding pose in the same data table as an additional column.
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Descriptive statistical analysis

A descriptive statistical analysis of the frequency of the interatomic interactions was
performed using a Python script. In this manner, the most frequently occurring features
(those observed in at least 10% of all docking poses) contributing to agonism and
antagonism were clearly identified across all interaction types and collated for further
analysis. This resulted in the reduction of the number of features from ca 1,100 to ca
100.

Subsequently, we computed pairwise correlation between the columns representing
atomic interactions and the column representing pharmacological action using
Pearson’s correlation coefficient (r) method. The resulting value r for each interaction
(feature) reflects how well it is correlated with the pharmacological action (agonism or
antagonism). Plots, graphs, and tables were generated with Excel, and statistical

significance was determined using an unpaired t-test using Prism 8.

Machine learning dataset preparation

The dataset was then randomly shuffled and split, via stratification, into cross-
validation and final hold-out datasets. The cross-validation set was used for training
and validation during hyperparameter optimisation. The hold-out dataset comprised
2% of the original dataset and allowed us to gauge whether the validation scores were
good estimations of model performance when generalising to unseen data. The hold-

out set was not used during any training or optimisation procedures.

Model Selection

Performance Metric

For the filtered dataset the Random Forest classifier and for the unfiltered dataset
XGBoost classifier were used. Matthews correlation coefficient (MCC) was used as
the performance metric for all models'®. The MCC metric is defined as follows:

TP TN — FP «FN

Mce = (TP + FP)(TP + FN)(TN + FP)(TN + FN)
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Where TP is the number of true positives, TN the number of true negatives, FP the
number of false positives and FN the number of false negatives. The MCC for binary
classification weights both positive and negative classes equally, whilst also being
robust to severe class imbalances. A value of +1 indicates a perfect positive
correlation, that is a total agreement between prediction and observation. An MCC
score of 0 indicates no correlation, that is the classifier performs no better than a
random coin flip. Finally, -1 indicates a perfect negative correlation, that is a total

disagreement between prediction and observation.

Model Performance Estimation

Model performance was validated using repeated-stratified-k-fold cross-validation.
Cross validation entails splitting the dataset into k equally sized partitions, termed
folds. One of the folds is extracted and used for validating a model on unseen data.
The remaining folds are then used to train the model. This process is then repeated
using each of the k folds as the validation set. The optimal model is the one which has
the best performance on average across all k folds. Cross validation generally
provides a less optimistic estimation of model generalizability on unseen data, which
is finally tested on the holdout set. Due to class imbalances in the data, stratification
is used to ensure that the original distribution of classes is maintained in each fold,
thus preventing any fold from being populated by a single class'’. Model estimation
can be noisy and so by performing cross-validation over many repeats one obtains a
more precise estimation of true model performance. Bootstrap resampling was used
to estimate model uncertainty'® . Confidence intervals were calculated with respect to
a 99% confidence level. Bayesian hyperparameter optimisation (BHO) was utilised to
determine high performing model parameter configurations when tested on unseen
data. BHO was set to maximize the mean MCC across K-folds and repeats, model

uncertainty was then calculated using optimised models only.
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Random Forest Classifier Hyper Parameters

Hyperparameter Name Hyperparameter Value
Criterion Gini
Estimators 2000
Max Depth 5
Max-Features 5

Splitter Best
Minimum Samples Split 2
Minimum Samples Leaf 1
Minimum weighted fraction Leaf| 0
Maximum Leaf Nodes Unlimited
Minimum Impurity Split None
Minimum Impurity Decrease None

XGBoost Hyper Parameters

Hyperparameter Name | Hyperparameter Value

Eta 0.4306
gamma 0.2458
Learning Rate 0.05873
Max Delta Step 7

Max Depth 8

Minimum Child Weight | 1.246

Number of Estimators | 1150

Scale Positive Weight | 1
Subsample 0.7532

All other hyperparameters for XGBoost that are not specified were kept at their
default values according to the XGBoost API guide

(https://xgboost.readthedocs.io/en/latest/parameter.html)

Model Feature Importance analysis
The most important atomic interactions, for classifying agonist or antagonist ligands,
were identified using the Shapley Additive Explanations (SHAP) method'®. Shapley

values are based upon coalition game theory and inform one how to fairly distribute
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the prediction of a model among the features. The Shapley value for one feature is the
average marginal contribution of a feature value across all the possible combinations
of features. More concretely the Shapley value assigns an importance to each feature
by calculating the effect on model prediction when including a particular feature
compared to the model prediction when the feature is withheld. Mathematically this

can be formalised as

ISI!(IMI—ISI—l)![
[M]!

i = Dscmyi fGSUi) — £,

where S refers to a subset of features that does not contain the feature for which we
are calculating ¢;. S Ui is the subset that contains features in S and feature i. Finally,
S € M/i represents all sets S that are subsets of the total set of features M, excluding
feature i. The computation time increases exponentially with the number of features;
thus we used the TreeSHAP algorithm that approximates SHAP values for tree-based
machine learning models in polynomial time?°. The main motivations for using the
SHAP feature importance method over other popular methods, such as Gini and

Permutation methods, is due to the following:

Consistency: The Gini feature importance method is susceptible to producing
inconsistent feature importances that are biased to the specific ordering of features
specified by their position, as split nodes, in the tree. TreeSHAP method is equivalent
to averaging differences in model predictions over all possible orderings of the features

and thus does not suffer from such inconsistencies.

Granular Interpretability: Although permutation importance is not biased to the specific
structure of decision trees it only provides a global understanding of the most important
features. With TreeSHAP, observations get their own set of SHAP values and

therefore we can understand feature importance on a per sample basis.

Determining The Optimal Number of Repeats

There is an exponential relationship between the number of times one has to repeat
Bootstrap or Cross-Validation and the level of precision to within which one would like
to measure true model performance. This leads to a trade-off between the precision

and time complexity of model performance estimation. We thus estimate the optimal
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number of repeats to use for Bootstrap and cross-validation resampling methods to

an acceptable level of precision as:

where z is the ordinate on the Normal distribution curve that corresponds to a particular
level of confidence we have in our estimation, denoted «a. o is the population standard
deviation and ¢ is the specified precision of the estimate. We estimate the population
standard deviation via repeated bootstrap resampling, thus each estimate of the
number of repeats is specific to the variance of each model and its hyperparameter

configuration (https://www.itl.nist.gov/div898/handbook/ppc/section3/ppc333.htm).

A precision of 1% (Marginal Error = 0.01) was selected for all resampling methods
(Supplementary Figure 5). Therefore, a minimum of 13 repeats for both the RFC and

XGBoost were used during cross-validation and bootstrap resampling.
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