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Abstract 

G protein coupled receptors (GPCRs) are valuable therapeutic targets for many 

diseases. A central question of GPCR drug discovery is to understand what 

determines the agonism or antagonism of ligands which bind them. Ligands exert their 

action via the interactions in the ligand binding pocket. We hypothesised that there is 

a common set of receptor interactions made by ligands of diverse structures that 

mediate their action and that among a large dataset of different ligands, the 

functionally important interactions will be over-represented. We computationally 

docked ~2700 known β2AR ligands to multiple β2AR structures, generating ca 75,000 

docking poses and predicted all atomic interactions between the receptor and the 

ligand. We used machine learning (ML) techniques to identify specific interactions that 

correlate with the agonist or antagonist activity of these ligands. The interpretation of 

ML analysis in human understandable form allowed us to construct an exquisitely 

detailed structure-activity relationship that identifies small changes to the ligands that 

invert their activity and thus helps to guide the drug discovery process. This approach 

can be readily applied to any drug target.  
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Introduction  

G-protein-coupled receptors (GPCRs) remain a therapeutically important family of 

proteins with over 100 receptors targeted by 500 drugs approved for clinical use1. The 

human β2-adrenoceptor (β2AR) responds to stimulation by the endogenous agonist 

ligands adrenaline and noradrenaline by inducing Gs-mediated cAMP signalling and 

is a valuable target for small molecule smooth muscle relaxants used to treat asthma 

and other pulmonary diseases2,3. Endogenous agonist activity can be readily inhibited 

by so-called antagonist drugs that prevent receptor activation by occupying the binding 

pocket without activation and blocking agonist access. A large number of ligands have 

been developed to target β-adrenoceptors (βAR) over the last 60 years since the 

pioneering discovery of beta-blockers by Sir James Black3-7.  

All GPCRs share a common architecture of a bundle of seven transmembrane helices 

(TMs), with the ligand binding pocket accessible from the extracellular space and an 

intracellular effector binding site that becomes available following transition into an 

active receptor conformation8. One of the key features of GPCRs is that they are highly 

dynamic and adopt many distinct conformations that are important for engagement of 

signalling partners, e.g. activation of the Gs protein or arrestins9. It is generally thought 

that ligands control GPCR activity by preferentially stabilising active or inactive 

conformations10. With 35 reported structures with 13 diverse ligands in inactive and 

active states reported, β2AR is one of the best studied GPCRs from a structural 

perspective.  

Structure-based drug design has become an integral part of the modern drug 

discovery process. Approaches to link ligand structure to its activity are generally 

based on the ligand chemical structure (similar chemical structure have similar activity 

paradigm) or by considering the interactions between the ligand and the receptor. 

Structural Interaction Fingerprints that describe the interactions of ligands with 

proteins11-13 have proven to be a very successful approach to score binding poses of 

ligands. A number of different interaction fingerprints have been developed, with more 

complex ones that incorporate atomic interactions and different types of non-covalent 

interactions having superior performance14. Several studies have attempted to link 

structural properties of the ligands and the interactions they make to the receptor to 

their functionality, based on available crystallographic structures and complemented 
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with ligand docking16,17 or MD simulations15. These studies show significant promise 

in using interaction fingerprints to rationalise the link between structure and function, 

however the results of these studies were limited to the experimentally available 

structural data that cover only a very small fraction of known β2AR ligands. This limited 

their general ability to generate the new chemical knowledge needed to answer the 

key question in the drug discovery pipeline – what is the next molecule to make?  

Ligands exert their action on GPCRs via the interactions they make in the ligand 

binding pocket. We hypothesised that despite the observed structural diversity of 

ligands targeting a particular receptor, there should be common interacting atoms 

within the ligand binding pocket that mediate their action. Given this hypothesis, we 

reasoned that among a large dataset of different ligands and their respective binding 

poses, the functionally important atomic interactions the ligands make with a particular 

receptor will be over-represented. To investigate this hypothesis, we assembled a 

database of ~2700 known β2AR ligands and computationally docked them to multiple 

experimentally determined β2AR structures, generating ca 75,000 docking poses 

(Figure 1A and B). For each of the docking poses, we generated a detailed Atomic 

Interaction Fingerprint (AIF), which comprises of a list of all the pairs of atoms involved 

in the interaction between a receptor and a ligand and a classification of each pairwise 

interaction as one of fifteen types of bond. In total, there were ca 1,100 possible 

interaction descriptors that we interchangeably call features (Figure 1C) in our dataset. 

Using pairwise correlation and Machine Learning (ML) approaches, we identified 

specific interactions between the ligands and the b2AR that correlated with their 

reported agonist or antagonist activity at the receptor (Table S1). In addition to a 

common set of interactions that were present for both ligand types, agonists make 

specific contacts with the amino acid residues H932.64x63, K972.68x67, S2035.42x43, 

S2045.43x44, S2075.46x461, H2966.58x58 and K3057.35x34 in transmembrane helices TM2, 

TM5, TM6, TM7 while antagonists make specific interactions with W2866.48x48 and 

Y3167.43x42 in TM6 and TM7. This approach successfully identifies the key features of 

the ligands in terms of the individual interactions they make with the receptor to exert 

their pharmacological action. Importantly, we were able to discover more subtle 

relationships where small changes to the ligand result in significant changes to their 

pharmacology, the so called activity cliffs encountered in every drug discovery 

program. This method represents a novel strategy for understanding the molecular 
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mechanism of drug action on receptors and provides a valuable tool to guide the drug 

design process.  

 

Results  

β2AR agonists are on average bigger and more lipophilic compared to 
antagonists.  

To construct our dataset of currently known β2AR ligands we searched all available 

open access repositories such as GPCRdb, ChEMBL, DrugBank, Guide to 

Pharmacology and ZINC. The curated database included 2683 unique β2AR ligands, 

of which 1317 had reported pharmacological action (987 agonists and 330 

antagonists/ inverse agonists). The remaining 1366 were classified as “known binders” 

with no assigned pharmacological activity (Figure 1A).  

To understand if there are any obvious differences between agonists and antagonists, 

we compared their physicochemical (PC) properties predicted using OpenBabel 

software18. We found that many PC property values for agonists were statistically 

different from those for antagonists (unpaired t-test, p < 0.0001), for example, 

molecular weight (MW) and lipophilicity (logP) (Figure 2A and B, respectively). The 

MW of ~70% of agonist ligands was in the 350-550 g/mol range, with an average of 

469 ± 108 g/mol. In contrast, the antagonist ligands were typically smaller, with ~70% 

within a range of 200-400 g/mol (average 358 ± 108 g/mol). The logP values of ~70% 

of agonists are in the range 3-7, with an average of 4.6 ± 1.6, whereas ~70% of 

antagonist ligands had logP values in the range 0-5 (average 3.1 ± 1.4). Taken 

together, the β2AR agonists profiled here tended to be more lipophilic and bigger in 

size. On the other hand, endogenous agonists adrenaline and noradrenaline are small 

and water soluble, suggesting that size and lipophilicity are not an intrinsic prerequisite 

of all agonists. We observed an identical linear correlation between the molecular 

weight and lipophilicity for both agonists and antagonists (Figure 2C), suggesting that 

that bigger compounds are more lipophilic. The likely explanation is that drug 

discovery efforts have focused on developing β2AR agonists formulated for the 

treatment of asthma. They are delivered to the lungs via inhalation with higher 

hydrophobicity increasing their duration of action at the target tissue. Therefore, 
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although the observed differences in size and hydrophobicity are present in our data 

set, they are unlikely to have a functional role. 

 

Generating Atomic Interaction Fingerprints based on Molecular Docking Poses  

To obtain structural information on how ligands in the curated dataset interact with the 

receptor (ie, ligand binding poses), we performed molecular docking using the open-

source AutoDock Vina software19. Three β2AR structures were studied: the active 

conformational states i) PDB 3SN6 stabilised by the Gs protein20 and ii) PDB 4LDE 

stabilised by a nanobody21, and iii) the inactive conformational state PDB 5JQH22. We 

obtained ~75,000 binding poses in total, ~25,000 poses for each PDB (up to 10 poses 

for ligand, for 2683 compounds) (Figure 1B). Each ligand binding pose was used to 

generate an atomic interaction fingerprint (AIF) using Arpeggio software23, in total we 

obtained ~75,000 AIF files (Figure 1C). Each AIF included ~60 unique interactions on 

average between the atoms of the ligand and atoms of the receptor. When the type of 

atoms of each ligand and the type of bond formed are considered, this resulted in over 

1,100 possible types of interaction across the complete ligand dataset.  

It is important to consider that the obtained AIF fingerprint dataset contains noise 

because not all of the predicted docking poses are likely to be relevant or functionally 

important. The limitations of the ligand docking algorithms result in multiple alternative 

binding poses with very similar “quality scores”, with only one of the top ten solutions 

likely to correspond to the experimentally observed binding pose. While 

crystallographic structures typically represent one ligand binding pose, they tend to 

represent the lowest energy state of the system. On the other hand, molecular 

dynamics simulation and biophysical experiments suggest that ligands are dynamic 

when bound to the receptor24. Therefore, it is important to consider multiple ligand 

docking poses in the analysis. We rationalised that in a large dataset of different 

ligands and their respective binding poses, the functionally important atomic 

interactions between the ligands and the receptor will be over-represented while the 

influence of the noise (irrelevant binding poses) would average out.  

We improved the signal-to-noise ratio within our dataset by excluding irrelevant 

binding poses using prior knowledge based on crystallographic data (Figure 1C, 

filtering panel). The majority (ca 97%) of β2AR ligands have a prevalent β-hydroxy-
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amine motif that makes specific interactions with the receptor. We therefore excluded 

poses that did not display this ionic interaction between the oxygen of D1133.32x32 and 

the nitrogen atom of ethanolamine of the ligands and the hydrogen bond between the 

oxygen atom of N3127.39x38 and either the NH or beta-hydroxyl groups in the ligand 

scaffold; these have been observed in every experimental crystallographic structure 

of the β2AR. After applying this filter, we obtained ~31,500 atomic interactions files 

(~10,500 poses and AIF files for each PDB), reducing the size of the original dataset 

by ~55%. We refer to this as the “filtered dataset”. As the filtering step also removed 

~3% of ligands in our dataset that did not contain the β-hydroxy-amine motif or did not 

produce suitable poses, we have also included in our analysis the “full dataset” 

consisting of ~75,000 AIF files with no filtering for comparison.  

 

Data-driven analysis reveals key interactions that drive agonism and 
antagonism of ligands 

We constructed a ligand-receptor interaction matrix, organising the atom-atom 

interactions and their types in the columns and each binding pose in rows for each 

PDB. We defined the ligand binding site as all residues that interact with at least one 

ligand binding pose in the dataset resulting in 30 residues in total (Table S2). The 

atoms of the ligand binding site provide a constant reference coordinate system to 

describe ligand-receptor interactions. We defined atomic interaction between specific 

atoms of the receptor, and the specific atom (C, N, O, etc) in the ligand and the nature 

of the interacting bond (polar, ionic, hydrophobic, etc). This strategy allowed us to 

encode the ligand-receptor interaction matrix that accommodates diverse ligands 

irrespective of their structural scaffold.  

Using Pearson’s pairwise correlation between the independent variables describing 

the presence or absence of an atomic interaction and the dependent variable denoting 

agonist/antagonist properties of the ligands, we identified atom-atom interactions (or 

features) that associated with agonism or antagonism in the filtered dataset. From 

about 100 commonly observed interactions, we find that the most representative 

interactions for agonist ligands are hydrophobic/aromatic contacts involving K972.68x67, 

F194ECL2, H2966.58x58 and K3057.35x34 and polar/ionic/hydrogen bond contacts with 

S2035.42x43, S2045.43x44, S2075.46x641 and H2966.58x58. The antagonists made specific 
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hydrophobic/aromatic contacts with W2866.48x48 and Y3167.43x42 and 

polar/ionic/hydrogen bond contacts with Y3167.43x42 (Figure 3A and Table S3).  

While the majority of interactions had the same impact on receptor function (mediating 

agonism or antagonism) for all atoms of the individual residue, in some cases 

(D1133.32x32, D19245.51x51, F19345.52x52, T195 ECL2, F2896.51x51, F2906.52x52, Y3087.35x34, 

N3127.39x38) this depended on the individual atoms of the residue and the nature of the 

interacting bond (Table S3). For example, the polar/ionic/hydrogen contact of the 

carbonyl oxygen (OD1, as defined by the Protein Data Bank format25) of D1133.32x32 

with an oxygen atom of a ligand is predictive of agonism while interaction with a 

nitrogen atom is predictive of antagonism. Contacts made by hydroxyl oxygen (OD2) 

of D1133.32x32 have the opposite effect: interaction with a nitrogen atom of the ligand 

corresponds to agonism, whilst interaction with an oxygen atom results in antagonism. 

In another example, polar contacts of the sidechain nitrogen (ND2) of N3127.39x38 with 

oxygen atoms in the ligand corresponded to agonism whilst interaction with nitrogen 

leads to antagonism. 

The full dataset was a more complex challenge as it contains more noise in terms of 

the number of different poses and also a more diverse range of ligands. Nonetheless 

we also observed around 100 common interactions, which were mostly the same as 

those determined for the filtered dataset. However, several interactions changed their 

relative importance (Figure 3B); for example, the importance of S2045.43x44 as a 

determinant of agonism was reduced, while W3137.40x39 became more predictive of 

agonism. However, the core set of agonist-associated interactions made with 

S2035.42x43, S2075.46x461 and, F194ECL2, H2966.58x58, K3057.32x31 and K972.68x67 remained 

the same.  

To validate the performance of the Pearson’s pairwise correlation, we computed the 

maximum Matthews Correlation Coefficient (MCC) which measures the quality of 

binary classifications when the classes are of different sizes as in our case (ca 75% 

are agonists). For the filtered dataset, taking the maximum MCC with a cut-off score 

of 0.37, we obtained a pharmacological classification (agonist or antagonist) with a 

MCC of 0.43 that corresponds to the accuracy of prediction of 79% (Figure S1A). For 

the full dataset (cut-off = 0.51), the MCC and accuracy decreased to 0.29 and 67%, 

respectively (Figure S1B). An important consideration for interpretation of the 
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prediction accuracy is that the training dataset may contain errors: compounds that 

are “wrongly” assigned to a particular class (e.g., agonist or antagonist). Therefore, 

we would not expect the predictors to be 100% accurate during the validation step.  

As the pairwise correlation approach identifies the relative importance of individual 

interactions, we applied ML strategies (see methods for details) that can detect more 

complex patterns in the data than pairwise correlation analysis. We trained a Random 

Forest Classifier (RFC)26 on the filtered dataset and XGBoost27 on the full dataset. 

RFC constructs a multitude of decision trees and averages them to improve the 

predictive performance and control overfitting, reaching MCC values in training of 0.81 

and an accuracy of 92% on the filtered dataset (Figure S2 and S4A). The XGBoost 

algorithm that iteratively constructs optimised decision trees guided by the results of 

the previous steps performed remarkably well on the full dataset (Figure S3 and S4B), 

with a prediction performance on the holdout set of 0.78 MCC and 93% accuracy after 

full Bayesian optimisation. This suggests that there are predictive patterns in both the 

filtered and full dataset not captured by a simple predictor based on pairwise 

correlations.   

It is, however, a considerable challenge to interpret what the ML algorithms have 

actually learned. We extracted the feature importance for RFC trained on the filtered 

dataset (Figure 4A,B) and the feature importance for XGBoost trained on the full 

dataset (Figure 4C,D), using the Shapley Additive Explanations (SHAP) values which 

reflect the contribution of each feature to the prediction. In most cases, the presence 

of a particular interaction is predictive of agonism or antagonism. However, in a 

minority of cases, the absence of the interaction was more important for predictions 

(e.g., 193/CB-1/C hydrophobic).  

Overall, while the relative order of importance of individual features varied depending 

on the model, we observed the same set of interactions that were predictive of 

agonism or antagonism for both models (Table S4). The application of pairwise 

correlation analysis and ML methods allowed us to identify the key interactions 

associated with agonism or antagonism of ligands (Figures 3 and 5).  
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Discussion  

While an observation that on average agonists are larger and more hydrophobic could 

potentially be used to distinguish them from antagonists in βAR ligand dataset, the 

pharmacological action of ligands on GPCRs is far more specific than a simple function 

of their size or hydrophobicity.  

Specific ligand-receptor interactions determine their pharmacological activity 

While ML algorithms can successfully classify compounds into agonists and 

antagonists, understanding what their decision is based on and translating this 

information into the language humans can understand is crucial for their usefulness 

for drug discovery28. Studying the ligand binding poses of thousands of ligands docked 

in the β2AR binding pocket allowed us to identify the key ligand-receptor interactions 

which dictate a molecule’s propensity to cause agonism or antagonism. The 

structurally diverse nature of the test set that consisted of all ligands with reported 

activity in publicly accessible databases allowed us to identify several “hot spots” 

mediating the agonism or antagonism of ligands acting on β2AR. Agonism was 

mediated by residues in TM2 and TM5, and further facilitated by residues in TM6 and 

TM7. It is entirely plausible that certain ligands can successfully pull these TM regions 

together causing receptor activation in the process. In contrast, our data suggest that 

antagonism is mediated by the interaction of ligands with W2866.48x48, the so called 

toggle switch, that has long been proposed to play a key role in the activation of 

GPCRs29,30. The second mediator of antagonism is Y3167.43x42 which is involved in the 

so called 3-7 lock that has previously been identified as important for GPCR 

activation31. Engaging these key residues in the ligand binding pocket likely prevent 

the conformational rearrangements necessary for activation of the receptor.      

Potential for developing more fine-grained models of ligand activity  

While the assembled data classify compounds as agonist or antagonist, the 

pharmacological activity of compounds covers a spectrum from a very strong 

antagonist (aka inverse agonist) to that of a very strong agonist (aka full agonist). 

Another class of GPCR ligands, so called biased ligands, changes the balance 

between activating G protein and arrestin signalling pathways, with a potential to 

increase their therapeutic benefits9,32. It is likely that such partial and biased ligands 

would also show a distinct AIF that is somewhat different from the all-inclusive agonist 
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AIF we have identified in the current work. However, a large experimental dataset of 

partial or biased agonists would be needed to explore this hypothesis, ideally collected 

in a uniform screen to minimise experimental and interpretational bias. The analysis 

of the learning performance of RFC and XGBoost classifiers (Figure S4) suggest that 

reasonable performance is achieved with a limited dataset (ca 300-450 compounds), 

although further increases in the dataset size resulted in improved performance. It is 

likely that an even larger dataset would be required to predict continuous rather than 

binary structure-activity relationship from AIFs.  

Our methodology can be readily applied to any receptor (or drug target) for which an 

extensive set of ligands has been developed and characterised, and where in silico 

docking experiments can be performed. This can include data already in the public 

domain or through examining the results of an in house (e.g., commercial) drug-target 

screening campaign. The advantage here is that in many cases the same signalling 

assay will have been used to profile all the compounds, improving the consistency of 

the dataset. This would allow the relative importance of each atom-atom interaction to 

be assessed as a modifier of signalling output. Also, it may be possible to isolate 

functional readouts (e.g. b-arrestin versus G protein) and therefore make predictions 

about functional bias. Further tantalising possibilities include the use of automated 

internet meta search of publications and patents to assemble such datasets and 

reduce the number of compounds described as “known binders” if they are not 

available yet.  

Potential for developing predictors of pharmacological activity for novel ligands  

Being able to understand which atoms of the ligand drive agonist or antagonist activity 

significantly increases the value of in silico docking campaigns. Importantly, it opens 

doors to a more rational engineering of ligands with improved and optimised 

pharmacological properties – facilitating the design of new ligands not present in the 

large virtual libraries and thus opening up a chemical space many orders of magnitude 

larger than the largest virtual libraries available.   

From a computation perspective, it is a relatively straight-forward task to generate a 

prediction of ligand pharmacological activity based on the model learned and the 

predicted binding pose of the ligand and the corresponding AIF. However, large scale 

docking experiments produce multiple possible ligand binding poses, and the existing 
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scoring functions do not allow for reliable identification of the “correct” binding pose. 

The structural diversity of the ligands complicates the analysis even further as 

overlaying of the predicted binding pose with the available experimental data is not 

always informative.  

Our data strongly support the hypothesis that individual atomic interactions are 

correlated with ligand pharmacological activity.  This is learned from a large dataset of 

ligand binding poses, where “correct” binding poses are a minority but machine 

learning methods we used identified the structure-activity relationship because 

“wrong” binding poses averaged themselves out. Prediction of pharmacological 

activity, on the other hand, is 100% dependent on having a correct binding pose for 

the ligand. This is a problem that has not yet been solved in a satisfactory manner, 

and it limits the performance of any structure-based activity prediction method. It is 

clear that the future progress in our ability to predict the pharmacological activity of 

novel ligands will be closely correlated with our ability to correctly predict their ligand 

binding poses.     

 

Conclusions  

These results strongly support the hypothesis that the interatomic interactions 

between the receptor and its ligands are central to differentiate between their agonist 

and antagonist effects at the β2AR. The overview obtained of the interatomic 

interactions between receptor and ligand which correlates with an action will help the 

synthesis of new previously unseen compounds with a specific pharmacological 

activity. The growth of GPCR ligand databases provides a rich data source to facilitate 

the application of this approach to other GPCRs, while conceptually this approach 

could be applied to any drug target.     

The ability to predict the pharmacological action of a ligand based on its ligand binding 

pose will significantly advance drug discovery projects contributing to a reduction of 

attrition during drug development. The tools presented have the potential to focus the 

efforts of chemists proposing new candidate molecules based on existing scaffolds 

and offers the opportunity to identify completely new scaffolds that may be more 

amendable to modifications from large scale docking experiments, thus opening up a 
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chemical space many orders of magnitude larger than the largest virtual libraries 

available.  
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Figures  

Figure 1 

 

Figure 1. Workflow of the project. (A) Source of beta-adrenoceptor ligands available 

at open access repositories which comprise our 2683 compound dataset. (B) 

Molecular docking of test ligands to active and inactive b2AR structures was performed 

using Autodock Vina. (C) Interatomic interaction fingerprint (AIF) calculations were 

made using Arpeggio. In case of the “filtered dataset”, the generated AIFs were filtered 

based on the presence of ionic interactions with D1133.32x32 and N3127.39x38.  
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Figure 2 

A 

 

B 

 

 

C 

 

Figure 2. Physicochemical (PC) properties of the ligands (agonist in blue and 
antagonist in orange) predicted using OpenBabel software. (A) Molecular weight 

(MW) in g/mol, (B) lipophilicity (log P) and (C) correlation between lipophilicity and 

molecular weight. Spearman correlation coefficient is 0.62 for agonist and 0.76 for 

antagonists.  
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Figure 3 

 
A) FILTERED DATASET 

 

B) FULL DATASET 

 

Figure 3. Schematic representation of the interactions predicted using the 
pairwise correlation approach. (A) filtered dataset and (B) full dataset. The type of 

interaction is summarised in squared shape for hydrophobic and aromatic contacts, 

round shape for the polar, ionic and hydrogen bond contacts, and the combination of 

both. The dotted purple lines represent ionic and/or hydrogen bond contacts. The 

ethanolamine moiety of the BI-167107 ligands is highlighted in light blue.   
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Figure 4 

 
A           B 
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C        D 

   
Figure 4. Feature importance of the RFC (A,B) and XGBoost ML (C,D) models 
applying SHAP value method. (A,C) The x-axis is the average magnitude change in 

model output when a feature is “hidden” from the model. Higher SHAP values indicate 

higher importance of the feature. (B,D) Local SHAP values per sample (each ligand 

pose) sorted by the mean absolute SHAP value method. Grey represents a value of 

0, thus indicating the absence of a particular atomic interaction for a specific sample. 

Black represents a value of 1, thus indicating the presence of a particular atomic 

interaction for a specific sample. The x-axis shows how the presence or absence of 

an atomic feature increases or decreases the likelihood of a sample being classified 

as an antagonist. The data are plotted for all samples in the dataset, showing the 

distribution of importance values. The units of the x-axis using RFC and XGBoost are 

log odds.   
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Figure 5 

A) FILTERED DATASET (RFC) 

 

B) FULL DATASET (XGBoost) 

 

Figure 5. Schematic representation of the interactions for the machine learning 
approach. (A) RFC for the filtered dataset and (B) XGBoost for full dataset. The type 

of interaction is summarised in squared shape for hydrophobic and aromatic contacts, 

round shape for the polar, ionic and hydrogen bond contacts, and the combination of 

both. The dotted purple lines represent ionic and/or hydrogen bond contacts. The 

black outlines represent the atomic interactions with higher feature importance. The 

ethanolamine moiety of the BI-167107 ligands is highlighted in light blue.  
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Methods  

Dataset preparation 

A dataset was compiled using the primary open access repositories GPCRdb1,2, 

ChEMBL3, ZINC4, DrugBank5 and Guide to Pharmacology6. This dataset yielded a 

total of 2,643 unique β2AR ligands, of which 1317 have reported pharmacological 

action, while 1,326 compounds are binders with undetermined activity profiles. We 

classify ligands with known activity as either agonists (including partial and full 

agonists) or antagonists (including inverse agonists).  

Each ligand was assigned an internal ID (ranging from 1 to 2,643), and its 

corresponding SMILES string (line notation encoding its molecular structure) and 

pharmacological action (agonist/antagonist/binder) were retrieved from the relevant 

databases. The International Chemical Identifier key (InChIKey) was used as a unique 

identifier to distinguish between ligands across the dataset7. Both InChIKey and 

physicochemical properties appended for all compounds were acquired using the 

software Open Babel v3.1.18.  

 

Protein structures and ligand preparation and Docking 

The active-state protein coordinates were extracted from two crystal structures of 

human β2AR bound to an ultrahigh-affinity agonist (BI167107) coupled with the Gs 

protein9 or/and with a G protein-mimicking nanobody (Nb6B9)10 from the Protein Data 

Bank (PDB code: 3SN6 and 4LDE, respectively). The inactive-state protein 

coordinates were extracted from the human β2AR bound to the inverse agonist 

carazolol (PDB code: 5JQH)11.  

Receptor structures were aligned to use the same grid box of 22 × 22 ×	32 Å at the 

orthosteric binding site, protonated and charged, yielding a protein input file for 

subsequent docking experiments using UCSF Chimera12.  

The SMILES representation of ligands along with their internal ID were protonated and 

converted to a spatial data file (SDF) and pdbqt formats using Obabel.  

The semi-flexible molecular docking was carried out using the software AutoDock 

Vina13 and generated up to 10 poses for every compound. In total, 2,643 compounds 
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were docked in three β-adrenoceptor structures, yielding almost 27,000 docking 

poses. 

 

Interaction fingerprint calculations and filtering 

The inter-atomic receptor-ligand interaction fingerprints (AIFs) were calculated for all 

docking poses generated for each compound using the software Arpeggio14 executed 

in Docker environment15, a software container platform. This method accounts for the 

presence of up to 15 subtypes of interatomic interactions, classified by atom type, 

distance and angle constraints.  The output was presented as binary values, with a 1 

denoting the presence of a particular defined interaction and 0 indicating an absence.  

A Python script was written to filter the Arpeggio results (to generate the “filtered 

dataset”) by imposing minimum constraints that enforced certain features deemed 

essential for β2AR ligand binding, which it eliminated all irrelevant binding poses 

(around 50% rows). Criteria important for binding were based on prior knowledge 

derived from the literature, in particular the presence of the ionic/polar interaction 

between D1133.32 and N3127.39 with the ethanolamine moiety of the ligands.  

 

Generation of interaction matrix 

A Python script was written to process each docking pose to generate a single MxN 

matrix for each PDB, where M are ligand poses (samples as ‘ligand internal 

ID_docking pose number’) and N are the specific atomic interaction (features as 

‘receptor residue number/interacting atom – ligand interacting atom and interaction 

type’ (e.g. ‘lig 752_04’ and ‘301/O - N Polar’ respectively)), present in the whole ligand 

set. The value 1 corresponds to the occurrence of a particular type of interaction and 

0 to the non-occurrence of a particular type of interaction. As the AIF files generated 

by Arpeggio only contained the interaction present for a particular docking pose, the 

imputation of missing data was handled by setting any undefined (NaN) values to 0. 

Finally, we excluded the 3 subtypes of interactions reported by Arpeggio: Clash, VdW 

Clash and Proximal from subsequent analysis as they provided very little information 

but represented around 60% of the columns. We also included pharmacological action 

label (“agonist” or “antagonist”, if known, or “binder” if not known) for each ligand 

binding pose in the same data table as an additional column.  
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Descriptive statistical analysis 

A descriptive statistical analysis of the frequency of the interatomic interactions was 

performed using a Python script. In this manner, the most frequently occurring features 

(those observed in at least 10% of all docking poses) contributing to agonism and 

antagonism were clearly identified across all interaction types and collated for further 

analysis. This resulted in the reduction of the number of features from ca 1,100 to ca 

100.  

Subsequently, we computed pairwise correlation between the columns representing 

atomic interactions and the column representing pharmacological action using 

Pearson’s correlation coefficient (r) method. The resulting value r for each interaction 

(feature) reflects how well it is correlated with the pharmacological action (agonism or 

antagonism). Plots, graphs, and tables were generated with Excel, and statistical 

significance was determined using an unpaired t-test using Prism 8. 

 

Machine learning dataset preparation  
The dataset was then randomly shuffled and split, via stratification, into cross-

validation and final hold-out datasets. The cross-validation set was used for training 

and validation during hyperparameter optimisation. The hold-out dataset comprised 

2% of the original dataset and allowed us to gauge whether the validation scores were 

good estimations of model performance when generalising to unseen data. The hold-

out set was not used during any training or optimisation procedures. 

 
Model Selection 

Performance Metric 
For the filtered dataset the Random Forest classifier and for the unfiltered dataset 

XGBoost classifier were used. Matthews correlation coefficient (MCC) was used as 

the performance metric for all models16. The MCC metric is defined as follows: 

$%%	 = 	
'( ∗ '* − ,( ∗ ,*

('( + ,()('( + ,*)('* + ,()('* + ,*)
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Where '( is the number of true positives, '* the number of true negatives, ,( the 

number of false positives and ,* the number of false negatives. The MCC for binary 

classification weights both positive and negative classes equally, whilst also being 

robust to severe class imbalances. A value of +1 indicates a perfect positive 

correlation, that is a total agreement between prediction and observation. An MCC 

score of 0 indicates no correlation, that is the classifier performs no better than a 

random coin flip. Finally, -1 indicates a perfect negative correlation, that is a total 

disagreement between prediction and observation.  

 

Model Performance Estimation 
Model performance was validated using repeated-stratified-k-fold cross-validation. 

Cross validation entails splitting the dataset into k equally sized partitions, termed 

folds. One of the folds is extracted and used for validating a model on unseen data. 

The remaining folds are then used to train the model. This process is then repeated 

using each of the k folds as the validation set. The optimal model is the one which has 

the best performance on average across all k folds. Cross validation generally 

provides a less optimistic estimation of model generalizability on unseen data, which 

is finally tested on the holdout set. Due to class imbalances in the data, stratification 

is used to ensure that the original distribution of classes is maintained in each fold, 

thus preventing any fold from being populated by a single class17. Model estimation 

can be noisy and so by performing cross-validation over many repeats one obtains a 

more precise estimation of true model performance. Bootstrap resampling was used 

to estimate model uncertainty18 . Confidence intervals were calculated with respect to 

a 99% confidence level. Bayesian hyperparameter optimisation (BHO) was utilised to 

determine high performing model parameter configurations when tested on unseen 

data. BHO was set to maximize the mean MCC across K-folds and repeats, model 

uncertainty was then calculated using optimised models only.  
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Random Forest Classifier Hyper Parameters 

Hyperparameter Name Hyperparameter Value 

Criterion Gini 

Estimators 2000 

Max Depth 5 

Max-Features 5 

Splitter Best 
Minimum Samples Split  2 

Minimum Samples Leaf 1 

Minimum weighted fraction Leaf  0 
Maximum Leaf Nodes Unlimited 

Minimum Impurity Split None 

Minimum Impurity Decrease None 

 

XGBoost Hyper Parameters 

Hyperparameter Name Hyperparameter Value 

Eta 0.4306 

gamma 0.2458 

Learning Rate 0.05873 

Max Delta Step 7 

Max Depth 8 

Minimum Child Weight 1.246 

Number of Estimators 1150 

Scale Positive Weight 1 

Subsample 0.7532 

 

All other hyperparameters for XGBoost that are not specified were kept at their 

default values according to the XGBoost API guide 

(https://xgboost.readthedocs.io/en/latest/parameter.html) 

 

Model Feature Importance analysis 
The most important atomic interactions, for classifying agonist or antagonist ligands, 

were identified using the Shapley Additive Explanations (SHAP) method19. Shapley 

values are based upon coalition game theory and inform one how to fairly distribute 
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the prediction of a model among the features. The Shapley value for one feature is the 

average marginal contribution of a feature value across all the possible combinations 

of features. More concretely the Shapley value assigns an importance to each feature 

by calculating the effect on model prediction when including a particular feature 

compared to the model prediction when the feature is withheld. Mathematically this 

can be formalised as 

01 	= 	∑
|4|!(|6|7|4|78)!

|6|!
[:(; ⋃ =) 	− 	:(;)]?⊆6\1 , 

where ; refers to a subset of features that does not contain the feature for which we 

are calculating 01. ;⋃ = is the subset that contains features in ; and feature =. Finally, 

; ⊆ $/= represents all sets ; that are subsets of the total set of features $, excluding 

feature =. The computation time increases exponentially with the number of features; 

thus we used the TreeSHAP algorithm that approximates SHAP values for tree-based 

machine learning models in polynomial time20. The main motivations for using the 

SHAP feature importance method over other popular methods, such as Gini and 

Permutation methods, is due to the following: 

Consistency: The Gini feature importance method is susceptible to producing 

inconsistent feature importances that are biased to the specific ordering of features 

specified by their position, as split nodes, in the tree. TreeSHAP method is equivalent 

to averaging differences in model predictions over all possible orderings of the features 

and thus does not suffer from such inconsistencies.  

Granular Interpretability: Although permutation importance is not biased to the specific 

structure of decision trees it only provides a global understanding of the most important 

features. With TreeSHAP, observations get their own set of SHAP values and 

therefore we can understand feature importance on a per sample basis.   

 

Determining The Optimal Number of Repeats 
There is an exponential relationship between the number of times one has to repeat 

Bootstrap or Cross-Validation and the level of precision to within which one would like 

to measure true model performance. This leads to a trade-off between the precision 

and time complexity of model performance estimation. We thus estimate the optimal 
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number of repeats to use for Bootstrap and cross-validation resampling methods to 

an acceptable level of precision as: 

C = DEF G
HF

IF
J 

 

where D is the ordinate on the Normal distribution curve that corresponds to a particular 

level of confidence we have in our estimation, denoted K. H is the population standard 

deviation and I is the specified precision of the estimate. We estimate the population 

standard deviation via repeated bootstrap resampling, thus each estimate of the 

number of repeats is specific to the variance of each model and its hyperparameter 

configuration (https://www.itl.nist.gov/div898/handbook/ppc/section3/ppc333.htm).  

A precision of 1% (Marginal Error = 0.01) was selected for all resampling methods 

(Supplementary Figure 5). Therefore, a minimum of 13 repeats for both the RFC and 

XGBoost were used during cross-validation and bootstrap resampling.  
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