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Summary

Hundreds of different protein complexes that perform important functions across all
cellular processes, collectively comprising the “complexome” of an organism, have been
identified'. However, less is known about the fraction of the interactome that exists
outside the complexome, in the “outer-complexome”. To investigate features of “inner”-
versus outer-complexome organisation in yeast, we generated a high-quality atlas of
binary protein-protein interactions (PPIs), combining three previous maps?* and a new
reference all-by-all binary interactome map. A greater proportion of interactions in our
map are in the outer-complexome, in comparison to those found by affinity purification
followed by mass spectrometry®> or in literature curated datasets®'". In addition, recent
advances in deep learning predictions of PPI structures' mirror the existing
experimentally resolved structures in being largely focused on the inner complexome and
missing most interactions in the outer-complexome. Our new PPI network suggests that
the outer-complexome contains considerably more PPIs than the inner-complexome, and
integration with functional similarity networks'-'5 reveals that interactions in the inner-
complexome are highly detectable and correspond to pairs of proteins with high functional
similarity, while proteins connected by more transient, harder-to-detect interactions in the
outer-complexome, exhibit higher functional heterogeneity.
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Intracellular organisation relies on large numbers of interactions amongst protein, RNA,
and DNA macromolecules, forming complex networks that underlie diverse functional
relationships. Efforts to map biophysical interactome networks, such as protein-protein
interaction (PPI) networks'®'” helped advance our understanding of cellular
organisational principles'®'®. However, most current models of PPI networks ignore the
wide range of biophysical properties exhibited by PPIs, of which the principal dimension
is the difference between stable complexes and transient interactions. The interactome is
often conceived of as a collection of hundreds of multimeric machines, collectively
referred to as the “complexome”’. However, stable PPIs forming quaternary structures
are only a subset of the protein interactome?°?!. There are also weaker transient
interactions that are much more dependent on the cellular context, and that are more
likely to underlie the overall organisation and compartmentalization in cells and help
sustain biochemical pathways and signalling cascades??-24.

It has been shown that transient interactions outnumber interactions in stable
complexes in the human interactome?S. However, little is currently known about how these
two categories of PPIs underlie different functional relationships between proteins. To
address this, we selected S. cerevisiae, which has the most comprehensive and diverse
systematic datasets of functional relationships between genes as well as multiple large-
scale maps of PPIs. We compare intra-complex interactions taking place “inside” each
complex of the complexome, i.e. within the “inner-complexome”, to interactions between
proteins in different complexes, or involving proteins not known to be in any complex, i.e.
within the “outer-complexome”. To facilitate this, we generated for the first time an “all-
versus-all” systematic binary interactome map. By integrating this, and other, PPI
networks with global functional similarity networks, we found strong support for an
emerging model?®-28 in which a relatively small proportion of the interactome corresponds
to the inner-complexome, connecting functionally homogenous proteins, while the vast
majority of the interactome consists of interactions between functionally heterogeneous

proteins in the outer-complexome.
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Fig. 1 | The inner- and outer-complexome. a, The fraction of the proteome of different
organisms that are not listed as subunits of protein complexes of at least 3 or more
different protein subunits. b, lllustrative network diagram showing the space of pairwise
protein combinations categorised into four Zones based on protein complex membership.
The area of each square is proportional to the size of the number of pairwise combinations
of proteins in each Zone, for yeast. ¢, Schematic of the approach and question of
functional similarity of interacting proteins by combining biophysical and functional
networks. d, The proportion of four different yeast biophysical interaction datasets in each

Zone.
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The inner- and outer-complexome

It is thought that most cellular processes are carried out by multiprotein molecular
machines®. However, across different species, the large majority of proteins have not
been shown to participate in any protein complex comprising three or more proteins, using
a manually-curated dataset of protein complexes (Fig. 1a). After combining multiple
protein complex datasets, to reduce the false negative rate as much as possible, proteins
outside of complexes are still in the majority (Extended Data Fig. 1a). This has major
implications when considering how PPl networks underlie cellular function, as it suggests
a large fraction of the functions of interactions are performed outside complexes. To
categorise PPIs in relation to protein complexes, we divide all pairs of proteins into four
different “zones” (Fig. 1b): Zone A, the inner-complexome, corresponds to all pairwise
combinations where both proteins are subunits of the same complex; Zone B corresponds
to pairs of complex subunits where each protein belongs to a different complex; Zone C
represents all pairwise combinations involving both a complex subunit and a non-complex
protein; Zone D corresponds to all pairwise combinations between non-complex proteins.
In yeast, the inner-complexome, Zone A, corresponds to ~17,600 protein pairs,
representing 0.1% of the approximately 18 million possible protein pairs, with the
remaining 99.9% of pairs residing in the outer-complexome — Zones B, C, and D (Fig. 1b)
— highlighting the enormous potential role that outer-complexome interactions play in
eukaryotic biology.

We investigate the roles of inner- and outer-complexome PPIs in the interactome
by, first, understanding the distribution of biophysical PPlIs in the different zones, through
a detailed assessment of available PPI networks. Next, we examine whether there is a
difference in the functional relationships between physically interacting proteins in the
different zones, using functional profile-similarity networks (PSNs) (Fig 1c). We
considered four different sources: i) experimentally resolved 3D structures?® (I13D-exp-
20); i) recent deep learning-based prediction of PPl structures'?
(Alphafold+RoseTTAFold); iii) literature-curated binary pairs supported by multiple pieces
of evidence® 30 (Lit-BM-20); and iv) systematic large scale AP-MS (Sys-NB-06)
(Supplementary Tables 1-5). These datasets show variation in their distribution between


https://doi.org/10.1101/2021.03.16.435663
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435663; this version posted July 22, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a b c d
5.854 protei GPCA MAPPIT YeRI
§ roteins
£ o 30% o 30% A
0 £ &
£ 2 @ D
© S 20% S 20%
o Three c oy
S 5 5 B
5  ‘all-by-all’ £ 10% i £ 10%
@ © I
o screens w - i w =
Pygogezzgs  “adcsecgzs
HhHsL3L L HHnsL3TPP
CXrm3oh” ¢ Xrm3aoh o
ETLY=O S EELLTQ O
233 o F a33d% o F
=] ]
e f g Uetz-screen
Y2H v4 Y2H v4 _ Ito-core
o 30% o 30% o 60007 CCSB-YI
= = & 5,000 YR
8 20% o 20% Protein-protein interaction source 3 ]
a o ) £ 4,000
5 10° 5 10% — Experimental structures I E
g 10% I 1 i i — Predicted structures 2 3,000
s 0% - Rz A - — Literature curation g 2,000 AlphaFold+
SE=CT=53D G 822 — Systematic binary € 10004 RoseTTAFold
HHH=SEh'g 2 DD N v 5 O]
[ A ol z
35224807 5T .3 0-
233539 39 B2 2 0® O 0% ® WL WO 90
u;'i AR (¥ ,LQQ 'LQQ ,LQQ ,Lg’\ ,LQ'\ ,LQ'L
g% Date
<&
h . AlphaFold+ RN .
I3D-exp-20 RoseTTAFold Lit-BM-20 ABBI-21

X2 X2 Ix3 x4 x4 -§;<2§.X3:.:;2-;-x5§x4-¥-x3 Ay I

k14 x13 1x78 x3 T 37T'%6 x 19:x 7 {x59 1% 190 el k2 ax2 115 ixe3

100

H 1 ABBI-21
S 1 @ __@Lit-BM-20]
g 1
E 80 A H E
o
3 1
2 1
2 60 o A i
£ 1
8 ) <@!3D-exp-20
g 1
8 40 i E
©
< N
“ 1
£ 201 : 4
g AlphaFold+
< __@RoseTTAFold
0 T T T T T
0 1,000 2,000 3,000 4,000 5,000 1
PPIs in network Average degree

Figure 2


https://doi.org/10.1101/2021.03.16.435663
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435663; this version posted July 22, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Fig. 2 | All-by-all yeast reference interactome and comparison to existing high-
quality binary interactome maps. a, The YeRI screening space. b, ¢, Experimental
validation of yeast systematic binary maps and literature-curated pairs in GPCA (b) and
MAPPIT (c). Error bars are 68.3% Bayesian credible intervals. d, The proportion of YeRI
in each Zone. e, Yeast PPI datasets tested in Y2H v4. Error bars are 68.3% Bayesian
credible intervals. f, Results of testing predicted structure dataset in Y2H v4. Error bars
are 68.3% Bayesian credible intervals. g, Increase in the number of high-quality binary
PPls from available experiments in Interactome-3D (yellow), AlphaFold+RoseTTAFold
(brown), Lit-BM (blue), and systematic studies (purple). h, Networks for four different high-
quality binary PPI datasets. i, Fraction of proteins in the largest connected component,
with points showing the values for four PPI networks, and shaded bands showing random
subsamples of each network across a range of sizes, plotted against the number of PPls
(left) and the average degree per protein (right). Shaded bands indicate the innermost

95% interval of random subnetworks.
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these four zones, with around one-third of pairs in Lit-BM-20 and Sys-NB-06 are between
subunits of the same complex (Zone A), compared to more than half in 13D-exp-20 and
AlphaFold+RoseTTAFold, (Fig. 1d).

All-by-all yeast reference interactome

These results present conflicting views of what fraction of a eukaryotic interactome exists
outside the inner-complexome. To resolve these differences, we turned to another type
of dataset: systematic binary PPl maps, generated using yeast two-hybrid (Y2H) as the
main screening assay. We hypothesise that uniform testing of the entire proteome-by-
proteome space should give the most unbiased estimate of the proportion of the
interactome in different zones. However, the three systematic Y2H maps currently
available®™, collectively referred to as Y2H-union, were obtained using incomplete sets
of open reading frames (ORFs), or “ORFeome” collections?', each screening only ~70-
75% of the search space. To systematically generate a map that could provide a complete
and unbiased estimate of the proportion of the interactome in different zones, we started
by compiling a high-quality ORFeome collection covering 99% of yeast protein-coding
genes, by verifying an existing collection of 4,933 ORFs®2, and cloning an additional 921
ORFs (Fig. 2a, Supplementary Table 6). To maximize the potential for novel discovery
relative to the three previous binary systematic maps, we implemented a new assay
version, Y2H v4, and demonstrated that it detected an orthogonal set of interactions
compared to previous Y2H versions (Extended Data Fig. 2a, Supplementary Table 7).
We systematically screened 27 million bait-prey combinations three times independently.
Pairs identified in these primary screens were subsequently evaluated in two independent
pair-wise tests. To ensure a high-quality reproducible dataset, only pairs that scored
positive and were sequence-confirmed in both attempts were considered positive. The
quality of the dataset was assessed by testing every pair in two orthogonal binary PPI
assays — MAPPIT3 and GPCA3* — alongside positive and random reference sets (Fig.
2b, c, Extended Data Fig. 2b, Supplementary Tables 8-10). Thus, we generated a new
yeast interactome map of 1,910 PPIs between 1,351 proteins, which we term the Yeast
Reference Interactome (YeRI) (Supplementary Table 11). Three-quarters of the PPIs in
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YeRlI are novel. YeRlI pairs tested positive in orthogonal assays at rates similar to Lit-BM
pairs available in 2013 (Lit-BM-13). YeRI displays significant enrichment for interactions
between proteins that share annotations for cellular compartments, pathways, or protein
complexes (Extended Data Fig. 2c), demonstrating its overall high level of biological
relevance.

Since we showed that all four systematic Y2H maps are well validated by MAPPIT
and GPCA (Fig. 2b, c), we combined them into a single Atlas of Binary Biophysical
Interactions (ABBI-21) comprising 4,556 PPIs (Supplementary Table 12). Clusters of
interacting proteins enriched for shared Gene Ontology (GO) terms3®, increase
substantially with the addition of each map (Extended Data Fig. 2d, e). Due to the
expanded set of screened ORFs, YeRI substantially improves coverage for genes of
unknown function and can be used to predict their functions (Extended Data Fig. 2f-h,
Supplementary Note 1, Supplementary Table 13). In total, ABBI-21 covers 12-25% of the
estimated yeast binary interactome (Extended Data Fig. 3a)*3¢:37. The proportion of pairs
in different zones from YeRI and ABBI-21 (Fig. 2d, Extended Data Fig. 3b) produces a
substantially different picture of the interactome compared to the other maps (Fig. 1d),
with only around 10% of PPIs in Zone A and substantially more in Zones C and D than
the other networks. This view suggests that the outer-complexome is dominant in terms
of the number of PPls in the interactome.

In addition to ABBI-21, to ensure our conclusions would be robust, we also wanted
to use alternative high-quality binary PP| datasets in our investigation of the differences
of the interactome between the inner- and outer-complexome. So we performed a
comprehensive test of the biophysical quality of available sources of binary PPI data. We
experimentally retested all pairs available in 2017 for 13D-exp, Lit-BM and Y2H-union,
along with random samples of other datasets, testing a total of 8,999 pairs in Y2H v4 (Fig.
2e, Extended Data Fig. 3c, Supplementary Table 14). Y2H v4 recovered 14%, 11%, and
15% of pairs from experimental structures, literature curation, and systematic binary pairs,
respectively. These recovery rates are quite high, approaching assay sensitivity limits:
indeed, the systematic Y2H datasets were indistinguishable from both scPRS-v2 (P =0.2,

one-sided Fisher’s exact test) and I3D-exp-17 (P = 0.6, two-sided Fisher’s exact test), our
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benchmarks of true direct, heterodimeric binary interactions, and all three performed
slightly better than Lit-BM-17 (P = 0.006, two-sided Fisher’'s exact test) (Fig. 2e), again
demonstrating that the biophysical quality of systematic binary interaction maps is at least
as good, if not superior to that of literature-curated binary interactions. Interestingly, a
proteome-scale dataset generated using a dihydrofolate reductase protein
complementation assay (Tarassov) that detects physically-proximal, but not necessarily
directly-contacting protein pairs3®, was not significantly above the scRRS-v2 negative
control in MAPPIT (P = 0.12, one-sided Fisher’s exact test) but validated on par with the
Y2H-union datasets in GPCA and Y2H v4 (Fig. 2b, c, e). As shown previously for human
PPIs®*, a sample of the putative yeast binary PPIs supported by only a single piece of
evidence in the literature in (Lit-BS-17) was recovered at a low rate, not statistically
different from scRRS-v2 (P = 0.1, one-sided Fisher’s exact test), of only 2% (Fig. 2e).
Finally, two datasets of predicted PPls, PrePPl and Jansen et al*®#', tested positive at
low levels of 4% and 2%, respectively (Fig. 2e). Based on these results, out of the
reported interaction sets we tested, we restrict the binary PPl maps in analysis of the

inner- and outer-complexome, to I3D-exp-20, Lit-BM-20, and ABBI-21.

Testing a comprehensive set of PPIls with experimental structures with Y2H v4
allowed us to investigate to what extent structural features affect the sensitivity of the
assay to different PPIs. We first saw that, although the number of subunits involved in
forming large protein complexes appears to have some impact on the rate of interaction
recovery by Y2H v4 (Extended Data Fig. 3d), binary assays can readily detect pairs of
interacting proteins even in large complexes. Second, although our dataset was
generated with full-length yeast proteins, the detection rate appeared unaffected by
whether the structures of interacting proteins had been solved with full-length proteins or
fragments (P = 0.14, two-sided Kolmogorov-Smirnov test) (Extended Data Fig. 3e). Third,
although we observed a trend towards larger interaction interfaces among Y2H v4
positives compared to negatives (P = 2 x 10, two-sided Mann-Whitney U test), Y2H v4
could detect interactions with interface areas ranging widely from 100 to 10,000 A2
(Extended Data Fig. 3f). Y2H v4 was better able to detect PPIs with small interaction
interfaces than GPCA (P = 0.0043, two-sided Mann-Whitney U test) and was at least as
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good at this as MAPPIT (P = 0.11, two-sided Mann-Whitney U test). Finally, Y2H v4
detected interactions with Ky values up into the micromolar range (Extended Data Fig.
3g), consistent with previous findings that Y2H can identify weak interactions’#2.
Together, the high and consistent sensitivity of Y2H v4 to a variety of different PPIs,
across strong and weak interactions, and within and outside protein complexes, suggest
that YeRI is representative of the real interactome across both the inner- and outer-

complexome.

Beyond testing PPIs with experimental structures, we next used Y2H v4 to perform
the first experimental assessment of the quality of a recent deep learning-based dataset
of PPIs with predicted structures'. Complex structure prediction represents a new and
promising method for generating detailed PPI data, so it is crucial to have a good
understanding of its quality. The AlphaFold+RoseTTAFold predicted structures have a
contact probability for each pair, and we observed that pairs with a contact probability
above 0.9 test positive at a rate in line with scPRS-v2 (Fig. 2f, Extended Data Fig. 3h,
Supplementary Table 15). Therefore we restricted subsequent analysis of
AlphaFold+RoseTTAFold to the 1,106 out of 1,505 PPIs (73%) with contact probability =
0.9, of which 392 PPIs (35%) have no previous experimental structure available
(Extended Data Fig. 3i). Comparing the resulting AlphaFold+RoseTTAFold network to
I3D-exp-20, Lit-BM-20, and ABBI-21, we observed that the structural data, both
experimental and predicted, produce more fragmented networks, largely due to a lack of
highly connected hub proteins in those networks (Fig. 2g-i, Extended Data Fig. 3j).

Alternative views of interactome organisation

To correctly infer the distribution of PPls between the inner- and outer-complexome, we
need to understand any potential biases in the coverage of the different networks. It has
been shown for human PPIs that networks generated by varying methods can be
concentrated within a subset of the space of pairwise protein combinations®?, but this has
not yet been investigated in yeast. So we displayed binary PPIs in a representation of the
proteome-by-proteome space that was organised by ranking proteins in both dimensions

according to complex membership and four protein properties: number of publications,
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Fig. 3 | High discrepancy among alternative views of interactome organisation. a,
Heatmaps of protein interactions and associations in biophysical and functional networks,
ordered by complex membership, the number of publications per protein, protein
abundance, gene conservation, and essentiality. Upper limits of the colour scales are set
to 5x the average number of PPls per bin, separately for each network. b, Using
experimental structures of mediator, restricting to pairs of proteins in the same structure,
the direct interactions and indirect associations (top row) and of those, which ones are
contained within the different biophysical and functional networks (rows below). Direct
enrichment is defined as the ratio of the fraction of detected direct interactions over the
fraction of detected indirect associations. ¢, Top-left panel: the number of either direct (+)
or both direct and indirect (x) PPIs in the single largest experimental structure for each
protein complex. The curved dashed line corresponds to the total possible pairwise
combinations of different proteins per complex; the straight dashed line is a linear
regression using the direct PPls. Remaining panels: the number of PPIls in each of the
five networks within each complex, against complex size. The dashed lines from the top-
left panel are reproduced. d, e, Results of testing samples of pairs from GI-PSNs, across
different PCC cutoffs, in Y2H v4 (d) and GPCA (e). Error bars are 68.3% Bayesian
credible intervals. f, The number of edges in GI-PSN at the tested PCC cutoffs.

29


https://doi.org/10.1101/2021.03.16.435663
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435663; this version posted July 22, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

abundance, evolutionary conservation, and essentiality (Fig. 3a, Supplementary Table
16). Complex subunits exhibit significantly higher average values in all four variables (P
< 108, Mann-Whitney U test), making them more well-studied, more abundant, more
conserved, and more often essential than non-complex proteins (Extended Data Fig. 4a).
There are strong correlations between these protein properties (Extended Data Fig. 4b).
When ranking by publications per gene, all datasets show a much higher density of PPIs
between highly-studied proteins, except ABBI-21, which is distributed more
homogeneously. To quantify this, the size of the matrix of the most studied proteins
containing 80% of PPIs from each dataset is 16%, 37%, 25%, 25%, and 57% for I3D-exp-
20, AlphaFold+RoseTTAFold, Lit-BM-20, Sys-NB-06, and ABBI-21, respectively.
Although Sys-NB-06 was obtained using sociologically unbiased, systematic approaches,
it nevertheless shows a bias towards highly studied proteins, presumably because
detection of complexed proteins using MS-based methods is more sensitive for highly
expressed proteins, which also tend to be more highly studied?°. In all cases, ABBI-21
covers the interactome more homogeneously, across multiple biological properties,
compared to Lit-BM-20, Sys-NB-06, and AlphaFold+RoseTTAFold. ABBI-21 does show
some depletion for the highest abundance proteins as well as the lowest abundance, least
studied, and least conserved proteins (Fig. 3a). In the lowest abundance or conservation
zones, the number of proteins with at least one interactor is significantly higher for ABBI-
21 than Lit-BM-20, Sys-NB-06, or AlphaFold+RoseTTAFold (Extended Data Fig. 4c).
Using a different approach, we tested the recovery of four gold-standard curated sets of
PPIs from either the inner- or outer-complexome in the systematic biophysical datasets,
and we observed that, although both ABBI-21 and Sys-NB-06 capture the inner-
complexome pairs more readily than outer-complexome pairs, ABBI-21 shows more
uniformity between inner- and outer-complexome pairs than Sys-NB-06 (Extended Data
Fig. 4d).

Having identified major differences between the coverage of the proteome-by-
proteome space between different PPI networks, we then turned to the functional profile
similarity networks (PSNs), to see if there were any biases in their coverage that could

impact our interpretation of the functional differences between inner- and outer-
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complexome PPls from integrating the PSNs with the PPI networks. The PSNs used three
different systematic genome-wide functional genomic profiling approaches, based on: i)
positive and negative genetic interactions observed in double mutants bearing knock-out
(KO) and/or hypomorphic alleles'?; ii) growth of KOs of non-essential genes across over
1,000 chemical and environmental stress conditions'; and iii) transcriptome-wide
measurements of gene expression over thousands of samples'. PSNs for genetic
interactions, “GI-PSN"'3; condition sensitivity, “CS-PSN"'4; and gene expression, “GE-
PSN"'5 were generated from the top one percent of the strongest correlation of tested
pairs. While these three PSNs exhibit statistically significant overlaps (P < 0.001, one-
sided empirical test, restricted to genes tested in all PSNs), these overlaps are small, with
only 4% of edges connected in more than one PSN, showing that different PSNs identify
complementary functional relationships (Extended Data Fig. 4e). One of the most striking
observations was the dense zone exhibited by GE-PSN within the spaces corresponding
to highly abundant or conserved proteins as well as essential genes (Fig. 3a). This
similarity between Sys-NB-06 and GE-PSN is likely because both experimental strategies
are highly dependent on endogenous gene expression levels. The second observation
was that GI-PSN also shows a higher density of functional relationships amongst
extremely well-studied and highly abundant proteins (Fig. 3a), concentrated in a smaller
area than Sys-NB-06. This was unexpected since GI-PSN was generated systematically,
independently of any sociological bias. Upon investigation, we found that this was due to
a combination of higher connection density for both essential genes’ and highly
abundant non-essential ribosomal subunits in the GI-PSN network (Extended Data Fig.
4f). Many yeast ribosomal proteins retained paralogs after the whole-genome duplication
event*3, often rendering them non-essential where paralogs can, at least partially,
functionally compensate for one another’s deletions. Lastly, CS-PSN was obtained from
a homozygous gene deletion collection that does not include essential genes, which could
explain some of the observed patterns.

Having observed that different PPl mapping methods have specific biases in their
coverage, we then investigated another important distinction between these methods: the
difference between detecting co-complex associations where proteins are in the same
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complex but not necessarily in direct contact, or detecting “binary” PPIs for which two
interaction partners are likely to be in direct contact. It is crucial to distinguish between
these two types of protein-protein relationship, as it has major consequences for the
resulting protein network, with one example being that large protein complexes contain
many more indirect associations than direct contacts. We investigated to what extent co-
complex and binary biophysical networks identify direct interactions versus indirect
associations using available experimental structures of complexes, and compared this
with the functional networks. As an example, the mediator complex shows 33 direct
contacts between its 25 subunits, which is considerably less than its 300 possible pairwise
combinations (Fig. 3b). This is unsurprising, as the number of other proteins a complex
subunit may be in contact with is fundamentally limited by the surface area of the subunit.
The number of direct interactions within a protein complex scales roughly linearly with the
complex’s size, averaging 3 PPls with each subunit, whereas the number of indirect
associations scales quadratically, resulting in a dramatically increasing difference
between the two for larger complexes (Fig. 3c). ABBI-21 and Lit-BM-20 primarily find
direct interactions, whereas the AP-MS-based Sys-NB-06 reports both direct binary
interactions and indirect co-complex association between proteins (Fig. 3b), in roughly
equal proportions. The GI-PSN also finds both direct interactions and indirect
associations (Fig. 3b), with a preference towards direct PPIs (P = 0.02, two-sided Fisher’s
exact test), as has been observed previously*. That GI-PSN should provide indirect
associations stands to reason, as all the proteins in the complex collectively contribute to
a common function, irrespective of whether they are in direct contact or not. We then
investigated this trend across all different protein complexes for which a 3D structure is
available (Extended Data Fig. 4g) and observed that binary PPI datasets primarily find
direct-contact pairs, whereas Sys-NB-06, GI-PSN, and GE-PSN connect both direct-
contact and indirect co-complex association pairs, with a tendency towards direct PPlIs.
Among all six datasets analysed here, ABBI-21 is the most enriched for direct PPIs vs
indirect associations (P = 0.0002, two-sided Wilcoxon signed-rank test).

After observing that, within protein complexes, AP-MS and functional networks
correspond to both direct PPIs and indirect associations, we then sought to
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experimentally confirm this observation by testing random samples of co-complex
association and GI-PSN edges using Y2H v4. Pairs from co-complex association datasets
were detected at rates much lower than those from binary PP| datasets, although
significantly higher than the negative control scRRS-v2 (median P = 0.018, one-sided
Fisher’s exact test) (Fig. 3d). This result suggests that a large proportion of co-complex
association datasets are indirect associations, both in literature-curated protein
complexes as in CYC20084, and AP-MS-derived proteome-scale maps®’46. This
observation is consistent with the result that protein pairs in PPls obtained by binary
assays are two to five times more likely to be in direct contact than co-complex association
pairs, using experimental complex structures with at least three subunits (Extended Data
Fig. 4h, Supplementary Table 17). For random samples of GI-PSN pairs, across a range
of PCC cutoffs, the GPCA test-positive rate increases proportionally to the PCC threshold,
with the Y2H v4 test-positive rate is flatter but consistent with an increase with PCC
threshold (Fig. 3d, e). For PCC =2 0.2 and 0.3, the test-positive rate of GI-PSN pairs in
both assays is similar to that of CYC2008. Taken together, these results are consistent
with the conclusions that protein complexes dominate the high-PCC GI-PSN pairs'3, that
GI-PSN pairs correspond to both directly-contacting and indirectly-linked complex
subunits (Extended Data Fig. 4g), and that higher average PCC values have an increased
correspondence with direct interaction as opposed to indirect association*4. These results
provide direct experimental estimates of the fraction of genetic interaction profile similarity
relationships that correspond to binary PPIs (Extended Data Fig. 4i). Importantly, at the
point where the direct binary PPI content substantially exceeds that of protein complexes,
at PCC 2 0.5, the GI-PSN contains only 841 edges (Fig. 3f).

Organisation of inner- and outer-complexome

A huge variety of protein function exists within both complex subunits and non-complex
proteins. We next looked at two variables, one within each category. We chose: (i) the
size of each protein complex; and (ii) the abundance of non-complex proteins. Both
capture some aspect of the continuum between constitutive cellular machinery and

context-specific, adaptive, dynamic processes (Fig 4a). Protein complexes span a range
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Fig. 4 | Organisation within the inner- and outer-complexome. a, The yeast proteome
ordered by decreasing number of subunits of the corresponding complex, for proteins in
a complex, and by increasing abundance, for non-complex proteins. After dividing into 20
bins, the number of proteins in each of three general functional categories®? is shown by
the area of the circles. Not Mapped corresponds to unannotated proteins. b, Upper:
heatmaps of the number of connected gene pairs in biophysical and functional networks,
with the proteome first ordered by size of protein complexes in which the proteins are
involved, then ordered by protein abundance. Lower: statistically significant enrichment
and depletion of edges per bin, calculated by random permutation of the order of the

proteins.
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of sizes, from 81 different proteins in the ribosomal large subunit to three in telomerase.
The abundance distribution is such that a small number of proteins make up a large
fraction of expressed proteins detected by mass spectrometry. Of non-complex proteins,
89% are below the mean molar abundance. Among the most abundant non-complex
proteins are metabolic enzymes, which, in yeast cells, make up 30% of proteins by
molarity, but represent only 10% of all encoded proteins*’4. Just two proteins, the
pyruvate kinase encoded by CDC19 and the plasma membrane proton ATPase pump
encoded by PMA1, account for more than 2% of the total number of cellular protein
molecules. At the other end of the spectrum, lowly expressed proteins such as CIn3, an
important cell-cycle regulator, and Ime1, a master regulator of meiosis, are four orders of
magnitude lower in abundance than Cdc19 and Pma1.

To visualize the distribution of the networks in the proteome-by-proteome space,
relative to these two variables, we ordered complex subunits by decreasing size of the
corresponding complex, and non-complex proteins by increasing abundance. All five
biophysical datasets show a strong, statistically significant, enrichment for interactions or
associations in the inner-complexome (P < 0.05, permutation test, Fig. 4b, Extended Data
Fig. 5a, b). We observe the same for GI-PSN and for all but the smallest complexes in
GE-PSN. Obviously, this high density in the inner-complexome is expected, where the
biophysical and functional maps are detecting complexes, defined by independently
curated experiments. Sys-NB-06 and GE-PSN are more enriched in the inter-complex
pairs of Zone B. In Zones C and D, Sys-NB-06 and GE-PSN are depleted in regions
involving the lower abundance proteins and enriched between the most abundant, with
I3D-exp-20 and Lit-BM-20 showing a similar but less pronounced bias in their
distributions, whereas ABBI-21, AlphaFold+RoseTTAFold, and GI-PSN are relatively
uniformly distributed. This distribution of Sys-NB-06 and GE-PSN could be due to their
dependence on endogenous expression. CS-PSN'’s depletion in Zone C and enrichment
in Zone D are dampened after correcting for the untested essential genes (Extended Data
Fig. 5c-e). The uniform coverage of ABBI-21, AlphaFold+RoseTTAFold, and GI-PSN
suggest that there are abundant biophysical and functional interactions between most of
the proteome, regardless of expression levels.
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After extensively testing for bias across the different datasets, we found that
systematic binary maps provide the most even coverage; however, one possible
interpretation of this could be the presence of large numbers of randomly distributed false
positives in the outer-complexome. To test whether ABBI-21 PPIs from either inner- or
outer-complexome are of similar biophysical quality, we compared their recovery rates in
MAPPIT and GPCA using Lit-BM-13 as a benchmark (Extended Data Fig. 5f-h). While
ABBI-21 validates at a higher rate than Lit-BM-13 in the inner-complexome, PPI pairs
from both ABBI-21 and Lit-BM-13 datasets show lower recovery rates in the outer-
complexome than in the inner-complexome (P = 3 x 10-'2, two-sided Fisher’s exact test).
The fact that both our literature benchmark and ABBI-21 behave similarly in the outer-
complexome demonstrates that ABBI-21 pairs in the outer-complexome are of good
biophysical quality, suggesting that the difference in recovery rates between inner- and
outer-complexome stems from differing biophysical factors, e.g. interaction affinity or
post-translational modification dependency. Thus consistent with our previous
observations that within-complex PPIs are detected more frequently in Y2H screens and
that PPIs detected in more Y2H screens test positive in validation asssays at higher rates,
independent of data quality??. The striking observation of inner-complexome PPls being
more readily detected by different PP| assays suggests that inner-complexome PPIs tend
to be overrepresented in interactome maps relative to their proportion in the real

interactome.
Functional heterogeneity in the outer-complexome

To investigate how the difference between the inner- and outer-complexome
relates to the functional relationships between physically interacting proteins, we
computed the fraction of interacting protein pairs for which the corresponding gene pairs
are also connected in the functional networks. We started by validating this approach
using gold-standard PPIls from four well-characterised yeast pathways from the KEGG
database: Cell cycle; Meiosis; MAPK signalling; and Autophagy*® (Fig. 5d). Interestingly,
genes encoding interacting proteins from different pathways show large variation in the
likelihood of being connected in the functional networks. Over half of the interacting pairs
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Fig. 5 | A large proportion of the interactome consists of interactions between
functionally heterogeneous proteins in the outer-complexome. a, The fraction of
PPls from four different pathways connected in different functional networks. b, The
fraction of PPIs from four gold-standard biophysical interaction datasets connected in
functional networks. ¢, The fraction of pairs in the inner- and outer-complexome in the
four biophysical maps connected in functional networks. The pie charts show the
proportion of pairs in the inner- and outer-complexome within the four biophysical maps.
d, The fraction of pairs from the outer-complexome, Zones B, C, and D, that are also
connected in functional networks. e The fraction of pairs from four biophysical maps
connected in functional networks. In all panels, error bars are 68.3% Bayesian credible

intervals.
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in Cell cycle and Meiosis pathways, essential for yeast growth and sexual reproduction,
respectively, are connected in GI-PSN, whereas less than 20% of the interactions from
the context-specific pathways — MAPK signalling and Autophagy — are detected (P =
0.002, two-sided Fisher’s exact test). GE-PSN and CS-PSN show a similar bias towards
Cell cycle and Meiosis compared to MAPK and Autophagy (Fig. 5d). Next, we examined
gold-standard reference PPls from the inner- and outer-complexome?%4%50 All three
PSNs captured significantly more interactions from the co-complex datasets than the
outer-complexome PPIs in signalling pathways and kinase-substrate interactions (P
ranges from 5 x 10 to 5 x 1045, Fisher’'s exact test) (Fig. 5e). A partial explanation for
the detection of PPIls within constitutive rather than context-specific pathways is that Gl-
PSN was produced using yeast grown on rich media, in which environment the context-
specific pathways will be mostly dormant, however, we also see differences in these
pathways in CS-PSN and GE-PSN which each use data from a large number of different
conditions. The most general explanation for these findings is that the PSNs are
measuring functional similarity, at an aggregate level, of the two interacting proteins, with
proteins that exist together in stable complexes being the most similar in their function,
whereas proteins with transient interactions may often each have additional functions,
independent from any specific binding partner, and so not be perfectly functionally similar
at the aggregate level. This can be illustrated by the interaction between the importin-a
nuclear pore subunit Srp1 and the transcription factor Pho5. Although nuclear import is
crucial for Pho5 function, the overall functions of both proteins are different and hence
they are unconnected in the functional profile similarity networks.

After evaluating this approach using specialised sets of gold-standard PPIs, we
next moved to the large-scale interactome maps, to evaluate the functional relationships
between interacting proteins in the inner- and outer-complexome across the entire
proteome. In all datasets, PPIs from the inner-complexome have a high probability of
being connected in the functional networks and PPlIs in the outer-complexome have lower
probabilities (Fig. 5¢, Extended Data Fig. 6). Interactions from all three zones of the outer-
complexome, B, C, and D, within each biophysical map, are connected in the functional
networks at similar rates, showing that the observed difference in the functional similarity
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of interacting proteins is a property of differences between the edges of the networks
(PPls) rather than between the nodes (proteins) (Fig. 5d). We observed consistent
patterns when we investigated the specific examples of the ESCRT and OCA complexes
(Supplementary Note 2, Extended Data Fig. 8). We observed similar patterns when
directly using genetic interactions instead of the profile similarities. Pairs of genes
encoding interacting proteins found in all biophysical maps have a higher likelihood to
show negative than positive Gls®', and genes encoding protein pairs from the inner-
complexome have an increased tendency to show negative Gl than pairs in the outer-
complexome (Extended Data Fig. 9a). The four biophysical datasets differ substantially
in their proportion of inner-complexome pairs. More than one-quarter of pairs in Lit-BM-
20 and Sys-NB-06, and more than half in AlphaFold+RoseTTAFold, are between subunits
of the same complex (Zone A) compared to around one-tenth for ABBI-21 (Fig. 1d, 2i,
5b). This difference contributes to the lower aggregate fraction of ABBI-21 PPIs
connected in functional PSNs, relative to Lit-BM-20 and Sys-NB-06, and the lower fraction
for those three networks relative to 13D-exp-20 and AlphaFold+RoseTTAFold (Fig. 5e).
Another factor affecting the overall rate of overlap with the different biophysical datasets
is that GI-PSN is densest among essential genes'3, and as a consequence, interactions
between proteins encoded by essential genes show a higher likelihood to be connected
in GI-PSN in all biophysical datasets. However, 13D-exp-20, AlphaFold+RoseTTAFold,
Lit-BM-20, and Sys-NB-06 are also biased towards proteins encoded by essential genes,
resulting in increased overlap with GI-PSN, whereas ABBI-21 covers the proteome and
interactome more uniformly (Extended Data Fig. 9b). We cannot directly compare the
rates of connection in the PSNs of the maps generated by systematic testing of large
search spaces (Sys-NB-06 and ABBI-21) to those of the literature-curated datasets (Lit-
BM-20 and I3D-exp-20), where most studies tend to focus on a particular pathway or
process of interest. For example, a single study®? provides more than a quarter of the Lit-
BM-20 pairs connected in GE-PSN by testing all pairs of 70 pre-ribosomal proteins, a test
space with a density of 83% of pairs connected in GE-PSN compared to a density of 1%
of pairs in the full proteome-by-proteome space connected in GE-PSN. Thus, the higher
overlap of literature-curated PPIs with functional PSNs likely stems more from the choice
of which protein pairs to test rather than the specific interactions detected, and the
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systematic maps should more accurately reflect the rate of connection in the PSNs for
the real protein interactome. In summary, we find that the inner-complexome tends to
consist of functionally similar interacting proteins. In contrast, the outer-complexome
tends to consist of interactions between functionally heterogeneous proteins, presumably

necessary for intracellular crosstalk.

One challenge to this interpretation is that [13D-exp-20 and
AlphaFold+RoseTTAFold have high overlaps with functional networks in the outer-
complexome relative to the other datasets. However, this could be because structures
are biased towards permanent interactions, due to their ease of crystallisation relative to
transient interactions, which often require additional techniques to crystallise®:. To test
this, we examined the interface area and predicted AG of the experimental and predicted
PPI structures, finding that PPIs that are also connected in the functional networks tended
to have larger interfaces and lower AG (Extended Data Fig. 7a, b, Supplementary Tables
18, 19). Computationally predicting structures should offer a way to overcome this bias in
experimental data generation. However, by contrast we found that predicted structures
had larger interfaces than the experimental structures (Extended Data Figure 6c¢), which
was a result both of AlphaFold being more often able to generate a sufficiently confident
predicted structure for larger interface PPls (Extended Data Fig. 7d), and of a bias of
AlphaFold predicting larger interfaces than seen in the experimental structures (Extended
Data Fig. 7e). Together this suggests that, currently, AlphaFold+RoseTTAFold not only
recapitulate the bias towards more stable PPIs in their training data but actually increase
that bias in the PPIs for which they are able to generate confident predictions.

The structural networks exhibit truncated degree distributions, missing high
degree, or hub, proteins (Extended Data Fig. 3i), possibly because of this bias against
transient PPIs. Hubs are key features of PPI networks, which have a major impact on the
network’s topology, and so we investigated the connectivity of PPI hubs in the functional
PSNs. Hubs in biophysical maps can be classified as either ‘date’ or ‘party’ hubs
depending on the degree to which interacting partners are also co-expressed®*.
Systematic binary maps have mostly date hubs, whereas literature-curated and
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systematic AP-MS maps have more party hubs* (Extended Data Fig. 9c, d). Party hubs
— which tend to be in complexes®® and use multiple interfaces to bind multiple partners
simultaneously — overlap with functional networks twice as much as date hubs, which
usually interact with partners one at a time transiently. The fraction of PPIs connected in
the functional networks generally decreases as the interacting proteins’ degree increases
across the different biophysical networks (Extended Data Fig. 9e). One notable exception
is Sys-NB-06 in GE-PSN due to the tightly correlated expression of large protein
complexes’ subunits, and the inclusion of pairs corresponding to indirect associations in
those complexes. AlphaFold+RoseTTAFold displays very different trends, probably
because of its truncated degree distribution. The observation that high-degree proteins
are less functionally similar to their binding partners is consistent with the observation that

they are more pleiotropic®.
Discussion

Four decades ago, McConkey proposed the term “quinary structure” as a “fifth
level of organization”, referring to macromolecular interactions that, although potentially
highly functionally relevant, might be “transient in vivo™%98 He predicted such
interactions “will not be evident from the composition of purified proteins”, since, while
quaternary structures tend to be more resistant to the “cataclysmic violence of the most
gentle homogenization procedure”, quinary interactions, “although stable in vivo, might
be largely destroyed by cell fractionation”. The observations presented in this paper
suggest fundamental differences in organisation between the inner-complexome,
containing mostly quaternary structures that are highly detectable by affinity purification
approaches, and the outer-complexome, which has a greater tendency towards quinary
structures, detectable by binary assays in living cells. From this perspective, it is easy to
see why there should be a substantial discrepancy among alternative views of inner-
versus outer-complexome organisation revealed by approaches as different as co-
complex association detection and binary interaction assays. Indeed, we observe that the
different methods used to obtain PPIs have different propensities to include transient

interactions as well as different proportions of direct interactions and indirect co-complex
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associations, and that these differences can have a dramatic influence on the properties
of the resulting network and hence our understanding of cellular organisation.

Although undoubtedly oversimplistic, our results evoke a view in which the inner-
complexome constitutes the “manufacturing machinery” operating in a relatively constant,
robust, and persistent manner, and the outer-complexome comprises the “regulatory
processes" exhibiting greater flexibility, plasticity, environmental responsiveness, and
evolvability. A relatively small proportion of the interactome is composed of inner-
complexome interactions, while the vast majority of the interactome consists of
interactions in the outer-complexome, consistent with emerging evidence suggesting that
the majority of the interactome may be transient and context-specific?>?7, between
complementary rather than similar proteins®®, and with extensive pathway cross-talk and
pleiotropy®®. However, mapping and functional characterization of these outer-
complexome interactions remain challenging. Continued development of assays that can
efficiently detect transient, context-specific PPls, combined with new large-scale
approaches to characterize their functions will be an important next step toward
understanding the global organisation of cellular processes.
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Extended Data Fig. 1 | Most proteins are not members of protein complexes. a, The
fraction of the proteome of different organisms that are not listed as subunits of protein
complexes of at least 3 or more different protein subunits, using different datasets of
protein complexes. The union of the protein complex datasets for each organism is also

shown, when there is more than one dataset.
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Extended Data Fig. 2 | Validation of YeRI. a, Benchmarking Y2H v4 against two other
binary PPI assays, using positive and random reference sets (scPRS-v2 and scRRS-v2).
Coloured bars indicate positives. b, The results of different batches of experimental
validation of YeRI in GPCA and MAPPIT. In total, all pairs from YeRI were tested in both
assays. Error bars and shaded bands are 68.3% Bayesian credible intervals. c,
Enrichment of YeRI PPIls between proteins in the same cellular compartments, pathways,
and protein complexes. Error bars are 68.3% interval of degree-preserved random
networks. d, Composite networks, generated by the addition of each systematic PPl map
(top row, left). Network regions enriched for GO terms (bottom row, left). Merge of network
and enriched regions for the most recent composite network (right). e, Network-based
spatial enrichment analysis (SAFE) for YeRI. Clusters of genes enriched for GO terms in
YeRI are highlighted. f, The number of proteins encoded by genes of unknown function
with at least one interaction in ABBI-21 or Lit-BM. g, Number of PPIs involving proteins
encoded by genes of unknown function in Lit-BM-20 or ABBI-21. h, PPI network of PEX35
and its first- and second-degree interactors. Named proteins are those annotated or

predicted to have the GO terms related to ‘peroxisome importer complex’.
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Extended Data Fig. 3 | Assessment of high-quality binary PPl datasets. a, Coverage
of the yeast interactome by ABBI-21, based on three reported estimates of the total
interactome size. Error bars correspond to the 95% confidence intervals of each estimate
reported in the original publications. b, The proportion of ABBI-21 in each Zone. ¢, Venn
diagram of PPIs, and proteins with at least one PPI, in four high-quality binary datasets.
d, Fraction of PPls identified by Y2H v4 in complex structures of different sizes. Error bars
are 68.3% Bayesian credible intervals. e, Y2H v4 recovery of I3D-exp-17 pairs as a
function of the fraction of the protein that is contained in the experimental structure. The
lower of the two values of coverage of the different proteins in each interaction is used.
Error bars are 68.3% Bayesian credible intervals. f, Distribution of interface area for 13D-
exp-17 PPIls, that tested positive in Y2H v4, MAPPIT, and GPCA, restricting to pairs that
were successfully tested in all three assays. Box plots show median, interquartile range
(IQR), and 1.5xIQR. g, Dissociation constants of pairs positive or negative in Y2H v4.
Points outlined in black are PPIs (non-covalent interactions) of different ubiquitin-binding
proteins with ubiquitin. h, Results of testing AlphaFold+RoseTTAFold in Y2H v4, split into
bins of contact probability. Error bars are 68.3% Bayesian credible intervals. i, Number of
PPIs in AlphaFold+RoseTTAFold dataset as a function of contact probability. The lower
line shows the number of PPls without a previous experimental structure of the complex,
made with either the exact S. cerevisiae proteins or homologous proteins. j, degree
distribution of each network.
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Extended Data Fig. 4 | Validation experiment results in different Zones. a, Mean of
publication count, abundance, gene conservation, and the fraction of essential genes for
proteins either in or outside complexes. Error bars are 95% confidence interval. b,
Correlation matrix with clustering of different protein-level properties based on
Spearman's rank correlation coefficient. ¢, The fraction of genes in five biophysical
networks across sliding windows of 1,000 proteins, ordered by abundance and
conservation. Grey dotted lines show the overall fraction. d, Enrichments of Sys-NB-06
and ABBI-21 to contain different gold-standard sets of PPIs from the inner- and outer-
complexome. Direct PPIs within protein complexes with three or more subunits; co-
complex pairs from KEGG pathways; PPIs regulating activation or inhibition from KEGG;
and high-quality kinase-substrate pairs from the KID database. Error bars are standard
error on the log odds ratio. e, Overlap of the three functional profile similarity networks
(PSNs), genetic interaction (GI-PSN), gene expression at mRNA level across different
conditions (GE-PSN), and growth across different conditions PSN (CS-PSN). Restricted
to genes tested in all three PSNs with PCC value in the top 1% of tested pairs in each
PSN. f, Investigation of densely connected area between the most intensely studied
genes in GI-PSN. Heatmaps of the number of connected gene pairs in GI-PSN, ordered
by protein abundance, and further segmented based on essentiality and involvement in
the ribosome. g, Recovery of protein pairs in direct contact and pairs not in direct contact
within the corresponding 3D structures, by different biophysical and functional networks.
Each point is a separate protein complex with at least 5 distinct protein subunits. h, The
fraction of directly contacting interactions, taking all reported pairs where both proteins
are in a protein complex structure with at least three subunits, for different datasets. Error
bars are standard error of proportion. i, Estimation of the fraction GI-PSN pairs that are
also a binary PPI, based on results of testing samples from GI-PSNs at different PCC
cutoffs using Y2H v4 and GPCA and comparing to the results of the PRS. Error bars are

10 confidence intervals.
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Extended Data Fig. 5 | A large proportion of the interactome mainly consists of
interactions between functionally heterogeneous proteins in the outer-
complexome. a, Edge density fold change in the inner- and outer-complexome in the
biophysical and functional maps. b, Edge density fold change in the Zones B, C and D of
the outer-complexome in the biophysical and functional maps. c-e, Distribution of CS-
PSN after restricting to genes tested in the experiment: ¢, edge density fold change in the
outer-complexome (Zones B, C and D), d, heatmap of the number of connected gene
pairs with the proteome first ordered by size of protein complexes in which the proteins
are involved then ordered by protein abundance, and, e, statistically significant
enrichment and depletion of pairs in d. f, Fraction of pairs in the inner- and outer-
complexome from Lit-BM-13 and ABBI-21 that tested positive using GPCA and MAPPIT.
d, h, The fraction of pairs testing positive in GPCA (g) and MAPPIT (h) in Zones A, B, C,
and D from Lit-BM and systematic binary maps. All error bars are 68.3% Bayesian

credible intervals.
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Extended Data Fig. 6 | Distributions of functional profile similarity values of
physically interacting proteins produce consistent results with the overlap with
PSNs analysis. a, b, c, Left panel: PCC value for each of the functional profiles across
all tested gene pairs. Right panels: distribution of functional profile PCC for interacting
proteins, in each PPI network, split into inner- and outer-complexome. Grey vertical lines
correspond to the cutoff used to make each PSN. GI-PSN (a), CS-PSN (b), GE-PSN (c).
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Extended Data Fig. 7 | Stronger PPls more often overlap with functional similarity
networks. a, b, Distribution of PPl interface sizes (a), and predicted AG of interaction (b),
from experimentally solved and computationally predicted structures, comparing PPls
that are connected in functional PSNs to those that are not. ¢, Distribution of PPl interface
sizes between the experimental and predicted structure datasets. d, Distribution of PPI
interface sizes, using the experimental structures, split by whether the PPI appears in the
predicted structures dataset. All box plots show median, interquartile range (IQR), and
1.5%IQR (with outliers). e, Comparison of the PPI interface size of the computationally
predicted structure to the experimental structure, for PPIs with both predicted and
experimental structures. P-values in all panels calculated using two-tailed Mann-Whitney
U test.
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Extended Data Fig. 8 | ESCRT / OCA complexes. a, Integrated network showing
interactions among subunits of ESCRT complexes and their interacting partners. b,
Integrated network showing interactions among subunits of the OCA complex and their
interacting partners. Physically interacting proteins also connected in functional networks

are connected with thick orange lines.
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Extended Data Fig. 9 | Further exploration of factors affecting PPl connection in
functional networks. a, Composition of edges from three biophysical maps in inner-
complexome (Zone A) and outer-complexome (Zones B, C, and D) and the fraction of
pairs from biophysical maps also connected in positive or negative genetic interaction
networks (top 1%) within the four zones. Error bars are 68.3% Bayesian credible intervals.
b, Composition of edges from three biophysical maps between essential genes and
involving non-essential genes, and the fraction of pairs from biophysical maps of each
category connected in functional networks. Error bars are 68.3% Bayesian credible
intervals. ¢, Composition of edges from three biophysical maps involving date and party
hubs using different degree and PCC thresholds, and the fraction of pairs from biophysical
maps of each category connected in functional networks. Only panels for which there are
at least one date and one party hub are shown. Error bars are 68.3% Bayesian credible
intervals. d, Average co-expression PCC of proteins in biophysical maps with different
degrees. A cutoff between party and date hubs of 0.3 is shown by the grey horizontal line.
e, The fraction of edges that are also connected in functional networks, for three
biophysical maps, binned by the higher degree of the two proteins for each pair. Logistic

regression and 95% confidence interval are shown.
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Supplementary Note 1 — Predicting functions for genes with YeRI

Despite being one of the most well-studied organisms, the function of almost one-sixth of
yeast genes remains unknown 3. We investigated the number of PPIs involving the
products of these uncharacterised genes in both literature and systematic maps.
Systematic maps identify substantially more PPls connecting proteins encoded by genes
of unknown function than literature-derived maps (Extended Data Fig. 2g). Altogether,
33% of such proteins have at least one interaction in ABBI-21, while 19% have
interactions identified only in YeRI (Extended Data Fig. 2f). Given the lack of progress in
characterizing the functions of these genes, systematically mapped PPls provide
information to infer their cellular roles. We predicted functions for genes of unknown
function with a guilt-by-association approach using GO term annotations of their
interaction partners?® (Supplementary Table 13) in ABBI-21. The lag between the release
of publications describing gene functions and the curation of that information into GO
terms sometimes results in a small number of genes which appear in the GO-term based
list of genes as “genes of unknown”, while in fact, they have been assigned functions
already. These cases present an opportunity to test the accuracy of our predictions. For
example, a gene of unknown function YGR768C is also known as PEX35 owing to its
recently demonstrated role as a regulator of peroxisomal abundance . Using ABBI-21,
we predicted YGR168C to be involved in peroxisomal protein import machinery,
showcasing the ability of ABBI-21 to accurately predict gene function. Pex35 has 23 PPIs
in ABBI-21, all from YeRI, out of which eight are proteins involved in peroxisomal biology
(Extended Data Fig. 2h). Pex35 also interacts with another protein encoded by a gene of
unknown function, YKLO18C-A/IMCO12, which we predict to be involved in peroxisomal
abundance as well. Another example of the efficacy of using a guilt by association
approach with our systematic PPl network to predict gene function is YJRO15W, the
product of which was recently demonstrated to be localised to the ER ©°. Indeed, we
predicted YJRO15W as a putative facilitator of endoplasmic reticulum (ER) transport
activity, based on its protein interactions with ER secretory pathway components such as
Sec11, Spc1, and Sar1.
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Supplementary Note 2 - ESCRT / OCA complexes

The endosomal sorting complex required for transport (ESCRT) pathway plays a
key role in the biogenesis of multivesicular bodies and turnover of membrane proteins®®.
The main players in the ESCRT pathway are the five ESCRT complexes, supporting
auxiliary proteins, and the cargo to be sorted. By integrating biophysical and genetic
networks, we observe that the five ESCRT complexes’ core constituents interact
biophysically in both ABBI-21 and Lit-BM-20 and are highly interconnected in functional
networks (Extended Data Fig. 8a). In contrast, outer-complexome ABBI-21 PPIs between
subunits of ESCRT complex and non-complex proteins, important for endosomal sorting,
are not connected in the functional networks. For example, ABBI-21 contains PPls
between Vfa1, important for vacuolar sorting, and Vps4 and Vta1, subunits of the ESCRT-
4 complex. However, despite known functional roles, Vfa1 is not connected with Vps4
and Vta1 in any of the PSNs.

Systematic binary maps can help us understand how proteins within and outside
complexes function together to mediate various biological processes. One such example
is Snn1, a subunit of the biogenesis of lysosome-related organelles complex 1, BLOC-1,
important for endosomal maturation®”:68. In ABBI-21, Snn1 interacts with proteins of the
ESCRT complex like Vps28 and other non-complex endosomal proteins like Nkp2
(Extended Data Fig. 8a). ABBI-21 interactors of Snn1 are significantly enriched in proteins
located in endosomes (13%, vs 2% overall for proteins in ABBI-21, P = 0.0007, two-sided
Fisher’s exact test). Five out of six BLOC-1 complex proteins have PPIs primarily in ABBI-
21, and none of the interacting protein pairs are connected in any of the functional

networks.

The uniform coverage of inner- and outer-complexome by ABBI-21 can also shed
light upon potential mechanisms by which previously under-studied complexes act. For
example, the oxidant-induced cell-cycle arrest (OCA) complex mediates G1 arrest under
stress conditions through a yet unknown mechanism®. This complex’s six components
are connected biophysically and in the functional networks, exhibiting similar genetic

interaction and condition sensitivity profiles (Extended Data Fig. 8b). Although inner-
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complexome interactions with OCA may well be critical for its function, they do not explain
the complex’s stress-specificity. Outer-complexome interactions of OCA proteins do not
overlap with the genetic networks but might be instrumental in understanding the
mechanism through which the complex mediates its function. Of particular interest is the
interaction between Oca1 and Tos4, newly reported in YeRI (Extended Data Fig. 8b).
Tos4 is a transcription factor that binds to the promoters of genes involved in the G1/S
transition’®, offering a hypothesis for the mechanism by which OCA mediates G1 arrest.
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Methods

Strains and cell lines

Yeast strains

Yeast haploid strains MATa Y8930 and MATa Y8800, derived from PJ69-47!, were used
previously*"2. Both strains harbor the following genotype: leu2-3,112 trp1-901 his3A4200
ura3-52 gal4A gal80A GAL2::ADE2 GAL1:HIS3@LYS2 GAL7:lacZ@MET2 cyh2R.
Yeast cells, parental strains or transformants, were cultured either in YEPD or synthetic
drop out media, supplemented as needed and incubated at 30°C.

Bacterial strains

Chemically competent DH5a or DB3.1 E. coli cells were used for all bacterial
transformations in this study. Transformed cells were cultured in Luria Broth or Terrific
Broth, supplemented with antibiotics (50 pg/ml of ampicillin, spectinomycin or kanamycin)
as needed and incubated at 37°C.

Human cell lines

Human embryonic kidney HEK293T cells were cultured in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% fetal bovine serum, 2mmol/L L-glutamine, 100
I.U./mL penicillin, and 100 pg/mL streptomycin. Cells were incubated at 37°C with 5%
CO2 and 95% humidity.

Yeast open reading frames

The list of yeast ORFs was downloaded from the Saccharomyces Genome Database
(SGD) (https://www.yeastgenome.org/) on January 14", 2017. Four ORFs
(YCRO97W/HMRAT1, YCR096C/HMRAZ2, YCLO66W/HMLALPHA1,
YCLO67C/HMLALPHAZ2) annotated in SGD as “silenced gene” were removed. Only SGD-
annotated “Verified” and “Uncharacterized” ORFs were included whereas ORFs

annotated as “Dubious” were excluded, leaving a total of 5,883 ORFs with 5,155 and 728

ORFs classified as Verified and Uncharacterized, respectively. All datasets analyzed
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have been restricted to these 5,883 ORFs and previous ORF names that appear as

aliases for one of these ORFs have been mapped to their corresponding new name.

Complexome - list of protein complexes

Most analyses use yeast complexes taken from Data File S12 of Costanzo et al. 2016
and filtered to contain three or more different protein subunits, resulting in 339 complexes
containing 1,897 different proteins. For the cross-species analysis in Figure 1a, the data
came from the EBI Complex Portal”® dated Feb 3™ 2022, and also filtered for those
containing three or more different protein subunits. Additional datasets were used in
Extended Data Figure 1a, from CYC2008*°, CORUM"* v3 dated 3™ September 2018, and
Hu.MAP 2.07% dated 9" August 2020, all filtered to contain three or more different protein

subunits.

Assigning protein pairwise combinations to individual zones

The search space of all possible pairwise combinations of proteins can be classified into
four different “zones” based on their relationship to the complexome (Figure 1A). We
define Zone A, which we refer to as the inner-complexome, as all pairwise combinations
of proteins within protein complexes. Such pairs would include for example Rpt4 and
Rpt5, two interacting subunits of the proteasome’®, and Rps1A and Rps14A of the
ribosome’’. Zone B corresponds to pairs of proteins where each protein belongs to a
different complex. For example, the RNA polymerase || (RNA Pol-Il) Rpb2 subunit is
capable of interacting with the Tfg2 subunit of the transcription factor Il complex TFIIH®.
Zone C represents all pairwise combinations where one protein is in a complex and the
other is not. For example, Rpl10, a component of the large ribosomal subunit, interacts
with Sqt1, a chaperone important for Rpl10 assembly into the ribosome’®. Another
example would be Rbp2 which interacts with Rad26, a nucleotide excision repair protein
recruited to DNA lesions by RNA Pol 118, Finally, Zone D corresponds to protein pairs
where neither protein belongs to a complex. Examples of Zone D interactions include
most PPIs within signal transduction pathways, individual chaperones and their clients or

kinase-substrate pairs involved in cellular processes such as autophagy.
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While populated by relatively abundant proteins and large molecular size
machines, the inner-complexome covers only a tiny proportion of the full yeast
interactome “search space”, i.e. all ~18,000,000 pairwise combinations between all
~6,000 proteins. For example, the yeast ribosome, which accounts for nearly 20% of the
proteomic mass®?, is encoded by only 2% of all genes and all combinations between
ribosomal proteins correspond to ~0.04% of the whole search space. Together the 339
complexes in our complexome map represent 17,607 pairwise combinations between
their respective subunits, which corresponds to only ~0.1% of the proteome-by-proteome
space. This leaves us with ~99.9% of the whole search space for the outer-complexome,
with its three zones, B, C, and D, corresponding to 10%, 44%, and 46% of the proteome-

by-proteome space, respectively.

Assembly and description of biophysical and genetic datasets

Y2H-union: Uetz-screen, Ito-core and CCSB-YI1

As described previously*, Uetz-screen is a subset of PPIs from Uetz et al?>? that was
obtained from a proteome-scale systematic Y2H screen, excluding a smaller-scale,
relatively biased, targeted experiment with a smaller number of well-studied bait proteins.
lto-core is a subset of PPIs found three times or more in Ito et al®, excluding unreliable
pairs of proteins found only once or twice. CCSB-Y1 is a proteome-scale dataset of Y2H
PPIs validated using the two orthogonal assays MAPPIT and yPCA*. After restricting to
PPIs involving the 5,883 ORFs (described above) the dataset sizes are as follows: Uetz-
screen: 645 PPIs; Ito-core: 816 PPls; CCSB-YI: 1,772 PPIs. The union of these maps
(Y2H-union) contains 1.933 nodes and 2,833 PPIs.

Literature-curated biophysical datasets (Lit-NB, Lit-BS, Lit-BM)

Literature-curated pairs were obtained from the databases MINT®, IntAct®, DIP'°, and
BioGRID''. The data files used were the 2020-07-14 release from IntAct (containing data
from IntAct, MINT and DIP) and BioGRID release 3.5.187 (from 2020-06-25). We
excluded evidence corresponding to the eight systematic, proteome-scale co-complex
association datasets? 73846, Data was filtered to ensure valid IDs for UniProt accession
numbers, Pubmed IDs and PSI-MI terms. Each piece of evidence for a protein pair had
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to consist of a Pubmed ID and an interaction detection method code in the PSI-MI

controlled vocabulary (http://www.psidev.info/groups/molecular-interactions). Duplicated

evidence can arise in cases where different source databases curate the same paper.
We merged duplicated entries for each pair, as detected by multiple pieces of evidence
with the same Pubmed ID and experimental interaction detection codes which are either
identical or have an ancestor-descendent relationship in the PSI-MI ontology. In the latter
case, the more specific descendent term was assigned to the merged evidence. In order
to select the subset of protein pairs corresponding to binary interactions (as opposed to
co-complex associations), we developed a manual classification of the PSI-MI interaction
detection method terms®®. Our classification has since been updated to cover new
experimental methods which have been added to the controlled vocabulary in the
intervening time. The methods are classified into three categories; ‘invalid’, ‘binary’ and
‘non-binary’. Where ‘invalid’ corresponds to PSI-MI terms that are not considered valid
experimental protein-protein interaction detection methods, ‘binary’ corresponds to terms
that detect binary protein-protein interactions and ‘non-binary’ corresponds to terms that
detect potentially indirect associations. An example term in the “invalid” category is
“colocalization”. All protein pairs annotated with “invalid” terms were excluded. ‘Binary’
versus ‘non-binary’ evidence was used to categorize protein pairs in the literature-curated
dataset as follows. Pairs with no binary experimental evidence were classified as “Lit-
NB”, corresponding to 100,940 pairs. Pairs with a single piece of binary evidence and no
other evidence were classified as “Lit-BS”, corresponding to 14,477 pairs. Finally, pairs
with two or more pieces of evidence including at least one binary evidence were classified

as “Lit-BM”, corresponding to 5,589 pairs.

Previous literature-curated datasets generated in 2017 and 2013 were used as a
source dataset for pairs experimentally tested in GPCA, MAPPIT and Y2H-v4 (see
Engineering of new Y2H destination vectors) experiments. These were generated and
processed as above with small differences. Lit-BM-17 and Lit-BS-17 were obtained via
the mentha resource data file dated August 28" 201730, Lit-BM-13/Lit-BS-13/Lit-NB-13

were generated as described previously®®. Yeast PPIs annotated through December
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2013 from six source databases: BIND®!, BioGRID'!, DIP'9, MINT?®, IntAct®2 and PDB?&3

were extracted and processed using the same protocol.

Direct PPIs with experimental structures

The most definitive proof that a pair of interacting proteins are in physical direct contact
is the availability of a three-dimensional (3D) structure of their interface. We used the
subset of Interactome3D?° restricted to experimental structures, excluding homology
models. The dataset from the January 2020 release of Interactome3D, referred to as “I3D-
exp-20”, was used for most computational analyses. The dataset from the June 2017
release, “I3D-exp-17”, was experimentally tested in its entirety using Y2H v4 (see
Engineering of new Y2H destination vectors). The date assigned to PPIs was obtained
from the PDB database taking their earliest release date for all PDB structures from the

‘complete” Interactome3D dataset.

Note on the overlap between 13D-exp-20 and Lit-BM-20 PPIs

There were a surprisingly large number of pairs in I13D-exp-20 and not in Lit-BM-20 (1,015
pairs in the difference of I3D-exp-20 from Lit-BM-20 and 746 pairs in the union, see Figure
S1B). These pairs are mostly cryo-EM structures (77% Electron Microscopy in the
difference vs 36% in the intersection) of larger complexes (median number of entities per
structure of 18 in the difference vs 4 in the intersection). The reason for this is that in the
generation of the literature-curated datasets (see section Literature-curated biophysical
datasets), we don'’t use the structural data for direct contacts, we base the binary vs non-
binary distinction on the experimental method used and we classify Cryo-EM as non-

binary since we don’t know if the reported pairs are in direct contact or not.
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Predicted structures

The list of PPIs for AlphaFold+RoseTTAFold was from the excel file captioned
“Descriptions of all predicted protein-protein interactions”'?. Six PPIs with missing gene
names were discarded. The predicted structures, which were available for pairs with
contact probability = 0.9, were downloaded from

https://modelarchive.org/doi/10.5452/ma-bak-cepc.

Systematic AP-MS

Sys-NB-06 is made up of Gavin et al. 20028, Gavin et al. 20067, Krogan et al. 2006°. We
didn’t include Ho et al. 200246, since it was generated with a smaller, more focussed
selection of bait proteins.
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Methods Table 1. Tested biophysical datasets

Number of pairs
attempted in:
Co-complex | Binary
Category Dataset Y2H v4 | GPCA [ MAPPIT
associations | PPls
Gavin (2002) 3,210 200
Gavin (2006) 6,531 200
Proteome x
CYC2008 11,136 200 405
Co-complex | proteome
Krogan 7,059 200
Ho 3,584 200
Literature Lit-NB-17 71,260 151
Experimentally Ito-core 816 738 199 199
detected Proteome x | Uetz-screen 645 470 193 193
proteome CCSB-YI1 1,772 | 1,536 200 200
Tarassov 2,761 199 199 199
Binary
With structure | 13D-exp-17 1,787 | 1,231
Lit-BS-17 13,981 146 149
Literature Lit-BM-13 4,115 584 168
Lit-BM-17 4,623 | 4,128
Jansen 9,870 200
PrePPIP 30,184 200 | 198
Predicted AlphaFold+
RoseTTAFold 1,505 | 1,505
scPRS-v2 108 108 108 108
PRS and RRS
scRRS-v2 198* 198 198 198
YeRI YeRI 1,910 1,910 | 1,910

@ pairwise combinations of proteins within each complex
® high confidence subset
¢ tested across two Y2H v4 experiments

*Negative control of random pairs of proteins

51


https://doi.org/10.1101/2021.03.16.435663
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.16.435663; this version posted July 22, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Functional profile similarity networks (PSNs)

Genetic interaction similarity profile data (GI-PSN) were extracted from Costanzo et al.
2016'3. The average PCC of a pair was used if multiple PCCs were available. Pairs with
PCCs ranked in the top 1% were used to generate the Gl PSN. Condition-sensitivity data
(CS-PSN) was extracted from Hillenmeyer et al. 2008'. The log of growth ratios from the
homozygous deletion data were used to calculate PCC for each pair of genes. Pairs with
PCCs ranked in the top 1% were used to generate the condition-sensitivity PSN. Co-
expression data (CE-PSN) was downloaded from https://coxpresdb.jp’. The union
dataset (Sce-m.c3-0 Sce-r.c1-0, 2018.11.07) was used. Pairs with PCCs ranked in the
top 1% were used to generate the co-expression PSN.

Methods Table 2. Numbers of genes and interactions in the top 1% percentile of the

genetic maps

PCC threshold
PSN Number of nodes Number of edges
(top 1%)
Gl 0.12 5,328 134,972
CS 0.42 3,479 65,147
GE 0.57 3,832 99,454

Generation of scPRS-v2 and scRRS-v2

Due to the change in yeast ORFeome used, we updated our positive reference set (PRS)
and random reference set (RRS) from our original set*. We named the updated
Saccharomyces cerevisiae positive and random reference sets (scPRS-v2 and scRRS-
v2 respectively). In Yu et al., 188 PPIs with five or more papers were finalized as PRS
candidates of which 116 had both ORFs in the collection at the time. Of the 188 PPls, we
filtered those pairs to also be in Lit-BM-20, then to have both ORFs in the FLEXGene
collection®? resulting in a final scPRS-v2 of 108 PPIs. Of 188 RRS pairs in Yu et al., we

removed all ORFs annotated as dubious, then required they have both ORFs in the
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FLEXGene collection. To that we increased the size by adding additional pairs randomly
selected from the space of all possible pairwise combinations of ORFs in the FLEXGene
collection. Since the RRS is used as a negative control, we then filtered out any pairs that
appeared in any of the experimental PPl or co-complex association datasets, which
resulted in removing one pair that appeared in Lit-NB-20 resulting in a final scRRS-v2 of

198 pairs.
Yu et al. PRS before ORF . Yu et al. RRS before final 188 pairs
collection selection: 188 pairs filtering step: P

Remove dubious ORFs

Require ORFs to be in
FLEXGene collection

Require pairs to also be in
Lit-BM-20

Require FLEXGene
collection ORFs to match
genome sequence

Require ORFs to be in
FLEXGene collection
Add additional pairs
randomly selected from
the space of pairwise
combinations of
FLEXGene collection
ORFs

Require FLEXGene
collection ORFs to match
genome sequence Require pairs to not be in
any experimental PPI or
co-complex association

dataset

108 pairs 198 pairs
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Engineering of new Y2H destination vectors

Gateway compatible 2 high-copy destination vectors pVV212 and pVV2138* with a Gal4
DNA binding domain and a Gal4 activation domain, respectively, were modified to be
compatible with our standard Y2H vectors pDEST-DB and pDEST-AD-CYH272 with
respect to the LEU2 and TRP1 as selectable markers. The resulting destination vectors
pDEST-DB-QZ212 and pDEST-AD-QZ213 also carry CAN1 or CYH2 genes as
counterselectable markers, respectively. The CYH2 and CANT counterselectable
markers facilitate plasmid shuffling for the identification of auto-activators®®. Gateway LR
reactions between yeast ORFs flanked by attL1 and attL2 sites with the attR1 and attR2
sites of pPDEST-DB-QZ212 and pDEST-AD-QZ213 result in attB1 and attB2 sites flanking
yeast ORFs now fused downstream of either the Gal4 DB or Gal4 AD sequences of the
respective destination vector. See Methods Table 3 for detailed information.
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Methods Table 3. Yeast destination vectors

selection marker

pDEST-DB pDEST-AD pDEST-AD
Name pDEST-DB
-QZ212 -CYH2 -QZ213
Fusion partner Gal4-DB Gal4-DB Gal4-AD Gal4-AD
(aa) (1-147) (1-147) (768-881) (768-881)
Fusion location N-terminus N-terminus N-terminus N-terminus
Yeast Promoter Truncated ADH1 | Truncated ADH1 (- | Truncated ADH1 Truncated ADH1
(nt) (-701 to +1) 410 to +1) (-701 to +1) (-410 to +1)
Yeast replication
. CEN 2u CEN 2y
of origin
Linker sequence
between
3’ of Gal4 ICMAYPYDVPDY
element and SRSNQ PEFPS GGSNQ ASLGGHMAMEA
Gateway cloning PS
site
(aa)
Yeast terminator ADH1 Term ADH1 Term ADH1 Term ADH1 Term
E. coli selection o o o o
Ampicillin Ampicillin Ampicillin Ampicillin
marker
Yeast
auxotrophic Leucine Leucine Tryptophan Tryptophan
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Benchmarking Yeast Two-Hybrid (Y2H) assay versions

Assay versions were benchmarked using scPRS-v2 and scRRS-v2. The new Y2H version
with destination clones in vectors pDEST-DB-QZ212 and pDEST-AD-QZ213 was named
Y2H version 4 (Y2H v4). Y2H v1 - v3 can be found in Luck et al, Nature, 2020%°. The
performance of Y2H v4 was compared to Y2H v1, which consists of destination clones in
pDEST-AD-CYH2 and pDEST-DB, and was used to generate CCSB-YI14. The Y2H
assay was performed as described previously3®72. Briefly, Y8930:pDEST-DB-QZ212-
ORF and Y8800:pDEST-AD-QZ213-ORF haploid strains were inoculated and mated.
After enrichment for diploids in SC-Leu-Trp, diploids were spotted on SC-Leu-Trp-
His+3AT solid media, testing for GAL1::HIS3 activation and on a set of SC-Leu-His+3AT
plates supplemented with 10 mg/L cycloheximide (CHX) to identify spontaneous DB-ORF
auto-activators’2. After 3 days incubation at 30°C, yeast strains growing on SC-Leu-Trp-
His+3AT solid media and not on SC-Leu-His+3AT+CHX media were scored as positives.

The interacting pairs were identified based on plate position.

Generation of an expanded yeast ORFeome collection

Yeast FLEXGene clone collection®? of full length ORFs cloned in either pDONR201 or
pDONR221, both KanR, contains 4,933 ORFs, after removal of redundant ORFs and
ORFs that no longer match SGD-annotated ORFs (version 2014)

(https://www.yeastgenome.org/). For the remaining 950 SGD-annotated ORFs not in

Yeast FLEXGene, entry clones were generated in-house and are referred to as
supplemental ORFeome collection. ORF sequences were amplified without their native
stop codon sequences from either S. cerevisiae S288C genomic DNA (ORFs without
introns) or cDNA (ORFs containing introns) using KOD high fidelity polymerase
(Novagen) and 18-20 nucleotide ORF-specific forward and reverse PCR primers tailed
with Gateway attB1 and attB2 sequences

attB1 Forward primer tail 5 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCACC
attB2 Reverse primer tail 5’ GGGGACCACTTTGTACAAGAAAGCTGGGTCCTA
from Hu et a%, respectively, essentially as described®. The CTA sequence in the
Gateway tail of the reverse primer provided a synthetic stop codon for all ORFs. Amplified
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ORFs were transferred to pPDONR223 (SpecR) by Gateway BP recombination cloning
(Invitrogen) and transformed into chemically competent DH5a E. coli cells. Sanger
sequencing of PCR products, generated with universal forward and reverse primers, was
used to confirm the identity of all cloned ORFs as described®. 921 ORFs were obtained
using this approach.

ORFeome cloning in Y2H destination vectors

To generate an arrayed library of DB-ORF and AD-ORF hybrid proteins, the yeast ORFs
were transferred into both destination vectors, pDEST-DB-QZ212 and pDEST-AD-
QZ213, by Gateway LR recombination cloning (Invitrogen). Gateway LR reaction
products were transformed into DHS5a E. coli cells, plasmid DNA was extracted and used
to transform yeast strains. pDEST-DB-QZ212 and pDEST-AD-QZ213 expression clones
were transformed into yeast strains MATa Y8930 and MATa Y8800, respectively’.

Auto-activator detection for filtering before Y2H screening

We tested for auto-activation of the GAL1::HIS3 reporter gene by AD-ORF or DB-ORF
fusion proteins in both haploid and diploid yeast cells. To identify auto-activator clones in
haploid yeast, Y8930:DB-ORF and Y8800:AD-ORF strains were grown to saturation in
SC medium lacking Leucine (SC-Leu) or Tryptophan (SC-Trp), respectively. After 24
hours of incubation, Y8930:DB-ORF and Y8800:AD-ORF haploids were spotted on SC-
Leu-His+3AT or SC-Trp-His+3AT to test for GAL1::HIS3 activation. Viability of the
haploids was confirmed with growth on SC-Leu or SC-Trp, respectively.

To identify auto-activators in diploid yeast, MATa Y8930:DB-ORF and MATa
Y8800:AD-ORF strains were mated against their respective opposite mating type strains
carrying the corresponding destination vectors without any fused ORFs. Mating was
conducted in rich medium, YEPD, and resulting diploids were enriched following growth
in SC-Leu-Trp. Diploids were spotted on SC-Leu-Trp-His+3AT, to test for GAL1::HIS3
activation, and on SC-Leu-Trp to confirm the viability of the diploids. For both haploids
and diploids, after incubation at 30°C for 3-4 days, strains growing in the absence of
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histidine were considered auto-activators. 560 DB-ORFs and 1 AD-ORF were removed

from the final screening collection.

The remaining DB-ORF and AD-ORF clones were re-arrayed into four different
groups to separate ORFs with similar nucleotide sequences, defined as BLAST scores of
100 and above. Separation of similar ORFs makes the downstream sequence
identification of the short NGS reads more accurate, as the reads are aligned to specific
groups of ORFs without sequence ambiguity. Filtering for pairs that passed autoactivator
screening and successful cloning resulted in a final collection which was then used for
systematic screening included 4,778 DB-ORF clones and 5,700 AD-ORF clones,
covering a total of 5,854 yeast ORFs.

Primary yeast two-hybrid (Y2H) screening

Three replicate Y2H screens were performed. Individual MATa Y8930:DB-ORFs were
mated in YEPD against a pool of ~700 (FLEXGene collection) or ~200 (supplemental
collection) MATa Y8800:AD ORFs. AD-ORF pool size was decreased for the
supplemental collection to facilitate screening. After enrichment in SC-Leu-Trp, 5ul of the
culture was spotted on SC-Leu-Trp-His+3AT solid media and on SC-Leu-His+3AT+
10mg/L CHX to identify spontaneous DB-ORF auto-activators’2. After incubation at 30°C
for 3 days, strains growing on SC-Leu-Trp-His+3AT but not on SC-Leu-His+3AT+CHX
were picked and grown in liquid SC-Leu-Trp. As we used libraries of pools of MATa
Y8800:AD-ORF, it is possible to obtain more than one interaction per mini-library. To
account for that, we picked up to three colonies per growth spot. Cell lysates were
prepared from the saturated cultures and used as templates in PCR reactions to amplify

and identify the bait and prey sequences’.

Yeast colony sequencing

To efficiently and cost-effectively identify both bait and prey proteins for thousands of
positive colonies, we used a method called SWIM-seq (Shared-Well Interaction Mapping
by sequencing) as described?°. Briefly, DB and AD-ORFs were simultaneously amplified
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from 3ul yeast lysate, using well-specific primers. PCR reactions were performed using
Platinum Tagq (Life Technologies). After PCR amplification, barcoded PCR products from
an entire 96 well plate were pooled together and purified (Qiagen, PCR Purification Kit).
These pooled amplicons from each plate were subjected to Nextera “tagmentation” using
Tn5 transposase to generate a library of amplicons with random breaks to which the
adapters have been ligated®”. We then re-amplified those fragments to generate a library
of amplicons such that one end of each amplicon bears the well-specific tag and the other
‘ladder” end bears the Nextera adapter. A final lllumina sequencing library was prepared
by adding plate indexes using the i5 and i7 lllumina adapter sequences. Next generation
sequencing was performed with Illumina Solexa technology allowing for identification of
interacting first pass pairs of proteins (FiPPs) (see Sequence identification of interacting
ORFs). Due to the small number of pairs to be identified, interacting pairs from the first
screen of the supplemental space were amplified with the universal AD and DB forward
and reverse primers and ORF sequences were identified by Sanger sequencing
(Genewiz). All SWIM-primers (Methods Table 4) were synthesized by Thermo Fisher
Scientific, whereas the universal AD, DB and term primers were synthesized by Eurofins

Genomics.
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Methods Table 4. Primers used (Ns denotes 13-mer well index)

AD DB
SWIM Universal SWIM Universal

Forward 5'- 5'- 5'- 5'-
AGACGTGTGCTCTT | CGCGTTTGGAA | AGACGTGTGCTCTTCC | GGCTTCAGT
CCGATCT TCACTACAGGG- | GATCT GGAGACTGA
NNNNNNNNNNNNN | 3 NNNNNNNNNNNNNGG | TATGCCTC-3’
CGATGATGAA TCAAAGACA
GATACCCCACCA-3 GTTGACTGTATCGT-3’

Reverse 5'- 5'- 5'- 5'-
GGAGACTTGACCAA | GGAGACTTGAC | GGAGACTTGACCAAAC | GGAGACTTG
ACCTCTGGCG-3 CAAACCTCTGG | CTCTGGCG-& ACCAAACCT

CG-3 CTGGCG-3

Pairwise test

To confirm all FiPPs, a pairwise test was performed in the same DB-X/AD-Y orientation
they were found in the primary screens. Briefly, glycerol stocks from Y8930:DB-ORF and
Y8800:AD-ORF haploid strains were inoculated in SC-Leu or SC-Trp, respectively.
Saturated cultures were mated in YEPD. After enrichment for diploids, yeast were spotted
on SC-Leu-Trp-His+1 mM 3AT solid media, testing for GAL1::HIS3 activation. Preliminary
investigations using four technical replicates demonstrated that in 97% of the cases, the
quadruplicates behaved identically (data not shown). Therefore, given the high
reproducibility of technical replicates, the culture was spotted only once per selective
media. To increase the robustness of our approach we implemented an additional test to
identify de novo auto-activators in which Y8930:DB-ORF strains were mated against a
Y8800:AD with no ORF fused to the activation domain (Y8800:AD-Empty ORF) and
spotted on SC-Leu-Trp-His+1 mM 3AT solid media. Diploids that gave rise to growth on
SC-Leu-Trp-His+1 mM 3AT media, but did not grow when the respective Y8930:DB-ORF
was mated to Y8800:AD-Empty ORF, were selected as positive interacting pairs of
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proteins. Positive protein pairs were sequence confirmed as done for the primary screens
as described above. As positive and negative controls, the scPRS-v2 and scRRS-v2 pairs
were distributed randomly across the respective mating plates and tested at the same
time. For a batch of pairwise testing to be considered successful we required no more
than 1% of RRS and between 10-25% of PRS to be scored positive.

Validation in orthogonal assays

To assess the precision of various datasets®®, PPIs were validated in two orthogonal
assays: Mammalian protein-protein interaction trap (MAPPIT)®*® and Gaussia princeps
luciferase protein complementation assay (GPCA)**. As positive and negative controls,
we used pairs of scPRS-v2 and scRRS-v2 respectively. For both assays, expression
clones were generated by Gateway LR recombination cloning as described above.
Expression clones for GPCA were generated by transferring ORFs into pSPICA-N1 and
pSPICA-N2 destination vectors34, each expressing a different fragment of humanized
Gaussia princeps luciferase (GL1 and GL2)%. MAPPIT expression clones were
generated by LR transfer of ORFs into pMBU-I-2994 and pMBU-I-4199 destination
vectors33. After transformation of all expression clones into DH5a E. coli cells, plasmid
DNA was extracted and purified using Qiagen 96 Turbo kits (Qiagen) on a BioRobot 8000
(Qiagen). Three different GPCA and two different MAPPIT experiments were performed.

GPCA

GPCA experiments were performed as described previously®*. Briefly, on the first day of
the assay, ~30,000 to 40,000 HEK293T cells were seeded in each well of a 96 well
microtiter plate (Greiner Bio-One). DNA concentration was measured for all clones and
samples were diluted to a final concentration of 25ng/ul. After a 24-hour incubation at
37°C, confluent cells were transfected with 300ng of pSPICA-N1-ORF and pSPICA-N2-
ORF vectors using polyethylenimine (PEIl). After a second 24-hour incubation at 37°C,
cells were washed with PBS supplemented with calcium and magnesium chloride. To
lyse the cells 40pl of 5x diluted Renilla lysis buffer (Promega) were added to each well.
The plate was then covered with aluminum foil and agitated at 900 rpm for 30 minutes at
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37°C for cell lysis. Luciferase activity was measured on a TriStar Berthold Microplate
reader by adding 50ul per well of Renilla luciferase substrate (Renilla Luciferase Assay
System, Promega), with a measurement time of 4 seconds. The measurement score,

RLU (relative light unit), was assigned to the tested pair.

MAPPIT

As an orthogonal validation assay, MAPPIT experiments were performed as described
elsewhere?%3°_ In short, HEK293T cells were grown in 384-well plates and co-transfected
with a luciferase reporter and plasmids for both bait and prey fusion proteins. Twenty-four
hours post-transfection, cells were either stimulated with ligand (erythropoietin) or left
untreated, then incubated for an additional 24 hours before luciferase activity was
measured in duplicate. The MAPPIT validation experiment was deemed valid, if both bait
and prey were successfully cloned into expression vectors and bait expression was
detected using a chemiluminescence meter. “Fold-induction” values (signal from
stimulated cells divided by signal from unstimulated cells) were calculated for each tested
pair, and two negative controls (no bait with prey and bait with no prey). Each tested pair
was assigned a quantitative score: the fold-induction value of the pair divided by the

maximum of the fold-induction value of the two negative controls.

Experimental benchmarking of public PPI datasets

PPIs extracted from the biophysical maps described in Methods Table 1 have been
tested in assays Y2H v4, GPCA and MAPPIT following the same experimental
procedures as described above. A summary of the number of tested pairs in each dataset
is available in Methods Table 1. Samples, if used, were drawn randomly.

An additional Y2H v4 experiment was performed to test pairs from the
AlphaFold+RoseTTAFold dataset, along with scPRS-v2 and scRRS-v2. Roughly half of
AlphaFold+RoseTTAFold PPIs had already been tested in the first Y2H v4 experiment,
as they overlapped with one or more of the tested datasets. So, in the additional Y2H v4
experiment we only tested pairs that had not been tested in the first experiment. After
checking that the scPRS-v2 and scRRS-v2 results were consistent between the two
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experiments, the overall recovery of AlphaFold+RoseTTAFold was calculated combining
the data from both experiments, with every pair having been tested in exactly one of the

two experiments.

Direct or indirect contact in a complex structure

We queried Interactome3D (version 2020 01)?° for complexes involving three or more
proteins with an experimental structure available. For all combinations of protein pairs
within a complex, Interactome3D calculated the number of residue-residue contacts by
accounting for hydrogen bonds, van der Waals interactions, and salt and disulfide
bridges. We defined protein pairs with five or more contacts as direct, and remaining pairs
as indirect. Using this annotation for each dataset, the fraction of direct PPIs was
calculated as the number of direct PPIs reported in the dataset divided by the number of
direct and indirect pairs reported in the dataset.

K, dataset

Yeast PPIs with measured dissociation constant (Kq) values were obtained from the
PDBbind database® 2017 release and from®'. In the case where multiple values existed

for a pair, the geometric mean was used.

PPIs in KEGG pathways and in the four gold standard inner- and outer-

complexome datasets

We collected PPIs from KEGG annotated as activation, inhibition, phosphorylation,
dephosphorylation, ubiquitination, glycosylation, methylation, binding/association,
complex as defined by KEGG. Gene expression relations and enzyme-enzyme relations
were excluded. The four gold standard inner- and outer-complexome PPI datasets are: i)
direct co-complex PPIs using the intersection between protein complex dataset collected
by Costanzo et al. 2016 filtered with three or more subunits and direct interactions from
Interactome3D (Direct co-complex); ii) co-complex pairs annotated in 5 KEGG yeast
pathways Cell Cycle, Meiosis, MAPK Signaling pathway, Autophagy and Mitophagy
(KEGG co-complex); iii) PPIs regulating activation or inhibition from the same 5 KEGG
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yeast pathways (KEGG regulation); and iv) high-quality kinase-substrate pairs from the
Yeast KID database (http://www.moseslab.csb.utoronto.ca/KID/)*® with score greater or

equal to 6.4 (p-value < 0.01) (Kinase-substrate).

List of genes of unknown function

A list of 979 S. cerevisiae genes of unknown function was obtained from Table S9 of
Wood et al. 201983, of which 950 were within the list of yeast ORFs considered for this

study (see section Yeast protein-coding ORFs).

Protein properties

1. Number of publications per gene was extracted from the gene2pubmed file from
NCBI, downloaded on 2018-08-01.
2. Protein abundance information was downloaded from PaxDB (htips://pax-db.orq)

undetected pairs were given an abundance of 0.
3. Gene essentiality information was downloaded from the Saccharomyces Genome

Deletion Project (https://www.yeastgenome.org).

4. Conservation score was derived by combining data from HomoloGene
(ftp://ftp.ncbi.nih.gov/pub/HomoloGene/build68) and Carvunis et al. 2012%. For a
gene with homologs in HomoloGene, its conservation score is the number of

distinct non-S. cerevisiae species that it shares the same homologene group with
plus 9, assuming that it is conserved in the 10 Ascomycota species. For genes
without homologs in HomoloGene, we used classification proposed in Carvunis et
al where genes were scored from 1-10 based on their conservation throughout the
Ascomycota phylogeny. Genes without homologs in HomoloGene and that did not
appear in the Carvunis data were given a score of 0.

5. Complex size was the number of different protein subunits taken from the
complexome dataset. If a protein was a member of multiple complexes, the size of

the largest complex was used.
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Treatment of heterodimers and homodimers

Unless otherwise noted, homodimers were excluded from most analyses since
comparisons between physical interactions and functional relationships are obviously not
applicable to single genes (all PCC values of functional profiles would be 1.0 by

definition).

Calculation of recovery rates in Y2H v4, MAPPIT and GPCA

In MAPPIT and GPCA assays, pairs were scored positive or negative based on
thresholds set by the highest scoring scRRS-v2 pair in the corresponding experiment. For
all three assays, pairs without valid quantitative scores were dropped, and recovery rates
were calculated as the number of positive pairs over the sum of the positive and negative
pairs. The error bars on the recovery rates were calculated using a Bayesian model (a
binomial likelihood with a uniform prior), taking the central 68.27% interval of Beta (p + 1,
n + 1), where p and n are the number of pairs testing positive and negative, respectively.
P-values for difference in recovery between two datasets tested in the same experiment
are calculated using Fisher’s exact test, two-sided in all cases except when testing a
dataset against the scPRS-v2 / scRRS-v2 positive or negative controls, where a one-
sided test is used. For the AlphaFold+RoseTTAFold Y2H v4 results, where the data was
split across two experiments, the scPRS-v2 recovery is calculated as an average of the
two experiments, weighting by the number of positive AlphaFold+RoseTTAFold pairs in

each experiment.

Calculation of interface areas of PPIs

We retrieved experimental structures using Interactome3D version 2018 _042°. For each
subunit in a complex structure, we defined its interaction interface as the residues for
which the Accessible Surface Area (ASA) changed more than 1 A2 between the bound

and unbound state.
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Prediction of AG

We used FoldX 5%, first running RepairPDB, then Optimize, then AnalyseComplex, all
with default parameters.

Interaction 2D histogram heat maps

For a particular gene/protein property and a network, we ranked all proteins using that
property. Tied values were sorted randomly. The proteins were split into an equal number
of bins, creating 2D bins of the protein-by-protein space. Number of edges in the diagonal
bins were multiplied by a factor of N2/ (N?/2 - N/ 2), where N is the number of proteins
in the bin, to correct for the smaller number of possible pairwise combinations, since
edges were undirected. Homodimeric interactions were excluded. In the case where we
corrected the CS-PSN heatmaps for the untested essential genes, we divided the count
in each bin by the fraction of pairs where both genes were tested in generating the CS-
PSN data.

To calculate the p-values for each 2D bin, we randomly shuffled the order of the
proteins 1,000 times. In each permutation of the proteome we calculated the 2D
histogram counts, recorded the maximum and minimum bin count (to account for the
multiple testing effect of having many bins) and calculated the p-value, for each bin, as
the fraction of the random maximum/minimum counts that the observed count is
above/below, multiplied by two to account for the two-tailed nature of the test. This was
done separately for diagonal and off-diagonal bins because there are a different number
of possible combinations of undirected edges between them.

Sequence identification of interacting ORFs

We used an existing computational pipeline?° to process demultiplexed paired-end reads
returned from lllumina sequencing and identify the interacting ORF pairs from the Y2H
screen. Paired-end reads are in fastq format, with one read, R1, containing a part of the
ORF sequence and the other paired read, R2, containing the well index. We used Bowtie
216 (v2.2.3) to align all R1 reads to reference sequences and extracted the well-identifying
indices from the R2 reads. AD-ORFs and DB-ORFs that shared the same well indices
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were paired together and called FiPPS. To identify likely true AD/DB pairs, we developed
a “SWIM score™? S that takes into account the AD and DB reads in each well, total reads
returned from the sequencing run, and other factors.

N S

a -; M + d ;N

S =

where x and y are read counts of an AD-ORF and DB-ORF in a given well respectively,
a and d are total read counts of all aligned AD-ORF and DB-OREF in that well, and M and
N are pseudo-counts for AD and DB respectively, which were constant for each
sequencing batch but varied for different batches. We then selected FiPPs for pairwise
testing using a cutoff that balances the risk of testing too many false positives FiPPs
versus not testing too many true positive FiPPs. The cutoff varied for different screens
and sequencing runs to adjust for slight variations in the screening and sequencing
protocol.

Calculation of enrichment for connecting proteins in the same subcellular

compartment, pathway, and complex

Subcellular compartment data was® obtained from CYCLoPS®®, using the WT data,
annotating a protein to a compartment if it has any non-zero value in any of the three
repeats. Pathways were obtained from KEGG?*°. Complexes were obtained from
CYC2008%. The number of PPIs that connected two different proteins in the same
compartment, pathway or complex was divided by the mean value for 1,000 degree-
preserved randomized networks, generated using the Viger and Latapy algorithm
implementation through python iGraph®, and Cl values were taken from the innermost
68.27% of the random networks.

SAFE network visualization

We used the SAFE network visualization tool (v1.5)%. The layouts were generated with
Cytoscape (v3.4.0)% using the edge-weighted spring embedded layout. GO terms were
downloaded from SGD database (version on Jan 17" 2019) and GO3° terms enriched
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with P < 0.05 were colored and labeled. SAFE analysis was run with the default option
except layoutAlgorithm = none (using layout generated by Cytoscape),
neighborhoodRadius = 200, and neighborhoodRadiusType = absolute.

Estimates of the complete yeast interactome size

We used three estimates, relying on partially overlapping assumptions and data, made
by independent groups, that predicted the yeast protein binary interactome contains
between ~18,000 and ~38,000 direct binary interactions, corresponding to ~0.1-0.2% of
all ~18,000,000 possible protein pair combinations*.

- From Yu et al. 2008* 18,000 (13,500-22,500 95% CI). Taken from Page 107: “we
estimated that the yeast binary interactome consists of ~18,000 +- 4500
interactions (SOM VI)” From SOM VI the +/- refers to the 95% CI.

- From Stumpf et al. 200836 28,472 (26,650-30,460 95% Cl). Taken from the Uetz
et al. numbers from Table 1. We use the estimate made using Uetz et al. because
three of the other datasets contain indirect protein-protein associations (Ho et al.,
Gavin et al. and DIP) and the estimate using Ito et al. uses the full dataset, mainly
made up of the ‘lto-noncore’ subset that was shown to be of poor quality when
retested Y2H and PCA*,

- From Sambourg and Thierry-Mieg 20103%” 37,600 (32,252-43,472 95% Cl). Taken
from Page 6: “Taken together, this allows to estimate the size of the binary yeast
interactome at ~ 37,600 interactions (95% confidence inter- val: 32252-43472,

constructed with the normal approximation method).”

One relatively minor difference between the estimates is that Stumpf et al. are considering
only heterodimeric PPls whereas Yu et al. and Sambourg et al. are also counting
homodimeric PPIs and so we account for this when estimating the fraction of predicted
interactome mapped by excluding homodimers for the Stumpf et al. estimate and
including them for the Yu et al. and Sambourg et al. estimates.
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Prediction of gene functions using guilt-by-association approach

In the guilt-by-association approach the function of a node is inferred from the function of
its neighbors. In particular, for each node we count the number of its neighbors annotated
with a given function (n). This score is then compared to a random benchmark, obtained
by randomizing the network 10,000 times in a degree-preserved way. Calculating the z-
score, z = (n—n) +o, is the traditional way of such comparison, obtained by
standardizing the original score with the expectation value (i7) and standard deviation (o)
of the score that would be expected by chance. Yet, the z-score is not free from degree
biases and prefers low degree nodes with extremely small o. We therefore apply a related
measure, called the effect size. The effect size n — (n + ao)n is obtained by comparing
the original score with the reasonably expected value of the random benchmark,
estimated as the mean value (n) and a-times the standard deviation (o). In practice, we
use a = 2, selecting the same candidates as a traditional z-score threshold of z = 2, but
ordering them based on the amount of signal beyond random expectations to avoid a bias
towards low-degree nodes. Functional annotations of genes with GO Biological Process
terms were obtained as described above and further restricted to annotations with the
experimental evidence codes EXP, IDA, IPI, IMP, IGI, IEP, HTP, HDA, HMP, HGI, and
HEP.

Network fragmentation

The error bands are generated from randomly sampling a fraction of the PPIs from each
network, where the fraction varies from 5% to 95% in 5% increments, with 1,000 random
subnetworks generated at each point.

Protein complex subnetworks

For each protein complex, direct interactions were defined by I3D-exp-20, described
above, indirect associations were all protein-protein combinations where both proteins

appeared in the same experimental structure but not in direct contact.
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General protein categories

The categorisation of proteins into “Genetic information processing”, “Metabolism”, and
“‘Not mapped” was obtained from level 1 in the KEGG-based mapping of Liebermeister et
al. 201452,

Degree distribution plots

Degree distributions were plotted according to Chapter 4, Advanced Topic 3.B of Network

Science®, on a log-log scale with logarithmic binning, with the unbinned data shown in

grey.

Overlap calculation between biophysical and functional networks

For each biophysical network and several KEGG pathways, we measured the fraction of
interactions that are also connected in each of the functional networks defined above,
discarding homodimeric PPIls. We calculated the overlap by dividing the number of
interactions in the PPI network also found in the functional network by the total number
of interactions in the PPI network where both proteins were present in the search space
of the functional network. The error bars were calculated using a Bayesian model (a
binomial likelihood with a uniform prior), taking the central 68.27% interval of Beta (p + 1,
n + 1), where p and n are the number of pairs testing positive and negative, respectively.

Date and party hubs

Co-expression data was obtained from COXPRESdb'®. To ensure robustness against the
exact definition of date and party hubs, three different cutoffs were used, hubs were
defined as proteins with a degree in the top 5% or 10% in each network, or those with
degree = 10. PCC cutoffs of 0.3 and 0.35 were used, where proteins with a mean
coexpression PCC across all partners above the cutoff were party hubs and below the

cutoff were date hubs.
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Overlap by degree plots

For each combination of a biophysical and functional network, we conducted a logistic
regression, on the dataset of biophysical interactions, where the binary dependent
variable represents whether or not the two proteins of the biophysical interaction are also
connected by an edge in the functional network, and the single independent variable is
the higher of the two degrees, in the biophysical network, of the interacting proteins. The
max degree per PPI variable is log2 transformed. Only PPIs where the pair of proteins
were tested in generating the functional network were used. Shaded error bands
represent 95% CI. Binned data is also shown, with 10 evenly sized bins, with the binned

data displayed on the x-axis at the mean max degree value of the bin.
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