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Summary 

Hundreds of different protein complexes that perform important functions across all 

cellular processes, collectively comprising the “complexome” of an organism, have been 

identified1. However, less is known about the fraction of the interactome that exists 

outside the complexome, in the “outer-complexome”. To investigate features of “inner”- 

versus outer-complexome organisation in yeast, we generated a high-quality atlas of 

binary protein-protein interactions (PPIs), combining three previous maps2–4 and a new 

reference all-by-all binary interactome map. A greater proportion of interactions in our 

map are in the outer-complexome, in comparison to those found by affinity purification 

followed by mass spectrometry5–7 or in literature curated datasets8–11. In addition, recent 

advances in deep learning predictions of PPI structures12 mirror the existing 

experimentally resolved structures in being largely focused on the inner complexome and 

missing most interactions in the outer-complexome. Our new PPI network suggests that 

the outer-complexome contains considerably more PPIs than the inner-complexome, and 

integration with functional similarity networks13–15 reveals that interactions in the inner-

complexome are highly detectable and correspond to pairs of proteins with high functional 

similarity, while proteins connected by more transient, harder-to-detect interactions in the 

outer-complexome, exhibit higher functional heterogeneity.  
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Intracellular organisation relies on large numbers of interactions amongst protein, RNA, 

and DNA macromolecules, forming complex networks that underlie diverse functional 

relationships. Efforts to map biophysical interactome networks, such as protein-protein 

interaction (PPI) networks16,17 helped advance our understanding of cellular 

organisational principles18,19. However, most current models of PPI networks ignore the 

wide range of biophysical properties exhibited by PPIs, of which the principal dimension 

is the difference between stable complexes and transient interactions. The interactome is 

often conceived of as a collection of hundreds of multimeric machines, collectively 

referred to as the “complexome”1. However, stable PPIs forming quaternary structures 

are only a subset of the protein interactome20,21. There are also weaker transient 

interactions that are much more dependent on the cellular context, and that are more 

likely to underlie the overall organisation and compartmentalization in cells and help 

sustain biochemical pathways and signalling cascades22–24. 

It has been shown that transient interactions outnumber interactions in stable 

complexes in the human interactome25. However, little is currently known about how these 

two categories of PPIs underlie different functional relationships between proteins. To 

address this, we selected S. cerevisiae, which has the most comprehensive and diverse 

systematic datasets of functional relationships between genes as well as multiple large-

scale maps of PPIs. We compare intra-complex interactions taking place “inside” each 

complex of the complexome, i.e. within the “inner-complexome”, to interactions between 

proteins in different complexes, or involving proteins not known to be in any complex, i.e. 

within the “outer-complexome”. To facilitate this, we generated for the first time an “all-

versus-all” systematic binary interactome map. By integrating this, and other, PPI 

networks with global functional similarity networks, we found strong support for an 

emerging model25–28 in which a relatively small proportion of the interactome corresponds 

to the inner-complexome, connecting functionally homogenous proteins, while the vast 

majority of the interactome consists of interactions between functionally heterogeneous 

proteins in the outer-complexome. 
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Fig. 1 | The inner- and outer-complexome. a, The fraction of the proteome of different 

organisms that are not listed as subunits of protein complexes of at least 3 or more 

different protein subunits. b, Illustrative network diagram showing the space of pairwise 

protein combinations categorised into four Zones based on protein complex membership. 

The area of each square is proportional to the size of the number of pairwise combinations 

of proteins in each Zone, for yeast. c, Schematic of the approach and question of 

functional similarity of interacting proteins by combining biophysical and functional 

networks. d, The proportion of four different yeast biophysical interaction datasets in each 

Zone.  
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The inner- and outer-complexome 

It is thought that most cellular processes are carried out by multiprotein molecular 

machines6. However, across different species, the large majority of proteins have not 

been shown to participate in any protein complex comprising three or more proteins, using 

a manually-curated dataset of protein complexes (Fig. 1a). After combining multiple 

protein complex datasets, to reduce the false negative rate as much as possible, proteins 

outside of complexes are still in the majority (Extended Data Fig. 1a). This has major 

implications when considering how PPI networks underlie cellular function, as it suggests 

a large fraction of the functions of interactions are performed outside complexes. To 

categorise PPIs in relation to protein complexes, we divide all pairs of proteins into four 

different “zones” (Fig. 1b): Zone A, the inner-complexome, corresponds to all pairwise 

combinations where both proteins are subunits of the same complex; Zone B corresponds 

to pairs of complex subunits where each protein belongs to a different complex; Zone C 

represents all pairwise combinations involving both a complex subunit and a non-complex 

protein; Zone D corresponds to all pairwise combinations between non-complex proteins. 

In yeast, the inner-complexome, Zone A, corresponds to ~17,600 protein pairs, 

representing 0.1% of the approximately 18 million possible protein pairs, with the 

remaining 99.9% of pairs residing in the outer-complexome – Zones B, C, and D (Fig. 1b) 

– highlighting the enormous potential role that outer-complexome interactions play in 

eukaryotic biology. 

We investigate the roles of inner- and outer-complexome PPIs in the interactome 

by, first, understanding the distribution of biophysical PPIs in the different zones, through 

a detailed assessment of available PPI networks. Next, we examine whether there is a 

difference in the functional relationships between physically interacting proteins in the 

different zones, using functional profile-similarity networks (PSNs) (Fig 1c). We 

considered four different sources: i) experimentally resolved 3D structures29 (I3D-exp-

20); ii) recent deep learning-based prediction of PPI structures12 

(Alphafold+RoseTTAFold); iii) literature-curated binary pairs supported by multiple pieces 

of evidence8–11,30 (Lit-BM-20); and iv) systematic large scale AP-MS (Sys-NB-06) 

(Supplementary Tables 1-5). These datasets show variation in their distribution between 
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Fig. 2 | All-by-all yeast reference interactome and comparison to existing high-

quality binary interactome maps. a, The YeRI screening space. b, c, Experimental 

validation of yeast systematic binary maps and literature-curated pairs in GPCA (b) and 

MAPPIT (c). Error bars are 68.3% Bayesian credible intervals. d, The proportion of YeRI 

in each Zone. e, Yeast PPI datasets tested in Y2H v4. Error bars are 68.3% Bayesian 

credible intervals. f, Results of testing predicted structure dataset in Y2H v4. Error bars 

are 68.3% Bayesian credible intervals. g, Increase in the number of high-quality binary 

PPIs from available experiments in Interactome-3D (yellow), AlphaFold+RoseTTAFold 

(brown), Lit-BM (blue), and systematic studies (purple). h, Networks for four different high-

quality binary PPI datasets. i, Fraction of proteins in the largest connected component, 

with points showing the values for four PPI networks, and shaded bands showing random 

subsamples of each network across a range of sizes, plotted against the number of PPIs 

(left) and the average degree per protein (right). Shaded bands indicate the innermost 

95% interval of random subnetworks.  
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these four zones, with around one-third of pairs in Lit-BM-20 and Sys-NB-06 are between 

subunits of the same complex (Zone A), compared to more than half in I3D-exp-20 and 

AlphaFold+RoseTTAFold, (Fig. 1d). 

All-by-all yeast reference interactome 

These results present conflicting views of what fraction of a eukaryotic interactome exists 

outside the inner-complexome. To resolve these differences, we turned to another type 

of dataset: systematic binary PPI maps, generated using yeast two-hybrid (Y2H) as the 

main screening assay. We hypothesise that uniform testing of the entire proteome-by-

proteome space should give the most unbiased estimate of the proportion of the 

interactome in different zones. However, the three systematic Y2H maps currently 

available2–4, collectively referred to as Y2H-union, were obtained using incomplete sets 

of open reading frames (ORFs), or “ORFeome” collections31, each screening only ~70-

75% of the search space. To systematically generate a map that could provide a complete 

and unbiased estimate of the proportion of the interactome in different zones, we started 

by compiling a high-quality ORFeome collection covering 99% of yeast protein-coding 

genes, by verifying an existing collection of 4,933 ORFs32, and cloning an additional 921 

ORFs (Fig. 2a, Supplementary Table 6). To maximize the potential for novel discovery 

relative to the three previous binary systematic maps, we implemented a new assay 

version, Y2H v4, and demonstrated that it detected an orthogonal set of interactions 

compared to previous Y2H versions (Extended Data Fig. 2a, Supplementary Table 7). 

We systematically screened 27 million bait-prey combinations three times independently. 

Pairs identified in these primary screens were subsequently evaluated in two independent 

pair-wise tests. To ensure a high-quality reproducible dataset, only pairs that scored 

positive and were sequence-confirmed in both attempts were considered positive. The 

quality of the dataset was assessed by testing every pair in two orthogonal binary PPI 

assays – MAPPIT33 and GPCA34 – alongside positive and random reference sets (Fig. 

2b, c, Extended Data Fig. 2b, Supplementary Tables 8-10). Thus, we generated a new 

yeast interactome map of 1,910 PPIs between 1,351 proteins, which we term the Yeast 

Reference Interactome (YeRI) (Supplementary Table 11). Three-quarters of the PPIs in 
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YeRI are novel. YeRI pairs tested positive in orthogonal assays at rates similar to Lit-BM 

pairs available in 2013 (Lit-BM-13). YeRI displays significant enrichment for interactions 

between proteins that share annotations for cellular compartments, pathways, or protein 

complexes (Extended Data Fig. 2c), demonstrating its overall high level of biological 

relevance. 

Since we showed that all four systematic Y2H maps are well validated by MAPPIT 

and GPCA (Fig. 2b, c), we combined them into a single Atlas of Binary Biophysical 

Interactions (ABBI-21) comprising 4,556 PPIs (Supplementary Table 12). Clusters of 

interacting proteins enriched for shared Gene Ontology (GO) terms35, increase 

substantially with the addition of each map (Extended Data Fig. 2d, e). Due to the 

expanded set of screened ORFs, YeRI substantially improves coverage for genes of 

unknown function and can be used to predict their functions (Extended Data Fig. 2f-h, 

Supplementary Note 1, Supplementary Table 13). In total, ABBI-21 covers 12-25% of the 

estimated yeast binary interactome (Extended Data Fig. 3a)4,36,37. The proportion of pairs 

in different zones from YeRI and ABBI-21 (Fig. 2d, Extended Data Fig. 3b) produces a 

substantially different picture of the interactome compared to the other maps (Fig. 1d), 

with only around 10% of PPIs in Zone A and substantially more in Zones C and D than 

the other networks. This view suggests that the outer-complexome is dominant in terms 

of the number of PPIs in the interactome. 

In addition to ABBI-21, to ensure our conclusions would be robust, we also wanted 

to use alternative high-quality binary PPI datasets in our investigation of the differences 

of the interactome between the inner- and outer-complexome. So we performed a 

comprehensive test of the biophysical quality of available sources of binary PPI data. We 

experimentally retested all pairs available in 2017 for I3D-exp, Lit-BM and Y2H-union, 

along with random samples of other datasets, testing a total of 8,999 pairs in Y2H v4 (Fig. 

2e, Extended Data Fig. 3c, Supplementary Table 14). Y2H v4 recovered 14%, 11%, and 

15% of pairs from experimental structures, literature curation, and systematic binary pairs, 

respectively. These recovery rates are quite high, approaching assay sensitivity limits: 

indeed, the systematic Y2H datasets were indistinguishable from both scPRS-v2 (P = 0.2, 

one-sided Fisher’s exact test) and I3D-exp-17 (P = 0.6, two-sided Fisher’s exact test), our 
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benchmarks of true direct, heterodimeric binary interactions, and all three performed 

slightly better than Lit-BM-17 (P = 0.006, two-sided Fisher’s exact test) (Fig. 2e), again 

demonstrating that the biophysical quality of systematic binary interaction maps is at least 

as good, if not superior to that of literature-curated binary interactions. Interestingly, a 

proteome-scale dataset generated using a dihydrofolate reductase protein 

complementation assay (Tarassov) that detects physically-proximal, but not necessarily 

directly-contacting protein pairs38, was not significantly above the scRRS-v2 negative 

control in MAPPIT (P = 0.12, one-sided Fisher’s exact test) but validated on par with the 

Y2H-union datasets in GPCA and Y2H v4 (Fig. 2b, c, e). As shown previously for human 

PPIs39, a sample of the putative yeast binary PPIs supported by only a single piece of 

evidence in the literature in (Lit-BS-17) was recovered at a low rate, not statistically 

different from scRRS-v2 (P = 0.1, one-sided Fisher’s exact test), of only 2% (Fig. 2e). 

Finally, two datasets of predicted PPIs, PrePPI and Jansen et al40,41, tested positive at 

low levels of 4% and 2%, respectively (Fig. 2e). Based on these results, out of the 

reported interaction sets we tested, we restrict the binary PPI maps in analysis of the 

inner- and outer-complexome, to I3D-exp-20, Lit-BM-20, and ABBI-21.  

Testing a comprehensive set of PPIs with experimental structures with Y2H v4 

allowed us to investigate to what extent structural features affect the sensitivity of the 

assay to different PPIs. We first saw that, although the number of subunits involved in 

forming large protein complexes appears to have some impact on the rate of interaction 

recovery by Y2H v4 (Extended Data Fig. 3d), binary assays can readily detect pairs of 

interacting proteins even in large complexes. Second, although our dataset was 

generated with full-length yeast proteins, the detection rate appeared unaffected by 

whether the structures of interacting proteins had been solved with full-length proteins or 

fragments (P = 0.14, two-sided Kolmogorov-Smirnov test) (Extended Data Fig. 3e). Third, 

although we observed a trend towards larger interaction interfaces among Y2H v4 

positives compared to negatives (P = 2 x 10-6, two-sided Mann-Whitney U test), Y2H v4 

could detect interactions with interface areas ranging widely from 100 to 10,000 Å2 

(Extended Data Fig. 3f). Y2H v4 was better able to detect PPIs with small interaction 

interfaces than GPCA (P = 0.0043, two-sided Mann-Whitney U test) and was at least as 
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good at this as MAPPIT (P = 0.11, two-sided Mann-Whitney U test). Finally, Y2H v4 

detected interactions with Kd values up into the micromolar range (Extended Data Fig. 

3g), consistent with previous findings that Y2H can identify weak interactions7,42. 

Together, the high and consistent sensitivity of Y2H v4 to a variety of different PPIs, 

across strong and weak interactions, and within and outside protein complexes, suggest 

that YeRI is representative of the real interactome across both the inner- and outer-

complexome. 

Beyond testing PPIs with experimental structures, we next used Y2H v4 to perform 

the first experimental assessment of the quality of a recent deep learning-based dataset 

of PPIs with predicted structures12. Complex structure prediction represents a new and 

promising method for generating detailed PPI data, so it is crucial to have a good 

understanding of its quality. The AlphaFold+RoseTTAFold predicted structures have a 

contact probability for each pair, and we observed that pairs with a contact probability 

above 0.9 test positive at a rate in line with scPRS-v2 (Fig. 2f, Extended Data Fig. 3h, 

Supplementary Table 15). Therefore we restricted subsequent analysis of 

AlphaFold+RoseTTAFold to the 1,106 out of 1,505 PPIs (73%) with contact probability ≥ 

0.9, of which 392 PPIs (35%) have no previous experimental structure available 

(Extended Data Fig. 3i). Comparing the resulting AlphaFold+RoseTTAFold network to 

I3D-exp-20, Lit-BM-20, and ABBI-21, we observed that the structural data, both 

experimental and predicted, produce more fragmented networks, largely due to a lack of 

highly connected hub proteins in those networks (Fig. 2g-i, Extended Data Fig. 3j). 

Alternative views of interactome organisation 

To correctly infer the distribution of PPIs between the inner- and outer-complexome, we 

need to understand any potential biases in the coverage of the different networks. It has 

been shown for human PPIs that networks generated by varying methods can be 

concentrated within a subset of the space of pairwise protein combinations39, but this has 

not yet been investigated in yeast. So we displayed binary PPIs in a representation of the 

proteome-by-proteome space that was organised by ranking proteins in both dimensions 

according to complex membership and four protein properties: number of publications, 
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29 

Fig. 3 | High discrepancy among alternative views of interactome organisation. a, 

Heatmaps of protein interactions and associations in biophysical and functional networks, 

ordered by complex membership, the number of publications per protein, protein 

abundance, gene conservation, and essentiality. Upper limits of the colour scales are set 

to 5x the average number of PPIs per bin, separately for each network. b, Using 

experimental structures of mediator, restricting to pairs of proteins in the same structure, 

the direct interactions and indirect associations (top row) and of those, which ones are 

contained within the different biophysical and functional networks (rows below). Direct 

enrichment is defined as the ratio of the fraction of detected direct interactions over the 

fraction of detected indirect associations. c, Top-left panel: the number of either direct (+) 

or both direct and indirect (x) PPIs in the single largest experimental structure for each 

protein complex. The curved dashed line corresponds to the total possible pairwise 

combinations of different proteins per complex; the straight dashed line is a linear 

regression using the direct PPIs. Remaining panels: the number of PPIs in each of the 

five networks within each complex, against complex size. The dashed lines from the top-

left panel are reproduced. d, e, Results of testing samples of pairs from GI-PSNs, across 

different PCC cutoffs, in Y2H v4 (d) and GPCA (e). Error bars are 68.3% Bayesian 

credible intervals. f, The number of edges in GI-PSN at the tested PCC cutoffs.  
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abundance, evolutionary conservation, and essentiality (Fig. 3a, Supplementary Table 

16). Complex subunits exhibit significantly higher average values in all four variables (P 

< 10-83, Mann-Whitney U test), making them more well-studied, more abundant, more 

conserved, and more often essential than non-complex proteins (Extended Data Fig. 4a). 

There are strong correlations between these protein properties (Extended Data Fig. 4b). 

When ranking by publications per gene, all datasets show a much higher density of PPIs 

between highly-studied proteins, except ABBI-21, which is distributed more 

homogeneously. To quantify this, the size of the matrix of the most studied proteins 

containing 80% of PPIs from each dataset is 16%, 37%, 25%, 25%, and 57% for I3D-exp-

20, AlphaFold+RoseTTAFold, Lit-BM-20, Sys-NB-06, and ABBI-21, respectively. 

Although Sys-NB-06 was obtained using sociologically unbiased, systematic approaches, 

it nevertheless shows a bias towards highly studied proteins, presumably because 

detection of complexed proteins using MS-based methods is more sensitive for highly 

expressed proteins, which also tend to be more highly studied20. In all cases, ABBI-21 

covers the interactome more homogeneously, across multiple biological properties, 

compared to Lit-BM-20, Sys-NB-06, and AlphaFold+RoseTTAFold. ABBI-21 does show 

some depletion for the highest abundance proteins as well as the lowest abundance, least 

studied, and least conserved proteins (Fig. 3a). In the lowest abundance or conservation 

zones, the number of proteins with at least one interactor is significantly higher for ABBI-

21 than Lit-BM-20, Sys-NB-06, or AlphaFold+RoseTTAFold (Extended Data Fig. 4c). 

Using a different approach, we tested the recovery of four gold-standard curated sets of 

PPIs from either the inner- or outer-complexome in the systematic biophysical datasets, 

and we observed that, although both ABBI-21 and Sys-NB-06 capture the inner-

complexome pairs more readily than outer-complexome pairs, ABBI-21 shows more 

uniformity between inner- and outer-complexome pairs than Sys-NB-06 (Extended Data 

Fig. 4d).  

Having identified major differences between the coverage of the proteome-by-

proteome space between different PPI networks, we then turned to the functional profile 

similarity networks (PSNs), to see if there were any biases in their coverage that could 

impact our interpretation of the functional differences between inner- and outer-
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complexome PPIs from integrating the PSNs with the PPI networks. The PSNs used three 

different systematic genome-wide functional genomic profiling approaches, based on: i) 

positive and negative genetic interactions observed in double mutants bearing knock-out 

(KO) and/or hypomorphic alleles13; ii) growth of KOs of non-essential genes across over 

1,000 chemical and environmental stress conditions14; and iii) transcriptome-wide 

measurements of gene expression over thousands of samples15. PSNs for genetic 

interactions, “GI-PSN”13; condition sensitivity, “CS-PSN”14; and gene expression, “GE-

PSN”15 were generated from the top one percent of the strongest correlation of tested 

pairs. While these three PSNs exhibit statistically significant overlaps (P < 0.001, one-

sided empirical test, restricted to genes tested in all PSNs), these overlaps are small, with 

only 4% of edges connected in more than one PSN, showing that different PSNs identify 

complementary functional relationships (Extended Data Fig. 4e). One of the most striking 

observations was the dense zone exhibited by GE-PSN within the spaces corresponding 

to highly abundant or conserved proteins as well as essential genes (Fig. 3a). This 

similarity between Sys-NB-06 and GE-PSN is likely because both experimental strategies 

are highly dependent on endogenous gene expression levels. The second observation 

was that GI-PSN also shows a higher density of functional relationships amongst 

extremely well-studied and highly abundant proteins (Fig. 3a), concentrated in a smaller 

area than Sys-NB-06. This was unexpected since GI-PSN was generated systematically, 

independently of any sociological bias. Upon investigation, we found that this was due to 

a combination of higher connection density for both essential genes13 and highly 

abundant non-essential ribosomal subunits in the GI-PSN network (Extended Data Fig. 

4f). Many yeast ribosomal proteins retained paralogs after the whole-genome duplication 

event43, often rendering them non-essential where paralogs can, at least partially, 

functionally compensate for one another’s deletions. Lastly, CS-PSN was obtained from 

a homozygous gene deletion collection that does not include essential genes, which could 

explain some of the observed patterns.  

Having observed that different PPI mapping methods have specific biases in their 

coverage, we then investigated another important distinction between these methods: the 

difference between detecting co-complex associations where proteins are in the same 
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complex but not necessarily in direct contact, or detecting “binary” PPIs for which two 

interaction partners are likely to be in direct contact. It is crucial to distinguish between 

these two types of protein-protein relationship, as it has major consequences for the 

resulting protein network, with one example being that large protein complexes contain 

many more indirect associations than direct contacts. We investigated to what extent co-

complex and binary biophysical networks identify direct interactions versus indirect 

associations using available experimental structures of complexes, and compared this 

with the functional networks. As an example, the mediator complex shows 33 direct 

contacts between its 25 subunits, which is considerably less than its 300 possible pairwise 

combinations (Fig. 3b). This is unsurprising, as the number of other proteins a complex 

subunit may be in contact with is fundamentally limited by the surface area of the subunit. 

The number of direct interactions within a protein complex scales roughly linearly with the 

complex’s size, averaging 3 PPIs with each subunit, whereas the number of indirect 

associations scales quadratically, resulting in a dramatically increasing difference 

between the two for larger complexes (Fig. 3c). ABBI-21 and Lit-BM-20 primarily find 

direct interactions, whereas the AP-MS-based Sys-NB-06 reports both direct binary 

interactions and indirect co-complex association between proteins (Fig. 3b), in roughly 

equal proportions. The GI-PSN also finds both direct interactions and indirect 

associations (Fig. 3b), with a preference towards direct PPIs (P = 0.02, two-sided Fisher’s 

exact test), as has been observed previously44. That GI-PSN should provide indirect 

associations stands to reason, as all the proteins in the complex collectively contribute to 

a common function, irrespective of whether they are in direct contact or not. We then 

investigated this trend across all different protein complexes for which a 3D structure is 

available (Extended Data Fig. 4g) and observed that binary PPI datasets primarily find 

direct-contact pairs, whereas Sys-NB-06, GI-PSN, and GE-PSN connect both direct-

contact and indirect co-complex association pairs, with a tendency towards direct PPIs. 

Among all six datasets analysed here, ABBI-21 is the most enriched for direct PPIs vs 

indirect associations (P = 0.0002, two-sided Wilcoxon signed-rank test). 

After observing that, within protein complexes, AP-MS and functional networks 

correspond to both direct PPIs and indirect associations, we then sought to 
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experimentally confirm this observation by testing random samples of co-complex 

association and GI-PSN edges using Y2H v4. Pairs from co-complex association datasets 

were detected at rates much lower than those from binary PPI datasets, although 

significantly higher than the negative control scRRS-v2 (median P = 0.018, one-sided 

Fisher’s exact test) (Fig. 3d). This result suggests that a large proportion of co-complex 

association datasets are indirect associations, both in literature-curated protein 

complexes as in CYC200845, and AP-MS-derived proteome-scale maps5–7,46. This 

observation is consistent with the result that protein pairs in PPIs obtained by binary 

assays are two to five times more likely to be in direct contact than co-complex association 

pairs, using experimental complex structures with at least three subunits (Extended Data 

Fig. 4h, Supplementary Table 17). For random samples of GI-PSN pairs, across a range 

of PCC cutoffs, the GPCA test-positive rate increases proportionally to the PCC threshold, 

with the Y2H v4 test-positive rate is flatter but consistent with an increase with PCC 

threshold (Fig. 3d, e). For PCC ≥ 0.2 and 0.3, the test-positive rate of GI-PSN pairs in 

both assays is similar to that of CYC2008. Taken together, these results are consistent 

with the conclusions that protein complexes dominate the high-PCC GI-PSN pairs13, that 

GI-PSN pairs correspond to both directly-contacting and indirectly-linked complex 

subunits (Extended Data Fig. 4g), and that higher average PCC values have an increased 

correspondence with direct interaction as opposed to indirect association44. These results 

provide direct experimental estimates of the fraction of genetic interaction profile similarity 

relationships that correspond to binary PPIs (Extended Data Fig. 4i). Importantly, at the 

point where the direct binary PPI content substantially exceeds that of protein complexes, 

at PCC ≥ 0.5, the GI-PSN contains only 841 edges (Fig. 3f). 

Organisation of inner- and outer-complexome 

A huge variety of protein function exists within both complex subunits and non-complex 

proteins. We next looked at two variables, one within each category. We chose: (i) the 

size of each protein complex; and (ii) the abundance of non-complex proteins. Both 

capture some aspect of the continuum between constitutive cellular machinery and 

context-specific, adaptive, dynamic processes (Fig 4a). Protein complexes span a range 
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Fig. 4 | Organisation within the inner- and outer-complexome. a, The yeast proteome 

ordered by decreasing number of subunits of the corresponding complex, for proteins in 

a complex, and by increasing abundance, for non-complex proteins. After dividing into 20 

bins, the number of proteins in each of three general functional categories62 is shown by 

the area of the circles. Not Mapped corresponds to unannotated proteins. b, Upper: 

heatmaps of the number of connected gene pairs in biophysical and functional networks, 

with the proteome first ordered by size of protein complexes in which the proteins are 

involved, then ordered by protein abundance. Lower: statistically significant enrichment 

and depletion of edges per bin, calculated by random permutation of the order of the 

proteins.  
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of sizes, from 81 different proteins in the ribosomal large subunit to three in telomerase. 

The abundance distribution is such that a small number of proteins make up a large 

fraction of expressed proteins detected by mass spectrometry. Of non-complex proteins, 

89% are below the mean molar abundance. Among the most abundant non-complex 

proteins are metabolic enzymes, which, in yeast cells, make up 30% of proteins by 

molarity, but represent only 10% of all encoded proteins47,48. Just two proteins, the 

pyruvate kinase encoded by CDC19 and the plasma membrane proton ATPase pump 

encoded by PMA1, account for more than 2% of the total number of cellular protein 

molecules. At the other end of the spectrum, lowly expressed proteins such as Cln3, an 

important cell-cycle regulator, and Ime1, a master regulator of meiosis, are four orders of 

magnitude lower in abundance than Cdc19 and Pma1.  

To visualize the distribution of the networks in the proteome-by-proteome space, 

relative to these two variables, we ordered complex subunits by decreasing size of the 

corresponding complex, and non-complex proteins by increasing abundance. All five 

biophysical datasets show a strong, statistically significant, enrichment for interactions or 

associations in the inner-complexome (P < 0.05, permutation test, Fig. 4b, Extended Data 

Fig. 5a, b). We observe the same for GI-PSN and for all but the smallest complexes in 

GE-PSN. Obviously, this high density in the inner-complexome is expected, where the 

biophysical and functional maps are detecting complexes, defined by independently 

curated experiments. Sys-NB-06 and GE-PSN are more enriched in the inter-complex 

pairs of Zone B. In Zones C and D, Sys-NB-06 and GE-PSN are depleted in regions 

involving the lower abundance proteins and enriched between the most abundant, with 

I3D-exp-20 and Lit-BM-20 showing a similar but less pronounced bias in their 

distributions, whereas ABBI-21, AlphaFold+RoseTTAFold, and GI-PSN are relatively 

uniformly distributed. This distribution of Sys-NB-06 and GE-PSN could be due to their 

dependence on endogenous expression. CS-PSN’s depletion in Zone C and enrichment 

in Zone D are dampened after correcting for the untested essential genes (Extended Data 

Fig. 5c-e). The uniform coverage of ABBI-21, AlphaFold+RoseTTAFold, and GI-PSN 

suggest that there are abundant biophysical and functional interactions between most of 

the proteome, regardless of expression levels. 
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After extensively testing for bias across the different datasets, we found that 

systematic binary maps provide the most even coverage; however, one possible 

interpretation of this could be the presence of large numbers of randomly distributed false 

positives in the outer-complexome. To test whether ABBI-21 PPIs from either inner- or 

outer-complexome are of similar biophysical quality, we compared their recovery rates in 

MAPPIT and GPCA using Lit-BM-13 as a benchmark (Extended Data Fig. 5f-h). While 

ABBI-21 validates at a higher rate than Lit-BM-13 in the inner-complexome, PPI pairs 

from both ABBI-21 and Lit-BM-13 datasets show lower recovery rates in the outer-

complexome than in the inner-complexome (P = 3 x 10-12, two-sided Fisher’s exact test). 

The fact that both our literature benchmark and ABBI-21 behave similarly in the outer-

complexome demonstrates that ABBI-21 pairs in the outer-complexome are of good 

biophysical quality, suggesting that the difference in recovery rates between inner- and 

outer-complexome stems from differing biophysical factors, e.g. interaction affinity or 

post-translational modification dependency. Thus consistent with our previous 

observations that within-complex PPIs are detected more frequently in Y2H screens and 

that PPIs detected in more Y2H screens test positive in validation asssays at higher rates, 

independent of data quality20. The striking observation of inner-complexome PPIs being 

more readily detected by different PPI assays suggests that inner-complexome PPIs tend 

to be overrepresented in interactome maps relative to their proportion in the real 

interactome.  

Functional heterogeneity in the outer-complexome 

To investigate how the difference between the inner- and outer-complexome 

relates to the functional relationships between physically interacting proteins, we 

computed the fraction of interacting protein pairs for which the corresponding gene pairs 

are also connected in the functional networks. We started by validating this approach 

using gold-standard PPIs from four well-characterised yeast pathways from the KEGG 

database: Cell cycle; Meiosis; MAPK signalling; and Autophagy49 (Fig. 5d). Interestingly, 

genes encoding interacting proteins from different pathways show large variation in the 

likelihood of being connected in the functional networks. Over half of the interacting pairs 
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Fig. 5 | A large proportion of the interactome consists of interactions between 

functionally heterogeneous proteins in the outer-complexome. a, The fraction of 

PPIs from four different pathways connected in different functional networks. b, The 

fraction of PPIs from four gold-standard biophysical interaction datasets connected in 

functional networks. c, The fraction of pairs in the inner- and outer-complexome in the 

four biophysical maps connected in functional networks. The pie charts show the 

proportion of pairs in the inner- and outer-complexome within the four biophysical maps. 

d, The fraction of pairs from the outer-complexome, Zones B, C, and D, that are also 

connected in functional networks. e The fraction of pairs from four biophysical maps 

connected in functional networks. In all panels, error bars are 68.3% Bayesian credible 

intervals.  
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in Cell cycle and Meiosis pathways, essential for yeast growth and sexual reproduction, 

respectively, are connected in GI-PSN, whereas less than 20% of the interactions from 

the context-specific pathways – MAPK signalling and Autophagy – are detected (P = 

0.002, two-sided Fisher’s exact test). GE-PSN and CS-PSN show a similar bias towards 

Cell cycle and Meiosis compared to MAPK and Autophagy (Fig. 5d). Next, we examined 

gold-standard reference PPIs from the inner- and outer-complexome29,49,50. All three 

PSNs captured significantly more interactions from the co-complex datasets than the 

outer-complexome PPIs in signalling pathways and kinase-substrate interactions (P 

ranges from 5 x 10-9 to 5 x 10-45, Fisher’s exact test) (Fig. 5e). A partial explanation for 

the detection of PPIs within constitutive rather than context-specific pathways is that GI-

PSN was produced using yeast grown on rich media, in which environment the context-

specific pathways will be mostly dormant, however, we also see differences in these 

pathways in CS-PSN and GE-PSN which each use data from a large number of different 

conditions. The most general explanation for these findings is that the PSNs are 

measuring functional similarity, at an aggregate level, of the two interacting proteins, with 

proteins that exist together in stable complexes being the most similar in their function, 

whereas proteins with transient interactions may often each have additional functions, 

independent from any specific binding partner, and so not be perfectly functionally similar 

at the aggregate level. This can be illustrated by the interaction between the importin-ɑ 

nuclear pore subunit Srp1 and the transcription factor Pho5. Although nuclear import is 

crucial for Pho5 function, the overall functions of both proteins are different and hence 

they are unconnected in the functional profile similarity networks. 

After evaluating this approach using specialised sets of gold-standard PPIs, we 

next moved to the large-scale interactome maps, to evaluate the functional relationships 

between interacting proteins in the inner- and outer-complexome across the entire 

proteome. In all datasets, PPIs from the inner-complexome have a high probability of 

being connected in the functional networks and PPIs in the outer-complexome have lower 

probabilities (Fig. 5c, Extended Data Fig. 6). Interactions from all three zones of the outer-

complexome, B, C, and D, within each biophysical map, are connected in the functional 

networks at similar rates, showing that the observed difference in the functional similarity 
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of interacting proteins is a property of differences between the edges of the networks 

(PPIs) rather than between the nodes (proteins) (Fig. 5d). We observed consistent 

patterns when we investigated the specific examples of the ESCRT and OCA complexes 

(Supplementary Note 2, Extended Data Fig. 8). We observed similar patterns when 

directly using genetic interactions instead of the profile similarities. Pairs of genes 

encoding interacting proteins found in all biophysical maps have a higher likelihood to 

show negative than positive GIs51, and genes encoding protein pairs from the inner-

complexome have an increased tendency to show negative GI than pairs in the outer-

complexome (Extended Data Fig. 9a). The four biophysical datasets differ substantially 

in their proportion of inner-complexome pairs. More than one-quarter of pairs in Lit-BM-

20 and Sys-NB-06, and more than half in AlphaFold+RoseTTAFold, are between subunits 

of the same complex (Zone A) compared to around one-tenth for ABBI-21 (Fig. 1d, 2i, 

5b). This difference contributes to the lower aggregate fraction of ABBI-21 PPIs 

connected in functional PSNs, relative to Lit-BM-20 and Sys-NB-06, and the lower fraction 

for those three networks relative to I3D-exp-20 and AlphaFold+RoseTTAFold (Fig. 5e). 

Another factor affecting the overall rate of overlap with the different biophysical datasets 

is that GI-PSN is densest among essential genes13, and as a consequence, interactions 

between proteins encoded by essential genes show a higher likelihood to be connected 

in GI-PSN in all biophysical datasets. However, I3D-exp-20, AlphaFold+RoseTTAFold, 

Lit-BM-20, and Sys-NB-06 are also biased towards proteins encoded by essential genes, 

resulting in increased overlap with GI-PSN, whereas ABBI-21 covers the proteome and 

interactome more uniformly (Extended Data Fig. 9b). We cannot directly compare the 

rates of connection in the PSNs of the maps generated by systematic testing of large 

search spaces (Sys-NB-06 and ABBI-21) to those of the literature-curated datasets (Lit-

BM-20 and I3D-exp-20), where most studies tend to focus on a particular pathway or 

process of interest. For example, a single study52 provides more than a quarter of the Lit-

BM-20 pairs connected in GE-PSN by testing all pairs of 70 pre-ribosomal proteins, a test 

space with a density of 83% of pairs connected in GE-PSN compared to a density of 1% 

of pairs in the full proteome-by-proteome space connected in GE-PSN. Thus, the higher 

overlap of literature-curated PPIs with functional PSNs likely stems more from the choice 

of which protein pairs to test rather than the specific interactions detected, and the 
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systematic maps should more accurately reflect the rate of connection in the PSNs for 

the real protein interactome. In summary, we find that the inner-complexome tends to 

consist of functionally similar interacting proteins. In contrast, the outer-complexome 

tends to consist of interactions between functionally heterogeneous proteins, presumably 

necessary for intracellular crosstalk. 

One challenge to this interpretation is that I3D-exp-20 and 

AlphaFold+RoseTTAFold have high overlaps with functional networks in the outer-

complexome relative to the other datasets. However, this could be because structures 

are biased towards permanent interactions, due to their ease of crystallisation relative to 

transient interactions, which often require additional techniques to crystallise53. To test 

this, we examined the interface area and predicted ΔG of the experimental and predicted 

PPI structures, finding that PPIs that are also connected in the functional networks tended 

to have larger interfaces and lower ΔG (Extended Data Fig. 7a, b, Supplementary Tables 

18, 19). Computationally predicting structures should offer a way to overcome this bias in 

experimental data generation. However, by contrast we found that predicted structures 

had larger interfaces than the experimental structures (Extended Data Figure 6c), which 

was a result both of AlphaFold being more often able to generate a sufficiently confident 

predicted structure for larger interface PPIs (Extended Data Fig. 7d), and of a bias of 

AlphaFold predicting larger interfaces than seen in the experimental structures (Extended 

Data Fig. 7e). Together this suggests that, currently, AlphaFold+RoseTTAFold not only 

recapitulate the bias towards more stable PPIs in their training data but actually increase 

that bias in the PPIs for which they are able to generate confident predictions.  

The structural networks exhibit truncated degree distributions, missing high 

degree, or hub, proteins (Extended Data Fig. 3i), possibly because of this bias against 

transient PPIs. Hubs are key features of PPI networks, which have a major impact on the 

network’s topology, and so we investigated the connectivity of PPI hubs in the functional 

PSNs. Hubs in biophysical maps can be classified as either ‘date’ or ‘party’ hubs 

depending on the degree to which interacting partners are also co-expressed54. 

Systematic binary maps have mostly date hubs, whereas literature-curated and 
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systematic AP-MS maps have more party hubs4 (Extended Data Fig. 9c, d). Party hubs 

– which tend to be in complexes55 and use multiple interfaces to bind multiple partners 

simultaneously – overlap with functional networks twice as much as date hubs, which 

usually interact with partners one at a time transiently. The fraction of PPIs connected in 

the functional networks generally decreases as the interacting proteins’ degree increases 

across the different biophysical networks (Extended Data Fig. 9e). One notable exception 

is Sys-NB-06 in GE-PSN due to the tightly correlated expression of large protein 

complexes’ subunits, and the inclusion of pairs corresponding to indirect associations in 

those complexes. AlphaFold+RoseTTAFold displays very different trends, probably 

because of its truncated degree distribution. The observation that high-degree proteins 

are less functionally similar to their binding partners is consistent with the observation that 

they are more pleiotropic4.  

Discussion 

Four decades ago, McConkey proposed the term “quinary structure” as a “fifth 

level of organization”, referring to macromolecular interactions that, although potentially 

highly functionally relevant, might be “transient in vivo”56–58. He predicted such 

interactions “will not be evident from the composition of purified proteins”, since, while 

quaternary structures tend to be more resistant to the “cataclysmic violence of the most 

gentle homogenization procedure”, quinary interactions, “although stable in vivo, might 

be largely destroyed by cell fractionation”. The observations presented in this paper 

suggest fundamental differences in organisation between the inner-complexome, 

containing mostly quaternary structures that are highly detectable by affinity purification 

approaches, and the outer-complexome, which has a greater tendency towards quinary 

structures, detectable by binary assays in living cells. From this perspective, it is easy to 

see why there should be a substantial discrepancy among alternative views of inner- 

versus outer-complexome organisation revealed by approaches as different as co-

complex association detection and binary interaction assays. Indeed, we observe that the 

different methods used to obtain PPIs have different propensities to include transient 

interactions as well as different proportions of direct interactions and indirect co-complex 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2021.03.16.435663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435663
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 

associations, and that these differences can have a dramatic influence on the properties 

of the resulting network and hence our understanding of cellular organisation. 

Although undoubtedly oversimplistic, our results evoke a view in which the inner-

complexome constitutes the “manufacturing machinery” operating in a relatively constant, 

robust, and persistent manner, and the outer-complexome comprises the “regulatory 

processes'' exhibiting greater flexibility, plasticity, environmental responsiveness, and 

evolvability. A relatively small proportion of the interactome is composed of inner-

complexome interactions, while the vast majority of the interactome consists of 

interactions in the outer-complexome, consistent with emerging evidence suggesting that 

the majority of the interactome may be transient and context-specific25–27, between 

complementary rather than similar proteins59, and with extensive pathway cross-talk and 

pleiotropy60. However, mapping and functional characterization of these outer-

complexome interactions remain challenging. Continued development of assays that can 

efficiently detect transient, context-specific PPIs, combined with new large-scale 

approaches to characterize their functions will be an important next step toward 

understanding the global organisation of cellular processes.  
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Extended Data Fig. 1 | Most proteins are not members of protein complexes. a, The 

fraction of the proteome of different organisms that are not listed as subunits of protein 

complexes of at least 3 or more different protein subunits, using different datasets of 

protein complexes. The union of the protein complex datasets for each organism is also 

shown, when there is more than one dataset.  
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Extended Data Fig. 2 | Validation of YeRI. a, Benchmarking Y2H v4 against two other 

binary PPI assays, using positive and random reference sets (scPRS-v2 and scRRS-v2). 

Coloured bars indicate positives. b, The results of different batches of experimental 

validation of YeRI in GPCA and MAPPIT. In total, all pairs from YeRI were tested in both 

assays. Error bars and shaded bands are 68.3% Bayesian credible intervals. c, 

Enrichment of YeRI PPIs between proteins in the same cellular compartments, pathways, 

and protein complexes. Error bars are 68.3% interval of degree-preserved random 

networks. d, Composite networks, generated by the addition of each systematic PPI map 

(top row, left). Network regions enriched for GO terms (bottom row, left). Merge of network 

and enriched regions for the most recent composite network (right). e, Network-based 

spatial enrichment analysis (SAFE) for YeRI. Clusters of genes enriched for GO terms in 

YeRI are highlighted. f, The number of proteins encoded by genes of unknown function 

with at least one interaction in ABBI-21 or Lit-BM. g, Number of PPIs involving proteins 

encoded by genes of unknown function in Lit-BM-20 or ABBI-21. h, PPI network of PEX35 

and its first- and second-degree interactors. Named proteins are those annotated or 

predicted to have the GO terms related to ‘peroxisome importer complex’.   
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Extended Data Fig. 3 | Assessment of high-quality binary PPI datasets. a, Coverage 

of the yeast interactome by ABBI-21, based on three reported estimates of the total 

interactome size. Error bars correspond to the 95% confidence intervals of each estimate 

reported in the original publications. b, The proportion of ABBI-21 in each Zone. c, Venn 

diagram of PPIs, and proteins with at least one PPI, in four high-quality binary datasets. 

d, Fraction of PPIs identified by Y2H v4 in complex structures of different sizes. Error bars 

are 68.3% Bayesian credible intervals. e, Y2H v4 recovery of I3D-exp-17 pairs as a 

function of the fraction of the protein that is contained in the experimental structure. The 

lower of the two values of coverage of the different proteins in each interaction is used. 

Error bars are 68.3% Bayesian credible intervals. f, Distribution of interface area for I3D-

exp-17 PPIs, that tested positive in Y2H v4, MAPPIT, and GPCA, restricting to pairs that 

were successfully tested in all three assays. Box plots show median, interquartile range 

(IQR), and 1.5×IQR. g, Dissociation constants of pairs positive or negative in Y2H v4. 

Points outlined in black are PPIs (non-covalent interactions) of different ubiquitin-binding 

proteins with ubiquitin. h, Results of testing AlphaFold+RoseTTAFold in Y2H v4, split into 

bins of contact probability. Error bars are 68.3% Bayesian credible intervals. i, Number of 

PPIs in AlphaFold+RoseTTAFold dataset as a function of contact probability. The lower 

line shows the number of PPIs without a previous experimental structure of the complex, 

made with either the exact S. cerevisiae proteins or homologous proteins. j, degree 

distribution of each network.   
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Extended Data Fig. 4 | Validation experiment results in different Zones. a, Mean of 

publication count, abundance, gene conservation, and the fraction of essential genes for 

proteins either in or outside complexes. Error bars are 95% confidence interval. b, 

Correlation matrix with clustering of different protein-level properties based on 

Spearman's rank correlation coefficient. c, The fraction of genes in five biophysical 

networks across sliding windows of 1,000 proteins, ordered by abundance and 

conservation. Grey dotted lines show the overall fraction. d, Enrichments of Sys-NB-06 

and ABBI-21 to contain different gold-standard sets of PPIs from the inner- and outer-

complexome. Direct PPIs within protein complexes with three or more subunits; co-

complex pairs from KEGG pathways; PPIs regulating activation or inhibition from KEGG; 

and high-quality kinase-substrate pairs from the KID database. Error bars are standard 

error on the log odds ratio. e, Overlap of the three functional profile similarity networks 

(PSNs), genetic interaction (GI-PSN), gene expression at mRNA level across different 

conditions (GE-PSN), and growth across different conditions PSN (CS-PSN). Restricted 

to genes tested in all three PSNs with PCC value in the top 1% of tested pairs in each 

PSN. f, Investigation of densely connected area between the most intensely studied 

genes in GI-PSN. Heatmaps of the number of connected gene pairs in GI-PSN, ordered 

by protein abundance, and further segmented based on essentiality and involvement in 

the ribosome. g, Recovery of protein pairs in direct contact and pairs not in direct contact 

within the corresponding 3D structures, by different biophysical and functional networks. 

Each point is a separate protein complex with at least 5 distinct protein subunits. h, The 

fraction of directly contacting interactions, taking all reported pairs where both proteins 

are in a protein complex structure with at least three subunits, for different datasets. Error 

bars are standard error of proportion. i, Estimation of the fraction GI-PSN pairs that are 

also a binary PPI, based on results of testing samples from GI-PSNs at different PCC 

cutoffs using Y2H v4 and GPCA and comparing to the results of the PRS. Error bars are 

1σ confidence intervals.  
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Extended Data Fig. 5 | A large proportion of the interactome mainly consists of 

interactions between functionally heterogeneous proteins in the outer-

complexome. a, Edge density fold change in the inner- and outer-complexome in the 

biophysical and functional maps. b, Edge density fold change in the Zones B, C and D of 

the outer-complexome in the biophysical and functional maps. c-e, Distribution of CS-

PSN after restricting to genes tested in the experiment: c, edge density fold change in the 

outer-complexome (Zones B, C and D), d, heatmap of the number of connected gene 

pairs with the proteome first ordered by size of protein complexes in which the proteins 

are involved then ordered by protein abundance, and, e, statistically significant 

enrichment and depletion of pairs in d. f, Fraction of pairs in the inner- and outer-

complexome from Lit-BM-13 and ABBI-21 that tested positive using GPCA and MAPPIT. 

g, h, The fraction of pairs testing positive in GPCA (g) and MAPPIT (h) in Zones A, B, C, 

and D from Lit-BM and systematic binary maps. All error bars are 68.3% Bayesian 

credible intervals.   
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Extended Data Figure 6
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Extended Data Fig. 6 | Distributions of functional profile similarity values of 

physically interacting proteins produce consistent results with the overlap with 

PSNs analysis. a, b, c, Left panel: PCC value for each of the functional profiles across 

all tested gene pairs. Right panels: distribution of functional profile PCC for interacting 

proteins, in each PPI network, split into inner- and outer-complexome. Grey vertical lines 

correspond to the cutoff used to make each PSN. GI-PSN (a), CS-PSN (b), GE-PSN (c).  
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Extended Data Figure 7
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Extended Data Fig. 7 | Stronger PPIs more often overlap with functional similarity 

networks. a, b, Distribution of PPI interface sizes (a), and predicted ΔG of interaction (b), 

from experimentally solved and computationally predicted structures, comparing PPIs 

that are connected in functional PSNs to those that are not. c, Distribution of PPI interface 

sizes between the experimental and predicted structure datasets. d, Distribution of PPI 

interface sizes, using the experimental structures, split by whether the PPI appears in the 

predicted structures dataset. All box plots show median, interquartile range (IQR), and 

1.5×IQR (with outliers). e, Comparison of the PPI interface size of the computationally 

predicted structure to the experimental structure, for PPIs with both predicted and 

experimental structures. P-values in all panels calculated using two-tailed Mann-Whitney 

U test.   
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Extended Data Figure 8
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Extended Data Fig. 8 | ESCRT / OCA complexes. a, Integrated network showing 

interactions among subunits of ESCRT complexes and their interacting partners. b, 

Integrated network showing interactions among subunits of the OCA complex and their 

interacting partners. Physically interacting proteins also connected in functional networks 

are connected with thick orange lines.  
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Extended Data Figure 9
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Extended Data Fig. 9 | Further exploration of factors affecting PPI connection in 

functional networks. a, Composition of edges from three biophysical maps in inner-

complexome (Zone A) and outer-complexome (Zones B, C, and D) and the fraction of 

pairs from biophysical maps also connected in positive or negative genetic interaction 

networks (top 1%) within the four zones. Error bars are 68.3% Bayesian credible intervals. 

b, Composition of edges from three biophysical maps between essential genes and 

involving non-essential genes, and the fraction of pairs from biophysical maps of each 

category connected in functional networks. Error bars are 68.3% Bayesian credible 

intervals. c, Composition of edges from three biophysical maps involving date and party 

hubs using different degree and PCC thresholds, and the fraction of pairs from biophysical 

maps of each category connected in functional networks. Only panels for which there are 

at least one date and one party hub are shown. Error bars are 68.3% Bayesian credible 

intervals. d, Average co-expression PCC of proteins in biophysical maps with different 

degrees. A cutoff between party and date hubs of 0.3 is shown by the grey horizontal line. 

e, The fraction of edges that are also connected in functional networks, for three 

biophysical maps, binned by the higher degree of the two proteins for each pair. Logistic 

regression and 95% confidence interval are shown.  
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Supplementary Note 1 – Predicting functions for genes with YeRI 

Despite being one of the most well-studied organisms, the function of almost one-sixth of 

yeast genes remains unknown 63. We investigated the number of PPIs involving the 

products of these uncharacterised genes in both literature and systematic maps. 

Systematic maps identify substantially more PPIs connecting proteins encoded by genes 

of unknown function than literature-derived maps (Extended Data Fig. 2g). Altogether, 

33% of such proteins have at least one interaction in ABBI-21, while 19% have 

interactions identified only in YeRI (Extended Data Fig. 2f). Given the lack of progress in 

characterizing the functions of these genes, systematically mapped PPIs provide 

information to infer their cellular roles. We predicted functions for genes of unknown 

function with a guilt-by-association approach using GO term annotations of their 

interaction partners20 (Supplementary Table 13) in ABBI-21. The lag between the release 

of publications describing gene functions and the curation of that information into GO 

terms sometimes results in a small number of genes which appear in the GO-term based 

list of genes as “genes of unknown”, while in fact, they have been assigned functions 

already. These cases present an opportunity to test the accuracy of our predictions. For 

example, a gene of unknown function YGR168C is also known as PEX35 owing to its 

recently demonstrated role as a regulator of peroxisomal abundance 64. Using ABBI-21, 

we predicted YGR168C to be involved in peroxisomal protein import machinery, 

showcasing the ability of ABBI-21 to accurately predict gene function. Pex35 has 23 PPIs 

in ABBI-21, all from YeRI, out of which eight are proteins involved in peroxisomal biology 

(Extended Data Fig. 2h). Pex35 also interacts with another protein encoded by a gene of 

unknown function, YKL018C-A/MCO12, which we predict to be involved in peroxisomal 

abundance as well. Another example of the efficacy of using a guilt by association 

approach with our systematic PPI network to predict gene function is YJR015W, the 

product of which was recently demonstrated to be localised to the ER 65. Indeed, we 

predicted YJR015W as a putative facilitator of endoplasmic reticulum (ER) transport 

activity, based on its protein interactions with ER secretory pathway components such as 

Sec11, Spc1, and Sar1.  
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Supplementary Note 2 – ESCRT / OCA complexes 

The endosomal sorting complex required for transport (ESCRT) pathway plays a 

key role in the biogenesis of multivesicular bodies and turnover of membrane proteins66. 

The main players in the ESCRT pathway are the five ESCRT complexes, supporting 

auxiliary proteins, and the cargo to be sorted. By integrating biophysical and genetic 

networks, we observe that the five ESCRT complexes’ core constituents interact 

biophysically in both ABBI-21 and Lit-BM-20 and are highly interconnected in functional 

networks (Extended Data Fig. 8a). In contrast, outer-complexome ABBI-21 PPIs between 

subunits of ESCRT complex and non-complex proteins, important for endosomal sorting, 

are not connected in the functional networks. For example, ABBI-21 contains PPIs 

between Vfa1, important for vacuolar sorting, and Vps4 and Vta1, subunits of the ESCRT-

4 complex. However, despite known functional roles, Vfa1 is not connected with Vps4 

and Vta1 in any of the PSNs.  

Systematic binary maps can help us understand how proteins within and outside 

complexes function together to mediate various biological processes. One such example 

is Snn1, a subunit of the biogenesis of lysosome-related organelles complex 1, BLOC-1, 

important for endosomal maturation67,68. In ABBI-21, Snn1 interacts with proteins of the 

ESCRT complex like Vps28 and other non-complex endosomal proteins like Nkp2 

(Extended Data Fig. 8a). ABBI-21 interactors of Snn1 are significantly enriched in proteins 

located in endosomes (13%, vs 2% overall for proteins in ABBI-21, P = 0.0007, two-sided 

Fisher’s exact test). Five out of six BLOC-1 complex proteins have PPIs primarily in ABBI-

21, and none of the interacting protein pairs are connected in any of the functional 

networks. 

The uniform coverage of inner- and outer-complexome by ABBI-21 can also shed 

light upon potential mechanisms by which previously under-studied complexes act. For 

example, the oxidant-induced cell-cycle arrest (OCA) complex mediates G1 arrest under 

stress conditions through a yet unknown mechanism69. This complex’s six components 

are connected biophysically and in the functional networks, exhibiting similar genetic 

interaction and condition sensitivity profiles (Extended Data Fig. 8b). Although inner-
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complexome interactions with OCA may well be critical for its function, they do not explain 

the complex’s stress-specificity. Outer-complexome interactions of OCA proteins do not 

overlap with the genetic networks but might be instrumental in understanding the 

mechanism through which the complex mediates its function. Of particular interest is the 

interaction between Oca1 and Tos4, newly reported in YeRI (Extended Data Fig. 8b). 

Tos4 is a transcription factor that binds to the promoters of genes involved in the G1/S 

transition70, offering a hypothesis for the mechanism by which OCA mediates G1 arrest.  
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Methods 
 

Strains and cell lines 

Yeast strains 

Yeast haploid strains MATα Y8930 and MATa Y8800, derived from PJ69-471, were used 

previously4,72. Both strains harbor the following genotype: leu2-3,112 trp1-901 his3Δ200 

ura3-52 gal4Δ gal80Δ GAL2::ADE2 GAL1::HIS3@LYS2 GAL7::lacZ@MET2 cyh2R. 

Yeast cells, parental strains or transformants, were cultured either in YEPD or synthetic 

drop out media, supplemented as needed and incubated at 30°C. 

 

Bacterial strains 

Chemically competent DH5α or DB3.1 E. coli cells were used for all bacterial 

transformations in this study. Transformed cells were cultured in Luria Broth or Terrific 

Broth, supplemented with antibiotics (50 µg/ml of ampicillin, spectinomycin or kanamycin) 

as needed and incubated at 37°C. 

 

Human cell lines 

Human embryonic kidney HEK293T cells were cultured in Dulbecco’s Modified Eagle 

Medium (DMEM) supplemented with 10% fetal bovine serum, 2mmol/L L-glutamine, 100 

I.U./mL penicillin, and 100 μg/mL streptomycin. Cells were incubated at 37°C with 5% 

CO2 and 95% humidity. 

 

Yeast open reading frames 

The list of yeast ORFs was downloaded from the Saccharomyces Genome Database 

(SGD) (https://www.yeastgenome.org/) on January 14th, 2017. Four ORFs 

(YCR097W/HMRA1, YCR096C/HMRA2, YCL066W/HMLALPHA1, 

YCL067C/HMLALPHA2) annotated in SGD as “silenced gene” were removed. Only SGD-

annotated “Verified” and “Uncharacterized” ORFs were included whereas ORFs 

annotated as “Dubious” were excluded, leaving a total of 5,883 ORFs with 5,155 and 728 

ORFs classified as Verified and Uncharacterized, respectively. All datasets analyzed 
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have been restricted to these 5,883 ORFs and previous ORF names that appear as 

aliases for one of these ORFs have been mapped to their corresponding new name. 

 

Complexome – list of protein complexes 

Most analyses use yeast complexes taken from Data File S12 of Costanzo et al. 201613 

and filtered to contain three or more different protein subunits, resulting in 339 complexes 

containing 1,897 different proteins. For the cross-species analysis in Figure 1a, the data 

came from the EBI Complex Portal73 dated Feb 3rd 2022, and also filtered for those 

containing three or more different protein subunits. Additional datasets were used in 

Extended Data Figure 1a, from CYC200845, CORUM74 v3 dated 3rd September 2018, and 

Hu.MAP 2.075 dated 9th August 2020, all filtered to contain three or more different protein 

subunits. 

 

Assigning protein pairwise combinations to individual zones 

The search space of all possible pairwise combinations of proteins can be classified into 

four different “zones” based on their relationship to the complexome (Figure 1A). We 

define Zone A, which we refer to as the inner-complexome, as all pairwise combinations 

of proteins within protein complexes. Such pairs would include for example Rpt4 and 

Rpt5, two interacting subunits of the proteasome76, and Rps1A and Rps14A of the 

ribosome77. Zone B corresponds to pairs of proteins where each protein belongs to a 

different complex. For example, the RNA polymerase II (RNA Pol-II) Rpb2 subunit is 

capable of interacting with the Tfg2 subunit of the transcription factor II complex TFIIH78. 

Zone C represents all pairwise combinations where one protein is in a complex and the 

other is not. For example, Rpl10, a component of the large ribosomal subunit, interacts 

with Sqt1, a chaperone important for Rpl10 assembly into the ribosome79. Another 

example would be Rbp2 which interacts with Rad26, a nucleotide excision repair protein 

recruited to DNA lesions by RNA Pol II80. Finally, Zone D corresponds to protein pairs 

where neither protein belongs to a complex. Examples of Zone D interactions include 

most PPIs within signal transduction pathways, individual chaperones and their clients or 

kinase-substrate pairs involved in cellular processes such as autophagy. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2021.03.16.435663doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.16.435663
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

47 

While populated by relatively abundant proteins and large molecular size 

machines, the inner-complexome covers only a tiny proportion of the full yeast 

interactome “search space”, i.e. all ~18,000,000 pairwise combinations between all 

~6,000 proteins. For example, the yeast ribosome, which accounts for nearly 20% of the 

proteomic mass62, is encoded by only 2% of all genes and all combinations between 

ribosomal proteins correspond to ~0.04% of the whole search space. Together the 339 

complexes in our complexome map represent 17,607 pairwise combinations between 

their respective subunits, which corresponds to only ~0.1% of the proteome-by-proteome 

space. This leaves us with ~99.9% of the whole search space for the outer-complexome, 

with its three zones, B, C, and D, corresponding to 10%, 44%, and 46% of the proteome-

by-proteome space, respectively. 

Assembly and description of biophysical and genetic datasets 

Y2H-union: Uetz-screen, Ito-core and CCSB-YI1 

As described previously4, Uetz-screen is a subset of PPIs from Uetz et al2,3 that was 

obtained from a proteome-scale systematic Y2H screen, excluding a smaller-scale, 

relatively biased, targeted experiment with a smaller number of well-studied bait proteins. 

Ito-core is a subset of PPIs found three times or more in Ito et al3, excluding unreliable 

pairs of proteins found only once or twice. CCSB-Y1 is a proteome-scale dataset of Y2H 

PPIs validated using the two orthogonal assays MAPPIT and yPCA4. After restricting to 

PPIs involving the 5,883 ORFs (described above) the dataset sizes are as follows: Uetz-

screen: 645 PPIs; Ito-core: 816 PPIs; CCSB-YI: 1,772 PPIs. The union of these maps 

(Y2H-union) contains 1.933 nodes and 2,833 PPIs. 

 

Literature-curated biophysical datasets (Lit-NB, Lit-BS, Lit-BM)  

Literature-curated pairs were obtained from the databases MINT9, IntAct8, DIP10, and 

BioGRID11. The data files used were the 2020-07-14 release from IntAct (containing data 

from IntAct, MINT and DIP) and BioGRID release 3.5.187 (from 2020-06-25). We 

excluded evidence corresponding to the eight systematic, proteome-scale co-complex 

association datasets2–7,38,46. Data was filtered to ensure valid IDs for UniProt accession 

numbers, Pubmed IDs and PSI-MI terms. Each piece of evidence for a protein pair had 
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to consist of a Pubmed ID and an interaction detection method code in the PSI-MI 

controlled vocabulary (http://www.psidev.info/groups/molecular-interactions). Duplicated 

evidence can arise in cases where different source databases curate the same paper. 

We merged duplicated entries for each pair, as detected by multiple pieces of evidence 

with the same Pubmed ID and experimental interaction detection codes which are either 

identical or have an ancestor-descendent relationship in the PSI-MI ontology. In the latter 

case, the more specific descendent term was assigned to the merged evidence. In order 

to select the subset of protein pairs corresponding to binary interactions (as opposed to 

co-complex associations), we developed a manual classification of the PSI-MI interaction 

detection method terms39. Our classification has since been updated to cover new 

experimental methods which have been added to the controlled vocabulary in the 

intervening time. The methods are classified into three categories; ‘invalid’, ‘binary’ and 

‘non-binary’. Where ‘invalid’ corresponds to PSI-MI terms that are not considered valid 

experimental protein-protein interaction detection methods, ‘binary’ corresponds to terms 

that detect binary protein-protein interactions and ‘non-binary’ corresponds to terms that 

detect potentially indirect associations. An example term in the “invalid” category is 

“colocalization”. All protein pairs annotated with “invalid” terms were excluded. ‘Binary’ 

versus ‘non-binary’ evidence was used to categorize protein pairs in the literature-curated 

dataset as follows. Pairs with no binary experimental evidence were classified as “Lit-

NB”, corresponding to 100,940 pairs. Pairs with a single piece of binary evidence and no 

other evidence were classified as “Lit-BS”, corresponding to 14,477 pairs. Finally, pairs 

with two or more pieces of evidence including at least one binary evidence were classified 

as “Lit-BM”, corresponding to 5,589 pairs. 

 

Previous literature-curated datasets generated in 2017 and 2013 were used as a 

source dataset for pairs experimentally tested in GPCA, MAPPIT and Y2H-v4 (see 

Engineering of new Y2H destination vectors) experiments. These were generated and 

processed as above with small differences. Lit-BM-17 and Lit-BS-17 were obtained via 

the mentha resource data file dated August 28th 201730. Lit-BM-13/Lit-BS-13/Lit-NB-13 

were generated as described previously39. Yeast PPIs annotated through December 
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2013 from six source databases: BIND81, BioGRID11, DIP10, MINT9, IntAct82 and PDB83 

were extracted and processed using the same protocol. 

 

Direct PPIs with experimental structures 

The most definitive proof that a pair of interacting proteins are in physical direct contact 

is the availability of a three-dimensional (3D) structure of their interface. We used the 

subset of Interactome3D29 restricted to experimental structures, excluding homology 

models. The dataset from the January 2020 release of Interactome3D, referred to as “I3D-

exp-20”, was used for most computational analyses. The dataset from the June 2017 

release, “I3D-exp-17”, was experimentally tested in its entirety using Y2H v4 (see 

Engineering of new Y2H destination vectors). The date assigned to PPIs was obtained 

from the PDB database taking their earliest release date for all PDB structures from the 

“complete” Interactome3D dataset. 

 

Note on the overlap between I3D-exp-20 and Lit-BM-20 PPIs 

There were a surprisingly large number of pairs in I3D-exp-20 and not in Lit-BM-20 (1,015 

pairs in the difference of I3D-exp-20 from Lit-BM-20 and 746 pairs in the union, see Figure 

S1B). These pairs are mostly cryo-EM structures (77% Electron Microscopy in the 

difference vs 36% in the intersection) of larger complexes (median number of entities per 

structure of 18 in the difference vs 4 in the intersection). The reason for this is that in the 

generation of the literature-curated datasets (see section Literature-curated biophysical 

datasets), we don’t use the structural data for direct contacts, we base the binary vs non-

binary distinction on the experimental method used and we classify Cryo-EM as non-

binary since we don’t know if the reported pairs are in direct contact or not. 
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Predicted structures 

The list of PPIs for AlphaFold+RoseTTAFold was from the excel file captioned 

“Descriptions of all predicted protein-protein interactions”12. Six PPIs with missing gene 

names were discarded. The predicted structures, which were available for pairs with 

contact probability ≥ 0.9, were downloaded from 

https://modelarchive.org/doi/10.5452/ma-bak-cepc. 

 

Systematic AP-MS 

Sys-NB-06 is made up of Gavin et al. 20026, Gavin et al. 20067, Krogan et al. 20065. We 

didn’t include Ho et al. 200246, since it was generated with a smaller, more focussed 

selection of bait proteins.  
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Methods Table 1. Tested biophysical datasets 

    
Number of pairs 

attempted in:  

Category Dataset 
Co-complex 
associations 

Binary 
PPIs 

Y2H v4 GPCA MAPPIT 

Experimentally 

detected 

Co-complex 

Proteome x 

proteome 

Gavin (2002) 3,210  200   

Gavin (2006) 6,531  200   

CYC2008a 11,136  200 405  

Krogan 7,059  200   

Ho 3,584  200   

Literature  Lit-NB-17 71,260  151   

Binary 

Proteome x 

proteome 

Ito-core  816 738 199 199 

Uetz-screen  645 470 193 193 

CCSB-YI1  1,772 1,536 200 200 

Tarassov  2,761 199 199 199 

With structure I3D-exp-17  1,787 1,231   

Literature 

Lit-BS-17  13,981 146 149  

Lit-BM-13  4,115  584 168 

Lit-BM-17  4,623 4,128   

Predicted 

Jansen 9,870  200   

PrePPIb  30,184 200 198  

AlphaFold+ 

RoseTTAFold
c 

 1,505 1,505   

PRS and RRS 
scPRS-v2  108 108 108 108 

scRRS-v2  198* 198 198 198 

YeRI YeRI  1,910  1,910 1,910 
 

a pairwise combinations of proteins within each complex 
b high confidence subset 
c tested across two Y2H v4 experiments 

*Negative control of random pairs of proteins 
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Functional profile similarity networks (PSNs)  

Genetic interaction similarity profile data (GI-PSN) were extracted from Costanzo et al. 

201613. The average PCC of a pair was used if multiple PCCs were available. Pairs with 

PCCs ranked in the top 1% were used to generate the GI PSN. Condition-sensitivity data 

(CS-PSN) was extracted from Hillenmeyer et al. 200814. The log of growth ratios from the 

homozygous deletion data were used to calculate PCC for each pair of genes. Pairs with 

PCCs ranked in the top 1% were used to generate the condition-sensitivity PSN. Co-

expression data (CE-PSN) was downloaded from https://coxpresdb.jp15. The union 

dataset (Sce-m.c3-0 Sce-r.c1-0, 2018.11.07) was used. Pairs with PCCs ranked in the 

top 1% were used to generate the co-expression PSN. 

 

Methods Table 2. Numbers of genes and interactions in the top 1% percentile of the 

genetic maps 

PSN 
PCC threshold 

(top 1%) 
Number of nodes  Number of edges 

GI 0.12 5,328 134,972 

CS 0.42 3,479 65,147 

GE 0.57 3,832 99,454 

 

Generation of scPRS-v2 and scRRS-v2 

Due to the change in yeast ORFeome used, we updated our positive reference set (PRS) 

and random reference set (RRS) from our original set4. We named the updated 

Saccharomyces cerevisiae positive and random reference sets (scPRS-v2 and scRRS-

v2 respectively). In Yu et al., 188 PPIs with five or more papers were finalized as PRS 

candidates of which 116 had both ORFs in the collection at the time. Of the 188 PPIs, we 

filtered those pairs to also be in Lit-BM-20, then to have both ORFs in the FLEXGene 

collection32 resulting in a final scPRS-v2 of 108 PPIs. Of 188 RRS pairs in Yu et al., we 

removed all ORFs annotated as dubious, then required they have both ORFs in the 
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FLEXGene collection. To that we increased the size by adding additional pairs randomly 

selected from the space of all possible pairwise combinations of ORFs in the FLEXGene 

collection. Since the RRS is used as a negative control, we then filtered out any pairs that 

appeared in any of the experimental PPI or co-complex association datasets, which 

resulted in removing one pair that appeared in Lit-NB-20 resulting in a final scRRS-v2 of 

198 pairs. 
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Engineering of new Y2H destination vectors 

Gateway compatible 2μ high-copy destination vectors pVV212 and pVV21384 with a Gal4 

DNA binding domain and a Gal4 activation domain, respectively, were modified to be 

compatible with our standard Y2H vectors pDEST-DB and pDEST-AD-CYH272 with 

respect to the LEU2 and TRP1 as selectable markers. The resulting destination vectors 

pDEST-DB-QZ212 and pDEST-AD-QZ213 also carry CAN1 or CYH2 genes as 

counterselectable markers, respectively. The CYH2 and CAN1 counterselectable 

markers facilitate plasmid shuffling for the identification of auto-activators85. Gateway LR 

reactions between yeast ORFs flanked by attL1 and attL2 sites with the attR1 and attR2 

sites of pDEST-DB-QZ212 and pDEST-AD-QZ213 result in attB1 and attB2 sites flanking 

yeast ORFs now fused downstream of either the Gal4 DB or Gal4 AD sequences of the 

respective destination vector. See Methods Table 3 for detailed information.  
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Methods Table 3. Yeast destination vectors 

Name pDEST-DB  
pDEST-DB 

-QZ212 

pDEST-AD 

-CYH2 
pDEST-AD 

-QZ213 

Fusion partner 

(aa) 

Gal4-DB 
( 1-147) 

Gal4-DB 
(1-147) 

Gal4-AD 
(768-881) 

Gal4-AD 
(768-881) 

Fusion location N-terminus N-terminus N-terminus N-terminus 

Yeast Promoter 

(nt) 

Truncated ADH1 

(-701 to +1) 

Truncated ADH1 (-

410 to +1) 

Truncated ADH1 

(-701 to +1) 

Truncated ADH1 

(-410 to +1) 

Yeast replication 

of origin 
CEN 2μ CEN 2μ 

Linker sequence 

between 

3’ of Gal4 

element and 

Gateway cloning 

site 

(aa) 

SRSNQ PEFPS GGSNQ 

ICMAYPYDVPDY

ASLGGHMAMEA

PS 

Yeast terminator ADH1 Term ADH1 Term ADH1 Term ADH1 Term 

E. coli selection 

marker 
Ampicillin  Ampicillin Ampicillin  Ampicillin  

Yeast 

auxotrophic 

selection marker 

Leucine Leucine Tryptophan Tryptophan 
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Benchmarking Yeast Two-Hybrid (Y2H) assay versions 

Assay versions were benchmarked using scPRS-v2 and scRRS-v2. The new Y2H version 

with destination clones in vectors pDEST-DB-QZ212 and pDEST-AD-QZ213 was named 

Y2H version 4 (Y2H v4). Y2H v1 - v3 can be found in Luck et al, Nature, 202020. The 

performance of Y2H v4 was compared to Y2H v1, which consists of destination clones in 

pDEST-AD-CYH2 and pDEST-DB, and was used to generate CCSB-YI14. The Y2H 

assay was performed as described previously39,72. Briefly, Y8930:pDEST-DB-QZ212-

ORF and Y8800:pDEST-AD-QZ213-ORF haploid strains were inoculated and mated. 

After enrichment for diploids in SC-Leu-Trp, diploids were spotted on SC-Leu-Trp-

His+3AT solid media, testing for GAL1::HIS3 activation and on a set of SC-Leu-His+3AT 

plates supplemented with 10 mg/L cycloheximide (CHX) to identify spontaneous DB-ORF 

auto-activators72. After 3 days incubation at 30°C, yeast strains growing on SC-Leu-Trp-

His+3AT solid media and not on SC-Leu-His+3AT+CHX media were scored as positives. 

The interacting pairs were identified based on plate position.  

 

Generation of an expanded yeast ORFeome collection  

Yeast FLEXGene clone collection32 of full length ORFs cloned in either pDONR201 or 

pDONR221, both KanR, contains 4,933 ORFs, after removal of redundant ORFs and 

ORFs that no longer match SGD-annotated ORFs (version 2014) 

(https://www.yeastgenome.org/). For the remaining 950 SGD-annotated ORFs not in 

Yeast FLEXGene, entry clones were generated in-house and are referred to as 

supplemental ORFeome collection. ORF sequences were amplified without their native 

stop codon sequences from either S. cerevisiae S288C genomic DNA (ORFs without 

introns) or cDNA (ORFs containing introns) using KOD high fidelity polymerase 

(Novagen) and 18-20 nucleotide ORF-specific forward and reverse PCR primers tailed 

with Gateway attB1 and attB2 sequences  

attB1 Forward primer tail 5’ GGGGACAAGTTTGTACAAAAAAGCAGGCTCCACC  

attB2 Reverse primer tail 5’ GGGGACCACTTTGTACAAGAAAGCTGGGTCCTA 

from Hu et a32, respectively, essentially as described86. The CTA sequence in the 

Gateway tail of the reverse primer provided a synthetic stop codon for all ORFs. Amplified 
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ORFs were transferred to pDONR223 (SpecR) by Gateway BP recombination cloning 

(Invitrogen) and transformed into chemically competent DH5α E. coli cells. Sanger 

sequencing of PCR products, generated with universal forward and reverse primers, was 

used to confirm the identity of all cloned ORFs as described86. 921 ORFs were obtained 

using this approach.  

 

ORFeome cloning in Y2H destination vectors 

To generate an arrayed library of DB-ORF and AD-ORF hybrid proteins, the yeast ORFs 

were transferred into both destination vectors, pDEST-DB-QZ212 and pDEST-AD-

QZ213, by Gateway LR recombination cloning (Invitrogen). Gateway LR reaction 

products were transformed into DH5α E. coli cells, plasmid DNA was extracted and used 

to transform yeast strains. pDEST-DB-QZ212 and pDEST-AD-QZ213 expression clones 

were transformed into yeast strains MATα Y8930 and MATa Y8800, respectively72. 

 

Auto-activator detection for filtering before Y2H screening 

We tested for auto-activation of the GAL1::HIS3 reporter gene by AD-ORF or DB-ORF 

fusion proteins in both haploid and diploid yeast cells. To identify auto-activator clones in 

haploid yeast, Y8930:DB-ORF and Y8800:AD-ORF strains were grown to saturation in 

SC medium lacking Leucine (SC-Leu) or Tryptophan (SC-Trp), respectively. After 24 

hours of incubation, Y8930:DB-ORF and Y8800:AD-ORF haploids were spotted on SC-

Leu-His+3AT or SC-Trp-His+3AT to test for GAL1::HIS3 activation. Viability of the 

haploids was confirmed with growth on SC-Leu or SC-Trp, respectively.  

 

To identify auto-activators in diploid yeast, MATα Y8930:DB-ORF and MATa 

Y8800:AD-ORF strains were mated against their respective opposite mating type strains 

carrying the corresponding destination vectors without any fused ORFs. Mating was 

conducted in rich medium, YEPD, and resulting diploids were enriched following growth 

in SC-Leu-Trp. Diploids were spotted on SC-Leu-Trp-His+3AT, to test for GAL1::HIS3 

activation, and on SC-Leu-Trp to confirm the viability of the diploids. For both haploids 

and diploids, after incubation at 30°C for 3-4 days, strains growing in the absence of 
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histidine were considered auto-activators. 560 DB-ORFs and 1 AD-ORF were removed 

from the final screening collection.  

 

The remaining DB-ORF and AD-ORF clones were re-arrayed into four different 

groups to separate ORFs with similar nucleotide sequences, defined as BLAST scores of 

100 and above. Separation of similar ORFs makes the downstream sequence 

identification of the short NGS reads more accurate, as the reads are aligned to specific 

groups of ORFs without sequence ambiguity. Filtering for pairs that passed autoactivator 

screening and successful cloning resulted in a final collection which was then used for 

systematic screening included 4,778 DB-ORF clones and 5,700 AD-ORF clones, 

covering a total of 5,854 yeast ORFs.  

 

Primary yeast two-hybrid (Y2H) screening 

Three replicate Y2H screens were performed. Individual MATα Y8930:DB-ORFs were 

mated in YEPD against a pool of ~700 (FLEXGene collection) or ~200 (supplemental 

collection) MATa Y8800:AD ORFs. AD-ORF pool size was decreased for the 

supplemental collection to facilitate screening. After enrichment in SC-Leu-Trp, 5µl of the 

culture was spotted on SC-Leu-Trp-His+3AT solid media and on SC-Leu-His+3AT+ 

10mg/L CHX to identify spontaneous DB-ORF auto-activators72. After incubation at 30°C 

for 3 days, strains growing on SC-Leu-Trp-His+3AT but not on SC-Leu-His+3AT+CHX 

were picked and grown in liquid SC-Leu-Trp. As we used libraries of pools of MATa 

Y8800:AD-ORF, it is possible to obtain more than one interaction per mini-library. To 

account for that, we picked up to three colonies per growth spot. Cell lysates were 

prepared from the saturated cultures and used as templates in PCR reactions to amplify 

and identify the bait and prey sequences72. 

 

Yeast colony sequencing 

To efficiently and cost-effectively identify both bait and prey proteins for thousands of 

positive colonies, we used a method called SWIM-seq (Shared-Well Interaction Mapping 

by sequencing) as described20. Briefly, DB and AD-ORFs were simultaneously amplified 
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from 3μl yeast lysate, using well-specific primers. PCR reactions were performed using 

Platinum Taq (Life Technologies). After PCR amplification, barcoded PCR products from 

an entire 96 well plate were pooled together and purified (Qiagen, PCR Purification Kit). 

These pooled amplicons from each plate were subjected to Nextera “tagmentation” using 

Tn5 transposase to generate a library of amplicons with random breaks to which the 

adapters have been ligated87. We then re-amplified those fragments to generate a library 

of amplicons such that one end of each amplicon bears the well-specific tag and the other 

“ladder” end bears the Nextera adapter. A final Illumina sequencing library was prepared 

by adding plate indexes using the i5 and i7 Illumina adapter sequences. Next generation 

sequencing was performed with Illumina Solexa technology allowing for identification of 

interacting first pass pairs of proteins (FiPPs) (see Sequence identification of interacting 

ORFs). Due to the small number of pairs to be identified, interacting pairs from the first 

screen of the supplemental space were amplified with the universal AD and DB forward 

and reverse primers and ORF sequences were identified by Sanger sequencing 

(Genewiz). All SWIM-primers (Methods Table 4) were synthesized by Thermo Fisher 

Scientific, whereas the universal AD, DB and term primers were synthesized by Eurofins 

Genomics. 
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Methods Table 4. Primers used (Ns denotes 13-mer well index) 

 AD DB 

 SWIM Universal SWIM Universal 

Forward 5'-

AGACGTGTGCTCTT

CCGATCT 

NNNNNNNNNNNNN

CGATGATGAA 

GATACCCCACCA-3’ 

5'-

CGCGTTTGGAA

TCACTACAGGG-

3’ 

 

5'-

AGACGTGTGCTCTTCC

GATCT 

NNNNNNNNNNNNNGG

TCAAAGACA 

GTTGACTGTATCGT-3’ 

5'-

GGCTTCAGT

GGAGACTGA

TATGCCTC-3’ 

Reverse  5'-

GGAGACTTGACCAA

ACCTCTGGCG-3’ 

5'-

GGAGACTTGAC

CAAACCTCTGG

CG-3’ 

5'-

GGAGACTTGACCAAAC

CTCTGGCG-3’ 

5'-

GGAGACTTG

ACCAAACCT

CTGGCG-3’ 

 

 

Pairwise test 

To confirm all FiPPs, a pairwise test was performed in the same DB-X/AD-Y orientation 

they were found in the primary screens. Briefly, glycerol stocks from Y8930:DB-ORF and 

Y8800:AD-ORF haploid strains were inoculated in SC-Leu or SC-Trp, respectively. 

Saturated cultures were mated in YEPD. After enrichment for diploids, yeast were spotted 

on SC-Leu-Trp-His+1 mM 3AT solid media, testing for GAL1::HIS3 activation. Preliminary 

investigations using four technical replicates demonstrated that in 97% of the cases, the 

quadruplicates behaved identically (data not shown). Therefore, given the high 

reproducibility of technical replicates, the culture was spotted only once per selective 

media. To increase the robustness of our approach we implemented an additional test to 

identify de novo auto-activators in which Y8930:DB-ORF strains were mated against a 

Y8800:AD with no ORF fused to the activation domain (Y8800:AD-Empty ORF) and 

spotted on SC-Leu-Trp-His+1 mM 3AT solid media. Diploids that gave rise to growth on 

SC-Leu-Trp-His+1 mM 3AT media, but did not grow when the respective Y8930:DB-ORF 

was mated to Y8800:AD-Empty ORF, were selected as positive interacting pairs of 
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proteins. Positive protein pairs were sequence confirmed as done for the primary screens 

as described above. As positive and negative controls, the scPRS-v2 and scRRS-v2 pairs 

were distributed randomly across the respective mating plates and tested at the same 

time. For a batch of pairwise testing to be considered successful we required no more 

than 1% of RRS and between 10-25% of PRS to be scored positive. 

 

Validation in orthogonal assays 

To assess the precision of various datasets88, PPIs were validated in two orthogonal 

assays: Mammalian protein-protein interaction trap (MAPPIT)33 and Gaussia princeps 

luciferase protein complementation assay (GPCA)34. As positive and negative controls, 

we used pairs of scPRS-v2 and scRRS-v2 respectively. For both assays, expression 

clones were generated by Gateway LR recombination cloning as described above. 

Expression clones for GPCA were generated by transferring ORFs into pSPICA-N1 and 

pSPICA-N2 destination vectors34, each expressing a different fragment of humanized 

Gaussia princeps luciferase (GL1 and GL2)89. MAPPIT expression clones were 

generated by LR transfer of ORFs into pMBU-I-2994 and pMBU-I-4199 destination 

vectors33. After transformation of all expression clones into DH5α E. coli cells, plasmid 

DNA was extracted and purified using Qiagen 96 Turbo kits (Qiagen) on a BioRobot 8000 

(Qiagen). Three different GPCA and two different MAPPIT experiments were performed. 

 

GPCA 

GPCA experiments were performed as described previously34. Briefly, on the first day of 

the assay, ~30,000 to 40,000 HEK293T cells were seeded in each well of a 96 well 

microtiter plate (Greiner Bio-One). DNA concentration was measured for all clones and 

samples were diluted to a final concentration of 25ng/μl. After a 24-hour incubation at 

37°C, confluent cells were transfected with 300ng of pSPICA-N1-ORF and pSPICA-N2-

ORF vectors using polyethylenimine (PEI). After a second 24-hour incubation at 37°C, 

cells were washed with PBS supplemented with calcium and magnesium chloride. To 

lyse the cells 40μl of 5x diluted Renilla lysis buffer (Promega) were added to each well. 

The plate was then covered with aluminum foil and agitated at 900 rpm for 30 minutes at 
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37°C for cell lysis. Luciferase activity was measured on a TriStar Berthold Microplate 

reader by adding 50μl per well of Renilla luciferase substrate (Renilla Luciferase Assay 

System, Promega), with a measurement time of 4 seconds. The measurement score, 

RLU (relative light unit), was assigned to the tested pair. 

 

MAPPIT  

As an orthogonal validation assay, MAPPIT experiments were performed as described 

elsewhere20,39. In short, HEK293T cells were grown in 384-well plates and co-transfected 

with a luciferase reporter and plasmids for both bait and prey fusion proteins. Twenty-four 

hours post-transfection, cells were either stimulated with ligand (erythropoietin) or left 

untreated, then incubated for an additional 24 hours before luciferase activity was 

measured in duplicate. The MAPPIT validation experiment was deemed valid, if both bait 

and prey were successfully cloned into expression vectors and bait expression was 

detected using a chemiluminescence meter. “Fold-induction” values (signal from 

stimulated cells divided by signal from unstimulated cells) were calculated for each tested 

pair, and two negative controls (no bait with prey and bait with no prey). Each tested pair 

was assigned a quantitative score: the fold-induction value of the pair divided by the 

maximum of the fold-induction value of the two negative controls. 

 

Experimental benchmarking of public PPI datasets 

PPIs extracted from the biophysical maps described in Methods Table 1 have been 

tested in assays Y2H v4, GPCA and MAPPIT following the same experimental 

procedures as described above. A summary of the number of tested pairs in each dataset 

is available in Methods Table 1. Samples, if used, were drawn randomly. 

An additional Y2H v4 experiment was performed to test pairs from the 

AlphaFold+RoseTTAFold dataset, along with scPRS-v2 and scRRS-v2. Roughly half of 

AlphaFold+RoseTTAFold PPIs had already been tested in the first Y2H v4 experiment, 

as they overlapped with one or more of the tested datasets. So, in the additional Y2H v4 

experiment we only tested pairs that had not been tested in the first experiment. After 

checking that the scPRS-v2 and scRRS-v2 results were consistent between the two 
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experiments, the overall recovery of AlphaFold+RoseTTAFold was calculated combining 

the data from both experiments, with every pair having been tested in exactly one of the 

two experiments. 

 

Direct or indirect contact in a complex structure 

We queried Interactome3D (version 2020_01)29 for complexes involving three or more 

proteins with an experimental structure available. For all combinations of protein pairs 

within a complex, Interactome3D calculated the number of residue-residue contacts by 

accounting for hydrogen bonds, van der Waals interactions, and salt and disulfide 

bridges. We defined protein pairs with five or more contacts as direct, and remaining pairs 

as indirect. Using this annotation for each dataset, the fraction of direct PPIs was 

calculated as the number of direct PPIs reported in the dataset divided by the number of 

direct and indirect pairs reported in the dataset. 

 

Kd dataset 

Yeast PPIs with measured dissociation constant (Kd) values were obtained from the 

PDBbind database90 2017 release and from91. In the case where multiple values existed 

for a pair, the geometric mean was used. 

 

PPIs in KEGG pathways and in the four gold standard inner- and outer-

complexome datasets 

We collected PPIs from KEGG annotated as activation, inhibition, phosphorylation, 

dephosphorylation, ubiquitination, glycosylation, methylation, binding/association, 

complex as defined by KEGG. Gene expression relations and enzyme-enzyme relations 

were excluded. The four gold standard inner- and outer-complexome PPI datasets are: i) 

direct co-complex PPIs using the intersection between protein complex dataset collected 

by Costanzo et al. 2016 filtered with three or more subunits and direct interactions from 

Interactome3D (Direct co-complex); ii) co-complex pairs annotated in 5 KEGG yeast 

pathways Cell Cycle, Meiosis, MAPK Signaling pathway, Autophagy and Mitophagy 

(KEGG co-complex); iii) PPIs regulating activation or inhibition from the same 5 KEGG 
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yeast pathways (KEGG regulation); and iv) high-quality kinase-substrate pairs from the 

Yeast KID database (http://www.moseslab.csb.utoronto.ca/KID/)50 with score greater or 

equal to 6.4 (p-value < 0.01) (Kinase-substrate). 

 

List of genes of unknown function 

A list of 979 S. cerevisiae genes of unknown function was obtained from Table S9 of 

Wood et al. 201963, of which 950 were within the list of yeast ORFs considered for this 

study (see section Yeast protein-coding ORFs). 

 

Protein properties 

1. Number of publications per gene was extracted from the gene2pubmed file from 

NCBI, downloaded on 2018-08-01. 

2. Protein abundance information was downloaded from PaxDB (https://pax-db.org) 

undetected pairs were given an abundance of 0. 

3. Gene essentiality information was downloaded from the Saccharomyces Genome 

Deletion Project (https://www.yeastgenome.org).  

4. Conservation score was derived by combining data from HomoloGene 

(ftp://ftp.ncbi.nih.gov/pub/HomoloGene/build68) and Carvunis et al. 201292. For a 

gene with homologs in HomoloGene, its conservation score is the number of 

distinct non-S. cerevisiae species that it shares the same homologene group with 

plus 9, assuming that it is conserved in the 10 Ascomycota species. For genes 

without homologs in HomoloGene, we used classification proposed in Carvunis et 

al where genes were scored from 1-10 based on their conservation throughout the 

Ascomycota phylogeny. Genes without homologs in HomoloGene and that did not 

appear in the Carvunis data were given a score of 0. 

5. Complex size was the number of different protein subunits taken from the 

complexome dataset. If a protein was a member of multiple complexes, the size of 

the largest complex was used. 
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Treatment of heterodimers and homodimers 

Unless otherwise noted, homodimers were excluded from most analyses since 

comparisons between physical interactions and functional relationships are obviously not 

applicable to single genes (all PCC values of functional profiles would be 1.0 by 

definition). 

 

Calculation of recovery rates in Y2H v4, MAPPIT and GPCA 

In MAPPIT and GPCA assays, pairs were scored positive or negative based on 

thresholds set by the highest scoring scRRS-v2 pair in the corresponding experiment. For 

all three assays, pairs without valid quantitative scores were dropped, and recovery rates 

were calculated as the number of positive pairs over the sum of the positive and negative 

pairs. The error bars on the recovery rates were calculated using a Bayesian model (a 

binomial likelihood with a uniform prior), taking the central 68.27% interval of Beta (p + 1, 

n + 1), where p and n are the number of pairs testing positive and negative, respectively. 

P-values for difference in recovery between two datasets tested in the same experiment 

are calculated using Fisher’s exact test, two-sided in all cases except when testing a 

dataset against the scPRS-v2 / scRRS-v2 positive or negative controls, where a one-

sided test is used. For the AlphaFold+RoseTTAFold Y2H v4 results, where the data was 

split across two experiments, the scPRS-v2 recovery is calculated as an average of the 

two experiments, weighting by the number of positive AlphaFold+RoseTTAFold pairs in 

each experiment. 

Calculation of interface areas of PPIs 

We retrieved experimental structures using Interactome3D version 2018_0429. For each 

subunit in a complex structure, we defined its interaction interface as the residues for 

which the Accessible Surface Area (ASA) changed more than 1 Å2 between the bound 

and unbound state. 
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Prediction of ΔG 

We used FoldX 593, first running RepairPDB, then Optimize, then AnalyseComplex, all 

with default parameters. 

 

Interaction 2D histogram heat maps 

For a particular gene/protein property and a network, we ranked all proteins using that 

property. Tied values were sorted randomly. The proteins were split into an equal number 

of bins, creating 2D bins of the protein-by-protein space. Number of edges in the diagonal 

bins were multiplied by a factor of N2 / (N2 / 2 - N / 2), where N is the number of proteins 

in the bin, to correct for the smaller number of possible pairwise combinations, since 

edges were undirected. Homodimeric interactions were excluded. In the case where we 

corrected the CS-PSN heatmaps for the untested essential genes, we divided the count 

in each bin by the fraction of pairs where both genes were tested in generating the CS-

PSN data. 

 To calculate the p-values for each 2D bin, we randomly shuffled the order of the 

proteins 1,000 times. In each permutation of the proteome we calculated the 2D 

histogram counts, recorded the maximum and minimum bin count (to account for the 

multiple testing effect of having many bins) and calculated the p-value, for each bin, as 

the fraction of the random maximum/minimum counts that the observed count is 

above/below, multiplied by two to account for the two-tailed nature of the test. This was 

done separately for diagonal and off-diagonal bins because there are a different number 

of possible combinations of undirected edges between them. 

 

Sequence identification of interacting ORFs 

We used an existing computational pipeline20 to process demultiplexed paired-end reads 

returned from Illumina sequencing and identify the interacting ORF pairs from the Y2H 

screen. Paired-end reads are in fastq format, with one read, R1, containing a part of the 

ORF sequence and the other paired read, R2, containing the well index. We used Bowtie 

216 (v2.2.3) to align all R1 reads to reference sequences and extracted the well-identifying 

indices from the R2 reads. AD-ORFs and DB-ORFs that shared the same well indices 
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were paired together and called FiPPS. To identify likely true AD/DB pairs, we developed 

a “SWIM score”20 S that takes into account the AD and DB reads in each well, total reads 

returned from the sequencing run, and other factors.  

  
where x and y are read counts of an AD-ORF and DB-ORF in a given well respectively, 

a and d are total read counts of all aligned AD-ORF and DB-ORF in that well, and M and 

N are pseudo-counts for AD and DB respectively, which were constant for each 

sequencing batch but varied for different batches. We then selected FiPPs for pairwise 

testing using a cutoff that balances the risk of testing too many false positives FiPPs 

versus not testing too many true positive FiPPs. The cutoff varied for different screens 

and sequencing runs to adjust for slight variations in the screening and sequencing 

protocol. 

 

Calculation of enrichment for connecting proteins in the same subcellular 

compartment, pathway, and complex 

Subcellular compartment data was65 obtained from CYCLoPS65, using the WT data, 

annotating a protein to a compartment if it has any non-zero value in any of the three 

repeats. Pathways were obtained from KEGG49. Complexes were obtained from 

CYC200845. The number of PPIs that connected two different proteins in the same 

compartment, pathway or complex was divided by the mean value for 1,000 degree-

preserved randomized networks, generated using the Viger and Latapy algorithm 

implementation through python iGraph94, and CI values were taken from the innermost 

68.27% of the random networks. 

 

SAFE network visualization 

We used the SAFE network visualization tool (v1.5)35. The layouts were generated with 

Cytoscape (v3.4.0)95 using the edge-weighted spring embedded layout. GO terms were 

downloaded from SGD database (version on Jan 17th 2019) and GO35 terms enriched 
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with P < 0.05 were colored and labeled. SAFE analysis was run with the default option 

except layoutAlgorithm = none (using layout generated by Cytoscape), 

neighborhoodRadius = 200, and neighborhoodRadiusType = absolute. 

 

Estimates of the complete yeast interactome size 

We used three estimates, relying on partially overlapping assumptions and data, made 

by independent groups, that predicted the yeast protein binary interactome contains 

between ~18,000 and ~38,000 direct binary interactions, corresponding to ~0.1-0.2% of 

all ~18,000,000 possible protein pair combinations4.  

- From Yu et al. 20084 18,000 (13,500-22,500 95% CI). Taken from Page 107: “we 

estimated that the yeast binary interactome consists of ~18,000 +- 4500 

interactions (SOM VI)” From SOM VI the +/- refers to the 95% CI.  

- From Stumpf et al. 200836 28,472 (26,650-30,460 95% CI). Taken from the Uetz 

et al. numbers from Table 1. We use the estimate made using Uetz et al. because 

three of the other datasets contain indirect protein-protein associations (Ho et al., 

Gavin et al. and DIP) and the estimate using Ito et al. uses the full dataset, mainly 

made up of the ‘Ito-noncore’ subset that was shown to be of poor quality when 

retested Y2H and PCA4. 

- From Sambourg and Thierry-Mieg 201037 37,600 (32,252-43,472 95% CI). Taken 

from Page 6: “Taken together, this allows to estimate the size of the binary yeast 

interactome at ~ 37,600 interactions (95% confidence inter- val: 32252-43472, 

constructed with the normal approximation method).” 

One relatively minor difference between the estimates is that Stumpf et al. are considering 

only heterodimeric PPIs whereas Yu et al. and Sambourg et al. are also counting 

homodimeric PPIs and so we account for this when estimating the fraction of predicted 

interactome mapped by excluding homodimers for the Stumpf et al. estimate and 

including them for the Yu et al. and Sambourg et al. estimates.  
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Prediction of gene functions using guilt-by-association approach  

In the guilt-by-association approach the function of a node is inferred from the function of 

its neighbors. In particular, for each node we count the number of its neighbors annotated 

with a given function (n). This score is then compared to a random benchmark, obtained 

by randomizing the network 10,000 times in a degree-preserved way. Calculating the z-

score, "	 = 	 (& − &() ÷ +, is the traditional way of such comparison, obtained by 

standardizing the original score with the expectation value (&() and standard deviation (σ) 

of the score that would be expected by chance. Yet, the z-score is not free from degree 

biases and prefers low degree nodes with extremely small σ. We therefore apply a related 

measure, called the effect size. The effect size & − (&( + -+)&( is obtained by comparing 

the original score with the reasonably expected value of the random benchmark, 

estimated as the mean value (&() and α-times the standard deviation (σ). In practice, we 

use α = 2, selecting the same candidates as a traditional z-score threshold of z ≥ 2, but 

ordering them based on the amount of signal beyond random expectations to avoid a bias 

towards low-degree nodes. Functional annotations of genes with GO Biological Process 

terms were obtained as described above and further restricted to annotations with the 

experimental evidence codes EXP, IDA, IPI, IMP, IGI, IEP, HTP, HDA, HMP, HGI, and 

HEP. 

 

Network fragmentation 

The error bands are generated from randomly sampling a fraction of the PPIs from each 

network, where the fraction varies from 5% to 95% in 5% increments, with 1,000 random 

subnetworks generated at each point. 

 

Protein complex subnetworks 

For each protein complex, direct interactions were defined by I3D-exp-20, described 

above, indirect associations were all protein-protein combinations where both proteins 

appeared in the same experimental structure but not in direct contact. 
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General protein categories 

The categorisation of proteins into “Genetic information processing”, “Metabolism”, and 

“Not mapped” was obtained from level 1 in the KEGG-based mapping of Liebermeister et 

al. 201462. 

 

Degree distribution plots 

Degree distributions were plotted according to Chapter 4, Advanced Topic 3.B of Network 

Science96, on a log-log scale with logarithmic binning, with the unbinned data shown in 

grey.  

 

Overlap calculation between biophysical and functional networks 

For each biophysical network and several KEGG pathways, we measured the fraction of 

interactions that are also connected in each of the functional networks defined above, 

discarding homodimeric PPIs. We calculated the overlap by dividing the number of 

interactions in the PPI network also found in the functional network by the total number 

of interactions in the PPI network where both proteins were present in the search space 

of the functional network. The error bars were calculated using a Bayesian model (a 

binomial likelihood with a uniform prior), taking the central 68.27% interval of Beta (p + 1, 

n + 1), where p and n are the number of pairs testing positive and negative, respectively. 

 

Date and party hubs 

Co-expression data was obtained from COXPRESdb15. To ensure robustness against the 

exact definition of date and party hubs, three different cutoffs were used, hubs were 

defined as proteins with a degree in the top 5% or 10% in each network, or those with 

degree ≥ 10. PCC cutoffs of 0.3 and 0.35 were used, where proteins with a mean 

coexpression PCC across all partners above the cutoff were party hubs and below the 

cutoff were date hubs. 
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Overlap by degree plots 

For each combination of a biophysical and functional network, we conducted a logistic 

regression, on the dataset of biophysical interactions, where the binary dependent 

variable represents whether or not the two proteins of the biophysical interaction are also 

connected by an edge in the functional network, and the single independent variable is 

the higher of the two degrees, in the biophysical network, of the interacting proteins. The 

max degree per PPI variable is log2 transformed. Only PPIs where the pair of proteins 

were tested in generating the functional network were used. Shaded error bands 

represent 95% CI. Binned data is also shown, with 10 evenly sized bins, with the binned 

data displayed on the x-axis at the mean max degree value of the bin. 
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Supplementary Table 1. The literature curated PPI datasets used in this study from 2020. 

Supplementary Table 2. The curated evidence for literature PPI datasets in 2020. 

Supplementary Table 3. The literature curated PPI datasets used in this study from 2013. 

Supplementary Table 4. The literature curated PPI datasets used in this study from 2017. 

Supplementary Table 5. Various biophysical and functional networks used in this study. 

Supplementary Table 6. A list of the ORFs screened in generating YeRI. 

Supplementary Table 7. Results from the experiment to compare Y2H assay versions. 

Supplementary Table 8. scPRS-v2 the positive reference set of PPIs. 

Supplementary Table 9. scRRS-v2 the reference set of random pairs. 

Supplementary Table 10. Results from experiments performed with the GPCA and MAPPIT 

PPI assays.  

Supplementary Table 11. The yeast reference interactome (YeRI) PPI dataset. 

Supplementary Table 12. ABBI-21 (Atlas of Binary Biophysical Interactions), which is the union 

of Uetz-screen, Ito-core, CCSB-YI1 and YeRI.  

Supplementary Table 13. Predicted GO terms for genes of unknown function using a guilt-by-

association approach based on the GO terms of their interaction partners in ABBI-21 and YeRI. 

Supplementary Table 14. Results from the Y2H v4 pairwise test. 

Supplementary Table 15. Results from an additional Y2H v4 pairwise test of the remaining 

AlphaFold+RoseTTAFold PPIs. 

Supplementary Table 16. Various protein properties for each ORF considered in this study. 

Supplementary Table 17. Pairs of proteins within a complex and whether they are in indirect or 

direct contact. Data derived from experimental structures. 

Supplementary Table 18. Interface area and predicted ΔG for experimental structures from 

I3D-exp-20. 

Supplementary Table 19. Interface area and predicted ΔG for predicted structures from 

AlphaFold+RoseTTAFold. 
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