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Abstract 

Base editors enable direct conversion of one target base into another in a programmable 

manner, but conversion efficiencies vary dramaDcally among different targets. Here, we 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2024. ; https://doi.org/10.1101/2021.03.14.435303doi: bioRxiv preprint 

mailto:ymw@fudan.edu.cn
https://doi.org/10.1101/2021.03.14.435303
http://creativecommons.org/licenses/by-nc-nd/4.0/


performed a high-throughput gRNA-target library screening to measure conversion 

efficiencies and outcome product frequencies at integrated genomic targets and 

obtained datasets of 60,615 and 73,303 targets for ABE and CBE, respecDvely. We used 

the datasets to train deep learning models, resulDng in ABEdeepon and CBEdeepon 

which can predict on-target efficiencies and outcome sequence frequencies. The 

sogware is freely accessible via online web server 

hhp://www.deephf.com/#/bedeep/bedeepon. 

 

Introduc2on 

Base editors are fusion of catalyDcally impaired Cas9 nuclease and adenosine deaminase 

(ABE) or cytosine deaminase (CBE) that introduce desired point mutaDons in the target 

region enabling precise ediDng of genomes 1-5. Base editors have been successfully used 

in diverse organisms including prokaryotes, plants, fish, frogs, mammals and human 

embryos 6-9. Though simple in concept, the success of base ediDng depends on the 

choice of the target sequence. First, efficiency of base conversion varies dramaDcally 

among different target sequences, and users need to select a target sequence with high 

efficiency. Second, there are ogen more than one editable nucleoDde in the ediDng 

window and unwanted concurrent mutaDons should be avoided. Experimental 

evaluaDon of a target sequence is Dme-consuming, prompDng us to develop in silico 

tools for target sequence evaluaDon. 

We have previously established a library containing over 80,000 gRNA-target sequence 

pairs, covering ∼20,000 human genes 10. In this study, we made use of this library to 

screen both base editors and obtained the outcome product frequencies of 60,615 and 

73,303 target sequences for ABE and CBE, respecDvely. The resulDng outcomes were 

used to train a deep learning model, resulDng in ABEdeepon and CBEdeepon which can 

predict efficiency and outcome frequency distribuDons of ABE and CBE, respecDvely. 
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These models were accessible via hhp://www.deephf.com/#/bedeep, which will greatly 

facilitate base editor applicaDon. 

 

Results 

Guide RNA-target pair strategy for test of conversion efficiency and outcomes 

A previously generated library 10 containing over 80,000 gRNA-target sequence pairs was 

used for ABE and CBE screening. OpDmized version of ABE (ABEmax) and CBE 

(AncBE4max)11 was used in this study. Because of the large size, we used the Sleeping 

Beauty (SB) transposon 12-14 to integrate each base editor into the genome and 

generated single cell-derived cell lines. Next, we evaluated the nucleoDde conversion 

efficiency with three targets at different Dme points. As expected, the efficiency 

increased over Dme for all three targets (Supplementary Fig. 1). One target displayed 

∼100% gene conversion at day 

We selected day 5 to measure ediDng efficiency for the library. We packaged the gRNA-

target library into lenDviruses and transduced them into recipient cells. Five days ager 

transducDon, genomic DNA was extracted, and synthesized targets were PCR-amplified 

for deep-sequencing (Fig.1a). The reads containing canonical base ediDng (A to G for 

ABE, C to T for CBE) and unedited reads were used for outcome frequency distribuDon. A 

target efficiency can be calculated by 1 subtract unedited outcome frequency (see Data 

analysis secDon of Methods part). The screening assay was experimentally repeated 

twice, and conversion efficiency in two independent replicates showed high correlaDon 

for both ABE and CBE (Spearman correlaDon, 0.891 for ABE and 0.934 for CBE). Data 

from the two replicates were combined together for subsequent analysis. We obtained 

valid efficiencies (reads number>100) of 60,615 targets with 5,761,833 outcomes for 

ABE and 73,303 targets with 5,513,919 outcomes for CBE. 
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Figure 1. The general workflow of bedeepon 

(a) SchemaDc of the pooled pairwise library screen. A library of 80,263 gRNA-target pairs 

was packed into viruses and transduced into cells expressing ABE or CBE base editors. 

The integrated target sites were PCR-amplified for deep-sequencing analysis. Red arrows 

indicate primers for target site amplificaDon; stars indicate nucleoDde conversion. (b) 

Procedure of preprocessing data and combinaDon. Ager we got totally valid (reads 
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number>100) outcomes from our experiment and analysis, we split our training datasets 

with 164,129 ABE outcomes and 304,866  CBE outcomes, they are combined with 

52,615 (Arbab et al.), 34,116 (Song et al.) and 22,165 (Marquart at el.) of ABE outcomes; 

50,073 (Arbab et al.), 37,057 (Song et al.) and 27,116 (Marquart at el.) of CBE outcomes 

to generate an integral training dataset.(c) ConstrucDng a predicDve bedeepon model 

with BiLSTM network using sequencing data. (d) GeneraDng predicted ediDng results 

with model and evaluaDng performance in four tesDng datasets. Deep-sequencing 

results overall outcomes that revealed that A to G conversion (green) for ABE and C to T 

(red) conversion for CBE occurred, the edited bases are annoted with blue. Then 

benchmarking on four tesDng datasets from Arbab et al., Song et al., Marquart at el. and 

datasets splited from this study (train : test = 9 : 1) on two different criterias, external 

correlaDon and internal correlaDon. 

 

Sequencing results revealed that A to G conversion for ABE and C to T conversion for CBE 

occurred (Fig. 1b). Although infrequent, C to non-C conversion for CBE and A to non-A 

conversion for ABE could also be observed (Fig. 1b). The ABE products (purity ranging 

from 98.43% to 99.69%) were purer than CBE (purity ranging from 95.55% to 97.78%, 

Supplementary Fig. 2), consistent with a previous report 2. We also observed indels with 

mean efficiency of 0.13 for ABE and mean efficiency of 0.16 for CBE, whereas mean 

frequency of background indels in the plasmid library was 0.06. 

 

Posi2onal effects on nucleo2de conversion efficiency 

The large-scale dataset generated here allowed us to analyze the posiDonal effects on 

nucleoDde conversion efficiency. The five most efficient posiDons for nucleoDde 

conversion are 4-8 for both ABE and CBE with PAM at posiDon 21-23 (Fig. 1c), consistent 

with previously reported ediDng windows 2, 11. Next, we invesDgated the influence of 

nearby nucleoDdes on conversion efficiency for posiDon 4-9. Both nucleoDdes 
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surrounding the target A influenced conversion efficiency with the upstream nucleoDde 

having a stronger influence for ABE. The upstream nucleoDde preference followed the 

order T>C>G>A (Fig. 1d). In contrast, only upstream nucleoDde surrounding the target C 

influenced conversion efficiency for CBE following the preference order T>C>A>G (Fig. 

1e). 

Next, we invesDgated nucleoDde preferences at each posiDon in the target sequences 

associated with high ediDng efficiencies. The results revealed that ABE ediDng 

efficiencies were strongly influenced by both upstream and downstream nucleoDdes 

immediately adjacent to the target nucleoDde (target nucleoDde, ±1 bp, Fig. 2). The 

nearby nucleoDdes A and G have negaDve influence on ediDng efficiency, while the 

nearby T have posiDve influence on ediDng efficiency. The upstream C has posiDve 

influence on ediDng efficiency for target nucleoDde posiDons 5 and 6, but has negaDve 

influence on target nucleoDde posiDons 4 and 7. The downstream C has posiDve 

influence on ediDng efficiency. CBE ediDng efficiencies were only strongly influenced by 

the upstream nucleoDde immediately adjacent to the target nucleoDde (target 

nucleoDde, +1 bp, Fig. 2). The upstream nucleoDdes A and G have negaDve influence on 

ediDng efficiency, while the upstream T have posiDve influence on ediDng efficiency. 

Upstream C has posiDve influence on ediDng efficiency for target nucleoDde posiDons 5-

7, but has negaDve influence on target nucleoDde posiDon 4. 
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Figure 2. The rela2onship between edi2ng efficiency and base posi2on or sequence 

context, and conversion efficiency influenced by nucleoDdes on the target sequence in a 

high-throughput manner. (a,f) C to T or A to G conversion efficiency at different single 

base posiDon, HEK293T and Hela cell. (b,c,g,f) Effect of the sequence context 

surrounding the target nucleoDde (bold A or C) on the conversion efficiency at 

protospacer posiDons 4 to 9. Sequence preferences at each posiDon in efficient (top 

20%) vs. inefficient (bohom 20%) targets for ABE (d,k) and CBE (e,j) on posiDon 4 to 7. 

NucleoDde posiDon on the targets is shown below. The log odds raDos of nucleoDde 

frequencies between efficient and inefficient target sequences are represented on the y 

axis. Target nucleoDde posiDon is indicated by red lines. 

 

 

Correla2on of edi2ng efficiency between SpCas9 and base editors 

The gRNA-target library in this study was recently used to screen for SpCas9 nuclease 10, 

allowing us to invesDgate the efficiency correlaDon between SpCas9 and base editors. 

We calculated the correlaDons between SpCas9 nuclease and base editors for each 

quarDle of base editor efficiencies. The correlaDon (R<0.15) was low for both ABE and 

CBE (Supplementary Fig. 3a-b). We also calculated the correlaDons between SpCas9 

nuclease and base editors for each quarDle of SpCas9 efficiencies. Although the 

correcDons were low, quarDle 1 achieved much higher correlaDon than other quarDles 

for both ABE and CBE (R=0.21 for ABE, R=0.23 for CBE, Supplementary Fig. 3c-d). 

We further invesDgated the relaDonship between SpCas9 mean efficiencies and base 

editor mean efficiencies for each quarDle of base editor efficiencies. The results revealed 

that SpCas9 efficiency was similar in each quarDle of base editor efficiency 

(Supplementary Fig. 4a-b). We also invesDgated the relaDonship between SpCas9 mean 

efficiencies and base editor mean efficiencies for each quarDle of SpCas9 efficiencies. 

The results revealed that quarDle 2-4 achieved similar mean efficiency, while quarDle 1 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2024. ; https://doi.org/10.1101/2021.03.14.435303doi: bioRxiv preprint 

https://www.biorxiv.org/content/10.1101/2021.03.14.435303v1#ref-10
https://doi.org/10.1101/2021.03.14.435303
http://creativecommons.org/licenses/by-nc-nd/4.0/


achieved a lihle lower mean efficiency (Supplementary Fig. 4c-d). CollecDvely, these data 

suggested SpCas9 efficiency and base editor efficiency had a very low correlaDon for a 

target. 

 

Developing models for predic2on of on-target efficiencies and outcomes 

Next, we developed models for predicDon of on-target efficiencies and outcome 

sequence frequencies. Since a target generally contains mulDple editable nucleoDdes, 

there might exit mulDple ediDng outcome sequences. We first programmed this 

conversion scheme to obtain all possible ediDng outcome sequences, and then assigned 

the measured ediDng frequency to each outcome sequence. We used the ABE ediDng 

datasets to train a shared embedding based deep learning model. The targets were 

randomly split to 56,432 (5,390,492 outcomes) for training, 1,152 (98,958 outcomes) for 

internal validaDon, and 3,031 (272,383 outcomes) held out for tesDng. The resulDng 

model was named “ABEdeepon” which can predict ediDng efficiencies and outcome 

sequence frequencies (Fig. 3a). ABEdeepon achieved a Spearman correlaDon of 0.892 

(r=0.878, MSE=0.024) for predicDon of ediDng efficiency with tesDng dataset (Fig. 3b). To 

evaluate the performance for predicDon of outcome frequency distribuDon, we tested 

2,342 targets with at least 4 outcomes and achieved mean Spearman correlaDon of 

0.872 (r=0.920, MSE=0.011, KL divergence=0.003, Fig. 3c). To test whether ABEdeepon 

works in other cell types, we used the same library to generate datasets in HeLa cells 

and obtained 58,445 valid targets with 6,292,774 outcomes (reads number≥100). We 

extracted 2,636 targets present in HeLa tesDng dataset as external tesDng dataset. The 

ediDng efficiency predicDon achieved Spearman correlaDon of 0.886 (r=0.830, 

MSE=0.024) and the outcome frequency distribuDon predicDon achieved mean 

Spearman correlaDon of 0.857 (r=0.883, MSE=0.020, KL divergence=0.004, 

Supplementary Fig. 5a-b). 
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Figure 3. Evalua2on of ABEdeepon for edi2ng efficiency and outcome predic2on 

(a) Example of ABEdeepon predicDon for a given target. Measured efficiencies are listed 

for comparison. Original target sequence is underlined. (b) EvaluaDon of ABEdeepon for 
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conversion efficiency with tesDng dataset. (c) EvaluaDon of ABEdeepon for conversion 

outcome sequence frequencies with tesDng dataset. (d, f, h) EvaluaDon of ABEdeepon 

for conversion efficiency with endogenous ediDng dataset generated in HEK293T, U2OS 

and HCT116 cells, respecDvely. (e, g, i) EvaluaDon of ABEdeepon for conversion outcome 

sequence frequencies with endogenous ediDng dataset generated in HEK293T, U2OS and 

HCT116 cells, respecDvely. 

 

To evaluate the performance of ABEdeepon for endogenous targets, we collected 

endogenous ediDng data generated in HEK293T, U2OS and HCT116 cells from literatures 
15 and evaluated these datasets with our model, achieving high correlaDon for 

efficiencies (Spearman correlaDon: 0.747-0.797) and mild or high correlaDon for 

outcomes (mean Spearman correlaDon: 0.441-0.901, Fig 4 d-i). To evaluate the 

performance of the ABEdeepon in induced pluripotent stem cells (iPSCs), we generated 

dataset for 23 endogenous targets in human iPSCs. ABEdeepon achieved weak 

Spearman correlaDon of 0.227 for efficiency predicDon probably due to the very low 

base ediDng efficiency in iPSCs, and mild mean Spearman correlaDon of 0.574 for 

outcome frequency predicDon (Supplementary Fig. 5c-d). 

 

Parallelly, we used the CBE ediDng datasets to train a shared embedding based deep 

learning model. The targets were randomly split to 68,244 (5,140,905 outcomes) for 

training, 1,393 (97,841 outcomes) for internal validaDon, and 3,666 (275,173 outcomes) 

held out for tesDng. The resulDng model was named “CBEdeepon” which can predict 

ediDng outcome sequence frequencies (Fig. 4a). CBEdeepon achieved a Spearman 

correlaDon of 0.851 (r=0.874, MSE=0.027) for predicDon of ediDng efficiency with tesDng 

dataset (Fig. 4b). To evaluate the performance for predicDon of outcome frequency 

distribuDon, we tested 3,179 targets with at least 4 outcomes and achieved mean 

Spearman correlaDon of 0.845 (r=0.919, MSE=0.009, KL divergence=0.005, Fig. 4c). To 
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test whether CBEdeepon works in other cell types, we used library to generate datasets 

in HeLa cells and obtained 56,529 valid target with 4,213,361 outcomes (reads number

≥100). We extracted 2,827 targets present in HaLa tesDng dataset as external tesDng 

dataset and achieved Spearman correlaDon of 0.864 (r=0.761, MSE=0.110) for efficiency 

predicDon, and mean Spearman correlaDon of 0.788 for outcome distribuDon predicDon 

(r=0.736, MSE=0.042, KL divergence=0.012, Supplementary Fig. 6a-b). 
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Figure 4. Evalua2on of CBEdeepon for edi2ng efficiency and outcome predic2on 

(a) Example of CBEdeepon predicDon for a given target. Measured efficiencies are listed 

for comparison. Original target sequence is underlined. (b) EvaluaDon of CBEdeepon for 

conversion efficiency with tesDng dataset. (c) EvaluaDon of CBEdeepon for conversion 

outcome sequence frequencies with tesDng dataset. (d, f, h) EvaluaDon of CBEdeepon 

for conversion efficiency with endogenous dataset generated in HEK293T, U2OS and 

HCT116 cells, respecDvely. (e, g, i) EvaluaDon of CBEdeepon for conversion outcome 

sequence frequencies with endogenous dataset generated in HEK293T, U2OS and 

HCT116 cells, respecDvely. 

 

To evaluate the performance of CBEdeepon for endogenous targets, we collected 

endogenous ediDng data generated in HEK293T, U2OS and HCT116 cells from literature 
15 and evaluated with our model, achieving mild correlaDon for efficiencies (Spearman 

correlaDon: 0.457 to 0.673) and high correlaDon for outcomes (mean Spearman 

correlaDon: 0.588-0.763, Fig.4 d-i). To evaluate the performance of the CBEdeepon in 

induced pluripotent stem cells (iPSCs), we generated dataset for 24 endogenous targets 

in human iPSCs. CBEdeepon achieved mild Spearman of 0.525 for efficiency predicDon 

and mean Spearman correlaDon of 0.558 for outcome frequency predicDon 

(Supplementary Fig. 6c-d). 

 

We finally invesDgated the posiDonal effects of target nucleoDdes on predicDon. 

ABEdeepon achieved a good Spearman correlaDon (>0.5) from posiDon 4 to 12, whereas 

CBEdeepon achieved a good Spearman correlaDon (>0.5) from posiDon 3 to 18 

(Supplementary Fig. 7a-b). Altogether, our results demonstrated that both ABEdeepon 

and CBEdeepon models perform well for predicDon of conversion efficiency and 

outcome sequence frequencies. 
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Recently, the advent of three developed predicDve model are also avaliable to predicDng 

base ediDng outcomes, BE-Hive, DeepBaseEditor and BE-DICT, which are based on deep 

condiDonal autoregressive model, a two-hidden layer convoluDonal neuro network and 

a mulD-head self-ahenDon machanism seperately. The former two and ours have the 

characterize to seperately predict proporDon of ediDng outcomes and overall ediDng 

efficiency, while the laher one gives the nature of predicDng all ediDng outcomes 

containing overall efficiency directly. All of the previous models claimed that they can 

perform well on predicDng, whereas there was no clear and explicit comparison of their 

ability to esDmate ediDng outcomes on the criteria of internal predicDng performance by 

each targeted sequence instead of external performance. Thus, we came up with a new 

benchmarking method among all above three model and ours based on two criteria: 

internally grouped predicDng correlaDon and externally total predicDng performance, 

and both of them were evaluated on all outcomes and edited outcomes(Fig. 5).  

 

To begin with, we compared our model with other three on the externally predicDng 

ability to esDmate all ediDng outcomes (with wild type), and we found our model 

perform the best as long as BE-Hive performed the worst on both ABE and CBE ediDng 

predicDon(Fig. 5a,b). AddiDonally, the uDlity of predicDng the proporDon of edited-only 

outcomes (with no wild type) were also considered and our model outperform other 

three models without any doubt. Most importantly, rather than fluctuated Pearson and 

Spearman score, our bedeepon sustain a steady performance on four tesDng dataset, 

which manifested itself a outstanding generalizaion performance. Secondly, we put the 

newly internal criteria on these four models to calculate their mean spearman 

correlaDon coefficient, which was able to conceal a more reasonable and general ability 

of predicDng. Consequently, a more solid conclusion for model performance were 

brought up with combining of the two criteria. In conclusion, our model sDll has the 
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most outstanding and steady result while BE-DICT fluctuates the worst on both ABE and 

CBE by constrast.  
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Figure 5. Benchmarking four model on two criterias of both internal and external 

coefficiency. Model benchmark evaluaDon is tested on 4 dataset from Arbab at el., Song 

at el., Marquart at el. and this study, the workflow is exhibit in Fig.1d. (a-d,g-j) 

Benchmarking performance with criteria one: calculaDng pearson and spearman 

correlaDon coefficient on overall predicted results; (e,f,k,l) criteria two: calculaDng 

correlaDon coefficient on mean spearman score of each group. The informaDon of 

dataset reference, cell type, data size and the type of base editor are included in the leg 

side. 

 

Discussion 

Successful applicaDon of base editors requires a rigorous understanding of intended and 

unintended genome ediDng. Several groups have offered online tools or sogware for 

gRNA design, including iSTOP 16, beditor 17, BE-Designer 18 and BEable-GPS 19. These 

design rules conform to base ediDng requirements that the editable base falls within 

maximum acDvity window, but none of them can predict the ediDng acDvity and 

outcome frequencies. To solve this problem, we proposed shared embedding based 

deep learning models, ABEdeepon and CBEdeepon, to predict ediDng efficiencies and 

outcomes. Our model guided high performance for both predicDon of base ediDng 

outcomes (mean R: 0.79-0.87 for high-throughput datasets) and efficiencies (R: 0.85-

0.89 for high-throughput datasets).  

 

During our manuscript revision, three groups developed tools named BE-Hive 13 , 

DeepBaseEditor 14  and BE-DICT which achieved comparable performance to our models 

for predicDon of ediDng efficiencies and outcomes recently. Consequently,  we launched 

a series of innovaDve experiment to compare these four models extensively and found 

their models were all insteady. BE-Hive used carefully designed hand-craged features to 

develop machine learning models for predicDon of base ediDng outcomes and efficiency. 
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DeepBaseEditor followed the author’s previous method 20, extracDng features using 

convoluDonal neural networks, which also achieved similar performance for predicDon 

of base ediDng outcomes and efficiency 14. And BE-DICT developed a novel model with 

mulD-head ahenDon machanism to predict all outcomes which was edited or not. The 

intergraDon of all these models will enhance the predicDon ability and facilitate 

selecDon of targets with high efficiency and desirable outcome sequences. 

 

Overall, this shared embedding based deep learning models used here has a simple yet 

elegant structure which unifies on-target and off-target input in form. It can be 

seamlessly extended to other versions of base editors, such as SauriABEmax, 

SauriBE4max, SaKKH-BE3, BE4-CP, dCpf1-BE and eA3A-BE3 21-25. Notably, it may also be 

used to generate models to predict ediDng outcomes for Cas9 and Cas12 nucleases. 

 

Methods 

Cell culture and transfec2on 

HEK293T cells and HeLa cells (ATCC) were maintained in Dulbecco’s Modified Eagle 

Medium (DMEM) supplemented with 10% FBS (Gibco), while human iPSCs were cultured 

on Matrigel-coated plates (ESC qualified, BD Biosciences, San Diego, CA) using hESC 

mTeSR-1 cell culture medium (StemCell Technologies, Vancouver, Canada) at 37 °C and 

5% CO2. All media contained 100 U/ml penicillin and 100 mg/ml streptomycin. For 

transfecDon, HEK293T cells and HeLa cells were plated into 6-well plates, DNA mixed 

with Lipofectamine 2000 (Life Technologies) in OpD-MEM according to the 

manufacturer’s instrucDons, while iPSCs using Lipofectamine 3000 (Life Technologies). 

Cells were tested negaDve for mycoplasma. 

 

Plasmid construc2on 
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SB transposon (pT2-SV40-BSD-ABEmax and pT2-SV40-BSD-BE4max) was constructed as 

follows: first, we replaced the NeoR gene (AvrII-KpnI site) on pT2-SV40-NeoR with BSD, 

resulDng in pT2-SV40-BSD vector; second, backbone fragment of pT2-SV40-BSD was 

PCR-amplified with Gibson-SV40-F and Gibson-SV40-R, and ABEmax fragment was PCR-

amplified from pCMV_ABEmax_P2A_GFP (Addgene#112101) with Gibson-ABE/BE4-F 

and Gibson-ABE/BE4-R, and BE4max fragment was PCR-amplified from 

pCMV_AncBE4max (Addgene#112094) with Gibson-ABE/BE4-F and Gibson-ABE/BE4-R; 

third, the backbone fragments were ligated with ABEmax and BE4max using Gibson 

Assembly (NEB), resulDng in pT2-SV40-BSD-ABEmax and pT2-SV40-BSD-BE4max, 

respecDvely. 

 

Genera2on of cell lines expressing ABEmax or BE4max 

HEK293T cells and HeLa cells were seeded at ∼40% confluency in a 6-well dish the day 

before transfecDon, 2 μg of SB transposon (pT2-SV40-BSD-ABEmax or pT2-SV40-BSD-

BE4max) and 0.5 μg of pCMV-SB100x were transfected using 5 μl of Lipofectamine 2000 

(Life Technologies). Ager 24 h, cells were selected with 10 μg/ml of blasDcidin for 10 

days. Single cells were sorted into 96-well plates for colony formaDon. Conversion 

efficiency was performed to screen cell clones with high levels of ABEmax and BE4max 

expression. 

 

The gRNA-target library construc2on 

The on-target library design and construcDon were described previously10. Briefly, full-

length oligonucleoDdes were PCR-amplified and cloned into LenDviral vector by Gibson 

Assembly (NEB). The Gibson Assembly products were electroporated into MegaX 

DH10B™ T1R Electrocomp™ Cells (Invitrogen) using a GenePulser (BioRad) and grown at 

32 °C, 225 rpm for 16 h. The plasmid DNA was extracted from bacterial cells using 

Endotoxin-Free Plasmid Maxiprep (Qiagen). 
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Len2virus produc2on 

LenDvirus producDon was described previously10. Briefly, 12 μg of plasmid library, 9 μg of 

psPAX2, and 3 μg of pMD2.G (Addgene) were transfected into a 10-dish HEK293T cells 

with 60 μl of Lipofectamine 2000. Virus were harvested twice at 48 h and 72 h post-

transfecDon. The virus was concentrated using PEG8000 (no. LV810A-1, SBI, Palo Alto, 

CA), dissolved in PBS and stored at −80 °C. 

 

Screening experiments in HEK293T and HeLa cells 

HEK293T or HeLa cells expressing ABEmax or BE4max were plated into 15 cm dish at 

∼30% confluence. Ager 24 h, cells were infected with gRNA library with at least 1000-

fold coverage of each gRNAs. Ager 24 h, the cells were cultured in the media 

supplemented with 2 µg/ml of puromycin for 5 days. Cells were harvested and the 

genomic DNA was isolated using Blood & Cell Culture DNA Kits (Qiagen). The integrated 

region containing the gRNA coding sequences and target sequences were PCR-amplified 

using primers Deep-seq-library-F/R with Q5 High-Fidelity 2X Master Mix (NEB). We 

performed 60-70 PCR reacDons using 10 µg of genomic DNA as template per reacDon for 

deep sequencing analysis. The PCR condiDons: 98 °C for 2 min, 25 cycles of 98 °C for 7 s, 

67 °C for 15 s and 72 °C for 10 s, and the final extension, 72 °C for 2 min. The PCR 

products were mixed and purified using Gel ExtracDon Kit (Qiagen). The purified 

products were sequenced on Illumina HiSeq X by 150-bp paired-end sequencing. 

 

Data analysis 

FASTQ raw sequencing reads were processed to idenDfy gRNA ediDng acDvity and 

ediDng outcomes. The nucleoDdes in a read with quality score < 10 was masked with a 

character “N”. Due to the integrated design strategy, we first separated a read to 

designed gRNA region, scaffold region, and target region to extract the corresponding 
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sequence. The designed gRNA was then aligned to the reference gRNA library to mark 

the reads. The target sequence was compared to the designed gRNA to mark all types of 

conversion (i.e., canonical A-G, C-T conversions and non-canonical A-C/T, C-A/G, G-A/T, T-

A/C conversions at each posiDon). We screened out gRNAs with a total valid reading of 

less than 100. Then, the efficiency for a specific conversion type at a posiDon can be 

calculated by the following formula:  

 

conversion	ef,iciency	at	spesi,ic	position		 

=	NO.	of	converted	reads	in	a	conversion	type	at	spesi,ic	position
NO.	of	total	valided	reads  

 

However, the conversion efficiency was very low for non-canonical conversions (mean 

efficiency < 0.005). Thus, we only consider the canonical conversions for the outcome 

frequency distribuDon analysis. TheoreDcally, the canonical ediDng combinaDons of 20 

bases is at most 220. However, we found that posiDons 1-2 and 18-20 always contain only 

one conversion. If there exist canonical bases, posiDons 3-17 may have mulDple 

conversions at the same Dme. Therefore, we programmed this conversion scheme to 

obtain all possible ediDng outcomes and assign true ediDng frequencies to the outcomes 

that exist in the sequencing data and assign 0 frequencies to the outcomes not found in 

the sequencing data. Then, the ediDng frequency of a gRNA-outcome can be described 

as:  

 

speci,ic	gRNA_outcome	frequency=
	NO.	of	reads	in	a	speci,ic	editing	outcome

NO.	of	total	valided	reads  

 

Note that the non-converted targets were also considered as an ediDng outcome. So, the 

ediDng efficiency for a target can be simply calculated by the following formula:  
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conversion	ef,iciency	=	1	 − 	non-converted	outcome	frequency 

 

 

Encoding 

Drawing on concepts from the field of natural language processing (NLP), nucleoDdes A, 

C, G, and T can be regarded as words in a DNA sequences. Therefore, we can widely use 

algorithms in the NLP field to solve predicDon tasks in the CRISPR field, especially the 

use of embedding algorithms to get the conDnuous representaDon of discrete 

nucleoDde sequences 26. Unlike the common efficiency predicDon that only needs to 

input one single sequence for regression models, in this research, both the gRNA-

outcome pairs (for BEdeepon) and gRNA-target pairs (for BEdeepoff) has two different 

sequences as inputs. For gRNA-outcome pairs, there are four words in the index 

vocabulary (i.e., A, C, G, and T). So, the vocabulary can be described as: So, an input 

sequence can be described as: where 𝑖 ∈ 1,2denotes the 𝑖-th sequence in an gRNA-

outcome pair or an gRNA-target pair, 𝑥!"	is the 𝑡-th element of the 𝑖-th sequence, 𝑇 is 

the sequence length. For example, for a gRNA-outcome pair 

GTGGAACATCCACTTGACCTAGG (seq1, gRNA + NGG) and GTGGAGCGTCCACTTGACCTAGG 

(seq2, one outcome) can be encoded as:  

𝑥1 = [3,4,3,3,1,1,2,1,4,2,2,1,2,4,4,3,1,2,2,4,1,3,3](𝑖. 𝑒. , 𝑠𝑒𝑞1) 

and 

𝑥2	 = 	 [3, 4, 3, 3, 1, 1, 2, 3, 4, 2, 2, 1, 2, 4, 4, 3, 1, 2, 2, 4, 1, 3, 3](𝑖. 𝑒. , 𝑠𝑒𝑞2) 

respecDvely. 

 

Shared embedding 

Inspired by the algorithms in the recommender system 27 and click-through rate (CTR) 28 

predicDon modeling, both the generalizaDon capacity and training speed will benefit 

from the sharing of the same embedding matrix instead of training independent 
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embedding matrices for each input. In this research, a discrete nucleoDde encoding	𝑥!" is 

projected to the dense real-valued space 𝑬𝒊 ∈ ℝ$×& (𝑚 is a hyperparameter 

corresponds to the embedding dimension) to get the embedding vector 𝒆(𝑥!"). Then a 

final embedding matrix 𝑬 is needed to get the combined informaDon from those two 

embedding matrices by:  

𝑬 = 𝑔(𝑬𝟏, 	𝑬𝟐)	(1) 

where 𝑔 can be sum, mean, or even a simple concatenate funcDon. However, the sum or 

mean funcDon is more suitable because it can reduce the redundant features in 

𝑬𝟏	and	𝑬𝟐. We choose the sum funcDon here for simplicity. 

 

Feature extrac2on and model predic2on 

Long-short-term memory network (LSTM) and gated recurrent unit network (GRU) are a 

type of recurrent neural networks (RNN) algorithms used to address the vanishing 

gradient problem in modelling Dme-dependent and sequenDal data tasks 29. Usually, a 

bidirecDonal manner was used to capture the informaDon from the forward and 

backward direcDons of a sequence, which is biLSTM or biGRU. Our work and others’ 

work have shown that, as an important component, biLSTM can be used alone or with 

convoluDonal neural network (CNN) to achieve good performances in various regression 

and classificaDon tasks involving biological sequences 10, 30-32. Here, we tried biLSTM, 

biGRU, and the newly proposed transformer structure 33, and found biLSTM had the 

fastest convergence speed. The input and output of biLSTM can be described by the 

following equaDons:  

 

𝒉"WWWW⃑ = 𝐿𝑆𝑇𝑀\𝒆(𝑥"WWW⃑ ), 𝒉")*WWWWWWWW⃑ ]	(2) 

𝒉"W⃐WWW = 𝐿𝑆𝑇𝑀\𝒆(𝑥"W⃐WW), 𝒉")*W⃐WWWWWWW]	(3) 
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Thus, the output context vectors of biLSTM are 𝒉+ = [𝒉+WWWWWW⃑ 	; 𝒉,)*W⃐WWWWWWWW], 𝒉* = [𝒉*WWWWWW⃑ 	; 𝒉,)-W⃐WWWWWWWW] , etc. 

Thus, we can concatenate the forward and backward hidden state as𝑯 =

𝒉𝟎, 𝒉𝟏, … , 𝒉𝑳)𝟏,which contains the bidirecDonal informaDon in the shared embedding 

feature matrix. Before the fully connected layers, we tried different input features based 

on the trade-off of the convergence speed and the performance of the model. The 

aforemenDoned features are last hidden unit, max pooling operaDon on 𝑯, and average 

pooling on 𝑯. The equaDons are as following: 

 

𝒉,01" = [𝒉,)*WWWWWWWWWW⃑ 	; 𝒉,)*W⃐WWWWWWWW]	(4) 

𝑭2034556 	= 	𝑚𝑎𝑥,)*"7*𝒉"	(5) 

𝑭28094556 	= 	𝑚𝑒𝑎𝑛,)*"7*𝒉"	(6) 

We observed that the last hidden state is the only need to obtain an opDmal 

performance, i.e., 

𝑠 = 𝜎\𝑓(𝒉,01")]	(7) 

 

where,	𝑓 is fully connected layers, 𝜎 is the 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 acDvaDon funcDon and 𝑜 is the 

output score for a specific gRNA-outcome pair. 

It should be noted that the gRNA + NGG in a set of gRNA-outcome pairs (a gRNA batch 

with 𝐾 samples) are all the same, and the outcome sequences are converted from the 

same target, so the output scores of a gRNA-batch can be denoted as 𝒔 = [𝑠*, 𝑠-, … , 𝑠:]. 

Then, a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥	acDvaDon funcDon can be applied to 𝒔	to get the predicted frequency 

distribuDon with a sum of 1 for the gRNA-outcome pair (Eq. 8, 9).  

 

𝑞! = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠!) =
𝑒1!

∑ 𝑒1":
;7*

	(8) 

𝑞 =s𝑞;

:

;7*

= 1	(9) 
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We have described in the Data Analysis secDon, that the conversion efficiency of a gRNA 

can be calculated by the formula:  

 

Conversion	ef,iciency	=	1	– 	non-converted	outcome	frequency 

 

If we let 𝑞+ be non-converted outcome frequency in 𝒒. Then, the predicted efficiency 

will be 1 − 𝑞+. 

 

Combined weighted loss func2on 

For the on-target models, a calculated true gRNA-outcome frequency distribuDon can be 

denoted as 𝒑	 = 	 [𝑝*, 𝑝-, … , 𝑝<]. So, it’s naturally to apply Kullback–Leibler (KL) 

divergence loss funcDon to minimize the difference between the predicted frequency 

distribuDon 𝒒 and the true frequency distribuDon 𝒑. The standard KL divergence loss 

funcDon 𝐷<,(𝒑||𝒒) is defined as:  

𝐷<,(𝒑||𝒒) 	= 	s 𝑝𝑖𝑙𝑜𝑔(
𝑝𝑖
𝑞𝑖

𝐾

𝑗=1

)	(10)  

 

Basically, we wanted that a gRNA-outcome pair with a large number of reads in a gRNA 

batch has a more accurate predicDon value. The weight of a sample loss was re-assigned 

depending on its corresponding read counts wi. The modified loss funcDon of Eq.10 is: 

 

𝐿* = 𝐷<,(𝒑||𝒒) 	= 	s𝑤𝑖𝑝𝑖𝑙𝑜𝑔(
𝑝𝑖
𝑞𝑖

𝐾

𝑗=1

)	(11)  

 

A number of studies 34 have shown that mulD-task learning architecture can significantly 

improves the stability and generalizaDon capacity of the model. In addiDon to KL 
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divergence loss (which measures the difference between the two probability 

distribuDons as a whole), the mean squared error (MSE) loss funcDon also helps to 

minimize the difference between each of the pi, qi pairs individually. So, we adopted the 

MSE loss in a weighted manner: 

 

𝐿- =	
1
2𝐾s 	𝑤𝑖(𝑝𝑖 − 𝑞𝑖)

2
𝑘

𝑗=1

	(12) 

 

 Then, the final loss funcDon can be denoted as follows in Eq.13: 

 

𝐿"5"06 =	s𝑤𝑖𝑝𝑖𝑙𝑜𝑔(
𝑝𝑖
𝑞𝑖

𝐾

𝑗=1

) 	+
1
2𝐾s 	𝑤𝑖(𝑝𝑖 − 𝑞𝑖)

2
𝑘

𝑗=1

	(13) 

 

The loss funcDon for the off-target model is simply the ordinary MSE loss. 

 

Training se[ng 

The on-target datasets were randomly split into two parts with raDo 9 : 1, the former for 

training, and the laher for holdout tesDng. To made a more stable predicDon, we not 

only adapted cross-validaDon training for this dataset but also used more external 

datasets to test the generalizaDon capacity of the models. The training sample size of 

our on-target datasets are 29,604 on ABE and 48,270 on CBE, which are concatenated 

with other three datasets: 8261 on ABE and 8029 on CBE (Arbab at el.), 10,209 on ABE 

and 9,743 on CBE (Song at el.) , 6,891 on ABE and 7,859 on CBE (Marquart at el.). Then 

the stability of model performance was esDmated by a 5-fold shuffled validaDon 

together with the external integrated and endogenous datasets. The ABEdeepon and 

CBEdeepon models share the following hyperparameters: embedding dimension, 128; 

BiLSTM hidden unites, 256; BiLSTM hidden layers, 2; dropout rate, 0.3; fully connected 
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layers,1 (2 ∗ 2 ∗ 256 → 1). For the Adam opDmizer, it was used with a customized 

learning rate decay strategy that gradually reduce the learning rate from 0.001, 0.0001, 

0.00005 to 0.00001. 

 

Tes2ng Configura2on and criterias of benchmark 

In order to solidify our conclusion of our model’s outstanding performance on 

esDmaDng, we collected and integrated datasets from three previously published 

project: sample 1,265 on ABE and 1,358 on CBE (Arbab at el.), 437 on ABE and 475 on 

CBE (Song at el.), 1,667 on ABE and 1675 on CBE (Marquart at el.) and our split tesDng 

dataset, including sample 3,289 on ABE and 5,363 on CBE. In summary, an aggregated 

dataset with total sample 6,658 and 8,871 on ABE and CBE are adapted as “ground-

truth” to benchmark individually. 

 

In progress, we chose both “bystander” and “overall efficiency” models from BE-hive 

and DeepBaseEditor and “bystander” module in BE-DICT to predict on both edited 

outcomes (called proporDon) and overall outcomes (called frequency). The way to 

calculaDng both proporDon is aligned with ∑ 𝑚!
:
!7* = 1, where 𝑚 means edited 

outcomes; and frequency is aligned with ∑ 𝑚; + (1 − 𝑛):
;7* = 1, where	𝑛 represents 

overall ediDng efficiency.  

 

Considering the base ediDng happens on each targeted sequence, except compare the 

overall external correlaDon coefficient, a beher evaluaDng criteria turns out with 

calculaDng mean spearman correlaDon coefficient within each group, and also the 

variance (Supplementary Table.14, Supplementary Figure.12-13). 

 

Tools used in the study 
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Bwa-mem2 was used to idenDfy and align the designed gRNA35. pytorch==2.4.0 

torchvision==0.19.0, torchaudio==2.4.0, pytorch-cuda=11.8 36 was used for building 

deep learning models. 

 

Code availability 

We provide the source code for bedeepon and the custom Python scripts used to train 

and evaluate the models and benchmarks available on GitHub at 

hhps://github.com/marDna-yu/bedeepon and preprocessing procedure at 

hhps://github.com/marDna-yu/PreprocessingBedeepon. The web for bedeepon in 

predicDng both efficiency and proporDon on the DNA sequence is published at 

hhp://www.deephf.com/#/bedeep/bedeepon.  

 

Suppor2ng informa2on 

Supplemental figures and Tables are avaliable. 
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