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Abstract
Base editors enable direct conversion of one target base into another in a programmable

manner, but conversion efficiencies vary dramatically among different targets. Here, we


mailto:ymw@fudan.edu.cn
https://doi.org/10.1101/2021.03.14.435303
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.14.435303; this version posted October 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

performed a high-throughput gRNA-target library screening to measure conversion
efficiencies and outcome product frequencies at integrated genomic targets and
obtained datasets of 60,615 and 73,303 targets for ABE and CBE, respectively. We used
the datasets to train deep learning models, resulting in ABEdeepon and CBEdeepon
which can predict on-target efficiencies and outcome sequence frequencies. The
software is freely accessible via online web server

http://www.deephf.com/#/bedeep/bedeepon.

Introduction

Base editors are fusion of catalytically impaired Cas9 nuclease and adenosine deaminase
(ABE) or cytosine deaminase (CBE) that introduce desired point mutations in the target
region enabling precise editing of genomes 12, Base editors have been successfully used
in diverse organisms including prokaryotes, plants, fish, frogs, mammals and human
embryos 2. Though simple in concept, the success of base editing depends on the
choice of the target sequence. First, efficiency of base conversion varies dramatically
among different target sequences, and users need to select a target sequence with high
efficiency. Second, there are often more than one editable nucleotide in the editing
window and unwanted concurrent mutations should be avoided. Experimental
evaluation of a target sequence is time-consuming, prompting us to develop in silico
tools for target sequence evaluation.

We have previously established a library containing over 80,000 gRNA-target sequence
pairs, covering ~20,000 human genes 1. In this study, we made use of this library to
screen both base editors and obtained the outcome product frequencies of 60,615 and
73,303 target sequences for ABE and CBE, respectively. The resulting outcomes were
used to train a deep learning model, resulting in ABEdeepon and CBEdeepon which can

predict efficiency and outcome frequency distributions of ABE and CBE, respectively.
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These models were accessible via http://www.deephf.com/#/bedeep, which will greatly

facilitate base editor application.

Results

Guide RNA-target pair strategy for test of conversion efficiency and outcomes

A previously generated library 12 containing over 80,000 gRNA-target sequence pairs was
used for ABE and CBE screening. Optimized version of ABE (ABEmax) and CBE
(AncBE4max)il was used in this study. Because of the large size, we used the Sleeping
Beauty (SB) transposon 1214 to integrate each base editor into the genome and
generated single cell-derived cell lines. Next, we evaluated the nucleotide conversion
efficiency with three targets at different time points. As expected, the efficiency
increased over time for all three targets (Supplementary Fig. 1). One target displayed
~100% gene conversion at day

We selected day 5 to measure editing efficiency for the library. We packaged the gRNA-
target library into lentiviruses and transduced them into recipient cells. Five days after
transduction, genomic DNA was extracted, and synthesized targets were PCR-amplified
for deep-sequencing (Fig.1a). The reads containing canonical base editing (A to G for
ABE, C to T for CBE) and unedited reads were used for outcome frequency distribution. A
target efficiency can be calculated by 1 subtract unedited outcome frequency (see Data
analysis section of Methods part). The screening assay was experimentally repeated
twice, and conversion efficiency in two independent replicates showed high correlation
for both ABE and CBE (Spearman correlation, 0.891 for ABE and 0.934 for CBE). Data
from the two replicates were combined together for subsequent analysis. We obtained
valid efficiencies (reads number>100) of 60,615 targets with 5,761,833 outcomes for

ABE and 73,303 targets with 5,513,919 outcomes for CBE.
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Figure 1. The general workflow of bedeepon

(a) Schematic of the pooled pairwise library screen. A library of 80,263 gRNA-target pairs
was packed into viruses and transduced into cells expressing ABE or CBE base editors.
The integrated target sites were PCR-amplified for deep-sequencing analysis. Red arrows
indicate primers for target site amplification; stars indicate nucleotide conversion. (b)

Procedure of preprocessing data and combination. After we got totally valid (reads
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number>100) outcomes from our experiment and analysis, we split our training datasets
with 164,129 ABE outcomes and 304,866 CBE outcomes, they are combined with
52,615 (Arbab et al.), 34,116 (Song et al.) and 22,165 (Marquart at el.) of ABE outcomes;
50,073 (Arbab et al.), 37,057 (Song et al.) and 27,116 (Marquart at el.) of CBE outcomes
to generate an integral training dataset.(c) Constructing a predictive bedeepon model
with BiLSTM network using sequencing data. (d) Generating predicted editing results
with model and evaluating performance in four testing datasets. Deep-sequencing
results overall outcomes that revealed that A to G conversion (green) for ABEand Cto T
(red) conversion for CBE occurred, the edited bases are annoted with blue. Then
benchmarking on four testing datasets from Arbab et al., Song et al., Marquart at el. and
datasets splited from this study (train : test = 9 : 1) on two different criterias, external

correlation and internal correlation.

Sequencing results revealed that A to G conversion for ABE and C to T conversion for CBE
occurred (Fig. 1b). Although infrequent, C to non-C conversion for CBE and A to non-A
conversion for ABE could also be observed (Fig. 1b). The ABE products (purity ranging
from 98.43% to 99.69%) were purer than CBE (purity ranging from 95.55% to 97.78%,
Supplementary Fig. 2), consistent with a previous report 2. We also observed indels with
mean efficiency of 0.13 for ABE and mean efficiency of 0.16 for CBE, whereas mean

frequency of background indels in the plasmid library was 0.06.

Positional effects on nucleotide conversion efficiency

The large-scale dataset generated here allowed us to analyze the positional effects on
nucleotide conversion efficiency. The five most efficient positions for nucleotide
conversion are 4-8 for both ABE and CBE with PAM at position 21-23 (Fig. 1c), consistent
with previously reported editing windows 2 1L, Next, we investigated the influence of

nearby nucleotides on conversion efficiency for position 4-9. Both nucleotides
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surrounding the target A influenced conversion efficiency with the upstream nucleotide
having a stronger influence for ABE. The upstream nucleotide preference followed the
order T>C>G>A (Fig. 1d). In contrast, only upstream nucleotide surrounding the target C
influenced conversion efficiency for CBE following the preference order T>C>A>G (Fig.
le).

Next, we investigated nucleotide preferences at each position in the target sequences
associated with high editing efficiencies. The results revealed that ABE editing
efficiencies were strongly influenced by both upstream and downstream nucleotides
immediately adjacent to the target nucleotide (target nucleotide, £1 bp, Fig. 2). The
nearby nucleotides A and G have negative influence on editing efficiency, while the
nearby T have positive influence on editing efficiency. The upstream C has positive
influence on editing efficiency for target nucleotide positions 5 and 6, but has negative
influence on target nucleotide positions 4 and 7. The downstream C has positive
influence on editing efficiency. CBE editing efficiencies were only strongly influenced by
the upstream nucleotide immediately adjacent to the target nucleotide (target
nucleotide, +1 bp, Fig. 2). The upstream nucleotides A and G have negative influence on
editing efficiency, while the upstream T have positive influence on editing efficiency.
Upstream C has positive influence on editing efficiency for target nucleotide positions 5-

7, but has negative influence on target nucleotide position 4.
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Figure 2. The relationship between editing efficiency and base position or sequence
context, and conversion efficiency influenced by nucleotides on the target sequence in a
high-throughput manner. (a,f) C to T or A to G conversion efficiency at different single
base position, HEK293T and Hela cell. (b,c,g,f) Effect of the sequence context
surrounding the target nucleotide (bold A or C) on the conversion efficiency at
protospacer positions 4 to 9. Sequence preferences at each position in efficient (top
20%) vs. inefficient (bottom 20%) targets for ABE (d,k) and CBE (e,j) on position 4 to 7.
Nucleotide position on the targets is shown below. The log odds ratios of nucleotide
frequencies between efficient and inefficient target sequences are represented on the y

axis. Target nucleotide position is indicated by red lines.

Correlation of editing efficiency between SpCas9 and base editors

The gRNA-target library in this study was recently used to screen for SpCas9 nuclease 12,
allowing us to investigate the efficiency correlation between SpCas9 and base editors.
We calculated the correlations between SpCas9 nuclease and base editors for each
quartile of base editor efficiencies. The correlation (R<0.15) was low for both ABE and
CBE (Supplementary Fig. 3a-b). We also calculated the correlations between SpCas9
nuclease and base editors for each quartile of SpCas9 efficiencies. Although the
corrections were low, quartile 1 achieved much higher correlation than other quartiles
for both ABE and CBE (R=0.21 for ABE, R=0.23 for CBE, Supplementary Fig. 3c-d).

We further investigated the relationship between SpCas9 mean efficiencies and base
editor mean efficiencies for each quartile of base editor efficiencies. The results revealed
that SpCas9 efficiency was similar in each quartile of base editor efficiency
(Supplementary Fig. 4a-b). We also investigated the relationship between SpCas9 mean
efficiencies and base editor mean efficiencies for each quartile of SpCas9 efficiencies.

The results revealed that quartile 2-4 achieved similar mean efficiency, while quartile 1
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achieved a little lower mean efficiency (Supplementary Fig. 4c-d). Collectively, these data
suggested SpCas9 efficiency and base editor efficiency had a very low correlation for a

target.

Developing models for prediction of on-target efficiencies and outcomes

Next, we developed models for prediction of on-target efficiencies and outcome
sequence frequencies. Since a target generally contains multiple editable nucleotides,
there might exit multiple editing outcome sequences. We first programmed this
conversion scheme to obtain all possible editing outcome sequences, and then assigned
the measured editing frequency to each outcome sequence. We used the ABE editing
datasets to train a shared embedding based deep learning model. The targets were
randomly split to 56,432 (5,390,492 outcomes) for training, 1,152 (98,958 outcomes) for
internal validation, and 3,031 (272,383 outcomes) held out for testing. The resulting
model was named “ABEdeepon” which can predict editing efficiencies and outcome
sequence frequencies (Fig. 3a). ABEdeepon achieved a Spearman correlation of 0.892
(r=0.878, MSE=0.024) for prediction of editing efficiency with testing dataset (Fig. 3b). To
evaluate the performance for prediction of outcome frequency distribution, we tested
2,342 targets with at least 4 outcomes and achieved mean Spearman correlation of
0.872 (r=0.920, MSE=0.011, KL divergence=0.003, Fig. 3c). To test whether ABEdeepon
works in other cell types, we used the same library to generate datasets in Hela cells

and obtained 58,445 valid targets with 6,292,774 outcomes (reads number=100). We

extracted 2,636 targets present in Hela testing dataset as external testing dataset. The
editing efficiency prediction achieved Spearman correlation of 0.886 (r=0.830,
MSE=0.024) and the outcome frequency distribution prediction achieved mean
Spearman correlation of 0.857 (r=0.883, MSE=0.020, KL divergence=0.004,

Supplementary Fig. 5a-b).
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Figure 3. Evaluation of ABEdeepon for editing efficiency and outcome prediction
(a) Example of ABEdeepon prediction for a given target. Measured efficiencies are listed

for comparison. Original target sequence is underlined. (b) Evaluation of ABEdeepon for
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conversion efficiency with testing dataset. (c) Evaluation of ABEdeepon for conversion
outcome sequence frequencies with testing dataset. (d, f, h) Evaluation of ABEdeepon
for conversion efficiency with endogenous editing dataset generated in HEK293T, U20S
and HCT116 cells, respectively. (e, g, i) Evaluation of ABEdeepon for conversion outcome
sequence frequencies with endogenous editing dataset generated in HEK293T, U20S and

HCT116 cells, respectively.

To evaluate the performance of ABEdeepon for endogenous targets, we collected
endogenous editing data generated in HEK293T, U20S and HCT116 cells from literatures
15 and evaluated these datasets with our model, achieving high correlation for
efficiencies (Spearman correlation: 0.747-0.797) and mild or high correlation for
outcomes (mean Spearman correlation: 0.441-0.901, Fig 4 d-i). To evaluate the
performance of the ABEdeepon in induced pluripotent stem cells (iPSCs), we generated
dataset for 23 endogenous targets in human iPSCs. ABEdeepon achieved weak
Spearman correlation of 0.227 for efficiency prediction probably due to the very low
base editing efficiency in iPSCs, and mild mean Spearman correlation of 0.574 for

outcome frequency prediction (Supplementary Fig. 5c-d).

Parallelly, we used the CBE editing datasets to train a shared embedding based deep
learning model. The targets were randomly split to 68,244 (5,140,905 outcomes) for
training, 1,393 (97,841 outcomes) for internal validation, and 3,666 (275,173 outcomes)
held out for testing. The resulting model was named “CBEdeepon” which can predict
editing outcome sequence frequencies (Fig. 4a). CBEdeepon achieved a Spearman
correlation of 0.851 (r=0.874, MSE=0.027) for prediction of editing efficiency with testing
dataset (Fig. 4b). To evaluate the performance for prediction of outcome frequency
distribution, we tested 3,179 targets with at least 4 outcomes and achieved mean

Spearman correlation of 0.845 (r=0.919, MSE=0.009, KL divergence=0.005, Fig. 4c). To
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test whether CBEdeepon works in other cell types, we used library to generate datasets
in Hela cells and obtained 56,529 valid target with 4,213,361 outcomes (reads number

=100). We extracted 2,827 targets present in Hala testing dataset as external testing
dataset and achieved Spearman correlation of 0.864 (r=0.761, MSE=0.110) for efficiency

prediction, and mean Spearman correlation of 0.788 for outcome distribution prediction

(r=0.736, MSE=0.042, KL divergence=0.012, Supplementary Fig. 6a-b).
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Figure 4. Evaluation of CBEdeepon for editing efficiency and outcome prediction

(a) Example of CBEdeepon prediction for a given target. Measured efficiencies are listed
for comparison. Original target sequence is underlined. (b) Evaluation of CBEdeepon for
conversion efficiency with testing dataset. (c) Evaluation of CBEdeepon for conversion
outcome sequence frequencies with testing dataset. (d, f, h) Evaluation of CBEdeepon
for conversion efficiency with endogenous dataset generated in HEK293T, U20S and
HCT116 cells, respectively. (e, g, i) Evaluation of CBEdeepon for conversion outcome
sequence frequencies with endogenous dataset generated in HEK293T, U20S and

HCT116 cells, respectively.

To evaluate the performance of CBEdeepon for endogenous targets, we collected
endogenous editing data generated in HEK293T, U20S and HCT116 cells from literature
15 and evaluated with our model, achieving mild correlation for efficiencies (Spearman
correlation: 0.457 to 0.673) and high correlation for outcomes (mean Spearman
correlation: 0.588-0.763, Fig.4 d-i). To evaluate the performance of the CBEdeepon in
induced pluripotent stem cells (iPSCs), we generated dataset for 24 endogenous targets
in human iPSCs. CBEdeepon achieved mild Spearman of 0.525 for efficiency prediction
and mean Spearman correlation of 0.558 for outcome frequency prediction

(Supplementary Fig. 6¢-d).

We finally investigated the positional effects of target nucleotides on prediction.
ABEdeepon achieved a good Spearman correlation (>0.5) from position 4 to 12, whereas
CBEdeepon achieved a good Spearman correlation (>0.5) from position 3 to 18
(Supplementary Fig. 7a-b). Altogether, our results demonstrated that both ABEdeepon
and CBEdeepon models perform well for prediction of conversion efficiency and

outcome sequence frequencies.
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Recently, the advent of three developed predictive model are also avaliable to predicting
base editing outcomes, BE-Hive, DeepBaseEditor and BE-DICT, which are based on deep
conditional autoregressive model, a two-hidden layer convolutional neuro network and
a multi-head self-attention machanism seperately. The former two and ours have the
characterize to seperately predict proportion of editing outcomes and overall editing
efficiency, while the latter one gives the nature of predicting all editing outcomes
containing overall efficiency directly. All of the previous models claimed that they can
perform well on predicting, whereas there was no clear and explicit comparison of their
ability to estimate editing outcomes on the criteria of internal predicting performance by
each targeted sequence instead of external performance. Thus, we came up with a new
benchmarking method among all above three model and ours based on two criteria:
internally grouped predicting correlation and externally total predicting performance,

and both of them were evaluated on all outcomes and edited outcomes(Fig. 5).

To begin with, we compared our model with other three on the externally predicting
ability to estimate all editing outcomes (with wild type), and we found our model
perform the best as long as BE-Hive performed the worst on both ABE and CBE editing
prediction(Fig. 5a,b). Additionally, the utility of predicting the proportion of edited-only
outcomes (with no wild type) were also considered and our model outperform other
three models without any doubt. Most importantly, rather than fluctuated Pearson and
Spearman score, our bedeepon sustain a steady performance on four testing dataset,
which manifested itself a outstanding generalizaion performance. Secondly, we put the
newly internal criteria on these four models to calculate their mean spearman
correlation coefficient, which was able to conceal a more reasonable and general ability
of predicting. Consequently, a more solid conclusion for model performance were

brought up with combining of the two criteria. In conclusion, our model still has the
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most outstanding and steady result while BE-DICT fluctuates the worst on both ABE and

CBE by constrast.
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Figure 5. Benchmarking four model on two criterias of both internal and external
coefficiency. Model benchmark evaluation is tested on 4 dataset from Arbab at el., Song
at el., Marquart at el. and this study, the workflow is exhibit in Fig.1d. (a-d,g-j)
Benchmarking performance with criteria one: calculating pearson and spearman
correlation coefficient on overall predicted results; (e,fk,l) criteria two: calculating
correlation coefficient on mean spearman score of each group. The information of
dataset reference, cell type, data size and the type of base editor are included in the left

side.

Discussion

Successful application of base editors requires a rigorous understanding of intended and
unintended genome editing. Several groups have offered online tools or software for
gRNA design, including iSTOP 18, beditor 1/, BE-Designer 18 and BEable-GPS 2. These
design rules conform to base editing requirements that the editable base falls within
maximum activity window, but none of them can predict the editing activity and
outcome frequencies. To solve this problem, we proposed shared embedding based
deep learning models, ABEdeepon and CBEdeepon, to predict editing efficiencies and
outcomes. Our model guided high performance for both prediction of base editing
outcomes (mean R: 0.79-0.87 for high-throughput datasets) and efficiencies (R: 0.85-
0.89 for high-throughput datasets).

During our manuscript revision, three groups developed tools named BE-Hive 13,
DeepBaseEditor ¥4 and BE-DICT which achieved comparable performance to our models
for prediction of editing efficiencies and outcomes recently. Consequently, we launched
a series of innovative experiment to compare these four models extensively and found
their models were all insteady. BE-Hive used carefully designed hand-crafted features to

develop machine learning models for prediction of base editing outcomes and efficiency.
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DeepBasekEditor followed the author’s previous method 22, extracting features using
convolutional neural networks, which also achieved similar performance for prediction
of base editing outcomes and efficiency 4. And BE-DICT developed a novel model with
multi-head attention machanism to predict all outcomes which was edited or not. The
intergration of all these models will enhance the prediction ability and facilitate

selection of targets with high efficiency and desirable outcome sequences.

Overall, this shared embedding based deep learning models used here has a simple yet
elegant structure which unifies on-target and off-target input in form. It can be
seamlessly extended to other versions of base editors, such as SauriABEmakx,
SauriBE4max, SaKKH-BE3, BE4-CP, dCpf1-BE and eA3A-BE3 2122, Notably, it may also be

used to generate models to predict editing outcomes for Cas9 and Cas12 nucleases.

Methods

Cell culture and transfection

HEK293T cells and Hela cells (ATCC) were maintained in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% FBS (Gibco), while human iPSCs were cultured
on Matrigel-coated plates (ESC qualified, BD Biosciences, San Diego, CA) using hESC
mTeSR-1 cell culture medium (StemCell Technologies, Vancouver, Canada) at 37 °C and
5% CO2. All media contained 100 U/ml penicillin and 100 mg/ml streptomycin. For
transfection, HEK293T cells and Hela cells were plated into 6-well plates, DNA mixed
with Lipofectamine 2000 (Life Technologies) in Opti-MEM according to the
manufacturer’s instructions, while iPSCs using Lipofectamine 3000 (Life Technologies).

Cells were tested negative for mycoplasma.

Plasmid construction
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SB transposon (pT2-SV40-BSD-ABEmax and pT2-SV40-BSD-BE4max) was constructed as
follows: first, we replaced the Neof gene (Avrll-Kpnl site) on pT2-SV40-Neo® with BSD,
resulting in pT2-SV40-BSD vector; second, backbone fragment of pT2-SV40-BSD was
PCR-amplified with Gibson-SV40-F and Gibson-SV40-R, and ABEmax fragment was PCR-
amplified from pCMV_ABEmax_P2A_GFP (Addgene#112101) with Gibson-ABE/BE4-F
and Gibson-ABE/BE4-R, and BE4max fragment was PCR-amplified from
pPCMV_AncBE4max (Addgene#112094) with Gibson-ABE/BE4-F and Gibson-ABE/BE4-R;
third, the backbone fragments were ligated with ABEmax and BE4max using Gibson
Assembly (NEB), resulting in pT2-SV40-BSD-ABEmax and pT2-SV40-BSD-BE4max,

respectively.

Generation of cell lines expressing ABEmax or BE4max

HEK293T cells and Hela cells were seeded at ~40% confluency in a 6-well dish the day
before transfection, 2 ug of SB transposon (pT2-SV40-BSD-ABEmax or pT2-SV40-BSD-
BE4max) and 0.5 pug of pCMV-SB100x were transfected using 5 pl of Lipofectamine 2000
(Life Technologies). After 24 h, cells were selected with 10 pug/ml of blasticidin for 10
days. Single cells were sorted into 96-well plates for colony formation. Conversion
efficiency was performed to screen cell clones with high levels of ABEmax and BE4max

expression.

The gRNA-target library construction

The on-target library design and construction were described previously2. Briefly, full-
length oligonucleotides were PCR-amplified and cloned into Lentiviral vector by Gibson
Assembly (NEB). The Gibson Assembly products were electroporated into MegaX
DH10B™ T1R Electrocomp™ Cells (Invitrogen) using a GenePulser (BioRad) and grown at
32 °C, 225 rpm for 16 h. The plasmid DNA was extracted from bacterial cells using

Endotoxin-Free Plasmid Maxiprep (Qiagen).
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Lentivirus production

Lentivirus production was described previouslyi?. Briefly, 12 ug of plasmid library, 9 ug of
psPAX2, and 3 ug of pMD2.G (Addgene) were transfected into a 10-dish HEK293T cells
with 60 ul of Lipofectamine 2000. Virus were harvested twice at 48 h and 72 h post-
transfection. The virus was concentrated using PEG8000 (no. LV810A-1, SBI, Palo Alto,
CA), dissolved in PBS and stored at —80 °C.

Screening experiments in HEK293T and Hela cells

HEK293T or Hela cells expressing ABEmax or BE4Amax were plated into 15 cm dish at
~30% confluence. After 24 h, cells were infected with gRNA library with at least 1000-
fold coverage of each gRNAs. After 24 h, the cells were cultured in the media
supplemented with 2 pg/ml of puromycin for 5 days. Cells were harvested and the
genomic DNA was isolated using Blood & Cell Culture DNA Kits (Qiagen). The integrated
region containing the gRNA coding sequences and target sequences were PCR-amplified
using primers Deep-seq-library-F/R with Q5 High-Fidelity 2X Master Mix (NEB). We
performed 60-70 PCR reactions using 10 ug of genomic DNA as template per reaction for
deep sequencing analysis. The PCR conditions: 98 °C for 2 min, 25 cycles of 98 °C for 7 s,
67 °C for 15 s and 72 °C for 10 s, and the final extension, 72 °C for 2 min. The PCR
products were mixed and purified using Gel Extraction Kit (Qiagen). The purified

products were sequenced on Illumina HiSeq X by 150-bp paired-end sequencing.

Data analysis

FASTQ raw sequencing reads were processed to identify gRNA editing activity and
editing outcomes. The nucleotides in a read with quality score < 10 was masked with a
character “N”. Due to the integrated design strategy, we first separated a read to

designed gRNA region, scaffold region, and target region to extract the corresponding
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sequence. The designed gRNA was then aligned to the reference gRNA library to mark
the reads. The target sequence was compared to the designed gRNA to mark all types of
conversion (i.e., canonical A-G, C-T conversions and non-canonical A-C/T, C-A/G, G-A/T, T-
A/C conversions at each position). We screened out gRNAs with a total valid reading of
less than 100. Then, the efficiency for a specific conversion type at a position can be

calculated by the following formula:

conversion efficiency at spesific position

= NO. of converted reads in a conversion type at spesific position
NO. of total valided reads

However, the conversion efficiency was very low for non-canonical conversions (mean
efficiency < 0.005). Thus, we only consider the canonical conversions for the outcome
frequency distribution analysis. Theoretically, the canonical editing combinations of 20
bases is at most 22°. However, we found that positions 1-2 and 18-20 always contain only
one conversion. If there exist canonical bases, positions 3-17 may have multiple
conversions at the same time. Therefore, we programmed this conversion scheme to
obtain all possible editing outcomes and assign true editing frequencies to the outcomes
that exist in the sequencing data and assign 0 frequencies to the outcomes not found in
the sequencing data. Then, the editing frequency of a gRNA-outcome can be described

as:

NO. of reads in a specific editing outcome
NO. of total valided reads

specific gRNA_outcome frequency=

Note that the non-converted targets were also considered as an editing outcome. So, the

editing efficiency for a target can be simply calculated by the following formula:


https://doi.org/10.1101/2021.03.14.435303
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.14.435303; this version posted October 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

conversion efficiency =1 — non-converted outcome frequency

Encoding
Drawing on concepts from the field of natural language processing (NLP), nucleotides A,
C, G, and T can be regarded as words in a DNA sequences. Therefore, we can widely use
algorithms in the NLP field to solve prediction tasks in the CRISPR field, especially the
use of embedding algorithms to get the continuous representation of discrete
nucleotide sequences 28. Unlike the common efficiency prediction that only needs to
input one single sequence for regression models, in this research, both the gRNA-
outcome pairs (for BEdeepon) and gRNA-target pairs (for BEdeepoff) has two different
sequences as inputs. For gRNA-outcome pairs, there are four words in the index
vocabulary (i.e., A, C, G, and T). So, the vocabulary can be described as: So, an input
sequence can be described as: where i € 1,2denotes the i-th sequence in an gRNA-
outcome pair or an gRNA-target pair, x;; is the t-th element of the i-th sequence, T is
the sequence length. For example, for a gRNA-outcome pair
GTGGAACATCCACTTGACCTAGG (seql, gRNA + NGG) and GTGGAGCGTCCACTTGACCTAGG
(seg2, one outcome) can be encoded as:
x1=13,4,3,3,1,1,2,1,4,2,2,1,2,4,4,3,1,2,2,4,1,3,3] (i.e., seql)

and

x2 = [3,4,3,3,1,1,2,3,4,2,2,1,2,4,4,3,1,2,2,4,1, 3,3](i.e., seq2)

respectively.

Shared embedding
Inspired by the algorithms in the recommender system 2 and click-through rate (CTR) 28
prediction modeling, both the generalization capacity and training speed will benefit

from the sharing of the same embedding matrix instead of training independent
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embedding matrices for each input. In this research, a discrete nucleotide encoding x;; is
projected to the dense real-valued space E; € RT*™ (m is a hyperparameter
corresponds to the embedding dimension) to get the embedding vector e(x;;). Then a
final embedding matrix E is needed to get the combined information from those two
embedding matrices by:

E = g(Eq, E3) (1)
where g can be sum, mean, or even a simple concatenate function. However, the sum or
mean function is more suitable because it can reduce the redundant features in

E4 and E,. We choose the sum function here for simplicity.

Feature extraction and model prediction

Long-short-term memory network (LSTM) and gated recurrent unit network (GRU) are a
type of recurrent neural networks (RNN) algorithms used to address the vanishing
gradient problem in modelling time-dependent and sequential data tasks 2. Usually, a
bidirectional manner was used to capture the information from the forward and
backward directions of a sequence, which is biLSTM or biGRU. Our work and others’
work have shown that, as an important component, biLSTM can be used alone or with
convolutional neural network (CNN) to achieve good performances in various regression
and classification tasks involving biological sequences 123932 Here, we tried biLSTM,
biGRU, and the newly proposed transformer structure 23, and found biLSTM had the
fastest convergence speed. The input and output of biLSTM can be described by the

following equations:

h, = LSTM(e(x), 1) (2)

h, = LSTM(e(x,), he—y) (3)
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Thus, the output context vectors of biLSTM are h, = [ITO ; K], h, = [lT1 ;hyp_,], etc.
Thus, we can concatenate the forward and backward hidden state asH =

hy, h4, ..., h;_1,which contains the bidirectional information in the shared embedding
feature matrix. Before the fully connected layers, we tried different input features based
on the trade-off of the convergence speed and the performance of the model. The
aforementioned features are last hidden unit, max pooling operation on H, and average

pooling on H. The equations are as following:

higse = [hi-13hy—1] (4)
Fraxpoor = maxi=1h; (5)
Fyeanpoot = mean;-ih, (6)
We observed that the last hidden state is the only need to obtain an optimal

performance, i.e.,

S = G(f(hLast)) (7)

where, f is fully connected layers, o is the LeakyReLU activation function and o is the
output score for a specific gRNA-outcome pair.

It should be noted that the gRNA + NGG in a set of gRNA-outcome pairs (a gRNA batch
with K samples) are all the same, and the outcome sequences are converted from the
same target, so the output scores of a gRNA-batch can be denoted as s = [sy, 55, ..., Skl
Then, a softmax activation function can be applied to s to get the predicted frequency

distribution with a sum of 1 for the gRNA-outcome pair (Eq. 8, 9).

q; = softmax(s;) = SE o5 (8)

k
q=Zq,-=1(9)
j=1
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We have described in the Data Analysis section, that the conversion efficiency of a gRNA

can be calculated by the formula:
Conversion efficiency = 1 - non-converted outcome frequency

If we let gy be non-converted outcome frequency in q. Then, the predicted efficiency

will be 1 — qq.

Combined weighted loss function

For the on-target models, a calculated true gRNA-outcome frequency distribution can be
denoted asp = [py, P, ..., Pxl- SO, it’s naturally to apply Kullback—Leibler (KL)
divergence loss function to minimize the difference between the predicted frequency
distribution q and the true frequency distribution p. The standard KL divergence loss

function D (p||q) is defined as:

K

Duu(lig) = ) plog) (10

j=1 '

Basically, we wanted that a gRNA-outcome pair with a large number of reads in a gRNA
batch has a more accurate prediction value. The weight of a sample loss was re-assigned

depending on its corresponding read counts w;. The modified loss function of Eq.10 is:

K
P
L = D (lig) = ) wip,log () (1D
j=1 :

A number of studies 24 have shown that multi-task learning architecture can significantly

improves the stability and generalization capacity of the model. In addition to KL
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divergence loss (which measures the difference between the two probability
distributions as a whole), the mean squared error (MSE) loss function also helps to
minimize the difference between each of the pi, gi pairs individually. So, we adopted the

MSE loss in a weighted manner:

k
L, = 12 2 (12
]=

Then, the final loss function can be denoted as follows in Eq.13:

K k
P; 1 2
Liotar = wp,log(=) + K wi(p, —q,)" (13)
j=1 9 j=1

The loss function for the off-target model is simply the ordinary MSE loss.

Training setting

The on-target datasets were randomly split into two parts with ratio 9 : 1, the former for
training, and the latter for holdout testing. To made a more stable prediction, we not
only adapted cross-validation training for this dataset but also used more external
datasets to test the generalization capacity of the models. The training sample size of
our on-target datasets are 29,604 on ABE and 48,270 on CBE, which are concatenated
with other three datasets: 8261 on ABE and 8029 on CBE (Arbab at el.), 10,209 on ABE
and 9,743 on CBE (Song at el.) , 6,891 on ABE and 7,859 on CBE (Marquart at el.). Then
the stability of model performance was estimated by a 5-fold shuffled validation
together with the external integrated and endogenous datasets. The ABEdeepon and
CBEdeepon models share the following hyperparameters: embedding dimension, 128;

BiLSTM hidden unites, 256; BiLSTM hidden layers, 2; dropout rate, 0.3; fully connected
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layers,1 (2 * 2 * 256 — 1). For the Adam optimizer, it was used with a customized
learning rate decay strategy that gradually reduce the learning rate from 0.001, 0.0001,
0.00005 to 0.00001.

Testing Configuration and criterias of benchmark

In order to solidify our conclusion of our model’s outstanding performance on
estimating, we collected and integrated datasets from three previously published
project: sample 1,265 on ABE and 1,358 on CBE (Arbab at el.), 437 on ABE and 475 on
CBE (Song at el.), 1,667 on ABE and 1675 on CBE (Marquart at el.) and our split testing
dataset, including sample 3,289 on ABE and 5,363 on CBE. In summary, an aggregated
dataset with total sample 6,658 and 8,871 on ABE and CBE are adapted as “ground-

truth” to benchmark individually.

In progress, we chose both “bystander” and “overall efficiency” models from BE-hive
and DeepBaseEditor and “bystander” module in BE-DICT to predict on both edited
outcomes (called proportion) and overall outcomes (called frequency). The way to
calculating both proportion is aligned with Z{-‘zl m; = 1, where m means edited
outcomes; and frequency is aligned with Zle m; + (1 —n) = 1, where n represents

overall editing efficiency.

Considering the base editing happens on each targeted sequence, except compare the
overall external correlation coefficient, a better evaluating criteria turns out with
calculating mean spearman correlation coefficient within each group, and also the

variance (Supplementary Table.14, Supplementary Figure.12-13).

Tools used in the study
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Bwa-mem?2 was used to identify and align the designed gRNA. pytorch==2.4.0
torchvision==0.19.0, torchaudio==2.4.0, pytorch-cuda=11.8 3¢ was used for building

deep learning models.

Code availability
We provide the source code for bedeepon and the custom Python scripts used to train
and evaluate the models and benchmarks available on GitHub at

https://github.com/martina-yu/bedeepon and preprocessing procedure at

https://github.com/martina-yu/PreprocessingBedeepon. The web for bedeepon in

predicting both efficiency and proportion on the DNA sequence is published at

http://www.deephf.com/#/bedeep/bedeepon.
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Supplemental fisures and Tables are avaliable.
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