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Highlights

• We model how intraspecific trait variation in two species affects their interaction.

• Our framework allows correlations between the traits of interacting individuals.3

• Trait variation and correlations can strongly affect ecological interactions.

• Trait variation and correlations can make or break coexistence.

• The effect of intraspecific trait variation can be estimated from data.6
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Abstract

Interactions between two species, e.g. between a predator species and a prey species, can often

be described as the sum of many individual-by-individual interactions whose outcomes depend9

on the traits of the interacting individuals. These traits often vary substantially among indi-

viduals in each species, and individuals do not always interact randomly, e.g. due to plastic

responses to a shared environmental factor in a heterogeneous landscape. Here we investigate12

the impact of intraspecific trait variation (ITV) and such interspecific trait correlations on species

interactions via nonlinear averaging. Building on past models that integrate over an interaction

kernel to obtain the impacts of ITV, we develop a modeling framework that allows to model15

arbitrary species interactions, with interspecific trait correlations as novel feature. Based on two

key ingredients, a joint trait distribution and a two-dimensional interaction function, the average

interaction parameters (e.g. average predation rate) can be quantified numerically, approximated18

using an insightful Taylor approximation, and compared to cases without ITV. We highlight two

applications of our framework. First, we study the quantitative and qualitative effects of ITV and

trait correlations in a simple predator-prey model and show that even in the absence of evolution,21

variation and trait correlations among interacting individuals can make or break the coexistence

between species. Second, we use simulated field data for a predator-prey system to show how

the impact of ITV on an ecological interaction can be estimated from empirical data.24

Keywords: predator-prey, individual variation, coexistence, joint trait distribution, Jensen’s in-

equality, Taylor approximation.
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1 Introduction27

Intraspecific trait variation (ITV) is increasingly being recognized as a factor that can considerably

affect population dynamics, community and ecosystem patterns, and global change responses

(Bolnick et al., 2011; Des Roches et al., 2018; Moran et al., 2016; Raffard et al., 2019; Violle et al.,30

2012). For example, ITV can affect population growth of a single species (Bjørnstad and Hansen,

1994), influence whether or not competing species can coexist (e.g. Hart et al., 2016; Hausch et al.,

2018; Holdridge and Vasseur, 2022; Maynard et al., 2019; Stump et al., 2022; Uriarte and Menge,33

2018), affect predator-prey dynamics (Coblentz et al., 2021; Pettorelli et al., 2011, 2015), and even

affect the qualitative outcome of a biological interaction (Moran et al., 2022), i.e. whether it is

antagonistic or cooperative.36

Here we focus on cases where two species engage in direct individual-by-individual inter-

actions whose outcome depends on the exact trait combinations of the interacting individuals.

Examples of such interactions include the performance of a plant depending on its own genotype39

and traits and those of neighbors from a competing species (Fridley et al., 2007; Genung et al.,

2012), the ability of a predator to consume a prey depending on the ratio of predator mass to

prey mass (Nakazawa, 2017; Portalier et al., 2019), and the ability of an insect to pollinate a flower42

depending on the size of the insect’s proboscis relative to the length and width of the flower’s

corolla (Ibanez, 2012). Furthermore, whether or not individuals interact at all can be nonrandom

and trait-dependent. For example, trait-specific preferences for certain microhabitats are expected45

to induce positive trait correlations between the boldness of interacting individuals in bank voles

and striped field mice (Schirmer et al., 2020) and between activity levels in interacting individ-

uals of different stickleback species (Webster et al., 2008). Trait correlations are also expected to48

emerge when predators only search for prey that is within a feasible range given their own body

size (Portalier et al., 2019), or in plants in response to a common elevation gradient (Halbritter

et al., 2018). Focusing on species mean traits to describe such interactions could lead to mislead-51

ing results, for example, a naive conclusion that individuals of two species cannot interact based
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on average trait values, when in fact interactions between many pairs of individuals are possible

(González-Varo and Traveset, 2016). This is why it has been argued that the focus of community54

ecology should shift from species-species interactions to individual-individual interactions, in

the same way there has been a shift from the species to the individual as the unit of selection in

evolutionary biology (Nakazawa, 2017).57

One important mechanism by which ITV influences population dynamics is nonlinear aver-

aging: when a demographic parameter, e.g. reproductive rate, is a nonlinear function of a certain

trait, the average value of the demographic parameter across individuals is in general not equal60

to the demographic parameter of an individual with average trait value (Bjørnstad and Hansen,

1994; Ruel and Ayres, 1999). In such cases, ITV can lead to directional changes in population-level

properties. The direction and magnitude of the effect depend on the curvature of the function re-63

lating the trait and the demographic parameter, according to Jensen’s inequality (Jensen, 1905, see

section 2.2.1 for more detailed explanations). Nonlinear averaging has been taken into account

in some explorations of the conditions under which ITV promotes or hinders the coexistence of66

competitors (Gravel et al., 2011; Hart et al., 2016; Stump et al., 2022; Uriarte and Menge, 2018) or

affects predator-prey dynamics (Gibert and Brassil, 2014; Okuyama, 2008; Schreiber et al., 2011).

Some of these studies assume that there is ITV in only one species. For example, Gibert and69

Brassil (2014) explored the consequences of ITV in predator attack rate and handling time for

predation efficiency in a Rosenzweig-MacArthur predator-prey model. They used bell-shaped

functions to describe predation efficiency, with the highest predation efficiency at an optimum72

intermediate predator trait. In other studies, there is ITV in two or more species, but each species

is only indirectly affected by the ITV in the other species, e.g. via population density (e.g. re-

sults on variation in competitive ability in Hart et al., 2016) or shared resources (Holdridge and75

Vasseur, 2022), so that it is sufficient to deal with ITV in one species at a time. In addition, there

is limited research investigating the effects of ITV in two or more species where the outcome of

interaction depends on the exact trait combination of interacting individuals. Such ITV can be78

taken into account by integrating over interaction kernels, i.e. functions that state the probability
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or outcome of an interaction as a function of both interaction partners’ trait values (e.g. Barabás

and D’Andrea, 2016; Hart et al., 2016; McPeek et al., 2022; Senthilnathan and Gavrilets, 2021).81

Here we develop a general nonlinear averaging framework to understand the population-

level effects of joint trait variation in two species engaged in direct individual-by-individual

interactions. Our framework addresses two issues with previous work: First, the possibility that84

individuals may encounter each other nonrandomly is not included in most previous work. To

better understand the effects of ITV, we thus need to account for trait correlations across multiple

species. Second, while most previous research on the effects of ITV with individual-by-individual87

interactions has been on interspecific competition (but see Senthilnathan and Gavrilets, 2021),

our framework generalizes to all types of species interactions described by arbitrary interaction

functions. In addition to a numerical approach, we provide a flexible analytic approximation90

that provides an intuitive understanding of the effects of ITV and correlations in two interacting

species. In two application examples, we then highlight two ways in which our framework can

be useful: first, we show in the example of a predator-prey system how ITV and interspecific93

trait correlations can lead to quantitative and even qualitative changes in population dynamics

and coexistence outcomes. Second, we use simulated data to show how our framework could be

applied to estimate the effects of ITV on average interaction parameters from empirical data.96

2 General modeling framework

2.1 Joint trait distribution and interaction function

We focus on a system of two interacting species A and B characterized by mean traits µa and99

µb, trait variances σ2
a and σ2

b and trait correlation ρa,b between interacting individuals. Our ap-

proach has two key ingredients (figure 1, left): 1) a bivariate joint trait distribution fAB(a, b) that

models for a pair of interacting individuals how likely the species-A individual is to have trait102

value a and the species-B individual trait value b. We assume this distribution to be a bivariate

normal distribution throughout the manuscript. However, our general framework can be applied
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to any bivariate distribution that stays constant over the ecological time scale of interest. 2) any105

interaction function γ(a, b) that gives the rate and outcome of the pairwise interaction between

individuals with trait values a and b. To allow for analytic approximations, the interaction func-

tion should be at least twice differentiable with respect to both trait values.108

The interaction function can be estimated from empirical data (Bartomeus et al., 2016), either

by fitting a curve with a predefined shape, or by fitting a smooth function without specifying a

shape beforehand (Wetzel et al., 2016; Wood, 2006). We use the latter method in section 5 below111

on simulated data to illustrate how the nonlinear averaging effect of joint ITV can be estimated

from empirical data.

2.1.1 Example for the mechanistic underpinning of a joint trait distribution114

Let us now consider one example of how a joint trait distribution can emerge mechanistically.

Assume that individuals of both species inhabit patches (shared with a number of individuals

both of the same and of the other species) and that their traits respond plastically to the micro-

environmental conditions in their patch. In addition, there is some additional individual-specific

random effect on trait values. The trait value of an individual k of species i in patch j is then

given by

Zijk = hi + mi · Ej + εik, (1)

where hi and mi are the intercept and slope of the reaction norm of species i, Ej is the micro-

environment in patch j which we here assume to have mean ē and variance σ2
e , and εik is a

random individual trait effect that is drawn from an independent normal distribution with mean

0 and variance σ2
ε,i. We assume that individuals can only interact with other individuals in the

same patch and that individuals are distributed uniformly over patches so that the total rate

at which individuals co-occur with others is the same for all individuals and independent of

traits. The joint trait distribution of interacting individuals (i.e. those in the same patch) is then
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7

Interaction function
γ(a, b)

Bivariate dis-
tribution
fAB(a, b)

with µa, µb, σa, σb,
and correlation ρa,b

Average interaction parameter
γ(a, b)

Naive
γ(µa, µb)

Exact

Sampling

Numerical integration
int(...)

Taylor approximation
γ(µa, µb) +

∂2γ
∂a2 · σ2

a + . . .

ODE model
→ Timeseries
→ Equilibria
→ Coexistence

Figure 1 – Overview of the general modeling approach. Each analysis starts with an interac-
tion function, γ, that describes the rate and outcome of the interaction between individuals
with trait value a and b and a joint trait distribution for pairs of interacting individuals from
species A and species B. In the examples that we show, we use a bivariate normal distribution
that is characterised by the trait means of both species (µa and µb), the standard deviations of
these trait values (σa an σb) and the interspecific trait correlation (ρa,b). From these two func-
tions, the average interaction parameter is calculated using three different methods (a naive
approach, and two forms of nonlinear averaging: sampling for obtaining the exact effect size
and a Taylor approximation). Another way of computing the exact value via numerical in-
tegration is shown in S1. Finally, each estimated value for the average interaction parameter
can be substituted into an ordinary differential equation (ODE) model to predict the result-
ing differences in population dynamics. R code and a shiny app to run this workflow for a
given interaction function and joint trait distribution are provided in the online supporting
information.
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characterized by

µi = hi + mi · ē for i ∈ {a, b}, (2)

σ2
i = m2

i σ2
e + σ2

ε,i for i ∈ {a, b}, (3)

and

ρa,b =
mambσ2

e
σaσb

=
mambσ2

e√
m2

aσ2
e + σ2

ε,a

√
m2

bσ2
e + σ2

ε,b

. (4)

Note that if the mean of the environmental values changes, e.g. due to climate change, means of

the marginal trait distributions will also change, but variances and trait correlations will remain

constant in this model.117

2.2 Quantifying the average interaction parameter

To determine the ecological consequences of trait variation in the interaction partners, we first

determine the average outcome (γ(a, b)) of an interaction across all possible pairs of individuals,120

weighted by the probability of this pairing given the joint trait distribution fAB(a, b) (figure 1):

γ(a, b) =
∫∫

γ(a, b) fAB(a, b)da db (5)

This assumes that the population-level outcome of the interaction can be thought of as the sum123

of many individual-by-individual interactions.

We solve the double integral in Eq. (5) by averaging the interaction function over 500,000

trait-value pairs randomly sampled from the joint trait distribution in R (R Core Team, 2022).126

This sample size led to acceptably small sampling noise, as indicated by visually nearly indistin-

guishable results from other numerical integration methods (described in S1). In the following,

we refer to the sampling value as the exact value of the average interaction parameter, keeping129

in mind its small sampling error.

We compare the average value of γ(a, b), γ(a, b), to a naive estimate of the interaction strength,

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2024. ; https://doi.org/10.1101/2021.03.11.435001doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.435001
http://creativecommons.org/licenses/by-nc-nd/4.0/


γ(µa, µb), which is based only on the species mean trait values and is equivalent to a case without132

ITV.

2.2.1 Analytic approximation

Next, we derive an insightful analytic approximation for the average interaction parameter with135

ITV in both interacting species. We first briefly describe the state of the art for ITV in a single

species and then extend the approximation to two dimensions, one for each species.

Based on Jensen’s inequality (Jensen, 1905), the direction of the effect of ITV on the average138

value of a nonlinear function depends on the curvature of the nonlinear function (figure 2A).

One can measure this curvature through the second derivative. If the function has a positive

second derivative (i.e. is convex) around the species mean trait (around the black point in figure141

2A), a small amount of intraspecific trait variation will lead to an increase in the average value

of the demographic parameter; and if the function has a negative second derivative around the

species mean trait (i.e. is concave, around the grey point in figure 2A), a small amount of ITV144

will reduce the average value of the demographic parameter. Quantifying the second derivative

of an ecological response variable with respect to some trait value can thus give insight into the

consequences of ITV (Inouye, 2005). For example, Wetzel et al. (2016) found a negative second147

derivative in the function linking plant nutrient levels to herbivore performance, leading to a

negative effect of variation in nutrient levels on herbivore performance. By contrast, in predator

species with a type 2 functional response, consumption rate as a function of handling time has150

a positive second derivative such that individual variation in handling time increases average

predator consumption rate (Bolnick et al., 2011).

9
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Figure 2 – Illustration of nonlinear averaging in one and two dimensions. A) A demographic
property such as per-capita growth rate depends on trait values a. In a population with a
mean trait value near the maximum of a Gaussian function (grey point), the further two a
values are spread around this mean, the more their average per-capita growth rate (crosses)
decreases (compare orange and yellow crosses to the grey dot). This can be explained by
the negative curvature around the maximum. By contrast, in a population with mean trait
value close to the base of the curve (black point), the function has a positive curvature and
therefore the opposite occurs: the average per-capita growth rate (blue crosses) for two blue
points that are equally far from the black, middle point, is larger than the per-capita growth
rate at the average trait value (black point). B) In two dimensions, when trait values a and
b vary in two interacting species, a similar mechanism may affect the average interaction
strength: when trait means lie around the maximum of a bell-shaped interaction function
(grey dot), the curvatures are negative in all directions and as points are further spread in
the a, b−plane around the maximum, their average height decreases (orange dots). When the
trait means are close towards the base of the function (black dot), the curvatures are positive,
and the opposite effect occurs: here an increase in variation in a and b (from the black to
the dark blue points) leads to an increase in the average interaction strength, which may
represent for example competition strength or predation rate.

The effect of ITV on the average value of a nonlinear function works very similarly in two153

dimensions (figure 2B) and this can be captured in an analytic approximation based on a second-

order Taylor series around the point (µa, µb) (see S2.1 for derivation):

γ(a, b) ≈ γ(µa, µb) +
1
2

σ2
a

∂2γ

∂a2

∣∣∣∣
(µa,µb)

+
1
2

σ2
b

∂2γ

∂b2

∣∣∣∣
(µa,µb)

+ ρa,bσaσb
∂2γ

∂a∂b

∣∣∣∣
(µa,µb)

. (6)156

That is, ITV in species A has a positive or negative effect depending on whether the second
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derivative of the interaction function with respect to the trait of the species-A individual is pos-

itive or negative, and analogously for species B. Moreover, the direction and magnitude of the159

effect of interspecific trait correlations depends on the mixed second derivative. To evaluate the

derivatives in Eq. (6) for any interaction function, we use the Deriv package in R (Clausen and

Sokol, 2020).162

Note that similar approximations have been used previously to understand the effects of

variation in two potentially correlated environmental factors (Koussoroplis et al., 2017) and in

two potentially correlated traits (Koussoroplis et al., 2019) on population parameters. When traits165

are symmetrically distributed, the third order errors are zero (S2.2) and the magnitude of the

error of this approximation is therefore of fourth order in deviations from the respective mean

traits. Thus, the approximation will fit well as long as most trait values are close to the mean,168

but might break down for large trait variances. Because third order errors do not disappear for

asymmetric distributions, we expect that in such cases the accuracy will go down more quickly

with increasing trait variances. The evaluation of this Taylor approximation is generally less171

computationally intensive compared to the numerical integration. However, the main benefit

is that the approximation makes it easier to grasp intuitively how the effect of ITV and trait

correlation on the average interaction function is determined by the shape of the interaction174

function.

2.3 Illustration using two interaction functions

We now illustrate the three described estimation methods (see figure 1) on a general second-order177

two-dimensional polynomial and a logistic interaction function (Table 1). For each function, we

determine the magnitude and direction of the effect of ITV and trait correlation on the average

interaction value, as well as the accuracy of the approximation. These examples serve as illus-180

trations, but note that the approach is flexible and not limited to a bivariate normal joint trait

distribution, nor to the used interaction functions.
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Table 1 – Overview of the example interaction functions and their second-order partial
derivatives used in Eq. 6 to approximate γ(a, b).

Interaction function γ(a, b) ∂2γ
∂a2

∂2γ
∂b2

∂2γ
∂a∂b

Polynomial
p1a2 + p2b2 + p3ab

+ p4a + p5b + p6

2p1 2p2 p3

Logistic pmax
1

1+e−k(b−a−h) k2(γ(a, b) + 2γ(a,b)3

p2
max
− 3 γ(a,b)2

pmax
) ∂2γ

∂a2 − ∂2γ
∂a2

The first interaction function we explore is a two-dimensional polynomial of order two:183

γ(a, b) = p1a2 + p2b2 + p3ab + p4a + p5b + p6. (7)

We chose this interaction function because of its flexible shape. Depending on the parameter

values (pi), this interaction function is shaped as a plane, paraboloid, or a saddle. Since the sign186

of the interaction can change with the trait values, it can for example be used to describe predator-

prey reversal. However, the interaction function is not bounded, and when using it, one should

verify that it takes reasonable values over the range of trait values considered. Alternatively, one189

might want to introduce bounds (see S3.2 for an example).

Using the partial derivatives from Table 1, we obtain an approximation for the average in-

teraction parameter, which is exact since the third and higher order derivatives are zero for this192

interaction function (see also S2.2):

γ(a, b) = γ(a, b) + p1σ2
a + p2σ2

b + p3 · ρa,bσaσb. (8)

If, for example, p1, p2, and p3 are zero, the interaction function reduces to a linear function in a195

and b, and intraspecific variation has no effect on γ(a, b).

If instead p1, p2, and p3 are all negative, with p3 having the largest absolute value (figure 3A),

the effect of variation in a and b on the average interaction function γ(a, b) is negative when ρa,b198

is zero or close to zero (figure 3 green ellipses in A and green bar in B). This is caused by the
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C) D)

A) B)

Figure 3 – Effect of ITV on the average interaction parameter (γ(a, b)) for the two interac-
tion functions in Table 1. Left column: illustrations of the interaction functions γ. For the
logistic (panel C) interaction function, lines of zero (grey), maximal (dark red) and minimal
curvature (blue) are shown. Right column: the colored bars give the average interaction pa-
rameter without ITV or equivalently the naive estimate of the average interaction parameter
γ(µa, µb). The striped and hatched bars represent how ITV changes the average interaction
parameter according to the Taylor approximation and sampling approach compared to the
naive case/the case without ITV. The joint trait distributions used in B and D are shown in
A and C as three ellipses that contain 25%, 50% and 90% of all interactions, respectively,
from inner to outer ellipse. (A–B) Polynomial with p1 = −0.1, p2 = −0.15, p3 = −0.55,
p4 = p5 = 0, p6 = 4, σa = 0.75, and σb = 0.5. (C–D) Logistic with pmax = 0.1, k = 1, h = 1.5
at µa = 4.5.
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negative curvature of the function in the a and b directions. The negative effect is even stronger

with a positive interspecific trait correlation (light orange and pink scenarios in figure 3 A,B).201

Along the line a = −b, in contrast, the curvature is positive, leading to a positive effect of trait

variation on the average interaction parameter when the individual trait value combinations fall

along this line, i.e. when trait correlation is strongly negative (figure 3 A-B, dark orange scenario,204

similarly in the blue scenario). Whether the trait correlation can change the sign of the effect of

ITV depends on the value of p3 relative to p1 and p2 (section S3.1). Biologically, an interaction

function of this general shape could for example represent a mutualism that only works when207

interacting individuals have diversified (complementary) traits, but turns into competition when

traits are similar. Interestingly, although the magnitude of the interaction changes with the mean

trait values (compare the left two bars in figure 3B to the right three), the difference between the210

naive value and the other estimates only depends on σa, σb and ρa,b (figure 3B, the effects of ITV

are the same e.g. in the blue and dark orange scenario).

The second interaction function we explore is a logistic interaction function (figure 3C),213

γ(a, b) =
pmax

1 + e−k(b−a−h)
, (9)

where pmax is the maximum interaction rate, h is the difference in traits at which the interaction

rate is half the maximum and k determines the steepness of the curve. We chose this interaction216

function because it is non-negative everywhere, and it is commonly used for example to model

various interactions where the rate or outcome depends on the difference in trait value between

interacting individuals. For the sake of concreteness, we will assume in the following that the219

function represents the probability of a predator eating a prey when predation success increases

with increasing predator size b relative to prey size a.

When the average predator is smaller than average prey size plus h, overall hunting efficiency222

is low, but trait variation in either species may yield occasional encounters between relatively

large predators and relatively small prey, resulting in an increase in average hunting success
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(left three bars in figure 3D). This can be understood directly from the positive curvature with225

respect to both trait values in this region (figure 3C). The largest positive effect of ITV on the

approximation occurs when the curvatures are maximal, on the line a = b− h + ln (2+
√

3)
k (dark

red line in figure 3C, S6.2). The effect can be further enhanced with a negative correlation (left two228

bars in figure 3D). In this case, small predators are matched to large prey and obtain basically no

food, but this is more than compensated for by large predators being matched to small prey that

they can feed on efficiently. The effect of ITV on the average interaction parameter is reversed231

in the region where the average predator is more than h larger than the average prey (right two

bars in figure 3D), with a maximum effect size in the approximation when a = b− h− ln (2+
√

3)
k

(blue line in figure 3C, S6.2). The effects of ITV vanish at the boundary between these regions234

(b− a = h, grey line in figure 3C), where the curvatures are zero, or when the difference between

the average trait values becomes very large.

The logistic interaction function can be written purely in terms of the difference between trait237

values a and b and thus a change in variance in either species adds the same amount of variance

to this difference. For such interaction functions, the approximation (Eq. (6)) can be simplified

(see section S5):240

γ(a, b) ≈ γ(µa, µb) +
∂2γ

∂a2

∣∣∣∣
(µa,µb)

(1
2

σ2
a +

1
2

σ2
b − ρa,bσaσb

)
. (10)

Hence, variation in a and b contributes equally to the difference between γ(a, b) and the naive

mean γ(µa, µb). The difference is enhanced if the traits are highly and negatively correlated243

(figure 3D), while the effect of ITV on the interaction function cancels out if the traits are perfectly

correlated (correlation coefficient ρa,b = 1) and the trait variances are the same. Note that for

this class of interaction functions the correlation cannot change the sign of the effect of ITV,246

which thus depends solely on ∂2γ
∂a2

∣∣∣
(µa,µb)

= ∂2γ
∂b2

∣∣∣
(µa,µb)

(section S5). For cases where the interaction

function only depends on the difference in trait value, we thus reach the important general

conclusion that, depending on the trait correlation, only taking into account variation in one249

species could underestimate the effect of ITV by a factor of four (with σa = σb = σ and ρa,b = −1,

15
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the effect of ITV would be estimated as σ2/2 when in fact it is 2σ2), but also falsely predict a

nonzero effect of ITV that disappears when both species are studied (with σa = σb = σ and252

ρa,b = 1, the effect would be estimated as σ2/2 when in reality it is zero).

While in the polynomial interaction function, the approximation perfectly matches the exact

estimate from the sampling approach, for the logistic interaction function, there is a discrep-255

ancy between approximation and sampling approach, but the approximation always correctly

predicted the direction of the effect of ITV. As shown in figure S7.1, the Taylor approximation is

close to the two exact approaches for small variances, but increasingly deviates for larger trait258

variances, as expected.

In the supporting information, we study two additional interaction functions. Firstly, the

commonly used Gaussian interaction function that also depends only on the difference in trait261

values (S4). Secondly, we study a more complex and non-differentiable interaction function. This

corresponds to a polynomial on which hard limits are imposed, so that it can never turn negative

(section S3.2). While the sampling approach still works, the approximation does not perform264

well close to discontinuities in the curvature. For this interaction function, interestingly, the trait

variation in species B affects the average interaction parameter through the correlation (last) term

in the approximation (Eq. 6), even though the curvature of the interaction function with respect267

to b is zero.

2.4 Consequences for population dynamics and coexistence

Although the effects of ITV and trait correlations on average interaction parameters are already270

important on their own, in the final part of our framework we go one step further and explore

how the resulting differences in average interaction parameters affect population dynamics and

species coexistence (figure 1, right). The population models we use here all assume that the num-273

ber of individuals in both species is large so that demographic stochasticity does not play a role

and the cumulative effects of the random individual-by-individual trait-dependent interactions

can be well captured by the average interaction parameter γ(a, b). As a result, the model is de-276
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terministic. In general, our approach allows one or more parameters of a dynamical system (in

continuous or discrete time, though here we focus on continuous-time models) to be replaced

by the average over trait-dependent interaction functions. We will now illustrate this application279

for a predator-prey model. A second detailed application, for a competition model, is given in

section S10.

3 Application example 1: Qualitative and quantitative effects of ITV282

and interspecific trait correlations in a predator-prey model

Consider a predator-prey model:

dNA

dt
= rANA(1−

NA

K
)− NANBφ285

dNB

dt
= rBNB + cNANBφ, (11)

where NA and NB are the prey and predator abundances, rA > 0 and rB < 0 are the prey and288

predator intrinsic growth rates, K is the environmental carrying capacity, c is the conversion

efficiency, and φ determines the interaction strength, which we assume to be trait-dependent,

and thus set it to γ(a, b). In this example, we will use the logistic interaction function (Eq. (9))291

with the same parameters as in figure 3C. Since the interaction outcome for this function just

depends on the difference between predator and prey trait values, it can also be displayed as in

figure 4A.294
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Figure 4 – Effects of intraspecific trait variation and interspecific trait correlation on the attack
rate φ and consequently on the dynamics and qualitative outcome of the predator-prey model
(Eq. 11). Here σa = σb = 1.5 and the interaction is defined by a logistic interaction function
with pmax = 0.1, k = 1, h = 1.5. The dotted vertical line is where the second derivative and
thus the effect of ITV switches from positive to negative. The diamonds refer to different
parameter settings: K = 370 and correspondingly a high value of φcrit (red diamond), K =
2500 and correspondingly a low value of φcrit (orange diamond), µb smaller than µa (grey
diamond) and µa smaller than µb (black diamond). A) Estimates of the average interaction
function at three values for the interspecific trait correlation using the sampling method.
The grey line corresponds to the naive expectation and the case without ITV. B) Regions
in parameter space with qualitatively different outcomes. C–F) Time series corresponding to
four scenarios with the average attack rate as given by the sampling method. We do not show
the lines corresponding to the case without ITV because they would overlap with the brown
lines for ρa,b = 0.95. Other parameter values: rA = 1, rB = −0.3, c = 0.01.
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The qualitative and quantitative effects of ITV and trait correlations on population dynamics

and coexistence are shown in figure 4. As we have seen above (see Fig. 3 C,D), the effect of ITV

in either species can be positive or negative depending on the difference in mean trait values297

(figure 4A). This effect can be almost eliminated by a strong positive correlation (thus it is no

coincidence that the points for high ρa,b almost overlap the line without ITV) or amplified by

a strong negative correlation. Even though the value of ρa,b cannot change the direction of the300

effect of ITV on the average interaction parameter for interaction functions of this form, it can

still qualitatively affect the population dynamics. Coexistence in the model depends on whether

the average attack rate parameter φ is above a critical threshold (φcrit = − rB
cK , indicated by the303

dashed horizontal lines in figure 4A), which thus depends on the carrying capacity of the prey

(S8). We show time series for high and low prey carrying capacity (red and orange diamonds),

and for cases where either the prey mean trait µa is smaller than the predator mean trait µb (black306

diamond), or the other way around (grey diamond). In the scenario with the grey diamond, the

difference in mean trait values µb − µa is below h (grey dashed line), ITV increases φ and this

effect is enhanced by a strong negative trait correlation. At high carrying capacity, the minimum309

average interaction parameter that leads to coexistence is low (orange diamond) and ITV com-

bined with a negative trait correlation can increase φ to a value above this low critical threshold

(φcrit) and thereby promote coexistence, while without ITV or with a positive trait correlation312

the predators may go extinct (figure 4A,B,E). If, on the other hand, the predator-prey size differ-

ence is above h (black diamond), ITV reduces the interaction coefficient, an effect that is again

stronger when combined with a strong negative trait correlation. If the coexistence threshold315

is relatively high (red diamond), this can drive the predator to extinction even if without ITV

both species could coexist, unless a strong positive trait correlation reduces the effect of ITV

(figure 4A,B,D). The potential for interspecific trait correlation to affect species coexistence is the318

largest when the general effect of ITV on the average interaction parameter is maximal (on the

lines µa− µb = h± ln(2+
√

3
k , as explained above). Even if the change in average interaction param-

eter is not large enough to change the qualitative outcome, extinction times (red-grey diamonds)321
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or equilibrium population abundances (orange-black diamonds) can be affected, although in this

case the effect is only small (figure 4A,B,C,F, see S8.1 for more detailed information).

4 Different parametrization options324

Before moving on to the next application example, we would like to point out one subtlety

about our approach: There is not always just one correct way of setting up or estimating the

interaction function and joint trait distribution, but there can be multiple equivalent ways that

can be more or less convenient depending on the research question and study design. In fact, it

is always possible to account for all the information about occurrence or encounter patterns in

the interaction function and work with the marginal distributions, i.e. have no correlation, since

the average interaction parameter can be rewritten as

∫∫
γ(a, b) fAB(a, b)dadb =

∫∫
γ∗(a, b) fA(a) fB(b)dadb (12)

with a new interaction function

γ∗(a, b) =
γ(a, b) fAB(a, b)

fA(a) fB(b)
(13)

and marginal trait distributions fA(a) and fB(b).

Thus, the joint trait distribution and the interaction function allow us to parameterize the

system in different ways depending on what is easiest and most meaningful given the biological327

system and potential empirical data. We will illustrate these different parametrization options for

a predator-prey system. A first way to parameterize the system is to assume that the trait values

of interacting predator and prey individuals are independently drawn from their respective trait330

distributions, i.e. the joint trait distribution is the product of the two marginal distributions ( fA(a)

and fB(b)). The interaction function then gives the rate and outcome of an interaction of the

randomly generated pair of individuals given their trait values. This parametrization corresponds333
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to the right hand side of Eq. (12) and makes sense if interactions between individuals indeed

occur randomly with respect to traits. If individuals interact non-randomly with respect to traits,

for example because predators and prey with larger trait values tend to co-occur more often in the336

same micro-environments or encounter each other more often, it can still be used, but the non-

random interaction then needs to be modeled as part of the interaction function. In the predator-

prey example, the interaction function then can be understood as integrating the probability that339

individuals with certain trait values co-occur, the rate at which they encounter each other, and the

probability that the predator successfully kills the prey. Such a parametrization can make sense

if one has data on the marginal trait distribution, but no data on co-occurrence and encounter342

patterns.

If one does have such data available, it can make more sense to parameterize the system using

a joint trait distribution function with non-zero correlation (left hand side of Eq. (12)). For exam-345

ple, if one has data on trait-dependent spatial or temporal co-occurrence patterns, the joint trait

distribution would specify how likely the pairs of individuals with different trait combinations

are to co-occur, and the interaction function would model the rate at which co-occurring indi-348

viduals encounter each other and the predator then successfully captures the prey. If one even

has data on trait patterns of pairs of individuals that encounter each other, then the joint trait

distribution could be parameterized as the distribution of pairs of trait values in predator-prey351

encounters and the interaction function as the overall encounter rate times the probability that

the predator successfully kills the prey given an encounter. But we have to be cautious because

the joint trait distribution will have the trait distributions of the individual species as marginal354

distributions only if the probability that an individual is part of some interaction pair does not

depend on traits. While parts of our framework still work if this assumption is not met, others

like predicting interaction outcomes for different trait variances will not. So, in this case we rec-357

ommend to also obtain the marginal trait distributions for the individual species and work with

uncorrelated trait distributions.
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5 Application example 2: Estimating the effects of ITV from field data360

Here we use simulated field data to illustrate how the joint trait distribution, interaction func-

tion and consequentially the effects of intraspecific trait variation can be estimated from em-

pirical data. Consider a hypothetical field site structured into 100 micro-habitats and inhabited363

by two interacting populations: a predator population and a prey population. To generate our

artificial data set, we assumed the mechanism outlined in section 2.1.1 where individuals ex-

hibit phenotypic plasticity in response to an environmental factor in their micro-environment366

(Eq. 1). We assumed that the values of this environmental factor are drawn from a normal

distribution with mean 0 and standard deviation σ2
e = 1.5. In each micro-habitat, there are

400 prey individuals and 10 predator individuals. The random individual trait effect has stan-369

dard deviation σε,a = σε,b = 0.7 in both species. We considered two scenarios, one in which

hA = 4, hB = 4, mA = 0.5, mB = −0.6, i.e. prey and predator respond in opposite ways to the

micro-environment, which leads to a negative correlation among prey and predator trait values372

in interacting individuals (figure 5A), and one where prey and predator respond similarly with

hA = 2, hB = 4, mA = 0.5, mB = 0.6, which leads to a positive correlation (figure 5B). We assume

that the encounter rate for each pair of individuals in the same patch is 0.001. With an observa-375

tion time of 1 time unit, the number of encounters for each pair of individuals in the same patch

is then Poisson-distributed with mean 0.001. Given an encounter, the predator kills the prey with

a probability based on the logistic interaction function (with k = 1 and h = 1.5 like in figure378

4 A, but with pmax = 1). Our pseudo-observed data set then contains all the encounters and

for each encounter the prey individual’s trait value, the predator individual’s trait value, and

whether or not the predator was successful in killing the prey. Note that we assume that prey381

individuals that are killed are replaced by another individual with the same trait value such that

the population size and the trait distributions stay constant over time.

Given such a pseudo-observed data set, our final goal is to estimate the impact of ITV on total384

predation success, i.e., the total number of kills made, of course assuming that the true input
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parameters are not known. For this, we first fit an interaction function γ̂(a, b) by fitting a tensor

product smooth to the data using the mgcv library (Wood, 2006) in R (R Core Team, 2022). The387

tensor product smooth does not make any prior assumptions about the shape of the interaction

function and allows for interactive effects. In the fit, we use family ”binomial” and a logit link

because our predation success data is binary. We then randomly sample 500, 000 new pairs of trait390

values for interacting individuals from a multivariate normal distribution parameterized with the

means, standard deviations and the correlation coefficient estimated directly from the observed

trait values across all the encounters. By then averaging the γ̂(a, b) values of the sampled trait-393

value pairs, we get a sampling estimate of the average interaction parameter.

To obtain a Taylor approximation, we use a numerical method (the hessian function from

the numDeriv package) to obtain the second partial derivatives from the estimated interaction396

function γ̂(a, b). We then plug these curvatures and the estimated distribution parameters into

(6). To obtain the estimated mean predation rate without ITV, we simply plug the estimated mean

trait values ā and b̄ into the estimated interaction function to obtain γ̂(ā, b̄). The estimated effect399

of ITV relative to the case without ITV is then the average predation success with ITV minus the

average predation success without ITV, γ̂(ā, b̄), divided by γ̂(ā, b̄). If this were a real field study,

we would be done now and state this result or we might do some bootstrapping, but there is402

usually no way to verify it in the field. With simulated data, however, we can check how well we

have done by also simulating a second data set without ITV, where all individuals of species i

have a trait equal to the mean trait as given by Eq. (2), and analogously quantifying the relative405

change in predation success due to ITV. Since there is a lot of stochasticity in the true data, we ran

this whole experiment 100 times. That is, for each replicate, we had one simulation run without

ITV and one with ITV. While the estimates of the effect of ITV were only based on the simulation408

run with ITV, the ”true” value of the effect of ITV was based on comparing these two runs.

Across the 100 replicates, the shape of the interaction function is generally estimated very

well (figure 5 C, D) and the median relative change in predation success due to ITV is well411

approximated by the sampling method (figure 5 E,F). In the first scenario, it correctly predicts
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a strong positive effect of ITV on predation success, in the second scenario a weaker negative

effect. In the first scenario, the approximation somewhat overestimates the effect of ITV, while in414

the second scenario it captures the effect of ITV well. The results are qualitatively similar in cases

with lower or no environmental variance σe (figure S9.1 and S9.2), but since a lower σe leads to

lower ITV and weaker correlations, the effects of ITV are overall weaker. This experiment shows417

that, given sufficient data, it is possible in principle to estimate both the shape of the interaction

function and the impact of ITV on average interacting parameters just from a data set of pairs of

interacting individuals and the outcome of each interaction.420
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Figure 5 – Illustration of our approach of estimating the impact of ITV on average preda-
tion success from field data. The two columns show two scenarios that differ in the reaction
norms via which individuals respond to their micro-environment. A, B) Trait values of pairs
of interacting individuals in the first replicate, with successful kills shown in red and encoun-
ters where the prey escaped shown in blue. Across all replicates in A, there were on average
2191.5 encounters, with 610.8 kills and 1580.7 escapes. In B, there were on average 2187.7 en-
counters, with 1317.7 kills and 870.1 escapes. C, D) Estimated interaction function for the first
20 replicates shown in dashed gray lines. Note that we have evaluated the two-dimensional
interaction function at the respective mean prey trait hA. The true interaction function is
shown in black. E, F) Boxplots of true and estimated effects of ITV on total predation success
among the 100 replicates.

6 Discussion423

6.1 General modeling framework

Our modeling approach has two key ingredients, the joint trait distribution and the interaction

function, based on which the impacts of ITV and trait correlations can be estimated in different426

ways. Exact estimates can be obtained from a random sampling method or other types of numer-

ical integration over the interaction function with respect to the joint trait distribution. On the

other hand, the Taylor approximation is computationally more efficient, depends only on local429

estimates of the curvatures, and provides additional insight into how the different components

of ITV contribute to the average interaction parameter. While the approximation is exact when

curvatures are constant, as is the case for a second-order polynomial, it may be inaccurate when432

the curvatures change significantly over the part of trait space where the bulk of the interactions

take place. For example in our non-differentiable interaction function, the approximation could

even predict an effect in the opposite direction whenever interactions took place on both sides of435

a discontinuity (see section S3.2). For the logistic and Gaussian interaction functions, the second-

order Taylor approximation always correctly predicted the direction of the change compared to

the naive value where the species’ mean trait values are plugged into the interaction function or438

equivalently to the case without ITV (figure 3 and figure S4.1). However, when variances were

large, the approximation tended to overestimate their impact, potentially leading to wrong con-
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clusions regarding species coexistence. Note that higher order terms can be straightforwardly441

included into the approximation when traits are bivariate normal (as shown in S2.3). The higher

order terms improve the accuracy when trait variances are small, but they may decrease the accu-

racy when trait variances are large (figure S2.1). This behaviour is expected because, away from444

the point at which the approximation is performed, Taylor approximations do not necessarily

converge with increasing number of terms (see for example §6.2.1 in Witelski and Bowen, 2015).

Taylor approximations have been used to link trait variation to population dynamics before,447

both in single-species models (Bjørnstad and Hansen, 1994) and in models with two competing

species with an underlying trait, that affects inter- and intraspecific competition simultaneously

(Hart et al., 2016). More generally, such Taylor approximations have also been used to study the450

effect of spatio-temporal variation in environmental conditions on species’ growth rates, as well

as population and community dynamics (e.g. Bernhardt et al. 2018; Denny 2019; Gravel et al.

2011; Koussoroplis et al. 2017; and the ”scale-transition theory” in modern coexistence theory453

Barabás et al. 2018; Chesson 2012; Chesson et al. 2005; Melbourne and Chesson 2005). For exam-

ple, in modern coexistence theory, the effect of spatial or temporal environmental heterogeneity

on fitness is captured well by the product of local curvature of the fitness function and environ-456

mental variance as long as the environmental variability is small relative to the scale over which

the curvature of the fitness function changes. In other cases, other properties of the distribution

(e.g. frequency of extreme environmental conditions) can become important and one would need459

full knowledge of the distribution function and fitness function to quantify the effects. Our Tay-

lor approximation shares the strengths and weaknesses of these earlier approaches in that it also

provides intuitive results, in our case for the joint effects of trait variation and correlations in two462

interacting species, but depends on accurate estimates of the curvatures and trait variation being

small relative to the scale of the interaction function.
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6.2 The effect of ITV and trait correlations on population dynamics and465

coexistence

Our results show how ITV in each of two interacting species can affect average interaction pa-

rameters such as predation rates through nonlinear averaging over the joint trait distribution. The468

magnitude and direction of this effect depend on the shape of the interaction function, average

trait values, amounts of trait variation in each species, as well as on the trait correlation between

interacting individuals. As we have seen in our first application example, these nonlinear av-471

eraging effects can change the joint population dynamics both quantitatively (e.g. influencing

equilibrium population densities) and qualitatively (species coexistence or extinction).

One class of interaction functions we have looked at in detail are those for which interac-474

tion outcomes only depend on the difference in trait values. This seems to be roughly the case

for size-based predator-prey interaction when size is measured on a logarithmic scale (Portal-

ier et al., 2019). We have shown that for such interaction functions trait correlations can nullify477

or double the effect of ITV on the average interaction function. This can lead to qualitative dif-

ferences in the resulting population dynamics. For example in our predator-prey model, strong

positive trait correlations could prevent or cause predator extinctions, depending on the differ-480

ence in mean trait value between prey and predator. When predators are sufficiently larger or

faster than prey (black diamond in figure 4) and thus, on average, very efficient at capturing

them, a positive correlation ensures that each predator is matched to a prey that it can hunt effec-483

tively. Such a correlation could emerge from co-occurrence patterns or via behavioral choices of

the predators to only pursue prey items that are not too large but also worth the energy expen-

diture of hunting, capturing, and handling them (Portalier et al., 2019). In particular when prey486

have a small carrying capacity or when predators need a large number of prey items to survive,

such positive correlation can prevent the predators from going extinct. Conversely when prey are

relatively large or fast relative to predators such that predators are generally poor at consuming489

prey, while at the same time the critical predation rate is low because prey are abundant or pro-

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2024. ; https://doi.org/10.1101/2021.03.11.435001doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.11.435001
http://creativecommons.org/licenses/by-nc-nd/4.0/


vide a lot of energy per capture, a negative correlation ensures that at least the large predators

are matched to a prey that they can hunt effectively, thereby preventing the predator from go-492

ing extinct (figure 4). If we had instead used a Gaussian interaction function, the average attack

rate parameter would increase with increasing trait correlations when trait means are close to-

gether, but decrease when trait means are far apart, regardless of the sign of the difference. Such495

a mismatch-based interaction function has been used for example in a Rosenzweig-MacArthur

model where an increase in variation in attack rate and handling time tends to promote coexis-

tence when trait mismatch is large and hinder coexistence when trait mismatch is small (Gibert498

and Brassil, 2014; Gibert and DeLong, 2015).

In an additional example in SI S10, we similarly explored the effects of ITV and trait correla-

tions in a competition model. This example also illustrates that multiple model parameters can be501

simultaneously affected by ITV and trait correlations, in this case the interspecific competition co-

efficient and the two intraspecific competition coefficients. While many of the results recapitulate

earlier findings by Hart et al. (2016) and Barabás and D’Andrea (2016), we also made a few new504

observations. For example, when the trait means of the competing species are close together, ITV

in either species can promote coexistence in some cases where interspecific competition width is

smaller than intraspecific competition width (see figure S10.3).507

6.3 Estimating the effects of ITV from data

So far, there have been studies examining the impact of ITV in a single species on average inter-

action parameters from laboratory experimental data or a mix of field data and laboratory data510

(Coblentz et al., 2021; Pearse et al., 2018; Wetzel et al., 2016). Furthermore, (Hausch et al., 2018)

performed an experiment where they investigated the consequences of ITV in two competing

species on species invasion growth rates and coexistence. However, to our knowledge, it is so513

far not clear how the effect of joint ITV in two interacting species can be estimated based on

field data. Being able to do this would help assess the importance of ITV in natural ecological

communities and thus for biodiversity conservation.516
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In our second application example, we have thus used simulated data to illustrate how the

impact of ITV in two interacting species on average interaction parameters can be estimated from

field data. In this example, the available data set consisted of observations of encounter events519

between predator individuals and prey individuals. For each observed encounter, we had the trait

value of the prey individual, the trait value of the predator and the outcome of the interaction,

i.e., whether the predator successfully killed the prey. In this case, it was natural to parameterize522

the joint trait distribution as the distribution of pairs of trait values in individuals that encounter

each other and to parameterize the interaction function as the outcome of the predation attempt

given that individuals with certain trait values encounter each other.525

However, in other cases one might only have data on marginal trait distributions of each

species and trait values of both individuals for successful predation events, e.g. from predator

gut content analysis. In such cases, one can assume that both trait values are drawn indepen-528

dently (i.e. the joint trait distribution is the product of the marginal distributions) and the inter-

action function then describes both the probability that two individuals with given trait values

actually interact, for example the probability that a predator with trait value a encounters a prey531

individual with trait value b and the outcome of the interaction.

The benefit of this flexibility is that the model can be parameterized in different ways depend-

ing on what is most convenient given the experimental design or available field data. If sufficient534

data are available, we recommend parametrizing the model with a joint trait distribution with

potential trait correlations as this can give more mechanistic insights into the effects of ITV com-

pared to a model where trait effects on co-occurrence, encounter, and outcomes of the encounter537

are all lumped together into the same interaction function.

If one assumes a bivariate normal distribution, the parameters of the joint trait distribution

can be obtained simply by computing means, variances and covariance from the observed trait540

data. Other distributions can be fit in similarly if necessary. However, one could also work with

a (smoothed) empirical distribution to avoid assumptions on the shape of the joint trait distri-

bution. To fit the interaction function, we recommend using a flexible approach such as a tensor543
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product smooth (Wood, 2006) that does not make strong a priori assumptions on the shape of the

interaction function. Although this approach is more data-demanding than approaches where a

certain functional form is assumed (as e.g. in Bartomeus et al., 2016), it has the advantage that546

the curvature of the interaction function, which ultimately determines the direction of the effect

of ITV, emerges from the data, thereby avoiding bias in a certain direction.

While applying our approach to real field data is beyond the scope of this article, there are al-549

ready some promising data sets containing individual observations of interaction outcomes and

the trait values of the interacting partners. For example, pollination success has been recorded for

plants with different nectar-holder morphology interacting with pollinators with various beak or552

proboscis lengths (Ibanez, 2012; Missagia and Alves, 2018). Similarly, data are available on trait

matching between predator feeding and prey vulnerability (Brousseau et al., 2018), insects and

deadwood’s chemical compound traits in detritivore networks (Wende et al., 2017), and morpho-555

logical plant and animal traits in plant-frugivore (Bender et al., 2018) or detritivore (Brousseau

et al., 2019) networks. Bartomeus et al. (2016) have indeed fitted Gaussian interaction functions

on datasets describing fish predator-prey body size (Barnes et al., 2008), grasshopper incisive558

strength and leaf dry matter relationship (Deraison et al., 2015), and plant-pollinator data (Bar-

tomeus et al., 2008). While many of these examples pool multiple species within a functional

group, our approach should still be usable. Despite these examples, more such data on indi-561

vidual by individual interactions are needed in order to better understand the effect of ITV on

species interactions.

6.4 Outlook564

There are multiple ways in which our approach can be extended to include more biological

realism. First, our approach could be straightforwardly extended to allow for multiple traits

affecting different ODE parameters or systems with more than two species.567

Second, like many previous studies (e.g. Begon and Wall, 1987; Stump et al., 2022), we have

assumed static non-heritable trait distributions. These can arise through stable age or stage struc-
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tures (as expected in matrix models and integral projection models, see for example Caswell,570

2001; Easterling et al., 2000) or through phenotypic plasticity in response to a distribution of

microenvironments, as explained in the derivation above (Moran et al., 2016). In the latter case

we would expect the trait correlation patterns also to remain constant over time. However, one573

might expect the joint trait distribution to change both directly as well as over multiple gen-

erations, for example if prey with certain trait values are being consumed more frequently, or

individuals with a certain trait value face stronger competition than others, or simply because576

of variable environmental conditions driving plastic trait variation (Jackson and Xue, 2024). To

allow for changing trait distributions over time, we could combine our framework with one of

the existing approaches for modeling changes in trait distributions. To deal for example with579

the gradual loss of prey items in a predator-prey setting, we could employ approaches similar

to those developed for estimating functional response curves from experimental data (DeLong,

2021). Assuming asexual reproduction, we could use partial differential equations or moment582

equations to model the eco-evolutionary dynamics of population sizes and trait distributions

(see e.g. Senthilnathan and Gavrilets, 2021; Wickman et al., 2023). For systems where heritability

is not perfect, but the prey can be described in terms of two genetic types with different trait585

means and remaining plastic trait variation in each type (see e.g. Okuyama, 2011; Schreiber et al.,

2011), we can average the interaction between each of the prey types and the predator and still

obtain an intuitive understanding of the effect of ITV on the average interaction parameters. Al-588

ternatively, we could allow for temporally changing trait values in either species by calculating

a selection gradient from the interaction function and letting the mean trait value evolve accord-

ingly (e.g. Barabás and D’Andrea, 2016; Bengfort et al., 2017; Lande, 1976). At any given time step591

we can then calculate the effect of ITV on the average interaction function, based on the mean

trait values, and we can use the approximation to speed up the process. Models that allow for

dynamic shifts in trait distributions can sometimes exhibit quite different behavior from those594

with fixed trait distribution (Jackson and Xue, 2023).

Third, another assumption of the framework is that the total interaction parameter can be
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written as the sum of independent individual-by-individual interactions. However, in some im-597

portant ecological models, this is not the case. For example in predator-prey systems with preda-

tor saturation (such as models with a type II functional response), whether or not a predator

individual eats a particular prey individual can depend on how many prey individuals it has600

consumed previously and thus also on their traits. While ITV just in the predator can be in-

corporated relatively easily (see e.g. Gibert and Brassil, 2014; Okuyama, 2008; Schreiber et al.,

2011), extending our approach to including trait variation in both species and interspecific trait603

correlation into such models requires further research. Alternatively to nonlinear averaging, one

could also explicitly keep track of the number of hunting and the number of handling preda-

tors separately to account for predator saturation (Okuyama, 2012). Non-independence between606

pairwise interactions may also occur. For example, in plant communities, associational effects are

often observed where the herbivory pressure on a focal plant depends on its neighbors and their

traits, e.g. their level of defense or ontogenetic stage (Cope et al., 2020; Hahn and Orrock, 2016).609

Furthermore, individuals may adjust their physiology or behavior in response to an interaction

partner, which then affects the outcome of subsequent interactions with other individuals (e.g.

physiological tracking of herbivores, Pearse et al., 2018). Developing a general framework that612

describes such non-additive cases coherently is an important direction for future research.

6.5 Conclusion

Our approach can be applied to a large variety of interaction functions and joint trait distribu-615

tions. It allows for a straightforward and rapid assessment of the expected effect of variation

in two species and interspecific trait correlations on the average interaction parameter. We have

furthermore shown that such effects can strongly affect population dynamics in the example of618

a predator-prey system and can even make or break species coexistence. Finally, we have shown

that by estimating the joint trait distribution and the interaction function and then applying our

approach, the impact of ITV can in principle be estimated from field data.621
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