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Highlights

We model how intraspecific trait variation in two species affects their interaction.
3 ¢ Our framework allows correlations between the traits of interacting individuals.

¢ Trait variation and correlations can strongly affect ecological interactions.

Trait variation and correlations can make or break coexistence.

o
[ ]

The effect of intraspecific trait variation can be estimated from data.
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Abstract

Interactions between two species, e.g. between a predator species and a prey species, can often
o be described as the sum of many individual-by-individual interactions whose outcomes depend
on the traits of the interacting individuals. These traits often vary substantially among indi-
viduals in each species, and individuals do not always interact randomly, e.g. due to plastic
12 responses to a shared environmental factor in a heterogeneous landscape. Here we investigate
the impact of intraspecific trait variation (ITV) and such interspecific trait correlations on species
interactions via nonlinear averaging. Building on past models that integrate over an interaction
15 kernel to obtain the impacts of ITV, we develop a modeling framework that allows to model
arbitrary species interactions, with interspecific trait correlations as novel feature. Based on two
key ingredients, a joint trait distribution and a two-dimensional interaction function, the average
18 interaction parameters (e.g. average predation rate) can be quantified numerically, approximated
using an insightful Taylor approximation, and compared to cases without ITV. We highlight two
applications of our framework. First, we study the quantitative and qualitative effects of ITV and
21 trait correlations in a simple predator-prey model and show that even in the absence of evolution,
variation and trait correlations among interacting individuals can make or break the coexistence
between species. Second, we use simulated field data for a predator-prey system to show how
2 the impact of ITV on an ecological interaction can be estimated from empirical data.
Keywords: predator-prey, individual variation, coexistence, joint trait distribution, Jensen’s in-

equality, Taylor approximation.
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o7 1 Introduction

Intraspecific trait variation (ITV) is increasingly being recognized as a factor that can considerably
affect population dynamics, community and ecosystem patterns, and global change responses
30 (Bolnick et al., 2011; Des Roches et al., 2018; Moran et al., 2016; Raffard et al., 2019; Violle et al.,
2012). For example, ITV can affect population growth of a single species (Bjernstad and Hansen,
1994), influence whether or not competing species can coexist (e.g. Hart et al., 2016; Hausch et al.,
;3 2018; Holdridge and Vasseur, 2022; Maynard et al., 2019; Stump et al., 2022; Uriarte and Menge,
2018), affect predator-prey dynamics (Coblentz et al., 2021; Pettorelli et al., 2011, 2015), and even
affect the qualitative outcome of a biological interaction (Moran et al., 2022), i.e. whether it is

s antagonistic or cooperative.
Here we focus on cases where two species engage in direct individual-by-individual inter-
actions whose outcome depends on the exact trait combinations of the interacting individuals.
5o Examples of such interactions include the performance of a plant depending on its own genotype
and traits and those of neighbors from a competing species (Fridley et al., 2007; Genung et al.,
2012), the ability of a predator to consume a prey depending on the ratio of predator mass to
2 prey mass (Nakazawa, 2017; Portalier et al., 2019), and the ability of an insect to pollinate a flower
depending on the size of the insect’s proboscis relative to the length and width of the flower’s
corolla (Ibanez, 2012). Furthermore, whether or not individuals interact at all can be nonrandom
s and trait-dependent. For example, trait-specific preferences for certain microhabitats are expected
to induce positive trait correlations between the boldness of interacting individuals in bank voles
and striped field mice (Schirmer et al., 2020) and between activity levels in interacting individ-
s uals of different stickleback species (Webster et al., 2008). Trait correlations are also expected to
emerge when predators only search for prey that is within a feasible range given their own body
size (Portalier et al., 2019), or in plants in response to a common elevation gradient (Halbritter
s1 et al., 2018). Focusing on species mean traits to describe such interactions could lead to mislead-

ing results, for example, a naive conclusion that individuals of two species cannot interact based
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on average trait values, when in fact interactions between many pairs of individuals are possible
s« (Gonzalez-Varo and Traveset, 2016). This is why it has been argued that the focus of community
ecology should shift from species-species interactions to individual-individual interactions, in
the same way there has been a shift from the species to the individual as the unit of selection in

s7 evolutionary biology (Nakazawa, 2017).
One important mechanism by which ITV influences population dynamics is nonlinear aver-
aging: when a demographic parameter, e.g. reproductive rate, is a nonlinear function of a certain
e trait, the average value of the demographic parameter across individuals is in general not equal
to the demographic parameter of an individual with average trait value (Bjornstad and Hansen,
1994; Ruel and Ayres, 1999). In such cases, ITV can lead to directional changes in population-level
s properties. The direction and magnitude of the effect depend on the curvature of the function re-
lating the trait and the demographic parameter, according to Jensen’s inequality (Jensen, 1905, see
section 2.2.1 for more detailed explanations). Nonlinear averaging has been taken into account
s in some explorations of the conditions under which ITV promotes or hinders the coexistence of
competitors (Gravel et al., 2011; Hart et al., 2016; Stump et al., 2022; Uriarte and Menge, 2018) or
affects predator-prey dynamics (Gibert and Brassil, 2014; Okuyama, 2008; Schreiber et al., 2011).
69 Some of these studies assume that there is ITV in only one species. For example, Gibert and
Brassil (2014) explored the consequences of ITV in predator attack rate and handling time for
predation efficiency in a Rosenzweig-MacArthur predator-prey model. They used bell-shaped
72 functions to describe predation efficiency, with the highest predation efficiency at an optimum
intermediate predator trait. In other studies, there is ITV in two or more species, but each species
is only indirectly affected by the ITV in the other species, e.g. via population density (e.g. re-
75 sults on variation in competitive ability in Hart et al., 2016) or shared resources (Holdridge and
Vasseur, 2022), so that it is sufficient to deal with ITV in one species at a time. In addition, there
is limited research investigating the effects of ITV in two or more species where the outcome of
7s interaction depends on the exact trait combination of interacting individuals. Such ITV can be

taken into account by integrating over interaction kernels, i.e. functions that state the probability
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or outcome of an interaction as a function of both interaction partners’ trait values (e.g. Barabas

s1 and D’Andrea, 2016; Hart et al., 2016; McPeek et al., 2022; Senthilnathan and Gavrilets, 2021).
Here we develop a general nonlinear averaging framework to understand the population-
level effects of joint trait variation in two species engaged in direct individual-by-individual
a4 interactions. Our framework addresses two issues with previous work: First, the possibility that
individuals may encounter each other nonrandomly is not included in most previous work. To
better understand the effects of ITV, we thus need to account for trait correlations across multiple
s7 species. Second, while most previous research on the effects of ITV with individual-by-individual
interactions has been on interspecific competition (but see Senthilnathan and Gavrilets, 2021),
our framework generalizes to all types of species interactions described by arbitrary interaction
o functions. In addition to a numerical approach, we provide a flexible analytic approximation
that provides an intuitive understanding of the effects of ITV and correlations in two interacting
species. In two application examples, we then highlight two ways in which our framework can
s be useful: first, we show in the example of a predator-prey system how ITV and interspecific
trait correlations can lead to quantitative and even qualitative changes in population dynamics
and coexistence outcomes. Second, we use simulated data to show how our framework could be

o applied to estimate the effects of ITV on average interaction parameters from empirical data.

2 General modeling framework

2.1 Joint trait distribution and interaction function

% We focus on a system of two interacting species A and B characterized by mean traits y, and
jp, trait variances o7 and o7 and trait correlation p,; between interacting individuals. Our ap-
proach has two key ingredients (figure 1, left): 1) a bivariate joint trait distribution f4p(a, b) that

102 models for a pair of interacting individuals how likely the species-A individual is to have trait
value a and the species-B individual trait value b. We assume this distribution to be a bivariate

normal distribution throughout the manuscript. However, our general framework can be applied
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105 to any bivariate distribution that stays constant over the ecological time scale of interest. 2) any
interaction function y(a,b) that gives the rate and outcome of the pairwise interaction between
individuals with trait values a and b. To allow for analytic approximations, the interaction func-

s tion should be at least twice differentiable with respect to both trait values.

The interaction function can be estimated from empirical data (Bartomeus et al., 2016), either
by fitting a curve with a predefined shape, or by fitting a smooth function without specifying a

1 shape beforehand (Wetzel et al., 2016; Wood, 2006). We use the latter method in section 5 below

on simulated data to illustrate how the nonlinear averaging effect of joint ITV can be estimated

from empirical data.

us 2.1.1  Example for the mechanistic underpinning of a joint trait distribution

Let us now consider one example of how a joint trait distribution can emerge mechanistically.
Assume that individuals of both species inhabit patches (shared with a number of individuals
both of the same and of the other species) and that their traits respond plastically to the micro-
environmental conditions in their patch. In addition, there is some additional individual-specific
random effect on trait values. The trait value of an individual k of species i in patch j is then
given by

Zijk = hi +m; - Ej + €, 1)

where h; and m; are the intercept and slope of the reaction norm of species i, E; is the micro-
environment in patch j which we here assume to have mean & and variance 02, and €j is a
random individual trait effect that is drawn from an independent normal distribution with mean
0 and variance (762,1-. We assume that individuals can only interact with other individuals in the
same patch and that individuals are distributed uniformly over patches so that the total rate
at which individuals co-occur with others is the same for all individuals and independent of

traits. The joint trait distribution of interacting individuals (i.e. those in the same patch) is then
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Figure 1 — Overview of the general modeling approach. Each analysis starts with an interac-
tion function, 7, that describes the rate and outcome of the interaction between individuals
with trait value 2 and b and a joint trait distribution for pairs of interacting individuals from
species A and species B. In the examples that we show, we use a bivariate normal distribution
that is characterised by the trait means of both species (y, and y;), the standard deviations of
these trait values (0, an 03,) and the interspecific trait correlation (o, ). From these two func-
tions, the average interaction parameter is calculated using three different methods (a naive
approach, and two forms of nonlinear averaging: sampling for obtaining the exact effect size
and a Taylor approximation). Another way of computing the exact value via numerical in-
tegration is shown in S1. Finally, each estimated value for the average interaction parameter
can be substituted into an ordinary differential equation (ODE) model to predict the result-
ing differences in population dynamics. R code and a shiny app to run this workflow for a
given interaction function and joint trait distribution are provided in the online supporting
information.
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characterized by
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Note that if the mean of the environmental values changes, e.g. due to climate change, means of
the marginal trait distributions will also change, but variances and trait correlations will remain

117 constant in this model.

2.2 Quantifying the average interaction parameter

To determine the ecological consequences of trait variation in the interaction partners, we first
120 determine the average outcome (7(a, b)) of an interaction across all possible pairs of individuals,

weighted by the probability of this pairing given the joint trait distribution f4p(a,b) (figure 1):

v(a,b) = //’y(u,b)fAB(a,b)da db )

123 This assumes that the population-level outcome of the interaction can be thought of as the sum
of many individual-by-individual interactions.

We solve the double integral in Eq. (5) by averaging the interaction function over 500,000

16 trait-value pairs randomly sampled from the joint trait distribution in R (R Core Team, 2022).

This sample size led to acceptably small sampling noise, as indicated by visually nearly indistin-

guishable results from other numerical integration methods (described in S1). In the following,

120 we refer to the sampling value as the exact value of the average interaction parameter, keeping

in mind its small sampling error.

We compare the average value of y(a,b), y(a, ), to a naive estimate of the interaction strength,
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132 Y (Ma, pp), which is based only on the species mean trait values and is equivalent to a case without

ITV.

2.2.1 Analytic approximation

135 Next, we derive an insightful analytic approximation for the average interaction parameter with
ITV in both interacting species. We first briefly describe the state of the art for ITV in a single
species and then extend the approximation to two dimensions, one for each species.

138 Based on Jensen’s inequality (Jensen, 1905), the direction of the effect of ITV on the average
value of a nonlinear function depends on the curvature of the nonlinear function (figure 2A).
One can measure this curvature through the second derivative. If the function has a positive

11 second derivative (i.e. is convex) around the species mean trait (around the black point in figure
2A), a small amount of intraspecific trait variation will lead to an increase in the average value
of the demographic parameter; and if the function has a negative second derivative around the

14 species mean trait (i.e. is concave, around the grey point in figure 2A), a small amount of ITV
will reduce the average value of the demographic parameter. Quantifying the second derivative
of an ecological response variable with respect to some trait value can thus give insight into the

17 consequences of ITV (Inouye, 2005). For example, Wetzel et al. (2016) found a negative second
derivative in the function linking plant nutrient levels to herbivore performance, leading to a
negative effect of variation in nutrient levels on herbivore performance. By contrast, in predator

10 species with a type 2 functional response, consumption rate as a function of handling time has
a positive second derivative such that individual variation in handling time increases average

predator consumption rate (Bolnick et al., 2011).
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Figure 2 — Illustration of nonlinear averaging in one and two dimensions. A) A demographic
property such as per-capita growth rate depends on trait values 4. In a population with a
mean trait value near the maximum of a Gaussian function (grey point), the further two a
values are spread around this mean, the more their average per-capita growth rate (crosses)
decreases (compare orange and yellow crosses to the grey dot). This can be explained by
the negative curvature around the maximum. By contrast, in a population with mean trait
value close to the base of the curve (black point), the function has a positive curvature and
therefore the opposite occurs: the average per-capita growth rate (blue crosses) for two blue
points that are equally far from the black, middle point, is larger than the per-capita growth
rate at the average trait value (black point). B) In two dimensions, when trait values a and
b vary in two interacting species, a similar mechanism may affect the average interaction
strength: when trait means lie around the maximum of a bell-shaped interaction function
(grey dot), the curvatures are negative in all directions and as points are further spread in
the a, b—plane around the maximum, their average height decreases (orange dots). When the
trait means are close towards the base of the function (black dot), the curvatures are positive,
and the opposite effect occurs: here an increase in variation in 4 and b (from the black to
the dark blue points) leads to an increase in the average interaction strength, which may
represent for example competition strength or predation rate.

153 The effect of ITV on the average value of a nonlinear function works very similarly in two
dimensions (figure 2B) and this can be captured in an analytic approximation based on a second-
order Taylor series around the point (4, y) (see S2.1 for derivation):
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That is, ITV in species A has a positive or negative effect depending on whether the second

10
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derivative of the interaction function with respect to the trait of the species-A individual is pos-
10 itive or negative, and analogously for species B. Moreover, the direction and magnitude of the
effect of interspecific trait correlations depends on the mixed second derivative. To evaluate the
derivatives in Eq. (6) for any interaction function, we use the Deriv package in R (Clausen and

162 Sokol, 2020).
Note that similar approximations have been used previously to understand the effects of
variation in two potentially correlated environmental factors (Koussoroplis et al., 2017) and in
165 two potentially correlated traits (Koussoroplis et al., 2019) on population parameters. When traits
are symmetrically distributed, the third order errors are zero (52.2) and the magnitude of the
error of this approximation is therefore of fourth order in deviations from the respective mean
168 traits. Thus, the approximation will fit well as long as most trait values are close to the mean,
but might break down for large trait variances. Because third order errors do not disappear for
asymmetric distributions, we expect that in such cases the accuracy will go down more quickly
i1 with increasing trait variances. The evaluation of this Taylor approximation is generally less
computationally intensive compared to the numerical integration. However, the main benefit
is that the approximation makes it easier to grasp intuitively how the effect of ITV and trait
74 correlation on the average interaction function is determined by the shape of the interaction

function.

2.3 Illustration using two interaction functions

17 We now illustrate the three described estimation methods (see figure 1) on a general second-order
two-dimensional polynomial and a logistic interaction function (Table 1). For each function, we
determine the magnitude and direction of the effect of ITV and trait correlation on the average

1o interaction value, as well as the accuracy of the approximation. These examples serve as illus-
trations, but note that the approach is flexible and not limited to a bivariate normal joint trait

distribution, nor to the used interaction functions.

11
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Table 1 — Overview of the example interaction functions and their second-order partial
derivatives used in Eq. 6 to approximate y(a,b).

Interaction function y(a,b) 3273 3273 %
2 2
18 + pob= + pzab
Polynomial P P P 2p 2p2  p3

+ paa+ psb + pe

. 2y(ap)? b2y & e

Logistic  Pmax 1 o=x==m K (v(a,b) + L(g:ax) - 37;(7;3 ) & -
183 The first interaction function we explore is a two-dimensional polynomial of order two:
7(a,b) = p1a® + pab® + paab + paa + psb + pe. )

We chose this interaction function because of its flexible shape. Depending on the parameter

16 values (p;), this interaction function is shaped as a plane, paraboloid, or a saddle. Since the sign

of the interaction can change with the trait values, it can for example be used to describe predator-

prey reversal. However, the interaction function is not bounded, and when using it, one should

19 verify that it takes reasonable values over the range of trait values considered. Alternatively, one
might want to introduce bounds (see S3.2 for an example).

Using the partial derivatives from Table 1, we obtain an approximation for the average in-

12 teraction parameter, which is exact since the third and higher order derivatives are zero for this

interaction function (see also S2.2):

v(a,b) = v(@,b) + p102 + P20} + P3 * Pa,p0a0%- (8)

s If, for example, p1, p2, and p3 are zero, the interaction function reduces to a linear function in a
and b, and intraspecific variation has no effect on y(a,b).

If instead p1, p2, and p3 are all negative, with p3 having the largest absolute value (figure 3A),

105 the effect of variation in a and b on the average interaction function «(a, b) is negative when p,

is zero or close to zero (figure 3 green ellipses in A and green bar in B). This is caused by the

12
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Figure 3 — Effect of ITV on the average interaction parameter (y(a,b)) for the two interac-
tion functions in Table 1. Left column: illustrations of the interaction functions <. For the
logistic (panel C) interaction function, lines of zero (grey), maximal (dark red) and minimal
curvature (blue) are shown. Right column: the colored bars give the average interaction pa-
rameter without ITV or equivalently the naive estimate of the average interaction parameter
¥ (Ma, ptp)- The striped and hatched bars represent how ITV changes the average interaction
parameter according to the Taylor approximation and sampling approach compared to the
naive case/the case without ITV. The joint trait distributions used in B and D are shown in
A and C as three ellipses that contain 25%, 50% and 90% of all interactions, respectively,
from inner to outer ellipse. (A-B) Polynomial with p; = —0.1, p» = —0.15, p3 = —0.55,
ps=p5 =0, pe =4, 0, = 0.75, and 03, = 0.5. (C-D) Logistic with pmax =01, k=1, h =15
at y, = 4.5.
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negative curvature of the function in the a and b directions. The negative effect is even stronger
20 with a positive interspecific trait correlation (light orange and pink scenarios in figure 3 A,B).
Along the line @ = —b, in contrast, the curvature is positive, leading to a positive effect of trait
variation on the average interaction parameter when the individual trait value combinations fall
204 along this line, i.e. when trait correlation is strongly negative (figure 3 A-B, dark orange scenario,
similarly in the blue scenario). Whether the trait correlation can change the sign of the effect of
ITV depends on the value of p3 relative to p; and p; (section S3.1). Biologically, an interaction
207 function of this general shape could for example represent a mutualism that only works when
interacting individuals have diversified (complementary) traits, but turns into competition when
traits are similar. Interestingly, although the magnitude of the interaction changes with the mean
210 trait values (compare the left two bars in figure 3B to the right three), the difference between the
naive value and the other estimates only depends on oy, 03, and p, ;, (figure 3B, the effects of ITV
are the same e.g. in the blue and dark orange scenario).
213 The second interaction function we explore is a logistic interaction function (figure 3C),

. Pmax
'Y([l, b) - 1 + e—k(b—a—h) 7 (9)

where pmax is the maximum interaction rate, & is the difference in traits at which the interaction

216 rate is half the maximum and k determines the steepness of the curve. We chose this interaction
function because it is non-negative everywhere, and it is commonly used for example to model
various interactions where the rate or outcome depends on the difference in trait value between

210 interacting individuals. For the sake of concreteness, we will assume in the following that the
function represents the probability of a predator eating a prey when predation success increases
with increasing predator size b relative to prey size a.

22 When the average predator is smaller than average prey size plus h, overall hunting efficiency
is low, but trait variation in either species may yield occasional encounters between relatively

large predators and relatively small prey, resulting in an increase in average hunting success
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225 (left three bars in figure 3D). This can be understood directly from the positive curvature with
respect to both trait values in this region (figure 3C). The largest positive effect of ITV on the
approximation occurs when the curvatures are maximal, on the linea = b —h + M (dark

28 red line in figure 3C, 56.2). The effect can be further enhanced with a negative correlation (left two
bars in figure 3D). In this case, small predators are matched to large prey and obtain basically no
food, but this is more than compensated for by large predators being matched to small prey that

21 they can feed on efficiently. The effect of ITV on the average interaction parameter is reversed
in the region where the average predator is more than & larger than the average prey (right two
bars in figure 3D), with a maximum effect size in the approximation whena = b —h — w

214 (blue line in figure 3C, S6.2). The effects of ITV vanish at the boundary between these regions
(b —a = h, grey line in figure 3C), where the curvatures are zero, or when the difference between
the average trait values becomes very large.

237 The logistic interaction function can be written purely in terms of the difference between trait
values a and b and thus a change in variance in either species adds the same amount of variance

to this difference. For such interaction functions, the approximation (Eq. (6)) can be simplified

20 (see section S5):

82
1@,0) = (o, ) + 53

1 1
(EO'L% + Eag — pa,baaab). (10)

(asbiv)
Hence, variation in @ and b contributes equally to the difference between 7(a,b) and the naive
213 mean (g, pp). The difference is enhanced if the traits are highly and negatively correlated
(figure 3D), while the effect of ITV on the interaction function cancels out if the traits are perfectly
correlated (correlation coefficient p,;, = 1) and the trait variances are the same. Note that for
26 this class of interaction functions the correlation cannot change the sign of the effect of ITV,
which thus depends solely on 8827;’ (o) = ngZ (5oe) (section S5). For cases where the interaction
function only depends on the difference in trait value, we thus reach the important general

29 conclusion that, depending on the trait correlation, only taking into account variation in one

species could underestimate the effect of ITV by a factor of four (with ¢, = 0, = cand p,, = —1,

15
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the effect of ITV would be estimated as ¢2/2 when in fact it is 20?), but also falsely predict a
22 nonzero effect of ITV that disappears when both species are studied (with ¢; = 0, = ¢ and
pap = 1, the effect would be estimated as ¢?/2 when in reality it is zero).
While in the polynomial interaction function, the approximation perfectly matches the exact
255 estimate from the sampling approach, for the logistic interaction function, there is a discrep-
ancy between approximation and sampling approach, but the approximation always correctly
predicted the direction of the effect of ITV. As shown in figure S7.1, the Taylor approximation is
s close to the two exact approaches for small variances, but increasingly deviates for larger trait
variances, as expected.
In the supporting information, we study two additional interaction functions. Firstly, the
21 commonly used Gaussian interaction function that also depends only on the difference in trait
values (54). Secondly, we study a more complex and non-differentiable interaction function. This
corresponds to a polynomial on which hard limits are imposed, so that it can never turn negative
264 (section S3.2). While the sampling approach still works, the approximation does not perform
well close to discontinuities in the curvature. For this interaction function, interestingly, the trait
variation in species B affects the average interaction parameter through the correlation (last) term
27 in the approximation (Eq. 6), even though the curvature of the interaction function with respect

to b is zero.

2.4 Consequences for population dynamics and coexistence

20 Although the effects of ITV and trait correlations on average interaction parameters are already
important on their own, in the final part of our framework we go one step further and explore
how the resulting differences in average interaction parameters affect population dynamics and

213 species coexistence (figure 1, right). The population models we use here all assume that the num-
ber of individuals in both species is large so that demographic stochasticity does not play a role
and the cumulative effects of the random individual-by-individual trait-dependent interactions

276 can be well captured by the average interaction parameter 7y (a,b). As a result, the model is de-

16


https://doi.org/10.1101/2021.03.11.435001
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.435001; this version posted November 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

279

282

285

288

291

294

available under aCC-BY-NC-ND 4.0 International license.

terministic. In general, our approach allows one or more parameters of a dynamical system (in
continuous or discrete time, though here we focus on continuous-time models) to be replaced
by the average over trait-dependent interaction functions. We will now illustrate this application
for a predator-prey model. A second detailed application, for a competition model, is given in

section S10.

3 Application example 1: Qualitative and quantitative effects of ITV

and interspecific trait correlations in a predator-prey model

Consider a predator-prey model:

dN, N4

T raNa(1 ?) NaNg¢

dN

d—f = rgNp + cNANp¢, (11)

where N4 and Np are the prey and predator abundances, r4 > 0 and rg < 0 are the prey and
predator intrinsic growth rates, K is the environmental carrying capacity, c is the conversion
efficiency, and ¢ determines the interaction strength, which we assume to be trait-dependent,
and thus set it to W. In this example, we will use the logistic interaction function (Eq. (9))
with the same parameters as in figure 3C. Since the interaction outcome for this function just

depends on the difference between predator and prey trait values, it can also be displayed as in

figure 4A.

17
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Figure 4 — Effects of intraspecific trait variation and interspecific trait correlation on the attack
rate ¢ and consequently on the dynamics and qualitative outcome of the predator-prey model
(Eq. 11). Here 0, = 03, = 1.5 and the interaction is defined by a logistic interaction function
with pymar = 0.1,k = 1,h = 1.5. The dotted vertical line is where the second derivative and
thus the effect of ITV switches from positive to negative. The diamonds refer to different
parameter settings: K = 370 and correspondingly a high value of ¢t (red diamond), K =
2500 and correspondingly a low value of ¢u it (orange diamond), p, smaller than p, (grey
diamond) and y, smaller than y; (black diamond). A) Estimates of the average interaction
function at three values for the interspecific trait correlation using the sampling method.
The grey line corresponds to the naive expectation and the case without ITV. B) Regions
in parameter space with qualitatively different outcomes. C-F) Time series corresponding to
four scenarios with the average attack rate as g8ven by the sampling method. We do not show
the lines corresponding to the case without ITV because they would overlap with the brown
lines for p,;, = 0.95. Other parameter values: r4 = 1,7 = —0.3,c = 0.01.
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The qualitative and quantitative effects of ITV and trait correlations on population dynamics
and coexistence are shown in figure 4. As we have seen above (see Fig. 3 C,D), the effect of ITV
in either species can be positive or negative depending on the difference in mean trait values
(figure 4A). This effect can be almost eliminated by a strong positive correlation (thus it is no
coincidence that the points for high p,; almost overlap the line without ITV) or amplified by
a strong negative correlation. Even though the value of p,; cannot change the direction of the
effect of ITV on the average interaction parameter for interaction functions of this form, it can
still qualitatively affect the population dynamics. Coexistence in the model depends on whether
the average attack rate parameter ¢ is above a critical threshold (¢uit = — &, indicated by the
dashed horizontal lines in figure 4A), which thus depends on the carrying capacity of the prey
(S8). We show time series for high and low prey carrying capacity (red and orange diamonds),
and for cases where either the prey mean trait y, is smaller than the predator mean trait y;, (black
diamond), or the other way around (grey diamond). In the scenario with the grey diamond, the
difference in mean trait values yj, — p, is below h (grey dashed line), ITV increases ¢ and this
effect is enhanced by a strong negative trait correlation. At high carrying capacity, the minimum
average interaction parameter that leads to coexistence is low (orange diamond) and ITV com-
bined with a negative trait correlation can increase ¢ to a value above this low critical threshold
(¢crit) and thereby promote coexistence, while without ITV or with a positive trait correlation
the predators may go extinct (figure 4A,B,E). If, on the other hand, the predator-prey size differ-
ence is above h (black diamond), ITV reduces the interaction coefficient, an effect that is again
stronger when combined with a strong negative trait correlation. If the coexistence threshold
is relatively high (red diamond), this can drive the predator to extinction even if without ITV
both species could coexist, unless a strong positive trait correlation reduces the effect of ITV
(figure 4A,B,D). The potential for interspecific trait correlation to affect species coexistence is the
largest when the general effect of ITV on the average interaction parameter is maximal (on the

ln(2+\/§

lines y, — up = h = ===, as explained above). Even if the change in average interaction param-

eter is not large enough to change the qualitative outcome, extinction times (red-grey diamonds)
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or equilibrium population abundances (orange-black diamonds) can be affected, although in this

case the effect is only small (figure 4A,B,C,F, see S8.1 for more detailed information).

2 4 Different parametrization options

Before moving on to the next application example, we would like to point out one subtlety
about our approach: There is not always just one correct way of setting up or estimating the
interaction function and joint trait distribution, but there can be multiple equivalent ways that
can be more or less convenient depending on the research question and study design. In fact, it
is always possible to account for all the information about occurrence or encounter patterns in
the interaction function and work with the marginal distributions, i.e. have no correlation, since

the average interaction parameter can be rewritten as

[ 2@b)fana b)dads = [[ 4" (a,b)fa(a) fo(v)dact (12)
with a new interaction function

o (@b fas(a )
R NATAD) 13)

and marginal trait distributions f4(a) and fg(b).
Thus, the joint trait distribution and the interaction function allow us to parameterize the
sz system in different ways depending on what is easiest and most meaningful given the biological
system and potential empirical data. We will illustrate these different parametrization options for
a predator-prey system. A first way to parameterize the system is to assume that the trait values
;0 of interacting predator and prey individuals are independently drawn from their respective trait
distributions, i.e. the joint trait distribution is the product of the two marginal distributions (f4 (a)
and fg(b)). The interaction function then gives the rate and outcome of an interaction of the

;3 randomly generated pair of individuals given their trait values. This parametrization corresponds
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to the right hand side of Eq. (12) and makes sense if interactions between individuals indeed
occur randomly with respect to traits. If individuals interact non-randomly with respect to traits,
for example because predators and prey with larger trait values tend to co-occur more often in the
same micro-environments or encounter each other more often, it can still be used, but the non-
random interaction then needs to be modeled as part of the interaction function. In the predator-
prey example, the interaction function then can be understood as integrating the probability that
individuals with certain trait values co-occur, the rate at which they encounter each other, and the
probability that the predator successfully kills the prey. Such a parametrization can make sense
if one has data on the marginal trait distribution, but no data on co-occurrence and encounter
patterns.

If one does have such data available, it can make more sense to parameterize the system using
a joint trait distribution function with non-zero correlation (left hand side of Eq. (12)). For exam-
ple, if one has data on trait-dependent spatial or temporal co-occurrence patterns, the joint trait
distribution would specify how likely the pairs of individuals with different trait combinations
are to co-occur, and the interaction function would model the rate at which co-occurring indi-
viduals encounter each other and the predator then successfully captures the prey. If one even
has data on trait patterns of pairs of individuals that encounter each other, then the joint trait
distribution could be parameterized as the distribution of pairs of trait values in predator-prey
encounters and the interaction function as the overall encounter rate times the probability that
the predator successfully kills the prey given an encounter. But we have to be cautious because
the joint trait distribution will have the trait distributions of the individual species as marginal
distributions only if the probability that an individual is part of some interaction pair does not
depend on traits. While parts of our framework still work if this assumption is not met, others
like predicting interaction outcomes for different trait variances will not. So, in this case we rec-
ommend to also obtain the marginal trait distributions for the individual species and work with

uncorrelated trait distributions.

21


https://doi.org/10.1101/2021.03.11.435001
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.435001; this version posted November 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

x 5 Application example 2: Estimating the effects of ITV from field data

Here we use simulated field data to illustrate how the joint trait distribution, interaction func-
tion and consequentially the effects of intraspecific trait variation can be estimated from em-
363 pirical data. Consider a hypothetical field site structured into 100 micro-habitats and inhabited
by two interacting populations: a predator population and a prey population. To generate our
artificial data set, we assumed the mechanism outlined in section 2.1.1 where individuals ex-
6 hibit phenotypic plasticity in response to an environmental factor in their micro-environment
(Eq. 1). We assumed that the values of this environmental factor are drawn from a normal
distribution with mean 0 and standard deviation ¢? = 1.5. In each micro-habitat, there are
30 400 prey individuals and 10 predator individuals. The random individual trait effect has stan-
dard deviation o, = 0., = 0.7 in both species. We considered two scenarios, one in which
ha = 4,hp = 4,my = 0.5,mp = —0.6, i.e. prey and predator respond in opposite ways to the
sz micro-environment, which leads to a negative correlation among prey and predator trait values
in interacting individuals (figure 5A), and one where prey and predator respond similarly with
ha =2,hg =4,my = 0.5,mp = 0.6, which leads to a positive correlation (figure 5B). We assume
s that the encounter rate for each pair of individuals in the same patch is 0.001. With an observa-
tion time of 1 time unit, the number of encounters for each pair of individuals in the same patch
is then Poisson-distributed with mean 0.001. Given an encounter, the predator kills the prey with
ss  a probability based on the logistic interaction function (with k = 1 and h = 1.5 like in figure
4 A, but with pyex = 1). Our pseudo-observed data set then contains all the encounters and
for each encounter the prey individual’s trait value, the predator individual’s trait value, and
ss1 whether or not the predator was successful in killing the prey. Note that we assume that prey
individuals that are killed are replaced by another individual with the same trait value such that
the population size and the trait distributions stay constant over time.
384 Given such a pseudo-observed data set, our final goal is to estimate the impact of ITV on total

predation success, i.e., the total number of kills made, of course assuming that the true input
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parameters are not known. For this, we first fit an interaction function §(a, b) by fitting a tensor
se7 - product smooth to the data using the mgcv library (Wood, 2006) in R (R Core Team, 2022). The
tensor product smooth does not make any prior assumptions about the shape of the interaction
function and allows for interactive effects. In the fit, we use family “binomial” and a logit link
30 because our predation success data is binary. We then randomly sample 500, 000 new pairs of trait
values for interacting individuals from a multivariate normal distribution parameterized with the
means, standard deviations and the correlation coefficient estimated directly from the observed
303 trait values across all the encounters. By then averaging the §(a,b) values of the sampled trait-
value pairs, we get a sampling estimate of the average interaction parameter.
To obtain a Taylor approximation, we use a numerical method (the hessian function from
36 the numDeriv package) to obtain the second partial derivatives from the estimated interaction
function §(a,b). We then plug these curvatures and the estimated distribution parameters into
(6). To obtain the estimated mean predation rate without ITV, we simply plug the estimated mean
300 trait values @ and b into the estimated interaction function to obtain 4(a,b). The estimated effect
of ITV relative to the case without ITV is then the average predation success with ITV minus the
average predation success without ITV, §(a, b), divided by 4(a,b). If this were a real field study,
w2 we would be done now and state this result or we might do some bootstrapping, but there is
usually no way to verify it in the field. With simulated data, however, we can check how well we
have done by also simulating a second data set without ITV, where all individuals of species i
ss have a trait equal to the mean trait as given by Eq. (2), and analogously quantifying the relative
change in predation success due to ITV. Since there is a lot of stochasticity in the true data, we ran
this whole experiment 100 times. That is, for each replicate, we had one simulation run without
w8 ITV and one with ITV. While the estimates of the effect of ITV were only based on the simulation
run with ITV, the “true” value of the effect of ITV was based on comparing these two runs.
Across the 100 replicates, the shape of the interaction function is generally estimated very
an well (figure 5 C, D) and the median relative change in predation success due to ITV is well

approximated by the sampling method (figure 5 E,F). In the first scenario, it correctly predicts
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a strong positive effect of ITV on predation success, in the second scenario a weaker negative
effect. In the first scenario, the approximation somewhat overestimates the effect of ITV, while in
the second scenario it captures the effect of ITV well. The results are qualitatively similar in cases
with lower or no environmental variance o, (figure S9.1 and S9.2), but since a lower o, leads to
lower ITV and weaker correlations, the effects of ITV are overall weaker. This experiment shows
that, given sufficient data, it is possible in principle to estimate both the shape of the interaction
function and the impact of ITV on average interacting parameters just from a data set of pairs of

interacting individuals and the outcome of each interaction.
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Figure 5 — Illustration of our approach of estimating the impact of ITV on average preda-
tion success from field data. The two columns show two scenarios that differ in the reaction
norms via which individuals respond to their micro-environment. A, B) Trait values of pairs
of interacting individuals in the first replicate, with successful kills shown in red and encoun-
ters where the prey escaped shown in blue. Across all replicates in A, there were on average
2191.5 encounters, with 610.8 kills and 1580.7 escapes. In B, there were on average 2187.7 en-
counters, with 1317.7 kills and 870.1 escapes. C, D) Estimated interaction function for the first
20 replicates shown in dashed gray lines. Note that we have evaluated the two-dimensional
interaction function at the respective mean prey trait /14. The true interaction function is
shown in black. E, F) Boxplots of true and estimated effects of ITV on total predation success
among the 100 replicates.

6 Discussion

6.1 General modeling framework

Our modeling approach has two key ingredients, the joint trait distribution and the interaction
function, based on which the impacts of ITV and trait correlations can be estimated in different
ways. Exact estimates can be obtained from a random sampling method or other types of numer-
ical integration over the interaction function with respect to the joint trait distribution. On the
other hand, the Taylor approximation is computationally more efficient, depends only on local
estimates of the curvatures, and provides additional insight into how the different components
of ITV contribute to the average interaction parameter. While the approximation is exact when
curvatures are constant, as is the case for a second-order polynomial, it may be inaccurate when
the curvatures change significantly over the part of trait space where the bulk of the interactions
take place. For example in our non-differentiable interaction function, the approximation could
even predict an effect in the opposite direction whenever interactions took place on both sides of
a discontinuity (see section S3.2). For the logistic and Gaussian interaction functions, the second-
order Taylor approximation always correctly predicted the direction of the change compared to
the naive value where the species’ mean trait values are plugged into the interaction function or
equivalently to the case without ITV (figure 3 and figure S4.1). However, when variances were

large, the approximation tended to overestimate their impact, potentially leading to wrong con-

26


https://doi.org/10.1101/2021.03.11.435001
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.11.435001; this version posted November 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

w1 clusions regarding species coexistence. Note that higher order terms can be straightforwardly
included into the approximation when traits are bivariate normal (as shown in 52.3). The higher
order terms improve the accuracy when trait variances are small, but they may decrease the accu-
as  racy when trait variances are large (figure S2.1). This behaviour is expected because, away from
the point at which the approximation is performed, Taylor approximations do not necessarily
converge with increasing number of terms (see for example §6.2.1 in Witelski and Bowen, 2015).
aa7 Taylor approximations have been used to link trait variation to population dynamics before,
both in single-species models (Bjornstad and Hansen, 1994) and in models with two competing
species with an underlying trait, that affects inter- and intraspecific competition simultaneously
w0 (Hart et al., 2016). More generally, such Taylor approximations have also been used to study the
effect of spatio-temporal variation in environmental conditions on species” growth rates, as well
as population and community dynamics (e.g. Bernhardt et al. 2018; Denny 2019; Gravel et al.
ss3 2011; Koussoroplis et al. 2017; and the ”scale-transition theory” in modern coexistence theory
Barabas et al. 2018; Chesson 2012; Chesson et al. 2005; Melbourne and Chesson 2005). For exam-
ple, in modern coexistence theory, the effect of spatial or temporal environmental heterogeneity
a6 on fitness is captured well by the product of local curvature of the fitness function and environ-
mental variance as long as the environmental variability is small relative to the scale over which
the curvature of the fitness function changes. In other cases, other properties of the distribution
s (e.g. frequency of extreme environmental conditions) can become important and one would need
full knowledge of the distribution function and fitness function to quantify the effects. Our Tay-
lor approximation shares the strengths and weaknesses of these earlier approaches in that it also
w2 provides intuitive results, in our case for the joint effects of trait variation and correlations in two
interacting species, but depends on accurate estimates of the curvatures and trait variation being

small relative to the scale of the interaction function.
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45 6.2 The effect of ITV and trait correlations on population dynamics and
coexistence

Our results show how ITV in each of two interacting species can affect average interaction pa-
ws rameters such as predation rates through nonlinear averaging over the joint trait distribution. The
magnitude and direction of this effect depend on the shape of the interaction function, average
trait values, amounts of trait variation in each species, as well as on the trait correlation between

s interacting individuals. As we have seen in our first application example, these nonlinear av-
eraging effects can change the joint population dynamics both quantitatively (e.g. influencing
equilibrium population densities) and qualitatively (species coexistence or extinction).

474 One class of interaction functions we have looked at in detail are those for which interac-
tion outcomes only depend on the difference in trait values. This seems to be roughly the case
for size-based predator-prey interaction when size is measured on a logarithmic scale (Portal-

77 ier et al., 2019). We have shown that for such interaction functions trait correlations can nullify
or double the effect of ITV on the average interaction function. This can lead to qualitative dif-
ferences in the resulting population dynamics. For example in our predator-prey model, strong

a0 positive trait correlations could prevent or cause predator extinctions, depending on the differ-
ence in mean trait value between prey and predator. When predators are sufficiently larger or
faster than prey (black diamond in figure 4) and thus, on average, very efficient at capturing

w3 them, a positive correlation ensures that each predator is matched to a prey that it can hunt effec-
tively. Such a correlation could emerge from co-occurrence patterns or via behavioral choices of
the predators to only pursue prey items that are not too large but also worth the energy expen-
ass  diture of hunting, capturing, and handling them (Portalier et al., 2019). In particular when prey
have a small carrying capacity or when predators need a large number of prey items to survive,
such positive correlation can prevent the predators from going extinct. Conversely when prey are
a0 relatively large or fast relative to predators such that predators are generally poor at consuming

prey, while at the same time the critical predation rate is low because prey are abundant or pro-
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vide a lot of energy per capture, a negative correlation ensures that at least the large predators

w2 are matched to a prey that they can hunt effectively, thereby preventing the predator from go-

ing extinct (figure 4). If we had instead used a Gaussian interaction function, the average attack

rate parameter would increase with increasing trait correlations when trait means are close to-

s gether, but decrease when trait means are far apart, regardless of the sign of the difference. Such

a mismatch-based interaction function has been used for example in a Rosenzweig-MacArthur

model where an increase in variation in attack rate and handling time tends to promote coexis-

a8 tence when trait mismatch is large and hinder coexistence when trait mismatch is small (Gibert
and Brassil, 2014; Gibert and DeLong, 2015).

In an additional example in SI S10, we similarly explored the effects of ITV and trait correla-

so1 tions in a competition model. This example also illustrates that multiple model parameters can be

simultaneously affected by ITV and trait correlations, in this case the interspecific competition co-

efficient and the two intraspecific competition coefficients. While many of the results recapitulate

s« earlier findings by Hart et al. (2016) and Barabas and D’Andrea (2016), we also made a few new

observations. For example, when the trait means of the competing species are close together, ITV

in either species can promote coexistence in some cases where interspecific competition width is

so7 smaller than intraspecific competition width (see figure 510.3).

6.3 Estimating the effects of ITV from data

So far, there have been studies examining the impact of ITV in a single species on average inter-
si0 action parameters from laboratory experimental data or a mix of field data and laboratory data
(Coblentz et al., 2021; Pearse et al., 2018; Wetzel et al., 2016). Furthermore, (Hausch et al., 2018)
performed an experiment where they investigated the consequences of ITV in two competing
513 species on species invasion growth rates and coexistence. However, to our knowledge, it is so
far not clear how the effect of joint ITV in two interacting species can be estimated based on
tield data. Being able to do this would help assess the importance of ITV in natural ecological

si6  communities and thus for biodiversity conservation.
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In our second application example, we have thus used simulated data to illustrate how the
impact of ITV in two interacting species on average interaction parameters can be estimated from
field data. In this example, the available data set consisted of observations of encounter events
between predator individuals and prey individuals. For each observed encounter, we had the trait
value of the prey individual, the trait value of the predator and the outcome of the interaction,
i.e., whether the predator successfully killed the prey. In this case, it was natural to parameterize
the joint trait distribution as the distribution of pairs of trait values in individuals that encounter
each other and to parameterize the interaction function as the outcome of the predation attempt
given that individuals with certain trait values encounter each other.

However, in other cases one might only have data on marginal trait distributions of each
species and trait values of both individuals for successful predation events, e.g. from predator
gut content analysis. In such cases, one can assume that both trait values are drawn indepen-
dently (i.e. the joint trait distribution is the product of the marginal distributions) and the inter-
action function then describes both the probability that two individuals with given trait values
actually interact, for example the probability that a predator with trait value a encounters a prey
individual with trait value b and the outcome of the interaction.

The benefit of this flexibility is that the model can be parameterized in different ways depend-
ing on what is most convenient given the experimental design or available field data. If sufficient
data are available, we recommend parametrizing the model with a joint trait distribution with
potential trait correlations as this can give more mechanistic insights into the effects of ITV com-
pared to a model where trait effects on co-occurrence, encounter, and outcomes of the encounter
are all lumped together into the same interaction function.

If one assumes a bivariate normal distribution, the parameters of the joint trait distribution
can be obtained simply by computing means, variances and covariance from the observed trait
data. Other distributions can be fit in similarly if necessary. However, one could also work with
a (smoothed) empirical distribution to avoid assumptions on the shape of the joint trait distri-

bution. To fit the interaction function, we recommend using a flexible approach such as a tensor
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product smooth (Wood, 2006) that does not make strong a priori assumptions on the shape of the
interaction function. Although this approach is more data-demanding than approaches where a

s46 certain functional form is assumed (as e.g. in Bartomeus et al., 2016), it has the advantage that
the curvature of the interaction function, which ultimately determines the direction of the effect
of ITV, emerges from the data, thereby avoiding bias in a certain direction.

549 While applying our approach to real field data is beyond the scope of this article, there are al-
ready some promising data sets containing individual observations of interaction outcomes and
the trait values of the interacting partners. For example, pollination success has been recorded for

ss2 plants with different nectar-holder morphology interacting with pollinators with various beak or
proboscis lengths (Ibanez, 2012; Missagia and Alves, 2018). Similarly, data are available on trait
matching between predator feeding and prey vulnerability (Brousseau et al., 2018), insects and

55 deadwood’s chemical compound traits in detritivore networks (Wende et al., 2017), and morpho-
logical plant and animal traits in plant-frugivore (Bender et al., 2018) or detritivore (Brousseau
et al., 2019) networks. Bartomeus et al. (2016) have indeed fitted Gaussian interaction functions

sss on datasets describing fish predator-prey body size (Barnes et al., 2008), grasshopper incisive
strength and leaf dry matter relationship (Deraison et al., 2015), and plant-pollinator data (Bar-
tomeus et al., 2008). While many of these examples pool multiple species within a functional

ss1  group, our approach should still be usable. Despite these examples, more such data on indi-
vidual by individual interactions are needed in order to better understand the effect of ITV on

species interactions.

564 6.4 OMthOk

There are multiple ways in which our approach can be extended to include more biological
realism. First, our approach could be straightforwardly extended to allow for multiple traits

se7 affecting different ODE parameters or systems with more than two species.
Second, like many previous studies (e.g. Begon and Wall, 1987; Stump et al., 2022), we have

assumed static non-heritable trait distributions. These can arise through stable age or stage struc-
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s tures (as expected in matrix models and integral projection models, see for example Caswell,
2001; Easterling et al., 2000) or through phenotypic plasticity in response to a distribution of
microenvironments, as explained in the derivation above (Moran et al., 2016). In the latter case

s3 we would expect the trait correlation patterns also to remain constant over time. However, one
might expect the joint trait distribution to change both directly as well as over multiple gen-
erations, for example if prey with certain trait values are being consumed more frequently, or

s7e - individuals with a certain trait value face stronger competition than others, or simply because
of variable environmental conditions driving plastic trait variation (Jackson and Xue, 2024). To
allow for changing trait distributions over time, we could combine our framework with one of
s79  the existing approaches for modeling changes in trait distributions. To deal for example with
the gradual loss of prey items in a predator-prey setting, we could employ approaches similar
to those developed for estimating functional response curves from experimental data (DeLong,
ss2 2021). Assuming asexual reproduction, we could use partial differential equations or moment
equations to model the eco-evolutionary dynamics of population sizes and trait distributions
(see e.g. Senthilnathan and Gavrilets, 2021; Wickman et al., 2023). For systems where heritability

s is not perfect, but the prey can be described in terms of two genetic types with different trait
means and remaining plastic trait variation in each type (see e.g. Okuyama, 2011; Schreiber et al.,
2011), we can average the interaction between each of the prey types and the predator and still

sss  Obtain an intuitive understanding of the effect of ITV on the average interaction parameters. Al-
ternatively, we could allow for temporally changing trait values in either species by calculating
a selection gradient from the interaction function and letting the mean trait value evolve accord-

s ingly (e.g. Barabds and D’Andrea, 2016; Bengfort et al., 2017; Lande, 1976). At any given time step
we can then calculate the effect of ITV on the average interaction function, based on the mean
trait values, and we can use the approximation to speed up the process. Models that allow for

s dynamic shifts in trait distributions can sometimes exhibit quite different behavior from those
with fixed trait distribution (Jackson and Xue, 2023).

Third, another assumption of the framework is that the total interaction parameter can be
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so7  written as the sum of independent individual-by-individual interactions. However, in some im-
portant ecological models, this is not the case. For example in predator-prey systems with preda-
tor saturation (such as models with a type II functional response), whether or not a predator

s0 individual eats a particular prey individual can depend on how many prey individuals it has
consumed previously and thus also on their traits. While ITV just in the predator can be in-
corporated relatively easily (see e.g. Gibert and Brassil, 2014; Okuyama, 2008; Schreiber et al.,

03 2011), extending our approach to including trait variation in both species and interspecific trait
correlation into such models requires further research. Alternatively to nonlinear averaging, one
could also explicitly keep track of the number of hunting and the number of handling preda-

s06 tors separately to account for predator saturation (Okuyama, 2012). Non-independence between
pairwise interactions may also occur. For example, in plant communities, associational effects are
often observed where the herbivory pressure on a focal plant depends on its neighbors and their

e0o traits, e.g. their level of defense or ontogenetic stage (Cope et al., 2020; Hahn and Orrock, 2016).
Furthermore, individuals may adjust their physiology or behavior in response to an interaction
partner, which then affects the outcome of subsequent interactions with other individuals (e.g.

s12  physiological tracking of herbivores, Pearse et al., 2018). Developing a general framework that

describes such non-additive cases coherently is an important direction for future research.

6.5 Conclusion

s1s  Our approach can be applied to a large variety of interaction functions and joint trait distribu-
tions. It allows for a straightforward and rapid assessment of the expected effect of variation
in two species and interspecific trait correlations on the average interaction parameter. We have
sis furthermore shown that such effects can strongly affect population dynamics in the example of
a predator-prey system and can even make or break species coexistence. Finally, we have shown
that by estimating the joint trait distribution and the interaction function and then applying our

s21 approach, the impact of ITV can in principle be estimated from field data.
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