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Abstract

The dominant view in neuroscience is that changes in synaptic weights underlie
learning. It is unclear, however, how the brain is able to determine which synapses
should change, and by how much. This uncertainty stands in sharp contrast to deep
learning, where changes in weights are explicitly engineered to optimize performance.
However, the main tool for that, backpropagation, has two problems. One is neuro-
science related: it is not biologically plausible. The other is inherent: networks trained
with this rule tend to forget old tasks when learning new ones. Here we introduce
the Dendritic Gated Network (DGN), a variant of the Gated Linear Network, which
offers a biologically plausible alternative to backpropagation. DGNs combine dendritic
‘gating’ (whereby interneurons target dendrites to shape neuronal responses) with lo-
cal learning rules to yield provably efficient performance. They are significantly more
data efficient than conventional artificial networks, and are highly resistant to forget-
ting. Consequently, they perform well on a variety of tasks, in some cases better than
backpropagation. Importantly, DGNs have structural and functional similarities to
the cerebellum, a link that we strengthen by using in vivo two-photon calcium imaging
to show that single interneurons suppress activity in individual dendritic branches of
Purkinje cells, a key feature of the model. Thus, DGNs leverage targeted dendritic
inhibition and local learning — two features ubiquitous in the brain — to achieve fast
and efficient learning.
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a 1 Introduction

32 A hallmark of intelligent systems is their ability to learn. Humans, for instance, are
33 capable of amazing feats — language acquisition and abstract reasoning being the most
3 notable — and even fruit flies can learn simple reward associations [1,2]. It is widely
35 believed that this learning is implemented via synaptic plasticity. But which synapses
36 should change in response to, say the appearance of a reward, and by how much?
37 This is especially hard to answer in humans, who have about 10'* synapses, but it is
38 hard even in fruit flies, which have about 107 — corresponding to 10 million adjustable
39 parameters.

40 One answer to this question is known: introduce a loss function (a function that
4 measures some aspect of performance, with higher performance corresponding to lower
2 loss), compute the gradient of the loss with respect to the weights (find the direction
a3 in weight space that yields the largest improvement in performance), and change the
i weights in that direction. If the weight changes are not too large, this will, on average,
a5 reduce the loss, and so improve overall performance.

46 This approach has been amazingly successful in artificial neural networks, and has
a7 in fact driven the deep learning revolution [3]. However, the algorithm for computing
a8 the gradient in deep networks is not directly applicable to biological systems, as first
49 pointed out by [4,5] (see also recent reviews [6-8]). There are several reasons for this.
50 First, to implement backpropagation [9H11], referred to simply as backprop, neurons
51 would need to know their outgoing weights. Second, backprop requires two stages:
52 a forward pass (for computation) and a backward pass (for learning). Moreover, in
53 the backward pass an error signal must propagate from higher to lower areas, layer
54 by layer (Fig.[I]A), and during that backward pass information from the forward pass
55 must remain in the neurons. However, biological neurons do not know their outgoing
56 weights, and there is no evidence for a complicated, time-separated backward pass.

57 Backprop also leads to another problem, at least in standard deep learning setups:
58 it adapts to the data it has seen most recently, so when learning a new task it forgets
59 old ones [12]. This is known as catastrophic forgetting, and prevents networks trained
60 with backprop to display the lifelong learning that comes so easily to essentially all
61 organisms [13,|14].

62 Driven in part by the biological implausibility of backprop, there have been several
63 proposals for architectures and learning rules that might be relevant to the brain.
64 These include feedback alignment [1516], creative use of dendrites |17,/18], multiplexing
65 [19], and methods in which the error signal is fed directly to each layer rather than
66 propagating backwards from the output layer [20-28]. A particularly promising method
67 that falls into the latter category is embodied in Gated Linear Networks [29,30]. These
68 networks, which were motivated from a machine learning rather than a neuroscience
69 perspective, have obtained state-of-the-art results in regression and denoising [31],
70 contextual bandit optimization [32], and transfer learning [33].

7 In Gated Linear Networks (GLNs), the goal of every neuron, irrespective of its layer,
7 is to predict the target output based on the input from the layer directly below it. This
7 is very different from backprop, in which neurons in intermediate layers extract features
7 that make it easier for subsequent layers to predict the target (compare Figs.|[l|A and B).
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Figure 1: Comparison of multi-layer perceptrons (MLPs) and Dendrtic Gated Networks
(DGNs). In all panels the blue filled circles at the bottom correspond to the input. A.
MLP. Blue arrows show feedforward computations; red arrows show the error propagating
back down. B. DGN. As with MLPs, information propagates up, as again shown by the
blue arrows. However, rather than the error propagating down, each layer receives the
target output, which it uses for learning. Connections from the input to each layer (light
blue arrows) support the gating. C. A single postsynaptic neuron in layer k£ of a DGN,
along with several presynaptic neurons in layer kK — 1. Each branch gets input from all the
presynaptic neurons (although this is not necessary), and those branches are gated on and
off by inhibitory interneurons which receive external input. The white interneuron is active,
so its corresponding branch is gated off, as indicated by the light gray branches; the gray
neurons are not active, so their branches are gated on.

Gated Linear Networks are thus particularly suitable for biologically plausible learning:
every neuron is essentially part of a shallow network, with no hidden layers, for which
the delta rule [34] — a rule that depends only on presynaptic and postsynaptic activity
— is sufficient to learn.

To implement these local learning rules, the target activity (a scalar) is sent to every
neuron, in every layer of the network (Fig. , red arrows). This is typical of a large
class of learning rules ,. Completely atypical, though, is the role of the
external input. It is used for gating the weights: each neuron has a bank of weights at
its disposal, and the external input determines which one from that bank is used. For
example, a neuron might use one set of weights when the visual input contains motion
cues predominantly to the right; another set of weights when it contains motion cues
predominantly to the left; and yet another when there are no motion cues at all. (Note
that this example is over-simplified: in practice the input is high dimensional, and the
mapping from external input to the chosen set of weights contains very little structure;
see Fig. 2IC.)

Having a “look-up” table, in which each input corresponds to a particular set of
weights, is inconsistent with what we see in the brain. However, we can attain the
performance of Gated Linear networks by gating dendritic branches on and off, using
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Figure 2: Random mapping (here imple-
mented with so-called half-space gating,
which we use throughout the paper; see
Eq. ), shown for two dimensional input
for clarity. (In realistic cases the input is,
of course, high dimensional.) A. Two in-
put neurons (blue) connect to three dendritic
branches, and gate them either on or off.
Each gate divides the two dimensional in-
put into two half-spaces, one of which shuts
down the gate, silencing the corresponding
dendritic branch. B. For the input on this
particular trial (blue dot in bottom square),
the gate g;; (red) is off, while g;; (teal) and
g,‘Z”i (yellow) are on, as indicated by the three
squares with the corresponding colors. The
top square shows a summary of the possible
combinations of weights. Each of the seven
regions has a different combination, mak-
ing it possible to implement a large range
of input-output mappings. C. A more re-
alistic case of 10 branches. In DGNs, each
coloured region corresponds to a linear com-
bination of 10 sets of weights. This is in
contrast to GLNs, which use a separate set
of weights for each region.
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inhibitory neurons, in an input-dependent manner (Figs and . We thus replace
the weight look-up mechanism of GLNs with linearly additive dendritic weights, and
refer to these networks as Dendritic Gated Networks (DGNs). Perhaps surprisingly,
the mapping from the input to the dendritic branches is completely random, so the
input isn’t chosen to target specific branches (see, for example, Fig. ) This stands
in sharp contrast to architectures where the gating is learned [35]. But the unlearned,
random mapping is in fact a key ingredient, as it allows DGNs to represent essentially
arbitrary nonlinear functions efficiently. Moreover, this gating makes DGNs especially
resistant to forgetting. In particular, when data comes in separate “tasks”, DGNs can
learn new ones without forgetting the old. Finally, the loss is a convex function of the
weights for each unit (see Supplementary Information, “Convexity”), as it is in Gated
Linear Networks [29]. Convexity is an extremely useful feature, as it enables DGNs,
like the Gated Linear Networks on which they are based, to learn quickly.

Below we describe multi-layer Dendritic Gated Networks in detail — both the ar-
chitecture and the learning rule. We then train them on four tasks: two on which
vanilla feedforward networks trained with backprop typically exhibit catastrophic for-
getting, and two relevant to the cerebellum. We map the proposed learning rule and
the associated architecture to the cerebellum because 1) the climbing fibers provide
a well-defined feedback signal; 2) its input-output function is relatively linear [36H38];
and 3) molecular layer interneurons could act as gates [39-48|. Finally, we demonstrate
experimentally that a key prediction of the DGN — suppression of individual dendritic
branches by interneurons — is observed in cerebellar Purkinje cell spiny branchlets in
vivo.  Thus, our theoretical and experimental results draw a specific link between
learning in DGNs and the functional architecture of the cerebellum. The generality of
the DGN architecture should also allow this algorithm to be implemented in a range
of networks in the mammalian brain, including the neocortex.

2 Results

2.1 Dendritic Gated Networks

Dendritic Gated Networks, like conventional deep networks, are made up of multiple
layers, with the input to each layer consisting of a linear combination of the activity
in the previous layer. Unlike conventional deep networks, however, the weights are
controlled by external input, via gating functions, denoted g(x); those functions are
implemented via dendritic branches (Figs. [IB, C and [2)). This results in the following
network equations. The activity (i.e., the instantaneous firing rate) of the i neuron
in layer k, denoted 7y, is

By, ng_1
b b
Tki = ¢ ng,i(x) Z wk,z'jhk—lu‘ ) (1)
b=1 §=0
with the synaptic drive, hy_1 ;, given in terms of r,_; ; as

hi—1j =0 (re—1) - (2)
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Here ¢(-) is the activation function (either identity or sigmoid), ry; is the activity of
ith neuron in layer k (with k0 set to 1 to allow for a bias), By ; is the number of
branches of neuron ¢ in layer k, wzyij is the weight from neuron j in layer kK — 1 to
the b*™® branch of neuron i in layer k, nj is the number of neurons in layer k, and
gzyi(x) is the binary gating variable; depending on the external input, x (taken to be

an n-dimensional vector), it’s either 1 (in which case the b*" branch of the i*" neuron
is gated on) or 0 (in which case it’s gated off). There are K layers, so k runs from 1 to
K. The input to the bottom layer is x — the same as the input to the gating variable.

The mapping from the input, x, to the gating variable, ¢°.(x), is not learned;
instead, it is pre-specified, and does not change with time. In all of our simulations we
use random half-space gating [29]; that is,

1 if v0.o.x>6b.
b ki = Yk,
(x) = ’ ’ 3
9,i (%) {0 otherwise ®)

where vii and Hllii are sampled randomly and kept fixed throughout learning (see
Methods)’7 and ¢ is the standard dot product.

Note that a Dendritic Gated Network with one branch reduces to a Gated Linear
Network. With a caveat: in the original formulation [29], Gated Linear Networks had
a nonzero weight for each input, x, which is not the case if weights are completely
gated off for one of the half spaces (because in that case the weights are zero). For
a detailed description of the difference between GLNs and DGNs, see Supplementary
Information, “Difference between GLNs and DGNs”.

In Dendritic Gated Networks, the goal of each neuron is to predict the target output,
denoted r* (which is a function of x; we suppress the x-dependence to reduce clutter).
To do that, the weights, fwz’ij, are modified to reduce the loss, €5 (r*, 7y ;). For weight
updates we use gradient descent,

b 0l(r*,71.4)

where 7 is the learning rate, and the updates are performed after each sample. The form
of the loss can influence both the speed of learning and the asymptotic performance,
but conceptually we should just think of it as some distance between r* and 7y ;. In
the simplest case, which is suitable for regression, ¢ is the identity (ry; = hy;) and the
loss is quadratic,

* 1 *
5(7’ 7rk,i) - i(r - rk,i)2v (5)
so the update rule is
Aw} i =g (K)(r* = rri) hi— - (6)

This has the form of a gated version of the delta rule |34]. For classification, a different
loss function is more appropriate. However, the update rule still has the form of a
gated version of the delta rule; see Methods, Sec. for details.
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2.2 Simulations

Equations and for the network dynamics and Eq. for learning constitute
a complete description of our model. For a given problem, we just need to choose a
target input-output relationship (a mapping from x to r*) and specify the loss func-
tions, £(r*,ry,;). Here we consider four tasks. The first two, designed to illustrate the
resistance of DGNs to catastrophic forgetting, are classification tasks, for which we
use a sigmoid activation and cross-entropy loss (Methods, Sec. ; the second two,
which are relevant to the cerebellum, are regression tasks, for which we use an identity
activation and quadratic loss, as just described.

DGNs can mitigate catastrophic forgetting.

Animals are able to acquire new skills throughout life, seemingly without compromising
their ability to solve previously learned tasks [13,/14]. Standard networks do not share
this ability: when trained on two tasks in a row, they tend to forget the first one.
This phenomenon, known as “catastrophic forgetting”, is an old problem [49-51], and
many algorithms have been developed to address it. These typically fall into two
categories. The first involves replaying tasks previously seen during training [51H53].
The second involves explicitly maintaining additional sets of model parameters related
to previously learned tasks. Examples include freezing a subset of weights [54}/55],
dynamically adjusting learning rates |56], and augmenting the loss with regularization
terms with respect to past parameters [57-59]. A limitation of these approaches (aside
from additional algorithmic and computational complexity) is that they require task
boundaries to be provided or accurately inferred.

Unlike contemporary neural networks, the DGN architecture and learning rule is
naturally robust to catastrophic forgetting without any modifications or knowledge of
task boundaries (something that has been shown for Gated Linear Networks as well
[30]). In Fig. |3| we illustrate, on a simple task, the mechanism behind this robustness,
and show how it differs from a standard multi-layer perceptron; details are given in
the caption.

To demonstrate robustness to catastrophic forgetting on a more challenging task,
we train a DGN on the pixel-permuted MNIST continual learning benchmark [57.|60].
In this benchmark, the network has to learn random permutations of the input pixels,
with the random permutation changing every 60,000 trials (see Methods for additional
details). We compare the DGN to a multi layer perceptron (MLP) with and without
elastic weight consolidation (EWC) [57], the latter a highly-effective method explicitly
designed to prevent catastrophic forgetting by storing parameters of previously seen
tasks. Although elastic weight consolidation is effective, it requires a very complicated
architecture. In addition, it must be supplied with task boundaries, so it receives more
information than the DGN.

Because MNIST has 10 digits, we train 10 different DGNs. This could be reduced
to 4 networks (in general log, of the number of outputs) by using a more efficient code
— one in which each network divides the 10 digits into two classes. Alternatively, we
could use a single DGN where each unit has a 10 dimensional output corresponding to
the class probabilities. However, this is not biologically plausible, so we did not use it.
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Figure 3: Comparison of the DGN to a standard multi-layer perceptron (MLP) trained with
backprop. Each point on the square has to be classified as “blue” (class 0) or “red” (class
1). We consider a scenario common in the real world (but difficult for standard networks):
the data comes in two separate tasks, as shown in the first row. We trained a 2-layer MLP
(second row) and a 2-layer DGN (third row) on the two tasks. The output of the network is
the probability of each class, as indicated by color; the percentages report the accuracy for
each of the tasks. The MLP uses ReLLU activation functions, so each neuron has an effective
gating; the boundaries of those gates are shown in gray. The boundaries move with learning,
and are plotted at the end of training of each of the tasks (white lines). The boundaries of
the DGN do not move, so we plot them only in the first column. After training on Task
A, most of the boundaries in the MLP are aligned at -45 degrees, parallel to the decision
boundaries, which allows the network to perfectly separate the two classes. In the DGN, the
boundaries do not change, but the network also perfectly separates the two classes. However,
after training on Task B, the DGN retains high performance on Task A (91%), while the
MLP’s performance drops to 66%. That’s because many of the boundaries changed to the
orthogonal direction (45 degrees). For the DGN, on the other hand, changes to the network
were much more local, allowing it to retain the memory of the old task (see samples from
Task A overlaid on all panels) while accommodating the new one. The MLP has 50 neurons
in the hidden layer; the DGN has 5 neurons, each with 10 dendritic branches, in the hidden
layer.
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Figure 4: Learning and retention on the permuted MNIST task. The tasks are learned
sequentially in a continual learning setup. A. Performance (on test data) for each of the 10
tasks, where a “task” corresponds to a random permutation of the pixels. B. Performance
on the first task after each of nine new tasks is learned. As discussed in the main text, the
MLP is especially bad at this task. The EWC is much better, to a large extent because it
received extra information: the task boundaries. Even though the DGN was not given that
information, it forgets a factor of two more slowly than the MLP. Error bars in both plots
denote 95% confidence intervals over 20 random seeds.

Each of the 10 networks contains 3 layers, with 100, 20, and 1 neuron per layer, and
there are 10 dendritic branches per neuron. The targets are categorical (1 if the digit
is present, 0 if it is not), so we use binary cross-entropy rather than quadratic loss (see
Methods, Sec. . We use 1000, 200, and 10 neurons per layer for the MLP (so that
the number of weights match, approximately, the number weights in the DGN), with
categorical cross entropy loss, both with and without elastic weight consolidation, and
optimize the learning rates separately for each network.

Figure [4| shows the learning and retention performance of the DGN, with the MLP
and EWC networks included primarily as benchmarks (neither is biologically plausible).
In Fig. we plot performance on each task for the three networks; as can be seen,
performance is virtually identical. In Fig. @B we investigate resistance to forgetting,
by plotting the performance on the first task as the nine subsequent tasks are learned.
The EWC network retains its original performance almost perfectly, the MLP forgets
rapidly, and the DGN is in-between. It is not surprising that the EWC does well, as
it was tailored to this task, and in particular it was explicitly given task boundaries.
Somewhat more surprising is the performance of the DGN, which had none of these
advantages but still forgets much more slowly than the MLP. The DGN also learns new
tasks more rapidly than either the EWC or MLP networks (Supplementary Figure ,
because the loss is convex and learning is local.

Mapping DGNs to the Cerebellum

For the next two simulations we consider computations that can be mapped onto
cerebellar circuitry. We focus on the cerebellum for several reasons: it is highly ex-
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Figure 5: The cerebellum as a two layer DGN. Contextual information from the mossy
fiber /granule cell (MF/GC) pathway is conveyed as input to the network via parallel fibers
(PFs) that form synapses onto both the dendritic branches of Purkinje cells and molecular
layer interneurons (MLIs). The inhibitory MLIs act as input-dependent gates of Purkinje
cell dendritic branches. Purkinje cells converge onto the cerebellar nuclear neurons (CbNs),
which constitute the output of the cerebellar network. The climbing fibers (CFs, red) orig-
inating in the inferior olive (I0) convey the feedback signal that is used to tune both the
Purkinje cells, based on which inputs are gated on or off, and also the CbNs. Excitatory
and inhibitory connections are depicted as round- and T-ends, respectively. Dashed lines
represent connections not included in the model.

perimentally accessible; its architecture is well characterized; there is a clear feedback
signal to the Purkinje cells (the cerebellar neurons principally involved in learning); its
input-output function is relatively linear [36-38]; and molecular layer interneurons play
a major role in shaping Purkinje cell responses ,, and can influence climbing
fiber-mediated dendritic calcium signals in Purkinje cells .

Both classic and more modern theoretical studies in the cerebellum have focused
on the cerebellar cortex, modelling it as a one-layer feedforward network [62-66]. In
this view, the parallel fibers project to Purkinje cells, and their synaptic weights are
adjusted under the feedback signal from the climbing fibers. This picture, however, is an
over-simplification, as Purkinje cells do not directly influence downstream structures.
Instead, they project to the cerebellar nucleus, which constitutes the output of the
cerebellum (see Fig. |5)). The fact that Purkinje cells form a hidden layer, combined
with the observed plasticity in the Purkinje cell to cerebellar nucleus synapses ,
means most learning rules tailored to one-layer networks, including the delta rule,
cannot be used to train the network.

We propose instead that the cerebellum acts as a two layer DGN comprised of
Purkinje cells as the first, hidden layer and the cerebellar nucleus as the second, output

10
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layer (Fig.[5). Parallel fibers provide the input to both the input layer (Purkinje cells)
and the gates, represented by molecular layer interneurons, that control learning in
individual Purkinje cell dendrites. For the output layer of the DGN (which consists of
one neuron), we use a non-gated rather than a gated neuron, as the unique biophysical
features of cerebellar nuclear neurons allow them to integrate inputs approximately
linearly [72]. The climbing fibers provide the feedback signal to Purkinje cells and
cerebellar nuclear neurons. In our formulation, climbing fiber feedback signals the
target, allowing each neuron to compute its own local error by comparing the target
to its output (r4,). This formulation is a departure from the strict error-coding role
that is traditionally attributed to climbing fibers, but is consistent with a growing
body of evidence that climbing fibers signal a variety of sensorimotor and cognitive
predictions [73].

DGNs can learn inverse kinematics

The cerebellum is thought to implement inverse motor control [74/75]. We therefore
applied our proposed DGN network to the SARCOS benchmark [76], which is an
inverse kinematics dataset from a 7 degree-of-freedom robot arm (Fig. @ The goal is
to learn an inverse model, and predict 7 torques given the joint positions, velocities,
and accelerations for each of the 7 joints (corresponding to a 21 dimensional input).

The target output, r*, is the desired torque, given the 21-dimensional input. There
are seven joints, so we train seven different networks, each with its own target output.
We use DGN networks with 20 Purkinje cells, and minimize a quadratic loss . Since
this is a relatively hard task, performance depends strongly on the number of branches.
In Fig. @ we plot the target torques for each joint (dots) along with the predictions of
the DGN (lines; chosen for ease of comparison as there is no data between the points)
for 500 branches. The lines follow the points reasonably closely, even when there are
large fluctuations, indicating that the DGN is faithfully predicting torques. The per-
formance of our network (mean squared error on test data in the original torque units)
is comparable to that of most existing machine learning algorithms (Supplementary
Table while using fewer samples to learn. In Supplementary Fig. we show the
equivalent plot for 5, 50 and 5000 branches. Even at 5 branches performance is reason-
able, while at 5000 we exceed the performance of almost all existing machine learning
algorithms.

Vestibulo-ocular reflex, and adaptation to gain changes

To maintain a stable image on the retina during head movements, when an animal
moves its head it moves its eyes in the opposite direction. This is known as the
vestibulo-ocular reflex (VOR), and a key feature of it is that it’s plastic: animals can
adapt quickly when the relationship between the head movement and visual feedback is
changed, as occurs as animals grow or are given corrective lenses. VOR gain adaptation
relies critically on the cerebellum, and has been used to study cerebellar motor learning
for decades [77-81]. This is an easy task to learn — almost any network, including a
linear one, can achieve high performance on it. We consider it primarily because it is
a very common cerebellar task.
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Figure 6: Sarcos experiment. DGNs can solve a challenging motor control task: predicting
torques from the proprioceptive input. The data comes from a SARCOS dexterous robotic
arm , pictured on the left. The inputs are position, velocity and acceleration of the
7 joints (a 21 dimensional variable); the targets are the desired torques (7 dimensional).
Example targets (normalized to keep the training data between 0 and 1) are shown with
dots, the lines are the output of our network. Performance is very good; only rarely is there
a visible difference between the dots and the lines.

We applied our DGN network to the VOR in a regime where the gain occasionally
changes abruptly. The gain, denoted G, is the ratio of the desired eye velocity to the
head velocity (multiplied by —1 because the eyes and head move in opposite direction,
to keep with the convention that the gain is reported as a positive number). When the
gain is (artificially) changed, at first animals move their eyes at the wrong speed, but
after about 15 minutes they learn to compensate ,.

We trained our network on a head velocity signal of the form

s(t) = sin(wst) + sin(wat) , (7)

with w; = 13.333 and we = 20.733 (corresponding to 2.12 and 3.30 Hz, respectively).
This signal was chosen to mimic, approximately, the irregular head velocities encoun-
tered in natural viewing conditions. Following Clopath et. al. , we assumed that
the Purkinje cells receive delayed versions of this signal. The i*® input signal, z;(t),
which arrives via the parallel fibers, is modelled as

xz(t) = S(t—Ti), (8)

with delays, 7;, spanning the range 50-300 ms. The cerebellum needs to compute the
scaled version of the eye velocity: 7*(t) = Gs(t) (as mentioned above, the actual eye
movement is —r*(¢), but we follow the standard convention). Learning was online, and
we updated the weights every 500 ms, to approximately match the climbing fiber firing
rate [33].

The DGN contained 20 Purkinje cells, with 10 branches each; these project to one
output neuron (corresponding to the cerebellar nucleus), which was linear and not
gated. As a baseline, we trained an MLP with the same number of weights (resulting
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in 200 hidden neurons). We used quadratic loss for both the DGN and the MLP and, as
in [82], we assumed n = 100 parallel fibers and a single output. Each branch received
input from all 100 parallel fibers. Gating (Eq. (3)) was controlled by z;(t) (given in
Eq. ), reflecting the parallel fiber influence on molecular layer interneurons (Fig.[5));
see Methods for details. Given the timescale of the signal (2-3 Hz), any individual
branch was gated on for about 500 ms at a time. The networks were pre-trained on a
gain, G, of 1. We implemented four jump changes: first to 0.7, then back to 1.0, then
to 1.3, and, finally, back to 1.0; in all cases, for 30 minutes at each gain (Fig. )

Performance for both the DGN and the MLP were comparable and, after suitably
adjusting the learning rates, the networks were able to learn in 15-20 minutes (Fig. ,
B), consistent with learning times in behavioral experiments [79,[80]. Figure shows
the target and predicted head velocities immediately before and after each gain change.
Not surprisingly, immediately after a gain change, the network produces output with
the old gain.

Figure shows the connection strengths between parallel fibers (z;(t), Eq. (§))
and Purkinje cells, after learning, as a function of the delay, ;. There are two notable
features to these plots. First, the connectivity patterns are smooth. Second, although
the DGN and the MLP solve the task equally well, there is a clear difference: for the
MLP the connectivity patterns are highly stereotyped, while for the DGN they are far
less so.

The smooth connectivity patterns, which are seen in both MLPs and DGNs, arise
primarily because weights mediating inputs with similar delays have similar updates
during learning. But there is another, somewhat technical, reason: the weights were
initialized to small values. That’s important because for most directions in weight
space, changes in the weights have no effect on the loss. Component of the weights
that lie in these “null” directions will, therefore, not change with learning. Small initial
weights ensure that the components in the null directions start small, and the lack of
learning in these directions means they stay small.

The difference in the connectivity patterns — stereotyped versus diverse — are due
to the fact that MLPs are not gated whereas DGNs are. The smooth, stereotyped
connectivity patterns seen in MLPs arise because all neurons receive similar input
statistics, and so they find similar solutions. The more diverse connectivity patterns
seen in DGNs arise because inputs to different branches are gated differently, and so
different branches do not see the same input statistics.

What happens when the initial weights are large and initially random? In that case,
because the weights don’t change in the null directions, the final connectivity patterns
are also not smooth — they’re almost as noisy as the initial weights. Here as well,
though, there are difference between DGNs and MLPs: for DGNs the noise rides on
top of diverse connectivity patterns very similar to those in the top panels of Fig. [7D,
while for MLPs the noise is unmodulated, and more or less white (see Supplementary

Fig. [S4).
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Figure 7: VOR adaptation task. We trained the networks on gain G = 1, then changed the
gain every 30 minutes. Results are shown for the Dendritic Gated Network (DGN) and a
multi-layer perceptron (MLP). A. Dashed lines are true gain versus time; blue and purple
lines are gains computed by the DGN and MLP, respectively. For both networks, gains
were inferred almost perfectly after 15-20 minutes. B. Performance, measured as mean
squared error between the true angular velocity, Gs(t) (Eq. (7)), and the angular velocity
inferred by the networks. Same color code as panel A. C. Comparison of target angular
velocity versus time (black) to that predicted by the DGN (blue). (A plot for the MLP is
similar.) Before the gain change, the two are almost identical; immediately after the gain
change, the network uses the previous gain. D. Top panel: Parallel fiber weights for the
DGN network versus delay, 7; (Eq. ) Each panel shows 10 branches; 5 Purkinje cells are
shown (chosen randomly out of 20). The weights vary smoothly with delay. Bottom panel:
MLP weight profile, except that dendritic branches are replaced by the whole neuron (all
100 parallel fibers). The weights again vary smoothly with delay, but their shapes are now
highly stereotyped.
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2.3 Testing predictions of the DGN in behaving animals.

A key feature of DGNs is that the gates should exert a local effect on the dendritic
branches of the principal neurons. When mapped onto the cerebellum, this suggests
that the molecular layer interneurons (MLIs) should inhibit the individual dendritic
branches of the Purkinje cells. We therefore tested whether individual Purkinje cell
dendrites can be inhibited by activity in MLIs. Previous in vitro work has demonstrated
that synaptic inhibition can locally inhibit calcium signals in Purkinje cell dendrites
[46], and in vivo work has shown that MLI activity can influence the variability of these
signals [48,/61], but it has not yet been shown whether such effects can be localized
to individual dendrites of Purkinje cells, and if so, what the spatial relationship of
this effect is with presynaptic interneurons. Using multi-plane 2-photon imaging in
awake PV-cre mice injected with the GCaMPTf virus, we could reliably record calcium
signals from individual MLI somata and the climbing fiber-evoked calcium signals in
the dendritic tree of Purkinje cells (Fig. [SA-B). With this approach, we were able
to identify a substantial proportion of interneurons (72/142 MLIs in 3 mice; 51%)
whose activation was associated with a significant decrease in climbing-fiber driven
calcium signals in the dendrites of at least one nearby Purkinje cell(Fig. [S5A). Given
the axonal spread of MLIs [84,85], the analysis was confined to single interneurons that
were located within 150 um (rostrocaudally) and 50 um (mediolaterally) from a given
Purkinje cell dendrite. The extent of suppression varied between PC dendrites and also
within individual PC dendrites recorded at different depths (Fig. [§C). In modulated
Purkinje cell dendrites, the degree of suppression was 17.4 + 0.5% (n = 133 Purkinje
cells in 3 mice [range 6.6 to 53.5%]).

After identifying Purkinje cells whose global dendritic signals were inhibited when
nearby MLIs were active, we investigated the spatial extent of this inhibition within
Purkinje cell dendritic segments. We generated climbing fiber-evoked calcium signal
maps in Purkinje cell dendrites, both when MLIs were active and when they were
inactive (Fig. [§D, left). The difference revealed that MLI activation was associated
with local suppression of calcium signals in subregions of the dendrites (blue region in
Fig. , left; Fig. -E). To quantify the spatial extent of the suppression, we sub-
divided Purkinje cell dendritic regions into 1 um segments to generate spatial activity
profiles in MLI-active and MLI-inactive conditions (Figs. [8D, right). Subtracting these
yielded a spatial difference trace (Figs. , right). Aligning these segments across all
modulated PC dendrites allowed us to determine the average spatial profile of sup-
pressed dendritic segments (Figs. [§F). To identify false positives, for each Purkinje
cell dendrite analyzed we generated a shuffled difference trace, where MLI-active and
MLI-inactive traces were replaced with an equal mixture of the two conditions (odd-
even event split). We then identified suppressed regions in these shuffled difference
traces, and used the 95th percentile (4.6 pm) as the minimum length for a segment
to be considered significantly modulated. Across all experiments, we identified n = 77
significantly modulated segments (N = 3 mice) whose calcium signals were suppressed
by 42 + 2% (mean + S.E.M.) (Fig. [8G). The spatial extent of MLI-gated inhibition
in these dendritic segments was 31 + 3 pm (mean + S.E.M.), accounting for 35 + 3%
(mean £ S.E.M.) of the extent of the dendritic tree at the imaged plane (Fig. §H-I).
These results demonstrate that MLIs can locally inhibit climbing fiber signals in the
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Figure 8: Dendritic gating of Purkinje cells by molecular layer interneurons in vivo.
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Figure 8: A. Multi-plane 2-photon calcium imaging of molecular layer interneurons (red) and
Purkinje cell dendrites (blue). B. Example traces of MLIs (top, active and inactive states
in purple and green) and Purkinje cell dendrites recorded in multiple planes marked a, b,
and ¢ (bottom). C. Two examples of mean climbing fiber-evoked Ca** signal, in two planes,
in MLI-active (purple) and inactive (green) states. D. Spatial event-triggered map of area
surrounding Purkinje cell dendrites (contoured region of interest) when a nearby MLI (circle
projected from different plane) was in an active state or inactive state (left). Spatial profile
of event-triggered fluorescence is shown on the right. E. Difference heatmap image (left) and
spatial profile (rainbow trace, right) of event-triggered fluorescence of same dendrite shown
in panel D. Shuffled trace (blue) was computed on a split of odd and even event indices. F.
Mean spatial profile of event-triggered fluorescence in MLI-active and MLI-inactive condtions
(top) and difference traces (bottom) aligned to middle of suppressed segment (black trace,
n = 77 regions from N = 3 recordings in 3 mice). Shuffled trace (blue) was computed,
as above, on an odd-even split. Suppressed regions smaller than the 95th percentile of the
shuffle data (red region, 4.6 pm) were excluded. G. Histogram of strength of suppression
calculated only within modulated segments. H. Histogram of suppressed segment lengths
(red line shows 95th percentile of the shuffle). I. Histogram of suppressed segment lengths
expressed as a percent of total segment length. Data are shown as mean + S.E.M.

Purkinje cell dendritic tree with a spatial extent that is comparable to the length of
individual spiny branchlets. This provides strong experimental evidence for a specific
biological implementation of one of the principal design features of the DGN, namely
local dendritic suppression of principal units by interneurons.

3 Discussion

Identifying the biologically plausible learning rules that mediate the modification of
connections in neural networks is a key goal of both experimental and theoretical
neuroscience. Here, we describe a new class of learning rules called Dendritic Gated
Networks (DGNs). Each unit in each layer of a DGN consists of dendritic branches
that are gated on and off by interneurons, and all units in all layers receive the same
feedback learning signal. We show that the DGN has key advantages over existing
learning algorithms, particularly in terms of learning speed and resilience to forgetting,
tested across a range of learning tasks. We also show using in vivo experiments that key
elements of the DGN architecture may be implemented in biological networks. These
results suggest that DGNs may be widely useful in the machine learning community,
and also suggest that this learning rule may be implemented in biological networks
such as the cerebellum and other neural circuits with a similar network architecture.
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3.1 Comparison of DGNs to other learning algorithms

The DGN network architecture differs from traditional learning algorithms (e.g. back-
prop) as well as the algorithm on which it was based (Gated Linear Networks) in
several important ways. Traditional learning algorithms like backprop map input to
output in stages, with the input gradually transformed, until eventually, in the output
layer, the relevant features are easy to extract. There is certainly some evidence for
this hierarchical strategy being implemented in the brain. It is, for example, much
harder to extract which face a person is looking at from activity in visual area V1 than
in fusiform face area [86,87]. While this strategy for computing is reasonable, it has
a downside: the relationship between activity in intermediate layers and activity in
the output layer is highly nontrivial, which makes it especially hard for the brain to
determine how weights in intermediate layers should change.

Despite the inherent complexity of this strategy, biologically plausible learning rules
that implement it have been proposed [15-27]. The DGN algorithm takes a different
approach from any of these. With this architecture, dendritic branches are gated on
and off via a random (and fixed) linear transformation of their input. The summed
activity of these branches forms the prediction of the neuron, which gets adjusted over
time via a delta rule. Consequently, all neurons predict the same target; and each layer
improves upon the predictions of the previous layer.

The DGN also differs from and improves over the algorithm on which it was based
— the Gated Linear Network (GLN) [29,30]. In particular, the GLN requires a bank
of weights for each neuron, with the input choosing which one the neuron should use
— something that seems extremely difficult for the brain to implement. The DGN,
however, replaces the library of weights with gated dendritic branches, an innovation
essential for biological plausibility. Thus, although the DGN is conceptually related to
the GLN, from the point of view of neuroscience it has a critical new component which
makes it, unlike the GLN, relevant to the brain.

3.2 Implementation in cerebellar circuits

The architecture and exceptional efficiency of learning exhibited by DGNs suggests that
this algorithm may also be implemented in biological networks. Specifically, several key
features of the DGN are recapitulated in the functional architecture of the cerebellum.
First, the cerebellum receives a clear and global feedback signal in the form of the
climbing fiber input to Purkinje cells and cerebellar nuclear neurons that is the principal
driver of learning in the cerebellar circuit [88]. Second, the principal neurons of the
cerebellar cortex, Purkinje cells, exhibit linear encoding of their inputs due to their
high baseline firing rates and unique biophysical properties [3689]. Finally, molecular
layer interneurons, which are known to target dendritic branches of Purkinje cells, are
likely candidates to mediate branch-specific dendritic inhibition [46}48}90].

A key prediction of the DGN that would bolster its biological plausibility is that
interneurons should gate activity in single dendritic branches of principal cells. Here,
we provide the first in vivo evidence that molecular layer interneurons can produce
inhibition of dendritic calcium signals on the level of single dendritic branches in Purk-
inje cells, a longstanding, but until now untested, prediction of anatomical [91H94]
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and theoretical [63],90,95] work. By simultaneously imaging dendritic calcium signals
in Purkinje cells and activity in neighboring MLIs, we show that MLI activity can
substantially decrease dendritic calcium signals in Purkinje cells. Previous in wvitro
work has shown that even modest inhibition of dendritic calcium signals (on order of
20%) can completely abolish cerebellar plasticity [96], suggesting that the suppression
we observe is capable of abolishing learning. These MLI-driven effects were not dis-
tributed equally across PC dendritic arbors. Indeed, suppression of dendritic calcium
signals was often restricted to individual dendritic branches of Purkinje cells, even as
neighboring regions of the same dendritic arbor were unaffected. The profound local
suppression of these climbing fiber-driven signals suggest that MLI-driven inhibtion is
also capable of suppressing parallel fiber-driven input to Pukrinje cells, which are rela-
tively much weaker [97]. Thus, it is likely that MLIs can gate both input and learning
to single Purkinje cell dendritic branches. In summary, our demonstration that MLIs
can modulate the Purkinje cell dendritic calcium signals on the spatial scale of a single
dendritic spiny branchlet strongly supports the DGN gating prediction. We note that
the binary on/off gating exhibited by the DGN is challenging to implement biologically;
far more likely are softer gates, where the amount of gating is a function of the input.
To determine how soft gates affected DGN performance, we performed simulations
on the permuted MNIST and inverse kinematics tasks, and the results were virtually
identical to the ones with on/off gates (data not shown), emphasizing the flexibility
of DGN implementation in the brain. Our experimental data (together with previous
work linking cerebellar functional architecture to features of the DGN) provides strong
support for the idea that a DGN-like algorithm is implemented in cerebellar circuits.

The architecture of the DGN makes several further predictions about how the DGN
may map onto the cerebellum. A key prediction that awaits experimental validation
is that the activity of MLIs should depend predominantly on parallel fiber input and
the input-output relationship of these interneurons should change very slowly relative
to the timescale over which Purkinje cells learn, which can be measured in single tri-
als [98]. Assessing the stability of the parallel fiber-mediated input-output relationship
of MLIs is difficult because granule cells are known to exhibit learning-related changes
in activation [99,[100]. Thus, further experiments to determine the stability of paral-
lel fiber-MLI and parallel fiber-Purkinje simple spike input-output relationships over
learning will need to account for changes in the firing patterns of cerebellar afferents.
Another prediction of the DGN is that the parallel fiber connectivity pattern in the
VOR or similar tasks should carry information about architecture. If parallel fiber-
Purkinje cell connectivity is smooth and diverse (Fig. , top panels), this supports a
DGN-like implementation. If, on the other hand, connectivity is smooth and stereo-
typed (Fig. [7D, bottom panels) or noisy with no other temporal structure (Fig. [S4),
this argues for alternative implementations, such as an MLP. Distinguishing between
these alternatives experimentally would require recording from populations of individ-
ual granule cells during VOR learning, then mapping the synaptic strength between
those same granule cells and Purkinje cells.
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3.3 DGNs in other neural circuits

While DGNs exhibit features that make them particularly well-suited for implementa-
tion in the cerebellum, the general principles of this learning rule may be applicable
to a variety of brain circuits. In particular, the gating of dendritic signals that we
demonstrate in Purkinje cells may also be a feature of cortical networks, given the
branch-specific innervation of interneuron axons that has been documented in many
cortical circuits [101]. Such generalization would require some modifications to imple-
ment the algorithm; for instance, the learning rule will have to change because activity
in the cortex is far from linear.

3.4 Conclusions

In summary, Dendritic Gated Networks are strong candidates for biological networks
— and not just in the cerebellum; they could be used anywhere there is approximately
feedforward structure. They come with two highly desirable features: rapid, data-
efficient learning, and biologically plausible learning. Furthermore, they suggest a
novel role for inhibitory neurons, which is that they are used for gating dendritic
branches. We anticipate that the strong, experimentally testable, predictions may
inspire investigations in many brain circuits where rapid learning may invoke a DGN
algorithm.

4 Methods

4.1 Classification tasks

The network we use in our model is described in Egs. and , and the learning rules
are given in Eq. . For regression (VOR and inverse kinematics), we use the identity
function for ¢ (Eq. (1)), and the square loss (Eq. (), resulting in the update rule
given in Eq. @ For classification (the simple task described in Fig. |3| and permuted
MNIST), the network computes probabilities, so ¢ needs to be bounded, and a square
loss is not appropriate. Here we provide details for this case.

For classification we use a standard sigmoid function, o(z) = €*/(1 + €7), albeit
modified slightly,

8(2) = cLipl~(o(2)) (9)

where cLIP®(-) clips values between a and b (so the right hand side is zero if o(2) is
smaller than e or larger than 1 — €). Clipping is used for bounding the loss as well as
the gradients, which helps with numerical stability. It also enables a worst-case regret
analysis [29,30]. We set € to 0.01, so neural activity lies between 0.01 and 0.99.

The square loss is not appropriate in this case, so instead we use the binary cross-
entropy loss: the loss of neuron ¢ in layer k is given by

0(r*,ris) = —r*logry,; — (1 —r*)log (1 — rg;) - (10)
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Consequently, the update rule for the weights, Eq. , is (after a small amount of
algebra)

Awlli,ij = ngz’i(x)]l(e <7 < 1-— 6) (7“* — Tk,i)hkfl,j (11)

where 1(-) is 1 when its argument is true and 0 otherwise. The fact that learning is
zero when ry; is outside the range [e,1 — €] follows because d¢(z)/dz = 0 when z is
outside this range (see Eq. @) This ensures that learning saturates when weights
become too large (either positive or negative). However, this can cause problems if the
output is very wrong; that is, when r* =1 and r; < eor r* =0 and r; > 1 —e€. To
address this, we allow learning in this regime. We can do that compactly by changing
the learning rule to

Awll:,z‘j = ngzvi(x)]l(\r* — | > €) (7"* - T]C’Z‘)hk_ld‘ . (12)

Essentially, this rule says: stop learning when ry, ; is within € of r*.
For a compact summary of the equations (given as pseudocode), see Supplementary

Algorithms [ST] and

4.2 Simulations

Here we provide details of our simulations. Simulations were written using JAX [102],
the DeepMind JAX Ecosystem [103], and Colab [104].

Permuted MINIST. We adopt the pixel-permuted MNIST benchmark [57,/60],
which is a sequence of MNIST digit classification tasks with different pixel permuta-
tions. Each task consists of 60,000 training images and 10,000 test images; all images
are deskewed. Models are trained sequentially across 10 tasks, performing a single pass
over all 60,000 training examples for each of the tasks. We provide the implementation
details below; the parameters swept during a grid search are given in Supplementary
Table

DGN. We use networks composed of 100 and 20 units in the hidden layers and a
single linear neuron for the output. All neurons in the hidden layers have 10 dendritic
branches. The output of the network is determined by the last neuron. MNIST has 10
classes, each corresponding to a digit. Therefore, we use 10 DGN networks, each en-
coding the probability of a distinct class. These networks are updated during training
using a learning rate n = 1072, During testing, the class with the maximum proba-
bility is chosen. Images are scaled and shifted so that the input range is [—1,1]. The
gating vectors, vz ;» are chosen randomly on the unit sphere, which can be achieved
by sampling from an isotropic Normal distribution and then dividing by the L2 norm.
The biases, 9,2 ;» are drawn independently from a zero mean Gaussian with standard
deviation 0.05.

MLP and EWC. We use a ReLu network with 1000 and 200 neurons in the hidden
layers and 10 linear output units with cross entropy loss. In this setting, the MLP and
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EWC have the same number of neurons as the DGN, but fewer connections. We use the
ADAM optimization method [105] with a learning rate n = 10~* (see Supplementary
Table |S2| for details of the hyperparameter optimization), in conjunction with dropout.
We use mini-batches of 20 data points. For EWC, we draw 100 samples for computing
the Fisher matrix diagonals and set the regularization constant to 103.

Inverse Kinematics. Each DGN network has 20 Purkinje cells and one linear, non-
gated, output neuron, and we vary the number of branches. We use a quadratic loss,
as in Eq. , a learning rate n = 1075, and we run for 2000 epochs (2000 passes over
the dataset). The inputs are centered at 0 and scaled to unit variance per dimension,
and the targets are scaled so that they lie between 0 and 1. The reported MSEs are
computed on the test set based on inverse transformed predictions (thus undoing the
target scaling). The gating parameters are chosen in the same way as for the MNIST
simulations described above.

We discovered that the training set of the SARCOS dataset (downloaded from
http://www.gaussianprocess.org/gpml/data/| on 15 December 2020) includes test
instances. To the best of our knowledge, other recent studies using the SARCOS
dataset |106}/107] reported results with this

train/test setting. This means that the reported errors are measures of capacity
rather than generalization. We compare the performance of DGN against the best
known SARCOS results in Supplementary Table [S1| using the existing train/test split.

VOR. The gating parameters v? ;; and 0%, (Eq. @), were drawn independently

from the standard normal distribution. The learning rates were n = 10> for the DGN
and i = 0.03 for the MLP.

4.3 Animal experiments

Animal housing and surgery All animal procedures were approved by the lo-
cal Animal Welfare and Ethical Review Board and performed under license from the
UK Home Office in accordance with the Animals (Scientific Procedures) Act 1986
and generally followed procedures described previously [108]. Briefly, we used PV-Cre
mice (B6;129P2-Pvalbtm1(cre)Arbr/J) [109] maintained on a C57/BL6 background.
Mice were group housed before and after surgery and maintained on a 12:12 day-night
cycle. Surgical procedures were similar to those described in [10§], except that we in-
jected Cre-dependent GCaMP7f (pGP-AAV-CAG-FLEX-jGCaMPT7{-WPRE [serotype
1]; [110]) diluted from its stock titer to a final concentration of 3 x 10! GC/ml (~1:25).
After mice had recovered from surgery, they were acclimated to the recording setup
and expression-checked before beginning recordings.

Two-photon calcium imaging data acquisition and processing Imaging
experiments were performed using a 16x/0.8 NA objective (Nikon) mounted on a Sutter
MOM microscope equipped with the Resonant Scan Box module. A Ti:Sapphire laser
tuned to 930 nm (Mai Tai, Spectra Physics) was raster scanned using a resonant
scanning galvanometer (8 kHz, Cambridge Technologies) and images were collected at
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512x256 pixel resolution over fields of view of 670x335 pum per plane at an average
power of 30-70 mW. Volumetric imaging across 5 planes spaced by 10 pm (40 pm
depth range per recording, total depth ranging 10-70 pum below pial surface) were
performed using a P-726 PIFOC High-Load Objective Scanner (Physik Instruments)
at an effective volume rate of 9.7 Hz. The microscope was controlled using Scanlmage
(Version 5.6, Vidrio Technologies) and tilted to 12.5 degrees such that the objective
was orthogonal to the surface of the brain and coverglass.

Regions of interest (ROIs) corresponding to single MLI somata and Purkinje cell
dendrites, which were easily distinguishable based on their shape, were identified using
Suite2p software [111] for initial source extraction and custom-written software for
subsequent analyses. Fluorescence time series were computed as (F' — F0)/F0 where
F' was the signal measured at each point in time and FO is the 8th percentile of a
rolling average baseline surrounding each data point (2000 frames for MLIs and 10
frames for Purkinje cell dendrites). A neuropil correction coefficient of 0.5 (50 percent
of neuropil signal output from Suite2p) was applied to MLI ROIs. A range of baseline
durations and neuropil correction coefficients were tested and varying these parameters
did not alter the main findings. Following these calculations, fluorescence signals were
z-scored to facilitate comparisons across neurons. Signals from the same Purkinje cell
dendrites recorded in multiple planes were identified based on a correlation threshold
(>0.5, followed by manual confirmation) and analyzed independently for dendritic
modulation experiments. Event times in dendrites were detected using MLspike |112].

MLI gating of Purkinje cell dendritic signals For dendritic modulation ex-
periments, active and inactive MLI states were defined as imaging frames where activity
in an MLI deviated more than 0.5 standard deviations above or below the mean, re-
spectively (Fig. . Using a higher threshold yielded similar results but resulted in
fewer dendritic events in each condition. After identifying these states, we compared
the magnitudes of isolated dendritic events in these two conditions for Purkinje cells
within a 300x100 um ellipse centered on each MLI whose major axis is parallel to that
of Purkinje cell dendrites in the field of view (approximately rostrocaudal). Ellipse di-
mensions were chosen to approximate the known rostro-caudal and mediolateral spread
of MLI axons [84,85]. Only isolated events in Purkinje cell dendrites (defined as those
that occurred more than 500 ms before and after any other events) were analyzed, and
fluorescence event magnitudes were calculated over the 5 frames (~500 ms) after each
event for initial identification of MLI-modulated dendrites. Because analysis of each
recording involved many thousands of comparisons, we assessed significance differences
between Purkinje cell dendrite event magnitudes in MLI active and inactive states with
a significance threshold of 0.05 that was corrected for multiple comparisons using false
discovery rate threshold of 5% [113].

Motion-corrected fluorescence movies that were used for pixel-wise analysis of den-
dritic subregions were pre-processed by first correcting for slow fluctuations in fluores-
cence, which was done by computing (F — Fy)/Fy where F was the signal measured at
each point in time and Fj is the 8 percentile of a rolling average baseline surrounding
each data point (2000 frames), and then z-scoring. Purkinje cell dendritic ROIs defined
in Suite2p were segmented into 1 pum increments by fitting a 4th degree polynomial
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to each ROI, grouping ROI pixels closest to regular spaced points along this fit line,
computing a weighted average of these pixels based on the pixel weights assigned by
Suite2p, and smoothing over 5 um. Activity profiles in MLI active and inactive states
were subtracted and used to generate spatial suppression profiles for each Purkinje
cell dendrite and error bars were generated from the summed variances in active and
inactive conditions. Shuffled distributions were generated by replacing active and in-
active conditions with an odd-even event split of each of these groups, yielding two
distributions comprising of 1/2 MLI-active and 1/2 MLI-inactive events for each den-
dritic segment. Significantly modulated dendritic segments were defined as the longest
region for each dendritic segment in which the 95% confidence interval of the difference
trace was less than zero. To account for false positive dendritic segments that would
be identified by finding minima in noise, we performed this identification procedure on
our shuffled data and excluded identified dendritic segments in our real data that were
smaller than the 95th percentile of these fictive segments (4.6 um).

Code availability. We provide pseudo code in Supplementary Algorithms[S1]andS2]
A simple python implementation can be accessed viahttps://github.com/deepmind/

deepmind-research/blob/master/gated_linear_networks/colabs/dendritic_gated_

network.ipynbl

Data availability. The data that support the findings of this study are available
from the corresponding authors upon reasonable request. Additional analysis made
use of standard publicly available benchmarks including MNIST |114] and SARCOS
(http://www.gaussianprocess.org/gpml/data/).

Acknowledgements. We thank Timothy Lillicrap, Gregory Wayne, Eszter Vértes,
and Brendan Bicknell for valuable feedback. Michael Hausser is supported by the
Wellcome Trust and the European Research Council. Peter Latham is supported by
the Gatsby Charitable Foundation and the Wellcome Trust.

Author contributions. ES and AGB developed the computational model with
advice from JV, CC, PEL, DB, and MHut. AGB, ES, and SK performed simulation
experiments and analysis with advice from CC and PEL. DK and MBea acquired and
analyzed neuronal data with advice from MHé&u. PEL, AGB, ES, and DK wrote the
paper with help from all other authors. AGB and ES managed the project with support
from MBot, CC, JV, and DB.

Competing Interests. The authors declare no competing interests.
References

[1] Burke, C. J. et al. Layered reward signalling through octopamine and dopamine
in drosophila. Nature 492, 433-437 (2012).

24


https://github.com/deepmind/deepmind-research/blob/master/gated_linear_networks/colabs/dendritic_gated_network.ipynb
https://github.com/deepmind/deepmind-research/blob/master/gated_linear_networks/colabs/dendritic_gated_network.ipynb
https://github.com/deepmind/deepmind-research/blob/master/gated_linear_networks/colabs/dendritic_gated_network.ipynb
https://github.com/deepmind/deepmind-research/blob/master/gated_linear_networks/colabs/dendritic_gated_network.ipynb
https://github.com/deepmind/deepmind-research/blob/master/gated_linear_networks/colabs/dendritic_gated_network.ipynb
http://www.gaussianprocess.org/gpml/data/
https://doi.org/10.1101/2021.03.10.434756
http://creativecommons.org/licenses/by-nc-nd/4.0/

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434756; this version posted August 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

2]

[11]

[12]
[13]
[14]

[15]

[17]

[18]

available under aCC-BY-NC-ND 4.0 International license.

Liu, C. et al. A subset of dopamine neurons signals reward for odour memory in
drosophila. Nature 488, 512-516 (2012).

Schmidhuber, J. Deep learning in neural networks: An overview. Neural networks
61, 85-117 (2015).

Grossberg, S. Competitive learning: From interactive activation to adaptive
resonance. Cogn. Sci. 11, 23-63 (1987).

Crick, F. The recent excitement about neural networks. Nature 337, 129-132
(1989).

Roelfsema, P. R. & Holtmaat, A. Control of synaptic plasticity in deep cortical
networks. Nature Reviews Neuroscience 19, 166 (2018).

Whittington, J. C. & Bogacz, R. Theories of error back-propagation in the brain.
Trends in cognitive sciences 23, 235-250 (2019).

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G. Backprop-
agation and the brain. Nature Reviews Neuroscience 21, 335-346 (2020).

Kelley, H. J. Gradient theory of optimal flight paths. Ars Journal 30, 947-954
(1960).

Linnainmaa, S. The representation of the cumulative rounding error of an al-
gorithm as a taylor expansion of the local rounding errors. Master’s Thesis (in
Finnish), Univ. Helsinki 6-7 (1970).

Rumelhart, D. E., , G. E. & Williams, R. J. Learning representations by back-
propagating errors. In Anderson, J. A. & Rosenfeld, E. (eds.) Neurocomputing:
Foundations of Research, 696-699 (MIT Press, Cambridge, MA, USA, 1988).

French, R. Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences 3, 128135 (1999).

Herzfeld, D. J., Vaswani, P. A., Marko, M. K. & Shadmehr, R. A memory of
errors in sensorimotor learning. Science 345, 1349-1353 (2014).

Wolpert, D. M. & Flanagan, J. R. Computations underlying sensorimotor learn-
ing. Current opinion in neurobiology 37, 7-11 (2016).

Lillicrap, T. P., Cownden, D., Tweed, D. B. & Akerman, C. J. Random synap-
tic feedback weights support error backpropagation for deep learning. Nature
Communications 7, 13276 (2016). URL http://www.nature.com/articles/
ncomms13276.

Akrout, M., Wilson, C., Humphreys, P., Lillicrap, T. & Tweed, D. B. Deep
learning without weight transport. In Advances in Neural Information Processing
Systems, vol. 6, €22901 (2017).

Guerguiev, J., Lillicrap, T. P. & Richards, B. A. Towards deep learning with
segregated dendrites. eLife 6, ¢22901 (2019).

Sacramento, J., Costa, R. P., Bengio, Y. & Senn, W. Dendritic cortical mi-
crocircuits approximate the backpropagation algorithm. In Advances in Neural
Information Processing Systems, 8721-8732 (2018).

25


http://www.nature.com/articles/ncomms13276
http://www.nature.com/articles/ncomms13276
http://www.nature.com/articles/ncomms13276
https://doi.org/10.1101/2021.03.10.434756
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434756; this version posted August 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

693 [19] Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A. & Naud, R. Burst-
694 dependent synaptic plasticity can coordinate learning in hierarchical circuits.
695 bioRziv (2020). URL https://www.biorxiv.org/content/early/2020/03/
696 31/2020.03.30.015511.

697 [20] Samadi, A., Lillicrap, T. P. & Tweed, D. B. Deep learning with dynamic spiking
698 neurons and fixed feedback weights. Neural Computation 29, 578-602 (2017).
699 [21] Belilovsky, E., Eickenberg, M. & Oyallon, E. Greedy layerwise learning can
700 scale to ImageNet. In Proceedings of the 36th International Conference on Ma-
701 chine Learning, vol. 97, 583-593 (PMLR, 2019). URL http://proceedings.
702 mlr.press/v97/belilovskyl9a.html.

703 [22] Ngkland, A. Direct feedback alignment provides learning in deep neural networks.
704 In Proceedings of the 30th International Conference on Neural Information Pro-
705 cessing Systems, NIPS’16, 1045-1053 (Curran Associates Inc., Red Hook, NY,
706 USA, 2016).

707 [23] Ngkland, A. & Eidnes, L. H. Training Neural Networks with Local Error Sig-
708 nals. In International Conference on Machine Learning, 4839-4850 (PMLR,
700 2019). URL http://proceedings.mlr.press/v97/nokland19a.html. ISSN:
710 2640-3498.

711 [24] Lowe, S., O’Connor, P. & Veeling, B. Putting an end to end-to-end: Gradient-
712 isolated learning of representations. In Advances in Neural Information Process-
713 ing Systems, 3033-3045 (2019).

714 [25] Pogodin, R. & Latham, P. E. Kernelized information bottleneck leads to bio-
715 logically plausible 3-factor hebbian learning in deep networks. arXiv preprint
716 arXiv:2006.07123 (2020). 2006.07123.

77 [26] Podlaski, W. F. & Machens, C. K. Biological credit assignment through dynamic
718 inversion of feedforward networks (2020). 2007.05112.

710 [27] Golkar, S., Lipshutz, D., Bahroun, Y., Sengupta, A. M. & Chklovskii, D. B. A
720 biologically plausible neural network for local supervision in cortical microcircuits
721 (2020). [2011.15031.

722 [28] Clark, D. G., Abbott, L. & Chung, S. Credit assignment through broadcasting
723 a global error vector. arXiv preprint arXiv:2106.04089 (2021).

724 [29] Veness, J. et al. Online learning with gated linear networks. arXiv preprint
725 arXiv:1712.01897 (2017).

726 [30] Veness, J. et al. Gated linear networks. Proceedings of the AAAI Conference on
727 Artificial Intelligence (To Appear) (2021).

728 [31] Budden, D. et al. Gaussian gated linear networks. In Advances in Neural Infor-
729 mation Processing Systems (2020).

730 [32] Sezener, E., Hutter, M., Budden, D., Wang, J. & Veness, J. Ounline learning in
731 contextual bandits using gated linear networks. In Advances in Neural Informa-
732 tion Processing Systems (2020).

26


https://www.biorxiv.org/content/early/2020/03/31/2020.03.30.015511
https://www.biorxiv.org/content/early/2020/03/31/2020.03.30.015511
https://www.biorxiv.org/content/early/2020/03/31/2020.03.30.015511
http://proceedings.mlr.press/v97/belilovsky19a.html
http://proceedings.mlr.press/v97/belilovsky19a.html
http://proceedings.mlr.press/v97/belilovsky19a.html
http://proceedings.mlr.press/v97/nokland19a.html
2006.07123
2007.05112
2011.15031
https://doi.org/10.1101/2021.03.10.434756
http://creativecommons.org/licenses/by-nc-nd/4.0/

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

767

768

769

770

771

772

773

774

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434756; this version posted August 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

[33]

[34]

[35]

[36]

[37]

[38]

[46]

[47]

[48]

available under aCC-BY-NC-ND 4.0 International license.

Wang, J., Sezener, E., Budden, D., Mutter, M. & Veness, J. A combinatorial
perspective on transfer learning. In Advances in Neural Information Processing
Systems (2020).

Widrow, B. & Hoff, M. E. Adaptive switching circuits. In 1960 IRE WESCON
Convention Record, Part 4, 96-104 (IRE, New York, 1960).

Tsuda, B., Tye, K. M., Siegelmann, H. T. & Sejnowski, T. A modeling framework
for adaptive lifelong learning with transfer and savings through gating in the
prefrontal cortex. Proceedings of the National Academy of Sciences 117, 29872—
29882 (2020).

Llinas, R. & Sugimori, M. Electrophysiological properties of in vitro purkinje cell
somata in mammalian cerebellar slices. The Journal of physiology 305, 171-195
(1980).

Walter, J. T. & Khodakhah, K. The linear computational algorithm of cerebellar
purkinje cells. Journal of Neuroscience 26, 12861-12872 (2006).

Chen, S., Augustine, G. J. & Chadderton, P. Serial processing of kinematic
signals by cerebellar circuitry during voluntary whisking. Nature communications
8, 1-13 (2017).

Eccles, J. Functional meaning of the patterns of synaptic connections in the
cerebellum. Perspectives in biology and medicine 8, 289-310 (1965).

Dizon, M. J. & Khodakhah, K. The role of interneurons in shaping purkinje
cell responses in the cerebellar cortex. Journal of Neuroscience 31, 10463-10473
(2011).

Brown, A. M. et al. Molecular layer interneurons shape the spike activity of
cerebellar purkinje cells. Scientific reports 9, 1-19 (2019).

Andersen, P., Eccles, J. & Voorhoeve, P. Postsynaptic inhibition of cerebellar
purkinje cells. Journal of neurophysiology 27, 1138-1153 (1964).

Mittmann, W., Koch, U. & Hausser, M. Feed-forward inhibition shapes the
spike output of cerebellar purkinje cells. The Journal of physiology 563, 369-378
(2005).

Hé&usser, M. & Clark, B. A. Tonic synaptic inhibition modulates neuronal output
pattern and spatiotemporal synaptic integration. Neuron 19, 665-678 (1997).
Oldfield, C. S., Marty, A. & Stell, B. M. Interneurons of the cerebellar cortex
toggle purkinje cells between up and down states. Proceedings of the National
Academy of Sciences 107, 13153-13158 (2010).

Callaway, J. C., Lasser-Ross, N. & Ross, W. N. Ipsps strongly inhibit climbing
fiber-activated [ca2+] i increases in the dendrites of cerebellar purkinje neurons.
Journal of Neuroscience 15, 2777-2787 (1995).

Wulff, P. et al. Synaptic inhibition of purkinje cells mediates consolidation of
vestibulo-cerebellar motor learning. Nature neuroscience 12, 1042-1049 (2009).

Gaffield, M. A., Rowan, M. J., Amat, S. B., Hirai, H. & Christie, J. M. Inhibi-
tion gates supralinear ca2+ signaling in purkinje cell dendrites during practiced
movements. Elife 7, 36246 (2018).

27


https://doi.org/10.1101/2021.03.10.434756
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434756; this version posted August 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

775 [49] Carpenter, G. A. & Grossberg, S. The art of adaptive pattern recognition by a
776 self-organizing neural network. Computer 21, 77-88 (1988).

77 [50] McCloskey, M. & Cohen, N. J. Catastrophic interference in connectionist net-
778 works: The sequential learning problem. Psychology of Learning and Motiva-
779 tion 24, 109 — 165 (1989). URL http://www.sciencedirect.com/science/
780 article/pii/S0079742108605368.

781 [51] Robins, A. V. Catastrophic forgetting, rehearsal and pseudorehearsal. Connect.
782 Sei. 7, 123-146 (1995).

783 [52] Caruana, R. Multitask learning. Machine Learning 28, 41-75 (1997). URL
784 https://doi.org/10.1023/A:1007379606734.

785 [53] Rebuffi, S.-A., Kolesnikov, A., Sperl, G. & Lampert, C. H. icarl: Incremental
786 classifier and representation learning. 2017 IEEE Conference on Computer Vi-
787 sion and Pattern Recognition (CVPR) (2017). URL http://dx.doi.org/10.
788 1109/CVPR.2017.587.

789 [54] Donahue, J. et al. Decaf: A deep convolutional activation feature for generic
790 visual recognition. CoRR abs/1310.1531 (2013). URL http://arxiv.org/
791 abs/1310.1531. |1310.1531.

792 [55] Razavian, A. S., Azizpour, H., Sullivan, J. & Carlsson, S. Cnn features off-
793 the-shelf: An astounding baseline for recognition. 2014 IEEE Conference on
704 Computer Vision and Pattern Recognition Workshops (2014). URL http://dx.
795 doi.org/10.1109/CVPRW.2014.131.

796 [56] Girshick, R., Donahue, J., Darrell, T. & Malik, J. Rich feature hierarchies for
797 accurate object detection and semantic segmentation. 2014 IEEFE Conference on
798 Computer Vision and Pattern Recognition (2014). URL http://dx.doi.org/
799 10.1109/CVPR.2014.81.

800 [57] Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural net-
801 works. Proceedings of the National Academy of Sciences 114, 3521-3526 (2017).
802 URL https://www.pnas.org/content/114/13/3521. https://www.pnas.org/
803 content/114/13/3521.full.pdf.

804 [58] Zenke, F., Poole, B. & Ganguli, S. Continual learning through synaptic intelli-
805 gence. In Proceedings of the 34th International Conference on Machine Learning
806 - Volume 70, ICML’17, 3987-3995 (JMLR.org, 2017).

807 [59] Schwarz, J. et al. Progress &; compress: A scalable framework for continual
808 learning. In Dy, J. & Krause, A. (eds.) Proceedings of the 35th International
809 Conference on Machine Learning, vol. 80 of Proceedings of Machine Learning Re-
810 search, 4528-4537 (PMLR, Stockholmsmiéssan, Stockholm Sweden, 2018). URL
811 http://proceedings.mlr.press/v80/schwarz18a.htmll

812 [60] Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A. & Bengio, Y. An empirical
813 investigation of catastrophic forgetting in gradient-based neural networks (2013).
814 1312.6211.

815 [61] Kitamura, K. & Héausser, M. Dendritic calcium signaling triggered by sponta-
816 neous and sensory-evoked climbing fiber input to cerebellar purkinje cells in vivo.
817 Journal of Neuroscience 31, 10847-10858 (2011).

28


http://www.sciencedirect.com/science/article/pii/S0079742108605368
http://www.sciencedirect.com/science/article/pii/S0079742108605368
http://www.sciencedirect.com/science/article/pii/S0079742108605368
https://doi.org/10.1023/A:1007379606734
http://dx.doi.org/10.1109/CVPR.2017.587
http://dx.doi.org/10.1109/CVPR.2017.587
http://dx.doi.org/10.1109/CVPR.2017.587
http://arxiv.org/abs/1310.1531
http://arxiv.org/abs/1310.1531
http://arxiv.org/abs/1310.1531
1310.1531
http://dx.doi.org/10.1109/CVPRW.2014.131
http://dx.doi.org/10.1109/CVPRW.2014.131
http://dx.doi.org/10.1109/CVPRW.2014.131
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/CVPR.2014.81
https://www.pnas.org/content/114/13/3521
https://www.pnas.org/content/114/13/3521.full.pdf
https://www.pnas.org/content/114/13/3521.full.pdf
https://www.pnas.org/content/114/13/3521.full.pdf
http://proceedings.mlr.press/v80/schwarz18a.html
1312.6211
https://doi.org/10.1101/2021.03.10.434756
http://creativecommons.org/licenses/by-nc-nd/4.0/

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434756; this version posted August 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

[62]

[63]

[64]

[69]

[70]

[75]

[76]

available under aCC-BY-NC-ND 4.0 International license.

Marr, D. A theory of cerebellar cortex. The Journal of Physiology 202, 437-470.1
(1969). URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1351491/.

Albus, J. S. A theory of cerebellar function. Mathematical Biosciences 10,
25-61 (1971). URL http://www.sciencedirect.com/science/article/pii/
0025556471900514.

Ito, M. & Kano, M. Long-lasting depression of parallel fiber-purkinje cell trans-
mission induced by conjunctive stimulation of parallel fibers and climbing fibers
in the cerebellar cortex. Neuroscience Letters 33, 253 — 258 (1982). URL
http://www.sciencedirect.com/science/article/pii/0304394082903809.

Narain, D., Remington, E. D., Zeeuw, C. I. D. & Jazayeri, M. A cerebellar mech-
anism for learning prior distributions of time intervals. Nature Communications
9, 469 (2018).

Shadmehr, R. Population coding in the cerebellum and its implications for learn-
ing from error. bioRziv (2020).

Pedroarena, C. M. & Schwarz, C. Efficacy and short-term plasticity at gabaergic
synapses between purkinje and cerebellar nuclei neurons. Journal of Neurophys-
iology 89, 704-715 (2003).

Pedroarena, C. M. Short-term plasticity at purkinje to deep cerebellar nuclear

neuron synapses supports a slow gain-control mechanism enabling scaled linear
encoding over second-long time windows. bioRziv 749259 (2019).

Morishita, W. & Sastry, B. Postsynaptic mechanisms underlying long-term de-
pression of gabaergic transmission in neurons of the deep cerebellar nuclei. Jour-
nal of Neurophysiology 76, 59-68 (1996).

Aizenman, C. D., Manis, P. B. & Linden, D. J. Polarity of long-term synaptic gain

change is related to postsynaptic spike firing at a cerebellar inhibitory synapse.
Neuron 21, 827-835 (1998).

Aizenman, C. D. & Linden, D. J. Rapid, synaptically driven increases in the
intrinsic excitability of cerebellar deep nuclear neurons. Nature neuroscience 3,
109-111 (2000).

Zheng, N. & Raman, I. M. Synaptic inhibition, excitation, and plasticity in
neurons of the cerebellar nuclei. The Cerebellum 9, 56—66 (2010).

Hull, C. Prediction signals in the cerebellum: beyond supervised motor learning.
FElife 9, 54073 (2020).

Kawato, M., Furukawa, K. & Suzuki, R. A hierarchical neural-network model for
control and learning of voluntary movement. Biological cybernetics 57, 169-185
(1987).

Wolpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum.
Trends in cognitive sciences 2, 338-347 (1998).

Vijayakumar, S. & Schaal, S. Locally weighted projection regression: An o
(n) algorithm for incremental real time learning in high dimensional space. In
Proceedings of the Seventeenth International Conference on Machine Learning
(ICML 2000), vol. 1, 288-293 (2000).

29


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1351491/
http://www.sciencedirect.com/science/article/pii/0025556471900514
http://www.sciencedirect.com/science/article/pii/0025556471900514
http://www.sciencedirect.com/science/article/pii/0025556471900514
http://www.sciencedirect.com/science/article/pii/0304394082903809
https://doi.org/10.1101/2021.03.10.434756
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434756; this version posted August 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

860 [77] Robinson, D. Adaptive gain control of vestibuloocular reflex by the cerebellum.
861 Journal of neurophysiology 39, 954-969 (1976).

862 [78] Miles, F. & Lisberger, S. Plasticity in the vestibulo-ocular reflex: a new hypoth-
863 esis. Annual review of neuroscience 4, 273-299 (1981).

864 [79] Lac, S., Raymond, J. L., Sejnowski, T. J. & Lisberger, S. G. Learning and
865 memory in the vestibulo-ocular reflex. Annual review of neuroscience 18, 409—
866 441 (1995).

867 [80] Ito, M. Cerebellar learning in the vestibulo-ocular reflex. Trends in cognitive
868 sciences 2, 313-321 (1998).

869 [81] Boyden, E. S., Katoh, A. & Raymond, J. L. Cerebellum-dependent learning: the
870 role of multiple plasticity mechanisms. Annual review of neuroscience 27 (2004).
871 [82] Clopath, C., Badura, A., De Zeeuw, C. I. & Brunel, N. A cerebellar learn-
872 ing model of vestibulo-ocular reflex adaptation in wild-type and mutant mice.
873 Journal of Neuroscience 34, 7203-7215 (2014).

874 [83] Armstrong, D. & Rawson, J. Activity patterns of cerebellar cortical neurones
875 and climbing fibre afferents in the awake cat. The Journal of Physiology 289,
876 425-448 (1979).

877 [84] Rieubland, S., Roth, A. & Hé&usser, M. Structured connectivity in cerebellar
878 inhibitory networks. Neuron 81, 913-929 (2014).

879 [85] Wang, W. X. & Lefebvre, J. L. Morphological pseudotime ordering and fate
880 mapping reveals diversification of cerebellar inhibitory interneurons. bioRxiv
881 (2020).

882 [86] Tsao, D. Y., Freiwald, W. A., Knutsen, T. A., Mandeville, J. B. & Tootell, R. B.
883 Faces and objects in macaque cerebral cortex. Nature neuroscience 6, 989-995
884 (2003).

885 [87] Zhen, Z., Fang, H. & Liu, J. The hierarchical brain network for face recognition.
886 PloS one 8, 59886 (2013).

887 [88] Raymond, J. L. & Medina, J. F. Computational Principles of Supervised Learn-
888 ing in the Cerebellum. Annual Review of Neuroscience 41, 233-253 (2018).

889 [89] Walter, J. T. & Khodakhah, K. The Linear Computational Algorithm of Cere-
890 bellar Purkinje Cells. Journal of Neuroscience 26, 12861-12872 (2006). URL
891 https://www. jneurosci.org/content/26/50/12861.

892 [90] Jorntell, H., Bengtsson, F., Schonewille, M. & De Zeeuw, C. I. Cerebellar molec-
893 ular layer interneurons—computational properties and roles in learning. Trends
804 in neurosciences 33, 524-532 (2010).

895 [91] Sotelo, C. Molecular layer interneurons of the cerebellum: developmental and
896 morphological aspects. The Cerebellum 14, 534-556 (2015).

807 [92] Kim, J. & Augustine, G. J. Molecular layer interneurons: key elements of cere-
898 bellar network computation and behavior. Neuroscience 462, 22-35 (2021).

899 [93] Palay, S. L. & Chan-Palay, V. Cerebellar cortex: cytology and organization
900 (Springer Science & Business Media, 2012).

30


https://www.jneurosci.org/content/26/50/12861
https://doi.org/10.1101/2021.03.10.434756
http://creativecommons.org/licenses/by-nc-nd/4.0/

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434756; this version posted August 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

[94]

[100]

[101]
[102]
[103]

[104]

[105]

[106]

[107]

[108]

[109]

available under aCC-BY-NC-ND 4.0 International license.

Pouzat, C. & Hestrin, S. Developmental regulation of basket /stellate cell— purk-
inje cell synapses in the cerebellum. Journal of Neuroscience 17, 9104-9112
(1997).

Dean, P., Porrill, J., Ekerot, C.-F. & Jorntell, H. The cerebellar microcircuit
as an adaptive filter: experimental and computational evidence. Nature Reviews
Neuroscience 11, 30-43 (2010).

Rowan, M. J. et al. Graded control of climbing-fiber-mediated plasticity and
learning by inhibition in the cerebellum. Neuron 99, 999-1015 (2018).

Isope, P. & Barbour, B. Properties of unitary granule cell— purkinje cell synapses
in adult rat cerebellar slices. Journal of Neuroscience 22, 9668-9678 (2002).

Yang, Y. & Lisberger, S. G. Purkinje-cell plasticity and cerebellar motor learning
are graded by complex-spike duration. Nature 510, 529-532 (2014).

Wagner, M., Kim, T., Savall, J., Schnitzer, M. & Luo, L. Cerebellar granule cells
encode the expectation of reward. Nature 544 (2017).

Giovannucci, A. et al. Cerebellar granule cells acquire a widespread predictive
feedback signal during motor learning. Journal of Neurophysiology 20, 727-734
(2017). URL https://www.nature.com/articles/nn.4531.

Tremblay, R., Lee, S. & Rudy, B. Gabaergic interneurons in the neocortex: from
cellular properties to circuits. Neuron 91, 260-292 (2016).

Bradbury, J. et al. JAX: composable transformations of Python+NumPy pro-
grams (2018). URL http://github.com/google/jax.

Babuschkin, I. et al. The DeepMind JAX Ecosystem (2020). URL http://
github.com/deepmind.

Ekaba, B. Google colaboratory. In: Building Machine Learning and Deep Learn-
ing Models on Google Cloud Platform. Apress, Berkeley, CA. (2019). URL
https://doi.org/10.1007/978-1-4842-4470-8_7.

Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014).

Tanno, R., Arulkumaran, K., Alexander, D., Criminisi, A. & Nori, A. Adaptive
neural trees. In Chaudhuri, K. & Salakhutdinov, R. (eds.) Proceedings of the

36th International Conference on Machine Learning, vol. 97 of Proceedings of

Machine Learning Research, 6166—6175 (PMLR, Long Beach, California, USA,
2019). URL http://proceedings.mlr.press/v97/tannol9a.html.

Arik, S. O. & Pfister, T. Tabnet: Attentive interpretable tabular learning. Pro-
ceedings of the AAAI Conference on Artificial Intelligence (To Appear) (2021).

Kostadinov, D., Beau, M., Pozo, M. B. & Hé&usser, M. Predictive and reactive
reward signals conveyed by climbing fiber inputs to cerebellar purkinje cells.
Nature Neuroscience 22, 950-962 (2019).

Hippenmeyer, S. et al. A developmental switch in the response of drg neurons
to ets transcription factor signaling. PLoS biol 3, €159 (2005).

31


https://www.nature.com/articles/nn.4531
http://github.com/google/jax
http://github.com/deepmind
http://github.com/deepmind
http://github.com/deepmind
https://doi.org/10.1007/978-1-4842-4470-8_7
http://proceedings.mlr.press/v97/tanno19a.html
https://doi.org/10.1101/2021.03.10.434756
http://creativecommons.org/licenses/by-nc-nd/4.0/

941

942

943

944

945

946

947

948

949

950

951

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434756; this version posted August 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

[110]
[111]

[112]

[113]

[114]

available under aCC-BY-NC-ND 4.0 International license.

Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal
populations and microcompartments. Nature Methods 16, 649-657 (2019).

Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon
microscopy. Biorziv (2017).

Deneux, T. et al. Accurate spike estimation from noisy calcium signals for ul-
trafast three-dimensional imaging of large neuronal populations in vivo. Nature
communications 7, 1-17 (2016).

Storey, J. D. A direct approach to false discovery rates. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 64, 479-498 (2002).

LeCun, Y., Cortes, C. & Burges, C. Mnist handwritten digit database. ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).

32


https://doi.org/10.1101/2021.03.10.434756
http://creativecommons.org/licenses/by-nc-nd/4.0/

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434756; this version posted August 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Supplementary Information

Difference between GLNs and DGNs

The main difference between the DGNs and Gated Linear Networks (GLNs) is in the
interplay of the gating functions and synaptic weights. To understand this, it is helpful
to write Eq. in the form

Ng—1 [ B,
Tk =¢ Z [Zgi,i(X)wZ,ij] hk—l,j . (13)

3=0 L b=1

The term in brackets is the effective weight, which, for each j, consists of a sum over
branches. The gates, gz ;» can be either zero or 1; since there are By ; of them, there

are 2B%.i possible effective weights. For the GLN, on the other hand, Tk is given by

Nkg—1

Tki = ¢ Z w]f’(i);)hkfl,j . (14)
j=0

The difference between this and Eq. is the the term in brackets has been replaced
by a single weight, wf(;;) However, the index ((x) can take on 28+ values, so there
are just as many weights in the GLN as effective weights in the DGN. The value of
B(x) is determined by the input, and is given by the binary string (suppressing the x

dependence for clarity)

By,
B = gii,i 913,2‘ gkf - (15)

(So if there were 5 gates, and the 3rd and 5th were on while the others were off, the
term on the right would be 00101, and 5 would be 5.)

In our experience, for similar B, DGNs and GLNs perform equally well. Computa-
tionally, DGNs are more memory efficient, as B weight vectors need to be stored per
neuron as opposed to 25 for GLNs. However, this comes at the cost of more operations,
as there is an additional sum over branches (the term in brackets in Eq. (13)).

The difference in the number of parameters translates to a difference in inductive
bias. GLNs are less prone to catastrophic forgetting compared to DGNs, as only one
weight vector per neuron is updated for each input. This, however, means that DGNs
are better than GLNs at learning new tasks — so long as there is some shared structure.

Convexity

Here we show that the loss is convex with respect to the weights in the previous layer.
Temporarily dropping indices for clarity, the loss, ¢(r*,r), is given in terms of the

33


https://doi.org/10.1101/2021.03.10.434756
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434756; this version posted August 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

081 weight vector, w, as £(r*,r) = £(r*, ¢(h)) with h = c - w (see Eq. (I)). If £(r*, $(h)) is
982 convex in h, then / is also convex in w, since h is a linear function of w.
983 For quadratic loss, Eq. (§), ¢ is the identity, so £(r*,¢(h))) = $(r* — h)?. This is
984 obviously convex in A, and so convex in w. For binary cross-entropy loss, Eq. ,
085 ¢(h) is given by a clipped sigmoid, Eq. (9). When clipped, ¢(h) = 0, which is convex.
986 When not clipped, ¢(h) = o(h) = 1/(1 + e™"), for which it is easy to show that
087 0%4(r*, ¢(h)))/Oh? = o(h)(1 — o(h)) > 0. Thus, again ¢ is convex in h, and so also in
988 W.
939 Optimal number of branches
990 The number of dendritic branches is one of the main factors determining the model
991 capacity of DGNs. Having too few branches results in underfitting, as the network is
992 not flexible enough to learn the underlying function. Having too many branches, on
993 the other hand, can result in memorization, and thus overfitting. We have generally
994 used 10 branches per neuron except in the Inverse Kinematics experiments, where we
995 used up to 5000 branches, as the task measures memorization not generalization.
996 In Figure we show the average accuracy in the permuted MNIST task as a func-
997 tion of the number of branches. This inverted U-shaped relationship can be observed
998 in most tasks (data not shown). In Figure we show how the MSE improves with
999 an increased number of branches. Because the training and test data is mixed, over-
1000 fitting is not possible, and so performance improves monotonically with the number of
1001 branches.
A B
Learning Retention
14 . > 14
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g 0.75 3075+ o o— -
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Figure S1: Permuted MNIST as a function of the number of DGN branches. A. Test
accuracy at the end of training of each task, averaged over all 10 tasks. B. Test accuracy on
task 1 after training on all 9 permutations. Grey areas are 99.5% confidence intervals of the
results obtained from 10 models, initialised with different gating parameters and trained on
differently permuted data.
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5 branches, MSE=4.1
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Figure S2: Sarcos solution for DGNs with 5, 50 and 5000 branches. Learning rate was 10~*
for 5 branches and 1075 for 50 and 5,000 branches.

1002 Inverse Kinematics

1003 In Table we compare the mean square error (MSE) obtained by DGN against
1004 baselines obtained from 107]. Note that, as mentioned in Methods, we (like
1005 others) used a test set that contained training examples.
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Algorithm MSE  Epochs
DGN 0.002 2000
Random forest 2.39 -

MLP 2.13 -
Stochastic decision tree 2.11 -
Gradient boosted tree 1.44 -
TabNet-S 1.25 55000
Adaptive neural tree 1.23 -
TabNet-M 0.28 55000
TabNet-L 0.14 55000

Gaussian Gated Linear Network 0.10 2000

Table S1: Test mean square error (MSE) and the number of passes over the dataset (i.e.,
number of epochs) for DGN with 5,000 branches versus previously published methods on the
SARCOS inverse dynamics dataset |76}/106,(107]. DGN obtains the best result, by a factor
of 50.

1006 Catastrophic Forgetting (permuted MNIST)
1007 Hyerparameter selection. We used a grid search to select the hyperparameters
1008 for the three networks (DGN, MLP and EWC). The parameters we tested are shown
1009 in Table the ones that maximize test accuracy are in bold.

Model H learning rate ‘ dropout ‘ regularization const

DGN | 107%, 1073, 1072, 10! - -
MLP | 1076, 1075, 1074, 102 | Yes, No -
EWC | 1076, 1075, 1074, 1073 | Yes, No 102, 103, 10*

Table S2: For permuted MNIST, parameters swept during grid search. The best parameters
(shown in bold) are the ones that maximize the average test accuracy over 20 random seeds.

1010 Learning curves. In Fig. we show the test performance of previously learned
1011 tasks (columns) as a function of the training across multiple tasks. To reduce clutter, a
1012 subset of the tasks (1, 2, 4, and 8, out of 10) are shown. The top left plot (train and test
1013 on task 1) shows that DGNs learn the first task much faster than all other methods.
1014 The plots to the right of that show retention on task 1 while the network is sequentially
1015 trained on subsequent tasks. MLP performances drop drastically after learning a few
1016 new tasks, while DGN and EWC show little forgetting. This is a remarkable feat for
1017 DGNs, which have no access to task boundaries and no explicit memory of previously
1018 learned tasks. EWCs, on the other hand, have both. If we look at the four diagonal
1019 plots, we see that DGN learns new tasks faster than all other methods, although the
1020 difference gets smaller as more tasks are learned.
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1021 The final accuracies across the diagonal correspond to the left panel of Fig.
1022 whereas the final accuracies across the first row correspond to the right panel.
1023 VOR
1024 To obtain the smooth connectivity patterns seen in Fig. [7D, the initial weights had to
1025 be small. Larger initial weights produced non-smooth connectivity patterns, although
1026 the non-smoothness was different for MLPs than it was for DGNs. For MLPs, standard
1027 Glorot intialisation led to the noisy connectivity patterns shown in Fig. [S4D, bottom
1028 panel; in contrast, to produce smooth patterns, the weights had to be scaled down by
1029 a factor of of 100. For DGNs, scaling the initial weights up by a factor of 10 relative to
1030 Fig. produced noisy weights, but riding on a smooth background (Fig. [S4D, top).
train task 1 train task 2 train task 4 train task 8
14 ] -
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Figure S3: Retention results for permuted MNIST. Models are trained sequentially on 10
tasks, a subset of which is shown (tasks 1, 2, 4 and 8). Each column corresponds to a different
stage of training (see labels on top), and each row reports test accuracy for a specific task.
For example, the top row indicates performance on task 1 after being trained sequentially
on tasks 1, 2, 4 and 8. Each model trains for one epoch per task; i.e., the 60,000 training
examples per task are used only once. Error bars, indicated by the thickness of the lines,
denote 95% confidence levels over 20 random seeds.
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Figure S4: VOR network initialized with large, noisy weights. Same as Fig. EI, except that
the training starts from large, noisy weights. For clarity, only five branches are shown in the

top panel of D (compared to 10 in Fig. @
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Figure S5: Suppression of Purkinje cell dendritic segments by MLIs. A. Event-triggered
fluorescence in modulated Purkinje cell dendritic segments as a function of MLI activity level.
Activity levels used for analysis in main figure are highlighted. B. Five additional examples
of spatial event-triggered map of area surrounding Purkinje cell dendrites (contoured region
of interest) when a nearby MLI (white circle;3$bmetimes projected from different plane) was
in an active state or inactive state. C. Spatial profile of event-triggered fluorescence of PC
dendrites shown in panel A. D. Difference heatmap image of event-triggered fluorescence of
same dendrites shown in panels A-B. E. Spatial profile trace (rainbow) and shuffled trace
(blue) of of event-triggered difference heatmap images.
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Pseudocode

Algorithm S1 DGN for quadratic loss

1:

[ S e
A el

14:

15:
16:
17:
18:
19:
20:
21:

Input: network architecture: number of layers K € N,
number of neurons in layer k {n;, € N},
number of branches per neuron i in layer k {By; € N}
Input: weights {w} ;; € R}
Input: gating parameters {v ,; € R}, {6}, € R}
Input: input x = (zy,...,z,) € R”
Input: target r* € R
Input: learning rate n € (0, 1)
Input: update € {TRUE, FALSE} (enables learning)
Output: Target prediction 7 = rx; (output of neuron in last layer K)
ro0 < 1; ng <= n; ro; = x; for i € {1,...,n}
for k € {1,..., K} do {over layers}
rro < 1 {bias}
for i € {1,...,n;} do {over neurons}
for b€ {1,..., Bx;} do {over branches}
i < O vy — 1)
Tkyi < Zf:ii 92,1 2?261 wz,ijrk—l,j
if update then
for b€ {1,..., By} do {over branches}
if g,’;,i > ( then
for j € {1,...,n4_1} do {over neurons in previous layer}
WEij & Weay — 1 (Mei = 75) W}
return g

Here O(-) is the Heaviside step function (0(z) = 1 for z > 0 and O(z) = 0 otherwise).
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Algorithm S2 DGN for Bernoulli data

1:

1

11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:
24:
25:

@

Input:

Input:
Input:
Input:
Input:
Input:
Input:
Input:

network architecture: number of layers K € N,
number of neurons in layer k {n; € N},

number of branches per neuron i in layer k {By; € N}
weights {w} ,; € R}

gating parameters {v} .. € R}, {6}, € R}

precision € € (0,0.5)

input x = (x4, ..., z,) € R"

target r* € {0,1}

learning rate n € (0,1)

update € {TRUE, FALSE} (enables learning)

Output: Target prediction 7 = rx; (output of neuron in last layer K)

70,0 <—

o(1); ng < n; ro; = CLIP. (o (x;)) fori € {1,...,n}

for k € {1,..., K} do {over layers}
rko < o(1) {bias}

for j € {1,...,n4_1} do {over neurons in layer below}
hi-14 < 0 (k1)
forie {1,... ,nk} do {over neurons}

for b € {1,. B;“} do {over branches}

gkz<_®( j O Ukwx] 9 )

k,i Ng—1
hk,i A Zb:l Ik,i Z] =0 wk Z]hk 1.j
Tki < CLIP. o (hy ;)

if

update then
for b € {1,..., Bx;} do {over branches}
if |r* — o(hg;)| > € then
for j € {1,...,n5_1} do {over neurons in previous layer}
wil:,z‘j — wlbc,ij — (ki — 7)1

return g

1033

1034

1035

Here,

as above, CLIP?(-) clips values between a and b,

a y<a
cLiP’(y) =<y a<y<b . (16)
b b<y

Also as above, o(-) is the sigmoid function, o(z) = e*/(1 + €*). Its inverse is given by

o My

) =log(y/(1 —y)).
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