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Our knowledge about neuronal activity in the sensorimotor cortex relies pri-7

marily on stereotyped movements that are strictly controlled in experimental8

settings. It remains unclear how results can be carried over to less constrained9

behavior like that of freely moving subjects. Toward this goal, we developed10
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a self-paced behavioral paradigm that encouraged rats to engage in differ-11

ent movement types. We employed bilateral electrophysiological recordings12

across the entire sensorimotor cortex and simultaneous paw tracking. These13

techniques revealed behavioral coupling of neurons with lateralization and an14

anterior–posterior gradient from the premotor to the primary sensory cor-15

tex. The structure of population activity patterns was conserved across an-16

imals despite the severe under-sampling of the total number of neurons and17

variations in electrode positions across individuals. We demonstrated cross-18

subject and cross-session generalization in a decoding task through alignments19

of low-dimensional neural manifolds, providing evidence of a conserved neu-20

ronal code.21

One-sentence summary Similarities in neural population structures across the sensorimotor22

cortex enable generalization across animals in the decoding of unconstrained behavior.23

Introduction Humans and animals are capable of generating a vast array of behaviors. This24

feature is dependent on the brain’s ability to generate a wide repertoire of neural activity pat-25

terns, which may rely on subsets of general motifs (1). Experimental, computational, and the-26

oretical work has identified the rich underlying structures within neural populations regarding27

movement control, decision-making, and memory tasks (2). Similarities in population struc-28

tures across different modalities such as speech and arm movements (3), as well as the rele-29

vance of population-level phenomena to learning (4), hint at the existence of general principles30

that could be shared across subjects. For simple, constrained behavior such as running on a31

linear track, population structures in some brain regions such as the hippocampus seem to be32

conserved, even across subjects (5). Similarities in neural population structures have not yet33

been shown for freely roaming animals and various naturally occurring behaviors. Whether34

population structures are sufficiently conserved across subjects to allow for the cross-subject35

decoding of behavioral categories remains an open question in systems neuroscience. This36

question has great implications for neuro-prosthetic approaches, among other research topics.37

Such conservation of neural structures would allow for a shorter adaptation or fine-tuning phase38

of Brain-Machine-Interface (BCI) systems from one subject to another as opposed to training39

the system from scratch.40

We addressed this question with non-linear mapping applied to electrophysiological record-41

ings across the entire bilateral sensorimotor cortex of the rat. The neural trajectories of dynam-42

ical systems have been suggested as a method to understand neural activity (6,7,8,9,10,11,12,43

13,14,15,16,4,17,18,19,20,21). Therefore, we built on Laplacian Eigenmaps (LEMs) (22,5),44

which map high-dimensional data via the data’s affinity to a low-dimensional manifold. When45

affinities are defined according to neuronal population activity, they can be used as tools to46

visualize structures and relationships among population activities at different time points of a47
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recording session in a low-dimensional space. This can potentially reveal conserved structures48

across sessions and animals (5).49

To investigate the degree to which low-dimensional structures are conserved, it is necessary50

to involve several types of behavior. In principle, it is possible to train animals in different51

tasks, but this has several limitations: (1) training animals is time-consuming, especially if52

multiple behaviors are involved; (2) the trained behavior often results in stereotyped move-53

ments and (due to the plasticity of the mammalian brain) corresponding changes in neuronal54

representations; and (3) frequent transitions between behaviors are not feasible. Furthermore,55

spontaneous movements influence neuronal activity, even in well-controlled tasks (23). There-56

fore, we refrained from controlling the behavior from the start, instead allowing the rats to roam57

freely in a Plexiglas box. Consequently, the animals showed their full array of natural behavior,58

such as rearing, grooming, turning, stepping, drinking, and resting, in an unbiased manner.59

To verify this approach, we first compared neuronal activity with previously reported results60

from more constrained behaviors by focusing on step- and swing-like paw movements. This61

study confirmed that the quality of information conveyed by our recorded data was comparable62

to that found in conventionally controlled settings. In addition, we reported a strong anterior–63

posterior gradient in the lateralization of forelimb representations from the premotor cortex to64

the primary sensory cortex. This gradient emphasizes the strong involvement of more posterior65

regions in the encoding of step-like behavior.66

After this validation, we focused on analyzing the population code for more complex be-67

haviors. We conducted a normal within-session decoding experiment to show that the neuronal68

code contains enough information about the behavior class. Across sessions, the signals of69

individual neurons were not comparable since neurons typically cannot be traced over multi-70

ple days. Across subjects, even the electrode positions varied. However, we found evidence71

that the signal from the population of neurons shared a common structure across sessions and72

even across subjects. In particular, decoding behavioral categories from the neuronal population73

activity was possible across different subjects.74

Results Rats moved unconstrained in a rectangular arena and conducted movements in differ-75

ent behavioral categories (i.e., stepping, turning, drinking, grooming, and rearing) while search-76

ing for water drops, which a robot arm positioned under mesh occasionally delivered (Fig. 1a).77

We recorded neuronal activities using electrodes that covered the sensorimotor cortex over both78

hemispheres (Fig. 1b). Two cameras videotaped the behavior of the rats for simultaneous 3D79

tracking. Recording sessions (n = 106 in total) were distributed over three months and varied80

between 30 and 60 min (µ = 36.06min, σ = 5.23min). In total, we identified 3,723 single-81

units (µ = 35.12, σ = 20.71 across sessions) that we used for further analysis: 730, 896, and82

230 in the left M2, M1, and S1, respectively, and 432, 793, and 642 in the right M2, M1, and83

S1, respectively (24).84

We focused on step-like behavior to extract behavioral components from the movements.85
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To extract the steps, we binarized the movements of the paws into swing (moving) and stance86

(not moving) according to a horizontal velocity threshold (0.03 mm/ms). With each paw, rats87

performed one step per second on average (µ = 1.22, σ = .29). The average percentage of time88

spent in the stance phase across rats was 71.36%, σ = 16.61%.89

The strongest paw coupling in contralateral S1 Since classical methods such as peri-90

stimulus time histograms (PSTHs) are not applicable to behavior without a trial structure, we91

computed spike-triggered averages to investigate the relationship between neuronal activity and92

unconstrained movements (25). We defined the spike-triggered average paw swing–stance sta-93

tus (STAPSSS) as a rough measure of the coupling of individual neurons to paw movements.94

For each neuron and each paw, we calculated the STAPSSS by averaging the swing–stance sta-95

tus in the period ±1s around the spikes (Fig. 1c). For statistical control, we randomly shifted96

the spike train 1,000 times to calculate 1,000 control STAPSSS waveforms. Bootstrapping via97

temporal shifting preserves autocorrelations in time series and, therefore, helps to exclude false98

positives arising solely from autocorrelations in paw movements. We considered the STAPSSSs99

to be significant if their standard deviation over time exceeded the .99 quantile standard devi-100

ation of the control STAPSSS waveforms. Only neurons that spiked more systematically than101

expected by chance in relation to movement parameters could pass this test. Significantly cou-102

pled neurons were characterized by clear peaks in the STAPSSS (Fig. 1d, Fig. S1). In total,103

54% (2,029/3,723) of all neurons were significantly coupled to at least one paw. These were104

45% (534/1,162) of all neurons in M2, compared to 53% (908/1,689) in M1 and 67% (587/872)105

in S1.106

To take into account the strength of coupling, we defined a continuous measure for paw107

coupling as the ratio of the STAPSSS’s standard deviation and the control standard deviation (>108

1 for significant neurons). Using this quotient as a dependent variable, we calculated three-way109

ANOVAs (with hemisphere, area, and rat as factors) for all four paws separately (detailed results110

in Table S2). In summary, for all four paws, we found a stronger coupling on the contralateral111

side (p = .04), which suggests lateralization during locomotion. The coupling increased from112

anterior to posterior areas (p < 1e − 11). For all four paws, the highest mean coupling was113

localized in contralateral S1 (Fig. 1e). In three out of the four paws, the interaction between114

the area and hemisphere was also significant, that is, the differences between the contralateral115

and ipsilateral hemisphere increased from anterior to posterior areas (p = .02). To further116

investigate the difference in magnitude between contralateral and ipsilateral paw coupling, we117

defined contralateral bias as the ratio between the coupling of the contralateral and ipsilateral118

paws: b = cr/cl for left-hemispheric neurons and b = cl/cr for right-hemispheric neurons119

(b ≈ 1 for non-biased neurons), with bias denoted as b, coupling as c, the right paw as r, and the120

left paw as l. We calculated this bias separately for the front and hind paws. A two-way ANOVA121

on the contralateral bias of individual neurons revealed a significant effect of the brain area for122

the front paws (F2,3715 = 44.66, p < 1e−19) and the hind paws (F2,3715 = 54.56, p < 1e−23).123
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This confirmed that single neurons had a larger contralateral bias from anterior to posterior124

areas for the front and hind paws (Fig. S2).125

To further investigate the temporal relationship between neuronal activity in different motor126

areas and paw movements, we quantified the offset between each movement peak (the STAPSSS127

peak) and spike. We found that for all four paws, the offset for neurons in S1 tended to be more128

negative (i.e., the spike followed movement) than that of neurons in M1 and M2 (Fig. S3).129

This effect was more pronounced for the hind paws according to an unpaired two-tailed t-test130

between offsets from S1 and M1/M2 (front left paw t3721 = −2.68, p = .007; front right131

paw t3721 = −2.63, p = .008; hind left paw t3721 = −6.57, p < 1e − 10; hind right paw132

t3721 = −5.94, p < 1e − 08). The finding that neurons in S1 tended to spike after movements,133

whereas neurons in M1 and M2 spiked in a closer temporal relationship to paw movements,134

aligns well with the idea of S1 reacting to sensory input and M1 and M2 being more involved135

in movement generation.136

Single-unit activity allows for the decoding of paw movements within sessions Due137

to the strong paw coupling, we hypothesized that it is possible to decode the paw movements138

of freely moving rats from neuronal activity. To test this hypothesis, we applied feed-forward139

neural networks to decode the swing–stance status of the right front paw posed as a two-class140

classification problem. For each time point, we fed in the spike trains ±400ms of all units141

in time bins of 10 ms. Deep neural networks were trained and evaluated separately for each142

recording session. We chose this approach because single-neuron activity does not generalize143

over sessions, in contrast to our population-level decoding approach in the following section.144

The mean per-class decoding accuracies were well above chance level (µ = 71.47%, σ =145

9.98%; chance level 50 %). While there was no significant correlation between accuracy and146

train set sizes (Spearman’s ρ = .17, p = 0.07), we found a significant correlation between the147

accuracy and percentage of coupled neurons according to our STAPSSS analysis per session148

(Spearman’s ρ = .63, p < 1e−12, Fig. 1f). This confirms that STAPSSS is a reliable measure149

of the correlation between neuronal activity and movement.150

The structure of population activities allows the decoding of behavior Due to the151

promising decoding results of paw movements, we sought to determine whether population ac-152

tivities during unconstrained movements also contained information on more complex behavior.153

We used LEMs (22, 5) to reveal and visualize the structures in the population activities. LEM154

is a non-linear dimensionality-reduction method for extracting low-dimensional manifolds in155

high-dimensional data using spectral techniques. We applied LEM to the neighborhood graphs156

of neuronal activity vectors to visualize structures and relationships among population activities157

at different time points of a recording session in a low-dimensional space. Most of the result-158

ing projections showed a clear saddle-like shape when visualized in three dimensions (Fig. 2a,159

52/95, roughly 55% of session structures had a similar shape, as classified visually), although160
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there were also random-like population structures that differed from the majority (14/95, about161

15% of the sessions, Fig. S4; the remaining 35% had intermediate levels of structuredness). In162

random-like population structures, the time points were uniformly distributed in a sphere.163

Sessions with a clear saddle-like shape were characterized by a larger number of neurons164

that were significantly coupled to at least one paw compared to sessions with an intermediate or165

low level of structuredness (23.57± 14.71 vs. 16.62± 12.33 neurons, t93 = 2.43, p = .016). To166

ensure that the saddle-like structures were not a simple artifact of the dimensionality-reduction167

method, we also performed time-shuffled, neuron-shuffled, and time-shifted control reductions168

(5). These did not lead to any apparent structure (Fig. S5).169

To investigate the relationship between population structures and the corresponding behav-170

ior, we proceeded by manually labeling sessions in 500-ms snippets into six behavioral classes171

(stepping/paw movement, turning/head movement, drinking, grooming, rearing, and resting).172

We included all sessions with clear saddle-like shapes and with at least five significantly cou-173

pled neurons, which resulted in a total of 48 sessions (13 for Rat A, 16 for Rat B, 7 for Rat C,174

6 for Rat D, 3 for Rat E, 3 for Rat F).175

While each session contained at least some samples of each behavior, the occurrences of176

behaviors still differed considerably across sessions and rats (Fig. S6). In contrast, the distri-177

butions of behaviors across the neural structures revealed clear similarities across rats, which178

was surprising assuming a sampling of approximately .005% of all neurons1 on average in only179

roughly overlapping recording sites (Fig. 1b). For example, the second eigenvector (here: first180

dimension), the so-called Fiedler vector, clearly represented the difference between movement181

and rest (Fig. 2b left column). For some animals, a clear distinction between more paw-related182

(paw movement, rearing) and head-related behavior (head movement, drinking) was observ-183

able in the third and fourth eigenvector (here: second/third dimension, Fig. 2b right column).184

Although the position of a population vector in the LEM space is univocally defined by the185

instantaneous activity of all its composing units, and is relatively little affected by the activity186

of a single-unit, there is a relationship between the overall structure emerging in the LEM space187

when observing the totality of recorded data and the firing of neurons with high behavioural188

selectivity. While population vectors cluster in space due to the similarity between neuronal189

representations during a specific behavior, single-units with high selectivity for such a behavior190

will fire more strongly at that behavior’s cluster (Fig. S7). Moreover, the distance in the LEM191

space between population vectors corresponding to two behaviors will increase with the number192

of units within the population that change their firing rate between the two behaviors (Fig. S8193

a,b).194

To quantify the separation between the neuronal representations of the six identified behav-195

iors in the LEM space, we trained a neural network based on the first 10 dimensions of the196

population vectors. We chose 10 dimensions because we found the mean dimensionality in the197

1Quotient of recorded cells and estimated total number of cells (approximated for the area covered by the
implanted electrodes by assuming a cortical thickness of 2mm and a density of 90k neurons per mm3 (26)).
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LEM space to be 8.59, σ = 1.11 (see Methods). By choosing a slightly higher value than the198

mean dimensionality, we added a small safety margin to ensure the inclusion of all relevant199

dimensions. The neural network correctly classified behaviors more frequently than by chance200

(mean per-class accuracy µ = 47.11%, σ = 9.62%; chance level 16.66%, Fig. 2c). The ac-201

curacies were correlated to the number of significantly coupled neurons (n = 48, Pearson’s202

ρ = .59, p < 1e−5, Fig. 2d), the total number of units (Pearson’s ρ = .54, p < 1e−4, Fig.203

S9a), and the signal-to-noise ratio (SNR) averaged over units (Pearson’s ρ = .49, p < .001, Fig.204

S9b). Common classification mistakes consisted of confusing rearing or turning with stepping,205

as well as turning with drinking or resting (Fig. 2e). At the single-unit level, these behavioral206

classes shared, in fact, the highest number of selective units (Fig. S8 c,d). Moreover, we ob-207

served the lowest accuracy for Rat D, Rat E, and Rat F. These rats had a low mean SNR (Rats208

E-F, Fig. S9b) or no electrode coverage of posterior areas (Rats D and F, Fig. 1b). This last209

aspect made us hypothesize that more posterior regions are primarily involved in the encoding210

of behavioral classes. To test this hypothesis, we investigated the influence of the different sen-211

sorimotor areas on neural population structures. Thus, we conducted dimensionality reductions212

with equal numbers of neurons (i.e., 20 randomly chosen units) from M2, M1, or S1 as input.213

With this subset, we trained artificial neural networks to decode the behavioral classes with the214

neural activity in a given area reduced to five dimensions as input. The decoding accuracies for215

M1 were significantly better than those for M2 (paired two-tailed t-test, t40 = 4.18, p < .001)216

and slightly, but not significantly, better than those for S1 (t41 = 1.90, p = .06). In total, the217

accuracies were highest in M1 for 28 out of the 48 sessions, compared to 15 for S1 and 5 for M2218

(Fig. 2f, accuracies µ = 25.80± 4.92% in M2, µ = 28.60± 5.34% in M1, µ = 26.66± 5.41%219

in S1). The low relevance of anterior sensorimotor regions is in line with the STAPSSS results,220

as well as with the lower decoding accuracies in Rat D and Rat F.221

A cross-session polytope comparison reveals similarities in the average encoding of222

behavioral classes across animals The visual similarity between neural population struc-223

tures in three dimensions (cf Fig. 2a,b) led us to wonder whether correspondences between the224

full dimensional structures could be quantified. Such similarities become more apparent when225

reducing the extended manifolds to polytopes – high-dimensional polyhedra – with vertexes226

defined by the average population vectors associated with the six behavioral classes (Fig. 3a).227

This encouraged us to systematically investigate whether population activities during uncon-228

strained movements contained structures that were conserved across recording sessions or even229

across different animals. We excluded Rat F from all of the following analyses because of low230

recording quality, which may reflect the long delay between implantation and measurements231

compared to the other rats (see Table S1).232

Polytopes are useful tools to facilitate the visualization of the complex structure associated233

with the neuronal representations of the six identified behaviors and their reciprocal distance.234

To test whether such distances were preserved across sessions and animals above chance level,235
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we first tested whether behaviors associated with similar population vectors in one session cor-236

responded to behaviors with similar population vectors in other sessions. For example, if in237

one session the population vectors during turn and step are similar to each other but dissimi-238

lar from those during rest, we wondered whether the same relationship can be found in other239

sessions as well. More formally, for each pair of sessions v and w and each behavioral class240

i, we ranked the remaining classes by the Euclidean distance between their average population241

vector and the average population vector of class i. If v and w had the same polytope struc-242

ture, the rank associated with each behavior would be identical. We quantified the similarity243

between ranks across sessions with the statistic svwi , defined as the number of concordant ranks,244

and compared its distribution with that obtained from bootstrapping (see Methods for details).245

We found significant similarities across sessions, both when computing distances in the high-246

dimensional recording space (Kolmogorov–Smirnov test, p < 1e−39) and in the reduced LEM247

space (p < 1e − 73) (Fig. S10 a-b). This finding confirms that the obtained result was not an248

artifact of the dimensionality-reduction procedure. Moreover, to ensure that such significance249

did not depend exclusively on the enhanced distance between the “rest” class and any other250

classes, we repeated the analysis with “rest” excluded from the accounted classes (p < 1e− 21,251

Fig. S10c).252

We performed a second test to compare the overall conservation of relative distances among253

the population vectors associated with different behaviors at the single-session level. We cap-254

tured the differences between the cross-behavioral distance matrices of two sessions with the255

Jeffries–Matusita metric and compared them with the bootstrap distribution obtained by shuf-256

fling the behavioral labels (see Methods for details). This was done for each pair of sessions257

within and across animals, both in the high-dimensional recording space and in the LEM space,258

and by excluding the “rest” class from the test (Figs. S10d, 3b, and S10e, respectively). In all259

of these cases, the similarity between the polytopes of different sessions and animals was above260

chance for most session pairs, and non-significance often occurred for animals with a low SNR261

(cf. Fig. S9b).262

Cross-subject and cross-session decoding Polytopes capture the distance between the263

average neuronal representations of the different behaviors but neglect their shape and exten-264

sion on the manifold. Encouraged by the similarities observed among the polytope structures of265

different recording sessions, we decided to perform a stronger test and attempted cross-subject266

decoding. Cross-subject decoding requires not only an agreement between the average repre-267

sentation of behaviors but also accounts for the variability in neuronal representations associated268

with each behavior. While it is impossible to find a direct correspondence at the single-neuron269

level across animals, similarities in lower-dimensional population structures can be used for270

cross-subject and cross-session decoding (Fig. 4a). For the decoding analysis, we divided the271

six behavioral classes (Fig. 4b) into two disjointed sets: one “alignment set”, which was used272

to align the neural structures, and one “decoding set”, which was used for training and testing273
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a classifier. Thereby we ensured that no class was used for aligning the structures and clas-274

sification in the neural space at the same time. The mean neural vectors (four dimensions)275

corresponding to the behavioral classes in the alignment set were used to compute a Procrustes276

transformation between two sessions to align the population activity structures (27, 28) (Fig.277

4c). Procrustes transformations involve translation, scaling, reflection, and rotation and thus278

preserve the shape of a set of points. For decoding, we trained a classifier on samples from279

the decoding set of one session for a single rat using the activity in the dimensionality-reduced280

neural space as input. Then, we tested the generalization on another session of the same rat281

(cross-session decoding) or another rat (cross-subject decoding) (Fig. 4c). Notably, the samples282

of the decoding set of the two tested sessions were not used for computing the Procrustes trans-283

formation. In the first experiment, the alignment set consisted of four behavioral classes, with284

two other classes remaining for the decoding set. This resulted in a total of 15 possible splits285

into two sets. Classifiers trained on highly decodable sessions also successfully generalized286

to other sessions from the same or other rats (Fig. 5a–c, Fig. S13a–b). In the generalization287

matrix (Fig. 5a), 13.88% of the generalization results (275 out of 45*44=1980) had a mean288

per-class accuracy higher than 60%, and 59 higher than 65%. In the set of sessions with the289

highest 10% signal-to-noise ratio (SNR > 4.33), the mean per-class accuracy in the generaliza-290

tion task was µ = 59.72%, σ = 5.37. The best-performing sessions included sessions of Rats291

A, B, and C with sufficient recording quality and a sufficiently high number of units for a ro-292

bust estimation of the underlying population structures (Fig. 5d). Additionally, the correlation293

between within-session and between-session accuracies was high (Fig. 5c, n = 45, Pearson’s294

ρ = .68, p < 1e−6). We defined the “generalization accuracy” of a session as the average test295

accuracy across all sessions (mean value per row of Fig. 5a first matrix). These generalization296

accuracies were correlated to the total number of units (Pearson’s ρ = .38, p < .01), with a297

higher number of units leading to a better estimation of the population structure. The general-298

ization accuracies were also correlated to the session length (Pearson’s ρ = .37, p < .05) since299

the number of samples used for LEM (which included only time points with sufficient activity)300

varied across sessions and rats. Finally, the recording quality—namely, the SNR averaged over301

units—was correlated with generalization (Pearson’s ρ = .38, p < .01). Particularly, Rats A302

and B, which performed best in the generalization, had both a high SNR and a high total number303

of units (Fig. 5d).304

Decoding is robust to methodological and class-selection changes To evaluate whether305

our results depended on a specific dimensionality-reduction method, we used Isomap, another306

non-linear dimensionality-reduction method. Also Isomap revealed neuronal structures that307

were comparable across subjects (Fig. S11, Fig. 5a second matrix). In contrast, linear methods308

such as principal component analysis (PCA) were not powerful enough to extract these neuronal309

structures (Fig. 5a third matrix); the LEM results were significantly better than those from data310

reduced using PCA (t30374 = 40.33, p = 0).311
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For a more systematic test of the relationship between the number of units and generaliza-312

tion, we took all sessions with a generalization accuracy of at least 55% (a total of 19 sessions313

from Rats A, B, and C) and conducted an ablation study with LEM reductions on the reduced314

number of units (20, 40, 60, and 80 units removed per session). We then repeated the general-315

ization experiment on the aligned LEM structures. The accuracies steadily decreased with fewer316

units (Fig. S12), confirming the high relevance of the number of units for a robust estimate of317

the population structure.318

To determine which sensorimotor areas were most relevant for generalization, we again319

took the 19 best sessions and conducted LEM reductions after removing M1, S1, or M2. Ad-320

ditionally, for a fair comparison, we removed a random portion of all of the other units for321

underrepresented areas such that the number of units after the removal of M1, M2, and S1 neu-322

rons remained constant across sessions. Generalization accuracies on aligned LEM structures323

decreased considerably after the removal of M1 (accuracies µ = 53.91 ± 7.48%); these val-324

ues were slightly but significantly lower than after the removal of units from S1 (accuracies325

µ = 55.94 ± 7.73%, paired two-tailed t-test, t5414 = −16.07, p < 1e−56), M2 (accuracies326

µ = 54.99 ± 8.32%, t5414 = −8.14, p < 1e−15), or of the same number of units distributed327

over all areas (accuracies µ = 55.55± 7.84%, t5414 = −13.89, p < 1e−42).328

In a second experiment, we used only three classes in the alignment set and the three remain-329

ing in the decoding set to test the generalization under more difficult conditions, resulting in 20330

possible splits of the six classes in total. The general pattern of the generalization matrix stayed331

the same (Fig. S13c–d). To verify that the classifiers did not only learn to discriminate the332

simplest difference—the difference between rest and movement—we conducted another exper-333

iment without the class “rest”. Although the accuracies were lower in this setting, the general334

pattern remained the same (Fig. S13e-f). To assess the relevance of the alignment of neural335

structures, we also tested the generalization on neural structures without explicit alignment as336

a control. In most cases, the accuracies on aligned structures were much higher than those on337

unaligned structures (Fig. S14).338

To further explore our results, we performed control classification experiments in which339

we examined the generalization on shuffled data (see Fig. S5). Accuracies of shuffled data340

were significantly lower than those computed in the original LEM space (t30374 = 82.31, p = 0341

when comparing with neuron-shuffled, t30374 = 83.32, p = 0 with time-shuffled, and t30374 =342

75.35, p = 0 with time-shifted data) and did not exceed the chance level (Fig. S15). Fur-343

thermore, we computed LEM reductions in the non-binarized neural space and repeated the344

generalization experiment. Also in this case we could find significant generalization for mul-345

tiple sessions, but with accuracies lower than when the analyses were performed on binarized346

spikes (Fig. S15d, t30374 = −28.72, p < 1e−178). This supported our intuition that an analysis347

seeking to identify similarities in the neural space between sessions should not be biased toward348

more active neurons.349
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Discussion In this study, we investigated single-neuron activity as well as population activity350

patterns in the rats’ sensorimotor cortex during unconstrained and self-paced behavior. The351

behavior was as closely related as possible to naturally occurring behavior, as it was based on352

foraging, but it was still performed in a limited arena to allow for reliable movement tracking.353

The first analyses were sanity checks to validate our approach of studying freely moving animals354

without a clear trial structure. Based on the chosen measure, STAPSSS, 54 % of all neurons355

were significantly coupled to paw movements. This fraction of coupled neurons is in the range356

of previously reported numbers. For example, 60 % of neurons in the hindlimb motor cortex357

reacted to different locomotion scenarios (29), and 44 % in M1 were body-coupled in freely358

moving rats (25). Our multi-side recording approach allowed us to comprehensively test for359

differences in neuronal activity across the entire sensorimotor cortex. Previous research has360

found that the laterality of forelimb representations increases from M2 to M1 in a pedal task for361

head-restrained rats (30). Here, we extended this laterality gradient to more posterior regions—362

in particular, S1. As we targeted the output layer of the cortex (layer V), we putatively biased our363

recordings toward pyramidal tract neurons, which have been described as being predominately364

involved in laterality (30).365

While the above-described findings refer to the general features of the sensorimotor cortex,366

the main finding of our study was based on conserved neuronal population structures. Exper-367

imental, computational, and theoretical work has identified a rich structure within the coordi-368

nated activity of interconnected neural populations in movement control, decision-making, and369

memory tasks. These findings are conceptualized within the framework of neural population370

dynamics, which can reveal general motifs (2). Recurrent neural networks (RNNs) can be ap-371

plied to neural data to reveal structural and geometric properties (31). Multiple tasks can then372

be represented in different RNN models. In these networks, some clusters of units have been373

identified as specialized for subsets of tasks (1). Alternatively, methods such as PCA and its374

variants dPCA and jPCA have been applied to identify the stability of motifs across modalities375

such as arm and speech control (3), as well as within and across brain areas (4).376

In contrast to the previously described studies, we focused on the existence of conserved377

neuronal structures across animals without any clear instructed task line but with several be-378

havioral classes. These two points differentiate our study from previous publications in the379

field. We investigated population activity patterns, which are commonly assumed to reside on380

low-dimensional manifolds in the full neural state space (14, 16, 32, 33, 34). In contrast to the381

(globally) linear method like PCA that most studies have used (12, 20, 15, 16, 4, 17, 18, 35),382

we assumed the preservation of local neighborhood relations in the data. Therefore, we em-383

ployed LEM (22,5) to reveal the presumed preserved low-dimensional structures. Remarkably,384

neuronal population activity during unconstrained behavior contained similar structures across385

animals and sessions, already visible in the first three dimensions. Furthermore, the distribu-386

tion of different behaviors across low-dimensional neural structures was systematic, which we387

confirmed with our above-chance, within-subject decoding results. The allocation of differ-388

ent behaviors on the population structures revealed strong similarities across rats. Particularly,389
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movement and rest could be clearly visually distinguished in the first dimension. This is in line390

with results on clear separations in the neural state space for output-potent and output-null (e.g.,391

preparatory) neural activity (12, 20).392

To support our main claim that low-dimensional neural manifolds are comparable across393

sessions and animals even in the case of unconstrained behavior, we first showed with our poly-394

tope analysis that the relative positions of the neural representations associated with different395

behavioral classes were conserved across animals and sessions above chance. The analyses396

of the polytope structures compared the distance between the average neuronal representations397

of behaviors, neglecting their precise spatial extension on the manifold as determined by the398

variability in neuronal representation of each behaviour. Conversely, cross-subject decoding399

was also affected by such variability and, therefore, tested an even stronger degree of similar-400

ity. Ultimately, we evaluated the performance of a classifier trained on the neuronal activity401

of one subject to predict the behavior of another based on its own neuronal activity; this pro-402

vided us with a proxy to experimentally test and quantify the degree of universality of mental403

representations across subjects. Since the neuronal state space of different subjects cannot be404

directly compared (given the difference in number and identity of the recorded neurons), ap-405

plying dimensionality reduction and alignment was necessary to achieve this goal. A simple,406

supervised, shape-preserving alignment procedure—namely, a Procrustes transformation be-407

tween mean population vectors for different behavioral classes in the dimensionality-reduced408

neural space—sufficed for successful cross-subject generalization in a decoding task with dis-409

tinct but related behavioral classes. Our procedure was applicable to sessions with sufficient410

recording quality (indicated by a high SNR of the recorded units) and enough units for robust411

population estimation. Further, the generalization accuracies of the sessions were closely re-412

lated to their within-session accuracies. Generalization was considerably worse for population413

structure estimates based on fewer units. In line with the within-session decoding results, we414

also found that generalization significantly decreased after the removal of M1, which indicated415

consistent population responses especially in this area. The low relevance of the anterior mo-416

tor cortex to information regarding behavioral categories is in line with our STAPSSS results.417

Nevertheless, in contrast to the encoding of paw movements, our results on the population de-418

coding of the higher-level behavioral categories hinted at major contributions from M1, not419

only S1. Thus, our results close a gap in a previous study that investigated postural and behav-420

ioral encoding in the posterior parietal cortex and M2 (36). While we mostly used LEM as a421

dimensionality-reduction method given its solid theoretical basis, we also showed that another422

non-linear dimensionality-reduction method, Isomap, can be used to reveal neural structures423

that are comparable across subjects.424

A shared structure in neuronal activity across subjects has been shown mostly in fMRI425

studies, where even between-subject classification has been demonstrated (37, 27, 38, 39, 40,426

41). While these works have focused on watching movies (an activity that can be conducted427

similarly for different subjects), EEG and EMG cross-subject decoding has been shown for428

hand movements (42, 43). In rodents, related work has shown the cross-subject decoding of429
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odor sequences in the orbitofrontal cortex (44) and place-cell activity in the hippocampus (45).430

In contrast to these studies, we showed cross-subject classification in a more complex case431

where rats roamed freely without training or a trial structure in the underlying task. Therefore,432

our main finding of shared neural structures is consistent with recent findings but also extends433

them to more complex, less constrained behavior. To our knowledge, this is the first time that434

the conservation of neural structures across animals and for distinct, spontaneous behavioral435

classes has been shown. This finding implies that conserved neuronal structures occur without436

training. Therefore, the neuronal computations underlying these structures might be similarly437

realized across individuals, either from birth or during development.438

Remarkably, sampling as few as approximately 0.005% of all neurons in only roughly over-439

lapping electrode positions sufficed to estimate population structures that were similar enough440

to allow for cross-subject generalization, at least for sessions with a sufficient number of units441

to allow for robust neural manifold estimation. Internal states (such as thirst, attention, or mo-442

tivation), which we did not analyze here, may also have influenced the neuronal activities (46).443

It has been hypothesized that cross-individual decoding might not be possible with increasing444

task complexity (5). However, our results indicate that even during unconstrained behavior,445

the relationships among neural activity patterns are conserved across different animals. This446

conservation of population-level neural phenomena provides a foundation for cross-subject de-447

coding, even in the difficult case of unconstrained behavior.448
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Graphical abstract: Conserved structures of neural activity in freely moving rats allow
for cross-subject decoding. (a) We conducted electrophysiological recordings across the bi-
lateral sensorimotor cortex of six freely moving rats. Neural activities were projected into a
low-dimensional space with LEMs (22). (b) In a decoding task, points in the aligned low-
dimensional neural state space were used as input for a classifier that predicted behavioral la-
bels. Importantly, training and testing data originated from different rats. (c) Our procedure
led to successful cross-subject generalization for sessions with sufficient numbers of recorded
units. The rat and brain drawings are adapted from scalablebrainatlas.incf.org
and SciDraw.
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Figure 1: Spike-triggered average paw swing–stance status (STAPSSS) during uncon-
strained movements extracts lateralized paw coupling. (a) Behavioral setup with a ground
mesh, camera, and robot arm delivering water drops, adapted from (49). (b) Locations of the
electrodes of the six implanted rats, adapted from (49). (c) Paw movements were binarized into
swing (moving) and stance (not moving). STAPSSS was calculated by averaging the swing–
stance status in windows ± 1s (indicated with red boxes) around each spike. (d) STAPSSS for
the right front paw of four example single-units in the left and right S1 (upper panel) and the left
and right M1 (lower panel). Black lines refer to the statistical control waveforms. (e) Coupling
for each paw, brain area, and hemisphere, averaged over neurons. Stars denote the results of
the post-hoc Tukey–Kramer tests (only intra-hemispheric results are indicated). Orange stars
denote mean values, and notches represent the 95% confidence intervals for the median. See
the main text for a definition of paw coupling. *p < .05, **p < .01, ***p < .001. (f) The
accuracies of neural networks trained to predict the status of the right front paw from the neural
data were strongly correlated to the percentage of significantly coupled neurons.
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Figure 2: Behavioral classes can be decoded from low-dimensional neural structures
within one session. (a) Non-linear dimensionality reduction through LEM was performed on
the neural data of each session separately. (b) In the low-dimensional space, different behav-
iors were distinguishable in as few as three neural dimensions. Left panel: The first dimension
clearly differentiated between rest and movement (all other behavioral classes). Right panel:
The second and third dimensions played a primary role in coding the difference between paw-
and head-related behavior (rear vs. drink). One session for each of Rats A, B, and C is depicted.
(c) Classification accuracies for the six behavioral classes given low-dimensional neural input
were above chance level for the sessions for all six rats. The gray dashed line indicates the
chance level, and the error bars show standard deviations. (d) Accuracies were correlated to the
number of significantly coupled neurons (neurons coupled to at least one paw according to the
STAPSSS measure). (e) One example confusion matrix for the test set of a single session of
Rat A, with a mean per-class accuracy of 68.46%. (f) For most of the sessions, classification
accuracies for the six behavioral classes were the highest given dimensionality-reduced neural
activity from M1 as input, followed by S1 and M2.
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Figure 3: Cross-session polytope comparison reveals similarities in the average encoding
of behavioural classes across animals. (a) 3D polytopes in the LEM space identified by the
average population vectors of the six behavioral classes for one example session of Rats A,
B, and C, respectively. The distances between the polytope vertexes are proportional to the
distances computed between the average population vectors in the 3D LEM space. The gray
shading is added to visualize the 3D structure. (b) Significant similarities among the polytope
structures of different sessions. Similarity was tested for each pair of sessions by comparing,
across-sessions, the difference between the session-specific matrices collecting the Euclidean
distance between the average population vectors associated with each behavioural class (see
Methods). Significance was assessed by bootstrapping the class labels (n = 720, all possible
permutations of class labels). Distances were computed in the 20-dimensional LEM space. Of
the 990 possible session pairs, 78% had a p-value below 0.05, indicating that the similarities of
the neuronal activities could be captured using the polytope structures.
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Figure 4: Alignment procedure of neural structures for cross-subject generalization. (a)
Neuronal activity on the single-neuron level is not comparable across rats and sessions. To
reveal population structures that are compatible—up to a transformation—across subjects, we
computed the affinities of the population activity at different time points. The resulting affin-
ity matrices could then be used for dimensionality reduction. (b) This represents the different
classes of behavior exhibited by the rats. (c) We aligned the low-dimensional neuronal struc-
tures of two different sessions using a Procrustes transformation. This procedure used only a
subset of the behaviors (e.g., groom, step, and drink). After alignment, a classifier trained on
one rat could generalize to another. In the classification, another subset of behaviors (e.g., turn,
rear, and rest) was used.
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Figure 5: Similar structures of population activities allow for cross-subject decoding. Re-
sults for a classifier trained on two behavioral classes of one rat (chance level 50%, red line)
and tested on another rat after using four disjointed behavioral classes to align the neural man-
ifolds. All values in the orange-to-yellow spectrum indicate accuracies above the chance level.
(a) Complete mean per-class accuracies across training and test sessions when aligning on four
classes and testing on two in the LEM/Isomap/PCA spaces. On the diagonal, training and test
data came from the same session. Off-diagonal entries refer to tests on data sets that were not
identical to those of the training session. Values are averaged over 20 runs, and there are 15
possible splits of the six behavioral classes into alignment and decoding sets. (b) Average of
the mean per-class accuracies when training a classifier on the rat indicated by the row and
testing on the rat indicated by the column. Error bars provide the standard error of the mean.
(c) Within-session and between-session accuracies were highly correlated; sessions that were
easier to classify generalized better to other sessions. (d) The best-performing rats (Rats A and
B) were also those with the highest number of recorded units and the highest SNR.
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Methods613

Animal surgery We implanted six male Long Evans rats at the age of eight weeks with 22614

tungsten electrodes (200 to 600 kOhm impedance, polyimide insulation, WHS Sondermetalle,615

Grünsfeld, Germany) at a 1.2 mm implantation depth in each hemisphere (implantation: January616

2017 for Rat F, April 2017 for Rats A–E). Electrode locations spanned from -2 to +5 mm in the617

anterior/posterior direction and from 1 to 4 mm in the lateral/medial direction. This resulted618

in three medial–lateral rows of six electrodes each, plus one row of four electrodes (see Fig.619

1b). Details of the procedure are described elsewhere (49). The Regierungspräsidium Freiburg,620

Germany approved all animal procedures.621

Behavioral task The rats were kept water-restricted for the time course of the experiments622

(free access to water for two days per week). For the experiments, the rats moved unconstrained623

on a mesh of 30×40 cm in a closed arena. Every 10 to 30 s, a waterspout pseudo-randomly624

positioned by two servo motors released a drop of water onto the mesh, which the animals625

could find and consume. To prevent the rats from merely following the movements of the626

waterspout, we included dummy movements that were not followed by a release of water. Even627

experienced animals were not able to predict the position of water drops without an active628

search, and the animals did not find all water drops throughout a session. This task has been629

previously described (49). Here, we only used part of the data set discussed in (49); in particular,630

we only included sessions with a minimum duration of 30 min.631

Data acquisition and the preprocessing of extracellular recordings Extracellular sig-632

nals were recorded at 30kHz and band-pass filtered, amplified, and digitized using a head stage633

(Intan Technologies, Los Angeles, California) situated at the head of the animal. Spike sorting634

was conducted on high-pass filtered signals (cut-off at 300 Hz) separately for each electrode.635

Spikes were defined as amplitude threshold crossings of four times the standard deviation of the636

signals. For each spike, we extracted the window of -0.5 to 2 ms around the peak amplitude (re-637

sulting in 76 values per spike). Spike sorting consisted of two phases for each unit. First, a seed638

spike was estimated. This was accomplished by calculating the spike neighborhoods (spikes639

within the average noise level, half a millisecond before the spike, across all units) for 500 ran-640

domly chosen spikes. The spike with the most neighbors was chosen as the seed spike. Second,641

we optimized the spike waveform through an iterative procedure. This was done by alternating642

the calculation of a new noise level for the neighboring spikes, the update of the neighborhood643

(spikes within the new noise level), and the update of the average waveform. This iterative pro-644

cedure ended when the neighborhood assignments remained constant. The algorithm proceeded645

with the remaining spikes by choosing a new seed spike. Details of the offline denoising and646

spike sorting procedure have been described elsewhere (49). For our single-unit analysis, we647

only kept single-units according to the distribution of inter-spike intervals. single-units with a648
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firing rate lower than 0.1 Hz were not included in the analysis. Two cameras (Stingray, F033C649

IRF CSM, Allied Vision Technologies) positioned below the mesh tracked the movements of650

the colored paws. The videos were taken with a frame rate of 80 Hz and smoothed with a651

Gaussian filter before analysis.652

Single-unit STAPSSS analysis Paw movements were labeled as “swing” for horizontal653

velocities higher than 0.3 mm per 10 ms (the bin size we used for our analysis) and “stance”654

otherwise. Spikes were also binned with a bin size of 10 ms. For each neuron and each paw,655

we defined the spike-triggered average paw swing–stance status (STAPSSS) as the behavioral656

average over all windows ±1 s around the spikes. We normalized each STAPSSS waveform657

by the mean. We defined the paw coupling of a neuron as the ratio of the standard deviation658

of the STAPSSS waveform to the statistical control standard deviation. The latter was defined659

as the .99 quantile standard deviation of a distribution constructed out of the standard devia-660

tions of the STAPSSS waveforms of 1,000 randomly shifted spike trains. If a neuron was not661

related to a paw’s movement, its STAPSSS waveform would be flat and its standard deviation662

would not exceed the control standard deviation. We defined the contralateral bias as the ratio663

of contralateral to ipsilateral paw coupling. Statistical analyses were done using the anovan,664

multcompare, and ttest Matlab functions. The ANOVA tests always included the rat’s ID as an665

additional factor.666

Decoding from spike trains We used fully connected neural networks with three hidden667

layers of 500 units each for decoding. The networks’ inputs were the Gaussian-smoothed (σ =668

20ms) binned spikes in ±400ms, resulting in 81 input bins for each neuron. In contrast to669

the STAPSSS analysis, where only single-units were considered, we used all units as input for670

decoding. Each session was split into training, validation, and test sets (70/15/15 %). Two671

of the 106 sessions were excluded from decoding because of insufficient data. Training was672

conducted with the Adam optimizer (47), batch size 64, and an initial learning rate of 0.0001.673

A dropout rate of 75 %, L2 regularization (λ = 1e − 4), and early stopping were applied to674

prevent overfitting. To deal with class imbalance, we used weighted cross-entropy loss to put675

more weight on the less frequent class (swing). The reported accuracies were mean per-class676

accuracies. The decoding accuracies of the deep neural network were significantly better than677

a baseline linear classifier (two-sided paired t-test, t = 6.55, p < 1e−8). For the baseline,678

we used a logistic regression with three-fold cross-validation of the L2 regularization strength679

on the concatenated training and validation sets. The test sets for each session were the same680

as for the artificial neural network. Class weights were adjusted to be inversely proportional681

to class frequencies, as for the artificial neural network. The artificial neural network was682

implemented in Tensorflow. For the linear baseline, we used Python’s scikit-learn function683

LogisticRegressionCV.684
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Dimensionality reduction We used LEM (22, 5), an unsupervised non-linear dimension-685

ality reduction method, to investigate the low-dimensional structure of population activity. For686

each session, spike counts were binned in 100 ms bins and then binarized (1 for at least one687

spike per bin, 0 for no spikes). Single and multi units were used. Only time points with at688

least 15 active units were retained. Since we restricted further analysis to sessions with at least689

5,000 valid time points, we considered only 95 of the 106 sessions. For each session, we con-690

structed an unweighted, mutual kNN graph based on the Hamming distance on the columns of691

the n× t matrix (n units, t time points). Our code for LEM was built on recent work (5). Two692

iterations of the LEM algorithm were performed. However, in contrast to Rubin et al., we used693

the Hamming distance in the first iteration and reduced to 20 dimensions. In the first iteration,694

we used 0.5% of the time points as neighbors; in the second, this parameter was set to 7.5%.695

Furthermore, we applied a random walk normalized graph Laplacian instead of the symmetric696

normalized graph Laplacian, as proposed in a previous study (48). In detail, we constructed697

the unnormalized graph Laplacian as L = D −W , with D as the diagonal degree matrix and698

W as the adjacency matrix of the kNN graph. Solving the generalized eigenvalue problem699

Lv = λDv corresponded to finding the first eigenvectors of the random walk normalized graph700

Laplacian Ln = D−1L (48). Since the eigenvector corresponding to the smallest eigenvalue701

(zero) is constant, we discarded the first dimension of the LEM for all analyses and decoding702

studies. The other LEM eigenvectors (=dimensions) were ordered by eigenvalue magnitude—703

that is, the “splitability” of the time points in different clusters (i.e., the dimensions that best704

divided the time points into clusters came first.) For the LEM reductions on units from different705

sensorimotor areas, we randomly chose 20 units from each area as input (if fewer than 20 units706

for an area were available, the analysis was omitted). We chose to reduce to six dimensions707

in the LEM space, leaving us with five dimensions for decoding with deep neural networks (as708

mentioned above, the first dimension of the LEM must be discarded). For the ablation study on709

sessions with 20, 40, 60, or 80 units removed, we reduced to 20 dimensions in the first two and710

10 dimensions in the second two cases (in these latter cases, we did not have enough neurons711

left to retain high dimensionality in the LEM space). For the study on LEM reductions after the712

removal of sensorimotor areas, we removed nmax =max(#M1, #M2, #S1 units) from each area713

for each session. For underrepresented areas, we additionally discarded nmax −narea randomly714

chosen units. As before, given the lower number of neurons, we reduced to 10 dimensions.715

To investigate the dimensionality of the LEM space using the method of (5), we computed the716

average number of neighbors of all time points in the 20-dimensional LEM space in circles717

with increasing radii. The dimensionalities were then obtained as the slope of a line around the718

steepest point in a log–log plot of neighbors against radii.719

For the dimensionality reduction with Isomap, we used Landmark–Isomap (50), which is720

more efficient for very large datasets. We set the number of neighbors to 0.5%, as for the721

LEM, and used 10% of the time points as landmarks. PCA reductions where computed on722

non-binarized spikes.723
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Behavioral labeling We used the freely available tool MuViLab for the behavioral la-724

beling of the videos. Two human annotators who were blinded to the neural data manually725

labeled the 48 sessions divided into 500-ms snippets. The 48 sessions were chosen based on726

them having a clear saddle-like shape and at least five significantly coupled units: Rat A—13727

sessions recorded between 2017/06/08 and 2017/08/03, Rat B—16 sessions recorded between728

2017/06/01 and 2017/08/21, Rat C—seven sessions between 2017/06/01 and 2017/06/29, Rat729

D—six sessions between 2017/06/08 and 2017/07/11, Rat E—three sessions between 2017/06/08730

and 2017/06/22, and Rat F—three sessions between 2017/06/07 and 2017/06/30. The criteria731

for the behavioral classes were as follows: Step—the rat moved at least one paw but did not732

drink or rear at the same time; turn—the rat moved its head; drink—the rat drank from the733

spout or collected water drops from the mesh with its mouth; groom—the rat performed typical734

grooming movements; rear—the rat stood on its hind paws; rest—the rat showed no obvious735

movements. In rare cases, samples were excluded from labeling when the behavior of the rat736

was not visible because it was located near the borders of the arena. Examples of the differ-737

ent behaviors can be found at https://www.dropbox.com/sh/4uu3cmmmnnovqmb/738

AABWaTv9H_0MPgHOpx4tPOXwa?dl=0.739

Single-unit behavioral coding To establish the single-unit coding of a specific behavior740

or stimulus, it is common practice to compare the average firing rate of the unit prior to the event741

(baseline) and after it (response). In the case of self-initiated behaviors, however, it is difficult742

to unambiguously identify temporal windows that can be associated with a baseline or response.743

Thus, we tested whether a unit increased its firing rate during each of the six behavioral cate-744

gories and compared this rate to the unit’s firing during the remainder of the recorded time. The745

test was performed using a Wilcoxon rank-sum test with Benjamini–Hochberg correction for746

multiple comparisons and α = 0.05.747

In a second analysis, we aimed to compare the diversity in single-unit firing rates during748

two behaviors with the distance in the LEM space of the population vectors associated with749

such behaviors. To obtain the number of single-units that changed their firing rates during750

different behaviors, we divided the spike counts (500 ms binning) of each unit according to751

the six behavioral classes and performed a Kruskal–Wallis test. When the main effect was752

significant, we performed a post-hoc analysis to selectively compare the unit firing rates during753

each pair of behaviors. Significance was fixed at 0.05. Since the final aim of this analysis was to754

compare the average number of units that changed rates with the distance in the LEM space of755

the population vectors associated with different behaviors, we did not want the unequal sample756

size of the behavioral classes to affect the significance of the post-hoc tests. Therefore, before757

performing the Kruskal–Wallis test, we randomly selected an equal number of samples (equal to758

the sample size of the smallest class) from all behavioral classes for each unit. We then repeated759

the test 100 times and computed the average number (first across the 100 samplings and then760

across the session’s units) of significant post-hoc tests obtained for each class comparison and761
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each session. Fig. S8a displays their average across sessions.762

Similarities among behavioral representations across sessions To investigate whether763

the relative positions of the neural representations associated with different behavioral classes764

were conserved across sessions and animals, we computed the Euclidean distance between the765

average behavioral population vectors of a session, then tested whether these distances were766

more similar to those observed in other sessions than to what would be expected by randomly767

shuffling the behavioral state labels. This was performed by first comparing the ranked distances768

between the polytope vertexes and then comparing the actual distance values. For each session769

v, we computed the Euclidean distance Dv
ij between the average population vector ξi and ξj770

of all pairs of behavioral classes i and j. Then, for each behavioral class i, we ranked the771

remaining classes j according to their distance Dv
ij from i. For each pair of sessions v and w772

and each class i, we accounted for the similarities in ranked distances by defining the statistic773

svwi as the number of classes matching the same rank in the two sessions. For the six behavioral774

classes, svwi ranged between a maximum value of 5 (perfect match) to a minimum value of 0 (no775

match). The distribution of svwi across all sessions was compared with a bootstrap distribution776

in which the same statistic, sboot, was computed over two random permutations of the numbers777

from 1 to 5. With six possible classes, there are 5! = 120 possible permutations of the remaining778

five classes, giving
(
5!
2

)
+ 5! = 7, 260 unordered pairs of random permutations. We thus used779

the Kolmogorov–Smirnov test to compare the distribution between the observed svwi (n = 990780

session pairs) and bootstrapped sboot (n = 7, 200) similarities.781

The analysis described in the previous paragraph tested whether the distances between the782

pairs of behaviors (polytope vertexes) had a similar order (e.g., from the closest to the furthest)783

for different sessions or animals. To compare the actual distance values, we computed the matrix784

of pairwise Euclidean distances Dv between the average class population vectors ξi in the LEM785

space. Then, for each other session w, we performed a Procrustes transformation to rescale the786

behavioral population vectors of w with those of v and computed the distance matrix Dw on the787

rescaled vectors. The Procrustes transformation did not affect the relative distance between ver-788

texes but prevented differences in scale between the polytopes of different sessions from obscur-789

ing the quantity of interest. To quantify whether the set of relative distances between behavioral790

classes was, to some extent, maintained across sessions, we computed the difference between791

Dv and Dw as the Jeffries–Matusita distance dJM(Dv, Dw) =
√∑

i,j(
√
Dv

i,j −
√
Dw

i,j)
2, where792

i and j were indexes running over the six classes, and compared this difference with what we793

would obtain by chance. We employed the Jeffries–Matusita metric because it reduces the794

effect of outliers, but similar results were found with a Euclidean metric as well. The distribu-795

tion dJM(Dv, Dw) obtained with the original distance matrices was tested against the bootstrap796

distribution dJM(Dv, Dw
b )1...nbootstraps obtained by randomly permuting the behavioral labels797

associated with the population vectors of the session w. For each session pair (v, w), we then798

compared dJM(Dv, Dw) with those obtained on the bootstrapped Dw
boot and computed a p-value799
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for the H0 of dJM(Dv, Dw) that was obtained by chance. The bootstrap sample included all800

possible class label permutations (n = 720). Figs. 3b and S10d show the significance of the801

comparison of each session pair when computed on all six behavioral classes, and Fig. S10e802

shows the same but with the “rest” class excluded.803

Population-level decoding We trained one deep neural network per session to classify804

the six behavioral classes given the 10-dimensional neural data in seven bins with 100 ms each805

as input. The data was min–max normalized (min and max were only calculated on training806

sets). The deep network architecture and training were almost identical to the network used807

for the decoding task above. However, we used only 200 units per layer and a dropout rate of808

25%, and we chose a cross-validation strategy to deal with unbalanced classes. In the latter809

step, the available data was split into four parts of equal size. Four runs were conducted per810

session, using two parts as the training set, one as the validation set for early stopping, and the811

fourth as a test set. The final test results were calculated as the mean over all four test sets812

and runs. As for the decoding of the swing–stance status, we used weighted cross-entropy loss813

(more weight on less frequent classes) to deal with the class imbalance. All accuracies that814

we report were mean-per-class accuracies (balanced accuracies) to ensure that more frequent815

classes did not bias the results. While we used 10 dimensions for this behavioral decoding816

task—in line with the estimated dimensionality—only five dimensions remained for the area-817

specific dimensionality-reduced data since the lower number of neurons did not allow for a818

reduction in a higher-dimensional LEM space. For the supervised alignment procedure, we819

always restricted the analysis to four neural dimensions to avoid underdetermination. (That is,820

the remaining dimensions provided by LEM were not used – no completely new dimensional-821

ity reduction was computed.) We used Matlab’s Procrustes function to find a transformation822

between class means. Proper transformation was important because of the sign ambiguity of823

eigenvectors, which might otherwise have led to different orientations of the neural structures.824

Before alignment, both neural structures were normalized to the 0–1 range. An SVM with a825

Gaussian kernel (Matlab fitcecoc) was used as the classifier. Training was conducted with an826

equalized number of samples per class (i.e., the class with the fewest samples determined the827

number of samples taken from each class) and default parameters (kernel size 1). For the SVM828

classification, we did not use four-fold cross-validation as we did for the classification of neu-829

ral networks (see above). Instead, we performed 20 repetitions with different samplings of the830

training set (Monte Carlo cross-validation).831
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Rat A
M1 left

Rat A
S1 right

Rat B
M1 left

Rat B
M2 right

Rat C
M1 left

Rat C
M2 right

Rat D
M1 right

Rat D
M1 right

Rat E
M1 right

Rat E
M1 right

Figure S1: Significantly coupled neurons showed clear peaks in the STAPSSS. STAPSSS
for the right front paw of 10 example neurons from different motor areas from five sessions of
different rats. Extends Fig. 1d from the main paper.

Table S1: Statistics of the recording sessions. Dates of implantations and the recording periods
for each animal.

Rat A Rat B Rat C Rat D Rat E Rat F
Implantation 20/04/2017 19/04/2017 27/04/2017 11/04/2017 25/04/2017 01/01/2017

First recording 01/06/2017 01/06/2017 01/06/2017 01/06/2017 01/06/2017 07/06/2017
Last recording 15/08/2017 21/08/2017 08/07/2017 21/08/2017 25/08/2017 22/08/2017

Table S2: ANOVA results for paw coupling. Paw coupling was defined as the ratio between
the STAPSSS standard deviation and the control standard deviation (see main text). Three-way
ANOVAs were calculated separately for each paw on all recorded neurons (n = 3, 723, main
effects area, hemisphere, rat; interaction effect area and hemisphere). The table contains the
corresponding F and p values.

Paw Area Hemisphere Area x Hemisphere Rat
Right front 66.77, p < 1e−28 108.85, p < 1e−24 18.24, p < 1e−07 28.59, p < 1e−27
Left front 41.61, p < 1e−17 17.15, p < 1e−4 2.22, p = .10 37.82, p < 1e−37
Right hind 25.73, p < 1e−11 4.16, p = .04 5.63, p = .003 23.63, p < 1e−22
Left hind 67.47, p < 1e−28 6.38, p = .01 3.82, p = .02 13.52, p < 1e−12
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Hind paws Front paws

*** ***
***

*

Figure S2: Contralateral bias was largest in S1. Contralateral bias for the front and hind paws
per area, averaged over neurons. The bias increased from anterior to posterior regions for both
the front and hind paws. Stars denote the results of the post-hoc Tukey–Kramer tests. Orange
stars denote mean values, and notches denote the 95% confidence intervals for the median. See
the main text for definitions of paw coupling and bias. *p < .05, ***p < .001.

Figure S3: Temporal relationship between movement and brain-area-specific neuronal ac-
tivity in M2, M1, and S1. Movement refers here to the STAPSSS peak. Negative values
indicate that the spikes followed the movement (in the form of the STAPSSS peak); positive
values indicate that the spikes preceded the movement. The spikes in S1 tended to occur after
movements, significantly later than the spikes in M2 and M1. The mean and standard error of
the mean over all neurons in each area are shown. Refers to the main paper’s Fig. 1.
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Figure S4: Some population structures did not show any apparent structure. Two example
sessions (from Rats A and B, respectively) with random-like, low-dimensional neural projec-
tions. Refers to the main paper’s Fig. 2a.
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a b c

Figure S5: Control dimensionality reductions with shuffled neuronal activity did not show
any apparent structure. LEM projections for neuron-shuffled (a), time-shuffled (b), and time-
shifted (c) data for one session of Rat A (upper row) and Rat B (lower row). For neuron shuf-
fling, units were permuted randomly for each time point. For time shuffling, time points were
permuted randomly for each neuron. For time shifting, the spike trains of the neurons were
randomly shifted against each other. The two sessions are the same as in Fig. 2b of the main
paper.
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Figure S6: Histograms of behavior illustrating the distribution of behavioral classes. One
row reflects one session. Provides background for Fig. 2 in the main paper.
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Figure S7: Comparison of single-unit firing patterns and localization of behaviors in the
LEM space. (Left) The LEM manifold from one example session of Rat A is color-coded
according to the firing of six different example single-units significantly responding to the six
behavioral classes. Colored dots mark time points when the unit fired above its 75th empirical
quartile, while black dots mark any other time point. (Right) On the same LEM manifold
as in the left panel, colored dots mark time points corresponding to the six behavioral labels.
Different orientations of the same manifold are shown from top to bottom.

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2021.03.04.433869doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.04.433869
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fraction of units with different firing rate

Ste
p

Tu
rn

D
rin

k

G
ro

om
R
ea

r
R
es

t

Ste
p

Tu
rn

D
rin

k

G
ro

om

R
ea

r

R
es

t
0.15

0.2

0.25

0.3

0.35

F
ra

c
tio

n
 o

f to
ta

l u
n

its

Averge distance between population vectors
associated to different behaviors

Ste
p

Tu
rn

D
rin

k

G
ro

om
R
ea

r
R
es

t

Ste
p

Tu
rn

D
rin

k

G
ro

om

R
ea

r

R
es

t 0.1

0.15

0.2

0.25

E
u

c
lid

e
a

n
 D

is
ta

n
c
e

Ste
p

Tu
rn

D
rin

k

G
ro

om
R
ea

r
R
es

t
0

0.2

0.4

0.6

0.8

F
ra

ct
io

n
 o

f 
si

g
n
. 
re

sp
o
n
si

ve
 u

n
its

Single-unit coding Shared responsiveness

Ste
p

Tu
rn

D
rin

k

G
ro

om
R
ea

r
R
es

t

also  sign. responsive for

Ste
p

Tu
rn

D
rin

k

G
ro

om

R
ea

r

R
es

t

F
ra

ct
io

n
 o

f 
u
n
its

 s
ig

n
. 
re

sp
o
n
si

ve
 f
o
r

0

0.5

1

a b

c d

F
ra

c
tio

n
 o

f u
n

its

in different behaviors

Figure S8: Single-unit coding of different behaviors. (a) Fraction of single-units changing
their average firing rate when active during different behaviors as the fraction of significant
post-hoc comparisons (α = 0.05) of a Kruskal–Wallis test on the firing rate of single-units
during the six identified behaviors. Differences in sample size across classes were compensated
with down-sampling (see Methods). (b) Average distance between the population vectors of the
LEM space (dim = 10) associated with different behaviors. (c) Fraction of units significantly
more active during each of the behaviors (Wilcoxon rank-sum test, with Benjamini–Hochberg
correction for multiple comparisons, α = 0.05). The median (red line) across sessions, the 25th
and 75th percentiles (blue), the most extreme data points (whiskers), and outliers (crosses) are
shown. (d) Based on (c), the fraction of units with shared responsiveness to multiple behaviors.
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a b

rho=0.49rho=0.54

Figure S9: Correlation between accuracies and units/SNR. (a) Top: Accuracies versus the
number of units per session for the six rats. Bottom: Average number of units per rat and error
bars for the standard deviation across sessions. (b) Top: Accuracies versus the mean SNR per
session for the six rats. Bottom: Average SNR per rat, with error bars for the standard deviation.
Refers to Fig. 2.
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Figure S10: Similarity among the polytopes of different sessions. (a–c) Probability–
probability (p–p) plot comparing the original and bootstrapped empirical cumulative distribu-
tion function (ECDF) of the statistic svwi , which compares the ranked distances between the
polytope vertexes across sessions (see Methods for a formal definition). The ECDFs of svwi
were computed for each behavioral class i (color-coded) on the original recordings (a), on the
20-dimensional LEM space (b), and on the 20-dimensional LEM space with the class “rest”
excluded from the test (c). In a p–p plot, equal distributions overlap with the diagonal (dotted
line). (d–e) are the same as in Fig. 3 b, but with computing distances on the original recording
space (d) and on the 20-dimensional LEM space with the “rest” class excluded from the test
(e). Of the 990 possible session pairs, 84% and 61% in (d) and (e), respectively, had a p-value
below 0.05.
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Figure S11: Population structure in the Isomap space. Left: All points. Right: For better
visualization, only the averages of the six behavioral classes were plotted. One session of Rat
A is shown here.
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Figure S12: Generalization worsened with fewer units. We repeated the generalization exper-
iment from Fig. 5a for all sessions with a generalization accuracy of at least 55% (19 sessions).
The accuracy decreased for LEM structures that were computed after removing 20, 40, 60, or
80 units from each session compared to the accuracies with the full number of units. Thus,
accuracy decreased with fewer units.
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Figure S13: Further cross-subject and cross-session generalization studies. (Continued on
the following page.)
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Figure S13: Further cross-subject generalization experiments and performance above
chance. For all plots, training and test data on the diagonal originated from the same session.
Off-diagonal entries show testing on data other than the training session. (a) Mean per-class
accuracies across training and test sessions when aligning on four and testing on two classes.
The chance level was 50% (red line). Values were averaged over 20 runs and 15 possible splits
of the six behavioral classes into alignment and decoding sets. We used the same plot as in Fig.
5a in the main paper. (b) Percentage of splits of the six behavioral classes into the alignment and
decoding sets (out of 15 splits) that were classified with a significantly higher mean per-class
decoding accuracy than chance (50%). Significance was calculated over 20 training runs at a .05
significance level with Bonferroni correction using a one-tailed sign test. In total, the accuracy
was significantly better than chance in 47.55%(14, 445/(15∗45∗45) = 14, 445/30, 375) of the
experiments. This figure refers to the main paper’s Fig. 5a. (c–f) We conducted further gen-
eralization experiments with a more difficult setting (align on three classes and classify three
classes, c–d; experiment without the “rest” class, e–f). (c) Mean per-class accuracies across
training and test sessions when aligning on three and testing on three classes. The chance
level was 33.33%. Values were averaged over 20 runs and 20 possible splits of the six be-
havioral classes into alignment and decoding sets. (d) Percentage of splits with above-chance
per-class decoding accuracy, as in (b), but for the experiment that aligns on three classes and
tests with three classes, with 20 combinations in total and a chance level of 33.33% (red line).
In total, in 44.28%(17, 934/40, 500) of the experiments, the accuracy was significantly better
than chance. (e) Mean per-class accuracies across training and test sessions when aligning on
three and testing on two classes, without the “rest” class. The chance level was 50% (red line).
Values were averaged over 20 runs and 10 possible splits of the six behavioral classes into align-
ment/decoding sets. (f) This is the same as in (b) and (d) for aligning on three and testing on
two classes without the class “rest,” with 10 combinations in total and a chance level of 50%. In
total, in 37.25%(7, 545/20, 250) of the experiments, the accuracy was significantly better than
chance. Extends Fig. 5 in the main paper.
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Figure S14: Decoding accuracy gain through neural manifold alignment. Accuracy gains
for aligned versus unaligned neural structures for the decoding of (a) two classes and (b) three
classes. Values are averaged over all class combinations. In most cases, the accuracies were
higher after alignment (red color spectrum) by up to 20–30%. Refers to Fig. 5a in the main
paper and Fig. S13a–d.
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c d

Figure S15: Control generalization experiments. Generalization results on neuron-shuffled
(a), time-shuffled (b), and time-shifted (c) data, as well as the LEM space from non-binarized
spikes (d). Mean per-class accuracies across training and test sessions when aligning on four
and testing on two classes (chance level of 50%, red line) are shown, as in Fig. 5a.
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