bioRxiv preprint doi: https://doi.org/10.1101/2021.03.04.433869; this version posted February 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

. Conserved structures of neural activity in sensorimotor
: cortex of freely moving rats allow cross-subject
; decoding

s Svenja Melbaum!?**, Eleonora Russo®**, David Eriksson*°, Artur Schneider®®,
Daniel Durstewitz*, Thomas Brox'?, Ilka Diester?”:6**

!Computer Vision Group, Dept. of Computer Science,
University of Freiburg, 79110 Freiburg, Germany.
2IMBIT//BrainLinks-BrainTools,

University of Freiburg, Georges-Kohler-Allee 201, 79110 Freiburg, Germany.
3Department of Psychiatry and Psychotherapy, University Medical Center,
Johannes Gutenberg University, 55131 Mainz, Germany.
“Department of Theoretical Neuroscience, Central Institute of Mental Health,
Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany.
>Optophysiology Lab, Faculty of Biology,

University of Freiburg, 79110 Freiburg, Germany.
®Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany.

*Equal contribution

**To whom correspondence should be addressed; E-mail: ilka.diester @biologie.uni-freiburg.de

7 Our knowledge about neuronal activity in the sensorimotor cortex relies pri-
8 marily on stereotyped movements that are strictly controlled in experimental
9 settings. It remains unclear how results can be carried over to less constrained
10 behavior like that of freely moving subjects. Toward this goal, we developed
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1 a self-paced behavioral paradigm that encouraged rats to engage in differ-

12 ent movement types. We employed bilateral electrophysiological recordings
13 across the entire sensorimotor cortex and simultaneous paw tracking. These
1 techniques revealed behavioral coupling of neurons with lateralization and an
15 anterior—posterior gradient from the premotor to the primary sensory cor-
16 tex. The structure of population activity patterns was conserved across an-
17 imals despite the severe under-sampling of the total number of neurons and
18 variations in electrode positions across individuals. We demonstrated cross-
19 subject and cross-session generalization in a decoding task through alignments
20 of low-dimensional neural manifolds, providing evidence of a conserved neu-
21 ronal code.

22 (One-sentence summary Similarities in neural population structures across the sensorimotor
23 cortex enable generalization across animals in the decoding of unconstrained behavior.

2« Introduction Humans and animals are capable of generating a vast array of behaviors. This
25 feature is dependent on the brain’s ability to generate a wide repertoire of neural activity pat-
26 terns, which may rely on subsets of general motifs (/). Experimental, computational, and the-
27 oretical work has identified the rich underlying structures within neural populations regarding
2s movement control, decision-making, and memory tasks (2). Similarities in population struc-
29 tures across different modalities such as speech and arm movements (3), as well as the rele-
s vance of population-level phenomena to learning (4), hint at the existence of general principles
a1 that could be shared across subjects. For simple, constrained behavior such as running on a
32 linear track, population structures in some brain regions such as the hippocampus seem to be
33 conserved, even across subjects (9). Similarities in neural population structures have not yet
s been shown for freely roaming animals and various naturally occurring behaviors. Whether
35 population structures are sufficiently conserved across subjects to allow for the cross-subject
s decoding of behavioral categories remains an open question in systems neuroscience. This
a7 question has great implications for neuro-prosthetic approaches, among other research topics.
s Such conservation of neural structures would allow for a shorter adaptation or fine-tuning phase
s9 of Brain-Machine-Interface (BCI) systems from one subject to another as opposed to training
s the system from scratch.

41 We addressed this question with non-linear mapping applied to electrophysiological record-
22 ings across the entire bilateral sensorimotor cortex of the rat. The neural trajectories of dynam-
a3 ical systems have been suggested as a method to understand neural activity (6,|7,/8,9,10,11}12,
s U3|14,15)|16\ 4|17, 18,|19,20,21). Therefore, we built on Laplacian Eigenmaps (LEMs) (22})5),
s which map high-dimensional data via the data’s affinity to a low-dimensional manifold. When
46 affinities are defined according to neuronal population activity, they can be used as tools to
47 visualize structures and relationships among population activities at different time points of a
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a8 recording session in a low-dimensional space. This can potentially reveal conserved structures
49 across sessions and animals (5)).

50 To investigate the degree to which low-dimensional structures are conserved, it is necessary
51 to involve several types of behavior. In principle, it is possible to train animals in different
s2 tasks, but this has several limitations: (1) training animals is time-consuming, especially if
ss  multiple behaviors are involved; (2) the trained behavior often results in stereotyped move-
s« ments and (due to the plasticity of the mammalian brain) corresponding changes in neuronal
ss representations; and (3) frequent transitions between behaviors are not feasible. Furthermore,
s6 spontaneous movements influence neuronal activity, even in well-controlled tasks (23). There-
57 fore, we refrained from controlling the behavior from the start, instead allowing the rats to roam
ss freely in a Plexiglas box. Consequently, the animals showed their full array of natural behavior,
s9 such as rearing, grooming, turning, stepping, drinking, and resting, in an unbiased manner.

60 To verify this approach, we first compared neuronal activity with previously reported results
st from more constrained behaviors by focusing on step- and swing-like paw movements. This
e2 study confirmed that the quality of information conveyed by our recorded data was comparable
s to that found in conventionally controlled settings. In addition, we reported a strong anterior—
e+ posterior gradient in the lateralization of forelimb representations from the premotor cortex to
es the primary sensory cortex. This gradient emphasizes the strong involvement of more posterior
e regions in the encoding of step-like behavior.

67 After this validation, we focused on analyzing the population code for more complex be-
es haviors. We conducted a normal within-session decoding experiment to show that the neuronal
e code contains enough information about the behavior class. Across sessions, the signals of
70 individual neurons were not comparable since neurons typically cannot be traced over multi-
71 ple days. Across subjects, even the electrode positions varied. However, we found evidence
72 that the signal from the population of neurons shared a common structure across sessions and
73 even across subjects. In particular, decoding behavioral categories from the neuronal population
74 activity was possible across different subjects.

75 Results Rats moved unconstrained in a rectangular arena and conducted movements in differ-
76 ent behavioral categories (i.e., stepping, turning, drinking, grooming, and rearing) while search-
77 ing for water drops, which a robot arm positioned under mesh occasionally delivered (Fig. [Th).
78 We recorded neuronal activities using electrodes that covered the sensorimotor cortex over both
7o hemispheres (Fig. [Ib). Two cameras videotaped the behavior of the rats for simultaneous 3D
so tracking. Recording sessions (n = 106 in total) were distributed over three months and varied
st between 30 and 60 min (4 = 36.06 min, ¢ = 5.23 min). In total, we identified 3,723 single-
g2 units (u = 35.12,0 = 20.71 across sessions) that we used for further analysis: 730, 896, and
g3 230 in the left M2, M1, and S1, respectively, and 432, 793, and 642 in the right M2, M1, and
s S1, respectively (24).

85 We focused on step-like behavior to extract behavioral components from the movements.
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ss 10 extract the steps, we binarized the movements of the paws into swing (moving) and stance
&7 (not moving) according to a horizontal velocity threshold (0.03 mm/ms). With each paw, rats
ss performed one step per second on average (¢ = 1.22, 0 = .29). The average percentage of time
g0 spent in the stance phase across rats was 71.36%, o = 16.61%.

90 The strongest paw coupling in contralateral S1 Since classical methods such as peri-
ot stimulus time histograms (PSTHs) are not applicable to behavior without a trial structure, we
o2 computed spike-triggered averages to investigate the relationship between neuronal activity and
93 unconstrained movements (25). We defined the spike-triggered average paw swing—stance sta-
s« tus (STAPSSS) as a rough measure of the coupling of individual neurons to paw movements.
o5 For each neuron and each paw, we calculated the STAPSSS by averaging the swing—stance sta-
e tus in the period +1s around the spikes (Fig. [Ic). For statistical control, we randomly shifted
o7 the spike train 1,000 times to calculate 1,000 control STAPSSS waveforms. Bootstrapping via
98 temporal shifting preserves autocorrelations in time series and, therefore, helps to exclude false
99 positives arising solely from autocorrelations in paw movements. We considered the STAPSSSs
100 to be significant if their standard deviation over time exceeded the .99 quantile standard devi-
101 ation of the control STAPSSS waveforms. Only neurons that spiked more systematically than
102 expected by chance in relation to movement parameters could pass this test. Significantly cou-
103 pled neurons were characterized by clear peaks in the STAPSSS (Fig. [Id, Fig. SI)). In total,
104 54% (2,029/3,723) of all neurons were significantly coupled to at least one paw. These were
105 45% (534/1,162) of all neurons in M2, compared to 53% (908/1,689) in M1 and 67% (587/872)
106 1n S1.

107 To take into account the strength of coupling, we defined a continuous measure for paw
s coupling as the ratio of the STAPSSS’s standard deviation and the control standard deviation (>
109 1 for significant neurons). Using this quotient as a dependent variable, we calculated three-way
110 ANOVAs (with hemisphere, area, and rat as factors) for all four paws separately (detailed results
111 in Table S2). In summary, for all four paws, we found a stronger coupling on the contralateral
112 side (p = .04), which suggests lateralization during locomotion. The coupling increased from
113 anterior to posterior areas (p < le — 11). For all four paws, the highest mean coupling was
114 localized in contralateral S1 (Fig. [Ie). In three out of the four paws, the interaction between
115 the area and hemisphere was also significant, that is, the differences between the contralateral
116 and ipsilateral hemisphere increased from anterior to posterior areas (p = .02). To further
117 investigate the difference in magnitude between contralateral and ipsilateral paw coupling, we
11s defined contralateral bias as the ratio between the coupling of the contralateral and ipsilateral
19 paws: b = c¢./¢ for left-hemispheric neurons and b = ¢;/¢, for right-hemispheric neurons
120 (b =~ 1 for non-biased neurons), with bias denoted as b, coupling as c, the right paw as r, and the
121 left paw as [. We calculated this bias separately for the front and hind paws. A two-way ANOVA
122 on the contralateral bias of individual neurons revealed a significant effect of the brain area for
123 the front paws (F} 3715 = 44.66,p < le—19) and the hind paws (£} 3715 = 54.56,p < le—23).
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124 This confirmed that single neurons had a larger contralateral bias from anterior to posterior
125 areas for the front and hind paws (Fig. S2).

126 To further investigate the temporal relationship between neuronal activity in different motor
127 areas and paw movements, we quantified the offset between each movement peak (the STAPSSS
128 peak) and spike. We found that for all four paws, the offset for neurons in S1 tended to be more
129 negative (i.e., the spike followed movement) than that of neurons in M1 and M2 (Fig. SJ).
130 This effect was more pronounced for the hind paws according to an unpaired two-tailed t-test

131 between offsets from S1 and M1/M2 (front left paw t3791 = —2.68,p = .007; front right
132 paw tgro; = —2.63,p = .008; hind left paw t3797 = —6.57,p < le — 10; hind right paw
133 tg791 = —H.94, p < le — 08). The finding that neurons in S1 tended to spike after movements,

13a  whereas neurons in M1 and M2 spiked in a closer temporal relationship to paw movements,
135 aligns well with the idea of S1 reacting to sensory input and M1 and M2 being more involved
13 1N movement generation.

137 Single-unit activity allows for the decoding of paw movements within sessions Due
138 to the strong paw coupling, we hypothesized that it is possible to decode the paw movements
139 of freely moving rats from neuronal activity. To test this hypothesis, we applied feed-forward
120 neural networks to decode the swing—stance status of the right front paw posed as a two-class
141 classification problem. For each time point, we fed in the spike trains =400 ms of all units
122 in time bins of 10 ms. Deep neural networks were trained and evaluated separately for each
113 recording session. We chose this approach because single-neuron activity does not generalize
124 Over sessions, in contrast to our population-level decoding approach in the following section.
15 The mean per-class decoding accuracies were well above chance level (u = 71.47%,0 =
1s 9.98 %; chance level 50 %). While there was no significant correlation between accuracy and
147 train set sizes (Spearman’s p = .17,p = 0.07), we found a significant correlation between the
148 accuracy and percentage of coupled neurons according to our STAPSSS analysis per session
e (Spearman’s p = .63,p < le—12, Fig. [I). This confirms that STAPSSS is a reliable measure
150 of the correlation between neuronal activity and movement.

151 The structure of population activities allows the decoding of behavior Due to the
152 promising decoding results of paw movements, we sought to determine whether population ac-
153 tivities during unconstrained movements also contained information on more complex behavior.
15 We used LEMs (22,)5) to reveal and visualize the structures in the population activities. LEM
155 1S a non-linear dimensionality-reduction method for extracting low-dimensional manifolds in
156 high-dimensional data using spectral techniques. We applied LEM to the neighborhood graphs
157 of neuronal activity vectors to visualize structures and relationships among population activities
158 at different time points of a recording session in a low-dimensional space. Most of the result-
15e ing projections showed a clear saddle-like shape when visualized in three dimensions (Fig. [2h,
160 52/935, roughly 55% of session structures had a similar shape, as classified visually), although
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161 there were also random-like population structures that differed from the majority (14/95, about
162 15% of the sessions, Fig. S{} the remaining 35% had intermediate levels of structuredness). In
1ea  random-like population structures, the time points were uniformly distributed in a sphere.

164 Sessions with a clear saddle-like shape were characterized by a larger number of neurons
15 that were significantly coupled to at least one paw compared to sessions with an intermediate or
166 low level of structuredness (23.57 = 14.71 vs. 16.62 4= 12.33 neurons, t93 = 2.43, p = .016). To
1e7 ensure that the saddle-like structures were not a simple artifact of the dimensionality-reduction
e method, we also performed time-shuffled, neuron-shuffled, and time-shifted control reductions
160 (5). These did not lead to any apparent structure (Fig. S9).

170 To investigate the relationship between population structures and the corresponding behav-
171 1or, we proceeded by manually labeling sessions in 500-ms snippets into six behavioral classes
172 (stepping/paw movement, turning’/head movement, drinking, grooming, rearing, and resting).
173 We included all sessions with clear saddle-like shapes and with at least five significantly cou-
172 pled neurons, which resulted in a total of 48 sessions (13 for Rat A, 16 for Rat B, 7 for Rat C,
175 6 for Rat D, 3 for Rat E, 3 for Rat F).

176 While each session contained at least some samples of each behavior, the occurrences of
177 behaviors still differed considerably across sessions and rats (Fig. S6). In contrast, the distri-
17 butions of behaviors across the neural structures revealed clear similarities across rats, which
179 was surprising assuming a sampling of approximately .005% of all neuronﬂ on average in only
s roughly overlapping recording sites (Fig. [Ib). For example, the second eigenvector (here: first
1s1  dimension), the so-called Fiedler vector, clearly represented the difference between movement
1.2 and rest (Fig. [2b left column). For some animals, a clear distinction between more paw-related
183 (paw movement, rearing) and head-related behavior (head movement, drinking) was observ-
18« able in the third and fourth eigenvector (here: second/third dimension, Fig. b right column).
185 Although the position of a population vector in the LEM space is univocally defined by the
186 instantaneous activity of all its composing units, and is relatively little affected by the activity
157 of a single-unit, there is a relationship between the overall structure emerging in the LEM space
188 when observing the totality of recorded data and the firing of neurons with high behavioural
189 selectivity. While population vectors cluster in space due to the similarity between neuronal
190 representations during a specific behavior, single-units with high selectivity for such a behavior
191 will fire more strongly at that behavior’s cluster (Fig. 7). Moreover, the distance in the LEM
122 space between population vectors corresponding to two behaviors will increase with the number
19a of units within the population that change their firing rate between the two behaviors (Fig. S8
194 a,b).

195 To quantify the separation between the neuronal representations of the six identified behav-
196 1ors in the LEM space, we trained a neural network based on the first 10 dimensions of the
1e7 population vectors. We chose 10 dimensions because we found the mean dimensionality in the

'Quotient of recorded cells and estimated total number of cells (approximated for the area covered by the
implanted electrodes by assuming a cortical thickness of 2mm and a density of 90k neurons per mm? (26)).
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1es  LEM space to be 8.59,0 = 1.11 (see Methods). By choosing a slightly higher value than the
199 mean dimensionality, we added a small safety margin to ensure the inclusion of all relevant
200 dimensions. The neural network correctly classified behaviors more frequently than by chance
201 (mean per-class accuracy p = 47.11%, 0 = 9.62%; chance level 16.66%, Fig. ). The ac-
202 curacies were correlated to the number of significantly coupled neurons (n = 48, Pearson’s
23 p = .59,p < le—b, Fig. [2d), the total number of units (Pearson’s p = .54,p < le—4, Fig.
2« 9h), and the signal-to-noise ratio (SNR) averaged over units (Pearson’s p = .49, p < .001, Fig.
25 §9p). Common classification mistakes consisted of confusing rearing or turning with stepping,
206 as well as turning with drinking or resting (Fig. [2¢). At the single-unit level, these behavioral
207 classes shared, in fact, the highest number of selective units (Fig. S@ c,d). Moreover, we ob-
208 served the lowest accuracy for Rat D, Rat E, and Rat F. These rats had a low mean SNR (Rats
200 E-F, Fig. S9b) or no electrode coverage of posterior areas (Rats D and F, Fig. [Ip). This last
210 aspect made us hypothesize that more posterior regions are primarily involved in the encoding
211 of behavioral classes. To test this hypothesis, we investigated the influence of the different sen-
212 sorimotor areas on neural population structures. Thus, we conducted dimensionality reductions
213 with equal numbers of neurons (i.e., 20 randomly chosen units) from M2, M1, or S1 as input.
214 With this subset, we trained artificial neural networks to decode the behavioral classes with the
215 neural activity in a given area reduced to five dimensions as input. The decoding accuracies for
26 M1 were significantly better than those for M2 (paired two-tailed ¢-test, t40 = 4.18,p < .001)
217 and slightly, but not significantly, better than those for S1 (t4;, = 1.90,p = .06). In total, the
218 accuracies were highest in M1 for 28 out of the 48 sessions, compared to 15 for S1 and 5 for M2
219 (Fig. 2f, accuracies 1 = 25.80 + 4.92% in M2, u = 28.60 + 5.34% in M1, u = 26.66 + 5.41%
220 in S1). The low relevance of anterior sensorimotor regions is in line with the STAPSSS results,
221 as well as with the lower decoding accuracies in Rat D and Rat F.

222 A cross-session polytope comparison reveals similarities in the average encoding of
223 behavioral classes across animals The visual similarity between neural population struc-
224 tures in three dimensions (cf Fig. |Zh,b) led us to wonder whether correspondences between the
225 full dimensional structures could be quantified. Such similarities become more apparent when
26 reducing the extended manifolds to polytopes — high-dimensional polyhedra — with vertexes
227 defined by the average population vectors associated with the six behavioral classes (Fig. [3p).
228 This encouraged us to systematically investigate whether population activities during uncon-
229 strained movements contained structures that were conserved across recording sessions or even
230 across different animals. We excluded Rat F from all of the following analyses because of low
231 recording quality, which may reflect the long delay between implantation and measurements
232 compared to the other rats (see Table S1).

233 Polytopes are useful tools to facilitate the visualization of the complex structure associated
23« with the neuronal representations of the six identified behaviors and their reciprocal distance.
235 To test whether such distances were preserved across sessions and animals above chance level,
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236 we first tested whether behaviors associated with similar population vectors in one session cor-
237 responded to behaviors with similar population vectors in other sessions. For example, if in
233 one session the population vectors during turn and step are similar to each other but dissimi-
239 lar from those during rest, we wondered whether the same relationship can be found in other
240 sessions as well. More formally, for each pair of sessions v and w and each behavioral class
241 1, we ranked the remaining classes by the Euclidean distance between their average population
242 vector and the average population vector of class ¢. If v and w had the same polytope struc-
243 ture, the rank associated with each behavior would be identical. We quantified the similarity
224 between ranks across sessions with the statistic s, defined as the number of concordant ranks,
245 and compared its distribution with that obtained from bootstrapping (see Methods for details).
2.6 We found significant similarities across sessions, both when computing distances in the high-
247 dimensional recording space (Kolmogorov—Smirnov test, p < le —39) and in the reduced LEM
218 space (p < le — 73) (Fig. JI0|a-b). This finding confirms that the obtained result was not an
249 artifact of the dimensionality-reduction procedure. Moreover, to ensure that such significance
250 did not depend exclusively on the enhanced distance between the “rest” class and any other
251 classes, we repeated the analysis with “rest” excluded from the accounted classes (p < le — 21,
252 Fig. SIE’:)

253 We performed a second test to compare the overall conservation of relative distances among
254 the population vectors associated with different behaviors at the single-session level. We cap-
255 tured the differences between the cross-behavioral distance matrices of two sessions with the
26 Jeffries—Matusita metric and compared them with the bootstrap distribution obtained by shuf-
257 fling the behavioral labels (see Methods for details). This was done for each pair of sessions
258 within and across animals, both in the high-dimensional recording space and in the LEM space,
20 and by excluding the “rest” class from the test (Figs. SI0d, Bp, and SI0k, respectively). In all
260 Of these cases, the similarity between the polytopes of different sessions and animals was above
261 chance for most session pairs, and non-significance often occurred for animals with a low SNR

262 (Cf. Fig. Sgb)

263 Cross-subject and cross-session decoding Polytopes capture the distance between the
264 average neuronal representations of the different behaviors but neglect their shape and exten-
265 sion on the manifold. Encouraged by the similarities observed among the polytope structures of
266 different recording sessions, we decided to perform a stronger test and attempted cross-subject
267 decoding. Cross-subject decoding requires not only an agreement between the average repre-
263 sentation of behaviors but also accounts for the variability in neuronal representations associated
260 with each behavior. While it is impossible to find a direct correspondence at the single-neuron
270 level across animals, similarities in lower-dimensional population structures can be used for
21 cross-subject and cross-session decoding (Fig. fh). For the decoding analysis, we divided the
22 six behavioral classes (Fig. [b) into two disjointed sets: one “alignment set”, which was used
273 to align the neural structures, and one “decoding set”, which was used for training and testing
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274 a classifier. Thereby we ensured that no class was used for aligning the structures and clas-
275 sification in the neural space at the same time. The mean neural vectors (four dimensions)
276 corresponding to the behavioral classes in the alignment set were used to compute a Procrustes
277 transformation between two sessions to align the population activity structures (27, |28) (Fig.
278 E|c). Procrustes transformations involve translation, scaling, reflection, and rotation and thus
279 preserve the shape of a set of points. For decoding, we trained a classifier on samples from
250 the decoding set of one session for a single rat using the activity in the dimensionality-reduced
281 neural space as input. Then, we tested the generalization on another session of the same rat
282 (cross-session decoding) or another rat (cross-subject decoding) (Fig. A). Notably, the samples
253 of the decoding set of the two tested sessions were not used for computing the Procrustes trans-
23« formation. In the first experiment, the alignment set consisted of four behavioral classes, with
285 two other classes remaining for the decoding set. This resulted in a total of 15 possible splits
286 1nto two sets. Classifiers trained on highly decodable sessions also successfully generalized
267 to other sessions from the same or other rats (Fig. [Sp—c, Fig. §I3p-b). In the generalization
25 matrix (Fig. [Bh), 13.88% of the generalization results (275 out of 45*44=1980) had a mean
289 per-class accuracy higher than 60%, and 59 higher than 65%. In the set of sessions with the
200 highest 10% signal-to-noise ratio (SNR > 4.33), the mean per-class accuracy in the generaliza-
201 tion task was . = 59.72%, 0 = 5.37. The best-performing sessions included sessions of Rats
202 A, B, and C with sufficient recording quality and a sufficiently high number of units for a ro-
203 bust estimation of the underlying population structures (Fig. [5d). Additionally, the correlation
204 between within-session and between-session accuracies was high (Fig. |§]c n = 45, Pearson’s
295 p = .68,p < le—6). We defined the “generalization accuracy” of a session as the average test
206 accuracy across all sessions (mean value per row of Fig. [Sh first matrix). These generalization
297 accuracies were correlated to the total number of units (Pearson’s p = .38,p < .01), with a
208 higher number of units leading to a better estimation of the population structure. The general-
299 1zation accuracies were also correlated to the session length (Pearson’s p = .37, p < .05) since
a0 the number of samples used for LEM (which included only time points with sufficient activity)
a1 varied across sessions and rats. Finally, the recording quality—namely, the SNR averaged over
a2 units—was correlated with generalization (Pearson’s p = .38,p < .01). Particularly, Rats A
s03 and B, which performed best in the generalization, had both a high SNR and a high total number
so4 of units (Fig. Eh)

305 Decoding is robust to methodological and class-selection changes To evaluate whether
sos our results depended on a specific dimensionality-reduction method, we used Isomap, another
37 non-linear dimensionality-reduction method. Also Isomap revealed neuronal structures that
208 were comparable across subjects (Fig. §T1] Fig. [Sh second matrix). In contrast, linear methods
a0 such as principal component analysis (PCA) were not powerful enough to extract these neuronal
sto  structures (Fig. Pl third matrix); the LEM results were significantly better than those from data
a1 reduced using PCA (t30374 = 40.33,p = 0).
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312 For a more systematic test of the relationship between the number of units and generaliza-
a3 tion, we took all sessions with a generalization accuracy of at least 55% (a total of 19 sessions
s+ from Rats A, B, and C) and conducted an ablation study with LEM reductions on the reduced
a5 number of units (20, 40, 60, and 80 units removed per session). We then repeated the general-
a6 1zation experiment on the aligned LEM structures. The accuracies steadily decreased with fewer
a7 units (Fig. §12)), confirming the high relevance of the number of units for a robust estimate of
s1s  the population structure.

319 To determine which sensorimotor areas were most relevant for generalization, we again
s20 took the 19 best sessions and conducted LEM reductions after removing M1, S1, or M2. Ad-
a2t ditionally, for a fair comparison, we removed a random portion of all of the other units for
322 underrepresented areas such that the number of units after the removal of M1, M2, and S1 neu-
323 rons remained constant across sessions. Generalization accuracies on aligned LEM structures
a4 decreased considerably after the removal of M1 (accuracies p = 53.91 & 7.48%); these val-
a5 ues were slightly but significantly lower than after the removal of units from S1 (accuracies
as 1 = 55.94 + 7.73%, paired two-tailed ¢-test, t5414 = —16.07,p < le—56), M2 (accuracies
a7 i = 54.99 + 8.32%, ts414 = —8.14,p < le—15), or of the same number of units distributed
as over all areas (accuracies j = 55.55 &+ 7.84%, ts414 = —13.89, p < 1le—42).

329 In a second experiment, we used only three classes in the alignment set and the three remain-
a0 1ng in the decoding set to test the generalization under more difficult conditions, resulting in 20
a1 possible splits of the six classes in total. The general pattern of the generalization matrix stayed
sz the same (Fig. SI3c—d). To verify that the classifiers did not only learn to discriminate the
a3 simplest difference—the difference between rest and movement—we conducted another exper-
s« iment without the class “rest”. Although the accuracies were lower in this setting, the general
a5 pattern remained the same (Fig. S13k-f). To assess the relevance of the alignment of neural
s structures, we also tested the generalization on neural structures without explicit alignment as
sz a control. In most cases, the accuracies on aligned structures were much higher than those on
ss  unaligned structures (Fig. ST4).

339 To further explore our results, we performed control classification experiments in which
a0 we examined the generalization on shuffled data (see Fig. J3). Accuracies of shuffled data
s were significantly lower than those computed in the original LEM space (t30374 = 82.31,p =0
a2 when comparing with neuron-shuffled, 39374 = 83.32, p = 0 with time-shuffled, and ¢39374 =
us  75.35,p = 0 with time-shifted data) and did not exceed the chance level (Fig. SI5). Fur-
a4 thermore, we computed LEM reductions in the non-binarized neural space and repeated the
a5 generalization experiment. Also in this case we could find significant generalization for mul-
ae tiple sessions, but with accuracies lower than when the analyses were performed on binarized
a7 spikes (Fig. SIS0, t30374 = —28.72,p < 1e—178). This supported our intuition that an analysis
as  seeking to identify similarities in the neural space between sessions should not be biased toward
a9 more active neurons.
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a0 Discussion In this study, we investigated single-neuron activity as well as population activity
351 patterns in the rats’ sensorimotor cortex during unconstrained and self-paced behavior. The
352 behavior was as closely related as possible to naturally occurring behavior, as it was based on
ss3  foraging, but it was still performed in a limited arena to allow for reliable movement tracking.
s« The first analyses were sanity checks to validate our approach of studying freely moving animals
355 without a clear trial structure. Based on the chosen measure, STAPSSS, 54 % of all neurons
s were significantly coupled to paw movements. This fraction of coupled neurons is in the range
357 of previously reported numbers. For example, 60 % of neurons in the hindlimb motor cortex
sss reacted to different locomotion scenarios (29), and 44 % in M1 were body-coupled in freely
a9 moving rats (25). Our multi-side recording approach allowed us to comprehensively test for
a0 differences in neuronal activity across the entire sensorimotor cortex. Previous research has
st found that the laterality of forelimb representations increases from M2 to M1 in a pedal task for
ss2 head-restrained rats (30). Here, we extended this laterality gradient to more posterior regions—
ses in particular, S1. As we targeted the output layer of the cortex (layer V), we putatively biased our
ss4 recordings toward pyramidal tract neurons, which have been described as being predominately
ses involved in laterality (30).

366 While the above-described findings refer to the general features of the sensorimotor cortex,
s7 the main finding of our study was based on conserved neuronal population structures. Exper-
ses 1mental, computational, and theoretical work has identified a rich structure within the coordi-
se9 nated activity of interconnected neural populations in movement control, decision-making, and
sro memory tasks. These findings are conceptualized within the framework of neural population
anr - dynamics, which can reveal general motifs (2). Recurrent neural networks (RNNs) can be ap-
a2 plied to neural data to reveal structural and geometric properties (3/)). Multiple tasks can then
a3 be represented in different RNN models. In these networks, some clusters of units have been
a7+ 1dentified as specialized for subsets of tasks (/). Alternatively, methods such as PCA and its
a5 variants dPCA and jJPCA have been applied to identify the stability of motifs across modalities
a7e  such as arm and speech control (3), as well as within and across brain areas (4).

377 In contrast to the previously described studies, we focused on the existence of conserved
a7s neuronal structures across animals without any clear instructed task line but with several be-
a9 havioral classes. These two points differentiate our study from previous publications in the
a0 field. We investigated population activity patterns, which are commonly assumed to reside on
38t low-dimensional manifolds in the full neural state space (/4,|/6,32} 33 34). In contrast to the
a2 (globally) linear method like PCA that most studies have used (/2 20,|15,16,4, |17, 18, 35),
a3 we assumed the preservation of local neighborhood relations in the data. Therefore, we em-
s« ployed LEM (22,)5) to reveal the presumed preserved low-dimensional structures. Remarkably,
sss neuronal population activity during unconstrained behavior contained similar structures across
sss animals and sessions, already visible in the first three dimensions. Furthermore, the distribu-
a7 tion of different behaviors across low-dimensional neural structures was systematic, which we
sss confirmed with our above-chance, within-subject decoding results. The allocation of differ-
a0 ent behaviors on the population structures revealed strong similarities across rats. Particularly,
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a0 movement and rest could be clearly visually distinguished in the first dimension. This is in line
so1  with results on clear separations in the neural state space for output-potent and output-null (e.g.,
se2 preparatory) neural activity (/2,20).

393 To support our main claim that low-dimensional neural manifolds are comparable across
a4 sessions and animals even in the case of unconstrained behavior, we first showed with our poly-
ses tope analysis that the relative positions of the neural representations associated with different
sss behavioral classes were conserved across animals and sessions above chance. The analyses
a7 of the polytope structures compared the distance between the average neuronal representations
sss  of behaviors, neglecting their precise spatial extension on the manifold as determined by the
se9 variability in neuronal representation of each behaviour. Conversely, cross-subject decoding
a0 Wwas also affected by such variability and, therefore, tested an even stronger degree of similar-
st ity. Ultimately, we evaluated the performance of a classifier trained on the neuronal activity
a2 of one subject to predict the behavior of another based on its own neuronal activity; this pro-
a3 vided us with a proxy to experimentally test and quantify the degree of universality of mental
s04 representations across subjects. Since the neuronal state space of different subjects cannot be
a5 directly compared (given the difference in number and identity of the recorded neurons), ap-
a6 plying dimensionality reduction and alignment was necessary to achieve this goal. A simple,
a7 supervised, shape-preserving alignment procedure—namely, a Procrustes transformation be-
a8 tween mean population vectors for different behavioral classes in the dimensionality-reduced
a9 neural space—sufficed for successful cross-subject generalization in a decoding task with dis-
410 tinct but related behavioral classes. Our procedure was applicable to sessions with sufficient
a1 recording quality (indicated by a high SNR of the recorded units) and enough units for robust
412 population estimation. Further, the generalization accuracies of the sessions were closely re-
a3 lated to their within-session accuracies. Generalization was considerably worse for population
#14  structure estimates based on fewer units. In line with the within-session decoding results, we
415 also found that generalization significantly decreased after the removal of M1, which indicated
a6 consistent population responses especially in this area. The low relevance of the anterior mo-
417 tor cortex to information regarding behavioral categories is in line with our STAPSSS results.
s18 Nevertheless, in contrast to the encoding of paw movements, our results on the population de-
419 coding of the higher-level behavioral categories hinted at major contributions from M1, not
a20 only S1. Thus, our results close a gap in a previous study that investigated postural and behav-
4«21 1oral encoding in the posterior parietal cortex and M2 (36). While we mostly used LEM as a
s22 dimensionality-reduction method given its solid theoretical basis, we also showed that another
223 non-linear dimensionality-reduction method, Isomap, can be used to reveal neural structures
424 that are comparable across subjects.

425 A shared structure in neuronal activity across subjects has been shown mostly in fMRI
a6 studies, where even between-subject classification has been demonstrated (37,27, 38|39, 40,
a7 41). While these works have focused on watching movies (an activity that can be conducted
428 similarly for different subjects), EEG and EMG cross-subject decoding has been shown for
229 hand movements (42} 43). In rodents, related work has shown the cross-subject decoding of
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a0 odor sequences in the orbitofrontal cortex (44) and place-cell activity in the hippocampus (45)).
st In contrast to these studies, we showed cross-subject classification in a more complex case
a2 where rats roamed freely without training or a trial structure in the underlying task. Therefore,
s33 our main finding of shared neural structures is consistent with recent findings but also extends
s34 them to more complex, less constrained behavior. To our knowledge, this is the first time that
a5 the conservation of neural structures across animals and for distinct, spontaneous behavioral
a3 classes has been shown. This finding implies that conserved neuronal structures occur without
s37 training. Therefore, the neuronal computations underlying these structures might be similarly
a8  realized across individuals, either from birth or during development.

439 Remarkably, sampling as few as approximately 0.005% of all neurons in only roughly over-
a0 lapping electrode positions sufficed to estimate population structures that were similar enough
a1 to allow for cross-subject generalization, at least for sessions with a sufficient number of units
42 to allow for robust neural manifold estimation. Internal states (such as thirst, attention, or mo-
a3 tivation), which we did not analyze here, may also have influenced the neuronal activities (46).
s It has been hypothesized that cross-individual decoding might not be possible with increasing
a5 task complexity (5). However, our results indicate that even during unconstrained behavior,
as the relationships among neural activity patterns are conserved across different animals. This
a7 conservation of population-level neural phenomena provides a foundation for cross-subject de-
ws  coding, even in the difficult case of unconstrained behavior.
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Graphical abstract: Conserved structures of neural activity in freely moving rats allow
for cross-subject decoding. (a) We conducted electrophysiological recordings across the bi-
lateral sensorimotor cortex of six freely moving rats. Neural activities were projected into a
low-dimensional space with LEMs (22)). (b) In a decoding task, points in the aligned low-
dimensional neural state space were used as input for a classifier that predicted behavioral la-
bels. Importantly, training and testing data originated from different rats. (c) Our procedure
led to successful cross-subject generalization for sessions with sufficient numbers of recorded
units. The rat and brain drawings are adapted from scalablebrainatlas.incf.org

and SciDraw.
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Figure 1: Spike-triggered average paw swing—stance status (STAPSSS) during uncon-
strained movements extracts lateralized paw coupling. (a) Behavioral setup with a ground
mesh, camera, and robot arm delivering water drops, adapted from (49). (b) Locations of the
electrodes of the six implanted rats, adapted from (49). (¢c) Paw movements were binarized into
swing (moving) and stance (not moving). STAPSSS was calculated by averaging the swing—
stance status in windows =+ 1s (indicated with red boxes) around each spike. (d) STAPSSS for
the right front paw of four example single-units in the left and right S1 (upper panel) and the left
and right M1 (lower panel). Black lines refer to the statistical control waveforms. (e) Coupling
for each paw, brain area, and hemisphere, averaged over neurons. Stars denote the results of
the post-hoc Tukey—Kramer tests (only intra-hemispheric results are indicated). Orange stars
denote mean values, and notches represent the 95% confidence intervals for the median. See
the main text for a definition of paw coupling. *p < .05, **p < .01, ***p < .001. (f) The
accuracies of neural networks trained to predict the status of the right front paw from the neural
data were strongly correlated to the percentage of significantly coupled neurons.
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Figure 2: Behavioral classes can be decoded from low-dimensional neural structures
within one session. (a) Non-linear dimensionality reduction through LEM was performed on
the neural data of each session separately. (b) In the low-dimensional space, different behav-
iors were distinguishable in as few as three neural dimensions. Left panel: The first dimension
clearly differentiated between rest and movement (all other behavioral classes). Right panel:
The second and third dimensions played a primary role in coding the difference between paw-
and head-related behavior (rear vs. drink). One session for each of Rats A, B, and C is depicted.
(c) Classification accuracies for the six behavioral classes given low-dimensional neural input
were above chance level for the sessions for all six rats. The gray dashed line indicates the
chance level, and the error bars show standard deviations. (d) Accuracies were correlated to the
number of significantly coupled neurons (neurons coupled to at least one paw according to the
STAPSSS measure). (e) One example confusion matrix for the test set of a single session of
Rat A, with a mean per-class accuracy of 68.46%. (f) For most of the sessions, classification
accuracies for the six behavioral classes were the highest given dimensionality-reduced neural
activity from M1 as input, followed by S1 and M2.
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Figure 3: Cross-session polytope comparison reveals similarities in the average encoding
of behavioural classes across animals. (a) 3D polytopes in the LEM space identified by the
average population vectors of the six behavioral classes for one example session of Rats A,
B, and C, respectively. The distances between the polytope vertexes are proportional to the
distances computed between the average population vectors in the 3D LEM space. The gray
shading is added to visualize the 3D structure. (b) Significant similarities among the polytope
structures of different sessions. Similarity was tested for each pair of sessions by comparing,
across-sessions, the difference between the session-specific matrices collecting the Euclidean
distance between the average population vectors associated with each behavioural class (see
Methods). Significance was assessed by bootstrapping the class labels (n = 720, all possible
permutations of class labels). Distances were computed in the 20-dimensional LEM space. Of
the 990 possible session pairs, 78% had a p-value below 0.05, indicating that the similarities of
the neuronal activities could be captured using the polytope structures.
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Figure 4: Alignment procedure of neural structures for cross-subject generalization. (a)
Neuronal activity on the single-neuron level is not comparable across rats and sessions. To
reveal population structures that are compatible—up to a transformation—across subjects, we
computed the affinities of the population activity at different time points. The resulting affin-
ity matrices could then be used for dimensionality reduction. (b) This represents the different
classes of behavior exhibited by the rats. (c) We aligned the low-dimensional neuronal struc-
tures of two different sessions using a Procrustes transformation. This procedure used only a
subset of the behaviors (e.g., groom, step, and drink). After alignment, a classifier trained on
one rat could generalize to another. In the classification, another subset of behaviors (e.g., turn,
rear, and rest) was used.
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Figure 5: Similar structures of population activities allow for cross-subject decoding. Re-
sults for a classifier trained on two behavioral classes of one rat (chance level 50%, red line)
and tested on another rat after using four disjointed behavioral classes to align the neural man-
ifolds. All values in the orange-to-yellow spectrum indicate accuracies above the chance level.
(a) Complete mean per-class accuracies across training and test sessions when aligning on four
classes and testing on two in the LEM/Isomap/PCA spaces. On the diagonal, training and test
data came from the same session. Off-diagonal entries refer to tests on data sets that were not
identical to those of the training session. Values are averaged over 20 runs, and there are 15
possible splits of the six behavioral classes into alignment and decoding sets. (b) Average of
the mean per-class accuracies when training a classifier on the rat indicated by the row and
testing on the rat indicated by the column. Error bars provide the standard error of the mean.
(c) Within-session and between-session accuracies were highly correlated; sessions that were
easier to classify generalized better to other sessions. (d) The best-performing rats (Rats A and
B) were also those with the highest number of recorded units and the highest SNR.
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«+ Methods

614 Animal surgery We implanted six male Long Evans rats at the age of eight weeks with 22
15 tungsten electrodes (200 to 600 kOhm impedance, polyimide insulation, WHS Sondermetalle,
16 Griinsfeld, Germany) at a 1.2 mm implantation depth in each hemisphere (implantation: January
s17 2017 for Rat F, April 2017 for Rats A—E). Electrode locations spanned from -2 to +5 mm in the
18 anterior/posterior direction and from 1 to 4 mm in the lateral/medial direction. This resulted
s19 1n three medial-lateral rows of six electrodes each, plus one row of four electrodes (see Fig.
620 [Ib). Details of the procedure are described elsewhere (49). The Regierungsprasidium Freiburg,
2t Germany approved all animal procedures.

622 Behavioral task The rats were kept water-restricted for the time course of the experiments
23 (free access to water for two days per week). For the experiments, the rats moved unconstrained
24 on a mesh of 30x40cm in a closed arena. Every 10 to 30s, a waterspout pseudo-randomly
e2s positioned by two servo motors released a drop of water onto the mesh, which the animals
e2s could find and consume. To prevent the rats from merely following the movements of the
27 waterspout, we included dummy movements that were not followed by a release of water. Even
e2s experienced animals were not able to predict the position of water drops without an active
29 search, and the animals did not find all water drops throughout a session. This task has been
ss0 previously described (49). Here, we only used part of the data set discussed in (49); in particular,
est  we only included sessions with a minimum duration of 30 min.

632 Data acquisition and the preprocessing of extracellular recordings Extracellular sig-
sss nals were recorded at 30kHz and band-pass filtered, amplified, and digitized using a head stage
s« (Intan Technologies, Los Angeles, California) situated at the head of the animal. Spike sorting
sss  was conducted on high-pass filtered signals (cut-off at 300 Hz) separately for each electrode.
s  Spikes were defined as amplitude threshold crossings of four times the standard deviation of the
ea7  signals. For each spike, we extracted the window of -0.5 to 2 ms around the peak amplitude (re-
ess sulting in 76 values per spike). Spike sorting consisted of two phases for each unit. First, a seed
ss9 spike was estimated. This was accomplished by calculating the spike neighborhoods (spikes
ss0 Within the average noise level, half a millisecond before the spike, across all units) for 500 ran-
ss1  domly chosen spikes. The spike with the most neighbors was chosen as the seed spike. Second,
ss2  we optimized the spike waveform through an iterative procedure. This was done by alternating
sss the calculation of a new noise level for the neighboring spikes, the update of the neighborhood
s« (spikes within the new noise level), and the update of the average waveform. This iterative pro-
sss cedure ended when the neighborhood assignments remained constant. The algorithm proceeded
sss  With the remaining spikes by choosing a new seed spike. Details of the offline denoising and
ss7 spike sorting procedure have been described elsewhere (49). For our single-unit analysis, we
sss  only kept single-units according to the distribution of inter-spike intervals. single-units with a
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sss firing rate lower than 0.1 Hz were not included in the analysis. Two cameras (Stingray, FO33C
sso IRF CSM, Allied Vision Technologies) positioned below the mesh tracked the movements of
est the colored paws. The videos were taken with a frame rate of 80 Hz and smoothed with a
es2  (Gaussian filter before analysis.

653 Single-unit STAPSSS analysis Paw movements were labeled as “swing” for horizontal
es¢ velocities higher than 0.3 mm per 10 ms (the bin size we used for our analysis) and “stance”
ess otherwise. Spikes were also binned with a bin size of 10 ms. For each neuron and each paw,
ess we defined the spike-triggered average paw swing—stance status (STAPSSS) as the behavioral
es7 average over all windows +1 s around the spikes. We normalized each STAPSSS waveform
ess by the mean. We defined the paw coupling of a neuron as the ratio of the standard deviation
ess of the STAPSSS waveform to the statistical control standard deviation. The latter was defined
sso as the .99 quantile standard deviation of a distribution constructed out of the standard devia-
es1 tions of the STAPSSS waveforms of 1,000 randomly shifted spike trains. If a neuron was not
es2 related to a paw’s movement, its STAPSSS waveform would be flat and its standard deviation
ess  would not exceed the control standard deviation. We defined the contralateral bias as the ratio
s« Of contralateral to ipsilateral paw coupling. Statistical analyses were done using the anovan,
ess multcompare, and ttest Matlab functions. The ANOVA tests always included the rat’s ID as an
ess additional factor.

667 Decoding from spike trains We used fully connected neural networks with three hidden
ess layers of 500 units each for decoding. The networks’ inputs were the Gaussian-smoothed (o =
ess 20ms) binned spikes in +400 ms, resulting in 81 input bins for each neuron. In contrast to
e70 the STAPSSS analysis, where only single-units were considered, we used all units as input for
e71 decoding. Each session was split into training, validation, and test sets (70/15/15 %). Two
e72 of the 106 sessions were excluded from decoding because of insufficient data. Training was
e73  conducted with the Adam optimizer (47), batch size 64, and an initial learning rate of 0.0001.
e+ A dropout rate of 75 %, L2 regularization (A = le — 4), and early stopping were applied to
e7s prevent overfitting. To deal with class imbalance, we used weighted cross-entropy loss to put
e76 more weight on the less frequent class (swing). The reported accuracies were mean per-class
e77 accuracies. The decoding accuracies of the deep neural network were significantly better than
e7s a baseline linear classifier (two-sided paired ¢-test, ¢ = 6.55,p < le—8). For the baseline,
s7o we used a logistic regression with three-fold cross-validation of the L2 regularization strength
es0 on the concatenated training and validation sets. The test sets for each session were the same
es1 as for the artificial neural network. Class weights were adjusted to be inversely proportional
ess2 to class frequencies, as for the artificial neural network. The artificial neural network was
ses implemented in Tensorflow. For the linear baseline, we used Python’s scikit-learn function
s LogisticRegressionCV.
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685 Dimensionality reduction We used LEM (22} 5), an unsupervised non-linear dimension-
ess ality reduction method, to investigate the low-dimensional structure of population activity. For
es7 each session, spike counts were binned in 100 ms bins and then binarized (1 for at least one
esss spike per bin, O for no spikes). Single and multi units were used. Only time points with at
ess least 15 active units were retained. Since we restricted further analysis to sessions with at least
soo 5,000 valid time points, we considered only 95 of the 106 sessions. For each session, we con-
eo1 structed an unweighted, mutual kNN graph based on the Hamming distance on the columns of
ee2 the m X ¢t matrix (n units, ¢ time points). Our code for LEM was built on recent work (5)). Two
ees iterations of the LEM algorithm were performed. However, in contrast to Rubin et al., we used
e« the Hamming distance in the first iteration and reduced to 20 dimensions. In the first iteration,
sos we used 0.5% of the time points as neighbors; in the second, this parameter was set to 7.5%.
sos Furthermore, we applied a random walk normalized graph Laplacian instead of the symmetric
so7 normalized graph Laplacian, as proposed in a previous study (48)). In detail, we constructed
eos the unnormalized graph Laplacian as L = D — W, with D as the diagonal degree matrix and
so9 W as the adjacency matrix of the kNN graph. Solving the generalized eigenvalue problem
700 Lv = ADv corresponded to finding the first eigenvectors of the random walk normalized graph
70 Laplacian L, = D™'L (48). Since the eigenvector corresponding to the smallest eigenvalue
702 (zero) is constant, we discarded the first dimension of the LEM for all analyses and decoding
703 studies. The other LEM eigenvectors (=dimensions) were ordered by eigenvalue magnitude—
704 that is, the “splitability” of the time points in different clusters (i.e., the dimensions that best
705 divided the time points into clusters came first.) For the LEM reductions on units from different
706 sensorimotor areas, we randomly chose 20 units from each area as input (if fewer than 20 units
707 for an area were available, the analysis was omitted). We chose to reduce to six dimensions
708 in the LEM space, leaving us with five dimensions for decoding with deep neural networks (as
700 mentioned above, the first dimension of the LEM must be discarded). For the ablation study on
710 sessions with 20, 40, 60, or 80 units removed, we reduced to 20 dimensions in the first two and
711 10 dimensions in the second two cases (in these latter cases, we did not have enough neurons
712 left to retain high dimensionality in the LEM space). For the study on LEM reductions after the
713 removal of sensorimotor areas, we removed Nn,,,, =max(#M1, #M2, #S1 units) from each areca
714 for each session. For underrepresented areas, we additionally discarded 1,4 — Nareq Tandomly
715 chosen units. As before, given the lower number of neurons, we reduced to 10 dimensions.
716 'To investigate the dimensionality of the LEM space using the method of (5)), we computed the
717 average number of neighbors of all time points in the 20-dimensional LEM space in circles
718 with increasing radii. The dimensionalities were then obtained as the slope of a line around the
719 steepest point in a log—log plot of neighbors against radii.

720 For the dimensionality reduction with Isomap, we used Landmark—Isomap (50), which is
721 more efficient for very large datasets. We set the number of neighbors to 0.5%, as for the
722 LEM, and used 10% of the time points as landmarks. PCA reductions where computed on
723 non-binarized spikes.
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724 Behavioral labeling We used the freely available tool MuViLab for the behavioral la-
725 beling of the videos. Two human annotators who were blinded to the neural data manually
726 labeled the 48 sessions divided into 500-ms snippets. The 48 sessions were chosen based on
727 them having a clear saddle-like shape and at least five significantly coupled units: Rat A—13
728 sessions recorded between 2017/06/08 and 2017/08/03, Rat B—16 sessions recorded between
720 2017/06/01 and 2017/08/21, Rat C—seven sessions between 2017/06/01 and 2017/06/29, Rat
730 D—six sessions between 2017/06/08 and 2017/07/11, Rat E—three sessions between 2017/06/08
731 and 2017/06/22, and Rat F—three sessions between 2017/06/07 and 2017/06/30. The criteria
732 for the behavioral classes were as follows: Step—the rat moved at least one paw but did not
733 drink or rear at the same time; turn—the rat moved its head; drink—the rat drank from the
72 spout or collected water drops from the mesh with its mouth; groom—the rat performed typical
735 grooming movements; rear—the rat stood on its hind paws; rest—the rat showed no obvious
73 movements. In rare cases, samples were excluded from labeling when the behavior of the rat
737 was not visible because it was located near the borders of the arena. Examples of the differ-
73 ent behaviors can be found at https://www.dropbox.com/sh/4uu3cmmmnnovgmb/
739 AABWaTvI9H_OMPgHOpx4tPOXwa?dl=0.

740 Single-unit behavioral coding To establish the single-unit coding of a specific behavior
741 or stimulus, it is common practice to compare the average firing rate of the unit prior to the event
722 (baseline) and after it (response). In the case of self-initiated behaviors, however, it is difficult
723 to unambiguously identify temporal windows that can be associated with a baseline or response.
744 Thus, we tested whether a unit increased its firing rate during each of the six behavioral cate-
725 gories and compared this rate to the unit’s firing during the remainder of the recorded time. The
726 test was performed using a Wilcoxon rank-sum test with Benjamini—Hochberg correction for
747 multiple comparisons and @ = 0.05.

748 In a second analysis, we aimed to compare the diversity in single-unit firing rates during
729 two behaviors with the distance in the LEM space of the population vectors associated with
750 such behaviors. To obtain the number of single-units that changed their firing rates during
751 different behaviors, we divided the spike counts (500 ms binning) of each unit according to
752 the six behavioral classes and performed a Kruskal-Wallis test. When the main effect was
753 significant, we performed a post-hoc analysis to selectively compare the unit firing rates during
75« each pair of behaviors. Significance was fixed at 0.05. Since the final aim of this analysis was to
755 compare the average number of units that changed rates with the distance in the LEM space of
756 the population vectors associated with different behaviors, we did not want the unequal sample
757 size of the behavioral classes to affect the significance of the post-hoc tests. Therefore, before
758 performing the Kruskal-Wallis test, we randomly selected an equal number of samples (equal to
759 the sample size of the smallest class) from all behavioral classes for each unit. We then repeated
70 the test 100 times and computed the average number (first across the 100 samplings and then
761 across the session’s units) of significant post-hoc tests obtained for each class comparison and
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72 each session. Fig. S8h displays their average across sessions.

763 Similarities among behavioral representations across sessions To investigate whether
764 the relative positions of the neural representations associated with different behavioral classes
765 were conserved across sessions and animals, we computed the Euclidean distance between the
766 average behavioral population vectors of a session, then tested whether these distances were
767 more similar to those observed in other sessions than to what would be expected by randomly
768 shuffling the behavioral state labels. This was performed by first comparing the ranked distances
769 between the polytope vertexes and then comparing the actual distance values. For each session
70 v, we computed the Euclidean distance D;; between the average population vector &; and ¢&;
771 of all pairs of behavioral classes ¢ and j. Then, for each behavioral class 7, we ranked the
772 remaining classes j according to their distance Dj; from ¢. For each pair of sessions v and w
773 and each class ¢, we accounted for the similarities in ranked distances by defining the statistic
774 7 as the number of classes matching the same rank in the two sessions. For the six behavioral
775 classes, sy ranged between a maximum value of 5 (perfect match) to a minimum value of O (no
776 match). The distribution of s7* across all sessions was compared with a bootstrap distribution
777 in which the same statistic, Spo0:, Was computed over two random permutations of the numbers
776 from 1 to 5. With six possible classes, there are 5! = 120 possible permutations of the remaining
779 five classes, giving (‘Z’) + 5! = 7,260 unordered pairs of random permutations. We thus used
70 the Kolmogorov—Smirnov test to compare the distribution between the observed s (n = 990
781 session pairs) and bootstrapped spoo; (1 = 7,200) similarities.

782 The analysis described in the previous paragraph tested whether the distances between the
783 pairs of behaviors (polytope vertexes) had a similar order (e.g., from the closest to the furthest)
78« for different sessions or animals. To compare the actual distance values, we computed the matrix
765 of pairwise Euclidean distances DV between the average class population vectors &7 in the LEM
786 space. Then, for each other session w, we performed a Procrustes transformation to rescale the
757 behavioral population vectors of w with those of v and computed the distance matrix D" on the
78 rescaled vectors. The Procrustes transformation did not affect the relative distance between ver-
789 texes but prevented differences in scale between the polytopes of different sessions from obscur-
790 1ng the quantity of interest. To quantify whether the set of relative distances between behavioral
791 classes was, to some extent, maintained across sessions, we computed the difference between
72 DY and D" as the Jeffries—Matusita distance d s, (D", D¥) = \/ Z”(\/Difj - \/E?f’j)?, where
793 ¢ and j were indexes running over the six classes, and compared this difference with what we
79« would obtain by chance. We employed the Jeffries—Matusita metric because it reduces the
75 effect of outliers, but similar results were found with a Euclidean metric as well. The distribu-
796 tion djp (DY, D) obtained with the original distance matrices was tested against the bootstrap
77 distribution djar(D”, Dy’); pootstraps ODtained by randomly permuting the behavioral labels
798 associated with the population vectors of the session w. For each session pair (v, w), we then
799 compared d s, (DY, D") with those obtained on the bootstrapped D}’ , and computed a p-value
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soo for the Hy of djp (DY, D") that was obtained by chance. The bootstrap sample included all
sor  possible class label permutations (n = 720). Figs. Bp and SI0d show the significance of the
sz comparison of each session pair when computed on all six behavioral classes, and Fig. SI0
sos  shows the same but with the “rest” class excluded.

804 Population-level decoding We trained one deep neural network per session to classify
sos the six behavioral classes given the 10-dimensional neural data in seven bins with 100 ms each
sos as input. The data was min—max normalized (min and max were only calculated on training
so7 sets). The deep network architecture and training were almost identical to the network used
sos for the decoding task above. However, we used only 200 units per layer and a dropout rate of
ss 25%, and we chose a cross-validation strategy to deal with unbalanced classes. In the latter
s10 step, the available data was split into four parts of equal size. Four runs were conducted per
11 session, using two parts as the training set, one as the validation set for early stopping, and the
sz fourth as a test set. The final test results were calculated as the mean over all four test sets
s13 and runs. As for the decoding of the swing—stance status, we used weighted cross-entropy loss
s14 (more weight on less frequent classes) to deal with the class imbalance. All accuracies that
815 We report were mean-per-class accuracies (balanced accuracies) to ensure that more frequent
st classes did not bias the results. While we used 10 dimensions for this behavioral decoding
817 task—in line with the estimated dimensionality—only five dimensions remained for the area-
s1s  specific dimensionality-reduced data since the lower number of neurons did not allow for a
st9 reduction in a higher-dimensional LEM space. For the supervised alignment procedure, we
s20 always restricted the analysis to four neural dimensions to avoid underdetermination. (That is,
g2t the remaining dimensions provided by LEM were not used — no completely new dimensional-
g2 ity reduction was computed.) We used Matlab’s Procrustes function to find a transformation
s2s between class means. Proper transformation was important because of the sign ambiguity of
s24 eigenvectors, which might otherwise have led to different orientations of the neural structures.
s2s Before alignment, both neural structures were normalized to the 0-1 range. An SVM with a
s26 Gaussian kernel (Matlab fitcecoc) was used as the classifier. Training was conducted with an
sz equalized number of samples per class (i.e., the class with the fewest samples determined the
s2s  number of samples taken from each class) and default parameters (kernel size 1). For the SVM
s20 classification, we did not use four-fold cross-validation as we did for the classification of neu-
s0 ral networks (see above). Instead, we performed 20 repetitions with different samplings of the
s31  training set (Monte Carlo cross-validation).
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Figure S1: Significantly coupled neurons showed clear peaks in the STAPSSS. STAPSSS
for the right front paw of 10 example neurons from different motor areas from five sessions of
different rats. Extends Fig. [Id from the main paper.

Table S1: Statistics of the recording sessions. Dates of implantations and the recording periods
for each animal.

Rat A Rat B Rat C RatD RatE Rat F

Implantation 20/04/2017 19/04/2017 27/04/2017 11/04/2017 25/04/2017 01/01/2017
First recording 01/06/2017 01/06/2017 01/06/2017 01/06/2017 01/06/2017 07/06/2017
Last recording  15/08/2017 21/08/2017 08/07/2017 21/08/2017 25/08/2017 22/08/2017

Table S2: ANOVA results for paw coupling. Paw coupling was defined as the ratio between
the STAPSSS standard deviation and the control standard deviation (see main text). Three-way
ANOVAs were calculated separately for each paw on all recorded neurons (n = 3,723, main
effects area, hemisphere, rat; interaction effect area and hemisphere). The table contains the
corresponding /' and p values.

Paw Area Hemisphere Area x Hemisphere Rat
Right front 66.77,p < 1le—28 108.85,p < le—24  18.24,p < 1le—07 28.59,p < le—27
Left front  41.61,p < le—17 17.15,p < le—4 2.22,p=.10 37.82,p < 1le—37
Right hind 25.73,p < le—11 4.16,p = .04 5.63,p =.003 23.63,p < le—22
Lefthind  67.47,p < 1e—28 6.38,p = .01 3.82,p=.02 13.52,p < le—12
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Figure S2: Contralateral bias was largest in S1. Contralateral bias for the front and hind paws
per area, averaged over neurons. The bias increased from anterior to posterior regions for both
the front and hind paws. Stars denote the results of the post-hoc Tukey—Kramer tests. Orange
stars denote mean values, and notches denote the 95% confidence intervals for the median. See
the main text for definitions of paw coupling and bias. *p < .05, ***p < .001.

0.10
oo d —
2
v l
S 0.00
1]
£ |
E
+ —0.05 4
-
c
o
€
¢ —0.10
o
€
1]
.E —0.15

=4=Front left paw
Front right paw
—0.20 o == Hind left paw
== Hind right paw

T T
M2 M1 S1

Figure S3: Temporal relationship between movement and brain-area-specific neuronal ac-
tivity in M2, M1, and S1. Movement refers here to the STAPSSS peak. Negative values
indicate that the spikes followed the movement (in the form of the STAPSSS peak); positive
values indicate that the spikes preceded the movement. The spikes in S1 tended to occur after
movements, significantly later than the spikes in M2 and M1. The mean and standard error of
the mean over all neurons in each area are shown. Refers to the main paper’s Fig. [I]
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Dim. 3

Figure S4: Some population structures did not show any apparent structure. Two example

sessions (from Rats A and B, respectively) with random-like, low-dimensional neural projec-
tions. Refers to the main paper’s Fig. [2p.
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Dim. 3

Figure S5: Control dimensionality reductions with shuffled neuronal activity did not show
any apparent structure. LEM projections for neuron-shuffled (a), time-shuffled (b), and time-
shifted (c) data for one session of Rat A (upper row) and Rat B (lower row). For neuron shuf-
fling, units were permuted randomly for each time point. For time shuffling, time points were
permuted randomly for each neuron. For time shifting, the spike trains of the neurons were
randomly shifted against each other. The two sessions are the same as in Fig. 2b of the main

paper.
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Figure S6: Histograms of behavior illustrating the distribution of behavioral classes. One
row reflects one session. Provides background for Fig. [2]in the main paper.
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Figure S7: Comparison of single-unit firing patterns and localization of behaviors in the
LEM space. (Left) The LEM manifold from one example session of Rat A is color-coded
according to the firing of six different example single-units significantly responding to the six
behavioral classes. Colored dots mark time points when the unit fired above its 75th empirical
quartile, while black dots mark any other time point. (Right) On the same LEM manifold
as in the left panel, colored dots mark time points corresponding to the six behavioral labels.
Different orientations of the same manifold are shown from top to bottom.
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Figure S8: Single-unit coding of different behaviors. (a) Fraction of single-units changing
their average firing rate when active during different behaviors as the fraction of significant
post-hoc comparisons (o« = 0.05) of a Kruskal-Wallis test on the firing rate of single-units
during the six identified behaviors. Differences in sample size across classes were compensated
with down-sampling (see Methods). (b) Average distance between the population vectors of the
LEM space (dim = 10) associated with different behaviors. (c) Fraction of units significantly
more active during each of the behaviors (Wilcoxon rank-sum test, with Benjamini-Hochberg
correction for multiple comparisons, & = 0.05). The median (red line) across sessions, the 25th
and 75th percentiles (blue), the most extreme data points (whiskers), and outliers (crosses) are
shown. (d) Based on (c), the fraction of units with shared responsiveness to multiple behaviors.
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Figure S9: Correlation between accuracies and units/SNR. (a) Top: Accuracies versus the
number of units per session for the six rats. Bottom: Average number of units per rat and error
bars for the standard deviation across sessions. (b) Top: Accuracies versus the mean SNR per
session for the six rats. Bottom: Average SNR per rat, with error bars for the standard deviation.
Refers to Fig. [2|
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Figure S10: Similarity among the polytopes of different sessions. (a—c) Probability—
probability (p—p) plot comparing the original and bootstrapped empirical cumulative distribu-
tion function (ECDF) of the statistic s, which compares the ranked distances between the
polytope vertexes across sessions (see Methods for a formal definition). The ECDFs of s}
were computed for each behavioral class i (color-coded) on the original recordings (a), on the
20-dimensional LEM space (b), and on the 20-dimensional LEM space with the class “rest”
excluded from the test (c). In a p—p plot, equal distributions overlap with the diagonal (dotted
line). (d—e) are the same as in Fig. |3|b, but with computing distances on the original recording
space (d) and on the 20-dimensional LEM space with the “rest” class excluded from the test
(e). Of the 990 possible session pairs, 84% and 61% in (d) and (e), respectively, had a p-value
below 0.05.

16


https://doi.org/10.1101/2021.03.04.433869
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.04.433869; this version posted February 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Step
Turn
Drink
Groom Drink
Rear Groom
Rest Rear
Rest

Step
Turn

LN N )
LI Y

*

€ wia
€ 'wia

Figure S11: Population structure in the Isomap space. Left: All points. Right: For better
visualization, only the averages of the six behavioral classes were plotted. One session of Rat
A is shown here.
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Figure S12: Generalization worsened with fewer units. We repeated the generalization exper-
iment from Fig. [Sh for all sessions with a generalization accuracy of at least 55% (19 sessions).
The accuracy decreased for LEM structures that were computed after removing 20, 40, 60, or
80 units from each session compared to the accuracies with the full number of units. Thus,
accuracy decreased with fewer units.

18


https://doi.org/10.1101/2021.03.04.433869
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.04.433869; this version posted February 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a Align 4 - classify 2: b Align 4 - classify 2:
Average accuracies % of class spIits better than chance

100

- 75
A A 80
70
0
s
65
S & 5 60 5
a8 2 g 2
& 60g =4
a v o
£ < c @
© -~ ®© 40 ~
= 558 . X
C C <
W |.=I- i | T |-| i 'n_
D 50 D L 20
E E
S 45 ——————
A B C D E A B C D E
Test Session Test Session 0
c  Align 3 - classify 3 65 d Align3- class_ify 3: 100
Average accuracies % of class splits better than chance
60
A 80
55 a
3
= c
2 508 S 605
0 e 9 2
9] S 9B =4
n 2 n o
£ 45« ¢ a
© ~ ®© —_
£ 28 3
40 C -
35 D 20
E
30 A B C D E
Test Session Test Session 0
e Align 3 - classify 2 (without rest): f Align 3 - classify 2 (without rest): 100
Average accuracies 75 % of class splits better than chance
70 A 80
g
65
c > < 3
o o o 60 T
« 2 & u mes mm >
o 60g O B = L g..
c £ 0
‘© S © = H —
& 5 8 B Jl" 10 . 403
c - m s
50 D -
E
45
Test Session Test Session 0

Figure S13: Further cross-subject and cross-session generalization studies. (Continued on
the following page.)

19


https://doi.org/10.1101/2021.03.04.433869
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.04.433869; this version posted February 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure S13: Further cross-subject generalization experiments and performance above
chance. For all plots, training and test data on the diagonal originated from the same session.
Off-diagonal entries show testing on data other than the training session. (a) Mean per-class
accuracies across training and test sessions when aligning on four and testing on two classes.
The chance level was 50% (red line). Values were averaged over 20 runs and 15 possible splits
of the six behavioral classes into alignment and decoding sets. We used the same plot as in Fig.
Sk in the main paper. (b) Percentage of splits of the six behavioral classes into the alignment and
decoding sets (out of 15 splits) that were classified with a significantly higher mean per-class
decoding accuracy than chance (50%). Significance was calculated over 20 training runs at a .05
significance level with Bonferroni correction using a one-tailed sign test. In total, the accuracy
was significantly better than chance in 47.55% (14, 445/ (15 % 45 % 45) = 14, 445/30, 375) of the
experiments. This figure refers to the main paper’s Fig. [Sa. (c—f) We conducted further gen-
eralization experiments with a more difficult setting (align on three classes and classify three
classes, c—d; experiment without the “rest” class, e-f). (c) Mean per-class accuracies across
training and test sessions when aligning on three and testing on three classes. The chance
level was 33.33%. Values were averaged over 20 runs and 20 possible splits of the six be-
havioral classes into alignment and decoding sets. (d) Percentage of splits with above-chance
per-class decoding accuracy, as in (b), but for the experiment that aligns on three classes and
tests with three classes, with 20 combinations in total and a chance level of 33.33% (red line).
In total, in 44.28%(17,934/40,500) of the experiments, the accuracy was significantly better
than chance. (e) Mean per-class accuracies across training and test sessions when aligning on
three and testing on two classes, without the “rest” class. The chance level was 50% (red line).
Values were averaged over 20 runs and 10 possible splits of the six behavioral classes into align-
ment/decoding sets. (f) This is the same as in (b) and (d) for aligning on three and testing on
two classes without the class “rest,” with 10 combinations in total and a chance level of 50%. In
total, in 37.25%(7, 545/20, 250) of the experiments, the accuracy was significantly better than
chance. Extends Fig. [5]in the main paper.
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Figure S14: Decoding accuracy gain through neural manifold alignment. Accuracy gains
for aligned versus unaligned neural structures for the decoding of (a) two classes and (b) three
classes. Values are averaged over all class combinations. In most cases, the accuracies were
higher after alignment (red color spectrum) by up to 20-30%. Refers to Fig. [Sh in the main
paper and Fig. ST3p—d.
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Figure S15: Control generalization experiments. Generalization results on neuron-shuffled
(a), time-shuffled (b), and time-shifted (c) data, as well as the LEM space from non-binarized
spikes (d). Mean per-class accuracies across training and test sessions when aligning on four
and testing on two classes (chance level of 50%, red line) are shown, as in Fig. [Sh.
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