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Abstract1

A myriad of pathological changes associated with epilepsy can be recast as decreases in cell and circuit2

heterogeneity. We thus propose recontextualizing epileptogenesis as a process where reduction in cellular3

heterogeneity in part, renders neural circuits less resilient to seizure. By comparing patch clamp recordings4

from human layer 5 (L5) cortical pyramidal neurons from epileptogenic and non-epileptogenic tissue, we5

demonstrate significantly decreased biophysical heterogeneity in seizure generating areas. Implemented6

computationally, this renders model neural circuits prone to sudden transitions into synchronous states7

with increased firing activity, paralleling ictogenesis. This computational work also explains the surprising8

finding of significantly decreased excitability in the population activation functions of neurons from9

epileptogenic tissue. Finally, mathematical analyses reveal a unique bifurcation structure arising only10

with low heterogeneity and associated with seizure-like dynamics. Taken together, this work provides11

experimental, computational, and mathematical support for the theory that ictogenic dynamics accompany12

a reduction in biophysical heterogeneity.13

Keywords— Epilepsy | Seizure | Neuronal heterogeneity | Computational neuroscience | Neuronal14

electrophysiology15

Introduction16

Epilepsy, the most common serious neurological disorder in the world (Reynolds, 2002), is characterized by17

the brain’s proclivity for seizures, which exhibit highly correlated electrophysiological activity and elevated18

neuronal spiking (Jiruska et al., 2013). While the etiologies that predispose the brain to epilepsy are myriad19

(Jasper, 2012), the dynamics appear to be relatively conserved (Jirsa et al., 2014; Saggio et al., 2020),20

suggesting a small palette of candidate routes to the seizure state. One potential route to ictogenesis is21

disruption of excitatory/inhibitory balance (EIB) - a possible “final common pathway” for various epileptogenic22

etiologies motivating decades of research into epilepto- and ictogenesis (Dehghani et al., 2016; Žiburkus et al.,23

2013). A disrupted EIB can impair the resilience of neural circuits to correlated inputs (Renart et al., 2010), a24

paramount characteristic of ictogenesis. In addition to EIB, biophysical heterogeneity also provides resilience25

to correlated inputs (Mishra & Narayanan, 2019). Thus, EIB can be considered a synaptic mechanism for26

input decorrelation, while biophysical heterogeneity contributes to decorrelation post-synaptically.27

Cellular heterogeneity is the norm in biological systems (Altschuler & Wu, 2010; Marder & Goaillard,28

2006). In the brain, experimental and theoretical work has demonstrated that such heterogeneity expands29

the informational content of neural circuits, in part by reducing correlated neuronal activity (Padmanabhan30

& Urban, 2010; Tripathy et al., 2013). Since heightened levels of firing and firing rate correlations hallmark31

seizures (Jirsa et al., 2014; Zhang et al., 2011), we hypothesize that epilepsy may be likened, in part, to32
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pathological reductions in biological heterogeneity which impair decorrelation, and thus circuit resilience33

to information poor (Trevelyan et al., 2013), high-firing (Jiruska et al., 2013), and highly-correlated states34

(Zhang et al., 2011).35

A number of pathological changes accompanying epileptogenesis can be recast as decreases in biological36

heterogeneity. Losses of specific cell-types homogenize neural populations (Cossart et al., 2001; Cobos et al.,37

2005), down- or upregulation of ion channels homogenize biophysical properties (Arnold et al., 2019; Klaassen38

et al., 2006; Albertson et al., 2011), and synaptic sprouting homogenizes neural inputs (Sutula & Dudek,39

2007). This recontextualizes epileptogenesis as a process associated in part with the progressive loss of40

biophysical heterogeneity.41

To explore this hypothesis we combine electrophysiological recordings from human cortical tissue, compu-42

tational modeling, and mathematical analysis to detail the existence and consequences of one reduction in43

biological heterogeneity in epilepsy: the decrease of intrinsic neuronal heterogeneity. We first provide experi-44

mental evidence for decreased biophysical heterogeneity in neurons within brain regions that generate seizures45

(epileptogenic zone) when compared to non-epileptogenic regions. This data constrains an exploration of the46

effects of heterogeneity in neural excitability on simulated brain circuits. Using a cortical excitatory-inhibitory47

(E-I) spiking neural network, we show that networks with neuronal heterogeneity mirroring epileptogenic48

tissue are more vulnerable to sudden shifts from an asynchronous to a synchronous state with clear parallels49

to seizure onset. Networks with neuronal heterogeneity mirroring non-epileptogenic tissue are more resilient50

to such transitions. These differing heterogeneity levels also underlie significant, yet counter-intuitive, differ-51

ences in neural activation functions (i.e., frequency-current or FI curves) measured inside and outside the52

epileptogenic zone. Using mean-field analysis, we show that differences in the vulnerability to these sudden53

transitions and activation functions are both consequences of varying neuronal heterogeneities. Viewed54

together, our experimental, computational, and mathematical results strongly support the hypothesis that55

biophysical heterogeneity enhances the dynamical resilience of neural networks while explaining how reduced56

diversity can predispose circuits to seizure-like dynamics.57

Results58

Intrinsic biophysical heterogeneity is reduced in human epileptogenic cortex59

In search of experimental evidence for reduced biophysical heterogeneity in epileptogenic regions, we utilized60

the rare access to live human cortical tissue obtained during resective surgery. Whole-cell current clamp61

recordings characterized the passive and active properties of layer 5 (L5) cortical pyramidal cells from these62
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samples, a cell type we have shown to display notable biophysical heterogeneity (Moradi Chameh et al.,63

2021). Biophysical properties of neurons from epileptogenic frontal lobe cortex were contrasted to frontal lobe64

neurons of tumor patients, with no previous history of seizures, taken a distance from the tumor. Additionally,65

we obtained, from patients with mesial temporal sclerosis, recordings from neurons in non-epileptogenic middle66

temporal gyrus (MTG), which is the overlying cortex routinely removed to approach deep temporal structures.67

The MTG is a well-characterized part of the human brain, representing a common anatomical region from68

which non-epileptogenic brain tissue has been studied electrophysiologically and transcriptomically (Hodge69

et al., 2019; Moradi Chameh et al., 2021; Beaulieu-Laroche et al., 2018; Kalmbach et al., 2021), and thus our70

primary source of non-epileptogenic neurons. We note that each of these studies classify these neurons as71

indicative of “seemingly normal” human neurons independent of the patients’ epilepsy or tumor diagnoses72

(i.e., a best case control given limitations in obtaining human tissue).73

While multiple sources of heterogeneity were recorded in a variety of physiological measurements (Supple-74

mentary Figure S1), we concentrated on attributes of cellular heterogeneity that demonstrated significant75

differences between the epileptogenic and non-epileptogenic settings. The first was the distance to threshold76

(DTT) measured as the difference between the resting membrane potential (RMP) and threshold voltage77

(see Supplementary Figure S1 for these measures presented individually). DTT displayed reduced variability78

(smaller coefficient of variation (CV); p=0.04; two sample coefficient of variation test) in neurons from79

epileptogenic frontal lobe (n=13, CV=20.3%) as compared to non-epileptogenic MTG (n=77, CV=37.1%).80

A significant difference (smaller CV; p=0.03) was also seen when comparing epileptogenic frontal lobe to81

non-epileptogenic frontal lobe (n=12, CV=40.8%). Meanwhile, the CVs were not significantly different when82

comparing non-epileptogenic MTG and non-epileptogenic frontal lobe (p=0.7). These features are more83

easily appreciated from the Gaussian fits of this data presented in Figure 1(b). These results imply that the84

decrease in biophysical heterogeneity observed in epileptogenic cortex was not confounded by sampling from85

the temporal versus frontal lobe.86

While our non-epileptogenic MTG population is larger, this is unavoidable given the availability of87

human cortical tissue and the additional efforts required to confirm the tissue’s epileptogenic nature (see88

Discussion). Statistical tests accounting for unequal population sizes were used in comparing the population89

CVs and confirmed using the Krishnamoorthy and Lee test, via the R package cvequality (Marwick &90

Krishnamoorthy, 2019), that is robust to uneven sample numbers and small sample sizes (Krishnamoorthy &91

Lee, 2014). Additionally, the significant difference between the standard deviations (SDs) of the DTTs in92

non-epileptogenic MTG and epileptogenic frontal lobe (p=0.03, Cohen’s d effect size=0.5; F-test; SD=7.893

mV in non-epileptogenic MTG and SD=4.4 mV in epileptogenic frontal lobe) that is implemented in our94

models has a “moderate” effect size. Finally, we confirmed that the measured heterogeneities are not biased95
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by variability between patients (Supplementary Figure S2), a finding supported by recent multi-patch data in96

human cortex showing that biophysical properties demonstrate smaller between-subject than within-subject97

variability (Planert et al., 2021).98

The second measure of cellular excitability that demonstrated significant difference between groups99

was the FI curve (i.e., activation function), which captures the firing rate (F) as a function of input100

current (I). The FI curve of the population of neurons from the epileptogenic zone displayed qualitative and101

quantitative differences compared to neurons from both non-epileptogenic MTG and frontal lobe (Figure102

1(c)). Interestingly, the FI curve shows that pyramidal cells from the epileptogenic zone require more input103

current to induce repetitive firing, and have overall decreased firing rates for all input currents (p=0.03104

when comparing to non-epileptogenic frontal lobe at 200 pA, p=0.02 when comparing to non-epileptogenic105

frontal lobe at 250 pA, p=0.009 when comparing to non-epileptogenic MTG at 200 pA, and p=0.002 when106

comparing to non-epileptogenic MTG at 250 pA; two-way ANOVA-Tukey’s multiple comparison test). This107

non-linear behavior is in strong contrast to the activation functions measured in non-epileptogenic zones,108

characterized by both higher and more linear changes in firing rates. All three populations show a similar109

spike frequency adaptation ratio (Figure 1(d)), including no significant difference between epileptogenic110

frontal lobe and non-epileptogenic MTG (the regions focused on in our modeling), indicating that differences111

in the FI curve are not due to differing adaptation rates. Example firing traces from each population (in112

response to each of the current steps used in FI curve generation; note that the spike frequency adaptation113

ratio is calculated from one of these steps, chosen as described in the Methods for each individual neuron) are114

found in Figure 1(e). This increased excitability of the non-epileptogenic populations appears contradictory115

to the understanding of seizure as a hyperactive brain state, although some prior studies have hinted at116

this phenomenon (Colder et al., 1996; Schwartzkroin et al., 1983); additionally, the significantly increased117

first-spike latency in our epileptogenic population (Supplementary Figure S1(c)) is further evidence for the118

decreased single-cell excitability of neurons in this population. We further investigate this in the context of119

biophysical heterogeneity below.120

FI curves from epileptogenic neurons also demonstrated decreased variability: the standard deviations121

of the frequencies in the epileptogenic population are significantly lower compared to the temporal, non-122

epileptogenic population at 150 pA (p=0.02, Levene’s test) and at 200 pA (p=0.03), and to the frontal,123

non-epileptogenic population at 200 pA (p=0.03). Furthermore, the higher input current required to elicit124

repetitive spiking in our epileptogenic population can be contextualized as a homogenizing feature, as neurons125

will respond homogeneously (i.e., without spiking) to a larger range of inputs. The smaller slope of the126

epileptogenic FI curve has a similar effect when repetitive spiking occurs, as changes in the input current127

will yield smaller changes in the output firing frequency. These findings showcase an additional pattern of128
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Figure 1. In vitro human tissue recordings reveal significantly different electrophysiological
heterogeneity between epileptogenic and non-epileptogenic populations. (a): The coefficient of variation
(CV) in the distance to threshold (DTT) is significantly larger in both the temporal, non-epileptogenic (i.e.,
non-epileptogenic MTG; n=77) and frontal, non-epileptogenic (i.e., non-epileptogenic frontal lobe; n=12) populations
compared to the frontal, epileptogenic (i.e., epileptogenic frontal lobe; n=13) population (p=0.04 to temporal,
non-epileptogenic, p=0.03 to frontal, non-epileptogenic; two sample coefficient of variation test). The CV measure is
implemented considering the significantly reduced mean DTT in frontal, non-epileptogenic data compared to the
other two populations (p=0.01 for both comparisons; non-parametric Mann-Whitney test). We compare the frontal,
epileptogenic and temporal, non-epileptogenic populations computationally given their similar mean DTT (p=0.7).
Plotted bars indicate mean ± standard deviation (SD). (b): An alternative visualization of the DTT distributions via
fit Gaussian probability density functions. All three data sets were deemed normal after passing both the
Shapiro-Wilk and D’Agostino & Pearson omnibus normality test with alpha=0.05. (c): Neurons from
non-epileptogenic populations show similar, linear activation functions (i.e., FI curves). Firing frequency is
significantly lower in the frontal, epileptogenic population for a 200 pA injection compared to the temporal,
non-epileptogenic (p=0.009; two-way ANOVA-Tukey’s multiple comparison test) and frontal, non-epileptogenic
(p=0.03) populations, as well as for a 250 pA injection compared to the temporal, non-epileptogenic (p=0.002) and
frontal, non-epileptogenic (p=0.02) populations. Plotted bars indicate mean ± standard error measure (SEM). (d):
All three populations show a similar spike frequency adaptation ratio (see details in Methods), with the only
significant difference being between the means from the frontal, non-epileptogenic and temporal, non-epileptogenic
populations (p=0.01; One-Way ANOVA post hoc with Dunn’s multiple comparison test). Plotted bars indicate mean
± SD. (e): Example cell voltage responses following depolarizing current injections (50-250 pA) from all three
populations, as used to calculate the FI curve (colors denote population as in previous panels).

decreased heterogeneity in epileptogenic neurons’ spiking behavior.129
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Spiking E-I neural networks with epileptogenic levels of excitatory heterogeneity130

are more vulnerable to sudden changes in synchrony131

Given these experimental results, we next computationally explored the effects of the observed differences in132

biophysical heterogeneity on the transition to a synchronous state akin to the transition to seizure (Zhang133

et al., 2011). We developed a spiking network model of a cortical microcircuit comprised of recurrently134

connected excitatory and inhibitory neurons (see details in Methods), motivated in part by the long history135

of seizure modeling (Kramer et al., 2005; Jirsa et al., 2014) and previous models of decorrelated activity in136

the cortex (Vogels & Abbott, 2009; Renart et al., 2010; Ostojic, 2014). Our choice of model parameters (see137

details in Methods) positioned the system near a tipping point at which synchronous activity might arise138

(Jadi & Sejnowski, 2014a,b; Neske et al., 2015; Rich et al., 2020b) in order to determine the effects of cellular139

heterogeneity on this potential transition.140

We subjected these networks to a slowly linearly increasing external drive to the excitatory cells. This141

allowed us to observe the dynamics and stability of the asynchronous state, known to be the physiological142

state of the cortex (Vogels & Abbott, 2009; Renart et al., 2010; Ostojic, 2014), by determining how vulnerable143

the network is to a bifurcation forcing the system into a state of increased synchrony and firing. A biological144

analogue for this paradigm would be an examination of whether induced hyper-excitability might drive the145

onset of seizure-like activity in vitro, although such perturbations can more easily be performed continuously146

(i.e., our linearly increasing external drive) in silico.147

To facilitate implementing experimentally-derived heterogeneities in our model, we compared epileptogenic148

frontal lobe with non-epileptogenic MTG given their similar mean DTT values (p=0.7, non-parametric149

Mann-Whitney test; mean=21.2 mV for non-epileptogenic MTG and mean=21.7 mV for epileptogenic frontal150

lobe). These populations display significantly different SDs in their DTT values (reported above). Given the151

definition of our neuron model (rheobases sampled from a normal distribution with with mean 0, see details152

in Methods), we implement differing heterogeneities by sampling rheobase values for our neural populations153

from Gaussian distributions with these varying SDs. In this model, the term rheobase refers to the inflection154

point of the model neuron activation function (see Methods). Heterogeneity in this mathematically-defined155

rheobase is the in silico analogue of heterogeneity in the DTT (i.e., the distribution of rheobases in Figure156

2(c-d) corresponds to a horizontal shift to a mean of 0 of the DTT distributions in Figure 1(b)).157

The rheobase heterogeneity was parameterized by the SD σe for excitatory neurons and σi for inhibitory158

neurons (see diagrams in Figure 2(a-b)). This resulted in diversity in the neurons’ activation functions and159

aligned the variability in their excitabilities with that measured experimentally. We refer to such rheobase160

heterogeneity simply as heterogeneity in the remainder of the text. Models with non-epileptogenic (high161
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Figure 2. Experimentally observed decreases in heterogeneity amongst excitatory cells promote
ictogenic-like transitions in E-I spiking neural network models. (a-b): Schematic representation of model
spiking E-I networks, with pyramidal neurons represented as triangles and interneurons as circles. Blue neurons
represent non-epileptogenic (i.e. high) levels of heterogeneity (see also the variable neuron sizes) while red neurons
represent epileptogenic (i.e. low) levels of heterogeneity (see also the similar neuron sizes). This color schema is
maintained in the remaining figures. Here, the inhibitory (black neurons) heterogeneity is set at a moderate value
amongst the range studied (σi = 10.0 mV), while σe = 7.8 mV in panel (a) and σe = 4.4 mV in panel (b). (c-d):
Visualizations of the distribution of model rheobases, with the solid curve (red or blue for excitatory neurons, black
for inhibitory neurons) illustrating the Gaussian function and the corresponding histogram illustrating the example
random distribution underlying the simulations in this figure. (e-f): Example simulations with a linearly increasing
excitatory drive. Background: raster plot of network activity, with each circle representing the firing of an action
potential of the associated neuron (excitatory neurons below horizontal line, inhibitory neurons above). Foreground:
quantifications of network activity taken over 100 ms sliding time windows, with the excitatory synchrony quantified
by the Synchrony Measure in blue or red (left axis), as well as excitatory (black) and inhibitory (grey) population
firing rates (right axis). Bottom: drive (I(t)) to the excitatory population.

σe = 7.8 mV, Figure 2(e)) and epileptogenic (low σe = 4.4 mV, Figure 2(f)) excitatory heterogeneity162

with identical inhibitory heterogeneity (σi = 10.0 mV) exhibit distinct behaviors. With low excitatory163

heterogeneity, a sharp increase in excitatory synchrony associated with increased firing rates is observed. In164

contrast, when the excitatory heterogeneity was high, both synchrony and firing rates scaled linearly with165

input amplitude.166

We further investigated the respective roles of excitatory versus inhibitory heterogeneity in these sudden167

transitions. With non-epileptogenic excitatory heterogeneity (high σe), increases in excitatory synchrony,168

excitatory firing rates, and inhibitory firing rates were all largely linear regardless of whether σi was low169

(Figure 3(a)) or high (Figure 3(b)). Conversely, with excitatory heterogeneity reflective of epileptogenic170

cortex (low σe), synchronous transitions were observed for both low (Figure 3(c)) and high (Figure 3(d))171

levels of σi. This transition is of notably higher amplitude when σi is low, indicative of differing underlying172
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dynamical structures driven by σi.173

Limitations inherent in performing patch-clamp experiments in human cortical tissue prevented the174

direct measurement of DTT variability in human inhibitory interneurons. To circumvent this, we first175

studied a range of inhibitory DTT variability aligning with that measured in pyramidal neurons, and then176

systematically varied and extended this range to account for the possibility of increased heterogeneity amongst177

the interneuronal population (Cossart, 2011; Huang & Paul, 2019). This enabled the characterization of178

the contribution of both excitatory and inhibitory heterogeneity to the onset of seizure-like behavior across179

physiologically relevant ranges of σe and σi. Exploring this range of σi values revealed dichotomous dynamics180

at low and high heterogeneities (Supplementary Figure S3), of which we illustrate exemplars in Figures 3 and181

4.182

Figure 3. Effects of varied inhibitory heterogeneity on sudden transitions into synchrony in E-I
spiking neural network models. Schematics and single simulation visualizations following the conventions of
Figure 2 (with inhibitory heterogeneity reflected by darker shaded blue and red neurons), now shown for four
combinations of excitatory and inhibitory heterogeneities: σe = 7.8 mV and σi = 2.5 mV in panel (a), σe = 7.8 mV
and σi = 16.75 mV in panel (b), σe = 4.4 mV and σi = 2.5 mV in panel (c), and σe = 4.4 mV and σi = 16.75 mV in
panel (d). Relative sizes of σe and σi represent the relative heterogeneity levels. Transitions into high levels of
excitatory synchrony are seen in panel (c) and (d), with the transition in panel (c) yielding a notably higher level of
synchrony (highlighted by the grey box) and occurring much more abruptly. Meanwhile, changes in the dynamics of
panels (a) and (b) are largely linear, with the excitatory synchrony consistently lower when both excitatory and
inhibitory heterogeneities are at their highest in panel (b).

Dynamical differences in networks with varying levels of heterogeneity are ex-183

plained by their distinct mathematical structures184

To gain deeper insight into the effect of heterogeneity at a potential transition to synchrony, we derived185

and analyzed mathematically the mean-field equations associated with our network model (see Methods).186
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Specifically, we calculated and classified the fixed points of mean-field equations for different values of σe187

and σi for the range of drives studied in the spiking networks. The fixed point(s) of the mean-field (for188

the excitatory population activity, Ue) are plotted in the second row of each panel in Figure 4. These189

values correspond to population averages of the (unitless) membrane potential analogue taken across the190

individual units in our spiking networks (uj). We then performed linear stability analysis for those fixed191

points, extracting eigenvalues which determine the fixed points’ stability, and how it might change as input192

drive is varied. The dampening rate represents the speed at which the system is either repelled from or returns193

to its fixed point(s) and thus classifies their stability (i.e., the real components of eigenvalues associated with194

each fixed point). The dampening rate is plotted in the row below the fixed points, followed by the frequency195

associated with fixed points with imaginary eigenvalues (i.e., the imaginary components of the eigenvalues).196

These mean-field analyses confirm that both excitatory and inhibitory heterogeneity have notable impacts197

on changes in network dynamics analogous to seizure-onset. In the top row of each panel in Figure 4 we198

present quantifications of our spiking network dynamics as in Figure 3, but averaged over 100 independent199

simulations. In the presence of high heterogeneity (whenever σe and/or σi are large, i.e., Figure 4(a), (b),200

and (d)), increased drive results in a smooth and approximately linear increase in both mean activity and201

synchrony. The mean-field analyses of the associated systems reveal a single fixed point, whose value increases202

monotonically with drive.203

The subtle differences in the spiking network dynamics in these scenarios are reflected in differences in the204

mean-field analyses. In Figure 4(d) a supercritical Hopf bifurcation (Chow & Hale, 2012) at a high level of205

drive (the stable fixed point becomes unstable, giving rise to a stable limit cycle) is associated with a steeper206

increase in synchrony. The reverse bifurcation is observed in Figure 4(a) (the unstable fixed point becomes207

stable) and is associated with a slower increase in synchrony, with the synchrony levels being preserved208

following this bifurcation due to the noise in the spiking networks allowing for the presence of quasi-cycles209

(Boland et al., 2008). Meanwhile, the fixed point in Figure 4(b) is always stable, reflective of the more210

constant but shallow increase in synchrony in the spiking network.211

In contrast to these cases, spiking networks with low heterogeneity (low σe and σi, Figure 4(c)) exhibit212

sudden increases in mean activity and synchrony. The associated mean-field system displays multistability: it213

possesses multiple fixed points. As the input drive increases, two of these fixed points coalesce and disappear214

via a saddle-node bifurcation (Chow & Hale, 2012). The system’s mean activity is thus suddenly drawn215

towards a preexisting large-amplitude limit cycle. This transition occurs at a drive corresponding with the216

sudden increase in synchrony and mean activity seen in the spiking network. In the mean-field system, the217

frequency of resulting oscillations are faster compared to the high heterogeneity scenarios, further emphasizing218

the uniqueness of the dynamical system with low heterogeneity.219
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We note that the more notable inter-trial variability in Figure 4(d) (as illustrated by the fainter ± SD220

curves) results from the variable (yet gradual) onset of increased synchrony, in contrast to the transition in221

Figure 4(c) which reliably occurs at a specific drive. The different timings of the onset of synchrony in each222

independent simulation yield oscillations at different relative phases, which explains why oscillations are not223

observed in our averaged firing rate measures displayed in Figure 4 (notably, such oscillations are subtle even224

in the single simulation visualizations of Figure 3 given the 100 ms sliding time window); rather, the presence225

of oscillatory activity is demarcated by a notable increase in the mean Synchrony Measure.226

In our mathematical analyses, we focus on characterizing the system’s fixed points and inferring from227

them the presence of oscillatory behavior associated with limit cycles. Directly identifying such limit cycles is228

a mathematically arduous process (Savov & Todorov, 2000) unnecessary for the conclusions drawn from our229

analyses. However, considering the behavior of our spiking networks remains “bounded” (see Supplementary230

Figure S3(b)), we can confidently infer that such limit cycles exist, as is typical when a supercritical Hopf231

bifurcation yields an unstable fixed point.232

To facilitate the comparison of our spiking networks with our mean-field calculations, we developed a233

Bifurcation Measure (see Methods) quantifying the tendency for sudden (but persistent) changes in the234

activity of the spiking network. Higher values of this measure indicate the presence of a more abrupt increase235

in the quantification of interest as the drive increases. Given the more subtle qualitative difference in the236

firing rates in our spiking networks, we applied the Bifurcation Measure to the excitatory firing rate (Be) for237

the four combinations of σe and σi examined in Figure 4. This revealed more sudden changes with low σe and238

σi (Be=0.1050) as opposed to any other scenario (high σe, low σi, Be=0.0416; high σe, high σi, Be=0.0148;239

low σe, high σi, Be=0.0333) where the transition is smoother. This analysis indicates that the dynamical240

transition present in Figure 4(c) is not only unique in the magnitude of the synchronous onset, but also in an241

associated sudden increase in firing rates.242

Since the seizure state is typified both by increased synchrony and firing rates (Jiruska et al., 2013; Zhang243

et al., 2011), this analysis confirms that the sharp transition in these quantities only observed in spiking244

models with low heterogeneity is driven by a saddle-node bifurcation (Figure 4(c)). These results echo other245

seizure modeling studies showcasing that ictogenic transitions can arise driven by mathematical bifurcations,246

and specifically the observation that saddle-node bifurcations underlie abrupt seizure-onset dynamics (Kramer247

et al., 2005; Jirsa et al., 2014; Saggio et al., 2020). As a corollary, high heterogeneity improves network248

resilience to sudden changes in synchrony by preventing multistability and fostering gradual changes in249

network firing rate and oscillatory behavior.250
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Figure 4. Effects of heterogeneity on spiking network dynamics is explained by stability analysis of
mean-field equations. Panels correspond to heterogeneity levels studied in Figure 3. Top row: measures of spiking
network dynamics (as seen in Figures 2 and 3) averaged over 100 simulations (dark curve=mean, lighter curve=± one
SD). Remaining rows: results of stability analysis on mean-field equations corresponding with these networks
visualized via the fixed point of mean excitatory activity (top), and the dampening rate and oscillatory frequency
associated with each fixed point. Green and gold coloring are used to differentiate the three distinct fixed points in
panel c, while the stability of fixed points is color coded (purple=unstable, i.e., positive dampening rate; black=stable,
i.e., negative dampening rate). Notably, only in panel (c), where both heterogeneity levels are low, do we see multiple
fixed points and a saddle-node bifurcation that occurs at a value of the drive corresponding with the sudden
transition in spiking networks (highlighted by the grey box).

Asymmetric effects of excitatory and inhibitory heterogeneity251

Figure 4 highlights distinct effects of excitatory versus inhibitory heterogeneity on the onset of synchrony252

in spiking networks and the structure of mean-field systems (see the differences between Figure 4(a) and253
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(c)). To clarify these effects we explored a larger parameter space of σe and σi, as shown in Supplementary254

Figure S3. For each heterogeneity combination we applied the Bifurcation Measure to excitatory synchrony255

(B, hereafter referred to simply as the Bifurcation Measure; see details in Methods), which quantifies the256

abruptness of increased network synchrony in response to a changing network drive. This exploration confirms257

the asymmetric effect of excitatory and inhibitory heterogeneity on these sudden transitions, with a moderate258

value of B for low σe and high σi but a minimal value of B for high σe and low σi, comporting with patterns259

observed in previous computational literature (Mejias & Longtin, 2014).260

Similar asymmetry is seen in our spiking network dynamics (B in Supplementary Figure S3(a) and the261

Synchrony Measure S in Supplementary Figure S3(b)) and our mean-field systems (the bolded regimes of262

networks exhibiting multi-stability in Supplementary Figure S3(a) and networks exhibiting an unstable fixed263

point in Supplementary Figure S3(b)). We show an example visualization of the fixed points and their264

classifications in Supplementary Figure S4. Supplementary Figure S5 shows the details of the determination265

of fixed point stability in Supplementary Figure S3(b).266

We further used the Bifurcation Measure to test whether the asymmetric effects of excitatory and inhibitory267

heterogeneity are generalizable and confirm our system’s robustness. In Supplementary Figure S6 we show268

the pattern followed by B is robust to changes in connectivity density. In the four exemplar cases highlighted269

in Figures 3 and 4 the dynamics are robust for reasonable changes to the primary parameters dictating our270

network topology, as shown in Supplementary Figure S7, and similar robustness in the bifurcation structure271

of the associated mean-field systems is shown in Supplementary Figure S8.272

This analysis shows that notable decreases in B occur at higher values of σi than they do for σe, a result273

which has important implications for our understanding of the potentially differing roles of excitatory and274

inhibitory heterogeneity in seizure resilience. When the loss of specific interneuron types in some epilepsies275

(Cossart et al., 2001; Cobos et al., 2005) and increases in inhibition (Klaassen et al., 2006) are viewed as276

homogenizing changes, these computational predictions may help reconcile how both increases and decreases277

in inhibition may be destablizing to neuronal circuits.278

Differences in population averaged activation functions explained by differences279

in neuronal heterogeneity280

Finally, we return to the counter-intuitive differences in activation functions measured experimentally. As281

noted previously, the population of neurons from epileptogenic tissue exhibited qualitatively and quantitatively282

different activation functions via non-linear and hypo-active firing responses (Figure 1(c)).283

To understand if heterogeneity accounts for these observations, we computed analytically the averaged284
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activation functions of the excitatory populations in our model networks. In Figure 5(a), the experimentally285

derived firing frequencies from epileptogenic frontal lobe and non-epileptogenic MTG are plotted alongside286

activation functions of our model populations. For low heterogeneity, the model population’s activation287

function captured both the non-linear and low firing rate responses measured experimentally for neurons288

in the epileptogenic zone. The increased excitability and linearity seen experimentally in non-epileptogenic289

tissue was captured by the averaged activation function for our more heterogeneous model population. This290

comparison is appropriate considering the FI curve data from Figure 1(c) is averaged over the populations of291

interest, and is thus analogous to the population activation function of our model neurons.292

Figure 5. Differing levels of neuronal heterogeneity explain population activation function differences
observed experimentally between epileptogenic and non-epileptogenic cortex. (a): Experimentally
observed firing frequencies plotted against input current (left and bottom axes, mean ± SEM) for epileptogenic
frontal lobe (red) and non-epileptogenic MTG (blue) tissue (as shown previously in Figure 1(c)), visualized against an
analogous measure of the relationship between population activity (firing probability) and drive (membrane potential
analogue) in our neuron models (right and top axes, details in Methods). The shape of the curve for the heterogeneity
value derived from epileptogenic tissue experimentally (red, σe = 4.4) qualitatively matches the experimental data,
and a best fit (light red, σe = 5.03, r2=0.94) is obtained with a similarly low heterogeneity value. In contrast, the
curve associated with the heterogeneity value derived from non-epileptogenic tissue experimentally (blue, σe = 7.8)
closely matches the experimental data from non-epileptogenic tissue and is nearly identical to the best fit (light blue,
σe = 7.77, r2=.98). (b): A visualization of the entirety of the sigmoidal input-output relationship for our neuron
models, with the regime compared to experimental data in panel (a) in a black box. Fainter curves represent
input-output relationships for individual neurons, either epileptogenic (red) or non-epileptogenic (blue): the wider
variability in the blue curves yields the flatter sigmoid representing the population activation function for our
non-epileptogenic heterogeneity value, and vice-versa for the red curves associated with the epileptogenic
heterogeneity value.

To quantitatively support this correspondence, we found the values of σe that best fit our experimental293

data using a non-linear least squares method (see details in Methods). The data from epileptogenic frontal294

lobe was best fit by an activation function (see Equation 12) with σe = 5.0 mV (r2=0.94), while the data295

from non-epileptogenic MTG was best fit by an activation function with σe = 7.8 mV (r2=0.98). That the296

best-fit values closely match the experimentally-observed heterogeneity values means the features of our297

epileptogenic (resp. non-epileptogenic) activation curves are captured by neural populations with low (resp.298

high) heterogeneity.299
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This somewhat counter-intuitive result is explained by the linearizing effect that increased heterogeneity,300

and noise more generally, has on input-output response functions (Mejias & Longtin, 2014; Lefebvre et al.,301

2015). This effect is illustrated in Figure 5(b). The bolded sigmoids represent the averaged activity of302

the entire population of heterogeneous neurons alongside individual activation functions (fainter sigmoids).303

Increased (resp. decreased) variability dampens (resp. sharpens) the averaged response curve for the non-304

epileptogenic (resp. epileptogenic) setting. Such variability-induced linearization raises the excitability at305

low input values, corresponding with the dynamics highlighted in Figure 5(a). Figure 5 illustrates that our306

model predicts significant differences in the activation function between epileptogenic and non-epileptogenic307

tissue, and that heterogeneity, or lack thereof, can explain counter-intuitive neuronal responses. However,308

these differences are not necessarily reflected in network dynamics, as illustrated by the similar network firing309

rates in Figure 4(a) and (c) at high levels of drive. In the context of seizure, this implies that excessive310

synchronization of a neural population need not be exclusively associated with increased excitability as311

represented by a lower minimum input to elicit repetitive firing or higher firing rate of the population of312

isolated neurons.313

Discussion314

In this work, we propose that neuronal heterogeneity may serve an important role in generating resilience to315

ictogenesis. We explored this hypothesis using in vitro electrophysiological characterization of human cortical316

tissue from epileptogenic and non-epileptogenic areas, which revealed significant differences in DTT (a key317

determinant of neuronal excitability) variability in the pathological and non-pathological settings. The ability318

to perform experiments on tissue from human subjects diagnosed with epilepsy makes these results particularly319

relevant to the human condition. We then implemented these experimentally observed heterogeneities in320

in silico spiking neural networks. Our explorations show that networks with high heterogeneity, similar321

to the physiological setting, exhibit a more stable asynchronously firing state that is resilient to sudden322

transitions into a more active and synchronous state. Differing heterogeneity levels also explained the323

significant differences in the experimentally-obtained population activation functions between epileptogenic324

and non-epileptogenic tissue. Finally, using mathematical analysis we show that differences in the bifurcation325

structure of analogous mean-field systems provide a theoretical explanation for dynamical differences in326

spiking networks. Viewed jointly, these three avenues of investigation provide strong evidence that reduction327

in biophysical heterogeneity exists in epileptogenic tissue, can yield dynamical changes with parallels to328

seizure onset, and that there are theoretical principles underlying these differences.329

Computational studies have established the role played by heterogeneity in reducing synchronous activity330
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in the context of physiological gamma rhythms (Börgers & Kopell, 2003, 2005; Börgers et al., 2012). Other331

investigations have implemented heterogeneity in more varied neural parameters (Yim et al., 2013) and332

identified asymmetric effects of excitatory and inhibitory heterogeneities on network dynamics (Mejias &333

Longtin, 2012, 2014). Our study complements and extends the understanding of the role of biophysical334

heterogeneity in neural networks to human epilepsy by: 1) using experimentally derived heterogeneities of335

the DTT in non-epileptogenic and epileptogenic surgical specimens, which when implemented in silico are336

dynamically relevant; 2) exploring the effects of heterogeneity on the transition to synchrony, a hallmark of337

seizure onset; 3) detailing the differing extents to which inhibitory and excitatory heterogeneity contribute338

to circuit resilience to synchronous transitions. Our mathematical analysis further builds on this work to339

provide a theoretical undergird for these observed dynamics.340

The asymmetric effect of excitatory and inhibitory heterogeneities in our model network supports341

predictions regarding inhibitory heterogeneity’s role in ictogenesis. Supplementary Figure S3(a) shows that342

the sudden onset of synchrony is more likely to arise for moderate values of σi than σe. The physiological343

heterogeneity of the entire inhibitory population is likely to be larger than for the excitatory population344

(Cossart, 2011), driven in part by the diverse subpopulations of interneurons (Huang & Paul, 2019). Thus,345

our work makes two interesting predictions: first, a moderate loss of heterogeneity amongst inhibitory346

interneurons might be sufficient to make a system vulnerable to ictogenesis; second, the preservation of347

inhibitory heterogeneity may provide a bulwark against ictogenesis even if excitatory heterogeneity is348

pathologically reduced as observed experimentally.349

Our modeling suggests that post-synaptic inhibitory heterogeneities, in addition to synaptic mechanisms350

that underlie the decorrelating function of interneurons (Tetzlaff et al., 2012; Sippy & Yuste, 2013), play an351

important role in the resilience of circuits to sudden transitions to synchronous states. Thus, in addition to352

changes in EIB (Dehghani et al., 2016; Žiburkus et al., 2013; Jasper, 2012), it is intriguing to speculate that353

our results might explain both loss (Cobos et al., 2005; Cossart et al., 2001) and gain of function (Klaassen354

et al., 2006) alterations in inhibition as reduction in interneuronal homogeneity that reduce resilience to355

ictogenesis.356

It is also interesting to conjecture about how these results might be reconciled with the perspective of357

epilepsy as a disorder of hyper-excitability and the use of high-frequency oscillations (HFOs) as a marker358

for the epileptogenic zone. Our findings suggest how interictal hypometabolism observed using positron359

emission tomography (PET) (Niu et al., 2021) and manifestations of “hyper-excitability,” such as inter-ictally360

recorded HFOs and inter-ictal spikes (IIDs) (Frauscher et al., 2017; Jiruska et al., 2017; Zhang et al., 2011;361

Schevon et al., 2019), may coexist. We propose that the PET hypometabolism may arise in part from362

cellular homogenization that reduces population excitability (Figures 1(c) and 5(b)), since metabolism is363
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tightly linked to firing rate, while this homogenization simultaneously makes the system more vulnerable to364

transitions into synchronous states (Figure 4(c)) such as HFOs, IIDs and seizures.365

Notably, previous work has indicated that HFOs arise, in part, from “uninhibited pyramidal cells”366

(Gulyás & Freund, 2015). Speculatively, this decreased inhibition could arise from a homogenized, and367

in turn hypo-excitable, inhibitory population (Figure 5). This may further explain the hypometabolism368

observed inter-ictally given that interneuronal spiking appears to contribute more to brain metabolism369

than pyramidal cells (Ackermann et al., 1984). While speculative, the interconnected nature of neural370

heterogeneity and excitability identified in this work can, at minimum, motivate further studies using targeted371

patching of interneurons in both human and chronic rodent models to characterize if homogenization occurs372

in interneuronal populations during epileptogenesis and epilepsy.373

Our results include fewer neurons from the frontal lobe considering it is a less common source of human374

cortical tissue than non-epileptogenic MTG. Thus, we use the population of non-epileptogenic frontal lobe375

neurons only as evidence that heterogeneity levels are not confounded by comparison between the temporal376

and frontal lobes. The sample size of our epileptogenic neurons was limited by the necessity to confirm the377

epileptogenicity of the resected cortex using using electrocorticography (ECoG), making this data set highly378

selective. Although one might obtain a greater sample by comparing non-epileptogenic MTG to epileptogenic379

mesial temporal structures (i.e., subiculum, parahippocampal gyrus, hippocampus) comparing the allocortex380

and neocortex would add a further confound. Alternatively, obtaining non-epileptogenic medial temporal381

lobe (MTL) cortex is exceedingly rare. With these important limitations in the access to human cortical382

tissue considered, our comparison between epileptogenic frontal lobe, non-epileptogenic frontal lobe, and383

non-epileptogenic MTG represent a best-case comparison of the biophysical properties of epileptogenic and384

non-epileptogenic human tissue while controlling for confounds introduced by the differing brain regions. Our385

computational and mathematical explorations optimize the conclusions that can be drawn from this rare386

data.387

Our model networks, while analogous to E-I microcircuits commonly used in computational investigations388

of cortical activity (Renart et al., 2010; Ostojic, 2014; Vogels & Abbott, 2009), are simplified from the389

biophysical reality and are correspondingly limited. For instance, such models cannot reasonably capture the390

full richness and complexity of seizure dynamics and do not include multiple inhibitory populations (Huang391

& Paul, 2019). However, this simplifying choice facilitates findings that have their foundation in fundamental392

mathematical principles and are not especially reliant on biophysical intricacies such as network topology393

(see the confirmation of the robustness of our models in Supplementary Figures S7 and S8). In addition,394

experimental limitations arising from patch-clamp experiments limit the number of potential interneurons395

that can be patched in human tissue, precluding measuring inhibitory DTT and its variability experimentally.396
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Thus, the values of σi studied in our model networks were chosen to approximately align with that seen397

experimentally in the excitatory population while accounting for the possibility of increased inhibitory398

heterogeneity (Cossart, 2011; Huang & Paul, 2019), with this parameter systematically varied throughout the399

study.400

These limitations warrant the development of biophysically detailed, human inspired neuron and network401

models, allowing for the study of additional types of heterogeneity. Such studies will benefit from our recent402

development of a biophysically-detailed computational model of a human L5 cortical pyramidal neuron403

(Rich et al., 2021). In this vein, while we do not model seizures per se in this work, the two most common404

types of seizure onsets observed in intracranial recordings are the low-voltage fast (Lee et al., 2000) and405

hyper-synchronous onsets (Velascol et al., 1999). Both reflect a sudden transition from a desynchronized state406

to a synchronous oscillation, albeit of differing frequencies. Given the ubiquity of such onsets, our modeling407

of the transition to synchrony is likely to be broadly relevant to epilepsy.408

Lastly, one might wonder what neurobiological processes render an epileptogenic neuronal population less409

biophysically diverse. While under physiological conditions channel densities are regulated within neurons to410

obtain target electrical behaviors (Marder, 2011), it remains speculative as to what processes might lead to411

pathological homogenization of neuronal populations. However, modeling suggests that biological diversity412

may be a function of input diversity, and thus “homogenizing the input received by a population of neurons413

should lead the population to be less diverse” (Tripathy et al., 2013), possibly through intrinsic plasticity414

mechanisms (Beck & Yaari, 2008; Zhang & Linden, 2003). Although requiring further exploration, it is415

possible that the information-poor, synchronous post-synaptic barrages accompanying a seizure (Trevelyan416

et al., 2013) represent such a homogenized input, reducing a circuit’s resilience to synchronous transitions417

and promoting epileptogenesis by reducing biophysical heterogeneity.418
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Materials and Methods432

Experiment: Human brain slice preparation433

All procedures on human tissue were performed in accordance with the Declaration of Helsinki and approved434

by the University Health Network Research Ethics board. Patients underwent a standardized temporal or435

frontal lobectomy under general anesthesia using volatile anesthetics for seizure treatment (Valiante, 2009).436

Tissue was obtained from patients diagnosed with temporal or frontal lobe epilepsy who provided written437

consent. Tissue from temporal lobe was obtained from 22 patients, age ranging between 21 to 63 years (mean438

age ± SEM: 37.8± 2.9), with 1-9 cells studied per patient. The resected temporal lobe tissue displayed no439

structural or functional abnormalities in preoperative MRI and was deemed “healthy” tissue considering it440

is located outside of the epileptogenic zone. Tissue from epileptogenic frontal lobe was obtained from five441

patients, age ranging between 23-36 years (mean age ± SEM: 30.2± 2.4), and was deemed “epileptogenic”442

tissue as confirmed using electrocorticography (ECoG), making this data set highly selective. 1-5 cells were443

studied per patient. Tissue from non-epileptogenic frontal lobe obtained during tumor resection was obtained444

from two patients, ages 37 and 58 years, with 8 and 4 cells studied per patient, and was also considered445

“healthy, non-epileptogenic” tissue as it was taken away from the tumor itself. This tissue is a common source446

of human cortical tissue to study human cell and circuit properties (Kalmbach et al., 2018, 2021; Testa-Silva447

et al., 2014).448

After surgical resection, the cortical tissue block was instantaneously submerged in ice-cold (∼4◦C) cutting449

solution that was continuously bubbled with 95% O2-5% CO2 containing (in mM): sucrose 248, KCl 2,450

MgSO4.7H2O 3, CaCl2.2H2O 1, NaHCO3 26, NaH2PO4.H2O 1.25, and D-glucose 10. The osmolarity was451

adjusted to 300-305 mOsm. The human tissue samples were transported (5-10 min) from Toronto Western452

Hospital (TWH) to the laboratory for further slice processing. Transverse brain slices (400 µm) were obtained453

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2022. ; https://doi.org/10.1101/2021.03.02.433627doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433627
http://creativecommons.org/licenses/by-nc-nd/4.0/


using a vibratome (Leica 1200 V) perpendicular to the pial surface to ensure that pyramidal cell dendrites were454

minimally truncated (Beaulieu-Laroche et al., 2018; Kalmbach et al., 2018) in the same cutting solution as455

used for transport. The total duration, including slicing and transportation, was kept to a maximum of 20-30456

minutes. After sectioning, the slices were incubated for 30 min at 34◦C in standard artificial cerebrospinal457

fluid (aCSF) (in mM): NaCl 123, KCl 4, CaCl2.2H2O 1, MgSO4.7H2O 1, NaHCO3 26, NaH2PO4.H2O 1.2,458

and D-glucose 10. The pH was 7.40 and after incubation the slice was held for at least for 60 min at room459

temperature. aCSF in both incubation and recording chambers were continuously bubbled with carbogen gas460

(95% O2-5% CO2) and had an osmolarity of 300-305 mOsm.461

Experiment: Electrophysiological recordings and intrinsic physiology feature462

analysis463

Slices were transferred to a recording chamber mounted on a fixed-stage upright microscope (Axioskop 2464

FS MOT; Carl Zeiss, Germany). Recordings were performed from the soma of pyramidal neurons at 32-34◦465

in recording aCSF continually perfused at 4 ml/min. Cortical neurons were visualized using an IR-CCD466

camera (IR-1000, MTI, USA) with a 40x water immersion objective lens. Using the IR-DIC microscope, the467

boundary between layer 1 (L1) and 2 (L2) was easily distinguishable in terms of cell density. Below L2, the468

sparser area of neurons (L3) was followed by a tight band of densely packed layer 4 (L4) neurons, with a469

decrease in cell density indicating layer 5 (L5) (Moradi Chameh et al., 2021; Kalmbach et al., 2021).470

Patch pipettes (3-6 MΩ resistance) were pulled from standard borosilicate glass pipettes (thin-wall471

borosilicate tubes with filaments, World Precision Instruments, Sarasota, FL, USA) using a vertical puller472

(PC-10, Narishige). Pipettes were filled with intracellular solution containing (in mM): K-gluconate 135;473

NaCl 10; HEPES 10; MgCl2 1; Na2ATP 2; GTP 0.3, pH adjusted with KOH to 7.4 (290–309 mOsm).474

Whole-cell patch-clamp recordings were obtained using a Multiclamp 700A amplifier, Axopatch 200B475

amplifier, pClamp 9.2 and pClamp 10.6 data acquisition software (Axon instruments, Molecular Devices,476

USA). Electrical signals were digitized at 20 kHz using a 1320X digitizer. The access resistance was monitored477

throughout the recording (typically between 8-25 MΩ), and neurons were discarded if the access resistance478

was >25 MΩ. The liquid junction potential was calculated to be -10.8 mV and was not corrected.479

Electrophysiological data were analyzed off-line using Clampfit 10.7, Python and MATLAB (MATLAB,480

2019). Electrophysiological features were calculated from responses elicitepd by 600 ms square current steps481

as previously described (Moradi Chameh et al., 2021). Briefly, the resting membrane potential (RMP) was482

measured after breaking into the cell (IC=0). The firing threshold was determined following depolarizing483

current injections between 50 to 250 pA with 50 pA step size for 600 ms; the threshold was calculated by finding484
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the voltage value corresponding with a value of
dV

dt
that was 5% of the average maximal

dV

dt
across all action485

potentials elicited by the input current that first yielded action potential firing. The distance to threshold486

presented in this paper was calculated as the difference between the RMP and threshold. The average FI curve487

(i.e., activation function) was generated by calculating the instantaneous frequency at each spike for each of488

the depolarizing current injections (50-250 pA, step size 50 pA, 600 ms) and averaging over the population.489

Spike frequency adaptation ratio was calculated from the first current injection that yielded at least four490

spikes, and is defined as the mean of the ratio of subsequent inter-spike intervals. This could not be quantified491

in every neuron if sufficient spiking was not elicited by the current-clamp protocol. This analysis utilizes the492

IPFX package made available through the Allen Institute (https://github.com/AllenInstitute/ipfx),493

as used by Berg et al. (2021) amongst others.494

Plotting of experimental data was performed using GraphPad Prism 6 (GraphPad software, Inc, CA,495

USA). The non-parametric Mann-Whitney test was used to determine statistical differences between the496

means of two groups. The F-test was used to compare standard deviation (SD) between groups. The two497

sample coefficient of variation test was used to compare the coefficient of variance (CV) between groups.498

Normality of the data was tested with the Shapiro-Wilk and D’Agostino & Pearson omnibus normality tests499

with alpha=0.05. The one-way ANOVA post hoc with Dunn’s multiple comparison test was used to determine500

statistical significance in the spike frequency adaptation ratio. A standard threshold of p<0.05 is used to501

report statistically significant differences.502

Modeling: spiking neural network503

The cortical spiking neural network contains populations of recurrently connected excitatory and inhibitory504

neurons (Snyder & Miller, 2012; Stevens & Zador, 1996). The spiking response of those neurons obeys the505

non-homogeneous Poisson process506

Yj → Poisson(f(uj , hj)) (1)

where Yj =
∑

l δ(t− tk) is a Poisson spike train with rate f(uj , hj).507

The firing rate of neuron j is determined by the non-linear sigmoidal activation function f(uj , hj),508

f(uj , hj) =
1

1 + e−β(uj−hj)
(2)

where uj is the membrane potential analogue and hj represents the rheobase. The constant β = 4.8 scales509

the non-linear gain.510

Heterogeneity is implemented via the rheobases hj . The hj values are chosen by independently and511
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randomly sampling a normal Gaussian distribution whose standard deviation is σe,i if neuron j is excitatory512

(e) or inhibitory (i). The values of σi and σe are varied throughout these explorations between a minimum513

value of 2.5 mV and a maximum value of 16.75 mV. The heterogeneity parameters for the model have a direct514

parallel with the heterogeneity in the distance to threshold (DTT) measured experimentally, with β chosen515

so that the experimentally observed heterogeneity values and the heterogeneity parameters implemented in516

the model are within the same range (compare Figure 1(b) and Figure 2(c-d)).517

The membrane potential analogue uj is defined by518

duj

dt
= αx

(
−uj(t) + Synex

j + Synix
j + Ix + I(t)

)
+

√
2αxDXj (3)

The variable αx represents the time constant depending upon whether the neuron j is excitatory (x = e, αe = 10519

ms) or inhibitory (x = i, αi = 5 ms). The differential time scales are implemented given the different membrane520

time constants between cortical pyramidal neurons and parvalbumin positive (PV) interneurons (Neske et al.,521

2015).522

Synex
j and Synix

j are the synaptic inputs to the cell j (from the excitatory and inhibitory populations,523

respectively), dependent upon whether cell j is excitatory (x = e) or inhibitory (x = i). Our cortical model524

is built of 800 excitatory and 200 inhibitory neurons (Traub et al., 1997; Rich et al., 2017, 2018). The525

connectivity density for each connection type (E-E, E-I, I-E, and I-I) is varied uniformly via a parameter p.526

In this study, p = 1 is used (i.e., all-to-all connectivity) with the exception of in Supplementary Figure S6.527

The synaptic strengths are represented by wxy where x, y = e, i depending upon whether the pre-synaptic cell528

(x) and the post-synaptic cell (y) are excitatory or inhibitory. In our model, wee = 100.000, wei = 187.500,529

wie = −293.750, and wii = −8.125. Negative signs represent inhibitory signalling, while positive signs530

represent excitatory signalling. These values are chosen to place the network near a tipping point between531

asynchronous and synchronous firing based on mathematical analysis and previous modeling work (Rich532

et al., 2020b), and scaled relative to the values of β.533

The post-synaptic inputs Synex
j and Synix

j are given by534

Synex
j =

1

800

800∑
k=1,k ̸=j

ckj
wex

p
Yk(t−∆t) (4)

535

Synix
j =

1

200

200∑
k=1,k ̸=j

ckj
wix

p
Yk(t−∆t) (5)

where x = e, i and Yk is a Poisson spike train given by Yk =
∑

l δ(t− tl). The connectivity scheme excludes536
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auto-synapses. ckj represents the connectivity: if neuron k synapses onto neuron j, ckj = 1, and otherwise537

ckj = 0. The synaptic weights are scaled by the connectivity density p so that the net input signal to each538

neuron is not affected by the number of connections.539

Equation 3 includes three non-synaptic inputs to the neuron: Ix, I(t), and and
√
2αxDXj . The variable540

Xj is a spatially independent Gaussian white noise process. The value of noise intensity was chosen so that541

the noise-induced fluctuations are commensurate with endogenous dynamics of the network. Ix represents a542

bias current whose value depends on whether the neuron is excitatory (x = e) or inhibitory (x = i), imparting543

a differential baseline spiking rate to these distinct populations. Here, Ii = −31.250, ensuring that inhibitory544

neurons will typically require excitatory input to fire, matching biophysical intuition. Ie = −15.625 is based545

on previous literature (Jadi & Sejnowski, 2014a,b; Neske et al., 2015; Rich et al., 2020b) to position the546

system near the transition between asynchronous and synchronous firing.547

I(t) implements time-varying external input only applied to the excitatory population (this is simply548

referred to as the “drive” to the system in Figures 2, 3 and 4). In this work, this term is used primarily549

to study the response of the spiking network to a linear ramp excitatory input that occurs at a time scale550

much slower than the dynamics of individual neurons: to yield the ramp current used throughout the study551

I(t) simply varies linearly between 0 and 31.25 over a 2500 ms simulation (for computational efficiency, the552

simulation length is limited to 2048 ms for the heatmaps displayed in Supplementary Figures S3 and S6).553

In Supplementary Figure S3(b), where we characterize the dynamics of the network with constant input,554

I(t) = 15.625 uniformly.555

The final probability of a Poisson neuron j firing at time t depends upon the effect of these various556

elements on uj :557

ρj = 1− e−f(uj(t),hj)dt (6)

Parameter values558

Parameter values summarized in Table 1 below are analogous to those used in previous work on oscillatory559

cortical networks (Jadi & Sejnowski, 2014a,b; Neske et al., 2015; Rich et al., 2020b) with the scaling of our560

chosen β accounted for.561

Numerics562

All sampling from standard normal Gaussian distributions is done via the Box-Mueller algorithm (Golder &563

Settle, 1976). Equations are integrated using the Euler-Maruyama method. In our simulations, ∆t = 0.1,564

scaled so that each time step ∆t represents 1 ms.565
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Table 1. Key model parameters.

Parameter Value
Number of excitatory neurons 800
Number of inhibitory neurons 200
Excitatory time constant, αe 10 ms
Inhibitory time constant, αi 5 ms

Non-linear gain of activation function, β 4.8
Variance of noisy input, D 3.906
Excitatory bias current, Ie -15.625
Inhibitory bias current, Ii -31.250

External input, I(t) Variable
Excitatory-excitatory synaptic strength, wee 100.000
Excitatory-inhibitory synaptic strength, wei 187.500
Inhibitory-inhibitory synaptic strength, wii -8.125
Inhibitory-excitatory synaptic strength, wie -293.750

Excitatory heterogeneity, σe Variable
Inhibitory heterogeneity, σi Variable

rheobase, h Variable
Connectivity density, p Variable

Time step, ∆t 1 ms

The excitatory network synchrony (i.e. Synchrony Measure) and excitatory and inhibitory firing rates are566

calculated over sliding 100 ms time windows in Figures 2, 3 and 4. To preserve symmetry and ensure initial567

transients do not skew the data, our first window begins at t = 100.568

The Synchrony Measure is an adaptation of a commonly used measure developed by Golomb and Rinzel569

(Golomb & Rinzel, 1993, 1994) to quantify the degree of coincident spiking in a network as utilized in our570

previous studies (Rich et al., 2016, 2017, 2018, 2020a). Briefly, the measure involves convolving a very narrow571

Gaussian function with the time of each action potential for every cell to generate functions Vi(t). The572

population averaged voltage V (t) is then defined as V (t) =
1

N

N∑
i=1

Vi(t), where N is the number of cells in the573

network. The overall variance of the population averaged voltage Var(V ) and the variance of an individual574

neuron’s voltage Var(Vi) is defined as575

Var(V ) =< V (t)2 > − < V (t) >2 (7)

and576

Var(Vi) =< Vi(t)
2 > − < Vi(t) >

2 (8)

where < · > indicates time averaging over the interval for which the measure is taken. The Synchrony577

Measure S is then defined as578
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S =
Var(V )

1

N

∑N
i=1 Var(Vi)

(9)

The value S = 0 indicates completely asynchronous firing, while S = 1 corresponds to fully synchronous579

network activity. Intermediate values represent intermediate degrees of synchronous firing.580

In the case of sliding time bins, this measure is taken by only considering spikes falling into the time581

window of interest. In Figure 4 we present averages of S over 100 independent realizations, and if a particular582

run yields a “NaN” result for S at a given time step (indicating no spikes in the associated window), we583

eliminate that value from the average for that time point (this increases the variability of these values since584

there are less to average over; thus, this is reflected in an increased range of the ± STD curves). In contrast,585

in Supplementary Figure S3(b) we generate a single value the Synchrony Measure (or the other measures of586

interest) over the last 1000 ms of the simulation. Supplementary Figure S3(b) displays this measure averaged587

over five independent simulations.588

Supplementary Figure S3 includes the presentation of our Bifurcation Measure B. This quantifies the589

presence of sudden and significant changes in the Synchrony Measure over time. First, we take the Synchrony590

Measure time series for each independent run (i.e., as presented in Figure 3), and use the smooth function in591

MATLAB(MATLAB, 2019) with a 500 step window, generating a new time series from this moving average592

filter. This low-pass filter serves to account for fluctuations arising when, for example, a particular 100593

ms window includes more or less activity than average. We denote this filtered time-series Ss. Second, we594

calculate the difference quotient
δSs

δI
, where I is the value of the external drive (plotted against time in595

Figure 3), at each step in the time series. Finally, we take the variance of the values of
δSs

δI
using the var596

function in MATLAB (MATLAB, 2019): networks in which the Synchrony Measure changes in a consistently597

linear fashion will have a tight distribution of
δSs

δI
around the average slope (see, for example, Figure 3(b)),598

and thus a low variance; in contrast, networks in which the Synchrony Measure undergoes abrupt transitions599

will yield a multi-modal distribution of
δSs

δI
, with each mode corresponding to different linear sections of Ss,600

and thus the variance of these values will be notably higher (see, for example, Figure 3(c)). The plotted601

value of B represents an average over the B values calculated for each independent network instantiation.602

We note that when we calculate the “firing rate Bifurcation Measure” Be in reference to the four scenarios603

in Figure 4, we simply replicate the above steps on the firing rate time series rather than the Synchrony604

Measure time series.605

We emphasize that the Bifurcation Measure is appropriate for identifying the dynamics of interest in606

this work given that the related quantifications increase largely monotonically in response to increased drive,607

especially once these time series are “smoothed” prior to the application of this measure. The smoothed608
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Synchrony Measure and firing rates do not display any discontinuous behaviors in our experimental paradigms609

that might confound this measure.610

Analysis of FI curves611

In Figure 5, we compare activation functions derived from experimental data with model analogues (i.e., the612

function F described below in Equation 12). In Figure 5(b) we show examples of F with epileptogenic and613

non-epileptogenic levels of heterogeneity alongside samples of the function f (Equation 2) randomly chosen614

based on the differing heterogeneity levels.615

In Figure 5(a), we confirm the correspondence between the F functions and the experimental data by616

determining the value of σe best fitting this data. This process involved three steps: first, we qualitatively617

determined the portion of the F curves most likely to fit this data as that in −11.875 ≤ Ue ≤ −6.25; second,618

both the x (Ue, [-11.875 -6.25]) and y (probability of firing, [0.003585 .2118]) variables were re-scaled to match619

the ranges exhibited by the x (input current, pA, [50 250]) and y (firing frequency, Hz, [0 24]) variables in the620

experimental data; finally, a fit was calculated using MATLAB’s (MATLAB, 2019) Curve Fitting application.621

This process used a non-linear least squares method, with r2 > .93 for both fits (see details in Results).622

Additional scaling was performed for plotting so that the two x- and y-axes in Figure 5 remain consistent.623

Modeling: Mean-field reduction624

Following previous work (Hutt et al., 2016; Stefanescu et al., 2012; Hutt et al., 2020; Rich et al., 2020b;625

Lefebvre et al., 2015; Hutt et al., 2020) we perform a mean-field reduction of the spiking network in Equation626

3. We assume that the firing rate of cells is sufficiently high to make use of the diffusion approximation627

(Gluss, 1967), yielding628

α−1
e

dUe

dt
= −Ue + weeF (Ue, σe) + wieF (Ui, σi) + Ie (10)

α−1
i

dUi

dt
= −Ui + wiiF (Ui, σi) + weiF (Ue, σie) + Ii (11)

where Ue,i =
∑Ne,i

j=1 uj
e,i represents the mean activity of the excitatory or inhibitory population, respectively.629

The function F represents the average activation function conditioned upon the value of σe,i via the630

convolution631

F (Ue,i, σe,i) =

∫ ∞

−∞
f(Ue,i + v, 0)ρ(v, σe,i)dv (12)
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where ρ(v, σe,i) = N(0, σ2
e,i) (Lefebvre et al., 2015; Hutt et al., 2018, 2016).632

Linear stability analysis of the mean-field equations633

Fixed points Ūe,i of the mean-field equations satisfy634

0 = −Ūe + weeF (Ūe, σe) + wieF (Ūi, σi) + Ie (13)

0 = −Ūi + wiiF (Ūi, σi) + weiF (Ūe, σie) + Ii (14)

Linearizing about the steady state values of Ūe,i yields the system635

A

δŪe

δŪi

 =

−1 + weeαeR
e wieαiR

i

weiαeR
e −1 + wiiαiR

i


δŪe

δŪi

 (15)

with Re,i = R(Ūe, Ūi) =
∫
Ω(v)

f ′[Ūe,i + v, 0]ρ(v, σe,i)dv. The system’s stability is given by the eigenvalues of636

the Jacobian A. Define637

B = trace(A) = −
(
−2 + (weeαe)R

e + (wiiαi)R
i
)

(16)

C = det(A) = (−1 + (weeαe)R
e)
(
−1 + (wiiαi)R

i
)

−
(
(wieαi)R

i
)
((weiαe)R

e) (17)

Eigenvalues of A are thus given by638

λ± =
−B ±

√
B2 − 4C

2
(18)

Bifurcation analysis with varying excitatory input639

We investigate bifurcation properties as a function of Ie. In Supplementary Figure S3(a), multi-stability, as640

denoted by the bold border, is determined by testing for the presence of multiple fixed points at Ie ranging641

from -15.625:0.625:-6.250, a range encompassing the range for multi-stability shown in Figure 4 (noting642

Ie = Ie + I(t)).643
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Code Accessibility644

The code generating the primary figures is available at https://github.com/Valiantelab/LostNeuralHeterogeneity.645

Additional code used is available upon request to the authors.646
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Supplementary Figures647

Supplementary Figure S1. Details from electrophysiological recordings. (a): Distribution of resting
membrane potentials (RMP) in our three neuronal populations. Mean RMP is significantly increased in the frontal,
non-epileptogenic (n=12) population compared to both the frontal, epileptogenic (n=13; p=0.003; Non-parameteric
Mann-Whitney test) and temporal, non-epileptogenic (n=77; p=0.002) populations. Coefficient of variation (CV) of
these populations is significantly increased in the temporal, non-epileptogenic population compared to the frontal,
non-epileptogenic population (p=0.03; two sample coefficient of variation test). (b): Distribution of threshold
voltages in our three neuronal populations. No significant differences between mean threshold voltages were observed
(unpaired t test with Welch’s correction). The CV of the threshold voltage in the frontal, epileptogenic population
was significantly lower than in the temporal, non-epileptogenic population (p=0.04) and than in the frontal,
non-epileptogenic population (p=0.04). (c) Distribution of first-spike latencies (time between stimulus application
and first spike) in our three neuronal populations. Mean latency is significantly lower in the temporal,
non-epileptogenic population compared to the frontal, epileptogenic population (p=0.03; Non-parametric
Mann-Whitney test), and mean latency is significantly lower in the frontal, non-epileptogenic population compared to
both the frontal, epileptogenic (p=0.0045) and temporal, non-epileptogenic (p=0.02) populations. (d) Distribution of
rheobases (minimal input current required to elicit first spike) in our three neuronal populations. The mean rheobase
of the temporal, non-epileptogenic population is significantly lower compared to the frontal, epileptogenic population
(p=0.045; Non-parametric Mann-Whitney test). (e) Distribution of input resistances in our three neuronal
populations. Mean input resistance of the frontal, non-epileptogenic population is significantly lower compared to the
temporal, non-epileptogenic population (p=0.02; Unpaired t-test with Welch’s correction). (f) Distributions of sag
voltage amplitudes in our three neuronal populations. Mean sag voltage is significantly increased in the frontal,
non-epileptogenic population compared to both the frontal, epileptogenic (p=0.01, Non-parametric Mann-Whitney
test) and temporal, non-epileptogenic (p=0.04) populations. In all panels, plotted bars indicate mean ± SD.
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Supplementary Figure S2. Distance to threshold (DTT) heterogeneities are not skewed by
patient-to-patient variability. (a): Frontal, epileptogenic data split by patient. The DTT is significantly different
only between Patients 1 and 2 (p=0.04, Dunn’s multiple comparison test; following p=0.02, Kruskal-Wallis test; note:
the Kruskal-Wallis test is only performed on patients with > 2 cells). This difference would be expected to increase
the heterogeneity in the frontal, epileptogenic population; nonetheless, its CV is still significantly lower than our two
non-epileptogenic populations (see Figure 1(a)). (b): Frontal, non-epileptogenic data split by patient. The DTTs are
not significantly different (p>0.05, non-parametric Mann Whitney test). (c): Temporal, non-epileptogenic data split
by patient. No patient’s DTT is statistically different (p>0.05, Kruskal-Wallis test; note: the Kruskal-Wallis test is
only performed on patients with > 2 cells). (d): To confirm our intuition regarding the results presented in panel (a)
is correct, we replicate the analysis of Figure 1(a) but after removing Patient 2’s data from the frontal, epileptogenic
population. As expected, the CV of the altered population is decreased, and continues to remain significantly lower
than the CVs of the temporal (p=0.02, two-sampled coefficient of variance test) and frontal (p<0.01) populations.
These results precisely align with recent multi-patch data from human cortex (Planert et al., 2021) highlighting that
between-individual variability in biophysical properties was smaller than within-individual variability. Therefore the
CVs we measure here are more related to within-individual heterogeneity than between-individual heterogeneity, and
thus increased CV is in fact more representative of increased intrinsic biophysical heterogeneity (Planert et al., 2021;
Moradi Chameh et al., 2021), than between-subject variability.
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Supplementary Figure S3. Exploration of a larger σe and σi parameter space highlights the
asymmetric effects of excitatory and inhibitory heterogeneity on sudden transitions into synchrony.
(a): Visualization quantifying the tendency for spiking networks to undergo a sudden and notable increase in
excitatory synchrony over time, when subjected to a linearly increasing input as in Figures 2, 3, and 4 (but over 2048
as opposed to 2500 ms), via the Bifurcation Measure B. Results are shown averaged over 10 independent simulations.
Bolded region demarcates networks whose mean-field analogues exhibit any multi-stability from those that do not
(remainder of heatmap). (b): Dynamics of spiking networks with a constant external input (I(t) = 15.625) where
either synchronous or asynchronous activity can arise. The excitatory synchrony is quantified via the Synchrony
Measure taken over the final 1000 ms of a 2048 ms simulation, and the presented value is averaged over five
independent simulations. The bolded region demarcates networks whose mean-field analogues have an unstable
oscillator from those that have a stable oscillator (remainder of heatmap) as their lone fixed point when I(t) = 15.625.
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Supplementary Figure S4. Fixed points and eigenvalues of mean-field equations for I(t) = 3.125. (a):
The mean-field system with this I(t) value can yield multiple fixed points: we calculate their eigenvalues, sort them by
their classifications, and visualize these eigenvalues via heatmaps. In this example, we see that multiple fixed points
arise only when both σe and σi are low (i.e. the bottom-left of the heatmap). (b-e): Fixed points are determined by
finding the intersections of the Ue and Ui nullclines, visualized for the corners of our heatmap (top-left in panel (b),
top-right in panel (c), bottom-left in panel (d), and bottom-right in panel (e)). Multiple fixed points correspond
with multiple intersections of these curves, as seen exclusively in panel (d).

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2022. ; https://doi.org/10.1101/2021.03.02.433627doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433627
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure S5. Fixed points and eigenvalues of mean-field equations for I(t) = 15.625. (a):
As all mean-field systems in our parameter space yield a single fixed point when I(t) = 15.625, we visualize the Ue

and Ui coordinates of this fixed point using a heatmap. (b): Each fixed point has imaginary eigenvalues, which we
visualize by plotting the real and imaginary components of the eigenvalue associated with the fixed point in a heatmap.
(c-f): Fixed points are determined by finding the intersections of the Ue and Ui nullclines, visualized for the corners
of our heatmap (top-left in panel (c), top-right in panel (d), bottom-left in panel (e), and bottom-right in panel (f)).
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Supplementary Figure S6. Dynamics of spiking networks are robust to more sparse connectivity
paradigms. Bifurcation Measure B pattern over our parameter space remains similar with p = 0.25 (panel (a)),
p = 0.50 (panel (b)), and p = 0.75 (panel (c)), when compared to the case of p = 1.00 seen in Figure S3(a). In each
case the “asymmetry” in the effects of σe and σi is preserved. Heatmaps present results averaged over ten
independent simulations.
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Supplementary Figure S7. Network dynamics are robust to a range of parameters. (a-d): Examination
of changes to network dynamics, as quantified via the Bifurcation Measure, caused by varying a single synaptic weight
(wie in (a), wii in (b), wei in (c), and wee in (d)) or the baseline inhibitory drive (Ii in (e)). Vertical grey bar
represents the default value as given in Table 1. Values of high/low heterogeneity correspond with those used in
exemplar networks in Figures 3 and 4. The Bifurcation Measure is always highest when both σe and σi are low (red
trace), and the other traces (each representing a scenario where at least one of σe or σi is high) rarely exceed the
default Bifurcation Measure of the low σe and σi case (approximately 3x10−4). This indicates “sudden transitions”
into synchronous dynamics on the magnitude of that seen in Figure 3(c) and Figure 4(c) occur preferentially in the
case of both low σe and σi, even for variations of these parameters. The preserved relationship between the four
scenarios represented by the different traces (low σe and low σi always yielding the highest bifurcation measure,
followed by low σe and high σi, followed then by very similar values in both high σe scenarios) is further evidence of
the robustness of the patterns observed in the results of Figures 3 and 4. Each data point represents an average over
10 independent simulations.
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Supplementary Figure S8. Bifurcation structures are robust to a range of parameters. To confirm the
robustness of our spiking network dynamics implies similar robustness in our mean-field systems, we performed
bifurcation analyses similar to those in Figure 4 (but with less numerical precision due to computational constraints).
Similarly to Supplementary Figure S7 we varied the parameters individually, and showcase examples at high and low
extremes for each parameter that clearly preserve the unique bifurcation structure seen in Figure 4(c). This is done
for wei in (a-b), wee in (c-d), wie in (e-f), wii in (g-h), and Ii in (i-j).
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