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Abstract 

The A-to-G point mutation at position 3243 in the human 
mitochondrial genome (m.3243A>G) is the most 
common pathogenic mtDNA variant responsible for 
disease in humans. It is widely accepted that m.3243A>G 
levels decrease in blood with age, and an age correction 
representing ~2% annual decline is often applied to 
account for this change in mutation level. Here we report 
that recent data indicate the dynamics of m.3243A>G are 
more complex and depend on the mutation level in blood 
in a bi-phasic way. Consequently, the traditional 2% 
correction, which is adequate ‘on average’, creates 
opposite predictive biases at high and low mutation 
levels. Unbiased age correction is needed to circumvent 
these drawbacks of the standard model. We propose to 
eliminate both biases by using an approach where age 
correction depends on mutation level in a biphasic way to 
account for the dynamics of m.3243A>G in blood. The 
utility of this approach was further tested in estimating 
germline selection of m.3243A>G. The biphasic 
approach permitted us to uncover patterns consistent with 
the possibility of positive selection for m.3243A>G. 
Germline selection of m.3243A>G shows an ‘arching’ 
profile by which selection is positive at intermediate 
mutant fractions and declines at high and low mutant 
fractions. We conclude that use of this biphasic approach 
will greatly improve the accuracy of modelling changes 
in mtDNA mutation frequencies in the germline and in 
somatic cells during aging. 

Introduction 

Pathogenic variants in the mitochondrial genome are 
responsible for a wide range of diseases that affect 
mitochondrial function (Gorman et al., 2016). The multi-
copy nature of mitochondrial DNA (mtDNA) means that 
it is possible for more than one species of mtDNA to co-
exist within the same cell, termed heteroplasmy. By far 
the most common heteroplasmic mtDNA pathogenic 
variant is an A to G transition at position 3243 
(m.3243A>G) within MT-TL1, which encodes 
mitochondrial tRNALeu(UUR) (Goto et al., 1990).Estimates 
of m.3243A>G carrier frequency range from 140 to 250 
people per 100,000 (Elliott et al., 2008; Manwaring et al., 
2007), although the point prevalence for adult disease is 
much lower than this, at 3.5 per 100,000 (Gorman et al., 
2015), suggesting that many carriers are either 
asymptomatic or have mild, undiagnosed symptoms. 
 

Originally identified within a cohort of patients 
presenting with a severe syndrome characterized by 
mitochondrial encephalopathy, lactic acidosis and stroke-
like episodes (MELAS), m.3243A>G is associated with 
extremely varied clinical presentations. Patients can 
experience a variety of phenotypes including ataxia, 
diabetes, deafness, ptosis, chronic progressive 
ophthalmoplegia, cardiomyopathy, cognitive dysfunction 
and severe psychiatric manifestations (de Laat et al., 
2012; Fayssoil et al., 2017; Koga et al., 2000; Mancuso et 
al., 2014; Nesbitt et al., 2013; Pickett et al., 2018). 
Disease burden can be partly explained by an individual’s 
m.3243A>G mutation level, but this relationship is not 
simple; other factors are likely to also play a role (Boggan 
et al., 2019; Grady et al., 2018; Pickett et al., 2018). These 
complexities make offering prognostic advice to patients 
very difficult and, coupled with the mutation’s high 
frequency, mean that m.3243A>G-related disease is one 
of the biggest challenges in the mitochondrial disease 
clinic. 
 
Although levels of m.3243A>G are relatively stable in 
post-mitotic tissues such as muscle, there is strong 
evidence of negative selection against the G allele in 
mitotic tissues, even in relatively asymptomatic patients; 
this loss of m.3243A>G in mitotic tissues has been 
studied in detail in blood (de Laat et al., 2012; Grady et 
al., 2018; Langdahl et al., 2018; Mehrazin et al., 2009; 
Pyle et al., 2007; Rajasimha et al., 2008; Sue et al., 1998). 
Initial simulation studies suggested that this decline could 
be exponential (Rajasimha et al., 2008), although more 
recent studies using larger amounts of data point to a 
more complex process (Grady et al., 2018; Veitia, 2018). 
To study the dynamics of this mutation, we took 
advantage of the large quantity of longitudinal data that 
are available for m.3243A>G levels in blood and have 
developed a new, empirical model that better describes 
the dichotomous pattern that we observe. 
 
The m.3243A>G variant is maternally inherited and, 
similar to other heteroplasmic mtDNA mutations, 
undergoes a genetic bottleneck in development leading to 
offspring often with very different levels of m.3243A>G 
than their mothers (Chinnery et al., 2000; Pickett et al., 
2019). Different mtDNA mutations segregate at different 
rates, demonstrating that the dynamics of this bottleneck 
are dependent on the mtDNA variant being transmitted 
(Wilson et al., 2016). We postulated that studying this 
bottleneck may help us understand why the m.3243A>G 
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variant is so common in the population; using our new 
model of the dynamics of blood heteroplasmy/mutation 
level, we explored whether there is a transmission bias for 
m.3243A>G between mother and child, i.e. whether 
m.3243A>G is under germline selection.  
 
 

Results 
Longitudinal changes of m.3243A>G levels in blood 
with age reveal a dichotomous pattern (Figure 1). 
 
A large amount of data on the changes of the level of 
m.3243A>G mutation in blood with the age of the 
individual have been compiled in a recent report (Grady 
et al., 2018). We have reproduced these data in Figure 1A. 
Traditionally, the dynamics of m.3243A>G mutation in 
the blood are considered to follow an exponential decay 
with age of approximately 2% per year. The data in 
Figure 1A, however, appear visually dichotomous, i.e., at 
higher m.3243A>G levels we see more cases where the 
mutation level decreases (red), whereas at lower levels 
there is little evidence of decline and there are more cases 
with an increase or that remain constant (blue). The 
dichotomy can be further demonstrated by binary logistic 
regression analysis (Figure 1B). Figure 1B shows that 
individuals with higher m.3243A>G levels tend to, in 
accordance with the conventional model, decrease their 
levels with age, while contradictory to the convention, 
individuals with low levels tend to increase or stabilize 
their mutation level. This trend is significantly non-
random (the slope of regression curve is significantly 
negative p<0.0001).  
 
Mother-child m.3243A>G levels also show a 
dichotomous pattern  

 The dichotomous pattern of m.3243A>G dynamics in 
blood is further supported by the analysis of a different 
though similarly constructed dataset, i.e. the mother-child 
dataset (Pickett et al., 2019), that represents inheritance 
of m.3243A>G between mothers and their children. We 
note that this dataset shows a similar dichotomous pattern 
(Figure 2A) as the longitudinal dataset, which reflects the 
dynamics in blood with age discussed above (Figure 1A). 
Indeed, in the high child mutation level range 
(approximately above 5%) the majority of mother/child 
relationships are strongly descending in mutation 
frequency. In contrast, in the low child mutation level 
region (below 5%), the ascending child>mother pattern is 

prevailing. In accordance with this visual appearance, 
logistic regression analysis confirms, as with longitudinal 
data in Figure 1B, a statistically significant increase of 
child-mother pairs with increasing mutation levels (blue 
segments) at lower child mutant fractions. We conclude 
that in both the longitudinal and the mother/child datasets, 
increase of m.3243A>G mutation level prevails at the low 
mutation levels and decrease prevails at the high mutation 
levels. Thus, the rate and the direction of change of 
m.3243A>G level in blood appear to depend on the 
mutation level.  

The standard 2% annual decline model is biased at 
high and low mutational levels  

The observed dichotomy of m.3243A>G (Figures 1 and 
2) implies that, because the conventional 2% annual 
decline model inherently applies to all mutation 
frequency levels in the same way and thus cannot account 

Fig. 1. Analysis of longitudinal of m.3243A>G levels in 
blood. (A) Each segment represents the change in 
m.3243A>G level for a single individual for the follow-up 
period. Red and blue lines represent cases of age-related 
increase or decrease/stable m.3243A>G levels, respectively. 
(B) Logistic regression of the data presented in A. Increasing 
segments are represented as ‘1s’, and decreasing as ‘0s’. 
Logistic regression curve has been constructed and 
significance of the negativity of the curve estimated 
(P<0.0001). (See Materials and Methods for details). 
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for two opposite patterns, it must be making biased 
predictions among individuals with low and/or high 
levels of the m.3243A>G mutation. To test this 
supposition, we split the longitudinal dataset into low- 
and high-level subsets and evaluated the 2% annual 
decline model for bias in each of the two subsets. We 
noted, however, that while the analysis presented in 
Figures 1 and 2 does demonstrate the existence of 
dichotomy in mutation dynamics in blood, it does not 
permit precise determination of the threshold separating 
the two subsets with different mutation dynamics. To 
address this, we use 4 different thresholds (10, 15, 20, 
30%) which essentially cover the entire span of the data 
to generate 8 subsets of the longitudinal dataset, 4 below 
the each of 4 thresholds (‘low mutant level subsets’) and 
4 above the thresholds (‘high mutant level subsets’). The 
subset sizes are as follows: <10%, 18; <15%, 31; <20%, 
39; < 30%, 61; >10%, 78; >15%, 65; >20%, 57; > 30%, 
35; all, 96).). To test our hypothesis that the standard 2% 
annual decline (Rajasimha et al., 2008) model was unable 
to correctly handle some parts of the dichotomous data, 
we used the 2% model to predict mutant levels at the last 
measurement given mutant levels at the first 
measurement and the age difference between 
measurements. More specifically, we used the equation:  

MF2pred=MF1 x (1+ R)DA    (1) 

where R is the rate of change on mutant fraction per year, 
MF1 is the actual mutation level (MF stands for Mutant 
Fraction) at the first measurement, MF2pred is the 
predicted level at the last measurement, and DA is the 
difference in Age between the two measurements. We 
then calculated the error ratio MF2pred/MF2 (where MF2 
is the actual level at the last measurement) for each 
individual prediction and the geometric average of error 
ratios for each given subset (see also Figure 3A caption). 
Error ratios vary around 1, with 1 meaning ‘no error’. To 
make the measure of the error more intuitive, we then 
subtracted 1 from error ratios to obtain the ‘average 
relative error’ of the prediction, which is a fair measure 
of the bias of the model (positive or negative) in the given 
subset. The result of this analysis is shown in Figure 3A. 
As shown in forward predictions, the standard (2% annual 
decline) model underestimates mutation frequency 
(negative average relative prediction error) in the low 
mutant domain (blue) and overestimates (positive 
average relative prediction error) in the high fraction 
domain (red). This implies that the m.3243A>G decline 

rate of 2% per year is too slow for the high-frequency 
individuals, in whom mutations apparently decline on 
average faster than 2%, and too fast for the low fraction 
domain, where  m.3243A>G level is more stable or 
increases with age within individuals on average.  

Biphasic models alleviate biases of the 2% annual 
decline model. 

To alleviate the biases of the standard 2% annual decline 
model, we propose to use a biphasic model which uses 
two annual decline rates, reflecting the dichotomous 
pattern of mutation decline with age. To build a biphasic 
model, the longitudinal dataset, which is used as 
‘training’ data set, is divided into two subsets – below and 
above a chosen ‘separation threshold’ of the mutant 
fraction. For each of the two resulting subsets, an 

Fig. 2: Analysis of mother-child m.3243A>G levels in 
blood. (A) Every segment connects the m.3243A>G level of 
a child (left end of the segment) to the m.3243A>G level of 
their mothers (right end). Descending segments are coded 
red, ascending - blue. (B) Solid curve: Logistic regression 
curve of the mother-child data presented in A, constructed as 
in Fig 1B. Broken curve: longitudinal data logistic curve fr 
om Fig 1B, overlaid for comparison. The grey shaded curve 
represents the 95% confidence interval for the binary 
regression at each point of the curve. 
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unbiased mutation decline rate is determined. This is the 
rate which, when used in equation (1), results in zero 
average error calculated over the subset (see materials 
and methods for details). The rationale is that if this 
model is unbiased in the training set, then it will most 
likely be unbiased in predicting future mutation levels on 
a blind dataset (like the mother/child dataset, where we 
need to predict mutation levels in children at their 
mother’s age). 

This approach requires the specification of one free 
parameter: a threshold level of mutation fraction to 
separate the dataset into high and low mutation level 
subsets. The two ‘unbiased’ rates of annual decline of 
mutation level for each of the two subsets are then 
determined unambiguously by the condition that the 

model is unbiased. As far as the separating threshold is 
concerned, we used the same thresholds and generated the 
same eight subsets as those used for testing the 
conventional 2% annual decline model described in the 
previous section (Figure 3A and 3B). For each of the eight 
subsets, we determined the ‘unbiased’ rate of decline. 
Reassuringly, the ‘unbiased’ model for each subset was 
also close to the best fit model, meaning that the sum of 
squared errors was close to a minimum (see 
Supplementary Figure S1 for a full set of graphs).   

Additionally, we showed that the biphasic model is 
significantly more unbiased than the standard 2% model. 
To prove this, we performed a simulation where the 
longitudinal dataset was randomly partitioned into equal 
sized training and testing sets multiple times (1000  

Fig 3: (A)  The standard 2% annual decline model, is negatively 
biased at low mutation levels and positively biased at high mutation 
levels. Four high-mutation fraction (MF) and four low-MF subsets of the 
longitudinal dataset were created by splitting the dataset into two subsets 
at four arbitrary MF thresholds (10, 15, 20, and 30%; at first 
measurement). The 2% annual decline model was used to predict the level 
of m.3243A>G in each individual at last measurement based on the first 
measurement and age difference. The average relative errors within each 
subset were calculated  and plotted as blue bars (low MF subsets) or red 
bars (high MF subsets).  The colors were chosen to emphasise that high 
and low mutational level subsets preferentially consist of  ascending and 
descending segments of Figs 1A and 2A.  

(B) Subset-specific ‘unbiased’ mutation decline rates that neutralize 
biases depend on the mutational level of the subset. ‘Unbiased’ rates 
were determined for each of 8 subsets described in (A), presented as the 
rates of annual decline R (equation (1)) such that error of predictions of 
the resulting ‘unbiased’ model averaged within the subset was zero. Blue 
bars – low-MF subsets, red bars – high-MF subsets. Red dotted line 
represents the conventional -0.02 (2% annual decline) rate.  See Materials 
and Methods and Figs 4 and S1.  

(C) ‘Unbiased’ model reveals positive germline selection. To estimate 
‘unbiased’ enrichment of m.3243A>G per generation due to germline 
selection, mother–child dataset was split into 8 overlapping subsets in the 
same way as longitudinal dataset in panel A. The unbiased rates derived 
from the 8 subsets of the longitudinal dataset shown in panel B were used 
to predict child’s mutational level at mother’s age and the ratio of 
adjusted child’s to mother’s mutation level was considered estimate of 
germline selection. Bars represent enrichments (i.e., geometric medians 
of child/mother ratios within each of the 8 subsets minus 1). Blue bars 
represent low-MF subsets, red bars – high-MF subsets. Black bar (‘All’) 
represents median enrichment (i.e., lack thereof) estimated by the 
standard 2%  annual decline model within the entire mother-child dataset. 
Grey bars represent germline selection predicted by  2% decline model in 
each of the 8 subsets. Numbers above the bars are p-values (two tail sign 
test). See Materials and Methods for details. 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2022. ; https://doi.org/10.1101/2021.02.26.433045doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.26.433045
http://creativecommons.org/licenses/by/4.0/


 6 

iterations) and biphasic models were built for each 
drawing of the training set, and then tested on the test set. 
Then the performance of the biphasic models on the test 
sets was compared to performance of the standard 2% 
model. As expected, biphasic models performed 
unbiasedly on average, while the 2% model was biased, 
and the two distributions were significantly different 
(p<0.00001). The biphasic model was more unbiased 
than the 2% model in 70% of iterations. This statistic 
must be considered in light of the fact that this simulation 
was highly conservative, i.e., it was overwhelmed by 
random variation resulting from the small sample size: 
both training and test sets were much smaller than in real 
experiment (where the training set is the entire dataset 
from Grady et al. (2018), not half of it, and test set is the 
entire mother/child dataset, which is about 3-fold larger 
than the Grady et al. dataset). 

As expected, the unbiased rates (Figure 3B) look like a 
mirror image of the average relative error bars (Figure 
3A). Note that the line of reflection in Figure 3B is not 
the X-axis, but the red dotted line at -0.02, which is 
because the 2% annual decline model is the reference in 
this case. Interestingly, unbiased rates tend to be positive 
(i.e., mutant fraction increases in the blood with age) in 
individuals with a low mutant fraction, and negative in 
individuals with a high mutant fraction. This distinction 
remains relatively stable as the threshold separating the 
high and the low mutant fraction subsets is varied from 
10 to 30%. The fair consistency of the neutral decline 
rates in subsets that lie predominately within the high 
(>15%, ‘>20%’,’>30%’) or within the low mutation level 
domain (‘<10%’, ‘<15%’, ‘<20%’) imply that the 
unbiased decline rates are innate characteristics of each 
domain. We therefore conclude that the high and the low 
mutation level domains should be analysed 
differently/separately. This is particularly true as the 
unbiased decline rates in the two domains have opposite 
signs, which are likely to compensate each other and 
obviate the details of the dynamics of m.3243A>G if they 
are (incorrectly) treated jointly.  

Estimating germline selection using the bi-phasic 
model. 

Germline selection of mtDNA pertains to the bias in the 
transmission of a mtDNA variant to the next generation, 
so ideally germline selection would simply be the ratio of 
mutation levels in the child vs mother. In reality, the child 

mother ratio is affected by random process of segregation 
of the two genotypes due to the intergenerational mtDNA 
bottleneck. As a result, selection can reliably estimated 
only by averaging the child/mother ratios among a 
substantial number of mother/child pairs. Geometric 
averaging which we use here is a natural way of 
averaging ratios. Furthermore, the child/mother ratio is 
inevitably based on m.3243A>G levels measured in a 
somatic tissue, most often, whole blood. Because 
m.3243A>G levels in blood systematically decrease with 
age, in the case of blood samples the child/mother ratio 
needs to be corrected for the age difference to yield an 
unbiased estimate of germline selection. We therefore 
expected that the bias of the 2% model that we described 
above might have affected previous estimates of germline 
selection.  

To test this expectation and to obtain corrected estimates, 
we split the mother-child dataset 4-ways into eight 
subsets, mirroring our methodology for the longitudinal 
dataset. We then used, for each of the subsets, the specific 
unbiased decline rates devised from the longitudinal data 
(Figure 3B), to factor out the mother-child age differences 
within the corresponding subsets of the mother-child 
dataset. Children’s mutational levels were projected to 
mothers’ age using the ‘unbiased’ rate of m.3243A>G 
decline and divided by the mothers’ mutation levels. The 
details of the calculations for these estimates are 
presented in Materials and Methods. The estimated 
germline enrichment is positive at intermediate low 
mutant frequencies (<15%, <20%, <30% but not in the 
lowest subset <10% (Figure 3C). Notably, at higher 
mutant fractions positive selection decreases and then 
becomes negative. This suggests that m.3243A>G 
selection in the germline follows an ‘arched’ curve.   

We then compared our results to the standard model: we 
calculated the expected germline selection for each of the 
subsets, and for the entire mother-child dataset, under 
assumption of the uniform decline rate of 2% per year. 
For the entire dataset, this produces a germline selection 
estimate which is close to zero (Figure 3C; black bar 
“All”). The subset-based analysis (Figure 3C; grey bars), 
unlike our bi-phasic approach which tends to predict 
weak positive selection estimates in most subsets, clearly 
predicts strong negative selection in the low mutation 
level domain and strong positive selection in the high 
mutation level domain. The explanation for this 
paradoxical behaviour of the standard approach is as 
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follows: when a flat -2% rate is being used for age 
adjustment of the low mutation level subsets the mother-
child pairs are being adjusted with a very incorrect 
mutation decline rate (2%/year, i.e., decrease instead of 
the unbiased 2%/year increase as in our calculations). 
This excessively negative rate results in excessive 
negative (instead of the needed positive) adjustment of 
the child’s mutation level projection to the mother’s age, 
which results in a very negative germline selection 
estimate. In contrast, in the high mutant fraction subsets, 
the use of decline rate of 2%/year is not sufficient to 
compensate for the even more rapid, and real, decline in 
these subsets. By our estimates, decline rates in high 
mutant subsets are about 3%/year, (average of the red 
bars in Figure 3C). Thus, insufficient negative adjustment 
leaves child’s levels too high, which results in an 
overestimate of positive germline selection.  

Although our estimates of selection within the high 
m.3243A>G level subsets of the mother-child data are 
negative (the median-based estimate), the distributions 
are in fact skewed. While a majority of the data appear to 
show low levels of negative germline selection, there is 
also a long right-hand tail of what appears as positive 
selection (Supplementary Figure 2). The presence of 
these asymmetrically positioned outliers suggests that we 
cannot rule out the possibility of some positive selection 
taking place in these high-level subsets, potentially taking 
place in a special subset of individuals, which can be 
dependent, for example, on their nuclear genetic 
background. 

Discussion 

Dynamics of m.3243A>G in blood are dichotomous.  

Negative selection of the m.3243A>G pathogenic variant 
in human blood is well established; previous approaches 
to model this decline with age have pointed towards an 
exponential or sigmoidal process but the dynamics of 
m.3243A>G are more complex and these models do not 
fully-explain the data (Grady et al., 2018; Rajasimha et 
al., 2008; Veitia, 2018). Using a large quantity of recently 
compiled longitudinal data (Grady et al., 2018), we report 
that the dynamics of m.3243A>G in blood are 
dichotomous; levels predominantly decline in individuals 
with high mutation levels and are predominantly stable or 
even slightly increasing at low mutation levels. 
Therefore, the standard 2% annual decline correction, 

which is adequate on average, creates bias both at high 
and low mutation level and its predictions depend on the 
proportion of individuals with high and low mutation 
levels in the dataset. Interestingly, we detected a similar 
dichotomy in a large dataset of blood m.3243A>G levels 
in mother-child pairs, providing further support for a 
model in which the dynamics of m.3243A>G decline are 
dependent upon mutation level. Unbiased age correction 
is needed to circumvent the drawbacks of the 2% annual 
decline model; we used our observations to develop a 
new, empirical model of the decline of m.3243A>G in 
blood which better accounts for this dichotomy. We then 
used this unbiased age correction to explore the 
transmission of m.3243A>G from mother to child, 
detecting patterns consistent with positive germline 
selection of this variant, which may be a contributing 
factor in the comparatively high frequency of 
m.3243A>G compared to other pathogenic mtDNA point 
variations (Gorman et al., 2015). 

Dichotomous dynamics cannot be described by a single 
decline rate. Therefore, any model that does not account 
for this dichotomy will be biased. To reveal this, we 
tested a 2% annual decline model as a predictor of 
subsequent measurements of mutation level based on 
preceding measurements and the age difference in 
different subsets of the longitudinal dataset. Average 
error is positive in the subsets of individuals with high 
mutation levels and negative in low mutation level 
individuals, confirming that the 2% annual decline model 
is biased. We note however, consistent with previous 
reports (Otten et al., 2018; Wilson et al., 2016), that it 
appears unbiased overall; the average error of its 
predictions across the entire longitudinal dataset is very 
small and not significantly different from zero. This can 
be explained by the neutralizing effect of the two partial 
biases, which occurs when averaging across both the high 
and low mutation subsets of the data. Interestingly, this 
means that overall bias of the 2% decline model is not 
universal – it depends on the relative composition of the 
dataset, i.e., how many individuals are in the high and in 
the low mutation groups.  

Biphasic model – an unbiased approach to 
dichotomous dynamics of m.3243A>G.  

Adjustment of the blood levels of m.3243A>G in mother 
and child for the age difference using the 2% annual 
decline model has been shown to have a dramatic effect 
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on the estimates of germline selection of the m.3243A>G 
mutation as compared to unadjusted estimates 
(Rajasimha et al., 2008). We reasoned that this bias would 
significantly affect current estimates of selection as well. 
We therefore sought to modify the 2% model to eliminate 
this bias while keeping the elegant framework of the 2% 
model maximally unchanged. We chose to use a bi-phasic 
model to reflect the dichotomy of the m.3243A>G 
dynamics. In the interest of keeping the number of 
parameters in the model to a minimum, we made the 
simplest assumption that there are two subsets, i.e., the 
high and the low mutation level subsets, each with their 
specific exponential dynamics. It should, however, be 
noted that individual variability in decline rate still exists 
within these domains. We postulate that this could arise 
from differences in the threshold for biochemical 
expression of the variant allele between individuals, thus 
affecting negative selection against cells with high levels 
of the variant allele (see further discussion in the positive 
selection section). This theory is compatible with the high 
level of variability in disease burden and phenotypic 
spectrum that is seen in individuals carrying m.3243A>G 
(Chin et al., 2014; de Laat et al., 2012; Grady et al., 2018; 
Kaufmann et al., 2011; Mancuso et al., 2014; Nesbitt et 
al., 2013; Pickett et al., 2018). Additionally, our 
preliminary studies imply that that the variability of the 
decline rates between individuals may in part result from 
complex dynamics of the cell composition of whole 
blood, where different cell types may carry different 
mutational loads, according with a recent report (Walker 
et al., 2020). 

In the initial stages of this study, we attempted to use 
complex models with extra parameters to capture the 
variability of the data and were convinced that given a 
relatively small size and high variance of the dataset, such 
attempts resulted in overfitting. We have therefore chosen 
to limit analysis to the most basic model possible for a 
dichotomous data – the biphasic model.  

The development of this model revealed important 
features of the dynamics of the mutation in blood. 
Contrary to the conventional view that blood m.3243A>G 
levels universally decrease with age, in the blood of 
individuals with low mutation levels, m.3243A>G levels 
tend to stabilise and even increase in some cases. 
Conversely, unbiased rates in the high mutation level 
individuals are more aggressively negative than 
conventionally accepted decline rate of 2%. Thus, the 

perceived overall 2% decline rate of the standard model 
probably stems from de facto ‘averaging’ of the rates at 
high and low mutational levels, which has been possible 
to detect due to the recent availability of larger, 
longitudinal datasets.  

Analogy between the longitudinal and the 
mother/child datasets. 

The similarity that we see between the longitudinal and 
mother-child datasets is expected and thus is reassuring. 
Indeed, m.3243A>G levels in child and mother can be 
viewed as two sequential samplings of mtDNA mutation 
levels from the same germline. By 'sampling', we mean 
that the continuous germline gave rise to somatic tissue 
(blood cells in our case) in the mother and then in the 
child, each of which were used to infer mutation level of 
the germline. These two samplings, however, 
systematically differ in that in the child the mutation 
spends fewer years in the blood cells than in the mother. 
Similarly, in the longitudinal dataset, every pair of 
sequential measurements represent two samplings of the 
germline.  

Unbiased bi-phasic approach reveals positive 
selection in the germline. 

Germline selection of m.3243A>G can be estimated by 
comparing mutation levels in children and mothers. 
However, because of the systematic changes in the blood 
levels of m.3243A>G with age (Rajasimha et al., 2008), 
the relative levels in blood in mothers and children must 
be adjusted for the age difference. Previously, this has 
been achieved by applying the annual decline model of 
~2% per year (Wilson et al., 2016). We revisit the 
transmission dynamics of m.3243A>G using the bi-
phasic model developed in this study. Accordingly, we 
divided mother-child pairs into a series of high and low 
mutation level subsets and used the subset-specific 
unbiased rates as the best empirical means to correct for 
the mother-child age difference needed for estimation on 
intergenerational germline selection. Results of this 
analysis are shown in Figure 3C. We do note a variability 
in the estimates; obtaining more precise estimates of the 
magnitude of this apparent germline selection will require 
larger and more balanced datasets.  

The distribution of positive selection estimates shown in 
Figure 3C implies that positive selection is strongest and 
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most consistent in subsets which include cases of 
moderately low mutant fraction levels ( <20, <30). 
Currently it is difficult to precisely determine the extent 
of selection at lowest mutant fractions (i.e. when MF 
approaches zero). We note however, that our analysis 
provides no evidence that positive selection persists at 
lowest mutant fractions, rather it most likely decreases, 
converges to zero or even becomes negative. This 
conclusion is corroborated by the apparent shift of the 
main peak of the distribution to the zero position 
(compare distributions ‘<20’, ‘<15’ and ‘<10’ in 
Supplementary Figure 2). More data are needed to 
substantiate this preliminary conclusion.      

We also saw asymmetric outliers within the higher-level 
subsets; therefore, we cannot discount the possibility that 
some positive selection is also occurring at higher levels. 
As all of these outliers are so dramatic, it is tempting to 
speculate that excessive individual variability of decline 
rates may have genetic cause. Indeed, familial clustering 
was demonstrated in a previous study which showed a 
high heritability estimate for m.3243A>G level (h2=0.72, 
standard error=0.26, P=0.010) (Pickett et al., 2019). 
Moreover, another recent study has identified several 
nuclear genetic loci associated with non-pathogenic 
heteroplasmy (Nandakumar et al., 2021). Further study of 
the effects of nuclear genetics on the transmission of 
pathogenic mtDNA variants is warranted. 

What can be the mechanism behind positive selection? It 
is tempting to speculate that, for example, m.3243A>G 
may offer a positive advantage – potentially because less 
efficient translation of mtDNA-encoded proteins may 
cause local compensatory mtDNA replication or 
stimulate cell proliferation (Smith et al., 2020), both of 
which will result in positive germline selection.  At higher 
mutation levels, however, translation deficiency is 
expected to result in progressive respiration defect that is 
likely to eventually trigger oocyte attrition, or embryo 
demise, as has been demonstrated for other detrimental 
mtDNA mutations, e.g., (Fan et al., 2008; Freyer et al., 
2012). This effect would explain the trend towards 
negative selection at higher mutant fractions seen in 
Figure 3C.  

 

 

Bi-Phasic vs. 2% annual decline approach: the 
sources of the discrepancy. 

To put these findings in the context of previous studies, 
we performed additional analysis to explore the sources 
of differences between our estimates and those reported 
previously, which found no evidence of positive selection 
(Otten et al., 2018; Wilson et al., 2016). First, we directly 
compared our approach to the 2% annual decline model 
by applying this correction to exactly the same mother-
child dataset that we used for the bi-phasic estimates, to 
exclude the possibility that differences are caused by 
differences in the dataset. Reassuringly, in agreement 
with previous studies, the predicted overall germline 
selection when calculated over the entire mother-child 
dataset using the standard 2% decline rate is very low and 
not significantly different from zero. Most notably, unlike 
our biphasic approach, which tends to predict weak 
positive selection estimates in most subsets, the 2% 
annual decline approach clearly predicts strong negative 
selection in the low mutation level domain, and strong 
positive selection in the high mutation level domain, an 
effect that we believe is due to insufficient adjustment in 
the high m.3243A>G level domain and excessive 
adjustment in the low m.3243A>G level domain. 

The above observations reveal an important drawback of 
the standard model. Estimates based on the 2% annual 
decline model are highly sensitive to the composition of 
the mother-child dataset. Indeed, from Figure 3C (grey 
bars) one can deduce that the higher the proportion of low 
mutation level mother-child pairs included in the dataset, 
the lower the expected overall estimate of the germline 
selection using 2% adjustment. In fact, the near zero 
estimate of selection intensity in the current mother-child 
dataset is merely the result of the particular proportion of 
low and high mutation level mother/child pairs in this 
dataset. The biphasic model is poised to deliver much 
higher stability of the estimate with respect to the 
changing proportion of high and low mutation level 
patients.  

Comparison to other studies: positive and negative 
germline selection.  

Convincing positive germline selection of the 
m.3243A>G has not been reported previously but has 
been observed for other detrimental mtDNA variants. An 
apparently milder variant, m.8993T>G, may be under 
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positive germline selection throughout the mutant 
fraction range (Otten et al., 2018). Interestingly, data 
from Freyer et al. (2012) (Freyer et al., 2012) show that a 
specific highly detrimental mutation, the m.3875delC in 
the mouse mt-Tm gene, encoding tRNAMet, at an 
intermediate mutant fraction (45-60%) systematically 
increases its presence in offspring compared to the 
mother, implying positive selection of a detrimental 
mutation in the mouse germline which is reversed at 
higher (>60%) levels (see their Figure 2A and Figure 3). 
Surprisingly, Freyer et al. did not discuss their own data 
as supporting positive germline selection. Of note, no 
data are available for mutational levels below 45% for 
this mutation, so it is possible that selection decreases at 
lower mutant fraction as we observe for m.3243A>G 
(Figure 3C). In conclusion, it appears that detrimental 
mutations, at least in some cases, are under positive 
selection in the germline. It would be interesting to 
determine how general such a phenomenon is, using a 
broader set of detrimental mtDNA mutations.  

A few months after original version of  this paper was 
first published in BioRxiv (Fleischmann et al., 2021), 
another group has reported positive germline selection of 
the m.3243A>G (Zhang et al., 2021).They reported 
positive selection, but their conclusion was based on an 
incorrect analysis. Specifically, they showed that positive 
selection (presented as average heteroplasmy shift, HS) 
was highest at low mother mutation frequency values, 
gradually decreased with mutation frequency and 
eventually became negative at high frequencies. Our 
preliminary analysis indicates that discrepancy between 
our results (arching selection profile) and those of Zhang 
et al. (monotonous decrease of selection with mutation 
level) can be accounted for by the ‘regression to the 
mean’ bias (Galton, 1889), which adds strong spurious 
negative correlation between the shift of mutant fraction 
from mother to child and mother’s mutant fraction.  

 
Potential applications of the biphasic approach. 
 
From a practical point of view, this study will hopefully 
lead to models that better account for the dynamics of 
pathogenic mtDNA variation by including the effect of 
mutation level. The simple biphasic model proposed here 
may serve as a practical alternative to the 2% annual 
decline model in cases where, like in studies of germline 
selection, unbiased prediction and versatility of the model 
(applicability to datasets that are unbalanced with respect 

to cases with low and/or high mutational levels) is 
essential. This can be realized by applying one of the two 
rates: ~3% annual decline for cases with mutation levels 
above 20% and ~1% annual increase for cases with levels 
below 20%. Of note, in this study we used the mutation 
level at first measurement, or mutation level of the child 
(which is analogous to the first measurement). We have 
chosen this convention because the dynamics of the 
mutation converges with time (phase lines become denser 
with time), so, in general, prediction of the succeeding 
mutation level is more stable than prediction of the 
preceding mutation level. As of now, this bi-phasic model 
is not a finished working instrument that can be used to 
estimate at-birth m.3243A>G levels within a clinical 
prognostic setting. Rather, this research reveals that 
dynamics of m.3243A>G in blood is more complex than 
previously considered and highlights the need for more 
detailed, perhaps mechanistic, models, especially in the 
lower range of mutation levels. With more data available 
for models to build upon and test, our approach may be 
further optimized or replaced by a more detailed and 
precise model. Our current model, however, is 
appropriate to make conclusions about the aggregate 
behaviour of mutations, such as positive selection, with 
the data currently at hand. 
 
 
 

Materials and Methods 
 
Data sources: 
   
Longitudinal measurements of m.3243A>G levels in 
blood were obtained from Grady et al. (Grady et al., 
2018). This dataset is comprised of 96 individuals who 
were recruited into the Mitochondrial Disease Patient 
Cohort UK and had two or more measurements of 
m.3243A>G blood level taken between 2000 and 2017. 
The median time between first and last measurement was 
2.5 years (IQR = 4.35, range = 0.01 – 15.20), the median 
age at first measurement was 36.25 years (IQR = 20.58, 
range = 15.60 – 72.50) and at last measurement was 40.25 
years (IQR = 21.00, range = 19.80 – 78.80).  
 Mother-child data  
Measurements of m.3243A>G levels in mother-child 
pairs were obtained from Pickett et al. (Pickett et al., 
2019). This dataset contains 183 mother-child pairs (from 
113 different mothers), comprised of 67 pairs from 
the Mitochondrial Disease Patient Cohort UK (Nesbitt et 
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al., 2013) and 116 pairs obtained from a literature search 
and previously published by Wilson and colleagues 
(Wilson et al., 2016). To minimize ascertainment bias, 
pairs in which the child was the proband had previously 
been removed, as had one pair from the literature where 
the m.3243A>G variant was thought to have arisen de 
novo in the child (Ko et al., 2001). We identified an 
additional 30 pairs where the mother was the proband; to 
reduce bias these were also excluded, leaving a total of 
153 pairs (from 97 mothers) that were taken forward into 
the analysis. The mean age at m.3243A>G level 
assessment was 53.9 years (SD = 12.4, range = 23.0, 85.0) 
for the mothers and 27.8 years (SD = 12.2, range = 0.4, 
58.0) for the children. 

 
Construction of Binary Logistic Regressions 
 
The binary logistic regressions were performed on both 
the longitudinal and mother-child data sets. For each data 
set, the final mutation level was subtracted from the initial 
mutation level. Then, each pair of datapoints were 

assigned a binary value for their mutation level 
directional change. A “1” was assigned for increasing 
mutation levels and a “0” was assigned for decreasing 
mutation levels. Data point pairs that had no change were 
excluded from the analysis. A simple binary logistic 
regression was performed on each set of data using the 
initial mutation level values of each data point pair as the 
independent variable and the corresponding binary 
indicator as the dependent variable. Each regression was 
performed with a likelihood ratio test, goodness of fit test, 
and with 95% confidence intervals. Significance was 
recorded as p-values. For each binary regression for each 
data set, the predictive curve was plotted with the 
respective data points. The longitudinal data set was 
graphed individually (Figure 1B), and the longitudinal 
and mother-child data set was graphed together for 
comparative analyses (Figure 2B). Statistical analyses 
and graphing were performed in GraphPad Prism version 
9. 
 
Determination of the unbiased mutation decline rates 

The approach we used to calculate the unbiased mutation 
decline rates in the various subsets of the longitudinal 
dataset (Grady et al., 2018) is illustrated in Figure 4. Of 
note, we limited analysis to the first and the last 
measurement for each person, so that there were only two 
measurements for each person in the dataset, mf1 and mf2 
(‘mf’, for mutant fraction). For every individual (of 96 
individuals in the dataset) and thus every pair of data 
points (mf1, mf2), the mf2 was predicted based on mf1 
using an exponential model with variable parameter R, 
i.e., the fractional decline of mutational load per year (R 
is positive for an increase, and negative for decline) 
where DA is the age difference between the times of 
mutation level measurements. This is function (1) as 
described in the results section. R was varied between 
0.05 decrease to 0.05 increase per year (i.e., from -0.05 to 
0.05) as shown in Figure 4 in steps of 0.0000001 
(1,000,000 steps overall). Thus, we obtained 1,000,000 
values of mf2pred (R) for each R, for each individual (i.e., 
100x96 total). For each mf2pred (R), an error ratio (mf2pred 
(R)/mf2) and absolute error (sqrt[(mf2pred/mf2)]2) was 
calculated and then both error and absolute error were 
averaged among individuals within each of 8 subsets. We 
obtained 1,000,000x2x8 of the averaged data points and 
plotted them for each value of R in 8 graphs shown in 
Supplementary Figure S1 (one graph per subset). The 
minimum of the absolute error (corresponding to the best 

Fig. 4: Example of the calculation of an unbiased rate of 
decline for the two subsets: <15% (top) >=15% (bottom). See 
Materials and Methods for the procedure and Supplementary 
Fig. S1 for a complete set of curves. Red vertical lines indicate 
the unbiased rate.  
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fit rate) and the zero of the average non-absolute error 
(“unbiased rate”) were determined graphically by 
identifying the minima of the curve and the intercept of 
the x axis, respectively. Unbiased rates were then used for 
plotting the graphs in Figure 3B. The best fit rates were 
used to make sure that the unbiased model was close to 
the best fit model. 

Calculation of the enrichments/selection of 
m.3243A>G per generation in the germline 

The enrichments/selection per generation for a specific 
subset of the data S is determined as geometric average 
of ratios of age-corrected child mutation levels to those of 
their mothers. In practice, we calculated the average of 
logarithms of the ratios and then converted the average 
back from logarithm to real ratio/geometric mean. That 
is, we first determine the germline selection for each 
child-mother pair within each subset using Equation 2 – 

MFchild x (1+RS)DA /MFmother (2) 

where Rs is the estimated unbiased rate for the subset S to 
which the mother-child pair has been assigned (as 
determined by the value of MFchild) and both MFchild and 
MFmother are expressed as proportions between 0 and 1. 
DA is the age difference between mother and child.  

For example, for the 20% threshold, a child with a 
m.3243A>G mutation level of 40% would be assigned to 
the ‘>20%’ subset with an Rs of -0.029 (see Figure 3A). 
If their mother was 30 years older and had a m.3243A>G 
level of 10%, the germline selection estimate in that 
individual mother/child pair would be:   0.4 x 0.97130  / 
0.1 = 1.65  

We then calculated median log ratios across all mother-
child pairs in the given data subset and used two-tailed 
sign test to determine the p-value associated with this 
median of logarithms being different from zero (rejection 
of the null hypothesis of no  selection). Finally, the 
median log ratios for the various data subsets were 
converted into ‘median mutation level ratios’ by 
calculating exponent of the median of log ratios and 1 was 
subtracted from it to produce “median enrichment” (i.e., 
fractional increase, positive for enrichment, negative for 
depletion, analogous to the rate of decline used describe 
the dynamics of m.3243A>G in blood). Kernel density 
estimation was performed using on-line portal at 
http://www.wessa.net/rwasp_density.wasp with default 
parameters.  
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Supplementary Figure S1. Full set of graphs used to determine the unbiased decline rates. 
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Supplementary Figure S2.  

Images of the kernel histograms of the age-corrected shifts between mother and child. 
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