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Abstract

The A-to-G point mutation at position 3243 in the human
mitochondrial genome (m.3243A>G) is the most
common pathogenic mtDNA variant responsible for
disease in humans. It is widely accepted that m.3243A>G
levels decrease in blood with age, and an age correction
representing ~2% annual decline is often applied to
account for this change in mutation level. Here we report
that recent data indicate the dynamics of m.3243A>G are
more complex and depend on the mutation level in blood
in a bi-phasic way. Consequently, the traditional 2%
correction, which is adequate ‘on average’, creates
opposite predictive biases at high and low mutation
levels. Unbiased age correction is needed to circumvent
these drawbacks of the standard model. We propose to
eliminate both biases by using an approach where age
correction depends on mutation level in a biphasic way to
account for the dynamics of m.3243A>G in blood. The
utility of this approach was further tested in estimating
selection of m.3243A>G. The
approach permitted us to uncover patterns consistent with
the possibility of positive selection for m.3243A>G.

germline biphasic

Germline selection of m.3243A>G shows an ‘arching’
profile by which selection is positive at intermediate
mutant fractions and declines at high and low mutant
fractions. We conclude that use of this biphasic approach
will greatly improve the accuracy of modelling changes
in mtDNA mutation frequencies in the germline and in
somatic cells during aging.

Introduction

Pathogenic variants in the mitochondrial genome are
responsible for a wide range of diseases that affect
mitochondrial function (Gorman et al., 2016). The multi-
copy nature of mitochondrial DNA (mtDNA) means that
it is possible for more than one species of mtDNA to co-
exist within the same cell, termed heteroplasmy. By far
the most common heteroplasmic mtDNA pathogenic
variant is an A to G transition at position 3243
(m.3243A>G) within MT-TL1, which encodes
mitochondrial tRNA™UR) (Goto et al., 1990).Estimates
of m.3243A>G carrier frequency range from 140 to 250
people per 100,000 (Elliott et al., 2008; Manwaring et al.,
2007), although the point prevalence for adult disease is
much lower than this, at 3.5 per 100,000 (Gorman et al.,
2015), suggesting that many carriers are either
asymptomatic or have mild, undiagnosed symptoms.

Originally identified within a cohort of patients
presenting with a severe syndrome characterized by
mitochondrial encephalopathy, lactic acidosis and stroke-
like episodes (MELAS), m.3243A>G is associated with
extremely varied clinical presentations. Patients can
experience a variety of phenotypes including ataxia,
diabetes, deafness, ptosis, chronic progressive
ophthalmoplegia, cardiomyopathy, cognitive dysfunction
and severe psychiatric manifestations (de Laat et al.,
2012; Fayssoil et al., 2017; Koga et al., 2000; Mancuso et
al., 2014; Nesbitt et al., 2013; Pickett et al., 2018).
Disease burden can be partly explained by an individual’s
m.3243A>G mutation level, but this relationship is not
simple; other factors are likely to also play a role (Boggan
etal.,2019; Grady et al., 2018; Pickett et al., 2018). These
complexities make offering prognostic advice to patients
very difficult and, coupled with the mutation’s high
frequency, mean that m.3243A>G-related disease is one
of the biggest challenges in the mitochondrial disease
clinic.

Although levels of m.3243A>G are relatively stable in
post-mitotic tissues such as muscle, there is strong
evidence of negative selection against the G allele in
mitotic tissues, even in relatively asymptomatic patients;
this loss of m.3243A>G in mitotic tissues has been
studied in detail in blood (de Laat et al., 2012; Grady et
al., 2018; Langdahl et al., 2018; Mehrazin et al., 2009;
Pyle et al., 2007; Rajasimha et al., 2008; Sue et al., 1998).
Initial simulation studies suggested that this decline could
be exponential (Rajasimha et al., 2008), although more
recent studies using larger amounts of data point to a
more complex process (Grady et al., 2018; Veitia, 2018).
To study the dynamics of this mutation, we took
advantage of the large quantity of longitudinal data that
are available for m.3243A>G levels in blood and have
developed a new, empirical model that better describes
the dichotomous pattern that we observe.

The m.3243A>G variant is maternally inherited and,
similar to other heteroplasmic mtDNA mutations,
undergoes a genetic bottleneck in development leading to
offspring often with very different levels of m.3243A>G
than their mothers (Chinnery et al., 2000; Pickett et al.,
2019). Different mtDNA mutations segregate at different
rates, demonstrating that the dynamics of this bottleneck
are dependent on the mtDNA variant being transmitted
(Wilson et al., 2016). We postulated that studying this
bottleneck may help us understand why the m.3243A>G
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variant is so common in the population; using our new
model of the dynamics of blood heteroplasmy/mutation
level, we explored whether there is a transmission bias for
m.3243A>G between mother and child, i.e. whether
m.3243A>G is under germline selection.

Results
Longitudinal changes of m.3243A>G levels in blood
with age reveal a dichotomous pattern (Figure 1).

A large amount of data on the changes of the level of
m.3243A>G mutation in blood with the age of the
individual have been compiled in a recent report (Grady
etal.,2018). We have reproduced these data in Figure 1A.
Traditionally, the dynamics of m.3243A>G mutation in
the blood are considered to follow an exponential decay
with age of approximately 2% per year. The data in
Figure 1A, however, appear visually dichotomous, i.e., at
higher m.3243A>G levels we see more cases where the
mutation level decreases (red), whereas at lower levels
there is little evidence of decline and there are more cases
with an increase or that remain constant (blue). The
dichotomy can be further demonstrated by binary logistic
regression analysis (Figure 1B). Figure 1B shows that
individuals with higher m.3243A>G levels tend to, in
accordance with the conventional model, decrease their
levels with age, while contradictory to the convention,
individuals with low levels tend to increase or stabilize
their mutation level. This trend is significantly non-
random (the slope of regression curve is significantly
negative p<0.0001).

Mother-child m.3243A>G
dichotomous pattern

levels also show a

The dichotomous pattern of m.3243A>G dynamics in
blood is further supported by the analysis of a different
though similarly constructed dataset, i.e. the mother-child
dataset (Pickett et al., 2019), that represents inheritance
of m.3243A>G between mothers and their children. We
note that this dataset shows a similar dichotomous pattern
(Figure 2A) as the longitudinal dataset, which reflects the
dynamics in blood with age discussed above (Figure 1A).
Indeed, in the high child mutation level range
(approximately above 5%) the majority of mother/child
relationships are strongly descending in mutation
frequency. In contrast, in the low child mutation level
region (below 5%), the ascending child>mother pattern is

prevailing. In accordance with this visual appearance,
logistic regression analysis confirms, as with longitudinal
data in Figure 1B, a statistically significant increase of
child-mother pairs with increasing mutation levels (blue
segments) at lower child mutant fractions. We conclude
that in both the longitudinal and the mother/child datasets,
increase of m.3243 A>G mutation level prevails at the low
mutation levels and decrease prevails at the high mutation
levels. Thus, the rate and the direction of change of
m.3243A>G level in blood appear to depend on the
mutation level.
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Fig. 1. Analysis of longitudinal of m.3243A>G levels in
blood. (A) Each segment represents the change in
m.3243A>G level for a single individual for the follow-up
period. Red and blue lines represent cases of age-related
increase or decrease/stable m.3243A>G levels, respectively.
(B) Logistic regression of the data presented in A. Increasing
segments are represented as ‘ls’, and decreasing as ‘0s’.
Logistic regression curve has been constructed and
significance of the negativity of the curve estimated
(P<0.0001). (See Materials and Methods for details).

The standard 2% annual decline model is biased at
high and low mutational levels

The observed dichotomy of m.3243A>G (Figures 1 and
2) implies that, because the conventional 2% annual
decline model inherently applies to all mutation
frequency levels in the same way and thus cannot account
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for two opposite patterns, it must be making biased
predictions among individuals with low and/or high
levels of the m.3243A>G mutation. To test this
supposition, we split the longitudinal dataset into low-
and high-level subsets and evaluated the 2% annual
decline model for bias in each of the two subsets. We
noted, however, that while the analysis presented in
Figures 1 and 2 does demonstrate the existence of
dichotomy in mutation dynamics in blood, it does not
permit precise determination of the threshold separating
the two subsets with different mutation dynamics. To
address this, we use 4 different thresholds (10, 15, 20,
30%) which essentially cover the entire span of the data
to generate 8 subsets of the longitudinal dataset, 4 below
the each of 4 thresholds (‘low mutant level subsets’) and
4 above the thresholds (‘high mutant level subsets’). The
subset sizes are as follows: <10%, 18; <15%, 31; <20%,
39; <30%, 61; >10%, 78; >15%, 65; >20%, 57; > 30%,
35; all, 96).). To test our hypothesis that the standard 2%
annual decline (Rajasimha et al., 2008) model was unable
to correctly handle some parts of the dichotomous data,
we used the 2% model to predict mutant levels at the last
measurement given mutant levels at the first
between

measurement and the age difference

measurements. More specifically, we used the equation:
MF2,e=MF1 x (1+ R)** ()

where R is the rate of change on mutant fraction per year,
MFT1 is the actual mutation level (MF stands for Mutant
Fraction) at the first measurement, MF2,.q4 is the
predicted level at the last measurement, and AA is the
difference in Age between the two measurements. We
then calculated the error ratio MF2,../ MF2 (where MF2
is the actual level at the last measurement) for each
individual prediction and the geometric average of error
ratios for each given subset (see also Figure 3A caption).
Error ratios vary around 1, with 1 meaning ‘no error’. To
make the measure of the error more intuitive, we then
subtracted 1 from error ratios to obtain the ‘average
relative error’ of the prediction, which is a fair measure
of the bias of the model (positive or negative) in the given
subset. The result of this analysis is shown in Figure 3A.
As shown in forward predictions, the standard (2% annual
decline) model underestimates mutation frequency
(negative average relative prediction error) in the low
mutant domain (blue) and overestimates (positive
average relative prediction error) in the high fraction
domain (red). This implies that the m.3243A>G decline
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Fig. 2: Analysis of mother-child m.3243A>G levels in
blood. (A) Every segment connects the m.3243A>G level of
a child (left end of the segment) to the m.3243A>G level of
their mothers (right end). Descending segments are coded
red, ascending - blue. (B) Solid curve: Logistic regression
curve of the mother-child data presented in A, constructed as
in Fig 1B. Broken curve: longitudinal data logistic curve fr
om Fig 1B, overlaid for comparison. The grey shaded curve
represents the 95% confidence interval for the binary
regression at each point of the curve.

rate of 2% per year is too slow for the high-frequency
individuals, in whom mutations apparently decline on
average faster than 2%, and too fast for the low fraction
domain, where m.3243A>G level is more stable or
increases with age within individuals on average.

Biphasic models alleviate biases of the 2% annual
decline model.

To alleviate the biases of the standard 2% annual decline
model, we propose to use a biphasic model which uses
two annual decline rates, reflecting the dichotomous
pattern of mutation decline with age. To build a biphasic
model, the longitudinal dataset, which is used as
‘training’ data set, is divided into two subsets — below and
above a chosen ‘separation threshold’ of the mutant
fraction. For each of the two resulting subsets, an
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unbiased mutation decline rate is determined. This is the
rate which, when used in equation (1), results in zero
average error calculated over the subset (see materials
and methods for details). The rationale is that if this
model is unbiased in the training set, then it will most
likely be unbiased in predicting future mutation levels on
a blind dataset (like the mother/child dataset, where we
need to predict mutation levels in children at their
mother’s age).

This approach requires the specification of one free
parameter: a threshold level of mutation fraction to
separate the dataset into high and low mutation level
subsets. The two ‘unbiased’ rates of annual decline of
mutation level for each of the two subsets are then
determined unambiguously by the condition that the

model is unbiased. As far as the separating threshold is
concerned, we used the same thresholds and generated the
same eight subsets as those used for testing the
conventional 2% annual decline model described in the
previous section (Figure 3A and 3B). For each of the eight
subsets, we determined the ‘unbiased’ rate of decline.
Reassuringly, the ‘unbiased” model for each subset was
also close to the best fit model, meaning that the sum of
squared errors was close to a minimum (see
Supplementary Figure S1 for a full set of graphs).

Additionally, we showed that the biphasic model is
significantly more unbiased than the standard 2% model.
To prove this, we performed a simulation where the
longitudinal dataset was randomly partitioned into equal
sized training and testing sets multiple times (1000
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Fig 3: (A) The standard 2% annual decline model, is negatively
biased at low mutation levels and positively biased at high mutation
levels. Four high-mutation fraction (MF) and four low-MF subsets of the
longitudinal dataset were created by splitting the dataset into two subsets
at four arbitrary MF thresholds (10, 15, 20, and 30%; at first
measurement). The 2% annual decline model was used to predict the level
of m.3243A>G in each individual at last measurement based on the first
measurement and age difference. The average relative errors within each
subset were calculated and plotted as blue bars (low MF subsets) or red
bars (high MF subsets). The colors were chosen to emphasise that high
and low mutational level subsets preferentially consist of ascending and
descending segments of Figs 1A and 2A.

(B) Subset-specific ‘unbiased’ mutation decline rates that neutralize
biases depend on the mutational level of the subset. ‘Unbiased’ rates
were determined for each of 8 subsets described in (A), presented as the
rates of annual decline R (equation (1)) such that error of predictions of
the resulting “‘unbiased’ model averaged within the subset was zero. Blue
bars — low-MF subsets, red bars — high-MF subsets. Red dotted line
represents the conventional -0.02 (2% annual decline) rate. See Materials
and Methods and Figs 4 and S1.

(C) ‘Unbiased’ model reveals positive germline selection. To estimate
‘unbiased’ enrichment of m.3243A>G per generation due to germline
selection, mother—child dataset was split into 8 overlapping subsets in the
same way as longitudinal dataset in panel A. The unbiased rates derived
from the 8 subsets of the longitudinal dataset shown in panel B were used
to predict child’s mutational level at mother’s age and the ratio of
adjusted child’s to mother’s mutation level was considered estimate of
germline selection. Bars represent enrichments (i.e., geometric medians
of child/mother ratios within each of the 8 subsets minus 1). Blue bars
represent low-MF subsets, red bars — high-MF subsets. Black bar (‘All”)
represents median enrichment (i.e., lack thereof) estimated by the
standard 2% annual decline model within the entire mother-child dataset.
Grey bars represent germline selection predicted by 2% decline model in
each of the 8 subsets. Numbers above the bars are p-values (two tail sign
test). See Materials and Methods for details.
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iterations) and biphasic models were built for each
drawing of the training set, and then tested on the test set.
Then the performance of the biphasic models on the test
sets was compared to performance of the standard 2%
model. As expected, biphasic models performed
unbiasedly on average, while the 2% model was biased,
and the two distributions were significantly different
(p<0.00001). The biphasic model was more unbiased
than the 2% model in 70% of iterations. This statistic
must be considered in light of the fact that this simulation
was highly conservative, i.e., it was overwhelmed by
random variation resulting from the small sample size:
both training and test sets were much smaller than in real
experiment (where the training set is the entire dataset
from Grady et al. (2018), not half of it, and test set is the
entire mother/child dataset, which is about 3-fold larger
than the Grady et al. dataset).

As expected, the unbiased rates (Figure 3B) look like a
mirror image of the average relative error bars (Figure
3A). Note that the line of reflection in Figure 3B is not
the X-axis, but the red dotted line at -0.02, which is
because the 2% annual decline model is the reference in
this case. Interestingly, unbiased rates tend to be positive
(i.e., mutant fraction increases in the blood with age) in
individuals with a low mutant fraction, and negative in
individuals with a high mutant fraction. This distinction
remains relatively stable as the threshold separating the
high and the low mutant fraction subsets is varied from
10 to 30%. The fair consistency of the neutral decline
rates in subsets that lie predominately within the high
(>15%, >20%’,>30%") or within the low mutation level
domain (‘<10%’, ‘<I15%’, ‘<20%’) imply that the
unbiased decline rates are innate characteristics of each
domain. We therefore conclude that the high and the low
should be
differently/separately. This is particularly true as the
unbiased decline rates in the two domains have opposite

mutation level domains analysed

signs, which are likely to compensate each other and
obviate the details of the dynamics of m.3243A>G if they
are (incorrectly) treated jointly.

Estimating germline selection using the bi-phasic
model.

Germline selection of mtDNA pertains to the bias in the
transmission of a mtDNA variant to the next generation,
so ideally germline selection would simply be the ratio of
mutation levels in the child vs mother. In reality, the child

mother ratio is affected by random process of segregation
of the two genotypes due to the intergenerational mtDNA
bottleneck. As a result, selection can reliably estimated
only by averaging the child/mother ratios among a
substantial number of mother/child pairs. Geometric
averaging which we use here is a natural way of
averaging ratios. Furthermore, the child/mother ratio is
inevitably based on m.3243A>G levels measured in a
somatic tissue, most often, whole blood. Because
m.3243A>G levels in blood systematically decrease with
age, in the case of blood samples the child/mother ratio
needs to be corrected for the age difference to yield an
unbiased estimate of germline selection. We therefore
expected that the bias of the 2% model that we described
above might have affected previous estimates of germline
selection.

To test this expectation and to obtain corrected estimates,
we split the mother-child dataset 4-ways into eight
subsets, mirroring our methodology for the longitudinal
dataset. We then used, for each of the subsets, the specific
unbiased decline rates devised from the longitudinal data
(Figure 3B), to factor out the mother-child age differences
within the corresponding subsets of the mother-child
dataset. Children’s mutational levels were projected to
mothers’ age using the ‘unbiased’ rate of m.3243A>G
decline and divided by the mothers’ mutation levels. The
details of the calculations for these estimates are
presented in Materials and Methods. The estimated
germline enrichment is positive at intermediate low
mutant frequencies (<15%, <20%, <30% but not in the
lowest subset <10% (Figure 3C). Notably, at higher
mutant fractions positive selection decreases and then
becomes negative. This suggests that m.3243A>G
selection in the germline follows an ‘arched’ curve.

We then compared our results to the standard model: we
calculated the expected germline selection for each of the
subsets, and for the entire mother-child dataset, under
assumption of the uniform decline rate of 2% per year.
For the entire dataset, this produces a germline selection
estimate which is close to zero (Figure 3C; black bar
“All”). The subset-based analysis (Figure 3C; grey bars),
unlike our bi-phasic approach which tends to predict
weak positive selection estimates in most subsets, clearly
predicts strong negative selection in the low mutation
level domain and strong positive selection in the high
mutation level domain. The explanation for this
paradoxical behaviour of the standard approach is as
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follows: when a flat -2% rate is being used for age
adjustment of the low mutation level subsets the mother-
child pairs are being adjusted with a very incorrect
mutation decline rate (2%/year, i.e., decrease instead of
the unbiased 2%/year increase as in our calculations).
This excessively negative rate results in excessive
negative (instead of the needed positive) adjustment of
the child’s mutation level projection to the mother’s age,
which results in a very negative germline selection
estimate. In contrast, in the high mutant fraction subsets,
the use of decline rate of 2%/year is not sufficient to
compensate for the even more rapid, and real, decline in
these subsets. By our estimates, decline rates in high
mutant subsets are about 3%/year, (average of the red
bars in Figure 3C). Thus, insufficient negative adjustment
leaves child’s levels too high, which results in an
overestimate of positive germline selection.

Although our estimates of selection within the high
m.3243A>G level subsets of the mother-child data are
negative (the median-based estimate), the distributions
are in fact skewed. While a majority of the data appear to
show low levels of negative germline selection, there is
also a long right-hand tail of what appears as positive
selection (Supplementary Figure 2). The presence of
these asymmetrically positioned outliers suggests that we
cannot rule out the possibility of some positive selection
taking place in these high-level subsets, potentially taking
place in a special subset of individuals, which can be
dependent, for example, on their nuclear genetic
background.

Discussion
Dynamics of m.3243A>G in blood are dichotomous.

Negative selection of the m.3243 A>G pathogenic variant
in human blood is well established; previous approaches
to model this decline with age have pointed towards an
exponential or sigmoidal process but the dynamics of
m.3243A>G are more complex and these models do not
fully-explain the data (Grady et al., 2018; Rajasimha et
al., 2008; Veitia, 2018). Using a large quantity of recently
compiled longitudinal data (Grady et al., 2018), we report
that the dynamics of m.3243A>G in blood are
dichotomous; levels predominantly decline in individuals
with high mutation levels and are predominantly stable or
even slightly increasing at low mutation levels.
Therefore, the standard 2% annual decline correction,

which is adequate on average, creates bias both at high
and low mutation level and its predictions depend on the
proportion of individuals with high and low mutation
levels in the dataset. Interestingly, we detected a similar
dichotomy in a large dataset of blood m.3243A>G levels
in mother-child pairs, providing further support for a
model in which the dynamics of m.3243A>G decline are
dependent upon mutation level. Unbiased age correction
is needed to circumvent the drawbacks of the 2% annual
decline model; we used our observations to develop a
new, empirical model of the decline of m.3243A>G in
blood which better accounts for this dichotomy. We then
used this unbiased age correction to explore the
transmission of m.3243A>G from mother to child,
detecting patterns consistent with positive germline
selection of this variant, which may be a contributing
factor in the comparatively high frequency of
m.3243A>G compared to other pathogenic mtDNA point
variations (Gorman et al., 2015).

Dichotomous dynamics cannot be described by a single
decline rate. Therefore, any model that does not account
for this dichotomy will be biased. To reveal this, we
tested a 2% annual decline model as a predictor of
subsequent measurements of mutation level based on
preceding measurements and the age difference in
different subsets of the longitudinal dataset. Average
error is positive in the subsets of individuals with high
mutation levels and negative in low mutation level
individuals, confirming that the 2% annual decline model
is biased. We note however, consistent with previous
reports (Otten et al., 2018; Wilson et al., 2016), that it
appears unbiased overall; the average error of its
predictions across the entire longitudinal dataset is very
small and not significantly different from zero. This can
be explained by the neutralizing effect of the two partial
biases, which occurs when averaging across both the high
and low mutation subsets of the data. Interestingly, this
means that overall bias of the 2% decline model is not
universal — it depends on the relative composition of the
dataset, i.e., how many individuals are in the high and in
the low mutation groups.

Biphasic model — an unbiased approach to
dichotomous dynamics of m.3243A>G.

Adjustment of the blood levels of m.3243A>G in mother
and child for the age difference using the 2% annual
decline model has been shown to have a dramatic effect
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on the estimates of germline selection of the m.3243A>G
mutation as compared to unadjusted estimates
(Rajasimha et al., 2008). We reasoned that this bias would
significantly affect current estimates of selection as well.
We therefore sought to modify the 2% model to eliminate
this bias while keeping the elegant framework of the 2%
model maximally unchanged. We chose to use a bi-phasic
model to reflect the dichotomy of the m.3243A>G
dynamics. In the interest of keeping the number of
parameters in the model to a minimum, we made the
simplest assumption that there are two subsets, i.e., the
high and the low mutation level subsets, each with their
specific exponential dynamics. It should, however, be
noted that individual variability in decline rate still exists
within these domains. We postulate that this could arise
from differences in the threshold for biochemical
expression of the variant allele between individuals, thus
affecting negative selection against cells with high levels
of the variant allele (see further discussion in the positive
selection section). This theory is compatible with the high
level of variability in disease burden and phenotypic
spectrum that is seen in individuals carrying m.3243A>G
(Chin et al., 2014; de Laat et al., 2012; Grady et al., 2018;
Kaufmann et al., 2011; Mancuso et al., 2014; Nesbitt et
al., 2013; Pickett et al., 2018). Additionally, our
preliminary studies imply that that the variability of the
decline rates between individuals may in part result from
complex dynamics of the cell composition of whole
blood, where different cell types may carry different
mutational loads, according with a recent report (Walker
et al., 2020).

In the initial stages of this study, we attempted to use
complex models with extra parameters to capture the
variability of the data and were convinced that given a
relatively small size and high variance of the dataset, such
attempts resulted in overfitting. We have therefore chosen
to limit analysis to the most basic model possible for a
dichotomous data — the biphasic model.

The development of this model revealed important
features of the dynamics of the mutation in blood.
Contrary to the conventional view that blood m.3243A>G
levels universally decrease with age, in the blood of
individuals with low mutation levels, m.3243A>G levels
tend to stabilise and even increase in some cases.
Conversely, unbiased rates in the high mutation level
individuals are more aggressively negative than

conventionally accepted decline rate of 2%. Thus, the

perceived overall 2% decline rate of the standard model
probably stems from de facto ‘averaging’ of the rates at
high and low mutational levels, which has been possible
to detect due to the recent availability of larger,
longitudinal datasets.

Analogy between the
mother/child datasets.

longitudinal and the

The similarity that we see between the longitudinal and
mother-child datasets is expected and thus is reassuring.
Indeed, m.3243A>G levels in child and mother can be
viewed as two sequential samplings of mtDNA mutation
levels from the same germline. By 'sampling', we mean
that the continuous germline gave rise to somatic tissue
(blood cells in our case) in the mother and then in the
child, each of which were used to infer mutation level of
the germline. These two samplings, however,
systematically differ in that in the child the mutation
spends fewer years in the blood cells than in the mother.
Similarly, in the longitudinal dataset, every pair of
sequential measurements represent two samplings of the
germline.

Unbiased bi-phasic approach reveals
selection in the germline.

positive

Germline selection of m.3243A>G can be estimated by
comparing mutation levels in children and mothers.
However, because of the systematic changes in the blood
levels of m.3243A>G with age (Rajasimha et al., 2008),
the relative levels in blood in mothers and children must
be adjusted for the age difference. Previously, this has
been achieved by applying the annual decline model of
~2% per year (Wilson et al., 2016). We revisit the
transmission dynamics of m.3243A>G using the bi-
phasic model developed in this study. Accordingly, we
divided mother-child pairs into a series of high and low
mutation level subsets and used the subset-specific
unbiased rates as the best empirical means to correct for
the mother-child age difference needed for estimation on
intergenerational germline selection. Results of this
analysis are shown in Figure 3C. We do note a variability
in the estimates; obtaining more precise estimates of the
magnitude of this apparent germline selection will require
larger and more balanced datasets.

The distribution of positive selection estimates shown in
Figure 3C implies that positive selection is strongest and
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most consistent in subsets which include cases of
moderately low mutant fraction levels ( <20, <30).
Currently it is difficult to precisely determine the extent
of selection at lowest mutant fractions (i.e. when MF
approaches zero). We note however, that our analysis
provides no evidence that positive selection persists at
lowest mutant fractions, rather it most likely decreases,
converges to zero or even becomes negative. This
conclusion is corroborated by the apparent shift of the
main peak of the distribution to the zero position
‘<20°, ‘<15’ and ‘<10’ in
Supplementary Figure 2). More data are needed to
substantiate this preliminary conclusion.

(compare distributions

We also saw asymmetric outliers within the higher-level
subsets; therefore, we cannot discount the possibility that
some positive selection is also occurring at higher levels.
As all of these outliers are so dramatic, it is tempting to
speculate that excessive individual variability of decline
rates may have genetic cause. Indeed, familial clustering
was demonstrated in a previous study which showed a
high heritability estimate for m.3243A>G level (h2=0.72,
standard error=0.26, P=0.010) (Pickett et al., 2019).
Moreover, another recent study has identified several
nuclear genetic loci associated with non-pathogenic
heteroplasmy (Nandakumar et al., 2021). Further study of
the effects of nuclear genetics on the transmission of
pathogenic mtDNA variants is warranted.

What can be the mechanism behind positive selection? It
is tempting to speculate that, for example, m.3243A>G
may offer a positive advantage — potentially because less
efficient translation of mtDNA-encoded proteins may
cause local compensatory mtDNA replication or
stimulate cell proliferation (Smith et al., 2020), both of
which will result in positive germline selection. At higher
mutation levels, however, translation deficiency is
expected to result in progressive respiration defect that is
likely to eventually trigger oocyte attrition, or embryo
demise, as has been demonstrated for other detrimental
mtDNA mutations, e.g., (Fan et al., 2008; Freyer et al.,
2012). This effect would explain the trend towards
negative selection at higher mutant fractions seen in
Figure 3C.

Bi-Phasic vs. 2% annual decline approach: the
sources of the discrepancy.

To put these findings in the context of previous studies,
we performed additional analysis to explore the sources
of differences between our estimates and those reported
previously, which found no evidence of positive selection
(Otten et al., 2018; Wilson et al., 2016). First, we directly
compared our approach to the 2% annual decline model
by applying this correction to exactly the same mother-
child dataset that we used for the bi-phasic estimates, to
exclude the possibility that differences are caused by
differences in the dataset. Reassuringly, in agreement
with previous studies, the predicted overall germline
selection when calculated over the entire mother-child
dataset using the standard 2% decline rate is very low and
not significantly different from zero. Most notably, unlike
our biphasic approach, which tends to predict weak
positive selection estimates in most subsets, the 2%
annual decline approach clearly predicts strong negative
selection in the low mutation level domain, and strong
positive selection in the high mutation level domain, an
effect that we believe is due to insufficient adjustment in
the high m.3243A>G level domain and excessive
adjustment in the low m.3243A>G level domain.

The above observations reveal an important drawback of
the standard model. Estimates based on the 2% annual
decline model are highly sensitive to the composition of
the mother-child dataset. Indeed, from Figure 3C (grey
bars) one can deduce that the higher the proportion of low
mutation level mother-child pairs included in the dataset,
the lower the expected overall estimate of the germline
selection using 2% adjustment. In fact, the near zero
estimate of selection intensity in the current mother-child
dataset is merely the result of the particular proportion of
low and high mutation level mother/child pairs in this
dataset. The biphasic model is poised to deliver much
higher stability of the estimate with respect to the
changing proportion of high and low mutation level
patients.

Comparison to other studies: positive and negative
germline selection.

Convincing positive germline selection of the
m.3243A>G has not been reported previously but has
been observed for other detrimental mtDNA variants. An

apparently milder variant, m.8993T>G, may be under
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positive germline selection throughout the mutant
fraction range (Otten et al., 2018). Interestingly, data
from Freyer et al. (2012) (Freyer et al., 2012) show that a
specific highly detrimental mutation, the m.3875delC in
the mouse mt-Tm gene, encoding tRNAM®, at an
intermediate mutant fraction (45-60%) systematically
increases its presence in offspring compared to the
mother, implying positive selection of a detrimental
mutation in the mouse germline which is reversed at
higher (>60%) levels (see their Figure 2A and Figure 3).
Surprisingly, Freyer et al. did not discuss their own data
as supporting positive germline selection. Of note, no
data are available for mutational levels below 45% for
this mutation, so it is possible that selection decreases at
lower mutant fraction as we observe for m.3243A>G
(Figure 3C). In conclusion, it appears that detrimental
mutations, at least in some cases, are under positive
selection in the germline. It would be interesting to
determine how general such a phenomenon is, using a
broader set of detrimental mtDNA mutations.

A few months after original version of this paper was
first published in BioRxiv (Fleischmann et al., 2021),
another group has reported positive germline selection of
the m.3243A>G (Zhang et al., 2021).They reported
positive selection, but their conclusion was based on an
incorrect analysis. Specifically, they showed that positive
selection (presented as average heteroplasmy shift, HS)
was highest at low mother mutation frequency values,
gradually decreased with mutation frequency and
eventually became negative at high frequencies. Our
preliminary analysis indicates that discrepancy between
our results (arching selection profile) and those of Zhang
et al. (monotonous decrease of selection with mutation
level) can be accounted for by the ‘regression to the
mean’ bias (Galton, 1889), which adds strong spurious
negative correlation between the shift of mutant fraction
from mother to child and mother’s mutant fraction.

Potential applications of the biphasic approach.

From a practical point of view, this study will hopefully
lead to models that better account for the dynamics of
pathogenic mtDNA variation by including the effect of
mutation level. The simple biphasic model proposed here
may serve as a practical alternative to the 2% annual
decline model in cases where, like in studies of germline
selection, unbiased prediction and versatility of the model
(applicability to datasets that are unbalanced with respect

to cases with low and/or high mutational levels) is
essential. This can be realized by applying one of the two
rates: ~3% annual decline for cases with mutation levels
above 20% and ~1% annual increase for cases with levels
below 20%. Of note, in this study we used the mutation
level at first measurement, or mutation level of the child
(which is analogous to the first measurement). We have
chosen this convention because the dynamics of the
mutation converges with time (phase lines become denser
with time), so, in general, prediction of the succeeding
mutation level is more stable than prediction of the
preceding mutation level. As of now, this bi-phasic model
is not a finished working instrument that can be used to
estimate at-birth m.3243A>G levels within a clinical
prognostic setting. Rather, this research reveals that
dynamics of m.3243A>G in blood is more complex than
previously considered and highlights the need for more
detailed, perhaps mechanistic, models, especially in the
lower range of mutation levels. With more data available
for models to build upon and test, our approach may be
further optimized or replaced by a more detailed and
precise model. Our current model, however, is
appropriate to make conclusions about the aggregate
behaviour of mutations, such as positive selection, with
the data currently at hand.

Materials and Methods
Data sources:

Longitudinal measurements of m.3243A>G levels in
blood were obtained from Grady et al. (Grady et al.,
2018). This dataset is comprised of 96 individuals who
were recruited into the Mitochondrial Disease Patient
Cohort UK and had two or more measurements of
m.3243A>G blood level taken between 2000 and 2017.
The median time between first and last measurement was
2.5 years (IQR =4.35, range = 0.01 — 15.20), the median
age at first measurement was 36.25 years (IQR = 20.58,
range = 15.60 —72.50) and at last measurement was 40.25
years (IQR = 21.00, range = 19.80 — 78.80).
Mother-child data

Measurements of m.3243A>G levels in mother-child
pairs were obtained from Pickett et al. (Pickett et al.,
2019). This dataset contains 183 mother-child pairs (from
113 different mothers), comprised of 67 pairs from
the Mitochondrial Disease Patient Cohort UK (Nesbitt et
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al., 2013) and 116 pairs obtained from a literature search
and previously published by Wilson and colleagues
(Wilson et al., 2016). To minimize ascertainment bias,
pairs in which the child was the proband had previously
been removed, as had one pair from the literature where
the m.3243A>G variant was thought to have arisen de
novo in the child (Ko et al., 2001). We identified an
additional 30 pairs where the mother was the proband; to
reduce bias these were also excluded, leaving a total of
153 pairs (from 97 mothers) that were taken forward into
the analysis. The mean age at m.3243A>G level
assessment was 53.9 years (SD = 12.4, range = 23.0, 85.0)
for the mothers and 27.8 years (SD = 12.2, range = 0.4,
58.0) for the children.
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Fig. 4: Example of the calculation of an unbiased rate of
decline for the two subsets: <15% (top) >=15% (bottom). See
Materials and Methods for the procedure and Supplementary
Fig. S1 for a complete set of curves. Red vertical lines indicate
the unbiased rate.

Construction of Binary Logistic Regressions

The binary logistic regressions were performed on both
the longitudinal and mother-child data sets. For each data
set, the final mutation level was subtracted from the initial
mutation level. Then, each pair of datapoints were

assigned a binary value for their mutation level
directional change. A “1” was assigned for increasing
mutation levels and a “0” was assigned for decreasing
mutation levels. Data point pairs that had no change were
excluded from the analysis. A simple binary logistic
regression was performed on each set of data using the
initial mutation level values of each data point pair as the
independent variable and the corresponding binary
indicator as the dependent variable. Each regression was
performed with a likelihood ratio test, goodness of fit test,
and with 95% confidence intervals. Significance was
recorded as p-values. For each binary regression for each
data set, the predictive curve was plotted with the
respective data points. The longitudinal data set was
graphed individually (Figure 1B), and the longitudinal
and mother-child data set was graphed together for
comparative analyses (Figure 2B). Statistical analyses
and graphing were performed in GraphPad Prism version
0.

Determination of the unbiased mutation decline rates

The approach we used to calculate the unbiased mutation
decline rates in the various subsets of the longitudinal
dataset (Grady et al., 2018) is illustrated in Figure 4. Of
note, we limited analysis to the first and the last
measurement for each person, so that there were only two
measurements for each person in the dataset, mf1 and mf2
(‘mf’, for mutant fraction). For every individual (of 96
individuals in the dataset) and thus every pair of data
points (mfl, mf2), the mf2 was predicted based on mfl
using an exponential model with variable parameter R,
i.e., the fractional decline of mutational load per year (R
is positive for an increase, and negative for decline)
where AA is the age difference between the times of
mutation level measurements. This is function (1) as
described in the results section. R was varied between
0.05 decrease to 0.05 increase per year (i.e., from -0.05 to
0.05) as shown in Figure 4 in steps of 0.0000001
(1,000,000 steps overall). Thus, we obtained 1,000,000
values of mf2,.q (R) for each R, for each individual (i.e.,
100x96 total). For each mf2.q (R), an error ratio (mf2req
(R)/mf2) and absolute error (sqrt[(mf2pred/mf2)]*) was
calculated and then both error and absolute error were
averaged among individuals within each of 8 subsets. We
obtained 1,000,000x2x8 of the averaged data points and
plotted them for each value of R in 8 graphs shown in
Supplementary Figure S1 (one graph per subset). The
minimum of the absolute error (corresponding to the best
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fit rate) and the zero of the average non-absolute error
(“unbiased rate”) were determined graphically by
identifying the minima of the curve and the intercept of
the x axis, respectively. Unbiased rates were then used for
plotting the graphs in Figure 3B. The best fit rates were
used to make sure that the unbiased model was close to
the best fit model.

Calculation of the enrichments/selection of
m.3243A>G per generation in the germline

The enrichments/selection per generation for a specific
subset of the data S is determined as geometric average
of ratios of age-corrected child mutation levels to those of
their mothers. In practice, we calculated the average of
logarithms of the ratios and then converted the average
back from logarithm to real ratio/geometric mean. That
is, we first determine the germline selection for each
child-mother pair within each subset using Equation 2 —

MFhila X (14R$)** /MF mother 2)

where R, is the estimated unbiased rate for the subset S to
which the mother-child pair has been assigned (as
determined by the value of MFcpniiq) and both MF g and
MFmomer are expressed as proportions between 0 and 1.
AA is the age difference between mother and child.
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Supplementary Figure S1. Full set of graphs used to determine the unbiased decline rates.
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Supplementary Figure S2.

Images of the kernel histograms of the age-corrected shifts between mother and child.
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