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ABSTRACT2

Introduction3
Increasingly, logistic regression methods for genetic association studies of binary phenotypes4
must be able to accommodate data sparsity, which arises from unbalanced case-control ratios5
and/or rare genetic variants. Sparseness leads to maximum likelihood estimators (MLEs) of6
log-OR parameters that are biased away from their null value of zero and tests with inflated type7
1 errors. Different penalized-likelihood methods have been developed to mitigate sparse-data8
bias. We study penalized logistic regression using a class of log-F priors indexed by a shrinkage9
parameter m to shrink the biased MLE towards zero.10

Methods11
We propose a two-step approach to the analysis of a genetic association study: first, a set of12
variants that show evidence of association with the trait is used to estimate m; and second, the13
estimated m is used for log-F -penalized logistic regression analyses of all variants using data14
augmentation with standard software. Our estimate of m is the maximizer of a marginal likelihood15
obtained by integrating the latent log-ORs out of the joint distribution of the parameters and16
observed data. We consider two approximate approaches to maximizing the marginal likelihood:17
(i) a Monte Carlo EM algorithm (MCEM) and (ii) a Laplace approximation (LA) to each integral,18
followed by derivative-free optimization of the approximation.19

Results20
We evaluate the statistical properties of our proposed two-step method and compared its21
performance to other shrinkage methods by a simulation study. Our simulation studies suggest22
that the proposed log-F -penalized approach has lower bias and mean squared error than other23
methods considered. We also illustrate the approach on data from a study of genetic associations24
with “super senior” cases and middle aged controls.25

Discussion/Conclusion26
We have proposed a method for single rare variant analysis with binary phenotypes by logistic27
regression penalized by log-F priors. Our method has the advantage of being easily extended28
to correct for confounding due to population structure and genetic relatedness through a data29
augmentation approach.30

1 INTRODUCTION
Standard likelihood-based inference of the association between a binary trait and genetic markers is31
susceptible to sparse data bias [1] when the case-control ratio is unbalanced and/or the genetic variant is32
rare. In particular, when data are sparse, hypothesis tests based on asymptotic distributions have inflated33
type I error [2] and the maximum likelihood estimator of odds-ratios is biased away from zero [3].34

The relevance of sparse data bias to genetic association analysis is highlighted by recent work on methods35
for genome-wide, phenome-wide association studies (PheWAS) of large biobanks. Despite the potential of36
multivariate methods that jointly analyze phenotypes (e.g., [4]), approaches for PheWAS of biobank-scale37
data typically reduce the problem to inferences of association between single nucleotide variants (SNVs)38
and traits, adjusted for population structure and relatedness among subjects via a linear mixed model39
(LMM) [5, 2] or whole genome regression (WGR) [6]. For valid testing of associations between rare40
binary phenotypes and/or SNVs, SAIGE [2], EPACTS [7] and REGENIE [6] implement an efficient41
saddle-point approximation (SPA) to the distribution of the score statistic that yields correct p-values.42
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Figure 1. Comparison of log-F , standard normal and Cauchy distributions. The log-F (m,m) density
is symmetrically bell-shaped with a single peak at zero, and its variance decreases as increasing m. As
m→∞, the distribution tends toward a point mass at zero.

EPACTS and REGENIE also offer testing and effect estimation based on Firth logistic regression [3, 8],43
a maximum-penalized likelihood method that uses the Jeffreys prior [9] as the penalty. In addition to44
valid tests, the Firth logistic regression estimator of the odds-ratio is first-order unbiased. Reliable effect45
estimates are important for designing replication studies and polygenic risk scores, and for fine-mapping46
[10, section 2.3].47

A variety of alternative penalties have been proposed for logistic regression, offering more or less shrinkage48
than the Jeffreys prior [11]. Greenland and Mansournia developed penalized logistic regression based on a49
class of log-F priors indexed by a shrinkage parameter m [12]. In our context, log-F (m,m) penalization50
amounts to assuming that the log-OR parameter β for the SNV of interest has a log-F (m,m) distribution51
with density52

f(β|m) =
1

B(m2 ,
m
2 )

exp(m2 β)

(1 + exp(β))m
, (1)

where B(·, ·) is the beta function (see Figure 1 for plots of log-F (1, 1) and log-F (10, 10) density curves).53
In the log-F penalization approach, maximizing the posterior density is equivalent to maximizing a54
penalized likelihood obtained by multiplying the logistic regression likelihood by the log-F (m,m) prior.55
The explanatory variables of the logistic regression may include other covariates such as age, sex, genetic56
principal components (PCs) or the predicted log-odds of being a case from a WGR. In general, we only57
penalize the SNV of interest but do not penalize other confounding covariates or the intercept, as suggested58
by Greenland and Mansournia [12].59

Comparisons between log-F-penalized and Firth logistic regression are not straightforward because the60
log-F approach penalizes selectively, while the Jeffreys prior used in Firth logistic regression is a function61
of the Fisher information matrix for all coefficients, including the intercept. However, some insight can62
be gained by comparing approaches for matched pairs data and a binary exposure. For matched pairs, the63
standard analysis is conditional logistic regression, which eliminates intercept terms from the likelihood.64
One can show that for a binary exposure Firth-penalized conditional logistic regression is equivalent65
to imposing a log-F (1, 1) prior, which can be implemented by so-called Haldane correction [12]. For66
Haldane correction we add 1/2 to each of the four cells in the 2 × 2 table of case/control × exposure67
status and perform a standard analysis of the augmented dataset. More generally, log-F (m,m) penalized68

3

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2021.02.12.430986doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430986
http://creativecommons.org/licenses/by-nc/4.0/


Yu et al.

analysis of matched pairs data is equivalent to analysis of the 2× 2 table with each cell augmented by m/269
pseudo-individuals.70

Limited simulation studies have shown that, for fixed m, log-F (m,m) penalized methods outperform other71
approaches for case-control data [11]. Compared to Firth’s method, the log-F approach is more flexible,72
since we can change the amount of shrinkage by changing the value of m, and greater shrinkage may73
reduce MSE [12]. However, there is little guidance on how best to select the value of m for a particular74
phenotype. As a shrinkage parameter, m controls the bias-variance trade-off, with the variance of the75
log-OR estimator decreasing and the bias increasing as m increases [12]. We follow the suggestion by76
Greenland and Mansourinia of using an empirical Bayes method to estimate m [12].77

Our interest is in fitting single-SNV logistic regressions over a genomic region, or over the entire genome.78
A motivating example is the Super Seniors study [13] that compared healthy ”case” subjects aged 85 and79
older across Canada who had never been diagnosed with cancer, dementia, diabetes, cardiovascular disease80
or major lung disease to population-based middle-aged ”controls” who were not selected based on health81
status. The genetic data for this study are described in detail in Section 4. After quality control, data on82
2,678,703 autosomal SNVs was available for 427 controls and 617 cases. A preliminary genome-wide scan83
at a relatively liberal significance threshold of 5× 10−5 found 57 SNVs associated with case-control status.84

As in the Super Seniors data, the vast majority of SNVs have little or no effect, and a relatively small85
set have non-zero effects. The prior used for penalization is the distribution of log-ORs for SNVs with86
non-zero effects. We therefore propose to select K SNVs that show some evidence of having non-zero87
effects in a preliminary scan, e.g., the K = 57 SNVs from the preliminary scan of the Super Seniors data,88
and use these to estimate m. The intent is to learn about the distribution of non-zero log-ORs adaptively89
from the data [14].90

The main goal of this paper is to employ log-F penalized logistic regression for analyzing genetic variant91
associations in a two-step approach. First, we estimate the shrinkage parameter m based on a set of92
variants that show evidence of having non-zero effect in a preliminary scan. Second, we perform penalized93
logistic regression for each variant in the study using log-F (m,m) penalization with m estimated from94
step one. For a given m, the log-F penalized likelihood method can be conveniently implemented by95
fitting a standard logistic regression to an augmented dataset [12]. In addition to estimates of SNV effects,96
confidence intervals and likelihood ratio tests follow from the penalized likelihood [8]. Corrections for97
multiple testing in GWAS/PheWAS applications would involve standard GWAS p-value thresholds, such98
as 5× 10−8.99

2 MODELS AND METHODS
We start by reviewing the penalized likelihood for cohort data, followed by the likelihood for case-100
control data. We then introduce the penalized likelihood and derive a marginal likelihood for the shrinkage101
parameterm based on data from a single SNV. Taking products of marginal likelihoods fromK SNVs yields102
a composite likelihood that we maximize to estimate m. We conclude by reviewing how log-F -penalized103
logistic regression for the second-stage of the analysis can be implemented by data augmentation.104

2.1 Likelihood from Cohort Data105

Inference of associations between a single-nucleotide variant (SNV) and disease status from cohort data is106
based on the conditional distribution of the binary response Yi given the covariate Xi that encodes the SNV.107
For a sample of n independent subjects let Y = (Y1, . . . , Yn) denote the vector of response variables and108
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X = (X1, . . . , Xn) denote the vector of genetic covarariates. The likelihood is109

L(α, β) = P (Y |X, α, β) =
n∏
i=1

exp(Yi(α +Xiβ))

1 + exp(α +Xiβ)
, (2)

where α is an intercept term and β is the log-OR of interest.110

2.2 Likelihood from Case-control Data111

The association between a single-nucleotide variant (SNV) and disease status can also be estimated from112
case-control (i.e. retrospective) data, in which covariates Xi are sampled conditional on disease status Yi for113
each individual i. Suppose there are n0 controls indexed i = 1, ..., n0 and n1 cases indexed i = n0+1, ..., n,114
with n = n0 + n1 denoting the sample size of the study. Qin and Zhang [15] expressed the case-control115
likelihood in terms of a two-sample semi-parametric model as follows116

L(β, g) = P (X|Y , β, g) =
n0∏
i=1

P (Xi|Yi = 0, g)

n0+n1∏
i=n0+1

P (Xi|Yi = 1, β, g)

=

n0∏
i=1

g(Xi)

n0+n1∏
i=n0+1

c(β, g)exp(Xiβ)g(Xi),

(3)

where c(β, g) is a normalizing constant and g(X) is the distribution of the covariates in controls, considered117
to be a nuisance parameter. The potentially infinite-dimensional distribution g makes the case-control118
likelihood L(β, g) difficult to derive and maximize to find the MLE of β. Therefore, we rewrite the119
case-control likelihood as a profile likelihood [16]:120

L(α∗, β) =
n0∏
i=1

1

1 + exp(α∗ +Xiβ)

n0+n1∏
i=n0+1

exp(α∗ +Xiβ)

1 + exp(α∗ +Xiβ)

=
n∏
i=1

exp(Yi(α∗ +Xiβ))

1 + exp(α∗ +Xiβ)
,

(4)

where α∗ = α + log
(
n1
n0

)
− log

(
P (D=1)
P (D=0)

)
, α is the intercept term in the logistic regression model for121

P (Y = 1|X), and P (D = 1) and P (D = 0) are the population probabilities of having and not having122
the disease, respectively [17]. The profile likelihood L(α∗, β) for case-control data is of the same form123
as the prospective likelihood. The MLE of β under the case-control sampling design can be obtained by124
maximizing L(α∗, β) as if the data were collected in a prospective study [16, 15]. In what follows we write125
the likelihood as in equation (4) with the understanding that α∗ = α for cohort data.126

2.3 Penalized and Marginal Likelihoods127

The penalized likelihood is obtained by multiplying the likelihood by a log-F (m,m) distribution (equation128
(1):129

Lp(α
∗, β,m) = L(α∗, β)f(β|m). (5)

Integrating out the latent log-OR β gives a marginal likelihood of α and m:130

L(α∗,m) =

∫
Lp(α

∗, β,m)dβ =

∫
L(α∗, β)f(β|m)dβ. (6)
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In the above likelihood, the smoothing parameter m is the parameter of interest, while the intercept α∗ is a131
nuisance parameter.132

We expect very little information about m in data from a single marker, because this represents a single133
realization of β from the log-F (m.m) prior. In fact, empirical experiments (not shown) suggest a monotone,134
completely uninformative likelihood roughly 60-70 percent of the time. We therefore consider combining135
information across markers.136

2.4 Composite Likelihood for Estimating m with K markers137

Suppose there are K SNVs available for estimating m (see subsection 2.4.1). For each SNV we specify a138
one-covariate logistic regression model. LetX denote a design matrix containing all K SNVs, andX.k,139
k = 1, . . . , K, denote the genotype data on the kth SNV. Let Lp(α∗

k, βk) denote the likelihood (4) for the140
kth log-OR parameter βk. Here α∗

k is the intercept term from the kth likelihood, considered to be a nuisance141
parameter.142

A composite likelihood [18, 19, 20] for α∗ = (α∗
1, ..., α

∗
K)

T and m is the weighted product143

LCL(α
∗,m) =

K∏
k=1

L(α∗
k,m)wk . (7)

The corresponding composite log-likelihood is144

lCL(α
∗,m) =

K∑
k=1

wkl(α
∗
k,m), (8)

where l(α∗
k,m) is the marginal log-likelihood contribution from the kth variant obtained by integrating145

βk out of the joint distribution of observed data and the parameter. Our estimate of m is the value146
that maximizes the composite log-likelihood equation (8). Following the notion that common variants147
should tend to have weaker effects and rare variants should tend to have stronger effects, we set148 √
wk = 1/

√
MAFk(1−MAFk) so that wk is inversely proportional to the MAF of the kth SNV [21].149

The idea is to up-weight rarer variants of potentially greater effects and down-weight more common SNVs150
that may have smaller effects.151

152

Maximization is done in two stages:153

1.For fixedm, we maximize lCL(α∗,m). The form of the composite likelihood whenm is fixed, as a sum of154
terms involving only a single parameter, implies that to maximize lCL(α∗,m) we maximize each l(α∗

k,m)155
over α∗

k. Let α∗
k(m) be the value of α∗

k that maximizes l(α∗
k,m), α̂∗(m) = (α̂∗

1(m), . . . , α̂∗
K(m)), and156

lCL(α̂
∗(m),m) =

∑K
k=1wkl(α̂

∗
k(m),m).157

2.Maximize lCL(α̂∗(m),m) over m. To keep computations manageable, we restrict m to a grid of values,158
m = 1, 2, ...,M . One may optionally smooth the resulting (m, lCL(α̂∗(m),m)) pairs and maximize this159
smoothed curve to obtain the estimate m̂.160

For a fixed value of m and k, the estimate α̂∗
k(m) can be obtained by maximizing l(α∗

k,m) with respect161
to α∗

k. However, it is difficult to evaluate the integral
∫
L(α∗

k, βk)f(βk|m)dβk in (6). We discuss two162
approximate approaches. The first (Section 2.5.1) is a Monte Carlo EM algorithm [22], and the second163
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(Section 2.5.2) is a Laplace approximation to L(α∗
k,m) followed by derivative-free optimization of the164

approximation.165

2.4.1 Selecting variants for the composite likelihood166

Using variants with no effect in the composite likelihood leads to large estimates of m, which correspond167
to strong shrinkage toward zero. Over-shrinkage biases the log-F -penalized estimator towards zero, and168
reduces power in the second stage of analysis. In the extreme, the use of weakly-associated variants in the169
first stage can lead to a monotone marginal likelihood in m (results not shown). To avoid over-shrinkage170
we select SNVs with large marginal effects (i.e., small p-values) from a genome-wide scan, similar to171
the SNV-selection process used by FaST-LMM-Select [23]. For example, we can conduct a preliminary172
GWAS on all markers, or a thinned set of markers, and choose the SNVs with p-values below a multiple-173
testing-corrected threshold (refer this as Level 0 of Step 1). We then use the chosen SNVs to estimate m174
(Level 1 of Step 1).175

2.4.2 Adjustment for confounding variables and offsets176

We conclude this subsection by noting that it is possible to generalize the marginal likelihood approach177
for estimating m to incorporate non-genetic confounding variables, denoted Z, and known constants in178
the linear predictor, or ”offset” terms, denoted b. As confounders, Z will be correlated with the SNV179
covariates Xk, and such correlation may differ across SNVs. We therefore introduce coefficients γk for180
the confounding variables in the logistic regression on the kth SNV. Offset terms can be used to include181
estimated polygenic effects in the logistic regression [6]. Expanding the α∗

k component of the logistic182
model to α∗

k + Zγk + b, the kth likelihood is now183

L(α∗
k, γk, βk) =

n∏
i=1

exp(Yi(α∗
k + Ziγk + bi +Xikβk))

1 + exp(α∗
k + Ziγk + bi +Xikβk)

(9)

and the composite log-likelihood for estimating m is184

lCL(α
∗,γ,m) =

K∑
k=1

wkl(α
∗
k, γk,m)

=
K∑
k=1

wk log

∫
L(α∗

k, γk, βk)f(βk|m)dβk.

(10)

For fixed m we maximize lCL(α∗,γ,m) by maximizing the component marginal likelihoods l(α∗
k, γk,m)185

over the nuisance parameters (α∗
k, γk). We then maximize the resulting expression over m to obtain m̂.186

Though the generalization to include confounding variables and offsets is conceptually straightforward, we187
omit it in what follows to keep the notation as simple as possible.188

2.5 Maximization Approaches189

2.5.1 Monte Carlo EM Algorithm190

To maximize l(α∗
k,m), we first consider an EM algorithm, which treats βk as the unobserved latent variable191

or missing data. For a fixed value of m and k, the EM algorithm iterates between taking the conditional192
expectation of the complete-data log-likelihood given the observed data and the current parameter estimates,193
and maximizing this conditional expectation. The conditional distribution of βk given the observed data is194
a posterior distribution that is proportional to the likelihood L(α∗, βk) times the prior f(βk|m). Thus, at195
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the (p+ 1)th iteration, the E-step is to determine196

Q
(
α∗
k|α∗

k
(p),m

)
∝
∫

log[L(α∗
k, βk)f(βk|m)]L(α∗

k
(p), βk)f(βk|m)dβk (11)

and the M-step is to set197

α∗
k
(p+1) = argmax

α∗
k

Q
(
α∗
k|α∗

k
(p),m

)
. (12)

The E-step (11) is complicated by the fact that the integral cannot be solved analytically. We therefore198
approximate the integral numerically by Monte Carlo (MC); that is, we use a Monte Carlo EM (MCEM)199
algorithm [24]. The MC integration in the E-step is obtained by sampling from the prior distribution200
f(βk|m) [24, 25]. Based on a sample βk1, ..., βkN from the distribution f(βk|m), the MC approximation201
to the integral is202

Q
(
α∗
k|α∗

k
(p),m

)
≈ QMC

(
α∗
k|α∗

k
(p),m

)
=

1

N

N∑
j=1

log[L(α∗
k, βkj)f(βkj |m)]L(α∗

k
(p), βkj)

=
1

N

N∑
j=1

(log[L(α∗
k, βkj)] + log[f(βkj |m)])L(α∗

k
(p), βkj).

(13)

Note that log[f(βkj |m)] is independent of the parameter α∗
k, so maximizing (13) in the M-step is equivalent203

to maximizing204

1

N

N∑
j=1

log[L(α∗
k, βkj)]L(α

∗
k
(p), βkj). (14)

For a discussion of computational approaches to the M-step see the online Supplementary Material.205

2.5.2 Maximization of a Laplace Approximation206

An alternative to the EM algorithm is to make an analytic approximation, L̃(α∗,m), to L(α∗,m) =207 ∫
L(α∗

k, βk)f(βk|m)dβk and maximize this approximation. We considered Laplace approximation because208
it is widely used for approximating marginal likelihoods [26]. The Laplace approximation of an integral is209
the integral of an unnormalized Gaussian density matched to the integrand on its mode and curvature at the210
mode. Letting β̂k denote the mode of L(α∗

k, βk)f(βk|m) and cp(α∗
k) minus its second derivative at β̂k, the211

Laplace approximation to L(α∗
k,m) is212

L̃(α∗
k,m) = L(α∗

k, β̂k)f(β̂k|m)

√
2π

cp(α∗
k)
. (15)

Each β̂k is the root of the derivative equation ∂log(L(α∗
k, βk)f(βk|m))/∂βk = 0; this can be shown to be a213

global maximum of L(α∗
k, βk)f(βk|m). An expression for cp(α∗

k) is given in Appendix A of [27]. Figure 2214
shows the quality of the LA for one simulated dataset generated under m = 4. The approximate marginal215
likelihood L̃(α∗

k,m) may be maximized over α∗ using standard derivative-free optimization methods, such216
as a golden section search or the Nelder-Mead algorithm.217
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Figure 2. Natural logarithms of estimates of the marginal likelihood L(α∗
k,m) for one simulated dataset

generated under m = 4. Estimates are obtained by LA and Monte Carlo. Log-likelihood estimates are
plotted over the grid m = (1, 1.5, ..., 10) with α∗

k = −3.

2.6 Implementing log-F Penalization by Data Augmentation218

Penalization by a log-F (m,m) prior can be achieved by standard GLM through data augmentation219
suggested by Greenland and Mansournia [12]. Here, we provide some details. The logistic likelihood220
penalized by a log-F (m,m) prior (equation 5) is:221

LP (α
∗, β) =

n∏
i=1

exp(Yi(α
∗ +Xiβ))

1 + exp(α∗ +Xiβ)
×

exp(m2 β)

(1 + exp(β))m

=
n∏
i=1

exp(Yi(α
∗ +Xiβ))

1 + exp(α∗ +Xiβ)
×
[

exp(Xiβ)

1 + exp(Xiβ)

]m
2
[

1

1 + exp(Xiβ)

]m
2

,

(16)

where Xi = 1. Thus, the penalized likelihood Lp(α∗, β) is equivalent to an unpenalized likelihood obtained222
by adding m pseudo-observations to the response with no intercept and covariate one, in which m/2 are223
successes and m/2 are failures (even if m is an odd number).224

In our analyses (see Section 3), we analyze one SNV at a time using the log-F penalized logistic regression,225
adjusting for other confounding variables. The data augmentation approach is illustrated in Figure 3. Let X226
denote the allele count of a SNV and Zj , j = 1, ..., p, denote other confounding variables for adjustment.227
In the augmented dataset, the response is a two-column matrix with the number of successes and failures228
as the two columns. The m pseudo-observations are split into m/2 successes and m/2 failures. We only229
penalize the coefficient associated with the SNV, so we add a single row to the design matrix consisting of230
all zeros except for a one indicating the SNV covariate. Analyzing the augmented dataset with standard231
logistic regression yields the penalized MLE and its standard errors, as well as penalized likelihood ratio232
tests and penalized-likelihood-ratio-based confidence intervals. We conclude by noting that, for fixed m,233
the influence of the m pseudo-observations on the fitted logistic regression diminishes as the sample size234
increases. In other words, for any m, the extent of penalization decreases with sample size.235
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Figure 3. Illustration of data augmentation in the implementation of log-F (m,m) penalization.

3 A SIMULATION STUDY
The empirical performance of the methods introduced in Section 2 was evaluated in a simulation study.236
The proposed two-step log-F -penalized method (LogF) was compared with the standard MLE and the237
following methods:238

•Firth logistic regression (FLR) was first proposed by Firth [3], where the logistic likelihood is penalized239

by |I(β)|1/2 with I(β) = −E
[
∂2

∂β2
l(β)

]
defined as the Fisher information. FLR is implemented in the R240

function logistf of the package logistf [28].241
•Penalization by Cauchy priors (CP) was proposed by [29]. The input predictors are rescaled to have a242
mean of 0 and a standard deviation of 0.5. All predictors are penalized by a Cauchy prior with center 0243
and scale 2.5, whereas the intercept is penalized by a weaker Cauchy prior with center 0 and scale 10. CP244
is implemented in the R function bayesglm of the package arm [29].245

All simulations were performed using R (Version 4.1.2) [30] on the Compute Canada cluster Cedar. We246
restrictedm to a grid of values between 1 and 10, and we used parallel processing that splits the computation247
of the composite likelihood for each m ∈ [1, 10] over different cores. Each node on the cluster has at least248
32 CPU cores and we allocated 10G to each core. For detailed description of its nodes’ characteristics please249
refer to https://docs.computecanada.ca/wiki/Cedar#Node_characteristics.250

We set the sample size to 500, 1000 and 1500, and 100 data sets were generated in each scenario. For each251
data set, we first estimated m based on a set of SNVs which show non-zero effects in a preliminary scan252
(Step 1), and then implemented the log-F penalized likelihood method to test single-variant association for253
each SNV by the data augmentation approach (Step 2). For the MLE and CP approaches we used Wald tests254
for SNV effects and Wald confidence intervals for the SNV coefficient. For FLR and the LogF approaches255
tests we used likelihood-ratio tests (LRTs). For a penalized log likelihood lP (α, β), the likelihood ratio256
statistic [8] is257

T = 2[lP (α̂, β̂)− lP (α̂0, 0)] (17)

where (α̂, β̂) is the maximum of the penalized likelihood function and α̂0 is the maximum of the penalized258
likelihood when β = 0. The p-value is computed from the χ21 distribution. For penalized logistic method,259
profile penalized likelihood (PPL) confidence intervals have shown to have better empirical properties than260
standard Wald-based confidence intervals [8]. A PPL confidence interval can be obtained by inverting the261
LRT, i.e., by finding all values of β̂0 such that 2[lP (α̂, β̂) − lP (α̂0, β̂0)] ≤ χ21,1−α gives a 100(1 − α)%262
confidence interval for β.263
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3.1 Data Generation264

To keep computations manageable, we simulate preliminary datasets of 50 causal and 950 null SNVs. Null265
SNVs were used to assess the Type I error performance and the power was estimated using the set of causal266
SNVs. The data was simulated according to a case-control sampling design, where covariates are simulated267
based on disease status. For a given SNV, let Xj denote the allele count (i.e. 0, 1 or 2) of SNVj and βj268
be the corresponding log-OR parameter. Following [15], the conditional density function for Xj in the269
controls and cases are270

P (Xj = x|Y = 0) = g(x) and

P (Xj = x|Y = 1) = h(x) = c(βj , g) exp(xβj)g(x).
(18)

We assume that the distribution of X in controls, g(x), is Binomial(2, p), where p is the MAF of the SNV.271
Then the distribution of X in cases, h(x), is proportional to272

gz(x) exp(xβj) =


(1− p)2 x = 0

2p(1− p) exp(βj) x = 1

p2 exp(2βj) x = 2

, (19)

which has normalizing constant (1− p)2 + 2p(1− p) exp(βj) + p2 exp(2βj).273

We simulated data in the presence of population stratification. We create population-disease and population-274
SNV associations as follows. To create population-disease association we introduced a population main275
effect on disease risk by taking population-stratum log-OR, γ, to be 1. To create population-SNV association276
we selected different SNV MAFs in different populations. Let Z denote a binary indicator of one of the two277
population strata. The respective frequencies in controls of the two populations are f0 and f1, respectively.278
Then the distribution of Z in controls is P (Z = z|Y = 0) = fz, and the distribution of Z in cases279
is P (Z = z|Y = 1) ∝ fz exp(zγ) [31]. In our studies, we set f0 = f1 = 0.5. Now suppose that the280
MAF for a given SNV differs by sub-population, with pz denoting the MAF in population z. Let gz(x)281
denote the distribution of Xj in controls of population z, i.e., P (Xj = x|Z = z, Y = 0) = gz(x) ∼282
Binomial(2, pz). The joint distribution ofX and Z in controls is then P (Xj = x, Z = z|Y = 0) = fzgz(x).283
If logit[P (Y = 1|Z = z,Xj = x)] = α + zγ + xβj , the joint distribution of X and Z in cases is284
P (Xj = x, Z = z|Y = 1) ∝ fzgz(x) exp(zγ + xβj) [15]. We then have285

P (Xj = x|Z = z, Y = 1) =
P (Xj = x, Z = z|Y = 1)

P (Z = z|Y = 1)
∝
fzgz(x) exp(zγ + xβj)

fz exp(zγ)
= gz(x) exp(xβj).

(20)
To summarize, we first assigned population status for each subject using286

P (Z = z|Y = 0) = fz,

P (Z = z|Y = 1) ∝ fz exp(zγ) =

{
f0 z = 0

f1 exp(γ) z = 1

(21)
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Then using (19), we simulated the genotype data of each SNVj , for j = 1, ..., 1000, conditional on287
population status by sampling from288

P (Xj = x|Z = z, Y = 0) = gz(x) ∼ Binomial(2, pz),

P (Xj = x|Z = z, Y = 1) ∝ gz(x) exp(xβj) =


(1− pz)2 x = 0

2pz(1− pz) exp(βj) x = 1

p2z exp(2βj) x = 2

(22)

MAFs, pz, for different populations were obtained from 1000 Genomes Project [32]. Here we consider289
two populations: Caucasian (CEU) and Yoruba (YRI) subjects, and we sampled MAFs of SNVs from a 1290
million base-pair region on Chromosome 6 (SNVs with MAF = 0 have been removed). Data from the 1000291
Genomes Project was downloaded using the Data Slicer (https://www.internationalgenome.292
org/data-slicer/). The effect sizes of causal SNVs were assumed to be a decreasing function of293
MAF, which allows rare SNVs to have larger effect sizes and common SNVs to have smaller effect sizes.294
We set the magnitude of each βj =

log 5
2 | log10 MAFj | [21], where MAFj is the pooled-MAFs (p0 + p1)/2295

of the SNVj . We took into account the effects of mixed signs, multiplying βj by -1 for some j, in which296
are 50% positive and 50% negative. This process gives the maximum OR = 6.44 (|βj | = 1.86) for SNVs297
with pooled-MAF = 0.0048 and the minimum OR = 1.40 (|βj | = 0.4) for SNVs with pooled-MAF = 0.38298
(Supplementary Figure 2 B).299

3.2 Results300

We first evaluated the performance of the two different log-F methods described above. Over 100 simulation301
replicates, the mean estimates of m obtained by MCEM and LA are 4.77 (SD = 1.27) and 4.76 (SD = 1.18)302
respectively for n = 500, and are 3.88 (SD = 1.56) and 3.83 (SD = 1.33) respectively for n = 1000. The303
scatterplots (Figure 4) show good agreement between the two methods. Figure 5 compares the LA- and304
MCEM-based likelihood curves of m for the first 20 simulated data sets. These likelihoods were plotted305
with m of grid values from 1 to 10 on the x-axis, and each was smoothed by a smoothing spline. The306
likelihood curves are of similar shape, though shifted because the MCEM approach estimates the likelihood307
up to a constant (compare equations (13) and (14)). The compute time of LogF and FLR is given in Table308
1. We see that LA is 160× and 300× faster than MCEM in elasped time for Step 1 when analyzing 1000309
SNVs of sample size 500 and 1000, respectively. Although MCEM is computationally more expensive310
than LA, the accuracy of its approximation can be controlled by the number of Monte Carlo replicates,311
whereas the accuracy of LA cannot be controlled. We used N = 1000 Monte Carlo replicates in the MCEM312
throughout, which gives reasonably good accuracy. The agreement of the MCEM and LA approaches for313
smaller sample sizes validates the accuracy of LA. MCEM results are not available for the largest sample314
size of n = 1500, because our current implementation fails due to numerical underflow. As expected, once315
m is selected, LogF is computationally efficient as only a simple data augmentation approach is used in316
Step 2. Combining Step 1 (with LA) and Step 2, along with the preliminary scan, which is of the same317
order of computation time as Step 2, the combined computation time of the LogF approach is roughly half318
that of FLR.319

We further examined the accuracy of effect sizes from LogF-MCEM, LogF-LA, FLR and CP. All variants320
were binned based on the pooled-MAF in five bins: (0%, 1%), [1%, 5%), [5%, 10%), [10%, 25%) and321
[25%, 50%], and there were 51, 128, 213, 401, and 207 SNVs in each bin. The causal variants can be322
either deleterious or protective (i.e. βj is either positive or negative), so we define the bias of effect size323

estimates as the signed bias, E[sign(βj)(β̂j − βj)]; positive values indicate bias away from zero, while324
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Figure 4. Scatterplot comparing the estimated values of m using the two methods over 100 simulation
replicates. Values estimated by LA are on x-axis, and values estimated by MCEM are on y-axis. Red line is
y = x.

negative values indicate bias towards zero. We also evaluated the SD of effect size estimates as the standard325
deviation of β̂j across 100 simulation replicates, and the mean squared error (MSE) as the sum of squared326
bias and squared SD. MAF-binned results are shown in Table 2 and Figure 6. In the Figure, results for327
the MLE obscure those for the other methods and are not shown. We find that for variants of MAF 1% or328
greater, all methods are comparable. However, for rare variants of MAF < 1%, the SD of LogF is much329
smaller than other methods. In addition, the signed bias of the LogF is more concentrated around zero330
compared with other methods, though this tendency about zero is counteracted by some extreme negative331
signed biases that suggest over-shrinkage in some cases. The MAFs of the three SNVs that lead to these332
extreme negative signed biases (Figure 6) are 0.0048, 0.0072, and 0.0074, respectively. We note that 0.0048333
was the smallest MAF in our simulated datasets. Combining bias and SD results in a much smaller MSE334
for the LogF than other methods. Comparing the results under samples sizes of 500, 1000, and 1500, one335
can see that penalization makes less of an impact as the sample size increases.336

Through simulations, we also investigated the Type 1 error and power of the test of SNV effects from337
the different approaches (Figure 7). Although all the methods provide good control of Type 1 error, we338
found that LogF approaches result in a relatively smaller false positive rate. All the methods had similar339
power, with slightly less power from LogF approaches. We believe that the increased power of the FLR340
and Cauchy approaches can be partly attributed to their bias away from zero for rare variants.341

4 DATA APPLICATION
The Super Seniors data from the Brooks-Wilson laboratory was collected to investigate the association342
between genetic heritability and healthy aging of humans. The ’super seniors’ are defined as those who are343
85 or older and have no history of being diagnosed with the following 5 types of diseases: cardiovascular344
disease, cancer, diabetes, major pulmonary disease or dementia. In this study, 1162 samples of 4,559,465345
markers were genotyped using a custom Infinium Omni5Exome-4 v1.3 BeadChip (Illumina, San Diego,346
California, USA) at the McGill University/Genome Quebec Innovation Centre (Montreal, Quebec, Canada)347
[33]. The data underwent extensive quality control after genotyping, including re-clustering, removal of348
replicate and tri-allelic SNPs, and checking for sex discrepancies and relatedness. We also removed SNPs349
with MAF < 0.005, call rate < 97%, or Hardy-Weinberg equilibrium p-value < 1× 10−6 among controls.350
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Figure 5. Comparison of profile log-likelihood curves obtained by the two different methods described in
text, for the first 20 simulated data sets (n = 1000). In each case the likelihood curve was generated based
on K SNVs selected in a preliminary genome-wide scan, and was smoothed by smoothing spline. The red
line connecting triangles is based on LA, whereas the black line connecting dots corresponds to MCEM.

After a series of filtering steps, our final study includes 1044 self-reported Europeans, of which 427 are351
controls and 617 are cases (super seniors), and 2,678,703 autosomal SNPs.352

A preliminary genome-wide scan identified 98 SNPs with p-values < 5× 10−5. Of these, the 57 SNPs with353
no missing values were used to estimate the value of m. Our marginal likelihood approach for estimating354
m incorporates sex and the first 10 principal components as confounding variables. The m estimated by355
MCEM and LA are 7.01 and 6.89, respectively. To analyse 2,678,703 SNPs, the LogF approach (Step 2)356
takes 14 hours, which is 30× faster than FLR (437 hours). Manhattan plots (Figure 8) show very good357
agreement for the association detected between methods. Figure 9 shows the QQ-plot of p-values when358
applying MLE, LogF-LA (results of LogF-MCEM are close to LogF-LA, and are shown in Supplementary359
Figure 5-8) and FLR to the Super Seniors data. All methods are close to the dashed line of slope one,360
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Method Step Elapsed time (s)
Min. 1st Qu. Median Mean 3rd Qu. Max.

n = 500

LogF-MCEM 1 41 89 109 120 127 509
LogF-LA 1 0.35 0.49 0.54 0.74 0.58 13.22

LogF 2 3.53 3.66 3.69 3.78 3.92 4.31
FLR NA 10.48 10.94 11.09 11.18 11.36 12.36

n = 1000

LogF-MCEM 1 361 491 542 607 601 1274
LogF-LA 1 1.02 1.51 1.68 1.79 1.82 3.73

LogF 2 4.38 4.46 4.55 4.59 4.66 5.17
FLR NA 17.04 17.60 17.79 17.85 18.00 19.48

n = 1500

LogF-LA 1 2.42 2.66 2.75 2.78 2.89 3.73
LogF 2 5.21 5.30 5.37 5.39 5.39 5.94
FLR NA 23.45 23.96 24.35 24.33 24.61 25.35

Table 1. Computation time (elapsed time in seconds) of LogF and FLR when analyzing 1000 SNVs with
sample size 500, 1000 and 1500 using 100 simulated data sets. No results are available for LogF-MCEM
when n = 1500 due to numerical underflow.

though the FLR p-values veer up slightly above the line at − log10 p-values near 5. Figure 10 compares361
the parameter estimates of the MLE, FLR and LogF. Other than cases where the MLE appears grossly362
inflated (e.g., |β̂| > 5), the estimates from the MLE and FLR are in surprisingly good agreement. The LogF363
estimates are shrunken more towards zero than those of FLR, and that the shrinkage is more pronounced for364
rare variants than for variants of frequency greater than 0.01. Figure 11 and Table 3 compare the p-values of365
the different approaches. The points below the dashed line of slope one in both panels of Figure 11 indicate366
that the FLR p-values are systematically lower than those of the MLE and LogF. This is also reflected in367
the confusion matrices of Table 3, which show that FLR flags more SNVs as significant at the 5× 10−5368
level than the other two methods. Taken together, these results suggest that the LogF approach may impose369
too much shrinkage on the SNV effect estimates.370

5 DISCUSSION AND CONCLUSION
We have proposed a method for single rare variant analysis with binary phenotypes by logistic regression371
penalized by log-F priors. Our approach consists of two steps. First, we select K markers that show372
evidence of association with the phenotype in a preliminary scan and use these to estimate m. The value373
of m is the maximizer of a composite of K marginal likelihoods obtained by integrating the random374
effect out of the joint distribution of the observed data and the random effect. Our maximization algorithm375
contains two approximate approaches: (1) a hybrid of an EM algorithm and brute-force maximization of376
Monte Carlo estimates of the marginal likelihood; and (2) a combination of a Laplace approximation and377
derivative-free optimization of the marginal likelihood. The two methods give similar results, with LA378
being faster for all sample sizes and more numerically stable for large sample sizes. Second, log-F penalties379
are conveniently implemented with standard logistic regression by translating the coefficient penalty into a380
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Estimate Method MAF
(0%,1%) [1%,5%) [5%,10%) [10%,25%) [25%,50%]

n = 500

Bias (×1000)

MLE 69 -4 3 1 0
CP -8 -4 3 0 -0

FLR -6 -4 3 1 0
LogF-MCEM -41 -10 0 -0 -0

LogF-LA -40 -10 0 -0 -0

SD (×1000)

MLE 4832 487 267 187 147
CP 909 405 263 184 145

FLR 881 404 261 184 145
LogF-MCEM 476 339 244 179 143

LogF-LA 473 339 244 179 143

MSE (×1000)

MLE 27275 376 74 36 22
CP 852 178 71 35 21

FLR 799 177 71 35 22
LogF-MCEM 259 122 62 33 21

LogF-LA 256 122 62 33 21

Coverage* (×1000)

MLE 992 957 952 950 950
CP 990 960 953 951 951

FLR 967 951 950 950 950
LogF-MCEM 983 965 958 952 952

LogF-LA 984 965 958 952 952
n = 1000

Bias (×1000)

MLE 51 4 -0 -0 -1
CP 7 3 -1 -0 -1

FLR 8 3 -1 -0 -1
LogF-MCEM -14 0 -2 -1 -1

LogF-LA -15 0 -2 -1 -1

SD (×1000)

MLE 1542 290 187 130 104
CP 663 283 185 129 103

FLR 661 282 185 129 103
LogF-MCEM 491 263 180 128 103

LogF-LA 489 263 180 128 103

MSE (×1000)

MLE 3590 92 36 17 11
CP 462 87 36 17 11

FLR 456 87 35 17 11
LogF-MCEM 257 74 34 17 11

LogF-LA 254 74 34 17 11

Coverage* (×1000)

MLE 976 953 951 951 946
CP 974 954 951 952 946

FLR 955 951 950 951 946
LogF-MCEM 974 956 952 952 946

LogF-LA 975 956 952 952 946
n = 1500

Bias (×1000)

MLE 27 2 1 -0 -1
CP 0 2 1 -0 -1

FLR -0 2 0 -0 -1
LogF-LA -11 0 -0 -0 -1

SD (×1000)

MLE 782 236 151 106 83
CP 518 233 151 106 82

FLR 522 232 150 106 83
LogF-LA 447 225 149 105 82

MSE (×1000)

MLE 1060 61 24 12 7
CP 279 59 23 12 7

FLR 283 59 23 12 7
LogF-LA 207 54 23 11 7

Coverage* (×1000)

MLE 968 949 950 950 952
CP 971 951 951 950 953

FLR 959 948 950 950 952
LogF-LA 970 951 951 950 952

Table 2. MAF binned averages of bias, SD, MSE and CI coverage probability of effect size estimates
across 100 simulated data. * Coverage probability of two-sided nominal 95% confidence intervals for
log-OR coefficient. Wald CIs were used for MLE and CP, whereas profile likelihood-based CIs were used
for FLR, LogF-MCEM and LogF-LA. No results are available for LogF-MCEM when n = 1500 due to
numerical underflow.
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Figure 6. MAF binned boxplots of bias, SD and MSE of effect size estimates for LogF and other competing
methods on simulated data. Each boxplot represents the distribution of the estimated quantity across 100
simulation replicates. MAF bins are: 1 = (0%, 1%), 2 = [1%, 5%), 3 = [5%, 10%), 4 = [10%, 25%) and
5 = [25%, 50%]. No results are available for LogF-MCEM when n = 1500 due to numerical underflow.

pseudo-data record [12]. Our method requires extra computation time up front for the preliminary scan381
and selection of the shrinkage parameter m, but once selected, LogF approach (using LA in Step 1) is382
faster than Firth logistic regression (1). Our simulation studies suggest that the proposed LogF approach383
has slightly lower bias and substantially lower MSE than the other methods considered for variants of384
frequency less than 1%, and similar bias and MSE for variants of frequency greater than 1%. However, the385
power results of our simulation study and the analysis of the Super Seniors data suggest that our current386
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Figure 7. Type 1 error and power performance over simulated data sets. (A). Each boxplot represents
the distribution of empirical type 1 error rates at nominal level 0.05 (red dashed horizontal line) across
100 simulation replicates computed at null SNVs. (B). Power computed at causal SNVs. No results are
available for LogF-MCEM when n = 1500 due to numerical underflow.

Figure 8. Manhattan plots comparing association results from different methods on Super Seniors data.
The red horizontal line represents the liberal genome-wide significance threshold (P = 5× 10−5) used to
select SNPs in the preliminary scan. For LogF-LA, 57 SNPs (green points) below the threshold are used to
estimate m in Step 1.

MLE LogF-LA LogF-MCEM
0 1 0 1 0 1

FLR 0 2678557 1 2678558 0 2678558 0
1 42 97 45 94 46 93

Table 3. Confusion matrices comparing association results from different methods on Super Seniors data,
where ’1’ indicating the number of SNPs below the genome-wide significant threshold of 5× 10−5 and ’0’
otherwise.

implementation of log-F penalization has a tendency to over-shrink estimates of truly-associated SNVs.387
We discuss generalizations of the penalization approach that might correct such over-shrinkage in what388
follows.389

Penalization can be generalized by allowing the prior distribution to depend on characteristics of the390
SNV, such as MAF or annotation information. A straightforward extension is to stratify selection of the391
shrinkage parameter by, e.g., MAF. That is, we might allow the prior distribution to be indexed by a392
variant-frequency-specific parameter instead of a common parameter for all variants. The idea could be393
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Figure 9. QQ-plot comparing p-values from different methods on Super Seniors data. The p-value for
FLR and LogF-LA was obtained using the likelihood ratio test with a χ21 test statistic.

Figure 10. Scatterplots comparing effect size estimates from different methods for Super Seniors data.
The plotting colors represents variant categories based on minor allele frequency (MAF) threshold of 1%.

as simple as multiplying the global shrinkage parameter m by a frequency-specific parameter αk; i.e., a394
variant in frequency bin k could have prior distribution log-F (αkm,αkm). We can choose the αk values395
such that the distribution of common variants has a smaller variance and a larger variance for rare variants.396
In the context of heritability estimation [34] argue against stratified approaches and instead recommend397
modeling the variance of the SNV effects as proportional to [fi(1 − fi)]

1−α for MAF fi and a power398
α. Their analyses of real data suggested the value α = −0.25. This corresponds to standardizing each399
SNV covariate by dividing by [fi(1− fi)](1−α)/2 before analyses. In the context of modelling quantitative400
traits [35], proposing a double-exponential prior on SNV effects and a log-linear model for the scale401
parameter of the double exponential distribution allows the scale to depend on SNV characteristics such as402
annotation information. We plan to investigate the properties of both standardization and modelling of the403
shrinkage parameter on data from the UK Biobank. We also plan to use the UK Biobank data to investigate404
how the shrinkage parameter depends on phenotype characteristics such as prevalence and heritability.405
Application of the LogF approach to data from the UK Biobank will also confirm that the methods scale to406
biobank-sized datasets.407
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Figure 11. Scatterplots comparing p-values from different methods on Super Seniors data. The plotting
colors represents variant categories based on minor allele frequency (MAF) threshold of 1%. For FLR and
LogF-LA, the p-value for each variant was obtained by the likelihood ratio test with a χ21 test statistic.

It should be noted that in our simulations we used a simplified, binary confounding variable to represent408
population stratification. By contrast, the analysis of the Super Seniors data used an expanded set of409
confounding variables that included sex and 10 principal components. We have also mentioned adjustment410
for relatedness and population stratification by inclusion of an estimated polygenic effect as an ”offset” in411
the model. Another extension of interest is to use log-F penalization for a SNV covariate of interest in a412
model that uses linear mixed models (LMMs) to correct for confounding due to population structure and413
genetic relatedness [36, 37]. LMMs can be viewed as regression with correlated errors, using a kinship414
matrix derived from anonymous SNVs to model correlations. It should be straightforward to extend this415
regression approach to include log-F penalization of the SNV of interest through data augmentation.416
Investigation of the properties of our approach in conjunction with LMMs is an area for future work.417

In practice, identifying rare genetic causes of common diseases can improve diagnostic and treatment418
strategies for patients as well as provide insights into disease etiology. Recent studies have found that419
patients with low genetic risk scores (GRS) are more likely to carry rare pathogenic variants [38]. Although420
GRS are currently based on common variants, our method might be of use in extending GRS methods to421
include low-frequency or even rare variants of large effect sizes.422

Our focus has been on single-SNV logistic regression, but log-F penalization generalizes to multiple-423
variant logistic regression. In general, we multiply the likelihood by as many log-F distributions as there424
are covariates whose coefficient we wish to penalize. This can also be implemented by a generalization of425
the data augmentation procedure described in Section 2.6 [12, 39]. Such an approach may be useful for426
performing the kinds of gene- or region-based tests that are commonly performed for rare variants, and427
investigation of its properties is ongoing.428
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FIGURE LEGENDS

•Fig. 1. Comparison of log-F , standard normal and Cauchy distributions. The log-F (m,m) density is534
symmetrically bell-shaped with a single peak at zero, and its variance decreases as increasing m. As535
m→∞, the distribution tends toward a point mass at zero.536
•Fig. 2. Natural logarithms of estimates of the marginal likelihood L(α∗

k,m) for one simulated dataset537
generated under m = 4. Estimates are obtained by LA and Monte Carlo. Log-likelihood estimates are538
plotted over the grid m = (1, 1.5, ..., 10) with α∗

k = −3.539
•Fig. 3. Illustration of data augmentation in the implementation of log-F (m,m) penalization.540
•Fig. 4. Scatterplot comparing the estimated values of m using the two methods over 100 simulation541
replicates. Values estimated by LA are on x-axis, and values estimated by MCEM are on y-axis. Red line542
is y = x.543
•Fig. 5. Comparison of profile log-likelihood curves obtained by the two different methods described in544
text, for the first 20 simulated data sets (n = 1000). In each case the likelihood curve was generated545
based on K SNVs selected in a preliminary genome-wide scan, and was smoothed by smoothing spline.546
The red line connecting triangles is based on LA, whereas the black line connecting dots corresponds to547
MCEM.548
•Fig. 6. MAF binned boxplots of bias, SD and MSE of effect size estimates for LogF and other competing549
methods on simulated data. Each boxplot represents the distribution of the estimated quantity across 100550
simulation replicates. MAF bins are: 1 = (0%, 1%), 2 = [1%, 5%), 3 = [5%, 10%), 4 = [10%, 25%) and551
5 = [25%, 50%]. No results are available for LogF-MCEM when n = 1500 due to numerical underflow.552
•Fig. 7. Type 1 error and power performance over simulated data sets. (A). Each boxplot represents the553
distribution of empirical type 1 error rates at nominal level 0.05 (red dashed horizontal line) across554
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100 simulation replicates computed at null SNVs. (B). Power computed at causal SNVs. No results are555
available for LogF-MCEM when n = 1500 due to numerical underflow.556
•Fig. 8. Manhattan plots comparing association results from different methods on Super Seniors data. The557
red horizontal line represents the liberal genome-wide significance threshold (P = 5× 10−5) used to558
select SNPs in the preliminary scan. For LogF-LA, 57 SNPs (green points) below the threshold are used559
to estimate m in Step 1.560
•Fig. 9. QQ-plot comparing p-values from different methods on Super Seniors data. The p-value for FLR561
and LogF-LA was obtained using the likelihood ratio test with a χ21 test statistic.562
•Supplementary Fig. 1. Y(Nn×1) is a vector containing N replicates of y and X(Nn×1) is a vector563
containing N replicates of x. W stands for the weights for each Monte Carlo replicate such that564
Wj = f(X.k|α∗

k
(p), βkj) and the offset termO = {xβkj}Nj=1.565

•Supplementary Fig. 2. A. Histogram of 1000 SNV-effect-sizes used for data simulation, in which566
are 5 casual SNVs and 950 null SNVs. B. Histogram of effect sizes of causal SNPs, where βk =567
log 5
2 | log10 MAFk|.568

•Supplementary Fig. 3. Effect sizes of 1000 SNVs generated used for data simulation by minor allele569
frequency. Red dots indicate casual SNVs and blue dots indicate non-casual SNVs.570
•Supplementary Fig. 4. Manhattan plots showing association results from LogF-MCEM on Super Seniors571
data. The red horizontal line represents the liberal genome-wide significance threshold (P = 5× 10−5)572
used to select SNPs in the preliminary scan. 57 SNPs (green points) below the threshold are used to573
estimate m in Step 1.574
•Supplementary Fig. 5. QQ-plot showing p-values from LogF-MCEM on Super Seniors data. The p-value575
was obtained using the likelihood ratio test with a χ21 test statistic.576
•Supplementary Fig. 6. Scatterplots showing effect size estimates from LogF-MCEM for Super Seniors577
data. The plotting colors represents variant categories based on minor allele frequency (MAF) threshold578
of 1%.579
•Supplementary Fig. 7. Scatterplots comparing p-values from different methods on Super Seniors data.580
The plotting colors represents variant categories based on minor allele frequency (MAF) threshold of 1%.581
For FLR and LogF-MCEM, the p-value for each variant was obtained by the likelihood ratio test with a582
χ21 test statistic.583

TABLE HEADINGS

•Table 1. Computation time (elapsed time in seconds) of LogF and FLR when analyzing 1000 SNVs with584
sample size 500, 1000 and 1500 using 100 simulated data sets. No results are available for LogF-MCEM585
when n = 1500 due to numerical underflow.586
•Table 2. MAF binned averages of bias, SD, MSE and CI coverage probability of effect size estimates587
across 100 simulated data. * Coverage probability of two-sided nominal 95% confidence intervals for588
log-OR coefficient. Wald CIs were used for MLE and CP, whereas profile likelihood-based CIs were used589
for FLR, LogF-MCEM and LogF-LA. No results are available for LogF-MCEM when n = 1500 due to590
numerical underflow.591
•Table 3.592
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