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ABSTRACT

Introduction

Increasingly, logistic regression methods for genetic association studies of binary phenotypes
must be able to accommodate data sparsity, which arises from unbalanced case-control ratios
and/or rare genetic variants. Sparseness leads to maximum likelihood estimators (MLEs) of
log-OR parameters that are biased away from their null value of zero and tests with inflated type
1 errors. Different penalized-likelihood methods have been developed to mitigate sparse-data
bias. We study penalized logistic regression using a class of log-F' priors indexed by a shrinkage
parameter m to shrink the biased MLE towards zero.

Methods

We propose a two-step approach to the analysis of a genetic association study: first, a set of
variants that show evidence of association with the trait is used to estimate m; and second, the
estimated m is used for log- F'-penalized logistic regression analyses of all variants using data
augmentation with standard software. Our estimate of m is the maximizer of a marginal likelihood
obtained by integrating the latent log-ORs out of the joint distribution of the parameters and
observed data. We consider two approximate approaches to maximizing the marginal likelihood:
(i) a Monte Carlo EM algorithm (MCEM) and (ii) a Laplace approximation (LA) to each integral,
followed by derivative-free optimization of the approximation.

Results

We evaluate the statistical properties of our proposed two-step method and compared its
performance to other shrinkage methods by a simulation study. Our simulation studies suggest
that the proposed log-F-penalized approach has lower bias and mean squared error than other
methods considered. We also illustrate the approach on data from a study of genetic associations
with “super senior” cases and middle aged controls.

Discussion/Conclusion
We have proposed a method for single rare variant analysis with binary phenotypes by logistic
regression penalized by log-F' priors. Our method has the advantage of being easily extended
to correct for confounding due to population structure and genetic relatedness through a data
augmentation approach.

1 INTRODUCTION

Standard likelihood-based inference of the association between a binary trait and genetic markers is
susceptible to sparse data bias [1]] when the case-control ratio is unbalanced and/or the genetic variant is
rare. In particular, when data are sparse, hypothesis tests based on asymptotic distributions have inflated
type I error [2] and the maximum likelihood estimator of odds-ratios is biased away from zero [3].

The relevance of sparse data bias to genetic association analysis is highlighted by recent work on methods
for genome-wide, phenome-wide association studies (PheWAS) of large biobanks. Despite the potential of
multivariate methods that jointly analyze phenotypes (e.g., [4]), approaches for PheWAS of biobank-scale
data typically reduce the problem to inferences of association between single nucleotide variants (SNVs)
and traits, adjusted for population structure and relatedness among subjects via a linear mixed model
(LMM) [5, 2] or whole genome regression (WGR) [6]. For valid testing of associations between rare
binary phenotypes and/or SNVs, SAIGE [2], EPACTS [7] and REGENIE [6] implement an efficient
saddle-point approximation (SPA) to the distribution of the score statistic that yields correct p-values.
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Figure 1. Comparison of log-F, standard normal and Cauchy distributions. The log-F'(m,m) density
is symmetrically bell-shaped with a single peak at zero, and its variance decreases as increasing m. As
m — 00, the distribution tends toward a point mass at zero.

EPACTS and REGENIE also offer testing and effect estimation based on Firth logistic regression [3, 8],
a maximum-penalized likelihood method that uses the Jeffreys prior [9] as the penalty. In addition to
valid tests, the Firth logistic regression estimator of the odds-ratio is first-order unbiased. Reliable effect
estimates are important for designing replication studies and polygenic risk scores, and for fine-mapping
[10, section 2.3].

A variety of alternative penalties have been proposed for logistic regression, offering more or less shrinkage
than the Jeffreys prior [11]. Greenland and Mansournia developed penalized logistic regression based on a
class of log-F" priors indexed by a shrinkage parameter m [[12]. In our context, log-F'(m, m) penalization
amounts to assuming that the log-OR parameter /3 for the SNV of interest has a log-F'(m, m) distribution
with density

1 exp (%)
B(%, %) (1+exp(B))™

where B(-, -) is the beta function (see Figure 1 for plots of log-F'(1, 1) and log-F'(10, 10) density curves).
In the log-F' penalization approach, maximizing the posterior density is equivalent to maximizing a
penalized likelihood obtained by multiplying the logistic regression likelihood by the log-F'(m, m) prior.
The explanatory variables of the logistic regression may include other covariates such as age, sex, genetic
principal components (PCs) or the predicted log-odds of being a case from a WGR. In general, we only
penalize the SNV of interest but do not penalize other confounding covariates or the intercept, as suggested
by Greenland and Mansournia [12].

f(Blm) =

)

Comparisons between log-F-penalized and Firth logistic regression are not straightforward because the
log-F approach penalizes selectively, while the Jeffreys prior used in Firth logistic regression is a function
of the Fisher information matrix for all coefficients, including the intercept. However, some insight can
be gained by comparing approaches for matched pairs data and a binary exposure. For matched pairs, the
standard analysis is conditional logistic regression, which eliminates intercept terms from the likelihood.
One can show that for a binary exposure Firth-penalized conditional logistic regression is equivalent
to imposing a log-F'(1, 1) prior, which can be implemented by so-called Haldane correction [12]. For
Haldane correction we add 1/2 to each of the four cells in the 2 x 2 table of case/control X exposure
status and perform a standard analysis of the augmented dataset. More generally, log-F'(m, m) penalized
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analysis of matched pairs data is equivalent to analysis of the 2 x 2 table with each cell augmented by m /2
pseudo-individuals.

Limited simulation studies have shown that, for fixed m, log-F'(m, m) penalized methods outperform other
approaches for case-control data [11]]. Compared to Firth’s method, the log-F" approach is more flexible,
since we can change the amount of shrinkage by changing the value of m, and greater shrinkage may
reduce MSE [12]. However, there is little guidance on how best to select the value of m for a particular
phenotype. As a shrinkage parameter, m controls the bias-variance trade-off, with the variance of the
log-OR estimator decreasing and the bias increasing as m increases [[12]. We follow the suggestion by
Greenland and Mansourinia of using an empirical Bayes method to estimate m [[12].

Our interest is in fitting single-SN'V logistic regressions over a genomic region, or over the entire genome.
A motivating example is the Super Seniors study [[13] that compared healthy “case” subjects aged 85 and
older across Canada who had never been diagnosed with cancer, dementia, diabetes, cardiovascular disease
or major lung disease to population-based middle-aged “controls” who were not selected based on health
status. The genetic data for this study are described in detail in Section @ After quality control, data on
2,678,703 autosomal SNVs was available for 427 controls and 617 cases. A preliminary genome-wide scan
at a relatively liberal significance threshold of 5 x 10~° found 57 SNVs associated with case-control status.

As in the Super Seniors data, the vast majority of SNVs have little or no effect, and a relatively small
set have non-zero effects. The prior used for penalization is the distribution of log-ORs for SN'Vs with
non-zero effects. We therefore propose to select A SNVs that show some evidence of having non-zero
effects in a preliminary scan, e.g., the X' = 57 SN'Vs from the preliminary scan of the Super Seniors data,
and use these to estimate m. The intent is to learn about the distribution of non-zero log-ORs adaptively
from the data [14]].

The main goal of this paper is to employ log-F' penalized logistic regression for analyzing genetic variant
associations in a two-step approach. First, we estimate the shrinkage parameter m based on a set of
variants that show evidence of having non-zero effect in a preliminary scan. Second, we perform penalized
logistic regression for each variant in the study using log-F'(m, m) penalization with m estimated from
step one. For a given m, the log-F' penalized likelihood method can be conveniently implemented by
fitting a standard logistic regression to an augmented dataset [12]. In addition to estimates of SNV effects,
confidence intervals and likelihood ratio tests follow from the penalized likelihood [8]]. Corrections for
multiple testing in GWAS/PheWAS applications would involve standard GWAS p-value thresholds, such
as 5 x 1078,

2 MODELS AND METHODS

We start by reviewing the penalized likelihood for cohort data, followed by the likelihood for case-
control data. We then introduce the penalized likelihood and derive a marginal likelihood for the shrinkage
parameter m based on data from a single SNV. Taking products of marginal likelihoods from A SNVs yields
a composite likelihood that we maximize to estimate m. We conclude by reviewing how log- ['-penalized
logistic regression for the second-stage of the analysis can be implemented by data augmentation.

2.1 Likelihood from Cohort Data

Inference of associations between a single-nucleotide variant (SNV) and disease status from cohort data is
based on the conditional distribution of the binary response Y; given the covariate X; that encodes the SNV.
For a sample of n independent subjects let Y = (Y7, ...,Y},) denote the vector of response variables and
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X = (Xy,...,X,) denote the vector of genetic covarariates. The likelihood is

- B ©exp(Yi(a + Xi5))
L(a,B) = P(Y|X,q, ) = El—i—exp(a-l-Xiﬁ)’

)

where « is an intercept term and /[ is the log-OR of interest.

2.2 Likelihood from Case-control Data

The association between a single-nucleotide variant (SNV) and disease status can also be estimated from
case-control (i.e. retrospective) data, in which covariates X; are sampled conditional on disease status Y; for
each individual . Suppose there are ng controls indexed ¢ = 1, ..., ng and nq cases indexed i = ng+1, ..., n,
with n = ng + n1 denoting the sample size of the study. Qin and Zhang [15] expressed the case-control
likelihood in terms of a two-sample semi-parametric model as follows

no+ni

L(B,9) = P(X|Y,B,g HPX|Y—Og II Pxilyi=1,89)
=1 i=ng+1

3)

nQ no+ni

—TLox) [ (B 9exp(XiB)g(X0),

i=1 i=ng+1

where ¢([3, g) is a normalizing constant and g(.X) is the distribution of the covariates in controls, considered
to be a nuisance parameter. The potentially infinite-dimensional distribution g makes the case-control
likelihood L(f3, g) difficult to derive and maximize to find the MLE of /3. Therefore, we rewrite the
case-control likelihood as a profile likelihood [16]:

L(o*, B 1_0[ 1 no]i[nl exp(a” + Xif)
1+ exp(a* + X; ﬁ) ol 1 + exp(a* + X;0)

“4)
exp(Yi(a™ + X;05))
1+ exp(ar + Xif)’

Il
s I

where o = a + log (Z—é) log (i%g (1)3

P(Y =1]X), and P(D = 1) and P(D = 0) are the population probabilities of having and not having
the disease, respectively [17]]. The profile likelihood L(a*, 3) for case-control data is of the same form
as the prospective likelihood. The MLE of 3 under the case-control sampling design can be obtained by
maximizing L(a*, () as if the data were collected in a prospective study [16} [15]. In what follows we write
the likelihood as in equation (@) with the understanding that o* = « for cohort data.

) « 1s the intercept term in the logistic regression model for

2.3 Penalized and Marginal Likelihoods
The penalized likelihood is obtained by multiplying the likelihood by a log-F'(m, m) distribution (equation

(1):
Ly(a®, 8,m) = L(a, B) f(Bm). (5)

Integrating out the latent log-OR /3 gives a marginal likelihood of av and m:

La'om) = [ L, som)ds = [ 1(a.5)5(Blm)as ©)



https://doi.org/10.1101/2021.02.12.430986
http://creativecommons.org/licenses/by-nc/4.0/

131
132

133
134
135
136

137
138
139
140
141
142

143

144

145
146
147
148
149
150
151
152

153

154
155
156
157
158
159
160

161
162
163

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.12.430986; this version posted February 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Yu et al.

In the above likelihood, the smoothing parameter m is the parameter of interest, while the intercept o* is a
nuisance parameter.

We expect very little information about m in data from a single marker, because this represents a single
realization of 3 from the log-F'(m.m) prior. In fact, empirical experiments (not shown) suggest a monotone,
completely uninformative likelihood roughly 60-70 percent of the time. We therefore consider combining
information across markers.

2.4 Composite Likelihood for Estimating m with K markers

Suppose there are ' SNVs available for estimating m (see subsection [2.4.T)). For each SNV we specify a
one-covariate logistic regression model. Let X denote a design matrix containing all ' SNVs, and X i,
k=1,..., K, denote the genotype data on the kth SNV. Let L, (o}, ) denote the likelihood (@) for the
kth log-OR parameter (). Here a7, is the intercept term from the kth likelihood, considered to be a nuisance
parameter.

A composite likelihood [T8| [19,20] for a* = (a7, ..., )T and m is the weighted product

K
Lop(e*,m) = [] L(aj, m)"*. (7)
k=1
The corresponding composite log-likelihood is
K
lop(a®,m) = Zwkl(az, m), (8)
k=1

where [(aj, m) is the marginal log-likelihood contribution from the kth variant obtained by integrating
B out of the joint distribution of observed data and the parameter. Our estimate of m is the value
that maximizes the composite log-likelihood equation (8). Following the notion that common variants
should tend to have weaker effects and rare variants should tend to have stronger effects, we set
Vg =1/ VMAF (1 — M AF},) so that wy, is inversely proportional to the MAF of the kth SNV [21]].
The idea is to up-weight rarer variants of potentially greater effects and down-weight more common SNV
that may have smaller effects.

Maximization is done in two stages:

1.For fixed m, we maximize [of, (™, m). The form of the composite likelihood when m is fixed, as a sum of
terms involving only a single parameter, implies that to maximize lor, (o™, m) we maximize each [(a}, m)
over aj. Let o} (m) be the value of o}, that maximizes I(af, m), &*(m) = (4] (m),..., &% (m)), and

N K .

lop(&*(m),m) =3 4y wil(dg(m), m).

2 Maximize [ (a*(m), m) over m. To keep computations manageable, we restrict m to a grid of values,
m = 1,2, ..., M. One may optionally smooth the resulting (m, o (a*(m), m)) pairs and maximize this
smoothed curve to obtain the estimate .

For a fixed value of m and k, the estimate oZZ(m) can be obtained by maximizing [(«, m) with respect
to of. However, it is difficult to evaluate the integral [ L(«j, Bx)f(Bk|m)dSy in (€). We discuss two
approximate approaches. The first (Section [2.5.1)) is a Monte Carlo EM algorithm [22], and the second
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(Section 2.5.2)) is a Laplace approximation to L(aj,m) followed by derivative-free optimization of the
approximation.

2.4.1 Selecting variants for the composite likelihood

Using variants with no effect in the composite likelihood leads to large estimates of m, which correspond
to strong shrinkage toward zero. Over-shrinkage biases the log- F'-penalized estimator towards zero, and
reduces power in the second stage of analysis. In the extreme, the use of weakly-associated variants in the
first stage can lead to a monotone marginal likelihood in m (results not shown). To avoid over-shrinkage
we select SN'Vs with large marginal effects (i.e., small p-values) from a genome-wide scan, similar to
the SNV-selection process used by FaST-LMM-Select [23]. For example, we can conduct a preliminary
GWAS on all markers, or a thinned set of markers, and choose the SNVs with p-values below a multiple-
testing-corrected threshold (refer this as Level O of Step 1). We then use the chosen SN'Vs to estimate m
(Level 1 of Step 1).

2.4.2 Adjustment for confounding variables and offsets

We conclude this subsection by noting that it is possible to generalize the marginal likelihood approach
for estimating m to incorporate non-genetic confounding variables, denoted Z, and known constants in
the linear predictor, or “offset” terms, denoted b. As confounders, Z will be correlated with the SNV
covariates X}, and such correlation may differ across SNVs. We therefore introduce coefficients v for
the confounding variables in the logistic regression on the kth SNV. Offset terms can be used to include
estimated polygenic effects in the logistic regression [6]. Expanding the o component of the logistic
model to az + Z~ + b, the kth likelihood is now

n

exp(Yi(aj + Zivk + bi + XinBr))

L a*’ ) /8 = 9
(ks i ) gl+exP(aZ+Zi7k+bi+X¢kﬁk) ®)
and the composite log-likelihood for estimating m is
K
lCL(a*v v, m) = Z wkl((l/;;, ks m)
k=1
« (10)
=Y~ wnlog [ L. ) (Gulm)ds
k=1

For fixed m we maximize lor,(a*, -y, m) by maximizing the component marginal likelihoods I(c};, v, m)
over the nuisance parameters (aj, 7). We then maximize the resulting expression over m to obtain 7.
Though the generalization to include confounding variables and offsets is conceptually straightforward, we
omit it in what follows to keep the notation as simple as possible.

2.5 Maximization Approaches

2.5.1 Monte Carlo EM Algorithm

To maximize [(aj, m), we first consider an EM algorithm, which treats /3, as the unobserved latent variable
or missing data. For a fixed value of m and k, the EM algorithm iterates between taking the conditional
expectation of the complete-data log-likelihood given the observed data and the current parameter estimates,
and maximizing this conditional expectation. The conditional distribution of (3. given the observed data is
a posterior distribution that is proportional to the likelihood L(a*, 8;) times the prior f(Sx|m). Thus, at
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the (p + 1) iteration, the E-step is to determine

Q (atlai”,m) o / log[L (o, B)f (Bxlm)| (o} ™, 1) f (Bxlm) (11)
and the M-step is to set
az(pﬂ) = argmax ) <a};|a};(p),m> . (12)

G
The E-step 1s complicated by the fact that the integral cannot be solved analytically. We therefore
approximate the integral numerically by Monte Carlo (MC); that is, we use a Monte Carlo EM (MCEM)
algorithm [24]. The MC integration in the E-step is obtained by sampling from the prior distribution

f(Br|m) [24,25]]. Based on a sample (%1, ..., Oy from the distribution f(Sj|m), the MC approximation
to the integral is

Q (ozz,|oz}:,(p),m> ~ Qumc (oz}:,|oz};(p),m>
N

Zlog[ L(af, Bi5) f (Brglm)] L ?, Biy)

==

(13)

N
Z log[L (0. Biy)) + loglf (B lm))) L(os™), Biy).

ZIH

Note that log| f(;|m)] is independent of the parameter a7, so maximizing (I3) in the M-step is equivalent
to maximizing

N

1

5 2 loglL(ag, By IL(ai"™, Biy). (14)
j=1

For a discussion of computational approaches to the M-step see the online Supplementary Material.

2.5.2 Maximization of a Laplace Approximation

An alternative to the EM algorithm is to make an analytic approximation, L(a*,m), to L(a*,m) =
[ L(cs, Br) f(Br|m)dp), and maximize this approximation. We considered Laplace approximation because
it is widely used for approximating marginal likelihoods [26]. The Laplace approximation of an integral is
the integral of an unnormalized Gaussian density matched to the integrand on its mode and curvature at the
mode. Letting ), denote the mode of L(oy, Br) f(Br|m) and ¢,(aj) minus its second derivative at By, the
Laplace approximation to L(aj,m) is

L(aj,m) = L(og, Br) f (Belm) (15)

Each 3}, is the root of the derivative equation dlog(L(cy, Br) f(Br|m)) /0By = 0; this can be shown to be a
global maximum of L(aj, By) f (Bx|m). An expression for ¢, (o) is given in Appendix A of [27]. Figure 2
shows the quality of the LA for one simulated dataset generated under m = 4. The approximate marginal
likelihood E(oz,";, m) may be maximized over o* using standard derivative-free optimization methods, such
as a golden section search or the Nelder-Mead algorithm.
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Figure 2. Natural logarithms of estimates of the marginal likelihood L(«, m) for one simulated dataset
generated under m = 4. Estimates are obtained by LA and Monte Carlo. Log-likelihood estimates are
plotted over the grid m = (1, 1.5, ..., 10) with o = —3.

2.6 Implementing log-F Penalization by Data Augmentation

Penalization by a log-F'(m,m) prior can be achieved by standard GLM through data augmentation
suggested by Greenland and Mansournia [12]. Here, we provide some details. The logistic likelithood
penalized by a log-F'(m, m) prior (equation [5) is:

17 e (Yi(ar + X)) exp(g )
Lrle’,5) = H I+exp(a® + Xif) (14 eXé(ﬂ))m

m m (16)
2

Hexp (" + X)) X{ exp(Xif3) r[ 1 }

L+exp(a* +X;8) ~ [1+exp(XiB8)] |14 exp(Xif)

Y

where X; = 1. Thus, the penalized likelihood L, (c*, 3) is equivalent to an unpenalized likelihood obtained
by adding m pseudo-observations to the response with no intercept and covariate one, in which m /2 are
successes and m /2 are failures (even if m is an odd number).

In our analyses (see Section[3)), we analyze one SNV at a time using the log- F" penalized logistic regression,
adjusting for other confounding variables. The data augmentation approach is illustrated in Figure 3. Let X
denote the allele count of a SNV and Z;, j = 1, ..., p, denote other confounding variables for adjustment.
In the augmented dataset, the response is a two-column matrix with the number of successes and failures
as the two columns. The m pseudo-observations are split into m /2 successes and m /2 failures. We only
penalize the coefficient associated with the SNV, so we add a single row to the design matrix consisting of
all zeros except for a one indicating the SNV covariate. Analyzing the augmented dataset with standard
logistic regression yields the penalized MLE and its standard errors, as well as penalized likelihood ratio
tests and penalized-likelihood-ratio-based confidence intervals. We conclude by noting that, for fixed m,
the influence of the m pseudo-observations on the fitted logistic regression diminishes as the sample size
increases. In other words, for any m, the extent of penalization decreases with sample size.
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Figure 3. Illustration of data augmentation in the implementation of log-F'(m, m) penalization.

3 A SIMULATION STUDY

236 The empirical performance of the methods introduced in Section [2| was evaluated in a simulation study.
237 The proposed two-step log-F'-penalized method (LogF) was compared with the standard MLE and the
238 following methods:

239 eFirth logistic regression (FLR) was first proposed by Firth [3]], where the logistic likelihood is penalized

24 by |1(B)|"/? with I(8) = —E [aa—;l(ﬁ )} defined as the Fisher information. FLR is implemented in the R
241 function logistf of the package 1ogistf [28].

242 ePenalization by Cauchy priors (CP) was proposed by [29]. The input predictors are rescaled to have a
243  mean of 0 and a standard deviation of 0.5. All predictors are penalized by a Cauchy prior with center 0
244  and scale 2.5, whereas the intercept is penalized by a weaker Cauchy prior with center 0 and scale 10. CP

245  is implemented in the R function bayesglm of the package arm [29]].

o

246 All simulations were performed using R (Version 4.1.2) [30] on the Compute Canada cluster Cedar. We
247 restricted m to a grid of values between 1 and 10, and we used parallel processing that splits the computation
248 of the composite likelihood for each m € [1, 10] over different cores. Each node on the cluster has at least
249 32 CPU cores and we allocated 10G to each core. For detailed description of its nodes’ characteristics please
250 refertohttps://docs.computecanada.ca/wiki/Cedar#Node_characteristics.

251 We set the sample size to 500, 1000 and 1500, and 100 data sets were generated in each scenario. For each
252 data set, we first estimated m based on a set of SN'Vs which show non-zero effects in a preliminary scan
253 (Step 1), and then implemented the log-F' penalized likelihood method to test single-variant association for
254 each SNV by the data augmentation approach (Step 2). For the MLE and CP approaches we used Wald tests
255 for SNV effects and Wald confidence intervals for the SNV coefficient. For FLR and the LogF approaches
256 tests we used likelihood-ratio tests (LRTs). For a penalized log likelihood I p(«, ), the likelihood ratio
257 statistic [8] is

T =2[lp(&, ) — lp(d&o,0)] 17)

258 where (&, /3) is the maximum of the penalized likelihood function and &y is the maximum of the penalized
259 likelihood when 5 = 0. The p-value is computed from the X% distribution. For penalized logistic method,
260 profile penalized likelihood (PPL) confidence intervals have shown to have better empirical properties than
261 standard Wald-based confidence intervals [8]]. A PPL confidence interval can be obtained by inverting the
262 LRT, i.e., by finding all values of 3y such that 2[Ip(d, §) — Ip(ao, Bo)] < X%,l—a gives a 100(1 — o)%
263 confidence interval for 3.

10
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3.1 Data Generation

To keep computations manageable, we simulate preliminary datasets of 50 causal and 950 null SNVs. Null
SNVs were used to assess the Type I error performance and the power was estimated using the set of causal
SNVs. The data was simulated according to a case-control sampling design, where covariates are simulated
based on disease status. For a given SNV, let X; denote the allele count (i.e. 0, 1 or 2) of SNV and §3;
be the corresponding log-OR parameter. Following [15]], the conditional density function for X in the
controls and cases are

J (18)
P(X; =z|Y =1) = h(z) = c(B}, g) exp(z3;)g(z).

We assume that the distribution of X in controls, g(z), is Binomial(2, p), where p is the MAF of the SNV.
Then the distribution of X in cases, h(z), is proportional to

(1-p)? z=0
g-(v)exp(xfB;) = { 2p(1 — p)exp(B;) x==1, (19)
p? exp(26;) xr =2

which has normalizing constant (1 — p)? + 2p(1 — p) exp(B;) + p? exp(20;).

We simulated data in the presence of population stratification. We create population-disease and population-
SNV associations as follows. To create population-disease association we introduced a population main
effect on disease risk by taking population-stratum log-OR, ~, to be 1. To create population-SNV association
we selected different SNV MAFs in different populations. Let Z denote a binary indicator of one of the two
population strata. The respective frequencies in controls of the two populations are fy and f1, respectively.
Then the distribution of Z in controls is P(Z = z|Y = 0) = f,, and the distribution of Z in cases
is P(Z = z|Y = 1) « f,exp(zy) [31]. In our studies, we set fo = fi = 0.5. Now suppose that the
MAF for a given SNV differs by sub-population, with p, denoting the MAF in population z. Let g, (x)
denote the distribution of X; in controls of population z, i.e., P(X; = z|Z = 2, Y = 0) = g.(x) ~
Binomial(2, p). The joint distribution of X and Z in controls is then P(X; = z,Z = z|Y = 0) = f.g.(x).
If logit{P(Y = 1|Z = 2,X; = z)] = o+ 2y + 3}, the joint distribution of X and Z in cases is
P(Xj=u,7Z =z2]Y =1) x f,g.(x) exp(zy + x;) [15]. We then have

P(Xj =ux,7 = Z|Y = 1) fzgz(x) eXp(Z/V + xﬁj)

PX;,=x|Z=2Y=1)= = ).
(X =l = ) P(Z =zlY =1) . frexp(z7) gz () exp(wfy)
(20)
To summarize, we first assigned population status for each subject using
P(Z=zY =0)=f,,
fo z=0 21

P(Z =z2Y =1) x f,exp(2y) = {fl exp(y) z=

11
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Then using (19), we simulated the genotype data of each SNV}, for j = 1,...,1000, conditional on
population status by sampling from

P(X;=2|Z =2Y =0) = g.(x) ~ Binomial(2, p,),

(1- pz)Q =0 (22)
P(Xj=2|Z =2Y =1) x g.(v) exp(xB;) = { 2p.(1 — p,)exp(f;) x=1
p? exp(20;) T =2

MATFs, p., for different populations were obtained from 1000 Genomes Project [32]. Here we consider
two populations: Caucasian (CEU) and Yoruba (YRI) subjects, and we sampled MAFs of SNVs from a 1
million base-pair region on Chromosome 6 (SNVs with MAF = 0 have been removed). Data from the 1000
Genomes Project was downloaded using the Data Slicer (https://www.internationalgenome.
org/data-slicer/). The effect sizes of causal SNVs were assumed to be a decreasing function of
MAF, which allows rare SNVs to have larger effect sizes and common SNVs to have smaller effect sizes.
We set the magnitude of each ; = 10% 5| log; MAF;| [21], where MAF; is the pooled-MAFs (pg + p1)/2
of the SNV ;. We took into account the effects of mixed signs, multiplying (3; by -1 for some j, in which
are 50% positive and 50% negative. This process gives the maximum OR = 6.44 (|3;| = 1.86) for SN'Vs
with pooled-MAF = 0.0048 and the minimum OR = 1.40 (|3;| = 0.4) for SNVs with pooled-MAF = 0.38
(Supplementary Figure 2 B).

3.2 Results

We first evaluated the performance of the two different log-F methods described above. Over 100 simulation
replicates, the mean estimates of m obtained by MCEM and LA are 4.77 (SD = 1.27) and 4.76 (SD = 1.18)
respectively for n = 500, and are 3.88 (SD = 1.56) and 3.83 (SD = 1.33) respectively for n = 1000. The
scatterplots (Figure d)) show good agreement between the two methods. Figure [5compares the LA- and
MCEM-based likelihood curves of m for the first 20 simulated data sets. These likelihoods were plotted
with m of grid values from 1 to 10 on the x-axis, and each was smoothed by a smoothing spline. The
likelihood curves are of similar shape, though shifted because the MCEM approach estimates the likelihood
up to a constant (compare equations (13)) and (14))). The compute time of LogF and FLR is given in Table
[I] We see that LA is 160x and 300x faster than MCEM in elasped time for Step 1 when analyzing 1000
SNVs of sample size 500 and 1000, respectively. Although MCEM is computationally more expensive
than LA, the accuracy of its approximation can be controlled by the number of Monte Carlo replicates,
whereas the accuracy of LA cannot be controlled. We used N = 1000 Monte Carlo replicates in the MCEM
throughout, which gives reasonably good accuracy. The agreement of the MCEM and LA approaches for
smaller sample sizes validates the accuracy of LA. MCEM results are not available for the largest sample
size of n = 1500, because our current implementation fails due to numerical underflow. As expected, once
m is selected, LogF is computationally efficient as only a simple data augmentation approach is used in
Step 2. Combining Step 1 (with LA) and Step 2, along with the preliminary scan, which is of the same
order of computation time as Step 2, the combined computation time of the LogF approach is roughly half
that of FLR.

We further examined the accuracy of effect sizes from LogF-MCEM, LogF-LA, FLR and CP. All variants
were binned based on the pooled-MAF in five bins: (0%, 1%), [1%, 5%), [5%, 10%), [10%, 25%) and
125%, 50%)], and there were 51, 128, 213, 401, and 207 SNVs in each bin. The causal variants can be
either deleterious or protective (i.e. 3; is either positive or negative), so we define the bias of effect size

~

estimates as the signed bias, E[sign(/5;)(5; — ;)]; positive values indicate bias away from zero, while
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Figure 4. Scatterplot comparing the estimated values of m using the two methods over 100 simulation
replicates. Values estimated by LA are on x-axis, and values estimated by MCEM are on y-axis. Red line is
Yy = .

negative values indicate bias towards zero. We also evaluated the SD of effect size estimates as the standard
deviation of Bj across 100 simulation replicates, and the mean squared error (MSE) as the sum of squared
bias and squared SD. MAF-binned results are shown in Table [2] and Figure [6] In the Figure, results for
the MLE obscure those for the other methods and are not shown. We find that for variants of MAF 1% or
greater, all methods are comparable. However, for rare variants of MAF < 1%, the SD of LogF is much
smaller than other methods. In addition, the signed bias of the LogF is more concentrated around zero
compared with other methods, though this tendency about zero is counteracted by some extreme negative
signed biases that suggest over-shrinkage in some cases. The MAFs of the three SNV that lead to these
extreme negative signed biases (Figure|[6) are 0.0048, 0.0072, and 0.0074, respectively. We note that 0.0048
was the smallest MAF in our simulated datasets. Combining bias and SD results in a much smaller MSE
for the LogF than other methods. Comparing the results under samples sizes of 500, 1000, and 1500, one
can see that penalization makes less of an impact as the sample size increases.

Through simulations, we also investigated the Type 1 error and power of the test of SNV effects from
the different approaches (Figure[7). Although all the methods provide good control of Type 1 error, we
found that LogF approaches result in a relatively smaller false positive rate. All the methods had similar
power, with slightly less power from LogF approaches. We believe that the increased power of the FLR
and Cauchy approaches can be partly attributed to their bias away from zero for rare variants.

4 DATA APPLICATION

The Super Seniors data from the Brooks-Wilson laboratory was collected to investigate the association
between genetic heritability and healthy aging of humans. The ’super seniors’ are defined as those who are
85 or older and have no history of being diagnosed with the following 5 types of diseases: cardiovascular
disease, cancer, diabetes, major pulmonary disease or dementia. In this study, 1162 samples of 4,559,465
markers were genotyped using a custom Infinium OmniSExome-4 v1.3 BeadChip (Illumina, San Diego,
California, USA) at the McGill University/Genome Quebec Innovation Centre (Montreal, Quebec, Canada)
[33]]. The data underwent extensive quality control after genotyping, including re-clustering, removal of
replicate and tri-allelic SNPs, and checking for sex discrepancies and relatedness. We also removed SNPs
with MAF < 0.005, call rate < 97%, or Hardy-Weinberg equilibrium p-value < 1 x 10~% among controls.
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Figure 5. Comparison of profile log-likelihood curves obtained by the two different methods described in
text, for the first 20 simulated data sets (n = 1000). In each case the likelihood curve was generated based
on K’ SN'Vs selected in a preliminary genome-wide scan, and was smoothed by smoothing spline. The red
line connecting triangles is based on LA, whereas the black line connecting dots corresponds to MCEM.

After a series of filtering steps, our final study includes 1044 self-reported Europeans, of which 427 are
controls and 617 are cases (super seniors), and 2,678,703 autosomal SNPs.

A preliminary genome-wide scan identified 98 SNPs with p-values < 5 x 107°. Of these, the 57 SNPs with
no missing values were used to estimate the value of m. Our marginal likelihood approach for estimating
m incorporates sex and the first 10 principal components as confounding variables. The m estimated by
MCEM and LA are 7.01 and 6.89, respectively. To analyse 2,678,703 SNPs, the LogF approach (Step 2)
takes 14 hours, which is 30x faster than FLR (437 hours). Manhattan plots (Figure ) show very good
agreement for the association detected between methods. Figure 9] shows the QQ-plot of p-values when
applying MLE, LogF-LA (results of LogF-MCEM are close to LogF-LA, and are shown in Supplementary
Figure 5-8) and FLR to the Super Seniors data. All methods are close to the dashed line of slope one,
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Elapsed time (s)

Method SteP  Min,  1st Qu. Median Mean 3rd Qu. Max.

n = 500
LogF-MCEM 1 41 89 109 120 127 509
LogF-LA 1 0.35 0.49 0.54 0.74 0.58 13.22
LogF 2 3.53 3.66 3.69 3.78 3.92 4.31
FLR NA 1048 1094 11.09 11.18 11.36  12.36

n = 1000
LogF-MCEM 1 361 491 542 607 601 1274
LogF-LA 1 1.02 1.51 1.68 1.79 1.82 3.73
LogF 2 4.38 4.46 4.55 4.59 4.66 5.17
FLR NA 17.04 17.60 1779 17.85  18.00 19.48

n = 1500
LogF-LA 1 242 2.66 2.75 2.78 2.89 3.73
LogF 2 5.21 5.30 5.37 5.39 5.39 5.94
FLR NA 2345 2396 2435 2433  24.61 25.35

Table 1. Computation time (elapsed time in seconds) of LogF and FLR when analyzing 1000 SNVs with
sample size 500, 1000 and 1500 using 100 simulated data sets. No results are available for LogF-MCEM
when n = 1500 due to numerical underflow.

though the FLR p-values veer up slightly above the line at — log; p-values near 5. Figure [I0|compares
the parameter estimates of the MLE, FLLR and LogF. Other than cases where the MLE appears grossly
inflated (e.g., | B | > 5), the estimates from the MLE and FLR are in surprisingly good agreement. The LogF
estimates are shrunken more towards zero than those of FLR, and that the shrinkage is more pronounced for
rare variants than for variants of frequency greater than 0.01. Figure|11|and Table (3| compare the p-values of
the different approaches. The points below the dashed line of slope one in both panels of Figure [IT]indicate
that the FLR p-values are systematically lower than those of the MLE and LogF. This is also reflected in
the confusion matrices of Table 3, which show that FLR flags more SNV as significant at the 5 x 10>
level than the other two methods. Taken together, these results suggest that the LogF approach may impose
too much shrinkage on the SNV effect estimates.

5 DISCUSSION AND CONCLUSION

We have proposed a method for single rare variant analysis with binary phenotypes by logistic regression
penalized by log-F" priors. Our approach consists of two steps. First, we select X markers that show
evidence of association with the phenotype in a preliminary scan and use these to estimate m. The value
of m is the maximizer of a composite of K marginal likelihoods obtained by integrating the random
effect out of the joint distribution of the observed data and the random effect. Our maximization algorithm
contains two approximate approaches: (1) a hybrid of an EM algorithm and brute-force maximization of
Monte Carlo estimates of the marginal likelihood; and (2) a combination of a Laplace approximation and
derivative-free optimization of the marginal likelihood. The two methods give similar results, with LA
being faster for all sample sizes and more numerically stable for large sample sizes. Second, log-F' penalties
are conveniently implemented with standard logistic regression by translating the coefficient penalty into a
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. MAF
Estimate Method o/ 1o5)  [1%,5%) [5%,10%) [10%,25%) [25%,50%]
n = 500
MLE 69 -4 3 1 0
CP -8 -4 3 0 -0
Bias (x 1000) FLR -6 4 3 1 0
LogF-MCEM -41 -10 0 -0 -0
LogF-LA -40 -10 0 -0 -0
MLE 4832 487 267 187 147
CP 909 405 263 184 145
SD (x1000) FLR 881 404 261 184 145
LogF-MCEM 476 339 244 179 143
LogF-LA 473 339 244 179 143
MLE 27275 376 74 36 22
CcpP 852 178 71 35 21
MSE (x1000) FLR 799 177 71 35 22
LogF-MCEM 259 122 62 33 21
LogF-LA 256 122 62 33 21
MLE 992 957 952 950 950
CP 990 960 953 951 951
Coverage* (x1000) FLR 967 951 950 950 950
LogF-MCEM 983 965 958 952 952
LogF-LA 984 965 958 952 952
n = 1000
MLE 51 4 -0 -0 -1
CP 7 3 -1 -0 -1
Bias (x 1000) FLR 8 3 -1 -0 -1
LogF-MCEM -14 0 -2 -1 -1
LogF-LA -15 0 -2 -1 -1
MLE 1542 290 187 130 104
CP 663 283 185 129 103
SD (x1000) FLR 661 282 185 129 103
LogF-MCEM 491 263 180 128 103
LogF-LA 489 263 180 128 103
MLE 3590 92 36 17 11
CcpP 462 87 36 17 11
MSE (x1000) FLR 456 87 35 17 11
LogF-MCEM 257 74 34 17 11
LogF-LA 254 74 34 17 11
MLE 976 953 951 951 946
CP 974 954 951 952 946
Coverage* (x1000) FLR 955 951 950 951 946
LogF-MCEM 974 956 952 952 946
LogF-LA 975 956 952 952 946
n = 1500
MLE 27 2 1 -0 -1
CcpP 0 2 1 -0 -1
Bias (x1000) FLR -0 2 0 -0 -1
LogF-LA -11 0 -0 -0 -1
MLE 782 236 151 106 83
CcpP 518 233 151 106 82
SD (x1000) FLR 522 232 150 106 83
LogF-LA 447 225 149 105 82
MLE 1060 61 24 12 7
CcpP 279 59 23 12 7
MSE (x1000) FLR 283 59 23 12 7
LogF-LA 207 54 23 11 7
MLE 968 949 950 950 952
CP 971 951 951 950 953
Coverage* (x1000) FLR 959 948 950 950 952
LogF-LA 970 951 951 950 952

Table 2. MAF binned averages of bias, SD, MSE and CI coverage probability of effect size estimates
across 100 simulated data. © Coverage probability of two-sided nominal 95% confidence intervals for
log-OR coefficient. Wald CIs were used for MLE and CP, whereas profile likelihood-based Cls were used
for FLR, LogF-MCEM and LogF-LA. No results are available for LogF-MCEM when n = 1500 due to
numerical underflow.
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Figure 6. MAF binned boxplots of bias, SD and MSE of effect size estimates for LogF and other competing
methods on simulated data. Each boxplot represents the distribution of the estimated quantity across 100
simulation replicates. MAF bins are: 1 = (0%, 1%), 2 = [1%, 5%), 3 = [5%, 10%), 4 = [10%, 25%) and
5 = [25%, 50%]. No results are available for LogF-MCEM when n = 1500 due to numerical underflow.

pseudo-data record [12]. Our method requires extra computation time up front for the preliminary scan
and selection of the shrinkage parameter m, but once selected, LogF approach (using LA in Step 1) is
faster than Firth logistic regression (I). Our simulation studies suggest that the proposed LogF approach
has slightly lower bias and substantially lower MSE than the other methods considered for variants of
frequency less than 1%, and similar bias and MSE for variants of frequency greater than 1%. However, the
power results of our simulation study and the analysis of the Super Seniors data suggest that our current
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Figure 7. Type 1 error and power performance over simulated data sets. (A). Each boxplot represents
the distribution of empirical type 1 error rates at nominal level 0.05 (red dashed horizontal line) across
100 simulation replicates computed at null SNVs. (B). Power computed at causal SNVs. No results are
available for LogF-MCEM when n = 1500 due to numerical underflow.

Figure 8. Manhattan plots comparing association results from different methods on Super Seniors data.

The red horizontal line represents the liberal genome-wide significance threshold (P = 5 x 107°) used to
select SNPs in the preliminary scan. For LogF-LA, 57 SNPs (green points) below the threshold are used to
estimate m in Step 1.

MLE LogF-LA | LogF-MCEM
0 1 0 1 0 1

FLR 0] 2678557 1 | 2678558 0 | 2678558 0
1 42 97 45 94 46 93

Table 3. Confusion matrices comparing association results from different methods on Super Seniors data,

where ’1” indicating the number of SNPs below the genome-wide significant threshold of 5 x 107> and *0’
otherwise.

implementation of log-F’ penalization has a tendency to over-shrink estimates of truly-associated SNVs.

We discuss generalizations of the penalization approach that might correct such over-shrinkage in what
follows.

Penalization can be generalized by allowing the prior distribution to depend on characteristics of the
SNV, such as MAF or annotation information. A straightforward extension is to stratify selection of the
shrinkage parameter by, e.g., MAF. That is, we might allow the prior distribution to be indexed by a
variant-frequency-specific parameter instead of a common parameter for all variants. The idea could be
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Figure 9. QQ-plot comparing p-values from different methods on Super Seniors data. The p-value for

FLR and LogF-LA was obtained using the likelihood ratio test with a X% test statistic.
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Figure 10. Scatterplots comparing effect size estimates from different methods for Super Seniors data.
The plotting colors represents variant categories based on minor allele frequency (MAF) threshold of 1%.

as simple as multiplying the global shrinkage parameter m by a frequency-specific parameter ay; i.e., a
variant in frequency bin % could have prior distribution log-F'(am, am). We can choose the ay, values
such that the distribution of common variants has a smaller variance and a larger variance for rare variants.
In the context of heritability estimation [34]] argue against stratified approaches and instead recommend
modeling the variance of the SNV effects as proportional to [f;(1 — f;)]'=* for MAF f; and a power
«. Their analyses of real data suggested the value a = —0.25. This corresponds to standardizing each
SNV covariate by dividing by [fi(1 — f;)] (1=2)/2 before analyses. In the context of modelling quantitative
traits [35], proposing a double-exponential prior on SNV effects and a log-linear model for the scale
parameter of the double exponential distribution allows the scale to depend on SNV characteristics such as
annotation information. We plan to investigate the properties of both standardization and modelling of the
shrinkage parameter on data from the UK Biobank. We also plan to use the UK Biobank data to investigate
how the shrinkage parameter depends on phenotype characteristics such as prevalence and heritability.
Application of the LogF approach to data from the UK Biobank will also confirm that the methods scale to
biobank-sized datasets.
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Figure 11. Scatterplots comparing p-values from different methods on Super Seniors data. The plotting
colors represents variant categories based on minor allele frequency (MAF) threshold of 1%. For FLR and

LogF-LA, the p-value for each variant was obtained by the likelihood ratio test with a x? test statistic.

It should be noted that in our simulations we used a simplified, binary confounding variable to represent
population stratification. By contrast, the analysis of the Super Seniors data used an expanded set of
confounding variables that included sex and 10 principal components. We have also mentioned adjustment
for relatedness and population stratification by inclusion of an estimated polygenic effect as an "offset” in
the model. Another extension of interest is to use log- £ penalization for a SNV covariate of interest in a
model that uses linear mixed models (LMMs) to correct for confounding due to population structure and
genetic relatedness [36, [37]. LMMs can be viewed as regression with correlated errors, using a kinship
matrix derived from anonymous SN'Vs to model correlations. It should be straightforward to extend this
regression approach to include log-F' penalization of the SNV of interest through data augmentation.
Investigation of the properties of our approach in conjunction with LMMs is an area for future work.

In practice, identifying rare genetic causes of common diseases can improve diagnostic and treatment
strategies for patients as well as provide insights into disease etiology. Recent studies have found that
patients with low genetic risk scores (GRS) are more likely to carry rare pathogenic variants [38]. Although
GRS are currently based on common variants, our method might be of use in extending GRS methods to
include low-frequency or even rare variants of large effect sizes.

Our focus has been on single-SNV logistic regression, but log-F" penalization generalizes to multiple-
variant logistic regression. In general, we multiply the likelihood by as many log-F’ distributions as there
are covariates whose coefficient we wish to penalize. This can also be implemented by a generalization of
the data augmentation procedure described in Section 2.6 [12,39]. Such an approach may be useful for
performing the kinds of gene- or region-based tests that are commonly performed for rare variants, and
investigation of its properties is ongoing.
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FIGURE LEGENDS

eFig. 1. Comparison of log-F, standard normal and Cauchy distributions. The log-F'(m, m) density is
symmetrically bell-shaped with a single peak at zero, and its variance decreases as increasing m. As
m — 00, the distribution tends toward a point mass at zero.

eFig. 2. Natural logarithms of estimates of the marginal likelihood L(«;,, m) for one simulated dataset
generated under m = 4. Estimates are obtained by LA and Monte Carlo. Log-likelihood estimates are
plotted over the grid m = (1,1.5, ..., 10) with o) = —3.

eFig. 3. Tllustration of data augmentation in the implementation of log-F'(m, m) penalization.

eFig. 4. Scatterplot comparing the estimated values of m using the two methods over 100 simulation
replicates. Values estimated by LA are on x-axis, and values estimated by MCEM are on y-axis. Red line
isy = x.

eFig. 5. Comparison of profile log-likelihood curves obtained by the two different methods described in
text, for the first 20 simulated data sets (n = 1000). In each case the likelihood curve was generated
based on K SNVs selected in a preliminary genome-wide scan, and was smoothed by smoothing spline.
The red line connecting triangles is based on LA, whereas the black line connecting dots corresponds to
MCEM.

eFig. 6. MAF binned boxplots of bias, SD and MSE of effect size estimates for LogF and other competing
methods on simulated data. Each boxplot represents the distribution of the estimated quantity across 100
simulation replicates. MAF bins are: 1 = (0%, 1%), 2 = [1%, 5%), 3 = [5%, 10%), 4 = [10%, 25%) and
5 = [25%, 50%]. No results are available for LogF-MCEM when n = 1500 due to numerical underflow.

eFig. 7. Type 1 error and power performance over simulated data sets. (A). Each boxplot represents the
distribution of empirical type 1 error rates at nominal level 0.05 (red dashed horizontal line) across
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100 simulation replicates computed at null SNVs. (B). Power computed at causal SN'Vs. No results are
available for LogF-MCEM when n = 1500 due to numerical underflow.

oFig. 8. Manhattan plots comparing association results from different methods on Super Seniors data. The
red horizontal line represents the liberal genome-wide significance threshold (P = 5 x 107°) used to
select SNPs in the preliminary scan. For LogF-LA, 57 SNPs (green points) below the threshold are used
to estimate m in Step 1.

oFig. 9. QQ-plot comparing p-values from different methods on Super Seniors data. The p-value for FLR
and LogF-LA was obtained using the likelihood ratio test with a X% test statistic.

eSupplementary Fig. 1. ¥y, x1) is a vector containing N replicates of y and X y,x1) is a vector
containing N replicates of . W stands for the weights for each Monte Carlo replicate such that
W; = f(X.k\a;’;(p), Brj) and the offset term O = {wﬁkj};v:l.

eSupplementary Fig. 2. A. Histogram of 1000 SNV-effect-sizes used for data simulation, in which
are 5 casual SNVs and 950 null SNVs. B. Histogram of effect sizes of causal SNPs, where 8, =
925 log;y MAFy|.

eSupplementary Fig. 3. Effect sizes of 1000 SNVs generated used for data simulation by minor allele
frequency. Red dots indicate casual SNVs and blue dots indicate non-casual SN'Vs.

eSupplementary Fig. 4. Manhattan plots showing association results from LogF-MCEM on Super Seniors
data. The red horizontal line represents the liberal genome-wide significance threshold (P = 5 x 107?)
used to select SNPs in the preliminary scan. 57 SNPs (green points) below the threshold are used to
estimate m in Step 1.

eSupplementary Fig. 5. QQ-plot showing p-values from LogF-MCEM on Super Seniors data. The p-value
was obtained using the likelihood ratio test with a x? test statistic.

eSupplementary Fig. 6. Scatterplots showing effect size estimates from LogF-MCEM for Super Seniors
data. The plotting colors represents variant categories based on minor allele frequency (MAF) threshold
of 1%.

eSupplementary Fig. 7. Scatterplots comparing p-values from different methods on Super Seniors data.
The plotting colors represents variant categories based on minor allele frequency (MAF) threshold of 1%.
For FLR and LogF-MCEM, the p-value for each variant was obtained by the likelihood ratio test with a
X% test statistic.

TABLE HEADINGS

eTable 1. Computation time (elapsed time in seconds) of LogF and FLR when analyzing 1000 SNVs with
sample size 500, 1000 and 1500 using 100 simulated data sets. No results are available for LogF-MCEM
when n = 1500 due to numerical underflow.

eTable 2. MAF binned averages of bias, SD, MSE and CI coverage probability of effect size estimates
across 100 simulated data. © Coverage probability of two-sided nominal 95% confidence intervals for
log-OR coefficient. Wald CIs were used for MLE and CP, whereas profile likelihood-based CIs were used
for FLR, LogF-MCEM and LogF-LA. No results are available for LogF-MCEM when n = 1500 due to
numerical underflow.

eTable 3.
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