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Abstract
Motivation: Cancers are composed by several heterogeneous subpopulations, each one harbouring
different genetic and epigenetic somatic alterations that contribute to disease onset and therapy
response. In recent years, copy number alterations leading to tumour aneuploidy have been
identified as potential key drivers of such populations, but the definition of the precise makeup of
cancer subclones from sequencing assays remains challenging. In the end, little is known about the
mapping between complex copy number  alterations and their effect on cancer phenotypes.
Results: We introduce CONGAS, a Bayesian probabilistic method to phase bulk DNA and single-cell
RNA measurements from independent assays. CONGAS jointly identifies clusters of single cells with
subclonal copy number alterations, and differences in RNA expression. The model builds statistical
priors leveraging bulk DNA sequencing data, does not require a normal reference and scales fast
thanks to a GPU backend and variational inference. We test CONGAS on both simulated and real
data, and find that it can determine the tumour subclonal composition at the single-cell level together
with clone-specific RNA phenotypes in tumour data generated from both 10x and Smart-Seq assays.
Availability: CONGAS is available as 2 packages: CONGAS (https://github.com/caravagnalab/congas),
which implements the model in Python, and RCONGAS (https://caravagnalab.github.io/rcongas/), which
provides R functions to process inputs, outputs, and run CONGAS fits. The analysis of real data and
scripts to generate figures of this paper are available via RCONGAS; code associated to simulations
is available at https://github.com/caravagnalab/rcongas_test.
Contact: gcaravagna@units.it
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Cancers grow from a single cell, in an evolutionary process modulated

by selective forces that act upon cancer genotypes and phenotypes
(Greaves and Maley, 2012; McGranahan and Swanton, 2015). The fuel
to cancer evolution is genotypic and phenotypic cellular heterogeneity,
and much is yet to be understood regarding its effect on evolution and
response to therapy (McGranahan and Swanton, 2017; Turajlic et al.,
2019). Notably, the heterogeneity observed in cancer can also be
produced during normal tissue development, and therefore the quest for
understanding heterogeneity has implications far beyond cancer
(Martincorena et al., 2015; Martincorena, 2019).

While the evolutionary principle of cancer growth is intuitive to
conceptualise and replicate in-vivo (Acar et al., 2020), it is still hard to
precisely measure clonal evolution using sequencing technologies
(Caravagna, 2020). Even if popular single-omic assays from 10x and
Smart-Seq achieve higher resolution than bulk counterparts (Picelli et al.,

2014; Wang et al., 2019), their analysis poses many challenges
(Lähnemann et al., 2020). Nowadays, much hope is put into multi-omics
technologies that probe multiple molecules from the same cell
(Macaulay et al., 2015). Multi-omics data explicitly gather DNA and
RNA measurements per cell; unfortunately, however, such assays are still
too expensive to scale to more than hundreds of cells. An interesting
opportunity is attempting the integration of different types of single-omic
assays that, individually, already scale to thousands of cells. At least
conceptually, the statistical integration of independent assays comes
from mapping one dataset on top of another, leveraging a quantitative
model for the relation between the sequenced molecules (e.g., we may
wish to predict DNA from RNA, or vice versa).

In this work we develop a Bayesian method for total Copy Number
Genotyping from single-cells (CONGAS), which integrates total Copy
Number Alterations (CNAs) obtained from bulk DNA sequencing and
single-cell RNA data (scRNA) from independent cells (Figure 1a). Our
method is similar to clonealign, which uses two single-cell assays to
assign scRNA profiles to tumour clones predetermined from low-pass
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single-cell DNA sequencing (Campbell et al., 2019). CONGAS and
clonealign conceptualise the same linear model to link total CNAs - i.e.,
the sum of the major and minor allele copies (Househam et al., 2021) -
with RNA counts, but while clonealign fixes the set of clones from its
input and is therefore supervised (Supplementary Figure S1), CONGAS
is unsupervised and finds new clusters by leveraging Bayesian priors
from the input bulk (Figure 1b). Precisely, CONGAS uses input CNAs to
define the genome segmentation and parametrise a prior for total CNAs
of each segment - then each cluster has its posterior distribution over the
ploidy of the segments. We note that the extra input for CONGAS can be
generated from a routine low-pass bulk DNA assay, which is much
cheaper then the single-cell counterpart required by clonealign.

With CONGAS we formulate an unsupervised clustering problem: we
seek to group cells with segment-level RNA profiles that can be
explained by similar CNAs (Figure 1c,d), inferring CNAs and clusters
jointly. There are methods that are alternative to CONGAS, for instance
InferCNV, HoneyBADGER, CASPER and copyKAT, that detect CNAs
by segmenting scRNA counts (Fan et al., 2018; Serin Harmanci et al.,
2020). These methods however decouple CNA detection from clustering,
requiring to select the number of optimal clusters with some heuristic.
Instead, CONGAS detects subclonal CNAs and clusters cells in a unified
model, therefore integrating uncertainty with its Bayesian formulation.
Compared to some of the alternative methods CONGAS also has the
advantage of working without reference scRNA expression; this avoids
using RNA tissue databases, or requiring normal cells in the input
scRNA assay. Therefore CONGAS can be applicable in designs where
the normal signal is difficult to obtain, e.g., with cancer organoids.
CONGAS can associate CNA-associated cancer subclones to
transcriptomic profiles, providing an explicit mapping between genotype
and phenotype at the clone level. This is particularly important in cancer,
where we want to characterise how chromosomal instability drives
tumour evolution (Watkins et al., 2020), or, where we want to understand
how pre-cancerous cells can be causally linked to the onset of cancer
(Martincorena, 2019).

2 Methods
The aim of CONGAS is to statistically integrate DNA and RNA
measures for every cell, deriving a measure of total DNA abundance per
segment (i.e., total copy number) and RNA counts per cell. This accounts
for emulating a DNA-RNA multi-omics assay, which we use to cluster
cells whose RNA profile can be explained by similar copy numbers.

2.1 CONGAS
CONGA is a Bayesian method that “genotypes” bulk CNAs on top of
scRNA data; The term genotyping elicits the use in CONGAS of an
input set of CNAs obtained from bulk DNA sequencing, here used to
create Bayesian priors. A vector of input total copy number profiles
drives the calling of subclonal CNAs from single-cells, in a way that new
CNAs can be obtained as ploidy changes with fixed breakpoints. In
particular, breakpoints are used to pool RNA counts per segment, and
bulk-level total copy numbers constitute a Bayesian prior per segment.
Therefore, the model is able to infer variations of single-cell CNAs
around the input bulk. The CONGAS likelihood is a mixture of 𝐾 > 0
Poisson distributions for scRNA counts per-segment, and works also
with data normalised in common units; the likelihood is conditioned on
the latent CNAs that we infer for each of the cluster, and normalises𝐾
counts for library size and number of genes per segment if required.

Figure 1. a. CONGAS works with 1) total CNA data (ploidy values per segment)
from a bulk DNA assay and 2) single-cell RNA sequencing data (scRNA). The two
assays are generated from independent cells of the same starting sample. The aim is
to identify CNA-associated subclones from RNA counts. b. CONGAS is a
Bayesian unsupervised method to identify clusters of cells whose differences in
scRNA counts can be explained by total CNAs. Subclonal CNAs are here inferred
at the resolution of the input segments. c,d. Assume subclones C1 and C3 differ for
a portion of DNA (right segment): C3 has a subclonal LOH (A genotype), where
C2 is heterozygous diploid (AB genotype). CONGAS identifies CNAs by
examining total RNA counts mapped to segments: subclone C3 shows fewer RNA
counts on the deleted segment, and the subclones have similar RNA counts on the
segment where both clones are heterozygous diploid (left segment).

A low-pass bulk DNA assay to generate the input CNAs required for
CONGAS is inexpensive. If this is unavailable, RNA segmentation can
also be attempted, or an arm-level segmentation with constant ploidy 2
can be used to detect large CNAs. Input CNAs simplify the statistical
inference problem and avoid the segmentation of noisy single-cell RNA
data. The model chases subclonal populations that show different total
CNAs at the resolution of the input segments. For instance, it can detect
a subclonal population underlying a loss of heterozygosity (Figure 1b).
After pooling RNA counts on every segment (Figure 1c), under a linear
model that links DNA abundance to RNA counts (Campbell et al., 2019),
we use Poisson distributions parameterized by unobserved copy number
values to explain counts (Figure 1d). By this definition clonal CNAs -
i.e., present in 100% of the input cells - show the same RNA signal and
cannot be detected unless normal cells are in the sample (e.g., tumour
versus normal). Nonetheless, the difference across subpopulations can be
still captured wherever present (e.g., tumour subpopulation 1 versus
tumour subpopulation 2).

The model likelihood with the usual independence assumption among
cells and segments is

2
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Figure 2. a. CONGAS synthetic tests with different subclonal architectures, obtained sampling clone trees with variable number of nodes. The degree of tumour
heterogeneity is tuned by an evolutionary distance, which counts the number of CNAs that a subclone acquires, relative to its ancestor. The bulk input profile for CONGAS is
generated by considering CNA segments from the most prevalent clone. We scan models with up to 9 clones, with distance ranging from 1 to 4. The performance is measured
by using the adjusted rand index (ARI) between simulated and retrieved cell assignments. The heatmap reports the mean. b. Smoothed density for the percentage of cluster
labels matched in every simulation, split by simulated tumour trees of increasing distance to mimic subclonal complexity c. CONGAS, inferCNV and copyKAT were run on a
set of synthetic scRNA-dataset with 500 cells and a linear model for CNA effect on expression. Overall, CONGAS obtained the highest ARI score, and all other methods
overestimated the true number of clusters in the data. d. The same simulations from panel (c) were re-clustered by cutting the dendrogram generated in output by copyKAT
and inferCNV using the actual number of clusters. Despite the improvement in performance, especially for little , CONGAS (unsupervised) continues to perform better than𝑘
the other two tools. e. CONGAS and clonealign (supervised) were tested on a set of simulated dataset with the same generative process as in panel (b). For clonealign we
tested three scenarios where we input the ground truth data (“no noise”), the ground truth data upon stochastically flipping subclonal CNAs (“noise”), a subset of the original
subclones (“partial”). We observe that the ARI of both methods equates until many clones are present (>5); the performance of clonalign partial degrades largely. f.
Performance of CONGAS in detecting clusters based on cellular proportion. Cases with accuracy above 70% are marked, showing the relation between cluster size and
probability of detection. The blue line represents a logistic regression curve fit on the observed probability. The data is the same as panels (c,d).

Here Y is the input data matrix of RNA counts, which describe𝑁 × 𝐼 𝑁
sequenced cells and input segments (mapped anywhere on the𝐼
genome). Counts on a segment are summed up by pooling all genes𝑦

𝑛,𝑖
that map to the segment; with cumulative counts we rarely observe

0-counts segments, which allows us to avoid zero-inflated distributions
(Sarkar and Stephens 2020). The segment likelihood is

where the model uses , a Gamma-distributed latent variable whichθ
𝑛

models the library size for cell , and for the number of genes in𝑛 µ
𝑖

segment (a constant determined from data). In CONGAS C is the clone𝑖
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CNA profile for clones, where each clone is defined by segments and𝑘 𝐼
associated CNAs; the prior for C is a log-transform of a normal
distribution, consistently with the fact that ploidies are positive values. In
this formulation Z are the latent variables that assign cells to𝑁 × 𝑘
clusters, and the -dimensional mixing proportions (Supplementaryπ 𝑘
Figure S2). Based on this modelling idea we also built alternative models
that can process input data when these are already corrected for library
size (e.g., in units of transcripts or read fragments per million) using
Gaussian likelihoods; see Supplementary Materials.

Another way of thinking of the denominator in the formula is, given that
all the effects are linear, as a matrix decomposition of the input. Note that
here the denominator is omitted.

CONGAS parameters are learnt via stochastic variational inference (Blei
et al., 2017). The model joint distribution can be factored as

𝑝(𝑌, 𝑍, 𝐶, θ, π) = 𝑝(𝑌|𝐶, θ, π)𝑝(𝑍|π)𝑝(π)
𝑖𝑘
∏𝑝(𝑐

𝑖𝑘
)

𝑛
∏𝑝(θ

𝑛
)

and in the variational framework latent variables are approximated as
variational distributions , supposed to be independent and𝑞(𝑍, 𝐶, θ, π)
factorizable. The prior distributions for our latent variables are:

● , where is the input CNA value𝑝(𝑐
𝑖𝑘
)~𝐿𝑜𝑔𝑁𝑜𝑟𝑚(𝑚

𝑖𝑘
, 𝑣) 𝑚

𝑖𝑘
from bulk DNA, and the variance governs how far the𝑣
actual CNAs can be compared to input (default );𝑣 = 0. 5

● , a scarcely informative prior that𝑝(θ
𝑛
)~𝐺𝑎𝑚𝑚𝑎(𝑒

𝑠
, 𝑒

𝑟
)

works well in most cases (default , );𝑒
𝑠
= 3 𝑒

𝑟
= 1

● , a prior over cluster distributions, by𝑝(π)~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝑟)
default all assumed to have equal proportions (i.e. ).𝑟 = 1/𝑘

The CONGAS model is implemented in 2 open-source R/Python
packages. One, called CONGAS, implements the model in the Pyro
probabilistic programming language, a backend that allows running on
both CPU and GPU (Bingham et al., 2019). A frontend R package,
called RCONGAS, provides functions for data pre-processing,
visualisation and model inference.

3 Results

3.1 Synthetic simulations
Generative model. We tested CONGAS by simulating synthetic data
from its generative model, emulating a common 10x assay (1000 cells)
for tumours of various complexity. Overall, we could retrieve the
generative model in a number of scenarios for tumours with up to 5
CNA-associated subclones, evolving both linearly and branching (Figure
2a). The performance was measured via the Adjusted Rand Index (ARI),
the ratio of agreements over disagreements in cell clustering
assignments, and was consistent with other information-theoretic scores
(Supplementary Figure S3). Clustering assignments were stable across a
number of configurations of different subclonal complexity (Figure 2b).

CONGAS could also work with Negative Binomial overdispersed data, a
violation of its Poisson model. Performance clearly increased for lower
dispersion, plateauing for non-dispersed data (Supplementary Figure S4
and Supplementary Figure S5). We also tested how errors in the input
segmentation affects deconvolution. Precisely, we generated subclonal
CNAs that were shorter than the input bulk segments, so that only a
percentage of genes mapping to a segment were showing a signal in

RNA data (from 10% to 90% of mapped genes). This is another test-case
where the assumptions of CONGAS are violated. We observed good
performance when >40% of the genes that map to a segment are
associated to the subclonal CNA (Supplementary Figure 4 and
Supplementary Figure S6), which suggests that genotyping focal
amplifications that involve a handful of genes might be hard, while larger
CNAs are generally identifiable even with imperfect segmentation.

scRNA-based tools. We compared CONGAS against InferCNV and
copyKAT, two popular CNA-calling methods for scRNA, using an
independent single-cell RNA simulator to avoid biases (Zappia et al.,
2017). We tested the performances with 500 cells from a variable
number of subclones, assuming a linear model for the CNA-expression
dependency. Overall, CONGAS obtained the highest ARI (always above
0.75 in all configurations), showing the ability to recover the real clusters
in most cases. In general, CONGAS performance was particularly good
in settings with <7 subclones, with clear difference to inferCNV. In those
cases inferCNV showed a tendency to overestimate the real number of
clusters by a factor of 2 (i.e., one false cluster for every true one), while
CONGAS retrieves on average the exact number of subclones in the
data. copyKAT showed slightly worse performance than inferCNV. From
tests, we also observed that the probability of miscalling a cluster goes to
zero as the size of the cluster increases, as corroborated by the fact that
most of the clusters missed by CONGAS had less than 25 cells, and were
therefore too small (<5% of the simulated cells) to detect (Figure 2c and
2f, Supplementary Materials). To avoid our conclusions being derived
solely from using different model selection criteria, we compared the
performance of inferCNV and copyKAT on the same dataset of
simulations used previously, but this time giving the dendrogram cutting
algorithm the true number of clusters. We indeed observed that the
performances, especially for inferCNV, increase a lot for low . Instead𝑘
for the ARI does not improve and in some cases ( )𝑘 > 10 𝑘 = 12
decreases (Figure 2d, Supplementary Materials).

clonealign. We compared CONGAS (unsupervised) against clonealign
(supervised) using synthetic simulations and 3 possible inputs (Figure
2e, details in Supplementary Materials) in order to capture different
qualities for the supervision set of clonalign. We considered i) the ideal
input, when clonealign knows all the simulated clonal profiles (perfect
clustering from scDNA-seq), ii) a noisy input, where we applied noise to
the clonal profiles, simulating more realistic noisy scDNA-seq clustering
and iii) a partial information, where only a subset of the real input
profiles is given to clonealign. This last case simulates imperfect
clustering from scDNA-seq (missing clones); this type of input could
also mimic usage of a subclonal copy number caller from bulkDNA-seq
(instead of scDNA-seq), where we call certainly fewer clusters than with
a single-cell assay (Supplementary Materials).

We again generated assays with 500 cells using the same CNA model as
the previous simulations. As expected, with prefect data clonealign has
better ARI when the number of clones increases; in these cases since
cluster size decreases with fixed number of cells, CONGAS is not able to
separate well some clusters. Clonealign seems also very robust with
respect to the adopted noise. On the other hand, when we simulate more
realistic partial input profiles, the performance of clonealign decreases
rapidly and proportionally to the number of clusters in the original data,
and the performance of CONGAS is higher. Further comparison between
the two tools are discussed below on real data collected from one
triple-negative breast cancer.

3.2 Subclonal CNAs in a triple-negative breast xenograft
We used CONGAS to analyse a triple-negative breast cancer dataset
generated with 10x technology; we use this case study to validate our
method against single-cell low-pass DNA data, used initially for
clonalign (Campbell et al., 2019) This dataset is the patient-derived
xenograft SA501X2B collected from patient SA501, and has been used
before to determine clone-specific phenotypic properties that associate
with a complex clonal architecture, also validated by reproducing clonal
dynamics over serial xenograft passages (Eirew et al., 2015). From
low-pass whole-genome CNA calling, the authors estimated three
genetically-distinct clones (prevalence 82.3%, 10.8%, and 6.9%); one
clone sweeping in next engraftments.

4
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To run CONGAS we retrieved the input genome segmentation from the
largest clone identified in the original paper (82.3% of the cells). After
retaining segments with at least 10 mapped genes and performing quality
control, we retained cells from which we could identify two of𝑛 = 503
the three clones (Figure 3a). The signals identified by CONGAS are clear
across multiple segments, with particular strength on chromosomes 15,

Figure 3. a. CONGAS analysis of cells from a 10x assay from a𝑛 = 503
triple-negative breast xenograft, where populations are identified with𝑘 = 2 380
(~75%), and cells (~25%). The heatmap shows input raw RNA counts123
(normalised per segment, with z-score) on chromosome 15, 16 and 18 where
differences among CNAs are detected across the two subclones (red boxes). b.
RNA transcripts count for the genes mapping to a segment on chromosome 15, and
one on 16. The densities on top of the histograms are the Poisson mixtures inferred
by CONGAS. c. Genome-wide clone-specific Differential Expression analysis
highlights dysregulated genes with adjusted and absolute𝑛 = 212 𝑝 < 0. 01
log-fold change (LFC) >0.25 (up-regulation) or <0.25 (down-regulated); notice that
some of those genes do not overlap with CNAs that characterise the populations.

16 and 18 (two-sided Poisson test, , Figure 3b). This is𝑝 < 0. 001
consistent with low-pass analysis (Campbell et al., 2019), validating our
inference (Supplementary Figure S7, S8). Our analysis however does not
detect the third subclone from the original analysis; this was explained
by observing that subclonal CNAs defining that population contain <10
genes, and have been removed from data. We note however that this
cluster is poorly supported also in (Campbell et al., 2019), which reports
assignment uncertainty between the second largest clones and this
population. Moreover, we tested if clonealign could have been used with
a bulk whole-genome, instead of a low-pass single-cell one, to detect
such cluster. In particular, we run the sublonal copy number caller
ReMixT (McPherson et al., 2017) on bulk data from the primary tissue
of SA501, and used its results as input for clonealign. Consistently with
our analysis, in this case the tool was unable to discriminate the different
populations (Supplementary Figure S7).

The populations identified by CONGAS show significant differences in
RNA counts (Figure 3b, Supplementary Figure S9): the largest subclone
consists of cells (~75%), and the smallest one of𝑛 = 380 𝑛 = 123
(~25%). We also performed clone-specific differential expression
analysis with the DeSeq2 (Love et al., 2014) and found (Figure 3c) 122
genes significantly upregulated or downregulated using a Wald test over
negative binomial coefficients (adjusted via𝑝 < 0. 001
Benjamini-Hochberg correction), imposing absolute log fold change
(LFC) >0.25 to determine the regulatory state (Figure 3c). Note that
some of these genes do not overlap with CNAs, and therefore could only
be marginally explained by genetic changes. Instead, they might be
explained by more complex regulatory mechanisms indirectly linked to
these, and other events. Library factors were also found quite variable
across cells (Supplementary Figure S11).

We tested these data with inferCNV and copyKAT as well. Consistently
with trends observed in simulations, while the true CNAs are identified
even by these methods, the final number of clones is overestimated and
spurious clusters are reported (Supplementary Materials, Supplementary
Figure S12 and S13).

3.3 Tumour normal deconvolution in primary glioblastoma

We used CONGAS to analyse the glioblastoma Smart-Seq data released
in (Patel et al., 2014). This dataset consists of cells from five𝑛 = 430
primary glioblastoma, from which we analysed patient MGH31 (𝑛 = 75
cells). MGH31 was chosen as it harbours subclones, according to both
the original paper and a successive analysis (Fan et al., 2018). With this
scRNA CONGAS was mainly challenged by i) the lack of an input CNA
segmentation, and ii) the presence of normal cells in the assay (also
known from the original analysis). To process this sample we have
created a simple pipeline around CONGAS.

We have first developed a variational Hidden Markov Model to segment
B-allele frequencies from germline single nucleotide polymorphisms
called by scRNA (Supplementary Material). In this way we obtained
segments with evident losses of heterozygosity, as well as large
amplifications on chromosomes 7, 10, 13 and 14 (Supplementary Figure
S14). In a first run (Figure 4b), CONGAS identifies clusters from𝑘 = 3
all cells (normal plus tumour); one of them ( ) lacked any CNA.𝑛 = 10
The very same set of cells were classified as “normal” by a comparison
with a healthy reference (Fan et al., 2018). We removed normal cells and
re-run CONGAS on the remaining tumour cells, finding distinct𝑘 = 3
subclones (Figure 4a-c). These two-steps results were consistent with a
solution with clusters, obtained in the first run. Manual𝑘 = 4
phylogenetic reconstruction after CONGAS suggested an early
branching from an ancestor harbouring chromosome 7+ (amplification)
and 10- (deletion). Clones then branched out: one sustained by 5+ (34%
of cells), while a linear path described the evolution of two nested clones
with increasing aneuploidy (with the largest subclone with 34% of cells),
distinguished by 14- but harbouring the same deletion on chromosome
13 (Supplementary Figure S14).

The DE analysis of these few cells was inconclusive due to the small
number of sequenced cells (data not shown); nonetheless this 2-steps
analysis shows how CONGAS can perform signal deconvolution in the
presence of normal contamination of the input sample. This is interesting
and consistent with the fact that the method can work without a reference
normal expression.

We note that this data have been analysed also with inferCNV,
honeyBADGER and CaSpER (Fan et al., 2018; Serin Harmanci et al.,
2020; Patel et al., 2014). In all three cases, however, only two clones
were found, one characterised by 5+, and another characterised by 13-
and 14-, in substantial agreement with our analysis. However, our
analysis is higher-resolution, since it splits the latter clone based on the
presence or absence of 13- (Supplementary Figure S13).
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3.3 Monosomy of chromosome 7 in hematopoietic cells

To show the versatility of CONGAS we have also analysed mixtures of
non-cancer cells collected within one experiment associated with the
Human Cell Atlas project (Rozenblatt-Rosen et al., 2017). In this case
the dataset provides scRNA from hematopoietic stem and progenitor
cells from the bone marrow of healthy donors and patients with bone
marrow failure. We focused on one patient (patient 1) with severe
aplastic anaemia that eventually transformed in myelodysplastic
syndrome, and for which cytogenetic analyses revealed monosomy of
chromosome 7, a condition that increases the risk of developing
leukaemias (Zhao et al., 2017).

Figure 4. a. CONGAS two-steps analysis of cells from a SmartSeq assay𝑛 = 75
of a glioblastoma. The analysis first identifies normal cells in the sample, and then
re-clusters tumour subclones; in the end subclones are identified with 32, 23𝑘 = 3
and 10 cells. The heatmap shows input raw RNA counts (normalised per segment,
with z-score) for a segmentation obtained directly from B-allele frequencies in
RNA, and clusters from the first run (normal cells have no CNAs). b. Sankey plot
of clustering assignments for the two runs. Cluster C3 from the first run are normal
cells; tumour clusters are consistent across both steps of the analysis. c. RNA
transcripts count for the genes mapping to a segment on chromosome 20, and one
on 14. The densities on top of the histograms are the Gaussian mixtures inferred by
CONGAS, here used instead of Poisson because data were normalised.

To analyse this data we pooled patient 1 together with one healthy donor,
gathering total cells (Supplementary Figure S15). This gives𝑛 = 101
CONGAS both diploid cells (control, from the health patient), and cells
with chromosome 7 deletion.

This dataset comes without a suitable input segmentation, so we used full
chromosomes (arm-level segments) with a diploid prior. Aneuploid cells

were clearly distinguished from diploid cells by CONGAS, which found
clusters. One, containing diploid cells from both patients, the𝑘 = 2

other cells from patient 1 that are associated with monosomy of
chromosome 7. Clone-specific differential expression performed as for
the breast xenograft reported 99 genes differentially expressed at
significance level , and with absolute log-fold change >0.25.𝑝 < 0. 01
Interestingly, the top dysregulated genes were not expressed in the
aneuploid chromosome, suggesting that an integrated study of
transcriptomics and CNAs could lead to a better understanding of how
these genomic events - which have considerable dimension - can alter
cellular behaviour across different pathways and functional modules.

4 Discussion

In this paper we presented CONGAS, a Bayesian method to detect CNAs
that can cluster single-cell RNA sequencing profiles, opening the way to
study tumour subclonal composition at the single-cell copy number level.
CONGAS requires inputs that can be generated by following a split
design, leveraging both bulk and single-cell assays. In this way, the
inference is easier and more precise compared to methods that call CNAs
directly from scRNA. The method compares also against methods that
assign single-cell RNA to subclonal CNA profiles, with the main
advantage of being unsupervised. In this sense, input clonal CNAs are
used to build a Bayesian prior to detect subclonal CNAS in single cells.
In other approaches, instead, the clusters are pre-determined and cannot
mutate during the cell-assignment process.

CONGAS also has other interesting features. First, it does not require a
normal RNA reference from a matched tissue, or the presence of normal
cells in the sample. This means that it can find subclones with different
CNAs regardless of reference expression, a major advantage in organoids
designs where we do not collect non-tumour cells (Vlachogiannis et al.,
2018). Second, CONGAS reconciles copy number heterogeneity from
RNA using a probabilistic model for cell assignment. Compared to
callers that do not attempt clone detection or that separate calling from
clustering, the advantage is that uncertainty is modelled in a unique
framework, both for copy number estimation and clustering assignments.
Third, the method uses a powerful probabilistic programming backend to
scale to thousands of cells, overcoming computational limitations of
other methods (Supplementary Figure S15 and S16).

CONGAS can be used to curate clonal evolution models (Caravagna et
al., 2018, 2016), or to assess clone-specific phenotypic signatures at the
RNA level. This mapping comes out as a byproduct of the integration of
genetic copy number events together with RNA data. With CONGAS
one detects CNA-associated subclones and their patterns of differential
expression, a key step to study how selective pressures shape genotype
and phenotype evolution in cancers (Caravagna et al., 2020). In addition,
CONGAS is also able to correctly estimate the magnitude of subclonal
copy-number events. Which together with the input segmentation
obtained from bulk sequencing, allow the estimation of the subclonal
karyotypic profiles. (Supplementary Figure S17, Supplementary
Materials).

This work offers a complementary perspective to DNA-only methods, for
which many single-cell CNA detection algorithms have been developed
(Zaccaria and Raphael, 2020; Kuipers et al., 2020; Wang et al., 2018;
Garvin et al., 2015; Macintyre et al., 2018). Working with DNA, these
methods can infer a de novo segmentation of the tumour genome - i.e.,
without prior input segmentations - and in the future it will be key to
integrate ideas at the core of these models together with
RNA-genotyping methods such as CONGAS. Notably, in this work we
also show - across multiple case studies - that we can determine
clone-specific differentially expressed genes that can be explained only
partially by copy numbers, pointing to complex non-trivial regulatory
mechanisms that link genotype states with expression patterns. Our
method provides a solid statistical framework to approach this type of
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investigation, which is crucial to determine disease clonal dynamics, as
well as cell plasticity and patterns of drug response from the large wealth
of single-cell data available nowadays.
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