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Abstract 31 

 32 

Sexual systems are highly diverse and have profound consequences for population dynamics 33 

and resilience. Yet, little is known about how they evolved. Using phylogenetic Bayesian 34 

modelling and a sample of 4614 species, we show that gonochorism is the likely ancestral 35 

condition in teleost fish. While all hermaphroditic forms revert quickly to gonochorism, 36 

protogyny and simultaneous hermaphroditism are evolutionarily more stable than protandry. 37 

In line with theoretical expectations, simultaneous hermaphroditism does not evolve directly 38 

from gonochorism but can evolve slowly from sequential hermaphroditism, particularly 39 

protandry. We find support for the predictions from life history theory that protogynous, but 40 

not protandrous, species live longer than gonochoristic species and invest the least in male 41 

gonad mass. The distribution of teleosts’ sexual systems on the tree of life does not seem to 42 

reflect just adaptive predictions, suggesting that adaptations alone may not fully explain why 43 

some sexual forms evolve in some taxa but not others (Williams’ paradox). We propose that 44 

future studies should incorporate mating systems, spawning behaviours, and the diversity of 45 

sex determining mechanisms. Some of the latter might constrain the evolution of 46 

hermaphroditism, while the non-duality of the embryological origin of teleost gonads might 47 

explain why protogyny predominates over protandry in teleosts. 48 

 49 

 50 
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Introduction 53 

 54 

Sexual reproduction is a unifying feature of eukaryotes1 and yet it is extremely diverse2. Sexual 55 

systems (also known as “sexual patterns”), defined as the pattern of distribution of the male 56 

and female function among the individuals of a given species, vary from separate fixed sexes 57 

(known as gonochorism in animals and dioecy in plants) to simultaneous hermaphroditism 58 

(each individual produces both male and female gametes at the same time). These two sexual 59 

systems can be viewed as the extremes in a sexually plastic gradient3 of intermediate systems 60 

(sequential hermaphroditism) and mixed systems (coexistence of males and/or females with 61 

hermaphrodites)4,5. Sexual systems have a profound influence on individuals’ mating success 62 

and fitness6, population sex ratios and effective sizes7, as well as colonization events and 63 

habitat use8. As a result, sexual systems influence the population dynamics and resilience to 64 

natural and anthropogenic stressors of ecologically and commercially important species that 65 

are often endangered or overexploited9. 66 

Hermaphroditism is predominant in flowering plants (angiosperms)10, where 94% of 67 

the species have male and female sex organs in the same individual/flower, and it is widespread 68 

in invertebrates and teleost fish (the only vertebrates to exhibit hermaphroditism11), totalling 69 

5% of animal species or up to ~30% if insects are excluded12. While this diversity suggests 70 

multiple evolutionary transitions between sexual systems in response to selection, current 71 

evolutionary models on the adaptive advantage of different sexual systems explain little about 72 

how and why sexual systems evolve and thus their large-scale distribution across the tree of 73 

life. This might indicate that adaptive predictions alone fail to fully explain why some sexual 74 

forms evolve in some taxa but not others (Williams’ paradox)4,13. Therefore, unravelling the 75 

evolutionary history of sexual systems and quantifying how frequently and in what direction 76 

transitions occur is key to revealing which sexual systems are evolutionarily labile or stable, 77 

elucidating how one changes into another over evolutionary time, and identifying the 78 

environmental, genetic and developmental drivers favouring or opposing these changes. Yet, 79 

our understanding of how sexual systems evolve is still limited, particularly in animals.  80 

Theoretical models, initially developed for plants, suggest that simultaneous 81 

hermaphroditism and dioecy are evolutionary stable conditions that are retained over long 82 

evolutionary time and unlikely lost once evolved, while mixed sexual systems represent 83 

evolutionary intermediate stages4,5,14 (Fig. 1). 84 

  85 
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  86 
 87 

 88 

Fig. 1. Theoretical framework for the evolution of sexual systems: potential evolutionary 89 

transitions between gonochorism and simultaneous hermaphroditism via mixed systems 90 

(mixed pathways) as described in plants and some animals; via sequential hermaphroditism 91 

(sequential pathways) as recently suggested4; or without intermediate states (direct pathways) 92 

as proposed for plants6. Double-headed arrows indicate theoretical pathways.  93 

 94 

Simultaneous hermaphroditism is likely the ancestral state in angiosperms from which 95 

dioecy, a rare sexual system in plants6, has evolved independently several times, possibly to 96 

avoid inbreeding15,16. Theoretical models predict that separate sexes in plants evolve from 97 

hermaphroditism in different ways: 1) primarily through the intermediate state of gynodioecy17, 98 

a common sexual system in plants that occurs when a male-sterile mutant invades an 99 

hermaphroditic population resulting in the coexistence of hermaphrodites and females; 2) 100 

through androdioecy, a less common system18,19 in which mutations resulting in female sterility 101 

lead to the coexistence of hermaphrodites and males; 3) via trioecy, i.e., the coexistence of 102 

hermaphrodites, males and females, which is very rare; and 4) less frequently, via a direct 103 

transition6,10 (Fig. 1). However, in animals no evidence of a direct transition between 104 

hermaphroditism and gonochorism exists. Once gained, dioecy was believed to be an 105 

irreversible condition20, a conclusion based on the assumption that returning to a simultaneous 106 

expression of male- and female-specific genes would likely produce contrasting effects on sex-107 

specific physiology. Recent studies, however, reject this claim in plants, as phylogenetic 108 
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reconstructions of direct transitions from dioecy/gonochorism to simultaneous 109 

hermaphroditism have been documented10,21. 110 

The same theoretical framework with mixed pathways has been proposed also for 111 

animals where, in contrast to plants, gonochorism is the most common sexual system, 112 

androdioecy is more common than gynodioecy5,14 and trioecy is very rare22. However, several 113 

reproductive characteristics in plants differ substantially from those in animals23, albeit 114 

similarities can be found in some invertebrates24; hence, different theoretical frameworks are 115 

required (Fig. 1). Furthermore, evolutionary transitions between sexual systems in teleost fish 116 

(~34000 species, comprising the overwhelming majority of the ray-finned fishes, 117 

Actinopterygii)25, might be less likely to occur via a mixed pathway (Fig. 1) given that in this 118 

group only a few killifish species of the genus Kryptolebias (formerly Rivulus) are truly 119 

androdioecious5,26,27. Beyond teleosts, the presence of gynodioecy and trioecy among 120 

vertebrates is still debated in the jawless hagfish Myxine glutinosa (Myxini)14,28. Recently, 121 

sequential hermaphroditism has been suggested as a possible intermediary state that may 122 

facilitate evolutionary changes between gonochorism and simultaneous hermaphroditism4 123 

(Fig. 1). However, phylogenetic studies on the evolution of hermaphroditism at large scale do 124 

not typically discriminate between the different forms of hermaphroditism and treat sexual 125 

system as binary trait29. Thus, we currently have no robust large-scale study on the evolution 126 

of sexual systems in animals and we do not know whether sequential hermaphroditism 127 

represents an evolutionary intermediate stage between gonochorism and simultaneous 128 

hermaphroditism, whether protogyny and protandry act equally as transitional forms between 129 

the two, and whether gonochorism and simultaneous hermaphroditism are evolutionary stable 130 

conditions in animals as they are in plants. 131 

 The evolution of hermaphroditism in animals has mostly been interpreted in the context 132 

of its adaptive advantages relative to gonochorism, as proposed by the low density and the size 133 

advantage models30. The former predicts that simultaneous hermaphroditism evolves under 134 

low population densities and/or low dispersal capacity as, in these conditions, individuals with 135 

this sexual system can maximize their chances of securing a mate compared to sex-changing 136 

or gonochoristic individuals31. Note, however, that advantages of self-fertilizing simultaneous 137 

hermaphrodites may be offset by increased risk of inbreeding. The size advantage model 138 

proposes adaptive explanations for the evolution of sequential hermaphroditism based on the 139 

relationship between size and fecundity30,32–34. Specifically, since most fish, including 140 

sequential hermaphrodites, have indeterminate growth35 (i.e., they can keep growing as far as 141 

food resources and environment allow) sex change should be favoured when the reproductive 142 
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value of an individual depends on size (and thus age), and this affects in particular one of the 143 

sexes. Thus, individuals change from a smaller first sex to a larger second sex and the direction 144 

of sex change depends on the sex that maximizes its reproductive value with a larger size36. 145 

The size advantage model has been supported in crustaceans37, molluscs38 and teleost fish39.  146 

The interdependence between size, fecundity and fitness is affected by a species’ 147 

mating system, defined as the pattern of sexual interactions given the number of reproducing 148 

males and females (Table 1). Therefore, among sequential hermaphrodites, protandry (male-149 

to-female sex change) is usually expected in species that reproduce in monogamous or random 150 

pairs and where individuals switch from small males to large, highly fecund females, achieving 151 

higher reproductive potential. Conversely, protogyny (female-to-male sex change) is usually 152 

expected in polygynous/group-mating species, where small females become large dominant 153 

males that monopolize females, often grouped in harems (Table 1). In both systems, cases exist 154 

with a few individuals born directly as the second sex. Specifically, in digynic protandrous 155 

species, primary females directly develop as such and secondary females develop from males 156 

after sex change40. Likewise, in diandric protogynous species, primary males develop directly 157 

as such whereas secondary males develop from females after sex change41.  158 

Crucially, life history traits underpin the formulation and assumptions of the size 159 

advantage model. Life history theory is central to the study of sexual systems evolution since 160 

it allows to derive clear predictions about why and when individuals should allocate energy 161 

among different life history traits, including sexual functions, to optimize fitness42. However, 162 

life history traits are surprisingly not explicitly and formally incorporated in the size advantage 163 

model, nor tested in empirical studies13. Longevity, maximum size and age/size at maturity are 164 

key life history traits because they determine individual fitness, influence demographic 165 

parameters of populations43 and impact on populations’ genetic diversity44. These traits evolve 166 

and are under several selective forces at the population level, but differences in the intensity of 167 

selection among species can lead to large-scale diversity, thus allowing large-scale comparative 168 

studies to inform our understanding of how and why they evolved45. Since sequential 169 

hermaphrodites achieve higher fitness when reproducing as the second sex36 (hence the 170 

advantage of changing sex), they should, on average, benefit more than gonochoristic and 171 

simultaneous hermaphroditic species from increased longevity (overall and/or as the second 172 

sex in particular) or larger size (especially in protandry where females are the larger sex ad size 173 

give fecundity advantage). In general, larger females tend to produce more eggs than smaller 174 

ones both within and across species46, while larger males do not necessarily increase as much 175 

their sperm production with size. In males, larger size gives an advantage to secure 176 
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dominance/change sex (and increase fertilization rates), but not necessarily fecundity. 177 

Alternatively, sequential hermaphrodites could mature, on average, earlier as the first sex 178 

compared to the same sex in gonochoristic species and capitalize on reproduction as second 179 

sex. These predictions, however, remain to be tested.  180 

Although exceptions occur, spawning behaviour, i.e., how the two sexes interact to 181 

release the gametes, can be broadly classified in fish as pair spawning, involving only two 182 

individuals at the time, and group spawning, comprising large breeding groups47 (Table 1). 183 

Mating system and spawning behaviour together determine the intensity of direct male-male 184 

competition and sperm competition (i.e., the competition between the sperm of two or more 185 

males for fertilization of the same eggs), and thus certainty of paternity. Sperm competition is 186 

a key selective force shaping male reproductive anatomy, physiology and behaviour across 187 

diverse animal groups48,49. In general, sperm competition is assumed to be low in haremic 188 

systems39,50,51 where large dominant males can better monopolize groups of females (pair 189 

spawning) with no or limited competition by other males52. Likewise, low sperm competition 190 

is expected under monogamy. Group spawning is commonly found in promiscuous mating, 191 

leading to intense sperm competition53 as many males try to fertilize the eggs of multiple 192 

females. The intensity of sperm competition has been incorporated in the size advantage 193 

model54 as it can play a significant role in the advantage of protogyny: changing sex from 194 

female to male should be more advantageous when paternity assurance is high due to reduced 195 

sperm competition55. Consistent with these predictions, the gonadosomatic index (GSI), 196 

defined as the percentage of body mass devoted to the gonads56 and a reliable indicator of the 197 

intensity of sperm competition57, is significantly lower in protogynous teleost species than in 198 

gonochoristic congeners51,52,58. However, protandrous teleost fish do not always conform to 199 

theoretical expectations, exhibiting higher GSI as males than expected52. We have recently 200 

proposed that, at least in the family Sparidae, high male GSI in protandrous fish can be 201 

explained not only by group spawning and high sperm competition in some species, but also 202 

because high investment in the gonads can represent a compensatory mechanism that allows 203 

small males to fertilize highly fecund females much larger than themselves58. 204 

 205 

 206 
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Table 1. Predictions of associations between most common sexual systems (distribution of the male and female function among the 207 

individuals of a given species), mating systems (pattern of sexual interactions that take place considering the number of males and females involved 208 

in reproduction), adult sex ratio, size of mates and spawning behaviour (how the two sexes interact to release the gametes) in teleosts. This general 209 

set of predictions is applicable to most species, but exceptions are found in species with less common sex determination mechanisms and mating 210 

or spawning behaviour. 211 

 212 
Sexual system Mating system Adult sex ratio  Size of mates Spawning 

behaviour 

  GONOCHORISM (G)  ♂ ↔ ♀♂♂♂ ↔ ♀♀♀ 

♂ ↔ ♀♀♀ Variable 

♂ = ♀ 

♂ > ♀ 

♀ > ♂ 

♂♀ 

♂♂♂♀♀♀ 
Individuals reproduce as one sex throughout their lifetime 

(male or female) 

 PROTOGYNY (PG) 
♂ ↔ ♀♀♀ 

♂♂♂ ↔ ♀♀♀ 
♀ biased ♂ > ♀ 

♂♀ 

♂♂♂♀♀♀ 
Female-first sequential hermaphroditism: individuals first 

reproduce as females, change sex once with increasing 

size/age and then reproduce as males 

 PROTANDRY (PA) 

♂ ↔ ♀ ♂ biased ♀ > ♂ 
♂♀ 

♂♂♂♀♀♀ 
Male-first sequential hermaphroditism: individuals first 

reproduce as males, change sex once with increasing 

size/age and then reproduce as females 

 BIDIRECTIONAL (BD) 
♂ ↔ ♀ 

♂ ↔ ♀♀♀ 
♀ biased ♂ > ♀ ♂♀ Individuals can change sex more than once, in either 

direction, throughout their lifespan, usually starting from 

PG 

   SIMULTANEOUS (SH) 

♂ ↔ ♀ 1:1 ♂ = ♀ ♂♀ 
Individuals produce gametes of both sexes at the same 

time or in a short period of time 

 213 

Mating system: ♂ ↔ ♀ = monogamy (pair bond) or random pairing; ♂♂♂ ↔ ♀♀♀ = promiscuity; ♂ ↔ ♀♀♀ = harem polygyny or temporary 214 

lek-like systems (many females in a territory defended by a male). Spawning behaviour: ♂♀ = pair spawning (pair of individuals); ♂♂♂♀♀♀ = 215 

group spawning. Symbols do not reflect bias in sex ratios.  216 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 16, 2022. ; https://doi.org/10.1101/2021.01.25.428070doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.25.428070
http://creativecommons.org/licenses/by-nd/4.0/


 

9 

  

Teleosts account for more than 50% of the extant species of vertebrates and are 217 

characterized not only by their extraordinary diversity in morphology, physiology, ecology and 218 

habitat, but also by different sexual systems, including gonochorism, different forms of 219 

hermaphroditism —the only group among vertebrates— and unisexuality (all-female 220 

populations)11,59,60. Hermaphroditism in teleosts is broadly divided into simultaneous 221 

(synchronous) and sequential (consecutive) hermaphroditism, the latter in the form of 222 

protandry, protogyny and bidirectional sex change (Table. 1). Thus, the remarkable diversity 223 

in sexual systems in teleost fish makes them an ideal group in which to study the evolution of 224 

different forms of hermaphroditism29. Here, we investigate the evolutionary origin and 225 

transitions among sexual systems across 4614 teleost species belonging to 49 orders and 293 226 

families using a recent time calibrated phylogeny61 and modern phylogenetic comparative 227 

approaches. Our large-scale approach allows us to fully unravel how sexual patterns evolved 228 

and identify which ones represent evolutionary stable conditions. We focus on gonochorism, 229 

protogyny, protandry and simultaneous hermaphroditism as these are the most common sexual 230 

systems in teleosts. For hermaphrodites, we only included species for which functional 231 

hermaphroditism could be confirmed by primary literature; all remaining species, following 232 

the sexual system obtained from FishBase62, were classified as gonochoristic, excluding the 233 

species with ambiguous information (see Methods below and Supplementary Figure 1). We do 234 

not distinguish digynic and diandric species (or populations) in this study because the number 235 

of sequentially hermaphroditic species in our dataset is not sufficient for splitting them in 236 

narrower categories. Thus, separating digynic and diandric species would lead to small sample 237 

size per category while increasing the number of parameters to be estimated, ultimately eroding 238 

power for the analysis. Likewise, unisexual species (“biotypes”, hybrid in origin)59,63 are too 239 

few to be incorporated in any formal analyses in our study.  240 

Here, we demonstrate that gonochorism is the likely ancestral condition in teleosts and 241 

it is an evolutionarily stable state from which protogyny and protandry evolve at a moderate 242 

evolutionary rate. Consistent with theoretical predictions, we show for the first time that 243 

simultaneous hermaphroditism cannot evolve directly from gonochorism but rather through the 244 

intermediate stage of sequential hermaphroditism, most likely protandry. Further, we expand 245 

the theoretical framework of the evolution of hermaphroditism investigating how life history 246 

traits and male GSI differ between sexual systems, as predicted by life history theory. In 247 

support of these predictions, we found evidence of longer lifespan in protogynous species 248 

compared to gonochoristic and strong evidence of smaller GSI in protogynous males. However, 249 

contrary to predictions, we found no difference in maximum size and age or size at maturity 250 
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across sexual systems. We discuss how our results should be incorporated in a broader 251 

framework with sex determining mechanisms and gonadal plasticity as possible constraining 252 

and facilitating mechanisms respectively, to gain a fuller understanding of the evolution of 253 

sexual systems and possibly resolve Williams’ paradox. 254 

 255 

Results 256 

Evolutionary history of sexual systems 257 

Our dataset includes 4614 extant teleost species, of which 294 are hermaphroditic 258 

(protogynous: n = 196; protandrous: n = 36; bidirectional sex changers: n = 16; simultaneous 259 

hermaphrodites: n = 46; Fig. 2; Supplementary Information).  260 

 261 

 262 

Fig. 2. Sexual systems of extant species of teleosts, colour coded for gonochorism (n = 4320; 263 

grey), protogyny (n = 196; red), protandry (n = 36; blue), bidirectional sex change (n = 16; 264 

green) and simultaneous hermaphroditism (n = 46; yellow). Families (n = 32) with 265 

hermaphroditic species are labelled. Silhouettes have been obtained from fishualize64, 266 

Phylopics (http://www.phylopic.org/) or drawn by the authors. 267 

 268 

We used Discrete models of evolution to reconstruct the evolutionary history of sexual systems 269 

using Reversible Jump (RJ) Markov chain Monte Carlo (MCMC) in Bayes Traits (Methods, 270 
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Phylogenetic comparative analysis). Treating sexual systems as a two-character state 271 

(gonochoristic or hermaphroditic) our analysis reveals that gonochorism is the most likely 272 

ancestral character state in teleosts (Fig. 3a-b; Supplementary Table 1) and that 273 

hermaphroditism evolves slowly from, and reverts very quickly and multiple times back to, 274 

gonochorism (Fig. 3a and 3c; Supplementary Table 1). This indicates that gonochorism is an 275 

evolutionarily stable state in teleosts.  276 

 277 
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Fig. 3. (a) The evolutionary history of sexual system as two-character state (gonochorism or 278 

hermaphroditism) is visually summarised with a maximum likelihood ancestral state 279 

reconstruction that best approximates results of our RJ-MCMC Multistate model. The sexual 280 

systems of extant species and their ancestors are colour coded for gonochorism (n = 4320; grey) 281 

and hermaphroditism (n = 294; magenta). (b) Density plots from RJ-MCMC Multistate models 282 

for the estimated probability of character state at the root of the phylogeny colour coded for 283 

gonochorism (mean = 66%; grey) and hermaphroditism (mean: 34%; magenta). (c) RJ-MCMC 284 

multistate posterior distributions of the transition rates from gonochorism to hermaphroditism 285 

(magenta) and from hermaphroditism to gonochorism (grey). 286 

 287 

Treating sexual system as four-character states (gonochoristic, protandric, protogynic, 288 

simultaneous hermaphroditic; Fig. 2) reveals that both types of sequential hermaphroditism 289 

evolve at a very low rate from gonochorism and revert very rapidly back to it (Fig. 4, Table 2). 290 

In contrast, direct transitions between gonochorism and simultaneous hermaphroditism are 291 

very slow if they happen at all, given that over 60% and 31% of the models estimate the 292 

transition from gonochorism to simultaneous hermaphroditism and the reversal respectively to 293 

be equal to zero. Our analysis also shows that protogyny evolves as slowly from gonochorism 294 

as it switches to protandry and simultaneous hermaphroditism, although 32% of models 295 

estimate the latter transition to be equal to zero. Conversely, protandry is lost quickly to 296 

protogyny and simultaneous hermaphroditism, and very rapidly to gonochorism. Therefore, 297 

simultaneous hermaphroditism evolves from sequential hermaphroditism, most likely from 298 

protandry, and is lost to gonochorism, protogyny and protandry at similar low rates, although 299 

approximately half of the models estimate transition rates to sequential hermaphroditism to be 300 

equal to zero. Altogether, these results clearly indicate that in teleosts gonochorism is an 301 

evolutionarily stable state; protogyny is evolutionarily more stable than protandry, while 302 

simultaneous hermaphroditism evolves rarely, most like from protandry, and is evolutionarily 303 

stable being lost slowly to gonochorism, and less likely, to protogyny and protandry (Fig. 4, 304 

Table 2).  305 
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 306 

Fig. 4. Summary of RJ-MCMC Multistate analysis with density plots of the posterior 307 

distributions of the transition rates to gonochorism (grey), protogyny (red), protandry (blue), 308 

and simultaneous hermaphroditism (yellow). Gonochorism is the estimated likely ancestral 309 

condition. Note, only x-axis, but not y-axis, are the same for each pair of gain and loss between 310 

two-character states. The thickness of the arrows is roughly proportional to the mean magnitude 311 

of the transition rates from the posterior distribution. Dotted lines indicate transition rates 312 

estimated to be equal to 0 in over 40% of the models in the posterior distributions. Sample sizes 313 

of extant species for each sexual system category are indicated between parentheses.  314 

 315 

 316 
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Table 2. Results of the RJ-MCMC Multistate analysis in BayesTraits of sexual systems as a 317 

four-state categorical variable: gonochorism (G), protogyny (PG), protandry (PA) or 318 

simultaneous hermaphroditism (SH). For each posterior distribution, we report the effective 319 

sample size (ESS), the mean and 95% high posterior density intervals (95-HPD), the mode and 320 

the percentage of models in which the parameter is estimated as zero. This analysis is based on 321 

4598 extant species (G: n = 4320; PG: n = 196; PA: n = 36; SH: n = 46). Note: 16 species of 322 

bidirectional sex change were not included in this analysis due to their low number. 323 

 324 

 325 

Life history traits and sexual systems in teleosts 326 

Using life history theory, we predicted that sequential hermaphrodites live longer and/or reach 327 

a larger adult size and/or mature earlier as the first sex. The phylogenetic generalized least 328 

square (PGLS) analyses revealed that protogynous, but not protandrous, species live longer 329 

than gonochoristic species (Fig. 5a; Table 3). Larger species however might live longer, 330 

therefore we repeated the analysis controlling for allometry; even so, adding size (maximum 331 

length) as a covariate did not alter this result (Fig. 5b; Supplementary Table 2). Contrary to 332 

predictions, we did not find any significant size difference across sexual systems (Fig. 5c; Table 333 

3). Female and male age at maturity does not differ across species with different sexual systems 334 

(Fig. 5d-e; Table 3), even when accounting for allometry (length at maturity; Supplementary 335 

Table 4), nor does sex-specific length at maturity (Table 3). Finally, the PGLS revealed that 336 

protogynous males have lower GSI values than gonochoristic and protandrous ones, but GSI 337 

does not differ significantly between gonochoristic and protandric males (Fig. 5f; Table 3) even 338 

when considering allometry (Supplementary Table 2).  339 

Transition rates ESS Mean 95-HPD Mode % Zero 

G → PG 1153 0.014 0.000 – 0.023 0.014 7.4 

PG → G 1600 1.077 0.804 – 1.396 1.116 0.0 

G → PA 1600 0.015 0.005 – 0.025 0.014 0.0 

PA → G 1143 1.617 0.760 – 4.292 1.105 0.0 

G → SH 1366 0.004 0.000 – 0.014 0.000 60.7 

SH → G 1600 0.010 0.000 – 0.023 0.000 31.7 

PG → PA 1600 0.013 0.000 – 0.023 0.014 18.7 

PA → PG 1600 0.976 0.000 – 1.321 1.107 2.9 

PG → SH 1600 0.009 0.000 – 0.023 0.000 35.8 

SH → PG 1600 0.009 0.000 – 0.021 0.000 51.7 

PA → SH 1155 0.602 0.000 – 1.236 1.105 18.1 

SH → PA 1600 0.008 0.000 – 0.021 0.000 48.6 

Root probabilities      

G 1324 46.1 36.1 – 55.0 49.5 0.0 

PG 1258 31.4 22.7 – 37.8 34.9 0.0 

PA 1167 22.4 13.1 – 37.0 14.9 0.0 

SH 1600 <0.1 0.0 – <0.1 0 6.8 
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 340 

 341 

Fig. 5. Life history traits by sexual system. Phylogenetic estimated mean and phylogenetic 342 

standard error from the PGLS results of: a) longevity (year, log10 transformed; G: n = 758; PG: 343 

n = 69; PA: n = 17); b) longevity while controlling for maximum length (G: n = 575; PG: n = 344 

61; PA: n = 8); c) maximum length (cm, log10 transformed; G: n = 2612; PG: n = 167; PA: n = 345 

20); d) male age at first maturity (year, log10 transformed; G: n = 259; PG: n = 15; PA: n = 9); 346 

e) female age at first maturity (year, log10 transformed; G: n = 282; PG: n = 30; PA: n = 5); f) 347 

male gonadosomatic index, GSI (log10 transformed; G: n = 44; PG: n = 38; PA: n = 15). In all 348 

panels gonochorism (G) is depicted in grey, protogyny (PG) in red and protandry (PA) in blue. 349 

 350 

 351 

 352 
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Table 3. Results of phylogenetic generalized least square (PGLS) model of longevity (year; 353 

log10 transformed), maximum length (cm; log10 transformed), age at first maturity (year; log10 354 

transformed), length at first maturity (cm; log10 transformed) per each sex (♂: male; ♀: female), 355 

and male gonadosomatic index (GSI; log10 transformed) across sexual systems: gonochorism 356 

(G); protogyny (PG); protandry (PA). For each independent variable we report the parameter 357 

estimate (Beta), t-statistics (T), P-value (P; two-sided test), and the model statistics including 358 

the degrees of freedom (df), the maximum likelihood estimation of the phylogenetic signal () 359 

and R
2
. Significant differences are indicated in bold. Results of analyses controlling for 360 

allometry are available in Supplementary Table 2. See Supplementary Table 3 for sexual 361 

system and sex-specific sample sizes. 362 

1 G as reference level; 2 PA as reference level  363 
 364 

  365 

Discussion 366 

Our large-scale phylogenetic study has tested for the first time the theoretical predictions on 367 

how sexual systems evolve and has revealed the evolutionary origin of and transitions between 368 

different sexual systems in the highly diverse teleosts. We identify gonochorism and 369 

simultaneous hermaphroditism as stable conditions over evolutionary time. In support to recent 370 

theoretical models4, our study demonstrates that simultaneous hermaphroditism is unlikely to 371 

evolve directly from gonochorism and instead requires the intermediate step of sequential 372 

hermaphroditism, most likely protandry. We find support for the predictions derived from life 373 

Variable Beta T P Df Model statistics 

Dependent Independent      R2 

Longevity Sexual system - PA1 0.015 0.128 0.898 2; 841 0.914 0.007 

 Sexual system - PG1 0.161 2.340 0.019    

 Sexual system - PG2 0.146 1.205 0.229    

Max length Sexual system - PA1 

Sexual system - PG1  

Sexual system - PG2 

0.068 

-0.036 

-0.071 

1.036 

-0.098 

-0.971 

0.300 

0.922 

0.332 

2; 2796 0.972 0.0004 

Age at 

maturity ♂  

Sexual system - PA1 -0.015 -0.129 0.897 2; 280 0.859 0.002 

Sexual system - PG1 0.070 0.684 0.495    

Sexual system - PG2 0.085 0.623 0.534    

Age at 

maturity ♀ 

Sexual system - PA1 

Sexual system - PG1 

Sexual system - PG2 

0.165 

0.029 

-0.135 

1.217 

0.333 

-0.945 

0.225 

0.739 

0.345 

2; 314 0.862 0.005 

Length Sexual system - PA1 -0.060 -0.809 0.419 2; 359 0.974 0.002 

at maturity ♂ Sexual system - PG1 

Sexual system - PG2 

-0.020 

0.040 

-0.337 

0.448 

0.736 

0.654 

   

Length at 

maturity ♀ 

Sexual system - PA1 

Sexual system - PG1 

Sexual system - PG2 

-0.018 

-0.041 

-0.023 

-0.169 

-0.565 

-0.200 

0.866 

0.572 

0.842 

2; 340 0.971 0.0009 

GSI ♂ 

 

 

Sexual system - PA1 

Sexual system - PG1 

Sexual system - PG2 

0.092 

-0.500 

-0.592 

0.736 

-4.977 

-4.209 

0.464 

<0.001 

<0.001 

2; 94 

 

 

0.835 

 

 

0.234 
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history theory that protogynous species live longer than gonochoristic species but no evidence 374 

that sequential hermaphrodites attain a larger size or mature earlier than gonochoristic species. 375 

Finally, we find strong evidence that protogynous males invest the least in male gonad tissues 376 

(quantified by the gonadosomatic index) relative to gonochoristic and protandric males. 377 

Combined, these results suggest that the two forms of sequential hermaphroditism must be 378 

treated separately in theoretical and empirical studies as protandry and protogyny are 379 

characterized by distinct life history strategies36, even though they both entail sex change.  380 

Using the largest dataset ever collected with four sexual systems in teleosts, our study 381 

reveals a complex and dynamic way through which sexual systems evolve and switch between 382 

one another. Sequential hermaphroditism can evolve slowly from gonochorism, the ancestral 383 

state in teleosts, but revert to gonochorism rapidly. Although gonochorism is an evolutionarily 384 

stable condition, gained faster than it is lost, these results refute the assumption that the 385 

transition to gonochorism is irreversible20 and represent another example65,66 against Dollo’s 386 

law of irreversibility67, as previously suggested29. Conversely, sequential hermaphroditism in 387 

teleosts, particularly protandry, is less evolutionarily stable than gonochorism. Our results 388 

however contradict Pennell et al.’s finding29 that evolutionary transition from gonochorism to 389 

hermaphroditism occur over twice as fast than the reverse, suggesting rapid evolution of 390 

hermaphroditism from gonochorism, a conclusion that the same authors acknowledge is 391 

counterintuitive. We note that Pennell et al.29 used a much smaller dataset biased towards a 392 

greater proportion of hermaphroditic than gonochoristic species than what is observed in 393 

teleosts, and did not discriminate between different types of hermaphroditism. In contrast, we 394 

find that the evolutionary gain of hermaphroditism is slower than its loss to gonochorism, 395 

regardless of whether we treat sexual system as binary trait (gonochorism vs hermaphroditism) 396 

or discriminate between forms of hermaphroditism. Heterogeneity in the rate of gain and losses 397 

across large phylogenies can potentially bias the estimates of the faster transition rate for binary 398 

traits68
. However, our analysis at four states reveals that protandry is lost rapidly to both 399 

protogyny and gonochorism, and to a lesser degree, to simultaneous hermaphroditism. 400 

Altogether, our results at four states indicate that rapid transition rates from hermaphroditism 401 

to gonochorism in our analysis at two states are robust and reveal that protandry and protogyny 402 

—but not simultaneous hermaphroditism— evolve much more slowly from gonochorism than 403 

the reverse.  404 

Importantly, our study demonstrates that simultaneous hermaphroditism does not 405 

originate directly from gonochorism but rather through sequential hermaphroditism, most 406 

likely protandry. However, simultaneous hermaphroditism is lost preferentially to 407 
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gonochorism than to either form of sequential hermaphroditism. Thus, our analyses 408 

demonstrate that an intermediate stage is required for the gain of simultaneous 409 

hermaphroditism from gonochorism but not the loss back to it. These results support theoretical 410 

predictions (Fig. 1) that sex-specific gene expression in gonochoristic species may prevent 411 

direct evolutionary transitions between gonochorism and simultaneous hermaphroditism, and 412 

intermediate stages, like sequential hermaphroditism, are required4. Overall, our study is 413 

consistent with suggestions that the complexity of sex-specific physiology and behaviour is 414 

likely to constrain some transitions between sexual systems. Androdioecy is considered an 415 

intermediate stage from simultaneous hermaphroditism to dioecy in plants and from 416 

gonochorism to hermaphroditism in some invertebrates5,14. However, this sexual system is 417 

extremely rare in fish and cannot explain the evolution of diverse sexual system in this 418 

vertebrate group, where instead sequential hermaphroditism seems to play a similar role. We 419 

suggest that future studies in other taxa may also consider sequential hermaphroditism (if 420 

present) together with other mixed systems as an important stepping stone for evolutionary 421 

changes between gonochorism and simultaneous hermaphroditism as we have found in 422 

teleosts.  423 

According to life history theory, sequential hermaphrodites should, on average, live 424 

longer, grow bigger and/or mature earlier as the first sex than gonochoristic species. We find 425 

that protogynous and protandrous species differ in their life history strategies: protogynous, but 426 

not protandrous species live longer than gonochoristic species. These differences reflect the 427 

fact that protogyny and protandry maximise their fitness as the second sex36 which differs 428 

between the two systems. Therefore, the longer life in protogynous species favours large 429 

successful males (second sex) that can monopolize females in harems or in spawning grounds. 430 

Conversely, protandrous species benefit primarily by achieving a larger size, as larger females 431 

(second sex) are more fecund than smaller ones. In addition, male investment in gonad tissue 432 

(as quantified by the gonadosomatic index) is lower in protogyny, as expected by theory52,58, 433 

since large males can better monopolize mating opportunities and face low levels of sperm 434 

competition in harems and group spawning (Table 1). Small-sized protandrous males in group 435 

spawning instead need to boost their investment in the gonads but even in the absence of sperm 436 

competition (monogamy) they require large gonads to fertilize highly fecund females, larger 437 

than themselves58. Thus, sexual systems and mating strategies affect life history traits 438 

differentially in protogynous and protandrous species. It is well known that in sequential 439 

hermaphrodites the second sex always matures later and is larger than the first sex, so it is not 440 

surprising that in protandrous species females are significantly larger than males when reaching 441 
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maturity, while in protogynous species males are significantly larger than females55 (excluding 442 

the cases of primary females and primary males, respectively). Yet, no comparison has been 443 

made for size/age at first maturity for males and females across sexual systems. Life history 444 

theory predicts that the first sex of sequential hermaphrodites matures earlier than the same sex 445 

in gonochorism, but, with the data currently available, we find no evidence for this.  446 

Our study is the first to attempt to include explicitly life history traits into a theoretical 447 

framework for the evolution of sexual systems and provide some evidence in support to 448 

theoretical predictions, but records on life history traits for teleosts species in general and 449 

hermaphroditic species in particular, are still currently too scarce. Even less complete and 450 

reliable data are available on mating systems and spawning behaviours, which should be 451 

incorporated in future studies aiming at obtaining a more complete understanding of the role 452 

that life history traits play. Particularly necessary to fully assess theoretical predictions are sex-453 

specific data for size and time spent as females and as males in sequential hermaphrodites, and 454 

for investment in male vs female function in simultaneous hermaphrodites, for which currently 455 

little is known. Future studies should re-evaluate these relationships as more data become 456 

available for a large number of species.  457 

While we have shown that life history theory can provide a major contribution to our 458 

understanding of sexual system evolution, below we present a general model for studying 459 

sexual systems and propose that the highly dynamic picture revealed by this study should be 460 

expanded using a more comprehensive approach that includes not only selection and 461 

adaptation, but also sex determining mechanisms and gonadal plasticity (Fig. 6).  462 

 463 

 464 
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 465 

 466 

Fig. 6. Theoretical framework for the evolution of sexual systems: overview of parameters 467 

(with some examples) considered in the low density and the size advantage models (*), used 468 

in our analyses (**) and proposed in the present study (***). 469 

 470 

 Sex determination in gonochoristic animals is determined either at fertilization by 471 

different genetic mechanisms, including male (XX/XY) or female (ZW/ZZ) heterogamety with 472 

homomorphic or heteromorphic sex chromosomes, or after conception by environmental 473 

factors, or by a combination of both69,70. Fish are characterized by an incredible diversity71–73 474 

and plasticity29,74 of sex determining mechanisms. Many fish do not have sex chromosomes72. 475 

When they are present, they might not always be clearly differentiated since sex determining 476 

loci might not be easily identifiable75 and in some cases the sex can be determined by a change 477 

in a single nucleotide72. High turnover of sex chromosomes has also been detected in some fish 478 

lineages (e.g., sticklebacks76,77), including reversal to autosomes29. It has been suggested that 479 

fixed, strongly canalized, genetic sex determination (culminating in the formation of fully 480 

differentiated and stable heteromorphic sex chromosomes) might constrain the evolution of 481 

hermaphroditism, acting as an evolutionary trap2,78–80. Even if this is not the case29,81, sequential 482 

hermaphrodites do not appear to have sexually differentiated chromosomes82, but data are 483 
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currently scarce for formal analyses. Finally, sequential hermaphroditism can be regarded as a 484 

clear example of phenotypic plasticity, and since epigenetics underlies phenotypic plasticity, 485 

epigenetic mechanisms have been proposed to participate in the evolutionary transitions 486 

between different sexual systems and sex-determining mechanisms83. Therefore, although 487 

complete genetic control of hermaphroditism is common in plants84, a better knowledge of the 488 

genetic and epigenetic mechanisms of sex determination could be helpful to explain how 489 

hermaphroditism in teleosts has evolved in some taxonomic groups but not in others under 490 

similar ecological pressures.  491 

Previous attempts to connect the distribution of sexual systems have invoked 492 

morphological85 and developmental86 aspects. Developmental plasticity is uniquely 493 

documented in teleosts via the bipotential nature of their gonads and gonoducts86. Thus, while 494 

in most vertebrate taxa gonads develop from two distinct germinal layers (medulla, endodermal 495 

in origin, which gives rise to the testes; and cortex, mesodermal in origin, which gives rise to 496 

the ovary), in teleosts the gonads consist entirely of the cortex homolog87. Moreover, teleosts 497 

are the only group of vertebrates where the Müllerian duct is absent, and the gonoduct has the 498 

same origin in both sexes, being the reproductive systems completely independent of the 499 

excretory system86. Therefore, anatomically all teleosts could, in principle, be 500 

hermaphrodites86. Furthermore, the transition to protogyny may be favoured by the 501 

peculiarities of gonadal development in many gonochoristic teleost species, which develop a 502 

female gonad, complete with ovaries containing cysts of oocytes, during the initial stage of 503 

gonadal formation88,89. Only later testicular development is triggered and superimposed on this 504 

arrangement so that the individual ultimately matures functionally as a male90–92. Thus, 505 

protogyny might be favoured because female gonads are often the first to develop albeit 506 

temporarily, even in protandrous species92. Bidirectional sex change, a rarer system in teleosts 507 

(Table 1), further demonstrates the importance of gonadal plasticity. In most cases, the initial 508 

strategy is protogyny93, but males can revert back to females when triggered by new social 509 

conditions. The retention of some female gonadal tissue in males facilitates a new change of 510 

sex, if and when required94. The maintenance of both gonadal tissues could facilitate a 511 

transition to simultaneous hermaphroditism. Thus, the study of the evolution of sexual systems 512 

in fish (and possibly other taxa) could greatly benefit from taking into consideration the 513 

facilitating/constraining aspects linked to gonadal developmental plasticity and the existence 514 

of different sex determining mechanisms. 515 

In conclusion, our study reveals that gonochorism is the most likely ancestral state and 516 

the most evolutionary stable sexual system in teleosts. In support to theoretical predictions, we 517 
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demonstrate that simultaneous hermaphroditism cannot evolve directly from gonochorism but 518 

requires an intermediate step, most likely through protandry. However, simultaneous 519 

hermaphroditism is more likely to be lost to gonochorism than to sequential hermaphroditism 520 

in teleosts. Overall, our study reveals that the evolution of sexual systems is evolutionarily 521 

more dynamic and complex than commonly assumed. Our results support theoretical 522 

assumptions that changes between sexual systems are likely constrained by sex-specific gene 523 

expression, physiology and behaviour. In addition, we propose that the adaptive advantage of 524 

different sexual systems is further underpinned in fish by their extraordinary and unique 525 

developmental plasticity95, including common and fast transitions among different sex 526 

determining mechanisms29,69. Our study also reveals that different sexual systems exhibit 527 

different life history strategies that allow species with sequential hermaphroditism to maximise 528 

fitness as the second sex36, particularly in protogynous species, and highlights the need for 529 

more sex-specific life history data to gain a fuller and deeper understanding of the interplay 530 

between life history strategies and sexual system. Altogether we propose that a comprehensive 531 

framework that incorporates life history traits, sex determining mechanisms and gonadal 532 

plasticity into traditional theoretical models of sexual system adaptive value will be essential 533 

if we are to fully understand the evolution of sexual systems, their phylogenetic distribution 534 

and their implications for conservation and management.  535 

 536 

Methods 537 

Data collection and verification 538 

We compiled the most comprehensive database on sexual systems in teleosts to date. 539 

Information on sexual system were first extracted from FishBase62. Next, species were classed 540 

as hermaphroditic only if functional hermaphroditism could be confirmed by primary literature, 541 

as recently compiled elsewhere96 (see Supplementary Data for details). For the remaining 542 

species, we maintained the gonochoristic classification of FishBase62, unless recent literature 543 

stated otherwise. Indeed, gonochorism is rarely confirmed in literature even when present, so 544 

including as gonochoristic only species for which this sexual pattern is confirmed would 545 

strongly bias the dataset against gonochorism, ultimately undermining the robustness of the 546 

analyses. Importantly, species for which there is contrasting information in the literature were 547 

discarded (Supplementary Methods). Of this database, 4614 species are included in the most 548 

recent and largest molecular phylogeny for the class61 (available at https://fishtreeoflife.org) 549 

and used in this study. Altogether our final dataset included 4320 gonochoristic and 294 550 

hermaphrodite species (Supplementary Figure 1), of which there were 196 protogynous, 36 551 
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protandrous, 16 bidirectional species and 46 simultaneous hermaphrodites. Unisexual species 552 

were not included in the analyses, due to their extremely low number and hybrid orgin59,63; we 553 

also did not have enough data (and power) to consider separately digynic and diandric species. 554 

Life history traits (Supplementary Table 3) were also collected from primary literature, 555 

FishBase62 and rFishBase97: longevity (in years), maximum length (in cm); length (in cm) and 556 

age at maturity (in years) of males and females; male gonadosomatic index (GSI; the maximum 557 

value recorded, expected to coincide with the peak of the reproductive season).  558 

 559 

Phylogenetic comparative analyses 560 

We investigated the evolutionary history of sexual systems of 4614 teleost species using 561 

Multistate models in BayesTraits V.398,99 in a Bayesian framework. Multistate estimates 562 

instantaneous transition rates between alternative character states of a single categorical 563 

variable (i.e., the rate of change between states along the branches of a phylogeny), based on a 564 

continuous-time Markov model of evolution for discrete traits100,101. A high transition rate from 565 

one state to another indicates that the first state changes rapidly to the second state over 566 

evolutionary time. Therefore, a character state is evolutionarily stable when it is lost more 567 

slowly than it is gained102. Multistate also produces posterior distributions of the ancestral 568 

character state at the root of the phylogeny. We scaled the tree by a default constant (mean of 569 

0.1) in all analyses102 and used an exponential prior whose mean was seeded from a uniform 570 

hyperprior ranging from 0 to 10 to reduce inherent uncertainty and biases of prior choice99. We 571 

ran all Multistate analyses with Reversible Jump (RJ) Markov chain Monte Carlo (MCMC) 572 

methods. MCMC samples models in direct proportion to their fit to the data, generating a 573 

posterior distribution of parameter estimates for each transition rate, and RJ sets some 574 

parameters equal to zero or equal to one another, thereby reducing model complexity and over-575 

parametrization98,99,101. As a result, posterior distributions of parameter estimates may not be 576 

normal; we thus summarised results by presenting mean and mode of the posterior distributions 577 

of each parameter estimate, 95% higher posterior density, and percentage of models with 578 

parameters estimated to be 0. We ran all MCMC chains for 320 million iterations in addition 579 

to a burn-in of half a million iterations, sampling every 200000 iterations. All chains converged 580 

and showed good mixing as indicated by their effective sample sizes of 2000 and visual 581 

inspections of their traces in Tracer v1.6103. All analyses were run in triplicate and the three 582 

independent chains converged on very similar solutions, leading to qualitatively similar results. 583 

Here we present the results from the first chain. We ran RJ-MCMC Multistate analysis on 584 

sexual system (Supplementary Table 4) as a binary state (gonochoristic or hermaphrodite) and 585 
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as a four-state categorical variable (gonochorism, protandry, protogyny, simultaneous 586 

hermaphroditism). Bidirectional sequential hermaphrodites were excluded from the latter 587 

analysis as the sample size of extant species was too low so that the chains failed to converge 588 

and mix properly when sexual system was studied as a five states categorical variable. For the 589 

analyses with two-character state, we graphed the evolutionary history of sexual systems on 590 

the phylogeny using maximum likelihood (ML) in the R package ape v.5.3104, which provided 591 

a reasonably close approximation of the RJ-MCMC Multistate results (this was not the case 592 

with the four-character state analysis). 593 

We used phylogenetic generalized least square (PGLS) models105-107 to test for the 594 

association of each life history trait, entered as dependent variables, with sexual systems 595 

entered as independent discrete variable with three possible states (gonochorism, protogyny, 596 

protandry), as not enough data were available for simultaneous hermaphroditic species and 597 

bidirectional sex-changers. PGLS models were run with the R package caper108 in Maximum 598 

Likelihood. The parameter  of PGLS models quantifies the strength of the phylogenetic signal 599 

in the model residuals105.  ranges between zero (there is no phylogenetic structure in the data) 600 

and one (the species share similarity in trait values directly proportional to their common 601 

evolutionary time, under Brownian motion model of evolution105,107). Continuous variables 602 

were log10-transformed to meet assumptions of normality. 603 
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Supplementary tables 

 

Supplementary Table 1. Results of the RJ-MCMC Multistate analysis in BayesTraits of 

sexual systems as a binary trait: gonochorism (G) or hermaphroditism (H). For each 

posterior distribution, we report the effective sample size (ESS), the mean and 95% high 

posterior density (95-HPD) intervals, the mode, and the percentage of models in which 

the parameter is estimated as zero. Analysis based on 4614 extant teleost species (G: n = 

4320; H: n = 294) 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transition rates ESS Mean 95-HPD Mode % 

Zero 

G → H 1600 0.034 0.021 – 0.047 0.032 0 

H → G 1600 0.826 0.608 – 1.038 0.823 0 

Root probabilities      

G 1600 66.0 59.1 – 74.1 65.1 0 

H 1600 34.0 25.9 – 40.9 34.9 0 
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Supplementary Table 2. Results of phylogenetic generalized least square (PGLS) model 

of longevity (year; log10 transformed), controlled for allometry (maximum length, in cm; 

log10 transformed; age at first maturity (year; log10 transformed) per each sex (♂: male; 

♀: female), controlling for allometry (length at maturity in cm; log10 transformed); and 

male gonadosomatic index (GSI; log10 transformed), controlling for allometry (male 

length at maturity in cm; log10 transformed) across sexual systems: gonochorism (G); 

protogyny (PG); protandry (PA). For each independent variable we report the parameter 

estimate (Beta), t-statistics (T), P-value (P; two-sided test), and the model statistics 

including the degrees of freedom (df), the maximum likelihood estimation of the 

phylogenetic signal () and R2. Significant differences are indicated in bold. See 

Supplementary Table 3 for sexual system and sex-specific data 

 

 

 

 

 

 

 

 

Variable Beta T P Df Model statistics 

Dependent Independent      R2 

Longevity Max length 

Sexual system - PA1 

Sexual system - PG1  

Sexual system - PG2 

0.680 

-0.043 

0.129 

0.172 

19.968 

-0.417 

 2.193 

1.538 

<0.0001 

0.677 

0.029 

0.124 

3; 640 0.864 0.388 

Age at 

maturity ♂ 

Length at maturity ♂ 

Sexual system - PA1 

Sexual system - PG1 

Sexual system - PG2 

0.602 

-0.090 

0.068 

0.159 

8.360 

-0.956 

0.774 

1.434 

<0.001 

0.340 

0.440 

0.154 

3; 149 0.785 0.325 

Age at 

maturity ♀ 

Length at maturity ♀ 

Sexual system - PA1 

Sexual system - PG1 

Sexual system - PG2 

0.536 

0.016 

-0.014 

-0.029 

8.062 

0.117 

-0.167 

-0.217 

<0.001 

0.907 

0.867 

0.828 

3; 166 0.829 0.282 

 

 

 

GSI ♂ 

 

 

Length at maturity ♂ 

Sexual system - PA1 

Sexual system - PG1 

Sexual system - PG2 

0.041 

0.164 

-0.513 

-0.678 

0.236 

1.197 

-4.631 

-4.582 

0.814 

0.237 

<0.001 

   <0.001 

3; 51 

 

 

0.000 

 

 

0.376 
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Supplementary Table 3. Sample sizes for longevity (year), maximum length (cm), age 

at maturity (years), length at maturity (cm) and gonadosomatic index (GSI) for each 

sexual system with sex-specific male (♂) and female (♀) data, when available. In italics 

data not used in the analyses. G = gonochorism; PG = protogyny; PA = protandry; SH = 

simultaneous hermaphroditism; BD = bidirectional hermaphroditism 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Life-history traits Sex G PG PA Total for 

analyses 

 SH BD 

Longevity  758 69 17 844  7 3 

Maximum length  2612 167 20 2799  28 11 

Age at maturity      

                 

♂ 

  ♀ 

259 

282 

15 

30 

9 

5 

283 

317 

 1 

 2 

-  

-  

Length at maturity  

 

GSI                 

♂ 

♀ 

♂ 

305 

297 

44 

42 

36 

38 

15 

10 

15 

362 

343 

97  

 9 

2 

3 

 - 

 - 

- 
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Supplementary Table 4. Number of species used to study the evolutionary transitions 

among different sexual systems. Note that androdioecious species are not included in the 

analyses 

 

 

*Includes 16 species of bidirectional sequential hermaphrodites, which were not included 

in other analyses due to their small sample size when added as a separate category. 

 

  

Sexual system 2 state 

[G, H] 

4 state 

[G, PG, PA, SH] 

Gonochorism [G] 4320 4320 

Hermaphroditism [H]    294*  

Protogyny [PG]   196 

Protandry [PA]     36 

Simultaneous hermaphroditism [SH]     46 

       Total 4614                
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Supplementary methods 

 

Data collection and verification  

Information on the sexual system and life history traits was previously collected from 

FishBase (www.fishbase.org) for a total of 10914 actinopterygian species, of which 

10875 were teleosts. Of these, we only retained the 4740 teleost species that were also 

present in the phylogenetic tree of Rabosky et al. (2018), of which 4320 were 

gonochoristic and 420 had different forms of hermaphroditism (Supplementary Figure 1). 

Of the latter, we retained only the species in which functional hermaphroditism has been 

reported in the primary literature (compiled in Pla et al., 2021) plus some additional 

species added also from the primary literature (all used references are provided). 

Regarding gonochoristic species, we only considered those that were regarded as such in 

FishBase, unless recent literature states otherwise. Importantly, species for which there is 

contrasting information in the literature were discarded and not used for this study. 
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Supplementary Figure 1. Diagram of the data acquisition and curation followed in this 

study. 

We also extracted data from primary literature, FishBase (www.fishbase.org; CD-ROM 

version), and rfishbase (https://www.rdocumentation.org/packages/rfishbase/versions/3.0.4; 

Boettiger et al., 2012), on the following life-history traits:  

 

1) Longevity (in years). When more than one value was present for a given species, 

we used the maximum value reported in the wild. 

 

2) Maximum length, specifically total length (TL; in cm). 

 

3) Age (in years) and length (in cm) at first maturity for each sex. 

 

4) Male gonadosomatic index (GSI). The maximum value (expected to coincide 

with the peak of the reproductive season) was used. 

 

We controlled for allometry as follows: longevity was controlled for maximum length 

(available for both sexes combined); age at maturity was controlled for length at maturity 

(by sex). GSI was controlled for male length at maturity (male-specific): in this case we 

could not use maximum length, not sex-specific, which would give an incorrect length of 

males in protandric species, where the larger individuals are females.  
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Supplementary data 

 

Full dataset attached as an Excel file: 

 - Sheet 1. Sexual system and life history traits for a total of 4614 teleosts. 

 - Sheet 2. List Sexual system of the 294 hermaphroditic species used in this 

study and the supporting primary literature (listed below). 
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