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Abstract

Sexual systems are highly diverse and have profound consequences for population dynamics
and resilience. Yet, little is known about how they evolved. Using phylogenetic Bayesian
modelling and a sample of 4614 species, we show that gonochorism is the likely ancestral
condition in teleost fish. While all hermaphroditic forms revert quickly to gonochorism,
protogyny and simultaneous hermaphroditism are evolutionarily more stable than protandry.
In line with theoretical expectations, simultaneous hermaphroditism does not evolve directly
from gonochorism but can evolve slowly from sequential hermaphroditism, particularly
protandry. We find support for the predictions from life history theory that protogynous, but
not protandrous, species live longer than gonochoristic species and invest the least in male
gonad mass. The distribution of teleosts’ sexual systems on the tree of life does not seem to
reflect just adaptive predictions, suggesting that adaptations alone may not fully explain why
some sexual forms evolve in some taxa but not others (Williams’ paradox). We propose that
future studies should incorporate mating systems, spawning behaviours, and the diversity of
sex determining mechanisms. Some of the latter might constrain the evolution of
hermaphroditism, while the non-duality of the embryological origin of teleost gonads might

explain why protogyny predominates over protandry in teleosts.
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Introduction

Sexual reproduction is a unifying feature of eukaryotes® and yet it is extremely diverse?. Sexual
systems (also known as “sexual patterns”), defined as the pattern of distribution of the male
and female function among the individuals of a given species, vary from separate fixed sexes
(known as gonochorism in animals and dioecy in plants) to simultaneous hermaphroditism
(each individual produces both male and female gametes at the same time). These two sexual
systems can be viewed as the extremes in a sexually plastic gradient® of intermediate systems
(sequential hermaphroditism) and mixed systems (coexistence of males and/or females with
hermaphrodites)*®. Sexual systems have a profound influence on individuals’ mating success
and fitness®, population sex ratios and effective sizes’, as well as colonization events and
habitat use®. As a result, sexual systems influence the population dynamics and resilience to
natural and anthropogenic stressors of ecologically and commercially important species that
are often endangered or overexploited®.

Hermaphroditism is predominant in flowering plants (angiosperms)*°, where 94% of
the species have male and female sex organs in the same individual/flower, and it is widespread
in invertebrates and teleost fish (the only vertebrates to exhibit hermaphroditism!?), totalling
5% of animal species or up to ~30% if insects are excluded?. While this diversity suggests
multiple evolutionary transitions between sexual systems in response to selection, current
evolutionary models on the adaptive advantage of different sexual systems explain little about
how and why sexual systems evolve and thus their large-scale distribution across the tree of
life. This might indicate that adaptive predictions alone fail to fully explain why some sexual
forms evolve in some taxa but not others (Williams’ paradox)**®. Therefore, unravelling the
evolutionary history of sexual systems and quantifying how frequently and in what direction
transitions occur is key to revealing which sexual systems are evolutionarily labile or stable,
elucidating how one changes into another over evolutionary time, and identifying the
environmental, genetic and developmental drivers favouring or opposing these changes. Yet,
our understanding of how sexual systems evolve is still limited, particularly in animals.

Theoretical models, initially developed for plants, suggest that simultaneous
hermaphroditism and dioecy are evolutionary stable conditions that are retained over long
evolutionary time and unlikely lost once evolved, while mixed sexual systems represent

evolutionary intermediate stages*>** (Fig. 1).
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89 Fig. 1. Theoretical framework for the evolution of sexual systems: potential evolutionary
90 transitions between gonochorism and simultaneous hermaphroditism via mixed systems
91 (mixed pathways) as described in plants and some animals; via sequential hermaphroditism
92  (sequential pathways) as recently suggested*; or without intermediate states (direct pathways)
93  as proposed for plants®. Double-headed arrows indicate theoretical pathways.

94

95 Simultaneous hermaphroditism is likely the ancestral state in angiosperms from which
96  dioecy, a rare sexual system in plants®, has evolved independently several times, possibly to
97  avoid inbreeding®™'®. Theoretical models predict that separate sexes in plants evolve from
98  hermaphroditism in different ways: 1) primarily through the intermediate state of gynodioecy?’,
99 a common sexual system in plants that occurs when a male-sterile mutant invades an
100  hermaphroditic population resulting in the coexistence of hermaphrodites and females; 2)
101  through androdioecy, a less common system*®° in which mutations resulting in female sterility
102 lead to the coexistence of hermaphrodites and males; 3) via trioecy, i.e., the coexistence of
103  hermaphrodites, males and females, which is very rare; and 4) less frequently, via a direct
104  transition®® (Fig. 1). However, in animals no evidence of a direct transition between
105 hermaphroditism and gonochorism exists. Once gained, dioecy was believed to be an
106 irreversible condition?, a conclusion based on the assumption that returning to a simultaneous
107  expression of male- and female-specific genes would likely produce contrasting effects on sex-
108  specific physiology. Recent studies, however, reject this claim in plants, as phylogenetic
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109 reconstructions of direct transitions from dioecy/gonochorism to simultaneous
110  hermaphroditism have been documented®?,

111 The same theoretical framework with mixed pathways has been proposed also for
112 animals where, in contrast to plants, gonochorism is the most common sexual system,
113  androdioecy is more common than gynodioecy®** and trioecy is very rare??. However, several
114  reproductive characteristics in plants differ substantially from those in animals?, albeit
115  similarities can be found in some invertebrates®*; hence, different theoretical frameworks are
116  required (Fig. 1). Furthermore, evolutionary transitions between sexual systems in teleost fish
117  (~34000 species, comprising the overwhelming majority of the ray-finned fishes,
118  Actinopterygii)?®, might be less likely to occur via a mixed pathway (Fig. 1) given that in this
119 group only a few Killifish species of the genus Kryptolebias (formerly Rivulus) are truly
120  androdioecious®??’, Beyond teleosts, the presence of gynodioecy and trioecy among
121  vertebrates is still debated in the jawless hagfish Myxine glutinosa (Myxini)*?8. Recently,
122 sequential hermaphroditism has been suggested as a possible intermediary state that may
123  facilitate evolutionary changes between gonochorism and simultaneous hermaphroditism*
124 (Fig. 1). However, phylogenetic studies on the evolution of hermaphroditism at large scale do
125  not typically discriminate between the different forms of hermaphroditism and treat sexual
126  system as binary trait?®. Thus, we currently have no robust large-scale study on the evolution
127  of sexual systems in animals and we do not know whether sequential hermaphroditism
128  represents an evolutionary intermediate stage between gonochorism and simultaneous
129  hermaphroditism, whether protogyny and protandry act equally as transitional forms between
130  the two, and whether gonochorism and simultaneous hermaphroditism are evolutionary stable
131  conditions in animals as they are in plants.

132 The evolution of hermaphroditism in animals has mostly been interpreted in the context
133 of its adaptive advantages relative to gonochorism, as proposed by the low density and the size
134  advantage models®. The former predicts that simultaneous hermaphroditism evolves under
135 low population densities and/or low dispersal capacity as, in these conditions, individuals with
136  this sexual system can maximize their chances of securing a mate compared to sex-changing
137  or gonochoristic individuals®. Note, however, that advantages of self-fertilizing simultaneous
138 hermaphrodites may be offset by increased risk of inbreeding. The size advantage model
139  proposes adaptive explanations for the evolution of sequential hermaphroditism based on the
140  relationship between size and fecundity®>3234  Specifically, since most fish, including
141  sequential hermaphrodites, have indeterminate growth® (i.e., they can keep growing as far as

142  food resources and environment allow) sex change should be favoured when the reproductive
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143  value of an individual depends on size (and thus age), and this affects in particular one of the
144 sexes. Thus, individuals change from a smaller first sex to a larger second sex and the direction
145  of sex change depends on the sex that maximizes its reproductive value with a larger size®.
146  The size advantage model has been supported in crustaceans®’, molluscs® and teleost fish®.
147 The interdependence between size, fecundity and fitness is affected by a species’
148  mating system, defined as the pattern of sexual interactions given the number of reproducing
149  males and females (Table 1). Therefore, among sequential hermaphrodites, protandry (male-
150 to-female sex change) is usually expected in species that reproduce in monogamous or random
151  pairs and where individuals switch from small males to large, highly fecund females, achieving
152  higher reproductive potential. Conversely, protogyny (female-to-male sex change) is usually
153  expected in polygynous/group-mating species, where small females become large dominant
154  males that monopolize females, often grouped in harems (Table 1). In both systems, cases exist
155  with a few individuals born directly as the second sex. Specifically, in digynic protandrous
156  species, primary females directly develop as such and secondary females develop from males
157  after sex change. Likewise, in diandric protogynous species, primary males develop directly
158  as such whereas secondary males develop from females after sex change®.

159 Crucially, life history traits underpin the formulation and assumptions of the size
160  advantage model. Life history theory is central to the study of sexual systems evolution since
161 it allows to derive clear predictions about why and when individuals should allocate energy
162  among different life history traits, including sexual functions, to optimize fitness*2. However,
163 life history traits are surprisingly not explicitly and formally incorporated in the size advantage
164  model, nor tested in empirical studies'®. Longevity, maximum size and age/size at maturity are
165  key life history traits because they determine individual fitness, influence demographic
166  parameters of populations* and impact on populations’ genetic diversity*. These traits evolve
167  and are under several selective forces at the population level, but differences in the intensity of
168  selection among species can lead to large-scale diversity, thus allowing large-scale comparative
169  studies to inform our understanding of how and why they evolved®. Since sequential
170  hermaphrodites achieve higher fitness when reproducing as the second sex®® (hence the
171 advantage of changing sex), they should, on average, benefit more than gonochoristic and
172 simultaneous hermaphroditic species from increased longevity (overall and/or as the second
173  sexin particular) or larger size (especially in protandry where females are the larger sex ad size
174  give fecundity advantage). In general, larger females tend to produce more eggs than smaller
175  ones both within and across species*, while larger males do not necessarily increase as much

176  their sperm production with size. In males, larger size gives an advantage to secure
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177  dominance/change sex (and increase fertilization rates), but not necessarily fecundity.
178  Alternatively, sequential hermaphrodites could mature, on average, earlier as the first sex
179  compared to the same sex in gonochoristic species and capitalize on reproduction as second
180  sex. These predictions, however, remain to be tested.

181 Although exceptions occur, spawning behaviour, i.e., how the two sexes interact to
182  release the gametes, can be broadly classified in fish as pair spawning, involving only two
183 individuals at the time, and group spawning, comprising large breeding groups*’ (Table 1).
184  Mating system and spawning behaviour together determine the intensity of direct male-male
185  competition and sperm competition (i.e., the competition between the sperm of two or more
186  males for fertilization of the same eggs), and thus certainty of paternity. Sperm competition is
187  a key selective force shaping male reproductive anatomy, physiology and behaviour across
188  diverse animal groups*®“°. In general, sperm competition is assumed to be low in haremic
189  systems3®°05! where large dominant males can better monopolize groups of females (pair
190  spawning) with no or limited competition by other males®2. Likewise, low sperm competition
191 s expected under monogamy. Group spawning is commonly found in promiscuous mating,
192  leading to intense sperm competition® as many males try to fertilize the eggs of multiple
193  females. The intensity of sperm competition has been incorporated in the size advantage
194  model** as it can play a significant role in the advantage of protogyny: changing sex from
195  female to male should be more advantageous when paternity assurance is high due to reduced
196  sperm competition®™. Consistent with these predictions, the gonadosomatic index (GSI),
197  defined as the percentage of body mass devoted to the gonads®® and a reliable indicator of the
198 intensity of sperm competition®’, is significantly lower in protogynous teleost species than in
199  gonochoristic congeners®**%%8, However, protandrous teleost fish do not always conform to
200 theoretical expectations, exhibiting higher GSI as males than expected®?. We have recently
201  proposed that, at least in the family Sparidae, high male GSI in protandrous fish can be
202  explained not only by group spawning and high sperm competition in some species, but also
203  because high investment in the gonads can represent a compensatory mechanism that allows
204  small males to fertilize highly fecund females much larger than themselves®®.

205

206
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207 Table 1. Predictions of associations between most common sexual systems (distribution of the male and female function among the
208 individuals of a given species), mating systems (pattern of sexual interactions that take place considering the number of males and females involved
209 inreproduction), adult sex ratio, size of mates and spawning behaviour (how the two sexes interact to release the gametes) in teleosts. This general
210  set of predictions is applicable to most species, but exceptions are found in species with less common sex determination mechanisms and mating
211  or spawning behaviour.

212
Sexual system Mating system Adult sex ratio | Size of mates Spawning
behaviour
-7 GONOCHORISM (G) & o 2333 & Q99 d=9 20
Individuals reproduce as one sex throughout their lifetime 3 Q99 Variable 3>9
(male or female) 0>3 383LR?
O—(J PROTOGYNY (PG)
= . . T . de 299 3Q
Female-first sequential hermaphroditism: individuals first © biased 3>9
reproduce as females, change sex once with increasing 3338 < 222 33322%
size/age and then reproduce as males
(1) PROTANDRY (PA) 20
Male-first sequential hermaphroditism: individuals first 3 Q 2 biased 0>3
reproduce as males, change sex once with increasing 33832%¢°
size/age and then reproduce as females
O+ BIDIRECTIONAL (BD) S0
Individuals can change sex more than once, in either Q biased 3>0Q 3Q
direction, throughout their lifespan, usually starting from 3o QeQ
PG
~
J
Individuals produce gametes of both sexes at the same SRad 11 d=9 d%
time or in a short period of time
213

214  Mating system: & < @ = monogamy (pair bond) or random pairing; 333 < @22 = promiscuity; & < 299 = harem polygyny or temporary
215  lek-like systems (many females in a territory defended by a male). Spawning behaviour: 3'Q = pair spawning (pair of individuals); 333229 =
216  group spawning. Symbols do not reflect bias in sex ratios.
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217 Teleosts account for more than 50% of the extant species of vertebrates and are
218  characterized not only by their extraordinary diversity in morphology, physiology, ecology and
219  habitat, but also by different sexual systems, including gonochorism, different forms of
220  hermaphroditism —the only group among vertebrates— and unisexuality (all-female
221  populations)'*%*®  Hermaphroditism in teleosts is broadly divided into simultaneous
222  (synchronous) and sequential (consecutive) hermaphroditism, the latter in the form of
223  protandry, protogyny and bidirectional sex change (Table. 1). Thus, the remarkable diversity
224 in sexual systems in teleost fish makes them an ideal group in which to study the evolution of
225  different forms of hermaphroditism?®. Here, we investigate the evolutionary origin and
226  transitions among sexual systems across 4614 teleost species belonging to 49 orders and 293
227  families using a recent time calibrated phylogeny®! and modern phylogenetic comparative
228  approaches. Our large-scale approach allows us to fully unravel how sexual patterns evolved
229 and identify which ones represent evolutionary stable conditions. We focus on gonochorism,
230  protogyny, protandry and simultaneous hermaphroditism as these are the most common sexual
231  systems in teleosts. For hermaphrodites, we only included species for which functional
232 hermaphroditism could be confirmed by primary literature; all remaining species, following
233 the sexual system obtained from FishBase®, were classified as gonochoristic, excluding the
234  species with ambiguous information (see Methods below and Supplementary Figure 1). We do
235  not distinguish digynic and diandric species (or populations) in this study because the number
236  of sequentially hermaphroditic species in our dataset is not sufficient for splitting them in
237  narrower categories. Thus, separating digynic and diandric species would lead to small sample
238  size per category while increasing the number of parameters to be estimated, ultimately eroding
239  power for the analysis. Likewise, unisexual species (“biotypes”, hybrid in origin)®*®® are too
240  few to be incorporated in any formal analyses in our study.

241 Here, we demonstrate that gonochorism is the likely ancestral condition in teleosts and
242 it is an evolutionarily stable state from which protogyny and protandry evolve at a moderate
243  evolutionary rate. Consistent with theoretical predictions, we show for the first time that
244 simultaneous hermaphroditism cannot evolve directly from gonochorism but rather through the
245  intermediate stage of sequential hermaphroditism, most likely protandry. Further, we expand
246  the theoretical framework of the evolution of hermaphroditism investigating how life history
247  traits and male GSI differ between sexual systems, as predicted by life history theory. In
248  support of these predictions, we found evidence of longer lifespan in protogynous species
249  compared to gonochoristic and strong evidence of smaller GSI in protogynous males. However,

250  contrary to predictions, we found no difference in maximum size and age or size at maturity
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across sexual systems. We discuss how our results should be incorporated in a broader
framework with sex determining mechanisms and gonadal plasticity as possible constraining
and facilitating mechanisms respectively, to gain a fuller understanding of the evolution of

sexual systems and possibly resolve Williams’ paradox.

Results

Evolutionary history of sexual systems

Our dataset includes 4614 extant teleost species, of which 294 are hermaphroditic
(protogynous: n = 196; protandrous: n = 36; bidirectional sex changers: n = 16; simultaneous

hermaphrodites: n = 46; Fig. 2; Supplementary Information).

Centropomidae  Pomacentridae Pseudochromidae
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Synbranchidae ‘.\\\ / | )) “.J
e £\ Y 7
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Fig. 2. Sexual systems of extant species of teleosts, colour coded for gonochorism (n = 4320;
grey), protogyny (n = 196; red), protandry (n = 36; blue), bidirectional sex change (n = 16;
green) and simultaneous hermaphroditism (n = 46; yellow). Families (n = 32) with
hermaphroditic species are labelled. Silhouettes have been obtained from fishualize®,
Phylopics (http://www.phylopic.org/) or drawn by the authors.

We used Discrete models of evolution to reconstruct the evolutionary history of sexual systems
using Reversible Jump (RJ) Markov chain Monte Carlo (MCMC) in Bayes Traits (Methods,
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271  Phylogenetic comparative analysis). Treating sexual systems as a two-character state
272  (gonochoristic or hermaphroditic) our analysis reveals that gonochorism is the most likely
273  ancestral character state in teleosts (Fig. 3a-b; Supplementary Table 1) and that
274 hermaphroditism evolves slowly from, and reverts very quickly and multiple times back to,

275  gonochorism (Fig. 3a and 3c; Supplementary Table 1). This indicates that gonochorism is an
276  evolutionarily stable state in teleosts.
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278  Fig. 3. (a) The evolutionary history of sexual system as two-character state (gonochorism or
279  hermaphroditism) is visually summarised with a maximum likelihood ancestral state
280  reconstruction that best approximates results of our RJ-MCMC Multistate model. The sexual
281  systems of extant species and their ancestors are colour coded for gonochorism (n = 4320; grey)
282  and hermaphroditism (n = 294; magenta). (b) Density plots from RJ-MCMC Multistate models
283  for the estimated probability of character state at the root of the phylogeny colour coded for
284  gonochorism (mean = 66%; grey) and hermaphroditism (mean: 34%; magenta). (c) RJI-MCMC
285  multistate posterior distributions of the transition rates from gonochorism to hermaphroditism
286  (magenta) and from hermaphroditism to gonochorism (grey).

287

288 Treating sexual system as four-character states (gonochoristic, protandric, protogynic,
289  simultaneous hermaphroditic; Fig. 2) reveals that both types of sequential hermaphroditism
290  evolve at a very low rate from gonochorism and revert very rapidly back to it (Fig. 4, Table 2).
291 In contrast, direct transitions between gonochorism and simultaneous hermaphroditism are
292  very slow if they happen at all, given that over 60% and 31% of the models estimate the
293 transition from gonochorism to simultaneous hermaphroditism and the reversal respectively to
294  be equal to zero. Our analysis also shows that protogyny evolves as slowly from gonochorism
295 as it switches to protandry and simultaneous hermaphroditism, although 32% of models
296  estimate the latter transition to be equal to zero. Conversely, protandry is lost quickly to
297  protogyny and simultaneous hermaphroditism, and very rapidly to gonochorism. Therefore,
298  simultaneous hermaphroditism evolves from sequential hermaphroditism, most likely from
299  protandry, and is lost to gonochorism, protogyny and protandry at similar low rates, although
300 approximately half of the models estimate transition rates to sequential hermaphroditism to be
301 equal to zero. Altogether, these results clearly indicate that in teleosts gonochorism is an
302 evolutionarily stable state; protogyny is evolutionarily more stable than protandry, while
303  simultaneous hermaphroditism evolves rarely, most like from protandry, and is evolutionarily
304  stable being lost slowly to gonochorism, and less likely, to protogyny and protandry (Fig. 4,
305 Table 2).
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Fig. 4. Summary of RJ-MCMC Multistate analysis with density plots of the posterior
distributions of the transition rates to gonochorism (grey), protogyny (red), protandry (blue),
and simultaneous hermaphroditism (yellow). Gonochorism is the estimated likely ancestral
condition. Note, only x-axis, but not y-axis, are the same for each pair of gain and loss between
two-character states. The thickness of the arrows is roughly proportional to the mean magnitude
of the transition rates from the posterior distribution. Dotted lines indicate transition rates
estimated to be equal to 0 in over 40% of the models in the posterior distributions. Sample sizes
of extant species for each sexual system category are indicated between parentheses.
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317 Table 2. Results of the RI-MCMC Multistate analysis in BayesTraits of sexual systems as a
318  four-state categorical variable: gonochorism (G), protogyny (PG), protandry (PA) or
319  simultaneous hermaphroditism (SH). For each posterior distribution, we report the effective
320 sample size (ESS), the mean and 95% high posterior density intervals (95-HPD), the mode and
321  the percentage of models in which the parameter is estimated as zero. This analysis is based on
322 4598 extant species (G: n = 4320; PG: n = 196; PA: n = 36; SH: n = 46). Note: 16 species of
323  bidirectional sex change were not included in this analysis due to their low number.

324

Transition rates ESS Mean 95-HPD Mode % Zero
G- PG 1153 0.014 0.000 - 0.023 0.014 7.4
PG> G 1600 1.077 0.804 - 1.396 1.116 0.0
G > PA 1600 0.015 0.005 - 0.025 0.014 0.0
PA>G 1143 1.617 0.760 —4.292 1.105 0.0
G > SH 1366 0.004 0.000 - 0.014 0.000 60.7
SH->G 1600 0.010 0.000 - 0.023 0.000 31.7
PG 2> PA 1600 0.013 0.000 - 0.023 0.014 18.7
PA 2 PG 1600 0.976 0.000 -1.321 1.107 2.9
PG - SH 1600 0.009 0.000 - 0.023 0.000 35.8
SH > PG 1600 0.009 0.000 - 0.021 0.000 51.7
PA - SH 1155 0.602 0.000 - 1.236 1.105 18.1
SH > PA 1600 0.008 0.000 - 0.021 0.000 48.6
Root probabilities

G 1324 46.1 36.1 -55.0 49.5 0.0
PG 1258 31.4 22.7-37.8 34.9 0.0
PA 1167 22.4 13.1-37.0 14.9 0.0
SH 1600 <0.1 0.0 —<0.1 0 6.8

325

326  Life history traits and sexual systems in teleosts

327  Using life history theory, we predicted that sequential hermaphrodites live longer and/or reach
328 a larger adult size and/or mature earlier as the first sex. The phylogenetic generalized least
329  square (PGLS) analyses revealed that protogynous, but not protandrous, species live longer
330 than gonochoristic species (Fig. 5a; Table 3). Larger species however might live longer,
331 therefore we repeated the analysis controlling for allometry; even so, adding size (maximum
332 length) as a covariate did not alter this result (Fig. 5b; Supplementary Table 2). Contrary to
333  predictions, we did not find any significant size difference across sexual systems (Fig. 5¢; Table
334  3). Female and male age at maturity does not differ across species with different sexual systems
335 (Fig. 5d-e; Table 3), even when accounting for allometry (length at maturity; Supplementary
336  Table 4), nor does sex-specific length at maturity (Table 3). Finally, the PGLS revealed that
337  protogynous males have lower GSI values than gonochoristic and protandrous ones, but GSI
338  does not differ significantly between gonochoristic and protandric males (Fig. 5f; Table 3) even
339  when considering allometry (Supplementary Table 2).
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Fig. 5. Life history traits by sexual system. Phylogenetic estimated mean and phylogenetic
standard error from the PGLS results of: a) longevity (year, logio transformed; G: n = 758; PG:
n = 69; PA: n = 17); b) longevity while controlling for maximum length (G: n = 575; PG: n =
61; PA: n = 8); ¢) maximum length (cm, logio transformed; G: n = 2612; PG: n = 167; PA: n =
20); d) male age at first maturity (year, logio transformed; G: n = 259; PG: n = 15; PA: n = 9);
e) female age at first maturity (year, logio transformed; G: n = 282; PG: n = 30; PA: n = 5); f)
male gonadosomatic index, GSI (logio transformed; G: n = 44; PG: n = 38; PA: n =15). In all
panels gonochorism (G) is depicted in grey, protogyny (PG) in red and protandry (PA) in blue.
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353 Table 3. Results of phylogenetic generalized least square (PGLS) model of longevity (year;
354  logo transformed), maximum length (cm; logio transformed), age at first maturity (year; logio
355 transformed), length at first maturity (cm; logzo transformed) per each sex (&' male; Q: female),
356  and male gonadosomatic index (GSI; logio transformed) across sexual systems: gonochorism
357  (G); protogyny (PG); protandry (PA). For each independent variable we report the parameter
358 estimate (Beta), t-statistics (T), P-value (P; two-sided test), and the model statistics including
359  the degrees of freedom (df), the maximum likelihood estimation of the phylogenetic signal (A)

360 and R® Significant differences are indicated in bold. Results of analyses controlling for
361 allometry are available in Supplementary Table 2. See Supplementary Table 3 for sexual
362  system and sex-specific sample sizes.

Variable Beta T P Df Model statistics
Dependent  Independent A R?
Longevity Sexual system - PA! 0.015 0.128 0.898 2; 841 0.914 0.007

Sexual system-PG!  0.161 2.340 0.019
Sexual system - PG?  0.146 1.205 0.229

Max length Sexual system - PA! 0.068 1.036 0.300 2;2796 0.972 0.0004
Sexual system - PG -0.036 -0.098 0.922
Sexual system - PG?  -0.071 -0.971 0.332

Age at Sexual system - PA!  -0.015 -0.129 0.897 2; 280 0.859  0.002
maturity & Sexual system -PG!  0.070 0.684 0.495
Sexual system - PG?2 0.085 0.623 0.534

Age at Sexual system - PA! 0.165 1.217 0.225 2; 314 0.862  0.005
maturity ¢ Sexual system -PG!  0.029 0.333 0.739
Sexual system - PG2  -0.135 -0.945 0.345

Length Sexual system - PA!  -0.060 -0.809 0.419 2; 359 0.974  0.002
at maturity & Sexual system - PG  -0.020 -0.337 0.736
Sexual system - PG? 0.040 0.448 0.654

Length at Sexual system - PA!  -0.018 -0.169 0.866 2; 340 0.971 0.0009
maturity ¢ Sexual system - PG!  -0.041 -0.565 0.572

Sexual system - PG?  -0.023 -0.200 0.842
GSI & Sexual system - PA! 0.092 0.736 0.464 2;94 0835 0.234

Sexual system - PG!  -0.500 -4.977  <0.001
Sexual system - PG?  -0.592 -4.209 <0.001

363  1G as reference level; 2PA as reference level
364

365

366 Discussion

367  Our large-scale phylogenetic study has tested for the first time the theoretical predictions on
368  how sexual systems evolve and has revealed the evolutionary origin of and transitions between
369 different sexual systems in the highly diverse teleosts. We identify gonochorism and
370  simultaneous hermaphroditism as stable conditions over evolutionary time. In support to recent
371 theoretical models®, our study demonstrates that simultaneous hermaphroditism is unlikely to
372  evolve directly from gonochorism and instead requires the intermediate step of sequential

373 hermaphroditism, most likely protandry. We find support for the predictions derived from life
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374 history theory that protogynous species live longer than gonochoristic species but no evidence
375  that sequential hermaphrodites attain a larger size or mature earlier than gonochoristic species.
376  Finally, we find strong evidence that protogynous males invest the least in male gonad tissues
377  (quantified by the gonadosomatic index) relative to gonochoristic and protandric males.
378  Combined, these results suggest that the two forms of sequential hermaphroditism must be
379  treated separately in theoretical and empirical studies as protandry and protogyny are
380 characterized by distinct life history strategies®, even though they both entail sex change.

381 Using the largest dataset ever collected with four sexual systems in teleosts, our study
382  reveals a complex and dynamic way through which sexual systems evolve and switch between
383  one another. Sequential hermaphroditism can evolve slowly from gonochorism, the ancestral
384  state in teleosts, but revert to gonochorism rapidly. Although gonochorism is an evolutionarily
385  stable condition, gained faster than it is lost, these results refute the assumption that the
386 transition to gonochorism is irreversible?® and represent another example®>% against Dollo’s
387 law of irreversibility®’, as previously suggested?®. Conversely, sequential hermaphroditism in
388 teleosts, particularly protandry, is less evolutionarily stable than gonochorism. Our results
389  however contradict Pennell et al.’s finding® that evolutionary transition from gonochorism to
390 hermaphroditism occur over twice as fast than the reverse, suggesting rapid evolution of
391  hermaphroditism from gonochorism, a conclusion that the same authors acknowledge is
392  counterintuitive. We note that Pennell et al.?® used a much smaller dataset biased towards a
393  greater proportion of hermaphroditic than gonochoristic species than what is observed in
394  teleosts, and did not discriminate between different types of hermaphroditism. In contrast, we
395 find that the evolutionary gain of hermaphroditism is slower than its loss to gonochorism,
396 regardless of whether we treat sexual system as binary trait (gonochorism vs hermaphroditism)
397  ordiscriminate between forms of hermaphroditism. Heterogeneity in the rate of gain and losses
398  across large phylogenies can potentially bias the estimates of the faster transition rate for binary
399  traits®®. However, our analysis at four states reveals that protandry is lost rapidly to both
400 protogyny and gonochorism, and to a lesser degree, to simultaneous hermaphroditism.
401  Altogether, our results at four states indicate that rapid transition rates from hermaphroditism
402  to gonochorism in our analysis at two states are robust and reveal that protandry and protogyny
403  —but not simultaneous hermaphroditism— evolve much more slowly from gonochorism than
404  the reverse.

405 Importantly, our study demonstrates that simultaneous hermaphroditism does not
406  originate directly from gonochorism but rather through sequential hermaphroditism, most

407  likely protandry. However, simultaneous hermaphroditism is lost preferentially to
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408 gonochorism than to either form of sequential hermaphroditism. Thus, our analyses
409 demonstrate that an intermediate stage is required for the gain of simultaneous
410  hermaphroditism from gonochorism but not the loss back to it. These results support theoretical
411  predictions (Fig. 1) that sex-specific gene expression in gonochoristic species may prevent
412  direct evolutionary transitions between gonochorism and simultaneous hermaphroditism, and
413  intermediate stages, like sequential hermaphroditism, are required®. Overall, our study is
414  consistent with suggestions that the complexity of sex-specific physiology and behaviour is
415  likely to constrain some transitions between sexual systems. Androdioecy is considered an
416  intermediate stage from simultaneous hermaphroditism to dioecy in plants and from
417  gonochorism to hermaphroditism in some invertebrates®'4. However, this sexual system is
418  extremely rare in fish and cannot explain the evolution of diverse sexual system in this
419  vertebrate group, where instead sequential hermaphroditism seems to play a similar role. We
420  suggest that future studies in other taxa may also consider sequential hermaphroditism (if
421  present) together with other mixed systems as an important stepping stone for evolutionary
422  changes between gonochorism and simultaneous hermaphroditism as we have found in
423  teleosts.

424 According to life history theory, sequential hermaphrodites should, on average, live
425  longer, grow bigger and/or mature earlier as the first sex than gonochoristic species. We find
426  that protogynous and protandrous species differ in their life history strategies: protogynous, but
427  not protandrous species live longer than gonochoristic species. These differences reflect the
428  fact that protogyny and protandry maximise their fitness as the second sex® which differs
429  between the two systems. Therefore, the longer life in protogynous species favours large
430  successful males (second sex) that can monopolize females in harems or in spawning grounds.
431  Conversely, protandrous species benefit primarily by achieving a larger size, as larger females
432  (second sex) are more fecund than smaller ones. In addition, male investment in gonad tissue
433  (as quantified by the gonadosomatic index) is lower in protogyny, as expected by theory®>%8,
434 since large males can better monopolize mating opportunities and face low levels of sperm
435  competition in harems and group spawning (Table 1). Small-sized protandrous males in group
436  spawning instead need to boost their investment in the gonads but even in the absence of sperm
437  competition (monogamy) they require large gonads to fertilize highly fecund females, larger
438 than themselves®®. Thus, sexual systems and mating strategies affect life history traits
439  differentially in protogynous and protandrous species. It is well known that in sequential
440  hermaphrodites the second sex always matures later and is larger than the first sex, so it is not

441  surprising that in protandrous species females are significantly larger than males when reaching
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442  maturity, while in protogynous species males are significantly larger than females®® (excluding
443  the cases of primary females and primary males, respectively). Yet, no comparison has been
444  made for size/age at first maturity for males and females across sexual systems. Life history
445  theory predicts that the first sex of sequential hermaphrodites matures earlier than the same sex
446  in gonochorism, but, with the data currently available, we find no evidence for this.

447 Our study is the first to attempt to include explicitly life history traits into a theoretical
448  framework for the evolution of sexual systems and provide some evidence in support to
449  theoretical predictions, but records on life history traits for teleosts species in general and
450  hermaphroditic species in particular, are still currently too scarce. Even less complete and
451  reliable data are available on mating systems and spawning behaviours, which should be
452  incorporated in future studies aiming at obtaining a more complete understanding of the role
453  that life history traits play. Particularly necessary to fully assess theoretical predictions are sex-
454 specific data for size and time spent as females and as males in sequential hermaphrodites, and
455  for investment in male vs female function in simultaneous hermaphrodites, for which currently
456  little is known. Future studies should re-evaluate these relationships as more data become
457  available for a large number of species.

458 While we have shown that life history theory can provide a major contribution to our
459  understanding of sexual system evolution, below we present a general model for studying
460  sexual systems and propose that the highly dynamic picture revealed by this study should be
461 expanded using a more comprehensive approach that includes not only selection and
462  adaptation, but also sex determining mechanisms and gonadal plasticity (Fig. 6).

463

464
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465

466

467  Fig. 6. Theoretical framework for the evolution of sexual systems: overview of parameters
468  (with some examples) considered in the low density and the size advantage models (*), used
469  inour analyses (**) and proposed in the present study (***).

470

471 Sex determination in gonochoristic animals is determined either at fertilization by
472  different genetic mechanisms, including male (XX/XY) or female (ZW/ZZ) heterogamety with
473  homomorphic or heteromorphic sex chromosomes, or after conception by environmental
474  factors, or by a combination of both®"°. Fish are characterized by an incredible diversity’*"3
475  and plasticity?®* of sex determining mechanisms. Many fish do not have sex chromosomes’2.
476  When they are present, they might not always be clearly differentiated since sex determining
477  loci might not be easily identifiable’ and in some cases the sex can be determined by a change
478  inasingle nucleotide. High turnover of sex chromosomes has also been detected in some fish
479  lineages (e.g., sticklebacks’®"), including reversal to autosomes?. It has been suggested that
480  fixed, strongly canalized, genetic sex determination (culminating in the formation of fully
481  differentiated and stable heteromorphic sex chromosomes) might constrain the evolution of
482  hermaphroditism, acting as an evolutionary trap’8-8, Even if this is not the case?®®!, sequential

483  hermaphrodites do not appear to have sexually differentiated chromosomes®?, but data are
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484  currently scarce for formal analyses. Finally, sequential hermaphroditism can be regarded as a
485 clear example of phenotypic plasticity, and since epigenetics underlies phenotypic plasticity,
486  epigenetic mechanisms have been proposed to participate in the evolutionary transitions
487  between different sexual systems and sex-determining mechanisms®. Therefore, although
488  complete genetic control of hermaphroditism is common in plants®4, a better knowledge of the
489  genetic and epigenetic mechanisms of sex determination could be helpful to explain how
490  hermaphroditism in teleosts has evolved in some taxonomic groups but not in others under
491  similar ecological pressures.

492 Previous attempts to connect the distribution of sexual systems have invoked
493  morphological® and developmental®® aspects. Developmental plasticity is uniquely
494  documented in teleosts via the bipotential nature of their gonads and gonoducts®®. Thus, while
495  inmost vertebrate taxa gonads develop from two distinct germinal layers (medulla, endodermal
496  in origin, which gives rise to the testes; and cortex, mesodermal in origin, which gives rise to
497  the ovary), in teleosts the gonads consist entirely of the cortex homolog®’. Moreover, teleosts
498 are the only group of vertebrates where the Millerian duct is absent, and the gonoduct has the
499  same origin in both sexes, being the reproductive systems completely independent of the
500 excretory system®. Therefore, anatomically all teleosts could, in principle, be
501  hermaphrodites®®. Furthermore, the transition to protogyny may be favoured by the
502  peculiarities of gonadal development in many gonochoristic teleost species, which develop a
503 female gonad, complete with ovaries containing cysts of oocytes, during the initial stage of
504  gonadal formation®®°. Only later testicular development is triggered and superimposed on this
505 arrangement so that the individual ultimately matures functionally as a male® . Thus,
506  protogyny might be favoured because female gonads are often the first to develop albeit
507 temporarily, even in protandrous species®?. Bidirectional sex change, a rarer system in teleosts
508 (Table 1), further demonstrates the importance of gonadal plasticity. In most cases, the initial
509  strategy is protogyny®, but males can revert back to females when triggered by new social
510 conditions. The retention of some female gonadal tissue in males facilitates a new change of
511  sex, if and when required®. The maintenance of both gonadal tissues could facilitate a
512  transition to simultaneous hermaphroditism. Thus, the study of the evolution of sexual systems
513 in fish (and possibly other taxa) could greatly benefit from taking into consideration the
514  facilitating/constraining aspects linked to gonadal developmental plasticity and the existence
515  of different sex determining mechanisms.

516 In conclusion, our study reveals that gonochorism is the most likely ancestral state and

517  the most evolutionary stable sexual system in teleosts. In support to theoretical predictions, we
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518  demonstrate that simultaneous hermaphroditism cannot evolve directly from gonochorism but
519 requires an intermediate step, most likely through protandry. However, simultaneous
520  hermaphroditism is more likely to be lost to gonochorism than to sequential hermaphroditism
521 in teleosts. Overall, our study reveals that the evolution of sexual systems is evolutionarily
522  more dynamic and complex than commonly assumed. Our results support theoretical
523  assumptions that changes between sexual systems are likely constrained by sex-specific gene
524 expression, physiology and behaviour. In addition, we propose that the adaptive advantage of
525  different sexual systems is further underpinned in fish by their extraordinary and unique
526  developmental plasticity®, including common and fast transitions among different sex
527  determining mechanisms?®®, Our study also reveals that different sexual systems exhibit
528  different life history strategies that allow species with sequential hermaphroditism to maximise
529  fitness as the second sex, particularly in protogynous species, and highlights the need for
530  more sex-specific life history data to gain a fuller and deeper understanding of the interplay
531  between life history strategies and sexual system. Altogether we propose that a comprehensive
532  framework that incorporates life history traits, sex determining mechanisms and gonadal
533  plasticity into traditional theoretical models of sexual system adaptive value will be essential
534 if we are to fully understand the evolution of sexual systems, their phylogenetic distribution
535 and their implications for conservation and management.

536

537  Methods

538 Data collection and verification

539  We compiled the most comprehensive database on sexual systems in teleosts to date.
540  Information on sexual system were first extracted from FishBase®?. Next, species were classed
541 as hermaphroditic only if functional hermaphroditism could be confirmed by primary literature,
542  as recently compiled elsewhere® (see Supplementary Data for details). For the remaining
543  species, we maintained the gonochoristic classification of FishBase®, unless recent literature
544  stated otherwise. Indeed, gonochorism is rarely confirmed in literature even when present, so
545 including as gonochoristic only species for which this sexual pattern is confirmed would
546  strongly bias the dataset against gonochorism, ultimately undermining the robustness of the
547  analyses. Importantly, species for which there is contrasting information in the literature were
548  discarded (Supplementary Methods). Of this database, 4614 species are included in the most
549  recent and largest molecular phylogeny for the class®® (available at https://fishtreeoflife.org)
550 and used in this study. Altogether our final dataset included 4320 gonochoristic and 294
551  hermaphrodite species (Supplementary Figure 1), of which there were 196 protogynous, 36
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552  protandrous, 16 bidirectional species and 46 simultaneous hermaphrodites. Unisexual species
553  were not included in the analyses, due to their extremely low number and hybrid orgin®%%3; we
554  also did not have enough data (and power) to consider separately digynic and diandric species.
555  Life history traits (Supplementary Table 3) were also collected from primary literature,
556  FishBase®? and rFishBase®’: longevity (in years), maximum length (in cm); length (in cm) and
557  age at maturity (in years) of males and females; male gonadosomatic index (GSI; the maximum
558  value recorded, expected to coincide with the peak of the reproductive season).

559

560 Phylogenetic comparative analyses

561  We investigated the evolutionary history of sexual systems of 4614 teleost species using
562  Multistate models in BayesTraits V.3%% in a Bayesian framework. Multistate estimates
563 instantaneous transition rates between alternative character states of a single categorical
564  variable (i.e., the rate of change between states along the branches of a phylogeny), based on a
565  continuous-time Markov model of evolution for discrete traits’®®1%, A high transition rate from
566  one state to another indicates that the first state changes rapidly to the second state over
567  evolutionary time. Therefore, a character state is evolutionarily stable when it is lost more
568  slowly than it is gained!®?. Multistate also produces posterior distributions of the ancestral
569  character state at the root of the phylogeny. We scaled the tree by a default constant (mean of
570  0.1) in all analyses®? and used an exponential prior whose mean was seeded from a uniform
571  hyperprior ranging from 0 to 10 to reduce inherent uncertainty and biases of prior choice®. We
572  ran all Multistate analyses with Reversible Jump (RJ) Markov chain Monte Carlo (MCMC)
573  methods. MCMC samples models in direct proportion to their fit to the data, generating a
574  posterior distribution of parameter estimates for each transition rate, and RJ sets some
575  parameters equal to zero or equal to one another, thereby reducing model complexity and over-
576  parametrization®91% As a result, posterior distributions of parameter estimates may not be
577  normal; we thus summarised results by presenting mean and mode of the posterior distributions
578  of each parameter estimate, 95% higher posterior density, and percentage of models with
579  parameters estimated to be 0. We ran all MCMC chains for 320 million iterations in addition
580 toahburn-in of half a million iterations, sampling every 200000 iterations. All chains converged
581 and showed good mixing as indicated by their effective sample sizes of 2000 and visual
582  inspections of their traces in Tracer v1.61%. All analyses were run in triplicate and the three
583  independent chains converged on very similar solutions, leading to qualitatively similar results.
584  Here we present the results from the first chain. We ran RJI-MCMC Multistate analysis on

585  sexual system (Supplementary Table 4) as a binary state (gonochoristic or hermaphrodite) and
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586 as a four-state categorical variable (gonochorism, protandry, protogyny, simultaneous
587  hermaphroditism). Bidirectional sequential hermaphrodites were excluded from the latter
588  analysis as the sample size of extant species was too low so that the chains failed to converge
589  and mix properly when sexual system was studied as a five states categorical variable. For the
590 analyses with two-character state, we graphed the evolutionary history of sexual systems on
591 the phylogeny using maximum likelihood (ML) in the R package ape v.5.3'%, which provided
592  areasonably close approximation of the RI-MCMC Multistate results (this was not the case
593  with the four-character state analysis).

594 We used phylogenetic generalized least square (PGLS) models®1% to test for the
595 association of each life history trait, entered as dependent variables, with sexual systems
596  entered as independent discrete variable with three possible states (gonochorism, protogyny,
597  protandry), as not enough data were available for simultaneous hermaphroditic species and
598  bidirectional sex-changers. PGLS models were run with the R package caper®® in Maximum
599  Likelihood. The parameter A of PGLS models quantifies the strength of the phylogenetic signal
600 in the model residuals®. A ranges between zero (there is no phylogenetic structure in the data)
601 and one (the species share similarity in trait values directly proportional to their common
602  evolutionary time, under Brownian motion model of evolution!®1%7). Continuous variables
603  were logio-transformed to meet assumptions of normality.

604
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Supplementary tables

Supplementary Table 1. Results of the RI-MCMC Multistate analysis in BayesTraits of
sexual systems as a binary trait: gonochorism (G) or hermaphroditism (H). For each
posterior distribution, we report the effective sample size (ESS), the mean and 95% high
posterior density (95-HPD) intervals, the mode, and the percentage of models in which
the parameter is estimated as zero. Analysis based on 4614 extant teleost species (G: n =
4320; H: n = 294)

Transition rates ESS Mean 95-HPD Mode %
Zero

G—->H 1600 0.034 0.021 - 0.047 0.032 0

H->G 1600 0.826 0.608 — 1.038 0.823 0

Root probabilities

G 1600 66.0 59.1-74.1 65.1 0

H 1600 34.0 25.9 -40.9 34.9 0
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Supplementary Table 2. Results of phylogenetic generalized least square (PGLS) model

of longevity (year; logio transformed), controlled for allometry (maximum length, in cm;

log10 transformed; age at first maturity (year; logio transformed) per each sex (J': male;

Q: female), controlling for allometry (length at maturity in cm; logio transformed); and

male gonadosomatic index (GSI; log10 transformed), controlling for allometry (male

length at maturity in cm; logio transformed) across sexual systems: gonochorism (G);

protogyny (PG); protandry (PA). For each independent variable we report the parameter

estimate (Beta), t-statistics (T), P-value (P; two-sided test), and the model statistics

including the degrees of freedom (df), the maximum likelihood estimation of the

phylogenetic signal (L) and RZ Significant differences are indicated in bold. See

Supplementary Table 3 for sexual system and sex-specific data

Variable Beta T P Df Model statistics

Dependent  Independent A R?
Longevity Max length 0.680 19.968 <0.0001 3; 640 0.864  0.388

Sexual system - PA! -0.043 -0.417 0.677

Sexual system - PG! 0.129 2.193 0.029

Sexual system - PG? 0.172 1.538 0.124
Age at Length at maturity & 0.602 8.360 <0.001 3; 149 0.785  0.325
maturity & Sexual system - PA! -0.090 -0.956 0.340

Sexual system - PG! 0.068 0.774 0.440

Sexual system - PG? 0.159 1434 0.154
Age at Length at maturity ¢ 0.536 8.062 <0.001 3; 166 0.829 0.282
maturity @ Sexual system - PA! 0.016 0.117 0.907

Sexual system - PG! -0.014 -0.167 0.867

Sexual system - PG? -0.029 -0.217 0.828
GSI & Length at maturity & 0.041 0.236 0.814 3;51 0.000 0.376

Sexual system - PA! 0.164 1.197 0.237

Sexual system - PG! -0.513 -4631  <0.001

Sexual system - PG? -0.678 -4.582 <0.001
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Supplementary Table 3. Sample sizes for longevity (year), maximum length (cm), age
at maturity (years), length at maturity (cm) and gonadosomatic index (GSI) for each
sexual system with sex-specific male (&) and female (Q) data, when available. In italics
data not used in the analyses. G = gonochorism; PG = protogyny; PA = protandry; SH =

simultaneous hermaphroditism; BD = bidirectional hermaphroditism

Life-history traits Sex G PG PA Totalfor SH BD
analyses

Longevity 758 69 17 844 7 3

Maximum length 2612 167 20 2799 28 11

Age at maturity g 259 15 9 283 1 -
Q 282 30 5 317 2 -

Length at maturity g 305 42 15 362 9 -
Q 297 36 10 343 2 -

GSlI 3 44 38 15 97 3 -
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Supplementary Table 4. Number of species used to study the evolutionary transitions

among different sexual systems. Note that androdioecious species are not included in the

analyses
Sexual system 2 state 4 state
[G, H] [G, PG, PA, SH]

Gonochorism [G] 4320 4320
Hermaphroditism [H] 294*
Protogyny [PG] 196
Protandry [PA] 36
Simultaneous hermaphroditism [SH] 46

Total 4614

*Includes 16 species of bidirectional sequential hermaphrodites, which were not included
in other analyses due to their small sample size when added as a separate category.
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Supplementary methods

Data collection and verification

Information on the sexual system and life history traits was previously collected from
FishBase (www.fishbase.org) for a total of 10914 actinopterygian species, of which
10875 were teleosts. Of these, we only retained the 4740 teleost species that were also
present in the phylogenetic tree of Rabosky et al. (2018), of which 4320 were
gonochoristic and 420 had different forms of hermaphroditism (Supplementary Figure 1).
Of the latter, we retained only the species in which functional hermaphroditism has been
reported in the primary literature (compiled in Pla et al., 2021) plus some additional
species added also from the primary literature (all used references are provided).
Regarding gonochoristic species, we only considered those that were regarded as such in
FishBase, unless recent literature states otherwise. Importantly, species for which there is
contrasting information in the literature were discarded and not used for this study.

FishBase + Literature PHYLOGENETIC TREE
10914 actinopterygian (Rabosky et al., 2018)
10875 teleosts 11638 teleosts

SEXUAL SYSTEM + LIFE-
HISTORY TRAITS

DATASET
9005 teleosts

!

Retain species in common
4740 teleosts
(4320 gonochoristic + 420
hermaphroditic)

!

Retain gonochoristic and only
verified hermaphroditic species
(Pla et al. 2021 + Literature)

PHYLOGENY + SEXUAL
SYSTEM + LIFE-HISTORY
TRAITS DATASET

4614 teleosts
(4320 gonochoristic + 294
hermaphroditic)
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Supplementary Figure 1. Diagram of the data acquisition and curation followed in this
study.

We also extracted data from primary literature, FishBase (www.fishbase.org; CD-ROM
version), and rfishbase (https://www.rdocumentation.org/packages/rfishbase/versions/3.0.4;
Boettiger et al., 2012), on the following life-history traits:

1) Longevity (in years). When more than one value was present for a given species,
we used the maximum value reported in the wild.

2) Maximum length, specifically total length (TL; in cm).
3) Age (in years) and length (in cm) at first maturity for each sex.

4) Male gonadosomatic index (GSI). The maximum value (expected to coincide
with the peak of the reproductive season) was used.

We controlled for allometry as follows: longevity was controlled for maximum length
(available for both sexes combined); age at maturity was controlled for length at maturity
(by sex). GSI was controlled for male length at maturity (male-specific): in this case we
could not use maximum length, not sex-specific, which would give an incorrect length of
males in protandric species, where the larger individuals are females.
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Supplementary data

Full dataset attached as an Excel file:
- Sheet 1. Sexual system and life history traits for a total of 4614 teleosts.

- Sheet 2. List Sexual system of the 294 hermaphroditic species used in this
study and the supporting primary literature (listed below).
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