

1 **Feline tooth resorption in a case-control study based on a subpopulation of 944**
2 **dentally examined cats from a Finnish questionnaire survey of over 8000 cats**

3 Katariina Vapalahti^{a,b}, Henriikka Neittaanmäki^a, Hannes Lohi^{a,b,c*}, Anna-Maija Virtala^a

4

5 ^aDepartment of Veterinary Biosciences, 00014 University of Helsinki, Finland

6 ^bDepartment of Medical and Clinical Genetics, 00014 University of Helsinki, Finland

7 ^cFolkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland

8

9 *Corresponding author

10 Email: Hannes.lohi@helsinki.fi

11

12 Abstract

13 Tooth resorption (TR) is one of cats' most common dental diseases. It is a painful condition
14 characterized by progressive dental destruction, which eventually results in loss of teeth. The
15 aetiology of the TR remains unclear, but associations with old age, breed, other oral and dental
16 diseases, and certain environmental factors have been suspected. In our study, we used part of the
17 data from the extensive feline health and environmental survey of 8115 Finnish cats collected through
18 an online survey targeted at cat owners. We aimed to investigate the characteristics of cats having TR
19 and to study risk factors for TR. Because TR is difficult to detect and, in addition, the feline health
20 survey was very comprehensive and included diagnoses defined by both veterinarians and owners
21 themselves, we limited our study to a subpopulation of cats diagnosed with oral or dental disease by
22 a veterinarian and undergone dental examination or surgery under sedation (n=944).

23 The frequency of veterinary-diagnosed TR was 3.9% in the entire health survey data (316/8115) and
24 increased to 21% in the subpopulation of veterinarian-diagnosed and sedated cats (202/944). We
25 utilized case-control multivariable logistic regression in this subpopulation to determine the risk
26 factors and breed variation of feline TR. The 202 cats diagnosed with TR were defined as TR cases
27 and the 742 cats without TR diagnoses served as controls. Results indicate that the risk of TR
28 increases with age. Dental calculus, gingivitis, and periodontitis were associated with TR. These
29 findings and the interaction of dental calculus with gingivitis and periodontitis might suggest that
30 inflammatory changes caused by dental calculus increase the risk of TR. We found Cornish Rex,
31 European, and Ragdoll at higher risk for TR. Exotic-Persians had lower risk, and Turkish van and
32 Devon Rex had no TR. The observed differences between breeds highlight a genetic contribution. In
33 addition, female cats that had food available constantly had significantly less TR than female cats that
34 had feeding times. The underlying influential reasons for this result remain unexplained in our study.

35 Keywords: cat, feline, tooth resorption, FORL, dental, oral disease

36

37 **Introduction**

38 Tooth resorption (TR) is one of cats' most common dental diseases. It is a painful condition
39 characterized by progressive dental destruction (Palmeira et al., 2022), which eventually results in
40 loss of teeth. Dental radiography is necessary to evaluate the overall situation (Reiter and Mendoza,
41 2002). Prevention of the disease is not possible since the aetiology is still unknown. The goal of
42 treatment is to relieve the pain and discomfort caused by these lesions (Gorrel, 2008). The leading
43 cause of destruction is odontoclasts, multinuclear cells that resorb mineralized tissue (Okuda and
44 Harvey, 1992). Odontoclasts are responsible for the resorption of deciduous teeth in young animals,
45 but their abnormal activity in permanent teeth is the cause of TR (Scarlett et al., 1999). The reason
46 for this process remains unclear, although many theories have been proposed. Tooth resorption can
47 include plaque accumulation, inflammation of the adjacent tissue and alveolar bone ankylosis
48 (DeLaurier et al., 2009). Because the pathogenesis of tooth resorption has been unclear, many
49 different terms have been used to describe the lesion, i.e., erosion, neck lesion, FORL (feline
50 odontoclastic resorptive lesion). Nowadays, the most used term is TR.

51 Increasing age has widely been found to increase the risk of TR (Coles, 1990; Harvey,
52 1993; Lund et al., 1998; Ingham et al., 2001; Pettersson and Mannerfelt, 2003; Reiter et al., 2005b;
53 DeLaurier et al., 2009; Mestrinho et al., 2013; Pistor et al., 2023). Scarlett et al. (1999) reported that
54 cats with previous dental diseases (gingivitis, calculus, or periodontal disease) had four to five times
55 higher odds for resorptive lesions than those without the previous dental disease. Other studies have
56 also found the association of gingivitis with TR lesions (Harvey, 1993; Mestrinho et al., 2013; Pistor
57 et al., 2023). Some studies have not found an association with gingivitis (Ingham et al., 2001; Gorrel
58 and Larsson, 2002). However, the methods of Gorrel and Larsson (2002) differed from others as they
59 examined individual teeth histologically. Periodontitis has been associated with inflammatory tooth
60 resorption (DuPont and DeBowes, 2002). However, tooth resorption can cause inflammatory

61 resorption of the surrounding alveolar bone and increase the risk of decreased alveolar bone height
62 (Lemmons, 2013). Farcas et al. (2014) did not find TR more in cats with chronic gingivostomatitis.
63 The size and origin of the study population and methods have a major impact on the reported
64 prevalence of TR in previous studies, varying from 29-85% (Coles, 1990; Lund et al., 1998; Petterson
65 and Mannerfelt, 2003; DeLaurier et al., 2009; Whyte et al., 2020). Most studies are based on a small
66 clinical sample ($n < 150$), and the studies with the biggest sample size are van Wessum (1992) with
67 432 cats and 62% prevalence, Lommer and Verstraete (2000), with 265 cats and 60.8% prevalence,
68 and Ingham et al. (2001), with 228 cats and 29% prevalence.

69 Our aim was to study the risk factors for TR in a case-control study in a subset of a large
70 cat health survey - cats with veterinary-diagnosed oral or dental disease and underwent dental
71 examination or surgery under sedation. The subset was used to minimize the number of false positives
72 and negatives in the data.

73

74 **Materials and Methods**

75 The material for this study was part of the data that were obtained from a cross-sectional online feline
76 health questionnaire survey targeted at all Finnish cat owners (Vapalahti et al., 2016). The
77 questionnaire included the cats' environment, diseases, and behaviour. The disorders were divided
78 into various categories including several specific diseases. Each category also included information
79 on whether the diagnosis was made by a veterinarian or by the owner. The questionnaire and data
80 collection methods in detail and some results of the survey have been published previously by
81 Vapalahti et al. (2016), Ahola et al. (2017), and Salonen et al. (2019).

82 Because TR is difficult to detect and the definitive diagnosis requires clinical examination
83 and dental radiographs under sedation, we included in this study only those cats from the feline health
84 survey that had undergone veterinary oral or dental examination or surgery under sedation (according
85 to the open-ended field of question). For this subgroup, we defined those cats with a TR diagnosis as

86 TR cats and the rest as non-TR cats. When evaluating breed associations, we used house cats as the
87 reference group, as they represented the average cat population in terms of TR and other diseases
88 (Vapalahti et al., 2016).

89 The data used in our study consisted of 1) basic information about the cat: breed,
90 registration number, day of birth, possible day of death, sex, neutering, 2) environmental factors:
91 vaccinations, outdoor habits, diet, home environment, and 3) disease categories and specific
92 diagnoses. The specific diagnoses were considered only in oral and dental, and autoimmune diseases,
93 and viral infections. The differential diagnoses in dental and oral diseases were malocclusion,
94 gingivitis, stomatitis, periodontitis, tooth resorption (odontoclastic resorptive lesion FORL in
95 Vapalahti et al. (2016)), dental calculus, tooth fracture, and an abnormal number of teeth.

96 The cat's age was the difference between the date of birth and the response date. Age was categorized
97 into three age groups: <7 years, 7 to < 11 years, and at least 11 years. We utilized breed groups of
98 genetically similar breeds (presented in Vapalahti et al., 2016) in breeds with low numbers. The breed
99 groups were Abyssinian–Ocicat–Somali, Siamese–Balinese–Oriental–Seychellois, Exotic–Persian,
100 Cymric–Manx and Neva masquerade–Siberian. Only the veterinarian's diagnoses were included in
101 the study in the dental and oral disease category. In other disease categories, the initial options
102 'veterinarian's diagnosis' or 'own diagnosis' were summed up to option '1' (yes) if either option was
103 selected. 'Not known' responses were coded as missing; the rest were '0' (no) responses. Coding '1'
104 (yes) or '0' (no) was used to analyse specific diagnoses. The environmental information, such as diet
105 and vaccinations, were coded similarly. Outdoor habits were divided into five categories: 'Outdoors
106 every day', 'Outdoors all along', 'Outdoors weekly', 'Outdoors monthly' and 'Outdoors less often
107 than monthly/never'. Genders were coded as 'Female' and 'Male'. The effect of neutering was not
108 studied since most cats were neutered.

109 We examined cats' demographic and environmental factors separately in TR and non-TR
110 cat groups. The proportion of tooth resorption in different breeds, age groups, sex, other diseases, and

111 environmental factors were calculated with proc freq procedure (SAS 9.4, SAS Institute, Cary NC,
112 2016)). The binomial option was used to calculate Wilson 95% confidence intervals (Brown et al.,
113 2001) for percentages. The statistical significance of factors associated with TR was evaluated with
114 Fisher's exact test for two categorical variables and Chi-square test for mult categorical variables by
115 utilizing fisher or chisq option in proc freq procedure. Factors at level $P < 0.2$ in the basic tests above
116 were analyzed individually in preliminary logistic regression models (SAS proc logistic procedure)
117 with confounding factors. Age, sex, and breed were considered confounding factors according to the
118 literature (Houe et al., 2004). In the modelling, we treated TR-cats as cases and the rest of the cats as
119 controls, and variable TR – 'yes' or 'no' – was set to a response variable with option 'yes' as the
120 event. Variables with P -value < 0.05 (Wald chi-square) in preliminary logistic regression models were
121 qualified for the multivariable logistic regression modelling for TR's most important risk factors.

122 The multivariable modelling (SAS proc logistic procedure) tested interactions until the
123 second. The model selection was performed using the forward, backward and stepwise selections and
124 choosing the best model of these according to goodness of fit statistics. P -value < 0.05 of Wald chi-
125 square was set to cut off value for covariate significance. The goodness of fit of the model was
126 evaluated with Pearson goodness of fit statistics, McFadden index, Akaike information criterion
127 (AIC), and the predictive value by the area under the curve (AUC) of the receiver operating
128 characteristic (ROC) curve. Multicollinearity between variables was estimated by the Phi coefficient
129 – the limit value for strong correlation was set at 0.5 (Pett, 1997).

130 As a comparative analysis with the logistic regression procedure, we performed random
131 forest (RF) (Ho, 1995) classification using R (R Core Team, 2019) randomForest package (Liaw and
132 Wiener, 2002). In order to make RF analysis data to be comparable with logistic regression analysis
133 data in terms of observation numbers, we included in the RF data those variables that had adequate
134 number (> 4) feature occurrences in both TR-groups and less than 20 missing values. Eventually, the
135 data included 31 variables. The importance of the variables in predicting TR was calculated in

136 accuracy perspective. We set the number of trees to 500 in RF, and manually tuned the number of
137 randomly drawn candidate variables and the minimum number of observations in a terminal node to
138 find the best accuracy for the classification. The data division into to train data (80%) and test data
139 (20%) and creation of importance plot of variables were performed using R caret package (Kuhn,
140 2022).

141

142 **Results**

143

144 **Frequency of tooth resorption**

145 The cat population of the original feline health survey (Vapalahti et al., 2016) consisted of 8115 cats
146 in 40 breeds. Of the cats, 2070 (26%) were diagnosed with oral or dental disease, and 316 (3.9% (95%
147 CI 3.5–4.3%)) cats had a veterinarian diagnosed with TR.

148 Restricting the cat population to cats that had veterinarian-diagnosed oral or dental
149 disease, and which, according to the responder's report (open ended-question), had undergone a
150 veterinary oral or dental examination or surgery under sedation, reduced the cat population to 944
151 cats in 35 breeds; 202 cats with TR (21.4 %; 95% CI 18.9–24.1 %) and 742 without TR. Of the TR-
152 cats, 169 had had teeth extractions done because of TR (84%), as clarified in the open-ended field of
153 the question. The mean age of the cat population was 8.9 years – 8.6 years for cats without TR and
154 9.8 years for cats with TR. The frequency of TR increased by age, 14.7% in 0 to <7 years old, 25.9%
155 in 7 to <11 years old, and 25.3% in at least 11 years old cats.

156 We found no significant difference between the TR frequency in purebred cats and non-
157 pedigree house cats (21.5%; CI 18.8–24.6% and 20.8%; CI 15.7–27.1%, respectively, $P = 0.922$,
158 Fisher). However, in some breeds, the frequency was much higher or lower than in the entire in-house
159 cat population (21.4%) – high in Cornish Rex (45.1%), European (37.5), Ragdoll (35.1%) and in the

160 Oriental group (31.9%), and much lower in Birmans (8.6%) and Russian blue (10.0%) and Persian-
161 Exotic group (10.9%). TR was not reported in the breeds of Devon Rex and Turkish van.

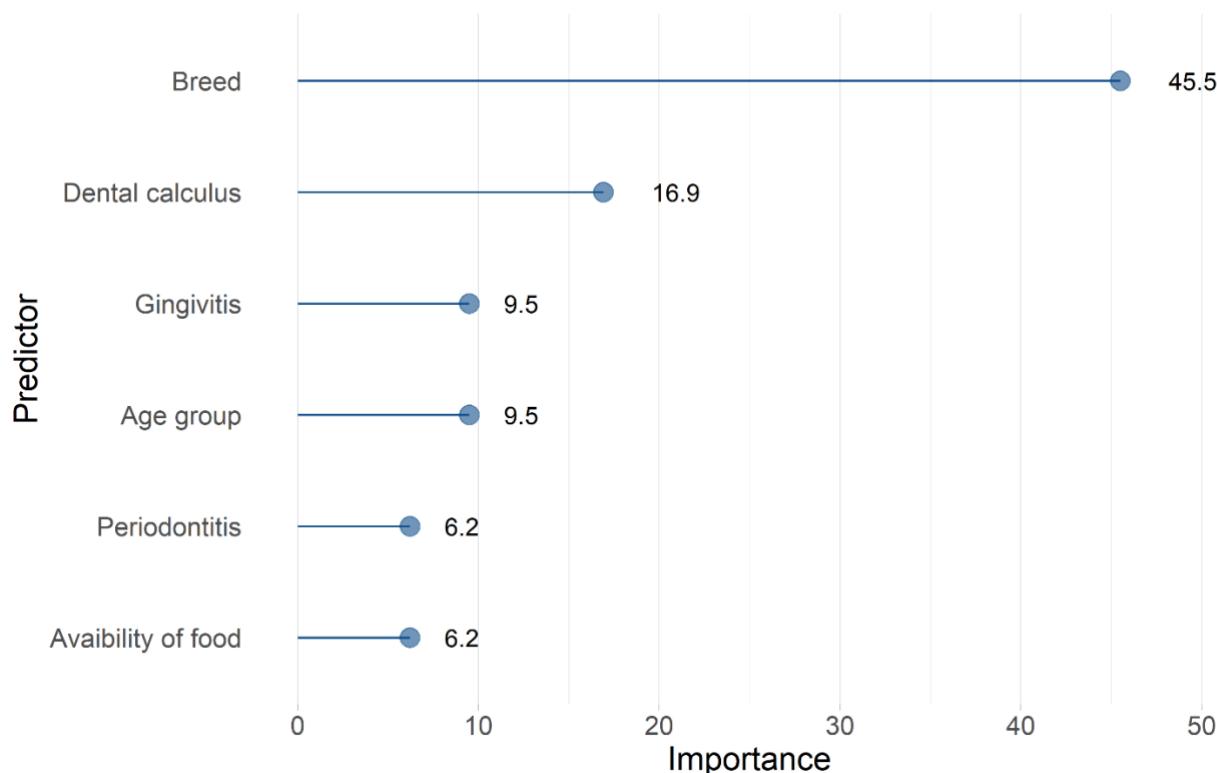
162

163 Factors associated with tooth resorption

164 We selected 51 factors, including the confounding factors age, sex, and breed, from the feline health
165 survey (Vapalahti et al., 2016) that were previously shown to be or assumed possibly to be related to
166 TR (Supplementary Table S1). In the basic association tests (Fisher's exact and Chi-square), ten
167 factors in addition to age, sex, and breed qualified for further analysis ($P < 0.2$) (Table 1,
168 Supplementary Tables S2 and S3). Further study in a logistic regression model with confounding
169 factors and TR as a response variable – for each of the ten variables separately – limited the number
170 of factors to be approved in the multivariable modelling to four factors ($P < 0.05$) (Supplementary
171 Tables S2, S4). These factors were gingivitis, stomatitis, periodontitis and dental calculus.

172

173 **Table 1.** Demographics and basic association test results (breed excluded) of cats with and without
174 veterinarian-diagnosed tooth resorption (only $P < 0.2$ shown) in a subpopulation of 944 dentally
175 examined and sedated cats from a feline health survey (data collected during 12/2012–2/2015).
176 Number (n), percentage (%), CI = confidence interval, p-value: Fisher or Chi-square test. The same
177 cat may have had several oral/dental diseases or viral infections. Bolded: selected for further analysis
178 in a logistic regression model with confounding factors age, gender, and breed. The high proportion
179 of missing values prevented the inclusion of vaccinations in further analyses.


Variable	Diagnosed			Not diagnosed			P-value
	N	%	95% CI	N	%	95% CI	
Age	201			730			<0.001
< 7 yr	51	25.4	19.9–31.8	295	40.4	36.9–44.0	
7–10.99 yrs	82	40.8	34.2–47.7	234	32.1	28.8–35.5	
≥11 yrs	68	33.8	27.7–40.6	201	27.5	24.4–30.9	
Sex	199			736			1.000
Female	97	48.7	41.9–55.7	358	48.6	45.1–52.3	
Male	102	51.3	44.4–58.1	378	51.4	47.8–55.0	
Oral/dental disease							
Gingivitis	74	36.6	30.3–43.5	194	26.2	23.1–29.4	0.005
Stomatitis	11	5.5	3.1–9.5	13	1.8	1.0–3.0	0.009
Periodontitis	22	10.9	7.3–15.9	35	4.7	3.4–6.5	0.002
Dental calculus	124	61.4	54.5–67.8	631	85.0	82.3–87.4	<0.001

Variable	Diagnosed			Not diagnosed				P-value
	N	%	95% CI	N	%	95% CI		
Malocclusion	1	0.5	0.1–2.8	18	2.4	1.5–3.8	0.094	
Diseases and disease categories								
Diseases of the nervous system	5	2.5	1.1–5.7	8	1.1	0.6–2.1	0.166	
Parasites and protozoans	18	8.9	5.7–13.6	44	5.9	4.5–7.9	0.148	
Diet								
Cooked meat/fish	59	29.2	23.4–35.8	177	23.9	20.9–27.1	0.120	
Constant availability of food	108	54.3	47.3–61.1	446	61.0	57.4–64.5	0.088	
Outdoor habits: cat outdoors								
All along	39	19.4	14.5–25.4	137	19.1	16.4–22.2		
Every day	40	19.9	15.0–26.0	149	20.8	18.0–23.9		
Weekly	50	24.88	19.4–31.3	129	18.0	15.4–21.0		
Monthly	28	13.93	9.8–19.4	101	14.1	11.7–16.8		
Less often than monthly/never	44	21.89	16.7–28.1	201	28.0	24.9–31.4		0.196

180

181 **Random forest**

182 We achieved the best accuracy (0.84) for random forest classification by setting the number of
 183 candidate variables to 13 and the minimum number of observations in a terminal node to nine. The
 184 six most important factors in classification cats to TR and non-TR cats from an accuracy perspective
 185 were breed (importance=45.5), dental calculus (16.9), gingivitis (9.5), age group (9.5), periodontitis
 186 (6.2) and constant availability of food (6.2). All other factors except constant availability of food had
 187 significant association ($p < 0.05$) with TR in the single variable logistic regression models with
 188 confounding factors.

189

190 **Figure 1.** Results of random forest classification. Data: subpopulation of 944 dentally examined
191 and sedated cats from a feline health survey (data collected during 12/2012–2/2015). Importance =
192 importance of the predictor variables in classifying the data according to TR. The six most
193 important variables presented.

194

195 **Multivariable logistic regression model and random forest**

196 **classification**

197 In addition to the confounding factors age, sex, and breed, five factors: gingivitis, stomatitis,
198 periodontitis, dental calculus, and constant availability of food were qualified in the multivariable
199 logistic regression analysis. Constant availability of food was included since it turned out to be one
200 of the most important factors in RF classification, although it was not significant in factor-specific
201 logistic regression analysis ($p = 0.199$) (Table 3). Based on the best model, independent risk factors
202 for veterinarian-diagnosed TR were age and breed, which, in addition, were defined as confounding
203 factors. Breeds with a significantly higher risk for tooth resorption than house cats were Cornish Rex,

204 European and Ragdoll. Turkish Van and Devon Rex had no TR in the final model. Exotic-Persian
205 group had significantly less TR than house cats.

206 Significant interactions with dental calculus were observed for gingivitis and periodontitis,
207 and sex had interaction with constant availability of food. The dental disorder interactions
208 demonstrated that gingivitis and periodontitis were risk factors for TR in the group of cats with dental
209 calculus (Table 3). Female cats were significantly less prone to TR if they had food constantly
210 available compared to those female cats who had feeding times. In male cats, we did not find that
211 either feeding method affected TR susceptibility (Table 3).

212 The model achieved the best Pearson goodness of fit statistic, AIC and AUC values,
213 and Cox and Snell index. Pearson's goodness of fit statistics was 0.246. The AUC value for the ROC
214 curve was 0.796 (95% CI 0.762 – 0.829), which makes the model's predictive value moderate (Greiner
215 et al., 2000). Cox and Snell goodness of fit index was 0.28. The goodness of fit and predictive value
216 tests for the final model were mainly good or moderate.

217 When we compared the modelling in this study of 944 cats to similar modelling in the
218 entire population of the feline health survey of 8115 cats (data not shown), results were parallel,
219 except that stomatitis, different interactions and more breeds appeared to be risk factors in the entire
220 feline health survey data.

221
222 **Table 2.** Multivariable logistic regression model of the risk factors for reportedly under sedation
223 diagnosed tooth resorption in 944 Finnish cats. The data is a part of the cat health internet survey data
224 collected 12/2012-2/2015. Only significant breeds are shown. B = logistic regression model
225 coefficient, se = Standard Error, Wald = Wald test statistic, df = degrees of freedom, P = Wald's P-
226 value, OR = odds ratio, CI = confidence interval for OR, ref = reference group. n_{cases}=196 and
227 n_{controls}=715.

Variable	B	Se	Wald	P	OR	95% CI	df
Constant	-0.04	0.35	0.01	0.92			1
Sex: Male	-0.27	0.28	0.95	0.33	0.76	0.84–1.73	1
Age: <7	ref						2
7-<11	0.81	0.23	12.61	<0.001	2.25	1.44–3.51	1
≥11	0.92	0.25	13.72	<0.001	2.51	1.54–4.07	1

Breed: House cat	ref						20
Cornish Rex	0.89	0.39	5.21	0.022	2.44	1.14–5.27	1
European	1.09	0.41	7.18	0.007	2.98	1.34–6.62	1
Exotic-Persian	-1.27	0.59	4.61	0.032	0.28	0.09–0.90	1
Ragdoll	1.06	0.45	5.62	0.018	2.90	1.20–6.99	1
Interactions							
<i>Interaction gingivitis x dental calculus</i>	1.98	0.43	21.44	<.0001			1
Gingivitis vs no when:							
no dental calculus					0.35	0.17–0.70	
dental calculus					2.49	1.59–3.90	
<i>Interaction periodontitis x dental calculus</i>	2.40	0.68	12.46	<.0001			1
Periodontitis vs no when:							
no dental calculus					0.33	0.11–0.98	
dental calculus					3.70	1.62–8.45	
<i>Interaction food available constantly x sex</i>	0.87	0.37	5.39	0.020			1
Food available constantly vs no when:							
Female					0.44	0.26–0.75	
Male					1.05	0.62–1.76	

228

229 Discussion

230

231 Our research on cat tooth resorption (TR) and its associated factors is based on a cross-sectional
232 questionnaire survey of cat health that more than 8000 cat owners answered. We limited our study
233 population to a subgroup of cats that had undergone a veterinary oral or dental examination under
234 sedation to minimize potential false positives and negatives for TR in our study. We identified that
235 dental calculus, gingivitis, and periodontitis as associated with TR and confirmed that the risk of TR
236 increases with age. Breed-specificity was also observed, suggesting a genetic contribution to the
237 aetiology of the disease.

238

239 The prevalence of TR in studies that have clinically evaluated the teeth is usually
240 between 29–67% (Coles, 1990, Lund et al., 1998; Petterson and Mannerfelt, 2003; DeLaurier et al.,
2009; Whyte et al., 2020; van Wessum, 1992; Lommer and Verstraete, 2000; Ingham et al., 2001). It

241 is higher than the proportion of TR in our study population (21.4%). Our cross-sectional questionnaire
242 study may expectedly result in low frequency because control cats may have had TR not found in
243 sedation alone.

244 The examination methods and selection of the research population majorly impact the
245 TR prevalence. The clinical studies of cats seeking dental treatment describe the prevalence of TR in
246 the chosen study population rather than the prevalence in the entire cat population. If the target
247 population consists of cats seeking dental treatment routinely or because of dental disease, the
248 prevalence of TR is expected to be higher than in healthy cats. Most obvious lesions are found in the
249 general examination without sedation, but examination with a dental probe under anaesthesia is
250 required for most lesions. Only lesions in the cementoenamel junction or the crown area can be
251 detected clinically. Dental radiographs increase the prevalence even higher when lesions in the root
252 area are detected.

253 Varying results have been published considering the prevalence of TR in different
254 breeds. Our results revealed that TR is highly associated with the breed – being purebred was not a
255 risk factor, but the associations concerned certain breeds. We found Cornish Rex, European, and
256 Ragdoll at higher risk for TR in the final multivariable model. In a recent study, Mestrinho et al.
257 (2018) found a higher frequency of TR in Persian and Exotic cats. Our study, on the other hand, found
258 less TR than average in these breeds. In addition, there was no TR in the Turkish van and Devon rex
259 breeds. The breed predisposition might indicate a genetic component in the aetiology of the disease.
260 Some breeds might be genetically predisposed to dental and oral diseases in general.

261 We found breed, age, dental calculus, gingivitis, periodontitis and constant availability
262 of food to be associated with TR. These results were confirmed in both multivariable logistic
263 regression modelling and random forest classification.

264 Our findings might suggest that dental calculus causing gingivitis and periodontitis
265 increases the risk of TR. Gorrel's (2015) theory suggests that tooth resorption consists of at least two

266 aetiologically different diseases: inflammatory type 1 resorption and idiopathic type 2 resorption.
267 Tooth resorption lesions often include inflammation of the adjacent gingiva (Reiter et al., 2005a;
268 Pistor et al., 2023), making it difficult to assess causation between TR and gingivitis. Bacteria in
269 dental plaque may initiate inflammatory resorption (Booij-Vrieling et al., 2010). Dental calculus
270 causes gingivitis in cats, as reported by Thengchaisri et al. (2017). In addition, dental calculus is most
271 often essential in development of periodontitis (Harrel, 2022). However, in our data there were cats
272 in which the owner had reported periodontitis but no dental calculus. This probably resulted from the
273 fact that the veterinarian diagnosed the disease but the owner answered the survey (see below
274 limitations) or that the veterinarian had not reported the dental calculus in connection with diagnosis
275 of periodontitis.

276 Periodontitis has been related to TR previously (Scarlett et al., 1999), and it has been
277 linked especially with type 1 tooth resorption (DuPont and DeBowes, 2002). On the other hand,
278 inflammation caused by tooth resorption has been suspected of causing periodontal lesions
279 (Lemmons, 2013). A recent study by Whyte et al. (2020) found no relationship between TR and
280 periodontitis. Although periodontitis would most likely be associated with inflammatory type 1
281 resorption, the type of TR was not determined in our study.

282 In our final multivariable model, stomatitis was not associated with TR. However, a low
283 number of cats with stomatitis hindered us from studying this connection properly. DuPont and
284 DeBowes (2002) found a connection between inflammatory type 1 resorption and stomatitis, but
285 Reiter et al. (2005a) found no relationship. It was previously suspected that chronic stomatitis caused
286 by the feline calicivirus impacts the development of TR (Reiter and Mendoza, 2002). However,
287 Thomas et al. (2017) recently found that feline calicivirus (FVC) was associated with feline chronic
288 gingivostomatitis but not with TR.

289 Our findings that the frequency of TR increases with age and sex not being associated
290 with TR are in line with the previous studies (Coles, 1990; Harvey, 1993; Lund et al., 1998; Ingham

291 et al., 2001; Pettersson and Mannerfelt, 2003; Reiter et al., 2005b; DeLaurier et al., 2009; Mestrinho
292 et al., 2013; Pistor et al., 2023; Scarlett et al., 1999). In our study, sex was not associated with TR per
293 se, but female cats were found to be less prone to TR when food was constantly available compared
294 to feeding times. This was not seen in male cats. Scarlett et al. (1999) suspected indoor cats to have
295 a higher risk of TR than outdoor cats, but Pettersson and Mannerfelt (2003) did not find a difference.
296 We did not find a difference in the outdoor habits of the cats with or without TR. We could not reliably
297 evaluate the effect of neutering and vaccinations due to uneven groups in neutering status and missing
298 values in vaccinations. Considering other diseases, feline infectious peritonitis (FIP), cat flu
299 (including herpes and calicivirus), leukaemia virus (FeLV), immunodeficiency virus (FIV) and feline
300 panleukopenia virus were not associated with TR in our study.

301 Female cats that had food available constantly were less prone to TR compared to female
302 cats that had feeding times. To the authors' knowledge, the effect of food availability has not been
303 studied before. This connection could be related to the consistency of the food. DuPont & DeBowes
304 (2002) suspected dry food to cause mechanical trauma, leading to type 2 tooth resorption. These
305 authors also suspected soft food, causing periodontitis, as a risk factor for inflammatory type 1
306 resorption. Scarlett et al. (1999) did not find a difference in prevalence between cats eating dry or soft
307 food. In our questionnaire, we did not specifically ask if the cats ate dry or soft food. We could not
308 find any explanation in our data to elucidate why constant availability of food in female cats would
309 protect against TR. No connection was found between food availability and certain diet, outdoor
310 habits or dental diseases. A further study would be needed to ensure whether food distribution habits
311 have any effect on TR.

312 A limitation of our study is that we did not specifically ask about dental radiographs. It
313 may have caused underestimations in our associations. In addition, although the veterinarian
314 diagnosed the disease, the owner answered the survey. The owners might have understood,
315 remembered, or interpreted the diagnoses in a way that could affect the results. Because the data were

316 collected cross-sectionally, only the effect of permanent risk factors such as breed, age, and sex can
317 be considered causal since they were permanently present before the disease. However, other factors
318 found significant are potential risk or protective factors that should be verified with clinical trials or
319 observational follow-up studies.

320 Interestingly, the results obtained in the subgroup limited and targeted to the study of
321 TR correspond very well to the results of a similar study in the entire health and behavioural survey
322 data. This confirms our understanding that the information from the cat health and behavioural survey
323 gives a reliable overview of the health of the cats that participated in the survey.

324

325

326 **Conclusions**

327 We have performed a cross-sectional questionnaire-based study of TR and identified several factors
328 that were associated with TR. The risk of TR increases with age. Dental calculus, gingivitis, and
329 periodontitis were associated with TR; however, it remains to be studied if these are true predisposing
330 factors. These findings suggest that inflammatory changes caused by dental calculus might increase
331 the risk of TR. Constant availability of food in female cats was found to be associated with TR, which
332 also remains to be studied further. Finally, certain breeds appeared more predisposed to TR,
333 suggesting a genetic contribution to the aetiology of the disease.

334

335 **Ethical statement**

336 The data in this study were collected from 2012 to 2015 using an online feline health survey published
337 by Vapalahti et al. (2016). The data were collected before the onset of the GDPR according to the
338 Finnish legislation <https://www.finlex.fi/fi/laki/ajantasa/1999/19990523>. This survey study focused
339 on investigating cats and not human participants or the cat owners; therefore, specific ethical approval

340 was unnecessary. As for the study participants (cat owners), we collected only names and addresses.
341 Owners were informed that the participation was voluntary and confidential and that the data was
342 used only for scientific purposes. We received informed consent from all participants.

343

344 Additional Information

345 Acknowledgements

346 We thank the cat owners who participated in the original health survey. The HiLIFE and Jane and
347 Aatos Erkko Foundation supported the study.

348 Competing Interests

349 The authors have declared that no competing interests exist.

350

351 References

352 Ahola, M.K., Vapalahti, K., Lohi, H., 2017. Early weaning increases aggression and stereotypic
353 behaviour in cats. *Sci Rep.* 7, 10412.

354 Booij-Vrielink, H.E., Ferbus, D., Tryfonidou, M.A., Riemers, F.M., Penning, L.C., Berdal, A., Everts,
355 V., Hazewinkel, H.A.W., 2010. Increased vitamin D-driven signalling and expression of the vitamin
356 D receptor, MSX2, and RANKL in tooth resorption in cats. *Eur J Oral Sci.* 118, 39–46.

357 Brown, L.D., Cat, T.T., DasGupta, A., 2001. Interval estimation for a proportion. *Stat Sci.* 16, 101–
358 133.

359 Coles, S., 1990. The prevalence of buccal cervical root resorptions in Australian cats. *J. Vet Dent.* 7,
360 14–16.

361 DeLaurier, A., Boyde, A., Jackson, B., Horton, M., Price, J. 2009. Identifying early osteoclastic
362 resorptive lesions in feline teeth: a model for understanding the origin of multiple idiopathic root
363 resorption. *J. Periodont Res.* 44, 248–257.

364 Palmeira, I., Fonseca, M.J., Lafont-Lecuelle, C., Pageat, P., Cozzi, A., Asproni, P., Requicha, J.F., de
365 Oliveira, J., 2022. Dental Pain in Cats: A Prospective 6-Month Study. *J Vet Dent.* Dec; 39(4):369–
366 375.

367 DuPont, G., DeBowes, L., 2002. Comparison of periodontitis and root replacement in cat teeth with
368 resorptive lesions. *J. Vet Dent.* 19, 71-75.

369 Farcas, N., Lommer, M., Kass, P., Verstraete, F., 2014. Dental radiographic findings in cats with
370 chronic gingivostomatitis (2002-2012). *JAVMA*. 244, 339-345.

371 Gorrel, C., 2008. Small Animal Dentistry. Saunders Elsevier, 1st ed., China.

372 Gorrel, C., 2015. Tooth resorption in cats: patophysiology and treatment options. *JFMS*. 17, 37-43.

373 Gorrel, C., Larsson Å., 2002. Feline odontoclastic resorptive lesions: unveiling the early lesion. *JSAP*.
374 43, 482-488.

375 Greiner, M., Pfeiffer, D., Smith, R. D., 2000. Principles and practical application of the receiver-
376 operating characteristic analysis for diagnostic tests. *Prev Vet Med*. 45, 23-41.

377 Harrel, S.K., Cobb, C.M., Sheldon, L.N., Rethman, M.P., Sottosanti, J.S., 2022. Calculus as a Risk
378 Factor for Periodontal Disease: Narrative Review on Treatment Indications When the Response to
379 Scaling and Root Planing Is Inadequate. *Dent J (Basel)*. Oct 20;10(10):195. doi: 10.3390/dj10100195.
380 PMID: 36286005; PMCID: PMC9600378.

381 Harvey, C., 1993. Feline dental resorptive lesions. *Semin Vet Med Surg*. 8, 187-196.

382 Ho, T. K., 1995. Random decision forests. In *Proceedings of 3rd international conference on*
383 *document analysis and recognition* (Vol. 1, pp. 278-282).

384 Houe, H., Ersbøll, A. K., Toft, N., 2004. *Introduction to Veterinary Epidemiology*. Biofolia,
385 Denmark.

386 Ingham, K., Gorrel, C., Blackburn, J., Farnsworth, W., 2001. Prevalence of odontoclastic resorptive
387 lesions in a population of clinically healthy cats. *JSA*. 42, 439-443.

388 Kuhn, M., 2022. *caret: Classification and Regression Training*. R package version 6.0-91.
389 <https://CRAN.R-project.org/package=caret>.

390 Lemmons, M., 2013. Clinical feline dental radiography. *Vet Clin Small Anim*. 43, 533-554.

391 Liaw, A., Wiener, M., 2002. Classification and Regression by randomForest. *R News* 2(3), 18--22.

392 Lommer, M.J., Verstraete F.J.M., 2000. Prevalence of odontoclastic resorption lesions and periapical
393 radiographic lucencies in cats: 265 cases (1995- 1998). *JAVMA*. 217, 1866-1886.

394 Lund, E., Bohacek, L., Dahlke, J., King, V., Kramek, B., Logan, E., 1998. Prevalence and risk factors
395 for odontoclastic resorptive lesions in cats. *JAVMA*. 212, 393-395.

396 Mestrinho, L., Runhau, J., Braganca, M., Niza, M., 2013. Risk assessment of feline tooth resorption:
397 a portuguese clinical case control study. *J. Vet Dent*. 30, 78-83.

398 Mestrinho, L.A., Lauro, J.M., Gordo, I.S., Niza, M.M.R.E., Requicha, J.F., Force, J.G., Gawor, J. P.,
399 2018. Oral and dental anomalies in purebred brachycephalic Persian and Exotic cats. *JAVMA*. 253,
400 66-72.

401 Okuda, A., Harvey, C., 1992. Etiopathogenesis of feline dental resorptive lesions. *Vet Clin Small*
402 *Anim.* 22, 1385-1403.

403 Pett, M. A., 1997. Nonparametric Statistics for Health Care Research: Statistics for Small Samples
404 and Unusual Distributions. Sage Publications, United States.

405 Pettersson, A., Mannerfelt, T., 2003. Prevalence of dental resorptive lesions in Swedish cats. *J. Vet*
406 *Dent.* 20, 140-142.

407 Pistor, P., Janus, I., Janeczek, M., Dobrzyński, M., 2023. Feline Tooth Resorption: A Description of
408 the Severity of the Disease in Regard to Animal's Age, Sex, Breed and Clinical Presentation. *Animals*
409 (Basel). Aug 3;13(15):2500

410 R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for
411 Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

412 Reiter, A., Mendoza, K., 2002. Feline odontoclastic resorptive lesions – an unsolved enigma in
413 veterinary dentistry. *Vet Clin Small Anim.* 32, 791-837.

414 Reiter, A., Lewis, J., Okuda, A., 2005a. Update on the etiology of tooth resorption in domestic cats.
415 *Vet Clin Small Anim.* 35, 913-942.

416 Reiter, A., Lyon, K., Nachreiner, R., Shofer, F., 2005b. Evaluation of calciotropic hormones in cats
417 with odontoclastic resorptive lesions. *AJVR.* 66, 1446-1452.

418 Salonen, M.K., Vapalahti, K., Mäki-Tanila, A., Lohi, H., 2019. Breed differences of heritable
419 behaviour traits in cats. *Sci Rep.* 9, 7949.

420 Scarlett, J.M., Saidla, J., Hess, J., 1999. Risk factors for odontoclastic resorptive lesions in cats.
421 *JAAHA.* 35, 188-192.

422 Thengchaisri, N., Steiner, J.M., Suchodolski, J.S., Sattasathuchana, P., 2017. Association of gingivitis
423 with dental calculus thickness or dental calculus coverage and subgingival bacteria in feline leukemia
424 virus- and feline immunodeficiency virus-negative cats. *Can J Vet Res.* 81, 46-52.

425 Thomas, S., Lappin, D.F., Spears, J., Bennett, D., Nile, C., Riggio, M.P., 2017. Prevalence of feline
426 calicivirus in cats with odontoclastic resorptive lesions and chronic gingivostomatitis. *Res Vet Sci.*
427 111, 124–126.

428 van Wessum, R., Harvey, C., Hennet, P., 1992. Feline dental resorptive lesions prevalence patterns.
429 *Vet Clin Small Anim.* 22, 1405-1415.

430 Vapalahti, K., Virtala, A-M., Joensuu, T., Tiira, K., Tähtinen, J., Lohi, H., 2016. Health and
431 behavioral survey of over 8000 Finnish cats. *Frontiers Vet Sci.* 3, 70.

432 Whyte, A., Lacasta, S., Whyte, J., Vicente Monteagudo, L., Tejedor, M.T., 2020. Tooth Resorption
433 in Spanish Domestic Cats: Preliminary Data. *Top Companion Anim Med.* 38, 100369.

434

435

436

437 **Author contributions**

438 HN, A-M.V. KV and HL conceptualized and designed the experiment. HN made the preliminary
439 analysis and KV performed the multivariable analyses. KV and HN drafted the manuscript, which
440 was edited and contributed by HL and A-M.V. All authors approved the final version.

441

442 **Supporting information**

443 Data available: Supplementary Tables S1-S4 and S5.