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Abstract

Scientists have long conjectured that the neocortex learns the structure of the environment in a predictive,
hierarchical manner. According to this conjecture, expected, predictable features are differentiated from
unexpected ones by comparing bottom-up and top-down streams of information. It is theorized that the
neocortex then changes the representation of incoming stimuli, guided by differences in the responses to
expected and unexpected events. In line with this conjecture, different responses to expected and unexpected
sensory features have been observed in spiking and somatic calcium events. However, it remains unknown
whether these unexpected event signals occur in the distal apical dendrites where many top-down signals
are received, and whether these signals govern subsequent changes in the brain’s stimulus representations.
Here, we show that both somata and distal apical dendrites of cortical pyramidal neurons exhibit distinct
unexpected event signals that systematically change over days. These findings were obtained by tracking
the responses of individual somata and dendritic branches of layer 2/3 and layer 5 pyramidal neurons
over multiple days in primary visual cortex of awake, behaving mice using two-photon calcium imaging.
Many neurons in both layers 2/3 and 5 showed large differences between their responses to expected and
unexpected events. Interestingly, these responses evolved in opposite directions in the somata and distal
apical dendrites. These differences between the somata and distal apical dendrites may be important for
hierarchical computation, given that these two compartments tend to receive bottom-up and top-down
information, respectively.

Keywords: Learning; Neocortex; Pyramidal Neurons; Distal Apical Dendrites; Prediction; Credit Assignment; Deep
Learning; Unsupervised Learning
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s 1 Introduction

s A long-standing hypothesis in computational and systems neuroscience is that the neocortex learns a hierarchical
« predictive model of the world [Dayan et al., 1995; Friston and Kiebel, 2009; Hawkins and Blakeslee, 2004;
s Larochelle and Hinton, 2010; Press et al., 2020; Rao and Ballard, 1999; Spratling, 2017; Whittington and Bogacz,
s 2017]. This hypothesis postulates that learned top-down predictions (i.e., signals from associative regions to
o sensory regions) are compared to bottom-up signals (i.e., signals from sensory regions to associative regions)
st (Fig. 1A). Unexpected stimulus events should then induce differences between these signals and, in turn, drive
52 learning. In these models, learning occurs at all stages of the hierarchy, and not just at the earliest or latest
53 stages. Theoretical support for this hypothesis comes from computational studies showing that hierarchical
s« models that learn by comparing top-down signals to bottom-up signals enable artificial neural networks (ANNS)
s to learn useful representations that capture the statistical structure of the data on which they are trained [Chen
s et al., 2020; Devlin et al., 2018; Grill et al., 2020; Lotter et al., 2016; van den Oord et al., 2018; Wayne et al.,
5o 2018]. Moreover, ANNs trained in this manner reproduce the representations observed in the neocortex better
ss than ANNs trained purely by supervised learning based on categorical labels [Bakhtiari et al., 2021; Christensen
s and Zylberberg, 2020; Higgins et al., 2017].

60 What would be the observable signatures of this type of hierarchical predictive learning, in which learning
s is guided by unexpected sensory events? There are at least three signatures that one might expect: (1) There
62 should be distinct responses to expected and unexpected stimuli. If the brain does not distinguish between
ss expected and unexpected events, there is no way to specifically learn from the unezpected events. (2) As the
6 circuit learns about stimuli, the responses to both expected and unexpected stimuli should change in a long-
6s lasting manner. These changes in stimulus responses are a necessary consequence of learning modifying the
e stimulus representations. (3) There should be differences between the manner in which top-down and bottom-
ez up driven responses change during learning. This follows from the idea that a hierarchical model is being
e learned, since hierarchy implies a distinct role for top-down and bottom-up information.

69 Previous work has provided partial evidence for these observable signatures of hierarchical predictive learning.
7o First, there is a very large body of work showing distinct responses to expected and unexpected stimuli in
n multiple species and brain regions [Fiser et al., 2016; Garrido et al., 2009; Keller et al., 2012; Kumaran and
»  Maguire, 2006; Orlova et al., 2020; Zmarz and Keller, 2016], thus supporting the first observable signature.
7z However, there are still significant unknowns: e.g., do such responses evolve differently in different compartments
7 of neurons? Second, there is some research suggesting that responses to unexpected stimuli change with exposure
»»  [Homann et al., 2017], supporting the second observable signature. Yet, this has only been shown over short time
% scales, such as a single experimental session. Third, there are a few studies showing that top-down projections
7 carry distinct information to sensory areas [Fiser et al., 2016; Jordan and Keller, 2020; Orlova et al., 2020],
7 partially supporting the third observable signature. Nonetheless, it remains unknown whether changes in neural
7 responses driven by top-down versus bottom-up signals show distinct changes over learning. Thus, the goal of
s this paper is to fill these gaps by concretely looking for all three of these signatures together in a systematic
a1 study.

8 Here, we performed chronic two-photon calcium imaging of layer 2/3 and layer 5 pyramidal neurons at
s both the cell bodies and the distal apical dendrites in the primary visual cortex of awake, behaving mice over
s multiple days (Fig. 1B-D; Supp. Videos 1-3). These imaging planes were chosen since top-down signals largely
s impinge on the distal apical dendrites within cortical layer 1, while bottom-up signals largely impinge on the
s perisomatic compartments in deeper layers [Budd, 1998; Larkum, 2013a,b]. During the recordings, the animals
g7 were exposed to randomly oriented visual stimuli with both expected and unexpected statistical properties
8¢ (Supp. Videos 4-5). Altogether, this approach allowed us to track the responses of both individual cell bodies
s and individual distal apical dendritic branches over multiple days (Fig. 1E), during which the animals were
o provided with more exposure to unexpected events. The resulting data showed evidence corroborating all three
a1 of the signatures of hierarchical predictive learning above, supporting the hypothesis that the visual cortex learns
oo from unexpected events using a hierarchical model. Moreover, we observed interesting differences between the
o3 distal apical dendrites and somata. Whereas somatic compartments showed a decrease in differential sensitivity
u to expected versus unexpected visual stimuli over days, distal apical dendrites showed an increase in differential
os sensitivity. This suggests that there may be important differences in the functional roles of the somatic and
os distal apical compartments in hierarchical predictive learning in the neocortex.
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Figure 1: Illustration of experimental methods

(A) Schematic illustration of how a hierarchical predictive model might be implemented through the morphology of
pyramidal neurons. The neuron receives top-down predictions (e.g., corresponding to an “expected” model of an ap-
ple, top) at the distal apical dendrites that are compared to bottom-up stimulus information received perisomatically
(e.g., corresponding to an actual image of an apple, bottom). In this cartoon example, the incoming stimulus contains
an unexpected feature (a leaf) not captured by the top-down predictive model.

(B) Experimental setup schematic. Awake, behaving mice were head-fixed under a two-photon microscope objective
while passively viewing the stimuli. The mice were able to run freely on a rotating disc.

(C) Example maximum-projection images from two-photon recordings for each of the four imaging planes: layer 2/3
distal apical dendrites (L2/3-D), layer 5 distal apical dendrites (L5-D), layer 2/3 somata (L2/3-S), and layer 5 somata
(L5-S) (2—-3 mice per plane, n = 11 mice in total; see Materials & Methods). The corresponding recordings are shown in
Supp. Video 1.

(D) Schematic illustration displaying the four imaging planes from (C) within the cortical column. The coloring and
style schemes of the horizontal lines depicting the imaging planes here are used throughout all of the figures.

(E) Tracked region of interest (ROI) examples for both L5-D (top) and L5-S (bottom). Maximum-projection images
for each imaging session (1, 2, or 3, as indicated), each performed on a different day, are overlaid with contours of
the matched segmented ROI masks. Below the images, the matched segmented ROI masks for all three sessions are
superimposed. See also Fig. S1.

2 Results

2.1 Imaging dendrite segments and cell bodies over multiple days

To monitor the integration of top-down and bottom-up signals by supra- and sub-granular pyramidal neurons
over multiple days, we performed two-photon calcium imaging in Cux2-CreERT2 mice or Rbp4-Cre_KL100 mice
that expressed GCaMP6f in layer 2/3 or layer 5 pyramidal neurons, respectively. We performed this imaging
either at layer 1 of cortex (50-75 pum depth for layer 2/3 and 20 pum depth for layer 5), thereby observing the
distal apical dendrites, or at the layer in which the cell bodies were located (175 pm depth for layer 2/3 and 375
pm depth for layer 5) (Fig. 1C-D; Supp. Video 1). This gave us four different imaging conditions: layer 2/3
distal apical dendrites (L2/3-D), layer 2/3 somata (L2/3-S), layer 5 distal apical dendrites (L5-D), and layer 5
somata (L5-S). GCaMP6f fluorescence tracks calcium influx into cells, but it should be noted that the cause
of calcium influx in the somatic and distal apical compartments may be different, with somatic signals largely
reflecting closely-spaced groups of action potentials [Huang et al., 2021] and dendritic signals largely reflecting
non-linear dendritic events like plateau potentials [Murayama et al., 2009]. Thus, in both cases we are tracking
a proxy for neural activity, but it is important to be aware that the underlying physiological cause of the signal
likely differs between the two compartments.

Imaging was performed in primary visual cortex (VisP). During the experiments, the animal’s head was
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fixed in place under the microscope objective, ensuring the stability of our recordings. We extracted regions of
interest (ROIs) in each imaging plane [de Vries et al., 2020; Inan et al., 2017, 2021], corresponding to individual
distal apical dendrite segments or to individual cell bodies, depending on the imaging plane. Each animal went
through three imaging sessions, each performed on a different day, and we used a matching algorithm to identify
the same ROIs across sessions (Fig. 1E, S1).

Thanks to a very conservative quality control pipeline (see Materials & Methods), signal-to-noise ratio (SNR),
AF/F magnitudes, and number of ROIs were stable over all three sessions in both layer 2/3 and layer 5 cell
bodies and dendrites (Fig. S2). Importantly, the ROI extraction algorithm for the dendritic recordings enabled
the identification of spatially discontinuous ROIs [Inan et al., 2017, 2021], reducing the risk that single dendritic
compartments were split into multiple ROIs. This is supported by the observation that in both the somatic and
the dendritic compartments, very few pairs of ROIs showed very high correlations in their responses (Fig. S2D).
Moreover, while differences in background fluorescence levels were observable between imaging planes (Fig. 1C),
these did not confound our analyses for two reasons. First, we only compared AF/F levels over days within
each imaging plane, not between imaging planes. Second, our analysis pipeline estimated AF/F using a rolling
baseline, so that changes in overall fluorescence would not impact our analyses (see Materials & Methods).

During these imaging sessions, we tracked the mouse’s movements on a running disc (Supp. Video 2) as well
as its pupil diameter with an infrared camera (Supp. Video 3). We obtained calcium imaging data for 11 mice
(L2/3-D: n = 2, L2/3-S: n = 3, L5-D: n = 3, L5-S: n = 3). The full dataset is freely available online in the
DANDI Archive (see Materials & Methods).

2.2 Cortical neurons respond differently to expected and unexpected stimuli

To explore the responses of cortical neurons to expected and unexpected sensory events, we designed a sequen-
tial visual stimulus inspired by previous work [Homann et al., 2017]. This stimulus had a predictable global
structure, but stochastic local properties. Thanks to the predictable global structure we could randomly insert
“unexpected” events, i.e., stimulus events that violated the predictable global pattern. Mice were exposed to
this stimulus over multiple sessions, each occurring on different days, enabling us to observe changes in their
neurons’ responses to expected and unexpected sensory events.

To build a predictable global structure with some local stochasticity, we used image frames composed of
randomly placed Gabor patches, assembled into five-frame sequences (A-B-C-D-G). Other than G, which was
uniformly gray, each frame was defined by the locations of its Gabor patches: e.g., the locations of the Gabor
patches were the same for all A frames for a given session, but differed between A and B frames. These Gabor
patch locations were redrawn for each session, and sampled uniformly over the visual field. As a result, the
locations were different in each session. Additionally, within each repeat of the sequence (A-B-C-D-G), the
orientations of each of the Gabor patches were drawn randomly from the same distribution centered around the
same mean orientation (Fig. 2A, Supp. Video 4), but the mean orientation varied from sequence to sequence.
This meant that the luminance patterns at each spatial location were different for each repeat of the A-B-C-D-G
sequence. However, because all sequences shared a global pattern wherein orientations were drawn from the
same distribution across frames, knowing the orientations of the Gabors from one frame of the sequence would
enable clear predictions about the orientations of the Gabors in the subsequent frames. Importantly, given these
stimulus design features, the same set of images was never repeated. This reduced the risk of accommodation
effects, which could cause changes in neuronal responses via mechanisms other than learning. Nonetheless, the
sequences had predictable global properties that would allow an observer to form expectations about upcoming
frames. Thus, the animals could learn the “rules” underlying the stimuli with increasing exposure and thereby
form expectations for what should happen next. It is important to note that we cannot say with certainty
whether the animals actually expected the stimulus sequences. We can, however, say that they were provided
with substantial experience with which to form such expectations. For that reason, we call these A-B-C-D-G
sequences “expected”. See Materials & Methods for a more detailed description of the stimulus properties.

To help the animals form such expectations, before the first calcium imaging session, the mice were habit-
uated to A-B-C-D-G sequences over multiple sessions, each on a different day, without any violations of the
predictable structure (Fig. 2B). After habituation, and during calcium imaging, the stimuli were broken up into
approximately 30 blocks of randomly determined durations, each composed of repeated A-B-C-D-G sequences,
as before. However, instead of comprising only expected sequences, each block ended with “unexpected” A-B-
C-U-G sequences. In these sequences, the fourth frame, D, was replaced with an unexpected U frame, which
had different Gabor locations and orientations. Specifically, the newly introduced U frames had unique random
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Figure 2: AF/F responses to unexpected stimuli reflected in the first imaging session

(A) Example Gabor sequences. Each frame lasted 300 ms. The mean orientation @ of the Gabor patches in each
sequence s; was randomly chosen from {0°, 45°, 90°, 135°}. An unexpected U frame, with a mean orientation rotated
by 90° with respect to the other frames in the sequence, is highlighted in red. See Sec. 2.2, Materials & Methods and
Supp. Video 4 for more details.

(B) Experimental timeline, showing both habituation and imaging sessions. Note that each session occurred on a
different day. Optical imaging of neuronal activity was not performed during H1-H11.

(C) Example session 1 AF/F response traces for individual L2/3-S (left) and L2/3-D (right) ROIs with high (top), null
(middle) or low (bottom) USIs. Mean + standard error of the mean (SEM) AF/F across Gabor sequences is plotted.
Dashed vertical lines mark onset of D/U frames.

(D) Example USI null distribution for one ROI from L2/3-S in session 1, generated by shuffling D-G and U-G labels for
the same ROI and recomputing the shuffled USIs 10? times. Significant regions highlighted in red, and true USI value
labelled in blue.

(E) USI percentile distributions for each plane for all session 1 ROIs. Dashed horizontal lines depict null hypotheses
(i.e., uniform distribution). Significant percentiles are marked with red highlights (p < 0.05, shuffle test as shown in
(D)).

(F) Percentage + bootstrapped standard deviation (SD) of significant USIs for all segmented ROIs in session 1 for each
plane. All sequences (any mean orientation) are included in the analysis.

(G) Same as (F), but restricted to the Gabor sequences with mean orientations shared between D and U frames
{90°, 135°}.

*: p < 0.05, **: p < 0.01, ***: p < 0.001 (two-tailed, corrected).
See Table S1 for details of statistical tests and precise p-values for all comparisons.
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locations and the orientations of the Gabor patches were resampled and shifted by 90° on average with respect
to the preceding A-B-C frames. As such, the U frames strongly violated potential expectations about both
Gabor patch locations and orientations. These “unexpected” sequences comprised approximately 7% of the
sequences presented to the mice during the imaging sessions.

ROIs in VisP exhibited clear responses to both the onset of the sequences and the final Gabor frames
(Fig. S3), so we compared the responses of the ROIs to the unexpected U frames and the expected D frames.
First, we examined the average AF/F signals in each of the four imaging conditions: 1.2/3-D, L2/3-S, L5-D, L5-
S. We observed that some ROIs had clearly different responses to the expected and unexpected frames (Fig. 2C,
top and bottom traces). To quantify the difference in responses to the expected versus the unexpected frames,
we calculated an “unexpected event selectivity index” (USI) by subtracting the mean responses to the expected
from the unexpected stimulus events, and scaling this value by a factor of their variances (Equation 1). We then
examined the USIs to see whether they indicated that the circuit treated the expected and unexpected frames
differently. We found that many more ROIs than would arise by chance had negative or strongly positive USIs, as
has been previously observed [Keller et al., 2012]. To determine chance levels, we constructed null distributions
non-parametrically for each ROI by shuffling the “expected” and “unexpected” labels for the stimulus frames
10* times, each time recomputing the USI on the shuffled data (Fig. 2D; see Materials & Methods). These
shuffles yielded a null distribution over USI values for each ROI that reflected the null hypothesis, according to
which there was no difference in an ROI’s responses to expected and unexpected events. We then identified the
percentile of each ROI’s real USI within its own null distribution: ROI USIs below the 2.5th percentile or above
the 97.5th percentile were labelled as statistically significant (Fig. 2D). Across the population of ROIs, in both
L2/3 and L5 somata and dendrites, there were far more significant USIs than would be predicted by chance
(Fig. 2E-F). This effect was consistent across individual mice, with 10 of the 11 animals showing a statistically
significant effect (Fig. S4A). Notably, when we restricted this analysis to sequences whose mean Gabor patch
orientations occurred for both D and U frames, namely 90° and 135°, the USI percentages remained largely
the same, meaning that USI patterns did not reflect ROI preferences for specific orientations of the Gabor
patches (Fig. 2G). Thus, the response differences we observed were unlikely to be a result of the differences in
the orientations of the Gabor patches in the D and U frames. Together, these data indicate that the neurons
and dendrites in primary visual cortex respond systematically differently to expected and unexpected frames,
in line with the first observable signature of predictive learning discussed above.

We next wondered whether the differences in the responses to expected and unexpected frames could have
been driven by differences in the animals’ behavior. There is a growing body of evidence showing that responses
in mouse visual cortex are affected by behaviors like running and pupil dilation [Niell and Stryker, 2010; Salkoff
et al., 2020; Stringer et al., 2019]. Therefore, it was important to ask whether the mice altered their behavior in
response to the unexpected stimulus frames. If so, these behavioral differences could be reflected in the neuronal
responses in visual cortex, confounding our interpretation that the differences in neuronal response were due
to the expected versus unexpected nature of the stimulus. To test this possibility, we compared the animals’
running velocities and pupil dilation during the expected D frames and the unexpected U frames (Fig. 3A). We
found no difference in either running velocity or pupil dilation for D versus U frames (Fig. 3B), suggesting that
behavioral changes are not a major confound in our analyses. Altogether, these data confirm the first observable
signature of hierarchical predictive learning introduced above, i.e., that expected and unexpected stimuli are
represented differently within the neocortical microcircuit.

2.3 Responses to expected and unexpected stimuli evolve over days and differ
between the somata and distal apical dendrites

To probe learning, we compared the neural responses to expected and unexpected stimuli over three sessions
spread across multiple days. Importantly, unsupervised learning—wherein a system learns about stimuli merely
through exposure to them [Beaulieu and Cynader, 1990; Lotter et al., 2016; van den Oord et al., 2018; Woloszyn
and Sheinberg, 2012; Zylberberg et al., 2011]—is not necessarily associated with any behavioral changes. As
such, experimentally observing unsupervised learning requires observing changes in neural representations as
animals gain experience with sensory stimuli. Therefore, we examined the evolution of the neuronal responses
to expected and unexpected stimuli over the three different days of calcium imaging. This analysis made use of
our ability to track the same ROIs over each of the three imaging sessions (Fig. 1E, S1).

First, we examined how population-wide responses to the stimuli changed over days. In the distal apical
dendritic ROIs, the difference in responses to unexpected (A-B-C-U-G) and expected (A-B-C-D-G) sequences
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Figure 3: Absence of behavioral responses to unexpected stimuli

(A) (Left) Example frames of a mouse running (top), and of a mouse pupil with tracking markers (bottom). (Right) Run-
ning velocity and pupil diameter traces aggregated across mice (mean + SEM across Gabor sequences) for expected
(gray) and unexpected (red) sequences. Note that the smaller SEM is due to the greater number of expected sequences,
compared to unexpected ones. Dashed vertical lines mark onset of D/U frames.

(B) Block-by-block running velocity (left) and pupil diameter (right) differences between unexpected (U-G) and
expected (D-G) frames. Raw two-tailed p-values (not corrected for multiple comparisons) are shown.

*: p < 0.05, ¥*: p < 0.01, ***: p <0.001 (two-tailed, corrected).
See Table S1 for details of statistical tests and precise p-values for all comparisons.

increased across days, reaching statistical significance in both L2/3 and L5 by session 3 (Fig. 4A-B, top).
In contrast, by session 3, the response differences in the somatic ROIs, which were statistically significant in
session 1 for L5-S, converged towards zero (Fig. 4A-B, bottom). Indeed, specifically comparing the responses
to the regular sequence frames (A-B-C) and the unexpected frames (U-G), we found that the average somatic
ROI responses tended to decrease for both expected and unexpected frames over time, though the effect was
only statistically significant in L2/3 (Fig. 4A-C, bottom). In contrast, in the distal apical dendritic ROIs, we
observed an increase in the average responses to the unexpected frames, but not to the regular sequence frames
(Fig. 4A—C, top). These results indicate that the responses to the unexpected stimuli evolved differently from
the responses to the regular sequence frames in these different compartments.

Importantly, there is evidence that representations in the brain can drift naturally over time, even in the
absence of learning [Deitch et al., 2021; Rule et al., 2019]. As such, our above analyses left open the possibility
that the changes we observed in the neural responses were not a result of unexpected event-driven learning,
but were simply a result of non-specific representational drift. We think this is unlikely because we saw strong
directionality to the changes in responses over days that would not be expected from random representational
drift: somatic responses to unexpected events decreased towards zero, while distal apical dendritic responses
increased across days (Fig. 4A—C).

Nonetheless, to further test for non-specific drift, we also examined the evolution of the responses of the same
ROIs to a different, visual flow stimulus (Fig. S5A), which, based on prior work, was unlikely to drive strong
expectation violations due to the fact that the visual flow was not coupled to the animals’ movements [Zmarz
and Keller, 2016]. In line with this previous work, we observed that although this stimulus drove changes in
L2/3-S and L2/3-D, responses in L5-S and L5-D were fairly stable over sessions (Fig. S5B—C) [Jordan and Keller,
2020]. Moreover, in all compartments, the changes in responses to unexpected stimuli and USIs were smaller for
the visual flow simuli than the Gabor stimuli (S6A-E). This indicates that our observations of relatively large
changes in the responses to the Gabor sequences were stimulus—specific, and hence unlikely to be caused by
non-specific representational drift. Altogether, these data support the idea that VisP engages in unsupervised
learning in response to unexpected events.

Given our observations of changes in the responses to the Gabor sequences at the population level, we
wondered whether the same effects would be observable for the tracked ROIs. This is important because
changes observed in the population-wide responses could, in principle, be driven by only a few ROIs. To test
this possibility, we examined the changes over days in the responses of individual ROIs. First, we observed the
same patterns as described above when we focused only on the tracked ROIs: i.e., the somatic responses tended
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to decrease for both regular sequence frames and unexpected frames, whereas the responses to the unexpected
frames increased in the distal apical dendrites (Fig. S4B).
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Figure 4: Unexpected Gabor sequences result in different AF/F and USI changes in different imaging planes.

(A) Mean (+ SEM) across ROI mean AF/F responses to expected (gray, A-B-C-D-G) and unexpected (green or blue,
A-B-C-U-G) Gabor sequences. Dashed vertical lines mark onset of D/U frames.

(B) Mean (+ SEM) differences across ROIs in the mean integrated responses to expected vs. unexpected Gabor
sequences, as defined in (A). Gray bars show median (dark) and adjusted 95% CIs (light) over randomly expected
differences.

(C) Mean (+ SEM) across ROIs of the mean AF/F responses across sequences for regular sequence frames (gray
diamonds: A-B-C') and unexpected frames (green or blue circles: U-G). Responses are calculated relative to session 1
regular responses, marked by dashed horizontal lines.

(D) Gabor sequence stimulus USIs for all tracked ROIs. Each line represents a single ROI’'s USIs over all three sessions.
(E) Mean (+ SEM) across the absolute values of the Gabor sequence stimulus USIs for tracked ROIs, as shown in (D).
(F) Variance (£ bootstrapped SD) across the Gabor sequence stimulus USIs for tracked ROIs, as shown in (D).

*: p < 0.05, ¥*: p < 0.01, ***: p < 0.001 (two-tailed, corrected).
1 p<0.05 T p<0.01, Tt p < 0.001 (two-tailed, corrected), for regular stimulus comparisons (gray) in (C).
See Table S1 for details of statistical tests and precise p-values for all comparisons.

Next, in order to understand how the responses to the expected D frames versus unexpected U frames
evolved, we examined the USIs for the tracked ROIs over days. We found that in the somatic compartments,
the USIs had converged towards zero over the three sessions (Fig. 4D-F, bottom). In contrast, in the distal apical
dendritic compartments, the USIs had increased significantly over the three days. This effect was most prominent
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in L2/3-D (Fig. 4D-E, top). These effects were generally consistent across mice (Fig. S4C). Together, these
results indicate that individual ROIs altered their responses to the expected and unexpected Gabor sequence
stimulus frames over multiple days, in a manner that differed between compartments receiving largely bottom-up
inputs (somata) and compartments receiving largely top-down inputs (distal apical dendrites). It is important to
note that if these changes were entirely random, then we would not expect to see systematic differences between
the somatic and distal apical compartments, as we did here. Instead, this discovery is consistent with the second
and third observable signatures of the hierarchical learning hypothesis articulated in the Introduction, since we
see changes over days and these differ between the distal apical dendrites and the somata.

2.4 Responses to expected and unexpected stimuli change systematically over
days

Our preceding analyses showed that neurons in mouse VisP respond differently to expected and unexpected
stimuli (Fig. 2), that these responses evolve over days (Fig. 4), and that there is a difference in this evolution
between compartments receiving primarily bottom-up or top-down information (Fig. 4). These findings provide
evidence for the three observable signatures of hierarchical predictive learning. We next sought to look for
evidence that neural circuits use cell-by-cell or distal apical dendritic segment-by-segment differences in responses
to expected and unexpected stimuli to guide learning.

A necessary condition for these signals to guide learning is that they contain detailed information about what
was unexpected about the stimuli, i.e., information about the orientations of the Gabors. If the neural signals
were to contain this information, we should be able to decode the unexpected Gabor patch orientations from
the responses to the expected D or the unexpected U frames. To address this question, we trained linear logistic
regression classifiers to identify the mean Gabor patch orientation from the recorded neural responses. Using a
cross-validation approach with 300 random splits, we trained the classifiers for each animal and session on 75%
of the data, testing them on the remaining (held-out) 25%. We found that in the somatic compartments the
classifiers performed significantly above chance for session 1. This performance tended to decrease over sessions
until it was at or near chance level by session 3 (Fig. 5A-B, bottom). In contrast, in the dendritic compartments,
the performance of the decoders started above, or nearly above, chance on session 1 and then improved over
sessions for the unexpected U frames, but not the expected D frames (Fig. 5A-B, top). Interestingly, the
decoding results for U frames paralleled the evolution of the USIs in these compartments. Hence, the signals
contain information about the nature of the unexpected orientations in a manner that reflects the extent of
differences between expected and unexpected event-driven responses.

We next sought to determine whether the difference in responses to expected and unexpected stimuli was
systematic across days at the level of individual ROIs. Specifically, we examined the correlation between ROI
USIs in one session and the next. If the USIs do not change systematically over days, the second day’s USI should
resemble the first day’s, plus some noise, and hence we should find positive correlations between USIs across
days. Conversely, negative correlations between days are evidence of systematic changes, wherein ROIs with
the largest USIs on the first day tend to have the smallest USIs on the second day, suggesting a USI-dependent
learning mechanism.

To determine whether correlations were significantly different from what would be expected if there was no
relationship between an ROI’s USI in one session and the next, we computed null distributions for each imaging
plane and session pair by shuffling 10° times the ROI labels within each session. Correlation values below these
null distributions were interpreted as reflecting a statistically significant negative correlation between USI values
across sessions for individual ROIs.

In the somatic compartments, we found no statistically significant correlations between ROI USIs in one
session and the next (Fig. 5C, bottom). This suggests that since the overall population tendency is for somatic
ROI USIs to converge towards zero over days (Fig. 4D-F, bottom), individual ROI USIs on one day are not
linearly predictive of their values on a subsequent day. In contrast, ROI USIs in both distal apical dendritic
compartments were negatively correlated from session 1 to 2 (Fig. 5C, top). As Fig. STA-B shows, this reflects
a tendency for the higher distal apical dendritic ROI USIs to decrease from day 1 to day 2 (bottom right
quadrants), and for the lower ones to increase even more strongly (top left quadrants). !

1 The previous version of this paper on bioRziv showed different correlation results, which we have revised here in three ways.
1) Generally, we added more imaging sessions to our analyses to improve robustness. 2) For Fig. 5C and S6F, in order to specifically
assess learning at the individual ROI level, we replaced session permutations with ROI permutations. 3) In light of these new results,
we updated our interpretations of changes at the level of individual ROIs.
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Figure 5: Unexpected Gabor sequences result in predictable AF/F changes in individual ROIs.

(A) Balanced accuracy (mean £ SEM over mice) for classifiers decoding mean Gabor patch orientations from ROI
activity during D-G frames (2-3 mice per imaging plane, 300 random cross-validation splits per mouse, per session).
Gray bars show median (dark) and adjusted 95% Cls (light), computed by shuffling orientation labels.

(B) Same as (A) but with ROI activity during U-G frames.

(C) USI correlations (+ bootstrapped SD) between sessions for each plane and session comparison. Gray bars show
median (dark) and adjusted 95% ClIs (light), computed by shuffling ROI labels.

¥ p < 0.05, ¥ p < 0.01, ¥ p < 0.001 (two-tailed, corrected, except for (C) where one-tailed (lower), cor-
rected significance is reported).
See Table S1 for details of statistical tests and precise p-values for all comparisons.

In contrast, we ran this same analysis on the visual flow stimulus, where changes in representations over
sessions were smaller and were only observed in L2/3-D and L2/3-S. Although none of the distal apical dendritic
compartments showed USI correlations across days, ROI USIs in somatic compartments were positively corre-
lated across days (Fig. S6F, S7TC-D). Given the weak changes in mean ROI USIs across days, these correlations
likely reflect a tendency for visual flow USIs to remain constant across days in the somatic compartments.

Altogether, these results demonstrate that at a dendritic segment-by-segment level, the differences between
responses to expected and unexpected stimuli change systematically between days. This implicates the distinct
responses to expected versus unexpected stimuli in the learning process, as anticipated under a predictive
learning hypothesis.

3 Discussion

In this study, we explored the question of whether the neocortex learns from unexpected stimuli. This is a central
component of a broad class of theories in neuroscience and machine learning that postulate that the brain learns
a hierarchical model of the world by comparing predictions about sensory stimuli to the actual stimuli received
from the world. This class of theories has several observable signatures in terms of neural responses and how
they should evolve over time in response to expected versus unexpected stimuli. We searched for three such
observable signatures here, using chronic recordings in mouse VisP, and found evidence in support of each
one. First, we observed that neurons responded differently to expected versus unexpected stimuli, which is a
precondition for learning from unexpected stimuli. Second, we found that neural responses to the unexpected
stimuli changed over days. In contrast, the responses to other stimuli were more stable, suggesting that the
unexpected events specifically drove unsupervised learning. Third, the evolution of these responses over days
differed between the distal apical dendrites (which are likely driven in large part by top-down feedback from
higher-order areas [Budd, 1998; Larkum, 2013a,b]) versus the cell bodies (which are likely driven more by
bottom-up sensory input [Budd, 1998; Larkum, 2013a,b]). This indicates that top-down and bottom-up signals

10
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s are shaped differently by the unsupervised learning process, which is a feature of learning in a hierarchical
29 model. Finally, and going beyond the three main observable signatures, we found that the sensitivity of distal
a0 apical dendrites to unexpected events on one day changed systematically by the next day. This final observation
s shows that changes in activity across days are specific to individual dendritic segments.

33 Many different forms of hierarchical unsupervised learning have been proposed. The most well-known in
;3 neuroscience is probably the predictive coding model of [Rao and Ballard, 1999], along with its variations
s [Friston and Kiebel, 2009; Spratling, 2017; Whittington and Bogacz, 2017]. But several other models in this
35 vein exist. Examples include Helmholtz machine [Dayan et al., 1995], deep belief net [Hinton and Salakhutdinov,
s 2006], Bayesian inference [Lee and Mumford, 2003], contrastive learning [Hyvérinen et al., 2019], and contrastive
s predictive coding [van den Oord et al., 2018] models. What all of these models share is the idea that higher-
333 order association areas make predictions about incoming sensory stimuli, which then get compared to the
30 actual incoming stimuli in order to learn a model of the external world. Hence, all of these models imply the
uo  experimental signatures we tested here.

£ Why do all of these models imply these same observable signatures? First, in order to learn from unexpected
m  events, there must be some available signal that distinguishes unexpected events from expected ones. Thus,
a3 a key observable signature is that expected and unexpected events drive distinct responses. Second, all of
e these models postulate that unexpected events are used to guide unsupervised learning. Thus, stimuli with
us unexpected components should induce changes in cortical representations. Third, these models all propose that
us higher-order areas form more abstract representations of the world, and hence the top-down signals communicate
awr  something different from the bottom-up signals, which reflect incoming sensory data. Thus, learning should
us  shape these two signals differently, as they encode different aspects of the world. Finally, all of these models
ue  propose that the learning algorithm utilizes the difference between expected and unexpected stimuli to shape
0 neural representations. Therefore, our data ultimately provide support for this broad class of models. Future
s work will attempt to distinguish between the specific models within this broader class.

35 Based on our data and previous results in
353 the field, we propose a broad conceptual model
354 é Top-down é illustrated in Fig. 6. According to this model,
355 predictions the brain learns an internal representation of the
356 l l world in associative regions, based on which top-
357 down predictions are provided via the distal api-
358 cal dendrites to pyramidal neurons in areas like
350 VisP. If incoming stimuli contain unexpected
360 Experience features, i.e., features not predicted at the dis-
361 _—

Gabor sequences or an unexpected leaf on an
apple, as in Fig. 6, left), pyramidal cell somatic
and distal apical dendritic activity will reflect
the unexpected feature or event. However, with
experience, this activity triggers changes to the
367 T T internal model of the world, such that it better
68 e, captures the new information provided by the

unexpected stimuli (e.g., by accounting for the

i y Bottom-up
369 - - signals
370 i possibility of different Gabor frames, or of ap-

High(*)  tal apical dendrites (e.g., unexpected frames in
362 I
363
364
365

L Null (0
366 ult (0)

Unexpected event selectivity scale

an ples with leaves, as in Fig. 6, right). As a result,
a2 the distal apical dendritic activity becomes more
a3 Figure 6: Learning in distal apical dendrites and somata. attuned to these novel forms of stimuli.

374 Notably, our results do not support a sim-

w5 1llustration of a conceptual model based on our data of how un- ple version of predictive coding wherein excita-
46 €xpected events drive changes in the neural circuit. With experi- tory neurons only encode prediction errors. Al-
ence, unexpected event selectivity in the somata converges toward
0, whereas it increases overall in the distal apical dendrites, partic-

377 though the unexpected event responses in the

378 . o e e somata did decrease over time, in-line with en-
ularly in dendritic segments that initially showed low selectivity. . . .

379 coding of errors, the responses in the dendrites

380 increased. This suggests that different compu-

s tations were reflected in the different compartments of the neurons. Moreover, the finding that the distal apical
32 dendritic signals grow at a population level with exposure to the unexpected stimuli goes counter to proposals
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implementing predictive coding by using the distal apical dendrite as a site for prediction error calculations
[Sacramento et al., 2018; Whittington and Bogacz, 2019]. More experiments with simultaneous imaging of den-
drites and cell bodies in different brain regions could help to clarify the distinct computational roles of these
neuronal compartments.

There are a number of limitations to this work that must be recognized. First, we were not recording
somata and distal apical dendrites in the same neurons. Thus, even though we saw very different evolutions
in the responses of the distal apical dendrites and somata to the Gabor sequence stimulus, we cannot say with
certainty that these differences hold within individual cells. Indeed, there is data to suggest that coupling
between the distal apical dendrites and the somata can sometimes be strong, particularly in vivo [Beaulieu-
Laroche et al., 2019; Francioni et al., 2019; Larkum et al., 2007]. Nonetheless, other previous work has reported
weak coupling between somata and distal apical dendrites [Kerlin et al., 2019; Larkum et al., 2007; Smith et al.,
2013], suggesting that this coupling could be context-dependent. Consistent with potential context dependence,
we saw clear differences in the evolution of selectivity for unexpected Gabor sequences over time between the
somatic and distal apical dendritic compartments, but we did not see these differences in response to the visual
flow stimuli (Fig. S6). Since these observations were consistent across mice (Fig. S4C), it seems likely that these
results would hold within individual neurons. At the same time, future work using simultaneous multi-plane
imaging will be critical to confirm this finding.

Second, though we examined the distal apical dendrites separately from the somata specifically in order to
identify potential differences in the processing of top-down and bottom-up inputs, an ideal experiment would
record simultaneously from other higher-order brain regions and their projections into visual cortex [Leinweber
et al., 2017; Marques et al., 2018]. This would help determine whether the signals we saw in the distal apical
dendrites were being calculated locally or in other regions. These experiments would be technically challenging,
but they are potentially feasible given recent technical advances in multi-plane mesoscope imaging.

Third, given the nature of our visual stimuli we were unable to measure either the classical receptive fields or
the orientation tuning of the neurons. As such, we cannot state with certainty whether these factors could explain
the differences in how individual cells responded to expected and unexpected stimuli. However, we observed
our results in aggregate across large populations of recorded neurons, presumably with diverse orientation
tuning properties and receptive fields. Thus, it is unlikely that idiosyncracies of individual neurons’ orientation
selectivities could account for the unexpected event responses. This assertion is supported by our finding that
even when we only compared responses for expected and unexpected frames with the same mean orientation we
still observed significant differences in the responses. Moreover, we observed significant changes in unexpected
event selectivity over days, whereas classic receptive fields and orientation tuning of neurons in mouse VisP are
known to be relatively stable over these timescales [Montijn et al., 2016].

Fourth, these experiments were open-loop, and thus did not incorporate any sensorimotor coupling to help
shape expectations. On one hand, this is a limitation given that there are a number of reports of apparent
sensorimotor predictions and prediction error signals in visual cortex [Keller et al., 2012; Leinweber et al., 2017;
Zmarz and Keller, 2016]. On the other hand, the fact that we saw evidence for learning in the open-loop
setting suggests that the brain is learning from sensory data alone, in addition to learning from sensorimotor
contingencies.

Fifth, and relatedly, our experiments did not incorporate any behavioral training or rewards. It could be the
case that the way in which the brain learns from unexpected events is different when those events are relevant
to motivated behaviors [Poort et al., 2015]. As such, we cannot say whether the patterns we observed would
carry over to task-based learning scenarios.

Finally, it must be recognized that different sensory stimuli, which can present different forms of unexpected
events, and recordings in different brain regions may produce different results. To more fully assess the hierar-
chical predictive learning hypothesis, future work should thoroughly explore the space of possible expected and
unexpected sensory stimuli and other regions of the neocortex.

A long-standing goal of neuroscience is to understand how our brains learn from the sensory data that
we receive from the world around us. Answers to this question are critical to our understanding of how we
build our internal models of the world, and how these govern how we interact with our surroundings. In
this work, we monitored changes in the responses of visual cortical neurons in mice while they learned about
new external stimuli, and found that these changes were consistent with a broad class of computational models,
namely, hierarchical predictive models. Looking forward, we anticipate that these findings could drive substantial
progress towards uncovering more specific models describing the brain’s hierarchical predictive learning. To
facilitate that progress, our data and analysis software are freely available to other researchers.
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= 4 Materials & Methods

a 4.1 Experimental animals and calcium imaging

wo  The dataset used in this paper was collected as part of the Allen Institute for Brain Science’s OpenScope ini-
w1 tiative. All animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC)
w2 at the Allen Institute for Brain Science. Two transgenic mouse lines (Cux2-CreERT2;Camk2a-tTA;Ai93 and
w3 Rbp4-Cre KL100;Camk2a-tTA;Ai93) were used to drive expression of GCaMP6f in layer 2/3 and layer 5 pyra-
ws  midal neurons, respectively. Mice first underwent cranial window surgery, following which they were housed in
ws  cages individually and maintained on a reverse dark-light cycle with experiments conducted during the dark
us phase. Mice were then habituated over two weeks to head fixation on a running disc, with the visual stimu-
a7 lus presentation being added the second week. Following habituation, they underwent three 70-minute optical
ws  imaging sessions within a span of three to six days, with no more than one session occurring per day. Two-
wo  photon calcium imaging was performed in the retinotopic center of VisP. Specifically, for each mouse, imaging
0 was performed in either the cell body layer for somatic recordings (175 pm depth for layer 2/3 and 375 pm
ss1 depth for layer 5) or in cortical layer 1 for distal apical dendritic recordings (50-75 pum depth for layer 2/3 and
2 20 pm depth for layer 5) across all optical imaging sessions. Sessions that did not meet quality control were
»s3  excluded from analyses, resulting in 11 mice total (L2/3-D: n = 2, L2/3-S: n = 3, L5-D: n = 3, L5-S: n = 3)
4 with three optical imaging sessions each. Full details on the Cre lines, surgery, habituation, and quality control
5 are provided in [de Vries et al., 2020].

456 Data were collected and processed using the Allen Brain Observatory data collection and processing pipelines
w7 [de Vries et al., 2020]. Briefly, imaging was performed with Nikon A1R MP+ two-photon microscopes, and
»ss  laser excitation was provided at a wavelength of 910 nm by a Ti:Sapphire laser (Chameleon Vision-Coherent).
9 Calcium fluorescence movies were recorded at 30 Hz with resonant scanners over a 400 pm field of view with a
w0 resolution of 512 x 512 pixels (Supp. Video 1). Temporal synchronization of calcium imaging, visual stimulation,
w1 running disc movement, and infrared pupil recordings was achieved by recording all experimental clocks on a
w2 single NI PCI-6612 digital IO board at 100 kHz. Neuronal recordings were then motion corrected, and ROI
w3 masks of neuronal somata were segmented as described in [de Vries et al., 2020]. For recordings in layer 1,
¢ ROI masks of neuronal dendrites were segmented using the robust estimation algorithm developed by [Inan
ws et al., 2017, 2021], which allows non-somatic shaped ROIs to be identified. This segmentation was run on the
ws motion-corrected recordings, high-pass filtered spatially at 10 Hz and downsampled temporally to 15 Hz. The
w7 algorithm parameters were tuned to reject potential ROIs with a peak spatial SNR below 2.5, a temporal SNR
ws  below 5, or a spatial corruption index above 1.5, while enabling spatially discontinuous dendritic segments to be
w0 identified as part of single ROIs (Fig. S2D). Fluorescence traces for both somatic and dendritic ROIs were then
w0 extracted, neuropil-subtracted, demixed, and converted to AF/F traces, as described in [de Vries et al., 2020;
m  Millman et al., 2020]. Together, neuropil subtraction and the use of a 180-second (5401 sample) sliding window
m  to calculate rolling baseline fluorescence levels F for the AF/F computation ensured that the AF/F traces
a3 obtained were robust to potential differences in background fluorescence between mice and imaging planes.
s Finally, any remaining ROIs identified as being duplicates or unions, overlapping the motion border or being
a5 too noisy (defined as having a mean AF/F below 0 or a median AF/F above the midrange AF/F, i.e., the
w6 midpoint between the minimum and maximum) were rejected. In the somatic layers, 15-224 ROIs per mouse
a7 per session were identified and retained for analysis, compared to 159-1636 ROIs in the dendritic layers. Lastly,
ws  maximum-projection images were obtained for each recording, examples of which are shown in Fig. 1C and E.
a0 Briefly, the motion corrected recordings were downsampled to ~4 Hz by averaging every 8 consecutive frames,
a0 following which the maximum value across downsampled frames was retained for each pixel. The resulting
w1 images were then rescaled to span the full 8-bit pixel value range (0-255). Metadata for the dataset is available
@ on GitHub,? and the full dataset is publicly available in Neurodata Without Borders (NWB) format [Ruebel
ws et al., 2019] in the DANDI Archive.3

s 4.2 Visual stimulation

ss  During each habituation and imaging session, mice viewed the Gabor sequence stimulus, as well as a visual
a6 flow stimulus. The stimuli were presented consecutively for an equal amount of time and in random order.

2 https://github.com/jeromelecoq/allen_openscope_metadata/tree/master/projects/credit_assignement
3 https://gui.dandiarchive.org/#/dandiset/000037
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They appeared on a grayscreen background and were projected on a flat 24-inch monitor positioned 10 cm
from the right eye. The monitor was rotated and tilted to appear perpendicular to the optic axis of the eye,
and the stimuli were warped spatially to mimic a spherical projection screen. Whereas habituation sessions
increased in duration over days from 10 to 60 minutes, optical imaging sessions always lasted 70 minutes,
comprising 34 minutes of Gabor sequence stimulus and 17 minutes of visual flow stimulus in each direction.
Each stimulus period was flanked by one or 30 seconds of grayscreen for the habituation and optical imaging
sessions, respectively.

The Gabor sequence stimulus was adapted from the stimulus used in [Homann et al., 2017]. Specifically, it
consisted of repeating 1.5-second sequences, each comprising five consecutive frames (A-B-C-D-G) presented for
300 ms each. Whereas G frames were uniformly gray, frames A, B, C, and D were defined by the locations and
sizes of the 30 Gabor patches they each comprised. In other words, throughout a session, the locations and sizes
of the Gabor patches were the same for all A frames, but differed between A and B frames. Furthermore, these
locations and sizes were always resampled between mice, as well as between days, such that no two sessions
comprised the same Gabor sequences, even for the same mouse. The location of each Gabor patch was sampled
uniformly over the visual field, while its size was sampled uniformly from 10 to 20 visual degrees. Within each
repeat of the sequence (A-B-C-D-G), the orientations of each of the Gabor patches were sampled randomly
from a von Mises distribution with a shared mean and a kappa (dispersion parameter) of 16. This shared mean
orientation was randomly selected for each sequence and counterbalanced for all four orientations {0°, 45°, 90°,
135°}. As such, although a large range of Gabor patch orientations were viewed during a session, orientations
were very similar within a single sequence. “Unexpected” sequences were created by replacing D frames with
U frames in the sequence (A-B-C-U-G). U frames differed from D frames not only because they were defined
by a distinct set of Gabor patch sizes and locations, but also because the orientations of their Gabor patches
were sampled from a von Mises distribution with a mean shifted by 90° with respected to the preceding regular
frames (A-B-C'), namely from {90°, 135°, 180°, 225°} (Fig. 2A, Supp. Video 4).

The visual flow stimulus consisted of 105 white squares moving uniformly across the screen at a velocity of
50 visual degrees per second, with each square being 8 by 8 visual degrees in size. The stimulus was split into
two consecutive periods ordered randomly, and each defined by the main direction in which the squares were
moving (rightward or leftward, i.e., in the nasal-to-temporal direction or vice versa, respectively). Unexpected
sequences, or flow violations, were created by reversing the direction of flow of a randomly selected 25% of the
squares for 2-4 seconds at a time, following which they resumed their motion in the main direction of flow
(Fig. S5A, Supp. Video 5).

Unexpected sequences, accounting for approximately 7% of the Gabor sequences and 5% of visual flow
stimulus time, only occurred on optical imaging days, and not on habituation days. In particular, each 70-
minute imaging session was broken up into approximately 30 blocks, each comprising 30—90 seconds of expected
sequences followed by several seconds of unexpected sequences (3-6 seconds for Gabor sequence stimulus and
2—4 seconds for the visual flow stimulus). All durations were sampled randomly and uniformly for each block,
across multiples of 1.5 seconds for the Gabor sequence stimulus and of 1 second for the visual flow stimulus.

The stimuli were generated using Python 2.7 [Van Rossum and Drake, 1995] custom scripts based on Psy-
choPy 1.82.01 [Peirce, 2009] and CamStim 0.2.4, which was developed and shared by the Allen Institute for
Brain Science. Code, instructions to reproduce the stimuli, and example videos are available on Github.*

4.3 Statistical analyses

For most analyses, mean + standard error of the mean (SEM) is reported. In cases where the error could
not be directly measured over the sample, e.g., the percentage of significant ROI USIs reported in Fig. 2F, a
bootstrapped estimate of the error was obtained by resampling the data with replacement 10 times. In these
cases, the standard deviation (SD) over the bootstrapped sample is plotted instead, and this is visually signaled
by the use of broader error caps (Fig. 2F-G, 4F, 5C, S6B, E-F).

Significance tests, unless otherwise indicated, were computed non-parametrically using permutation tests
with 10° shuffles to construct null distributions, based on which confidence intervals (CIs) could be estimated.
Where p-values are reported, they are two-tailed (except for Fig. 5C, S6F and S7; see Sec. 4.6 Fluorescence
trace analysis, below), and Bonferroni-corrected for multiple comparisons to reduce the risk of Type I errors
(false positives). Where 95% Cls are plotted, they are equivalently adjusted using a Bonferroni correction.
An exception was made for Fig. 3B, which reports the relationship between the stimuli and behavioral data.

4 https://github.com/colleenjg/cred_assign_stimuli
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Here, Type II errors (false negatives) were considered of greater concern, and thus we reported raw two-tailed
p-values in the panel itself. Details of the statistical analyses for all figures, including number of comparisons
and corrected p-values, are presented in Table S1.

4.4 Running and pupil analysis

Mice were allowed to run freely on a disc while head-fixed during habituation and optical imaging sessions
(Fig. 3A, Supp. Video 2). Running information was converted from disc rotations per running frame to cm/s.
The resulting velocities were median-filtered with a five-frame kernel size, and any remaining outliers, defined
as resulting from a single frame velocity change of at least +50 cm/s, were omitted from analyses.

To track pupil diameter during imaging sessions, an infrared LED illuminated the eye ipsilateral to the
monitor (right eye), allowing infrared videos to be recorded (Fig. 3A, Supp. Video 3) [Allen Institute for Brain
Science, 2017]. We trained a DeepLabCut model from ~200 manually labeled examples to automatically label
points around the eye, from which we estimated the pupil diameter (~0.01 mm per pixel conversion) [Mathis
et al., 2018].> We omitted from analyses outlier frames, defined as resulting from a single-frame diameter change
of at least 0.05 mm, which usually resulted from blinking.

Each datapoint in Fig. 3B corresponds to the difference in the mean running velocity or pupil diameter for
one block between the unexpected and preceding expected Gabor sequences during session 1, with all blocks
being pooled across mice. We computed p-values by comparing the mean difference over all blocks for each
plane to a distribution of mean differences, obtained by shuffling the expected and unexpected labels 10* times
and calculating the mean difference over all blocks for each shuffle.

4.5 ROI tracking across sessions

To track ROIs across days, we employed a custom-modified version of the ROI-matching package developed
to track cell bodies across multiple recording days by the Allen Institute for Brain Science [de Vries et al.,
2020]. This pipeline implements the enhanced correlation coefficient image registration algorithm to align
ROI masks and the graph-theoretic blossom algorithm to optimize the separation and degree of overlap between
pairwise matches, as well as the number of matches across all provided sessions [Evangelidis and Psarakis, 2008].
This process produced highly plausible matches for the somatic ROIs; however, it provided some implausible
matches for the smaller and more irregularly shaped dendritic ROIs. For the dendritic ROIs, we therefore further
constrained the putative matches to those that overlapped by at least 10-20%. Finally, we merged results across
all session orderings (e.g., 1-2-3, 1-3-2, 3-1-2), eliminating any conflicting matches, i.e., non-identical matchings
that shared ROIs. In total, the modified matching algorithm produced ~100-500 highly plausible matched
ROISs per plane, i.e., ~32-75% of the theoretical maximum number of trackable ROIs (L2/3-D: n = 254, L.2/3-
S: n =261, L5-D: n = 516, L5-S: n = 129) (Fig. 1E, S1, S8).

4.6 Fluorescence trace analysis

For all results except those presented in Fig. 5A-B, S2C, and S4A, C, ROIs were pooled across all mice within an
imaging plane for analyses. To enable ROI pooling across mice within imaging planes, each ROI’s AF/F trace
was scaled using robust standardization, i.e., by subtracting the median and then dividing by the interpercentile
range spanning the 5" to 95" percentile. The only additional exceptions to this are Fig. 4C, S2A-B, S4B, S6A,
where unscaled AF/F traces were used to ascertain how the AF/F signal itself changed across sessions.
Unexpected event selectivity indices (USIs) were calculated for each ROI separately using Equation 1:

Hunexpected ~ Hexpected

USI =
1( 2 2
\/2 (Uexpected + Uunexpected)

(1)

and variances (o2 ) were calculated

Hexpected and unexpected> expected and Ufmexpected
across integrated AF/F responses to the expected and unexpected events, respectively. For the Gabor sequences,
expected events responses were defined as those spanning D-G frames, and unexpected events were defined as
those spanning U-G frames, with each event therefore spanning 600 ms. Indeed, G frames were included in these

where the means (

5 https://allensdk.readthedocs.io/en/latest/allensdk.internal.brain_observatory.eye_calibration.html
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events, as they did not introduce any new stimuli, but did consistently show persisting ROI responses to D or
U frames (Fig. 2C). For the visual flow stimulus, expected events were defined as the last 2 seconds of expected
flow before unexpected flow onset (at which point 25% of the squares reversed direction), while unexpected
events were defined as the first 2 seconds of unexpected flow (Fig. S5B). For each ROI, in addition to the true
USI, a null distribution over USIs was obtained by randomly reassigning the expected and unexpected event
labels to each response 10* times. USIs were deemed significantly low if they lay below the 2.5!" percentile, and
significantly high if they lay above the 97.5!" percentile of their null distribution (Fig. 2D).

Note that for Fig. 2G, USIs were calculated using only D-G and U-G stimuli for which the mean orientations
were in {90°, 135°}, i.e., the orientations shared by D and U frames. For each imaging plane, the percentage
of significant ROI USIs was then plotted with bootstrapped SDs. Adjusted 95% CIs over chance levels were
estimated using the usual approximation method of the binomial CI, with the sample size corresponding to the
number of ROIs in the plane (Fig. 2F-G).

For Fig. 4A-B, ROI responses and differences in responses to full expected (A-B-C-D-G) and unexpected
(A-B-C-U-@G) sequences were obtained by first taking the mean AF/F for each ROI across Gabor sequences.
Mean AF/F 4+ SEM traces were then computed across ROIs and plotted for each session and imaging plane
(Fig. 4A). For Fig. 4B, the differences in the traces plotted in (Fig. 4A) were quantified by integrating the mean
AF/F responses over time for each ROI. Mean differences + SEM between expected and unexpected sequence
responses were then calculated across ROIs and plotted for each session and imaging plane. To further compare
ROI responses to regular (A-B-C') and unexpected (U-G) stimuli, for each ROI, a mean AF/F was calculated
for each set of Gabor frames, and then across sequences (Fig. 4C). The mean AF/F values thus obtained for
each ROI over a given session were then normalized by dividing by the mean AF/F for regular stimuli across
all ROIs from the same mouse in session 1. These normalized means + SEM over ROIs were then plotted for
each session and plane. Absolute fractional differences between sessions in the responses to unexpected stimuli
(Fig. S6B) or in USIs (Fig. S6E) were defined as

M3 — M1

‘ 2 ’ @)
where the subscripts indicate the session over which the mean p is computed. For Fig. S6B, p is the mean of the
AF/F values over all ROIs for the given plane or pooled over all planes, as indicated, for unexpected sequences.
As in Fig. 4C, the AF/F values were calculated relative to the mean expected AF/F values on session 1 for
each mouse. For Fig. S6E, u is the mean of the absolute values of the USIs for the given plane or pooled over
all planes for unexpected sequences. Significance tests comparing session results (Fig. 4B-C, E-F, S4B, S5C,
S6A, D) and those comparing Gabor sequence and visual flow stimulus results (Fig. S6B, E) were assessed by
permuting the session or stimulus labels, respectively, to compute adjusted 95% CIs over results expected by
chance.

For the orientation decoding analyses, linear logistic regressions were trained with an Lo penalty on the
multinomial task of classifying the mean Gabor patch orientation for D-G frames {0°, 45°, 90°, 135°} or U-G
frames {90°, 135°, 180°, 225°}. Balanced classifier accuracy was evaluated on the test sets of 300 random
cross-validation 75:25 train:test splits of the dataset for each mouse. Importantly, since the D-G frame datasets
necessarily comprised many more examples than the U-G frame datasets (~13x), they were first downsampled
for each split to match the number of examples in the corresponding U-G frame datasets, thus enabling fairer
comparisons between D-G and U-G classification results. Input data consisted of the AF/F responses for all
ROIs together across D-G or U-G frames (600 ms). The traces were standardized as described above, but using
statistics drawn from the training data only. Mean balanced accuracy across dataset splits was calculated for
each mouse, and the mean (+ SEM) balanced accuracy across mice was plotted for each session and plane. To
estimate chance accuracy, shuffled classifier performances were evaluated on 10° random cross-validation dataset
splits for each mouse. These classifiers were trained as above, but for each split, the training set orientation
targets were shuffled randomly. Null distributions over mean performance were obtained by averaging classifier
accuracy for each split across mice, from which adjusted 95% Cls over accuracy levels expected by chance were
calculated for each session and plane (Fig. 5A-B).

Pearson correlation coefficients (Fig. 5C, S6F), and the corresponding regression slopes (Fig. S7) were calcu-
lated to compare ROI USIs in each imaging plane between sessions. Bootstrapped SDs over these correlations
for each plane were then estimated, and adjusted 95% CIs were computed by permuting the ROI labels, such
that tracked ROIs were no longer matched together. Here, one-tailed (lower tail) CIs were calculated to identify
correlations that were more negative than expected by chance.
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5 Analysis software

Analyses were performed in Python 3.6 [Van Rossum and Drake, 2009] with custom scripts that are freely
available on GitHub,® and were developed using the following packages: NumPy [Harris et al., 2020], SciPy
[Jones et al., 2001], Pandas [McKinney et al., 2010], Matplotlib [Hunter, 2007], Scikit-learn 0.21.1 [Pedregosa
et al., 2011], and the AllenSDK 1.6.0.”7 Dendritic segmentation was run in Matlab 2019a [MATLAB, 2019]
using the robust estimation algorithm developed by [Inan et al., 2017, 2021]. Pupil tracking was performed
using DeepLabCut 2.0.5 [Mathis et al., 2018]. ROIs were matched across sessions using a custom-modified
version of the n-way cell matching package developed by the Allen Institute.®
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10 Supplemental Info

10.1 Supplemental videos

Supp. Video 1: Sample two-photon recordings for each imaging plane

This video shows sample two-photon calcium imaging recordings for each of the four imaging planes (L2/3-D,
L2/3-S, L5-D, L5-S), which match the maximum-projection images in Fig. 1C. Each recording is from a different
mouse and played at 8x the original recording speed.

Supp. Video 2: Sample of a running recording
This video shows a sample recording of a mouse running on a disc, during stimulus presentation, on an optical
imaging day.

Supp. Video 3: Sample of an annotated pupil recording

This video shows a sample recording of a mouse pupil, during stimulus presentation, on an optical imaging day.
The right pupil, ipsilateral to the stimulus presentation screen, is shown. It is annotated with tracking markers
which are inferred by the DeepLabCut model and used to measure pupil diameter. Specifically, the small, filled
blue dots mark the 8 tracked pupil poles, and the yellow ellipse marks the elliptical pupil shape inferred from
the tracked poles.

Supp. Video 4: Gabor sequence stimulus example

This video shows example expected and unexpected sequences for the Gabor sequence stimulus. As described
in the Materials & Methods, each frame lasts 300 ms, resulting in 1.5-second sequences. Within each expected
sequence (A-B-C-D-G), all Gabor patches share a mean orientation, sampled from {0°, 45°, 90°, 135°}. Within
each unexpected sequence (A-B-C-U-G), U frame Gabor patches are shifted by 90° with respect to the rest
of the sequence’s mean Gabor patch orientation. In this example video, each frame is labelled at the bottom
right. Additionally, expected sequences are signalled with a green circle, and unexpected sequences, with a red
circle. None of these annotations appeared during the actual experiments, when the animals viewed the stimulus.

Supp. Video 5: Visual flow stimulus example

This video shows example expected and unexpected sequences for the visual flow stimulus. Example sequences
are shown for temporal to nasal (leftward), followed by nasal to temporal (rightward) main flow. As described in
the Materials & Methods, during unexpected flow, 25% of the squares temporarily reverse their direction of flow.
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Figure S1: ROIs are successfully tracked in each plane
(A) Full field of view mask overlays for ROIs tracked across all three sessions for an example mouse in each plane.

(B) Enlarged views from (A) showing individual tracked ROI overlays for each plane.
The tracking pipeline reliably produced highly plausible ROI matches across all three sessions in each imaging plane.
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Figure S2: ROI SNR, signal and numbers are consistent across sessions

(A) AF/F trace SNRs for each ROI. For each session and plane, boxplots show the medians of the ROI SNR distributions,
as well as the 25" to 75" percentiles, with the whiskers extending from the 5 to 95" percentiles. SNR was calculated
for each ROI as follows. First, parameters (mean, SD) of a normal distribution over noisy activity were estimated based
on the lower tail of the ROI’s full activity distribution. The 95" percentile of the parameterized noise distribution was
then defined as that ROI’s noise threshold. ROI SNRs were then calculated as the ratio between their mean activity
above the noise threshold (signal), and the SD of their parameterized noise distribution. Dashed horizontal lines mark
1, i.e., noise level.

SNR levels were consistent across sessions within imaging planes.

(B) Mean AF/F trace signal, where each datapoint corresponds to an ROI. Boxplots drawn as in (A), and signal is
defined as described in (A).

Signal levels were consistent across sessions within imaging planes.

(C) The number of ROIs was generally stable across sessions for each mouse, except one in L5-D.

(D) Distributions of pairwise ROI correlations, plotted on a log scale. The log scale is linearized near 0, as signalled by
the axis break. Pairwise correlations were computed over full session fluorescence traces, which were smoothed using a
four-point moving average.

In all sessions, lines and planes, the vast majority of the correlation mass was concentrated near 0. The log scale reveals
that the small amount of mass remaining is distributed similarly between lines and planes, largely below 0.5.

24


https://doi.org/10.1101/2021.01.15.426915
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426915; this version posted April 6, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A L2/3-D L5-D B L2/3-D L5-D
0.2 ;M'\,\ 0.3 : ™ sess 1 49 ; 4 : A 3 ; 5 :
1 I’ R 1 ? b R
0o - -5 g T @ OA 0 0 1 0
0.2 . 0.2 . e 4- 2 . 4 10 ;
- ' /‘\\“ :,"‘- sess 2 § . ' .. ! !
g O umf--¥E o FIw gy ---- g o-‘ﬁ- 0 . 0 o LA
) (7]
' 0.2 ' - - . .
0.2 ‘ ’ 4 2 8 5
E :/\“"‘m T T\, sess3 8 : : B
A E R 8 o Jumeidlly 0 - e i
= o
n L2/3-S L5-S e L2/3-S L5-
2 04 . 04 ' T 10 i 7 i 10 i 7 i
uw : : sess1 < \\ ! i 1 L
S Of = o -_—— O o pE 04 o —-——0
O 0.41 : 0.4 . @ 20 : 4 . 10 . 6 .
4 1 1 3 1 1 A\ 1 1
1 1 sess 2 £ 1 | 1 § S
01 & -=== 0]-“%[:': s o]._&- oh 0 " OL“
- . . w
0.6 : 0.5 : 20 ; 5 ; 10 ; 8 i
o- l__l _l___l 0 L} L) — l__l___l 0 - — o ) 0 : _ o :
-2 0 2 ] 06 0 0.6 ABCDG 06 0 0.6 ABCDG
Time (s) Time (s)

Figure S3: ROIs are responsive to stimulus onset, and to Gabor sequences

(A) Mean (£ SEM) AF/F response traces across ROI mean responses to stimulus onset (Gabor sequence or visual
flow) from grayscreen. Dashed vertical line at time 0 marks stimulus onset, also signalled by the gray bar becoming red
(bottom of right column).

In all planes and sessions, ROI populations show clear responses to stimulus onset.

(B) AF/F response traces to each expected Gabor sequence (gray) for example ROIs. Mean (£ SEM) AF/F responses
across sequences are plotted in blue or green. Dashed vertical lines mark onset of D frames. Plotted ROIs were randomly
selected from session 1 ROIs deemed consistently responsive to Gabor sequences, based on the following criteria: (1) their
SNR was above the median for the session, (2) the median pairwise correlation between their individual sequence
responses, as well as the SD and skew of their mean response, were each above the 75" percentile for the session. As in
Fig. S2D, responses to individual sequences were smoothed using a four-point moving average, for correlation calculation
and plotting, only.

In each imaging plane, numerous ROIs were found which were responsive to various components of the Gabor sequences.
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Figure S4: ROI responses to unexpected Gabor sequences are consistent in tracked ROIs and across mice

(A) Percentage of significant USIs in session 1 for each plane, where each dot corresponds to a separate mouse.
Significance for each datapoint was evaluated against its own adjusted binomial CI (not shown). Lines show the pooled
percentage for each plane, as plotted in Fig. 2F. Dashed horizontal lines mark the theoretical chance level (2.5%).
Results are consistent with those pooled across mice, with 10 out of the 11 animals showing a higher percentage of
significant ROI USIs than expected by chance in at least one tail (2F).

(B) Mean (+ SEM) across tracked ROIs of the mean AF/F responses across sequences for regular sequence frames
(gray diamonds: A-B-C) and unexpected frames (green or blue circles, U-G), as in Fig. 4C. Responses are calculated
relative to session 1 regular responses, marked by dashed horizontal lines.

Results are consistent with the full ROI population results (Fig. 4C).

(C) Mean (£ SEM) across the absolute values of the Gabor sequence stimulus USIs for tracked ROIs, as in Fig. 4E, but
split by mouse.

Results are consistent with those pooled across mice (Fig. 4E).

*: p < 0.05, ¥*: p < 0.01, ***: p < 0.001 (two-tailed, corrected).

. p<0.05, T p<0.01, Tt p < 0.001 (two-tailed, corrected), for regular stimulus comparisons (gray) in (B).
See Table S1 for details of statistical tests and precise p-values for all comparisons.
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Figure S5: L2/3 ROIs respond to the onset of unexpected visual flow

(A) Visual flow stimulus. Squares moved together at the same velocity across the screen during expected flow (top). At
random times (unexpected flow, bottom), 25% of the squares, highlighted here in red for illustrative purposes, reversed
direction for 2-4 seconds (see Materials & Methods, and Supp. Video 5).

(B) Mean (+ SEM) across ROI mean AF/F responses to visual flow sequences. Expected and unexpected visual flow
sequences were defined as for the USI calculation, namely over the 2 seconds preceding unexpected visual flow onset and
following its onset, respectively. Dashed vertical line at time 0 marks the onset of unexpected visual flow, also signalled
by the gray bar becoming red (bottom of right column).

(C) Mean (+ SEM) differences across ROIs in the mean integrated responses to expected vs. unexpected visual flow,
as defined in (B). Gray bars show median (dark) and adjusted 95% CIs (light) over randomly expected differences.
Whereas the L5 somatic and distal apical dendritic populations did not respond significantly differently to expected vs.
unexpected flow, both L2/3 somatic and distal apical dendritic populations showed a significant difference in responses,
which increased over days in the dendrites. These findings are consistent with recent work by [Jordan and Keller,
2020] showing that L2/3 neurons integrate visual flow mismatch information, whereas L5 neurons do not appear to do so.

*: p < 0.05, ¥*: p < 0.01, ***: p < 0.001 (two-tailed, corrected).
See Table S1 for details of statistical tests and precise p-values for all comparisons.
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Figure S6: Unexpected visual flow sequences do not result in the same AF/F changes across sessions as
unexpected Gabor sequences do

(A) Mean (£ SEM) across ROIs of the mean AF/F responses across sequences for expected flow (gray diamonds) and
unexpected flow (green or blue circles), as defined in Fig. S5B. Responses are calculated relative to session 1 expected
responses, marked by dashed horizontal lines. Corresponds to Fig. 4C for Gabor sequences.

(B) Absolute fractional change (+ bootstrapped SD) in mean unexpected responses from session 1 to 3 for Gabor
sequence vs. visual flow stimulus for each plane (left and middle columns), and pooled across all planes (right column)
(see Equation 2).

In all imaging planes except L5-S, changes in ROI responses to unexpected stimulus from session 1 to 3 were significantly
greater for the Gabor stimulus than for the visual flow stimulus.

(C) Visual flow stimulus USIs for all tracked ROIs. Each line represents a single ROI’s USIs over all three sessions.
Corresponds to Fig. 4D for Gabor sequences.

(D) Mean (£ SEM) across the absolute values of the visual flow stimulus USIs for tracked ROIs, as shown in (C).
Corresponds to Fig. 4E for Gabor sequences.

28


https://doi.org/10.1101/2021.01.15.426915
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426915; this version posted April 6, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

(Fig. S6 caption, cont’d)
(E) Similar to (B), but here mean (£ bootstrapped SD) absolute fractional changes in USIs from session 1 to 3 across

tracked ROIs are plotted (see Equation 2).

In L5-D and all compartments combined, changes in USIs for tracked ROIs from session 1 to 3 were significantly greater
for the Gabor stimulus than for the visual flow stimulus.

(F) Correlations (+ bootstrapped SD) for each plane and session comparison. Gray bars show median (dark) and
adjusted 95% CIs (light), computed by shuffling ROI labels. Corresponds to Fig. 5C for Gabor sequences.

Unlike the Gabor sequence stimulus, only positive correlations are observed for the visual flow stimulus, and they are in
the somatic compartments instead of the dendritic ones.

¥ p < 0.05, **: p < 0.01, ¥ p < 0.001 (two-tailed, corrected, except for (F) where one-tailed (lower), cor-

rected significance is reported).
. p<0.05 T p<0.01, Tt p < 0.001 (two-tailed, corrected), for expected stimulus comparisons (gray) in (A).

See Table S1 for details of statistical tests and precise p-values for all comparisons.
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Figure S7: Gabor sequence USIs are negatively correlated between sessions 1 and 2 in the distal apical dendrites

(A) Gabor USI scatterplots showing correlations between sessions 1 and 2. Each point reflects a single tracked ROI’s
USIs on two sessions. Gray contour lines show null distributions, computed by shuffling ROI labels, as in Fig. 5C. The
estimated regression slopes for each plane (blue or green, dashed) are plotted against the identity line (gray, dashed).
Opposite quadrants are shaded in gray. Significance markers next to reported slope values correspond to the correlation
significance testing results reported in Fig. 5C, and S6F.

(B) Same as in (A), but for Gabor sequence USIs in sessions 2 and 3.

(C) Same as in (A), but for visual flow USIs in sessions 1 and 2.

(D) Same as in (A), but for visual flow USIs in sessions 2 and 3.

Only L2/3-D and L5-D ROI Gabor sequence USIs show significant negative correlations. These correlations are between
the USIs of sessions 1 and 2, and have slopes of -0.24 and -0.28, respectively.

*: p < 0.05, ¥*: p < 0.01, ***: p < 0.001 (one-tailed (lower), corrected).
See Table S1 for details of statistical tests and precise p-values for all comparisons. Specifically, for (A-B), see the
entries for Fig. 5C , and for (C-D), see the entries for Fig. S6F.
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Figure S8: Dendritic ROI matches vary more with session ordering than somatic ROI matches do

(A) Example 1.2/3-D mouse with ROIs matched across sessions. The order in which the session images are aligned slightly
affects which ROIs are matched. (Left) Permutation with the smallest number of matched ROIs. (Middle) Permutation
with the largest number of matched ROIs. (Right) Taking the union of matches across all session permutations while
removing conflicting matches (matches comprising at least one ROI that also appears in a different match) enables the
quantity and quality of matched ROIs to be optimized. In this example, four pairwise matches were identified as conflicts
and removed, yielding 136 final matches.

(B) Same as (A), but for a L5-S mouse. The variation in number of matched ROIs across session orderings for somata
was generally far less than that for dendrites due to their larger sizes and more regular shapes. Combining matched ROIs
across all permutations did nonetheless, in this example mouse, enable two of the pairwise matches to be identified as

conflicts and removed, yielding 47 final matches.
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«r 10.3 Supplemental table

Table S1: Summary of statistical tests and results for all figures.

Fig. Panel Comparison Test Bonferroni Corrected Signif.
correction p-value
2 F L2/3-D to null binomial 8 < 0.001 p < 0.001
left L2/3-S to null null CI comparisons < 0.001 p < 0.001
L5-D to null < 0.001 p < 0.001
L5-S to null 0.004 p < 0.01
F L2/3-D to null < 0.001 p < 0.001
right ~ L2/3-S to null < 0.001 p < 0.001
L5-D to null < 0.001 p < 0.001
L5-S to null < 0.001 p < 0.001
G 1L2/3-D to null binomial 8 < 0.001 p < 0.001
left L2/3-S to null null CI comparisons < 0.001 p < 0.001
L5-D to null < 0.001 p < 0.001
L5-S to null < 0.001 p < 0.001
G L2/3-D to null < 0.001 p < 0.001
right 1L.2/3-S to null < 0.001 p < 0.001
L5-D to null < 0.001 p < 0.001
L5-S to null < 0.001 p < 0.001
3 B L2/3-D to null 10* 4 1.000 n.s.'!
left L2/3-S to null permutations comparisons  1.000 n.s.
L5-D to null 1.000 n.s.
L5-S to null 1.000 n.s.
B L2/3-D to null 10* 4 1.000 n.s.
right L2/3-S to null permutations comparisons 0.782 n.s.
L5-D to null 1.000 n.s.
L5-S to null 1.000 n.s.
4 B L2/3-D sess. 1 to null 10° 24 1.000 n.s.
sess. 2 to null permutations comparisons 1.000 n.s.
sess. 3 to null < 0.001 p < 0.001
sess. 1 vs. 2 < 0.001 p < 0.001
sess. 1 vs. 3 < 0.001 p < 0.001
sess. 2 vs. 3 < 0.001 p < 0.001
L2/3-S sess. 1 to null 1.000 n.s.
sess. 2 to null 0.252 n.s.
sess. 3 to null 1.000 n.s.
sess. 1 vs. 2 1.000 n.s.
sess. 1 vs. 3 1.000 n.s.
sess. 2 vs. 3 0.182 n.s.
L5-D sess. 1 to null 1.000 n.s.
sess. 2 to null < 0.001 p < 0.001
sess. 3 to null < 0.001 p < 0.001
sess. 1 vs. 2 < 0.001 p < 0.001
sess. 1 vs. 3 < 0.001 p < 0.001
sess. 2 vs. 3 0.020 p < 0.05

10 In contrast to the p-values reported directly in Fig. 3, the p-values reported here are corrected for multiple comparisons.
n.s.: not significant

11
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Table S1: Summary of statistical tests and results for all figures. (cont’d)

Fig. Panel Comparison Test Bonferroni Corrected Signif.
correction p-value

4 (B) L5-S sess. 1 to null (10° (24 < 0.001 p < 0.001
sess. 2 to null permutations) comparisons) 1.000 n.s.
sess. 3 to null 1.000 n.s.
sess. 1 vs. 2 0.755 n.s.
sess. 1 vs. 3 0.011 p < 0.05
sess. 2 vs. 3 1.000 n.s.
C L2/3-D sess. 1 vs. 2 reg. 10° 24 1.000 n.s.
unexp. permutations comparisons < 0.001 p < 0.001
sess. 1 vs. 3 reg. 1.000 n.s.
unexp. < 0.001 p < 0.001
sess. 2 vs. 3 reg. 1.000 n.s.
unexp. 1.000 n.s.
L2/3-S sess. 1 vs. 2 reg. 1.000 n.s.
unexp. 1.000 n.s.
sess. 1 vs. 3 reg. 1.000 n.s.
unexp. < 0.001 p < 0.001
sess. 2 vs. 3 reg. 0.018 p < 0.05
unexp. < 0.001 p < 0.001
L5-D sess. 1 vs. 2 reg. 1.000 n.s.
unexp. < 0.001 p < 0.001
sess. 1 vs. 3 reg. < 0.001 p < 0.001
unexp. < 0.001 p < 0.001
sess. 2 vs. 3 reg. < 0.001 p < 0.001
unexp. 1.000 n.s.
L5-S sess. 1 vs. 2 reg. 1.000 n.s.
unexp. 0.814 n.s.
sess. 1 vs. 3 reg. 0.118 n.s.
unexp. 1.000 n.s.
sess. 2 vs. 3 reg. 1.000 n.s.
unexp. 1.000 n.s.
E L2/3-D sess. 1 vs. 2 10° 12 1.000 n.s.
sess. 1 vs. 3 permutations comparisons < 0.001 p < 0.001
sess. 2 vs. 3 < 0.001 p < 0.001
L2/3-S sess. 1 vs. 2 0.374 n.s.
sess. 1 vs. 3 < 0.001 p < 0.001
sess. 2 vs. 3 < 0.001 p < 0.001
L5-D sess. 1 vs. 2 < 0.001 p < 0.001
sess. 1 vs. 3 < 0.001 p < 0.001
sess. 2 vs. 3 1.000 n.s.
L5-S sess. 1 vs. 2 < 0.001 p < 0.001
sess. 1 vs. 3 0.004 p < 0.01
sess. 2 vs. 3 0.683 n.s.
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Table S1: Summary of statistical tests and results for all figures. (cont’d)

Fig. Panel Comparison Test Bonferroni Corrected Signif.
correction p-value
4 F L2/3-D sess. 1 vs. 2 10° 12 1.000 n.s.
sess. 1 vs. 3 permutations comparisons 1.000 n.s.
sess. 2 vs. 3 0.647 n.s.
L2/3-S sess. 1 vs. 2 1.000 n.s.
sess. 1 vs. 3 < 0.001 p < 0.001
sess. 2 vs. 3 < 0.001 p < 0.001
L5-D sess. 1 vs. 2 0.077 n.s.
sess. 1 vs. 3 0.008 p < 0.01
sess. 2 vs. 3 1.000 n.s.
L5-S sess. 1 vs. 2 < 0.001 p < 0.001
sess. 1 vs. 3 0.002 p < 0.01
sess. 2 vs. 3 0.944 n.s.
5 A L2/3-D sess. 1 to null 10° 24 <0.001  p<0.001
sess. 2 to null permutations comparisons < 0.001 p < 0.001
sess. 3 to null 0.086 n.s.
L2/3-S sess. 1 to null < 0.001 p < 0.001
sess. 2 to null < 0.001 p < 0.001
sess. 3 to null < 0.001 p < 0.001
L5-D sess. 1 to null 0.002 p < 0.01
sess. 2 to null 0.006 p < 0.01
sess. 3 to null 0.008 p < 0.01
L5-S sess. 1 to null < 0.001 p < 0.001
sess. 2 to null 1.000 n.s.
sess. 3 to null < 0.001 p < 0.001
B L2/3-D sess. 1 to null 0.525 n.s.
sess. 2 to null < 0.001 p < 0.001
sess. 3 to null < 0.001 p < 0.001
L2/3-S sess. 1 to null < 0.001 p < 0.001
sess. 2 to null < 0.001 p < 0.001
sess. 3 to null < 0.001 p < 0.001
L5-D sess. 1 to null 0.003 p < 0.01
sess. 2 to null < 0.001 p < 0.001
sess. 3 to null < 0.001 p < 0.001
L5-S sess. 1 to null < 0.001 p < 0.001
sess. 2 to null 0.097 n.s.
sess. 3 to null 0.080 n.s.
c'? L2/3-D sess. 1 v 2 to null 10° 8 < 0.001 p < 0.001
sess. 2 v 3 to null permutations comparison  1.000 n.s.
L2/3-S sess. 1 v 2 to null 0.843 n.s.
sess. 2 v 3 to null 1.000 n.s.
L5-D sess. 1 v 2 to null < 0.001 p < 0.001
sess. 2 v 3 to null 1.000 n.s.

12 One-tailed t-tests were used here (lower tail).
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Table S1: Summary of statistical tests and results for all figures. (cont’d)

Fig. Panel Comparison Test Bonferroni Corrected Signif.
correction p-value
(5) (C) L5-S sess. 1 v 2 to null (10° (8 1.000 n.s.
sess. 2 v 3 to null permutations) comparisons) 1.000 n.s.
S4 A L2/3-D ~6% binomial 22 < 0.001 p < 0.001
left ~24% null CI comparisons < 0.001 p < 0.001
L2/3-S ~5% 0.201 n.s.
~6% 0.463 n.s.
~46% < 0.001 p < 0.001
L5-D ~1% < 0.001 p < 0.001
~6% 0.095 n.s.
~24% < 0.001 p < 0.001
L5-S ~6% 0.542 n.s.
~T% 0.330 n.s.
~13% 0.250 n.s.
A L2/3-D ~2% 1.000 n.s.
right ~10% < 0.001 p < 0.001
L2/3-S ~3% 1.000 n.s.
~9% < 0.001 p < 0.001
~51% < 0.001 p < 0.001
L5-D ~1% 0.767 n.s.
~6% 0.010 p < 0.05
~10% < 0.001 p < 0.001
L5-S ~T% 1.000 n.s.
~32% < 0.001 p < 0.001
~34% < 0.001 p < 0.001
B L2/3-D sess. 1 vs. 2 reg. 10° 24 1.000 .s.
unexp. permutations comparisons 0.003 p < 0.01
sess. 1 vs. 3 reg. 0.215 n.s.
unexp. < 0.001 p < 0.001
sess. 2 vs. 3 reg. 1.000 n.s.
unexp. 1.000 n.s.
L2/3-S sess. 1 vs. 2 reg. 1.000 n.s.
unexp. 1.000 n.s.
sess. 1 vs. 3 reg. 0.302 n.s.
unexp. < 0.001 p < 0.001
sess. 2 vs. 3 reg. < 0.001 p < 0.001
unexp. < 0.001 p < 0.001
L5-D sess. 1 vs. 2 reg. 1.000 n.s.
unexp. < 0.001 p < 0.001
sess. 1 vs. 3 reg. 0.050 n.s.
unexp. < 0.001 p < 0.001
sess. 2 vs. 3 reg. 0.006 p < 0.01
unexp. 1.000 n.s.
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Table S1: Summary of statistical tests and results for all figures. (cont’d)

Fig. Panel Comparison Test Bonferroni Corrected Signif.
correction p-value
(S4) (B) L5-S sess. 1 vs. 2 reg. (10° (24 1.000 n.s.
unexp. permutations) comparisons) 0.136 n.s.
sess. 1 vs. 3 reg. < 0.001 p < 0.001
unexp. < 0.001 p < 0.001
sess. 2 vs. 3 reg. 1.000 n.s.
unexp. 1.000 n.s.
S5 C L2/3-D sess. 1 to null 10° 24 < 0.001 p < 0.001
sess. 2 to null permutations comparisons < 0.001 p < 0.001
sess. 3 to null < 0.001 p < 0.001
sess. 1 vs. 2 1.000 n.s.
sess. 1 vs. 3 < 0.001 p < 0.001
sess. 2 vs. 3 < 0.001 p < 0.001
L2/3-S sess. 1 to null 0.002 p <0.01
sess. 2 to null < 0.001 p < 0.001
sess. 3 to null < 0.001 p < 0.001
sess. 1 vs. 2 1.000 n.s.
sess. 1 vs. 3 0.132 n.s.
sess. 2 vs. 3 1.000 n.s.
L5-D sess. 1 to null 1.000 n.s.
sess. 2 to null 1.000 n.s.
sess. 3 to null 1.000 n.s.
sess. 1 vs. 2 < 0.001 p < 0.001
sess. 1 vs. 3 < 0.001 p < 0.001
sess. 2 vs. 3 < 0.001 p < 0.001
L5-S sess. 1 to null 1.000 n.s.
sess. 2 to null 1.000 n.s.
sess. 3 to null 1.000 n.s.
sess. 1 vs. 2 1.000 n.s.
sess. 1 vs. 3 1.000 n.s.
sess. 2 vs. 3 1.000 n.s.
S6 A L2/3-D sess. 1 vs. 2 exp. 10° 24 0.152 n.s.
unexp. permutations comparisons 1.000 n.s.
sess. 1 vs. 3 exp. 0.095 n.s.
unexp. 0.185 n.s.
sess. 2 vs. 3 exp. 1.000 n.s.
unexp. 0.003 p < 0.01
L2/3-S sess. 1 vs. 2 exp. 1.000 n.s.
unexp. 1.000 n.s.
sess. 1 vs. 3 exp. 1.000 n.s.
unexp. 1.000 n.s.
sess. 2 vs. 3 exp. 1.000 n.s.
unexp. 1.000 n.s.
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Table S1: Summary of statistical tests and results for all figures. (cont’d)

Fig. Panel Comparison Test Bonferroni Corrected Signif.
correction p-value
(S6) (A) L5-D sess. 1 vs. 2 exp. (10° (24 < 0.001 p < 0.001
unexp. permutations) comparisons) < 0.001 p < 0.001
sess. 1 vs. 3 exp. < 0.001 p < 0.001
unexp. 0.057 n.s.
sess. 2 vs. 3 exp. 1.000 n.s.
unexp. 0.344 n.s.
L5-S sess. 1 vs. 2 exp. 0.072 n.s.
unexp. 0.067 n.s.
sess. 1 vs. 3 exp. 1.000 n.s.
unexp. 1.000 n.s.
sess. 2 vs. 3 exp. 1.000 n.s.
unexp. 0.621 n.s.
B L2/3-D gabors vs. vis. flow 10° 5 < 0.001 p < 0.001
L2/3-S gabors vs. vis. flow permutations comparisons < 0.001 p < 0.001
L5-D gabors vs. vis. flow < 0.001 p < 0.001
L5-S gabors vs. vis. flow 1.000 n.s.
all gabors vs. vis. flow < 0.001 p < 0.001
D L2/3-D sess. 1 vs. 2 10° 12 1.000 n.s.
sess. 1 vs. 3 permutations comparisons 0.034 p < 0.05
sess. 2 vs. 3 0.147 n.s.
L2/3-S sess. 1 vs. 2 1.000 n.s.
sess. 1 vs. 3 < 0.001 p < 0.001
sess. 2 vs. 3 0.026 p < 0.05
L5-D sess. 1 vs. 2 1.000 n.s.
sess. 1 vs. 3 1.000 n.s.
sess. 2 vs. 3 0.588 n.s.
L5-S sess. 1 vs. 2 1.000 n.s.
sess. 1 vs. 3 1.000 n.s.
sess. 2 vs. 3 1.000 n.s.
E L2/3-D gabors vs. vis. flow 10° 5 0.650 n.s.
L2/3-S gabors vs. vis. flow permutations comparisons 1.000 n.s.
L5-D gabors vs. vis. flow 0.005 p < 0.01
L5-S gabors vs. vis. flow 0.243 n.s.
all gabors vs. vis. flow < 0.001 p < 0.001
F'? L2/3-D sess. 1 v 2 to null 10° 8 1.000 n.s.
sess. 2 v 3 to null permutations comparisons 1.000 n.s.
L2/3-S sess. 1 v 2 to null 1.000 n.s.
sess. 2 v 3 to null 1.000 n.s.
L5-D sess. 1 v 2 to null 1.000 n.s.
sess. 2 v 3 to null 1.000 n.s.
L5-S sess. 1 v 2 to null 1.000 n.s.
sess. 2 v 3 to null 1.000 n.s.

13 One-tailed t-tests were used here (lower tail).
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