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Abstract 36 
 To increase our basic understanding of the ecology and evolution of conjugative 37 
plasmids, we need a reliable estimate of their rate of transfer between bacterial cells. 38 
However, accurate estimates of plasmid transfer have remained elusive due to biological 39 
and experimental complexity. Current methods to measure transfer rate can be 40 
confounded by many factors. A notable example involves plasmid transfer between 41 
different strains or species where the rate that one type of cell donates the plasmid is not 42 
equal to the rate at which the other cell type donates. Asymmetry in these rates has the 43 
potential to bias or constrain current transfer estimates, thereby limiting our capabilities 44 
for estimating transfer in microbial communities. Inspired by the classic fluctuation 45 
analysis of Luria and Delbrück, we develop a novel approach, the Luria-Delbrück method 46 
(‘LDM’), for estimating plasmid transfer rate. Our new approach embraces the 47 
stochasticity of conjugation departing from the current deterministic population dynamic 48 
methods. In addition, the LDM overcomes obstacles of traditional methods by not being 49 
affected by different growth and transfer rates for each population within the assay. Using 50 
stochastic simulations and experiments, we show that the LDM has high accuracy and 51 
precision for estimation of transfer rates compared to the most widely used methods, 52 
which can produce estimates that differ from the LDM estimate by orders of magnitude.  53 
 54 
Significance Statement  55 
 Conjugative plasmids play significant roles in the ecology and evolution of 56 
microbial communities. Notably, antibiotic resistance genes are often encoded on 57 
conjugative plasmids. Thus, conjugation—the transfer of a plasmid copy from one cell to 58 
another—is a common way for antibiotic resistance to spread between important clinical 59 
pathogens. For both public health modeling and a basic understanding of microbial 60 
population biology, accurate estimates of this fundamental rate are of great consequence. 61 
We show that widely used methods can lead to biased estimates, deviating from true 62 
values by several orders of magnitude. Therefore, we developed a new approach, 63 
inspired by the classic fluctuation analysis of Luria and Delbrück, for accurately assessing 64 
the rate of plasmid conjugation under a variety of conditions. 65 
 66 
Main Text 67 
 68 
Introduction 69 

A fundamental rule of heredity involves the passage of genes from parents to their 70 
offspring. Bacteria violate this rule of strict vertical inheritance by shuttling DNA between 71 
cells through horizontal gene transfer (1, 2). Often the genetic elements being shuttled 72 
are plasmids, extrachromosomal DNA molecules that can encode the machinery for their 73 
transfer (3). This plasmid transfer process is termed conjugation, in which a plasmid copy 74 
is moved from one cell to another upon direct contact. Additionally, plasmids replicate 75 
independently inside their host cell to produce multiple copies, which segregate into both 76 
offspring upon cell division. Therefore, conjugative plasmids are governed by two modes 77 
of inheritance: vertical and horizontal. 78 

This horizontal mode of inheritance makes it possible for non-related cells to 79 
exchange genetic material, which includes members of different species (4). In fact, 80 
conjugation can occur across vast phylogenetic distances, such that the expansive gene 81 
repertoire in the “accessory” genome encoded on conjugative plasmids is shared among 82 
many microbial species (5). This ubiquitous genetic exchange reinforces the central role 83 
of conjugation in shaping the ecology and evolution of microbial communities (1, 3, 6). 84 
Notably, conjugation is a common mechanism facilitating the spread of antimicrobial 85 
resistance genes among bacteria and the emergence of multi-drug resistance in clinical 86 
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pathogens (7–9). To understand how genes, including those of clinical relevance, move 87 
within complex bacterial communities, an accurate and precise measure of the rate of 88 
conjugation is of the utmost importance. 89 

The basic approach to measure conjugation involves mixing plasmid-containing 90 
bacteria, called “donors”, with plasmid-free bacteria, called “recipients”. As the co-culture 91 
incubates, recipients acquire the plasmid from the donor through conjugation, and these 92 
transformed recipients are called “transconjugants”. Over the course of this “mating 93 
assay,” the densities of donors, recipients, and transconjugants are tracked over time (𝐷𝑡, 94 

𝑅𝑡, and 𝑇𝑡, respectively) as the processes of population growth and plasmid transfer 95 
occur. To understand how such information is used to calculate the rate of conjugation, 96 
we consider an altered version of the foundational Levin et al. model (10). In this 97 
framework, populations grow exponentially, and recipients become transconjugants via 98 
conjugation when they interact with plasmid-bearing cells (i.e., donors or 99 
transconjugants). The densities of the populations are described by the following 100 
differential equations (the 𝑡 subscript is dropped from the variables for notational 101 
convenience): 102 

 
𝑑𝐷

𝑑𝑡
= 𝜓𝐷𝐷, [1] 

 
𝑑𝑅

𝑑𝑡
= 𝜓𝑅𝑅 − 𝛾𝐷𝐷𝑅 − 𝛾𝑇𝑇𝑅, [2] 

 
𝑑𝑇

𝑑𝑡
= 𝜓𝑇𝑇 + 𝛾𝐷𝐷𝑅 + 𝛾𝑇𝑇𝑅. [3] 

In equations [1]-[3], donors, recipients and transconjugants divide at a per-capita rate of 103 
𝜓𝐷, 𝜓𝑅, and 𝜓𝑇, respectively. The parameters 𝛾𝐷 and 𝛾𝑇 measure the rate at which a 104 
recipient cell acquires a plasmid per unit density of the donor and transconjugant, 105 
respectively. Thus, the 𝜓 parameters are population growth rates and the 𝛾 parameters 106 
are conjugation rates (see Figure 1a). Assuming all the growth rates are equal (𝜓𝐷 =107 

𝜓𝑅 = 𝜓𝑇 = 𝜓) and conjugation rates are equal (𝛾𝐷 = 𝛾𝑇 = 𝛾), Simonsen et. al. (11) 108 
provided an elegant solution to equations [1]-[3] to produce the following estimate for the 109 
conjugation rate from donors to recipients (hereafter termed the “donor conjugation rate”): 110 

 𝛾𝐷 = 𝜓 ln (1 +
𝑇𝑡̃

𝑅𝑡

𝑁𝑡

𝐷𝑡
)

1

(𝑁𝑡 − 𝑁0)
. [4] 

For a mating assay incubated for a fixed period (hereafter 𝑡̃), the initial and final density 111 

of all bacteria (𝑁0 and 𝑁𝑡, respectively), the final density of each cell population (𝐷𝑡 , 𝑅𝑡 , 112 
and 𝑇𝑡), and the population growth rate (𝜓) are sufficient for an estimate of the conjugation 113 
rate. 114 

The Achilles heel of this estimate, as with others, is found in violations of its 115 
assumptions. For instance, we label equation [4] as the “Simonsen et. al. Identicality 116 
Method” estimate (SIM) for the donor conjugation rate because the underlying model 117 
assumes all strains are identical with regards to growth rates and conjugation rates. 118 
However, in natural microbial communities, this identicality assumption is misplaced, 119 
especially when the donors and recipients belong to different species. For instance, 120 
suppose that the rate of plasmid transfer within a species (i.e., from transconjugants to 121 
recipients, which we abbreviate as the “transconjugant conjugation rate”) is much higher 122 
than between species (i.e., from donors to recipients); that is, 𝛾𝑇 ≫ 𝛾𝐷 (Figure 1b). This 123 
elevated within-species conjugation rate (𝛾𝑇) will increase the number of transconjugants 124 
and consequently inflate the SIM estimate for the cross-species conjugation rate (𝛾𝐷) 125 

compared to a case where the conjugation rates are equal (𝛾𝑇 = 𝛾𝐷, Figure 1c). This 126 
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Achilles heel is not specific to cross-species scenarios and can occur when estimating 127 
conjugation between any cells, including strains of the same species. One approach to 128 
minimize the resulting bias is to shorten the incubation time for the assay (12), as estimate 129 
bias tends to increase over time (e.g., Figure 1b). However, new problems can arise when 130 
using this approach, such as the transconjugant numbers becoming exceedingly low and 131 
thus difficult to accurately assess (13). Another approach was introduced by Huisman et 132 
al. (14), which squarely addressed the SIM identicality assumptions by developing a 133 
method to estimate donor conjugation rate when growth and transfer rates differ, thereby 134 
enlarging the set of systems amenable to estimation (see SI section 1 for full description 135 
of this and other approaches). Nonetheless, this new method can have difficulty with 136 
situations in which the donor conjugation rate (𝛾𝐷) is substantially lower than the 137 
transconjugant rate (𝛾𝑇), the example illustrated in Figure 1. Such differences have been 138 

reported in multi-species systems (15) and recently several studies have recognized the 139 
importance of evaluating the biology of plasmids in microbial communities (7, 16–18). 140 
Therefore, a method that provides an accurate estimate despite substantial inequalities 141 
in rate parameters is desirable. 142 

Here we derive a novel estimate for conjugation rate, inspired by the Luria–143 
Delbrück fluctuation experiment (19), by explicitly tracking transconjugant dynamics as a 144 
stochastic process (i.e., a continuous time branching process). Our method allows for 145 
unrestricted heterogeneity in growth rates and conjugation rates. Thus, our method fills a 146 
gap in the methodological toolkit by allowing unbiased estimation of conjugation rates in 147 
a wide variety of strains and species. We used stochastic simulations to validate our 148 
estimate and compare its accuracy and precision to other estimates. We developed a 149 
protocol for the laboratory by using microtiter plates to rapidly screen many donor-150 
recipient co-cultures for the existence of transconjugants. In addition to its experimental 151 
tractability, our protocol circumvents problems that arise in the laboratory that can bias 152 
other approaches. Finally, we implemented our method in the laboratory and compared 153 
our estimate to the SIM estimate using a Klebsiella pneumoniae to Escherichia coli cross-154 
species case study with an IncF conjugative plasmid.   155 
 156 
Results 157 
 158 
A new conjugation rate estimate inspired by the Luria–Delbrück approach. 159 

Previous methods to estimate the rate of conjugation have treated the rise of 160 
transconjugants as a deterministic process (i.e., non-random). However, conjugation is 161 
inherently a stochastic (i.e., random) process (20). Given that conjugation transforms the 162 
genetic state of a cell, we can form an analogy with mutation, which is also a stochastic 163 
process that transforms the genetic state of a cell. While mutation transforms a wild-type 164 
cell to a mutant, conjugation transforms a recipient cell to a transconjugant.  165 

This analogy inspired us to revisit the way Luria and Delbrück handled the 166 
mutational process in their classic paper on the nature of bacterial mutation (19), outlined 167 
in Figure 2a-d. For this process, assume that the number of wild-type cells, 𝑁𝑡, is 168 
expanding exponentially. Let the rate of mutant formation be given by 𝜇. In Figure 2a, we 169 

see that the number of mutants in a growing population increases due to mutation events 170 
(highlighted purple cells) and due to faithful reproduction by mutants (non-highlighted 171 
purple cells). The rate at which mutants are generated (highlighted purple cells) is 𝜇𝑁𝑡, 172 
which grows as the number of wild-type cells increase (Figure 2b). However, the rate of 173 
transformation per wild-type cell is the mutation rate 𝜇, which is constant (Figure 2c). 174 
Since mutations are random, parallel cultures will vary in the number of mutants 175 
depending on if and when mutation events occur. As seen in Figure 2d, for sufficiently 176 
small wild-type populations growing over sufficiently small periods, some replicate 177 
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populations will not contain any mutant cell (gray shading) while other populations exhibit 178 
mutants (purple shading). Indeed, the cross-replicate fluctuation in the number of mutants 179 
was a critical component of the Luria-Delbrück experiment.  180 

To apply this strategy to estimate the conjugation rate, we can similarly think about 181 
an exponentially growing population of recipients (Figure 2e). But now there is another 182 
important cell population present (the donors). The transformation of a recipient is simply 183 
the generation of a transconjugant (highlighted purple cells) via conjugation with a donor. 184 
If we ignore conjugation from transconjugants for the moment, the rate at which 185 
transconjugants are generated is 𝛾𝐷𝐷𝑡𝑅𝑡 (Figure 2f). In contrast to the mutation rate, the 186 
rate of transformation per cell is not a constant. Rather, this transformation rate per 187 
recipient is 𝛾𝐷𝐷𝑡, which grows with the donor population (Figure 2g). It is as if we are 188 
tracking a mutation process where the mutation rate is exponentially increasing. Yet the 189 
rate of transformation per recipient and donor is constant, which is the donor conjugation 190 
rate 𝛾𝐷. As with mutation, conjugation is random which results in a distribution in the 191 
number of transconjugants among parallel cultures depending on the time points at which 192 
transconjugants arise. As seen in Figure 2h, under certain conditions, some replicate 193 
populations will not contain any transconjugant cell (gray shading) while other populations 194 
will exhibit transconjugants (purple shading). 195 

Using this analogy, here we describe a new approach for estimating conjugation 196 
rate which embraces conjugation as a stochastic process (20). Let the density of donors, 197 
recipients, and transconjugants in a well-mixed culture at time 𝑡 be given by the variables 198 
𝐷𝑡, 𝑅𝑡, and 𝑇𝑡. In all that follows, we will assume that the culture is inoculated with donors 199 

and recipients, while transconjugants are initially absent (i.e., 𝐷0 > 0, 𝑅0 > 0, and 𝑇0 =200 
0). The donor and recipient populations grow according to the following standard 201 
exponential growth equations 202 

 𝐷𝑡 = 𝐷0𝑒𝜓𝐷𝑡 , [5] 

 𝑅𝑡 = 𝑅0𝑒𝜓𝑅𝑡 , [6] 

where 𝜓𝐷 and 𝜓𝑅 are the growth rates for donor and recipient cells, respectively. With 203 

equations [5] and [6], we are making a few assumptions, which also occur in some of the 204 
previous methods (SI Table 3). First, we assume the loss of recipient cells to 205 
transformation into transconjugants can be ignored. This assumption is acceptable 206 
because, for what follows, the rate of generation of transconjugants per recipient cell (as 207 
in Figure 2g, 𝛾𝐷𝐷𝑡) is very small relative to the per capita recipient growth rate (𝜓𝑅). 208 

Second, we assume that donors and recipients exhibit deterministic exponential growth. 209 
If the initial numbers of donors and recipients are not too small (i.e., 𝐷0 ≫ 0 and 𝑅0 ≫ 0) 210 
and per capita growth remains constant over the period of interest, then this assumption 211 
is reasonable. We note that this assumption does not deny that cell division of donors 212 
and recipients is also a stochastic process, but given the large numbers of these cells, a 213 
deterministic approximation is appropriate.  214 

On the other hand, the number of transconjugants over the period of interest can 215 
be quite small (starting from zero), motivating an explicit stochastic treatment (21). The 216 
population growth of transconjugants is modeled using a continuous-time stochastic 217 
process. The number of transconjugants, 𝑇𝑡, is a random variable taking on non-negative 218 
integer values. In this section, we will assume the culture volume is 1 ml and thus the 219 
number of transconjugants is equivalent to the density of transconjugants (per ml). For a 220 
very small interval of time, Δ𝑡, the current number of transconjugants will either increase 221 

by one or remain constant. The probabilities of each possibility are given as follows:   222 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2022. ; https://doi.org/10.1101/2021.01.06.425583doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.06.425583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

 Pr{𝑇𝑡+Δ𝑡 = 𝑇𝑡 + 1} = 𝛾𝐷𝐷𝑡𝑅𝑡Δ𝑡 + 𝛾𝑇𝑇𝑡𝑅𝑡Δ𝑡 + 𝜓𝑇𝑇𝑡Δ𝑡, [7] 

 Pr{𝑇𝑡+Δ𝑡 = 𝑇𝑡} = 1 − (𝛾𝐷𝐷𝑡𝑅𝑡 + 𝛾𝑇𝑇𝑡𝑅𝑡 + 𝜓𝑇𝑇𝑡)Δ𝑡. [8] 

The three terms on the right-hand side of equation [7] illustrate the processes enabling 223 
the transconjugant population to increase. The first term gives the probability that a donor 224 
transforms a recipient into a transconjugant via conjugation. The second term gives the 225 
probability that a transconjugant transforms a recipient via conjugation. The third term 226 
measures the probability that a transconjugant cell divides. Equation [8] is simply the 227 
probability that none of these three processes occur. 228 

Given the standard set-up of a mating assay, we focus on a situation where there 229 
are no transconjugants. Therefore, the only process that can change the number of 230 
transconjugants is conjugation of the plasmid from a donor to a recipient. Using equation 231 
[8] with 𝑇𝑡 = 0, we have 232 

 Pr{𝑇𝑡+Δ𝑡 = 0 | 𝑇𝑡 = 0} = 1 − 𝛾𝐷𝐷𝑡𝑅𝑡Δ𝑡. [9] 

We let the probability that we have zero transconjugants at time 𝑡 be denoted by 𝑝0(𝑡) 233 
(i.e., 𝑝0(𝑡) = Pr{ 𝑇𝑡 = 0}). In SI section 2, we derive the following expression for 𝑝0(𝑡) at 234 

time 𝑡 = 𝑡̃: 235 

 𝑝0(𝑡̃) = exp {
−𝛾𝐷𝐷0𝑅0

𝜓𝐷 + 𝜓𝑅
(𝑒(𝜓𝐷+𝜓𝑅)𝑡 − 1)}. [10] 

Solving equation [10] for 𝛾𝐷 yields a new measure for the donor conjugation rate: 236 

 𝛾𝐷 = − ln 𝑝0(𝑡̃) (
𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡 − 1)
). [11] 

This expression is similar in form to the mutation rate derived by Luria and Delbrück in 237 
their classic paper on the nature of bacterial mutation (19), which is not a coincidence.  238 

In SI section 3, we rederive the Luria-Delbrück result, which can be expressed as  239 

 𝜇 = − ln 𝑝0(𝑡̃) (
𝜓𝑁

𝑁0(𝑒𝜓𝑁𝑡 − 1)
). [12] 

In the mutational process modeled by Luria and Delbrück, 𝑁0 is the initial wild-type 240 
population size, which grows exponentially at rate 𝜓𝑁 . For Luria and Delbrück, 𝑝0(𝑡̃) refers 241 
to the probability of zero mutants at time 𝑡̃ (as in a gray-shaded tree in Figure 2d), whereas 242 

𝑝0(𝑡̃) in the conjugation estimate refers to the probability of zero transconjugants (as in a 243 
gray-shaded tree in Figure 2h). Comparing equation [12] to equation [11], conjugation 244 
can be thought of as a mutation process with initial wild-type population size 𝐷0𝑅0 that 245 
grows at rate 𝜓𝐷 + 𝜓𝑅. We label the expression in equation [11] as the LDM estimate for 246 

donor conjugation rate, where LDM stands for “Luria-Delbrück Method” given the 247 
connection to their approach. 248 
 249 
The Luria-Delbrück method (LDM) has improved accuracy and precision. 250 

To explore the accuracy and precision of the LDM estimate and compare it to the 251 
SIM estimate (as well as other estimates, see SI section 4), we used the Gillespie 252 
algorithm to simulate the dynamics of a standard mating assay using equations [1]-[3] 253 
(Figure 3). Since the mating assay starts without transconjugants, a critical time point 254 
(hereafter 𝑡∗) is marked by the creation of the first transconjugant cell due to the first 255 
conjugation event between a donor and a recipient. Before 𝑡∗, the only events occurring 256 

are the cell divisions of donors and recipients (Figure 3a). After 𝑡∗, all the event types 257 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2022. ; https://doi.org/10.1101/2021.01.06.425583doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.06.425583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

described in Figure 1a can occur. Given that our simulation framework incorporates the 258 
stochastic nature of conjugation, 𝑡∗ will vary among simulated mating assays. One 259 
stochastic run of the mating assay constitutes a simulation of the SIM approach. In the 260 
laboratory, the standard time point (𝑡̃) used for the SIM estimate is 24 hours, however, a 261 
truncated assay (𝑡̃ < 24) also produces a non-zero estimate of the conjugation rate as 262 
long as the incubation time is greater than 𝑡∗ (the orange region of Figure 3b and c). 263 

While the SIM estimate uses the density of transconjugants (𝑇𝑡), the LDM equation 264 

instead involves 𝑝0(𝑡̃), the probability that a population has no transconjugants at the end 265 
of the assay. A maximum likelihood estimate for this probability (hereafter 𝑝̂0(𝑡̃)) is 266 
obtained by calculating the fraction of populations (i.e., parallel simulations) that have no 267 
transconjugants at the specific incubation time 𝑡̃ (top of Figure 3d). Thus, the range of 268 
time points to calculate the maximum likelihood estimate (0 < 𝑝̂0(𝑡̃) < 1) will be flanking 269 
the average 𝑡∗ (the brown region of Figure 3d). Because the LDM estimate depends on 270 
the probabilistic absence of transconjugants, while the SIM estimate requires their 271 
presence, the range of incubation times for the LDM approach will be earlier than the SIM 272 
approach.   273 

Even though there is a range of ‘valid’ incubation times, the accuracy of the SIM 274 
estimate can change over time as shown in Figure 3c (same case shown in Figure 1b). 275 
In this case, a key modeling assumption of the SIM approach was violated as the 276 
transconjugant conjugation rate was much higher than the donor conjugation rate (𝛾𝑇 ≫277 

𝛾𝐷). Consequently, the SIM estimate of the donor conjugation rate was inflated compared 278 
to the true value by increasing amounts over time (Figure 3c). In contrast, the LDM 279 
estimate under the same scenario had high accuracy and precision over time (Figure 3e). 280 
We explored other parameter settings across various incubation times and the LDM 281 
estimate generally performed as well or better than other estimates (SI section 4).  282 

To more systematically explore the effects of heterogeneous growth and 283 
conjugation rates on the accuracy and precision of estimating the donor conjugation rate 284 
(𝛾𝐷), we ran sets of simulations sweeping through values of other parameters 285 
(𝜓𝐷, 𝜓𝑅, 𝜓𝑇 , and 𝛾𝑇). An illustrative example of heterogeneous growth occurs when 286 

plasmids confer costs or benefits on the fitness of their host. We simulated a range of 287 
growth-rate effects on plasmid-containing hosts from large plasmid costs (𝜓𝐷 =  𝜓𝑇 ≪288 
 𝜓𝑅) to large plasmid benefits (𝜓𝐷 =  𝜓𝑇 ≫  𝜓𝑅). Relative to the SIM estimate, the LDM 289 

estimate had equivalent or higher accuracy and precision across all parameter settings 290 
(Figure 4a). To explore inequalities in conjugation rate more comprehensively, we 291 
simulated a range of transconjugant conjugation rates from relatively low (𝛾𝑇 ≪ 𝛾𝐷) to 292 
high (𝛾𝑇 ≫ 𝛾𝐷) values. Once again, the LDM estimate generally surpassed the SIM 293 
estimate across this range (Figure 4b). In SI section 4, we explore other parametric 294 
combinations along with model extensions, where, overall, the LDM outperformed the 295 
SIM approach and other estimates. Given the large number of simulations for these 296 
sweeps, we chose parameter values outside of experimentally obtained values reported 297 
in the literature, to reduce the computational burden of the Gillespie algorithm. However, 298 
the qualitative results were confirmed with a few simulations using parameter settings 299 
with more realistic values (SI section 4).  300 
 301 
New laboratory protocol to implement the LDM. 302 

We developed a general experimental procedure for estimating donor conjugation 303 
rate (𝛾𝐷) using the LDM approach in the laboratory. The LDM protocol is tractable and 304 

can accommodate a wide variety of microbial species and conjugative plasmids by 305 
allowing for distinct growth and conjugation rates among donors, recipients, and 306 
transconjugants. The basic approach is to inoculate many donor-recipient co-cultures and 307 
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then, at a time close to 𝑡∗, add transconjugant-selecting medium (counterselection for 308 
donors and recipients) to determine the presence or absence of transconjugant cells in 309 
each co-culture.  310 

In SI section 1, we rearrange equation [11] to provide an alternative form to 311 
highlight the quantities needed to conduct the LDM assay in the laboratory: 312 

 𝛾𝐷 =
𝑓

𝑡̃
[− ln 𝑝̂0(𝑡̃)]

ln𝐷𝑡𝑅𝑡 − ln 𝐷0𝑅0

𝐷𝑡𝑅𝑡 − 𝐷0𝑅0
. [13] 

Similar to previous conjugation estimates, the LDM protocol requires measurement of 313 
initial and final densities of donors and recipients (𝐷0, 𝑅0, 𝐷𝑡, and 𝑅𝑡). In addition, the LDM 314 

approach requires a fraction of parallel donor-recipient co-cultures to have no 315 
transconjugants at the specified incubation time (𝑡̃), which is the maximum likelihood 316 
estimate 𝑝̂0(𝑡̃). Lastly, there is a correction factor when the co-culture volume deviates 317 
from 1 ml; specifically, 𝑓 is the reciprocal of the co-culture volume in ml (e.g., for a co-318 

culture volume of 100 l, 𝑓 = 1/0.1 = 10, SI section 5).  319 
Before executing the LDM conjugation assay, an incubation time 𝑡̃ and initial 320 

density for the donors (𝐷0) and the recipients (𝑅0) needs to be chosen so that the 321 
probability that transconjugants form (1 − 𝑝0(𝑡̃)) is not close to zero or one. We developed 322 
a short assay (SI section 6) for screening combinations of incubation time and initial 323 
densities to select a target incubation time (𝑡̃′) as well as target initial densities (𝐷0

′  and 324 

𝑅0
′ ) where 0 < 𝑝̂0(𝑡̃) < 1. Note we add primes to indicate that these are ‘targets’ to 325 

distinguish 𝐷0, 𝑅0, and 𝑡̃ in equation [13] which will be gathered in the conjugation protocol 326 
itself. In addition, this pre-assay simultaneously verifies that the LDM modeling 327 
assumption of constant growth is satisfied. In our case, this pre-assay revealed several 328 
time-density combinations that could have been used. A useful pattern to note is that a 329 
higher donor conjugation rate will require shorter incubation times and lower initial 330 
densities compared to a lower rate.  331 

For the LDM conjugation assay, we mix exponentially growing populations of 332 
donors and recipients, inoculate many co-cultures at the target initial densities in a 96 333 
deep-well plate, and incubate in non-selective growth medium with the specific 334 
experimental culture volume (1/𝑓 of 1 ml) for the target incubation time (Figure 5). To 335 
estimate the initial densities (𝐷0 and 𝑅0), three co-cultures at the start of the assay are 336 

diluted and plated on donor-selecting and recipient-selecting agar plates (Figure 5a). After 337 
the incubation time (𝑡̃), final densities (𝐷𝑡 and 𝑅𝑡) are also obtained by dilution-plating 338 
from the same co-cultures (Figure 5b). Liquid transconjugant-selecting medium is 339 
subsequently added to the remaining co-cultures (Figure 5c). After a long incubation in 340 
the transconjugant-selecting medium, there should be a mixture of turbid and non-turbid 341 
wells. A turbid well results from one or more transconjugant cells being present at time 𝑡̃ 342 
(when transconjugant-selecting medium was added). Therefore, a non-turbid well 343 
indicates the absence of transconjugant cells at 𝑡̃, since the first conjugation event had 344 
not yet occurred (𝑡̃ < 𝑡∗, Figure 3), although see SI section 6. The proportion of non-turbid 345 

cultures is 𝑝̂0(𝑡̃) (Figure 5c). Unlike the traditional Luria–Delbrück method, no plating is 346 
required to obtain 𝑝̂0(𝑡̃). With the obtained densities (𝐷0, 𝑅0, 𝐷𝑡, and 𝑅𝑡), the incubation 347 
time (𝑡̃), the proportion of transconjugant-free cultures (𝑝̂0(𝑡̃)), and the experimental 348 
culture volume correction (𝑓), the LDM estimate for donor conjugation rate (𝛾𝐷) can be 349 

calculated via equation [13]. 350 
 351 

Cross-species case study. 352 
To empirically test the performance of our assay and our modeling predictions, we 353 

initiated a cross-species mating assay between a donor, Klebsiella pneumoniae 354 
(hereafter ‘K’) with a conjugative IncF plasmid (hereafter ‘pF’), and a plasmid-free 355 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2022. ; https://doi.org/10.1101/2021.01.06.425583doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.06.425583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

recipient, Escherichia coli (hereafter ‘E’). We denote the donor strain as K(pF), where the 356 
host species name is listed first and the plasmid inside the host is given in the parenthesis. 357 
E(Ø) denotes the plasmid-free recipient strain. We implemented the LDM and SIM 358 
protocols to estimate the cross-species conjugation rate in the laboratory.  359 

The standard SIM protocol involves an incubation of 24 hours. For many bacterial 360 
species (including the ones explored here), an incubation time (𝑡̃) of 24 hours will lead to 361 
a violation of the assumption of constant growth rates from equations [1]-[3]. However, 362 
the original Simonsen et al. study did not actually assume constant growth rates (11). 363 
Their model permitted growth rate to vary as a function of resources, but additionally 364 
assumed that conjugation rate similarly varied. In other words, the ratio of growth and 365 
conjugation rates was assumed to remain constant (SI section 1). Under batch culture 366 
conditions, the population growth rates will drop as limiting resources are fully consumed 367 
(resulting in a stationary phase). As long as conjugation rates decrease with resources in 368 
a similar fashion and the parametric identicality assumptions hold, the SIM estimate can 369 
be used over a full-day incubation. We proceeded with the standard SIM protocol here. 370 

Our LDM estimate of the cross-species conjugation rate was significantly lower 371 
than the standard SIM estimate, approximately three orders of magnitude (comparison A 372 
in Figure 6; t-test, p<0.05). This substantial incongruence could be due to a few possible 373 
factors. First, it is possible that the growth and conjugation rates do not change with 374 
nutrients in a functionally similar way. While we cannot rule out this possibility, it has been 375 
shown for IncF plasmids that both growth and conjugation drop as resources decline to 376 
low levels (10), consistent with SIM model assumptions. Second, our cell types have 377 
different growth rates (SI Figure 8), thus violating the SIM assumptions. While simulations 378 
show there is an effect of these inequalities, the effect size is insufficient to explain the 379 
observed difference in comparison A (SI section 4). Lastly, it is possible that the within-380 
species conjugation, between the E(pF) transconjugants and E(Ø) recipients, occurs at a 381 
substantially higher rate than the cross-species conjugation, between the K(pF) donors 382 
and E(Ø) recipients. Our simulations show that this kind of difference in conjugation rates 383 
can lead to notable inflation of the SIM estimate, and there is evidence that within-species 384 
conjugation rates can be markedly elevated over cross-species rates (15, 22). Thus, this 385 
last possibility warranted further investigation. 386 

Next, we performed the within-species mating between E. coli strains. The LDM 387 
estimate for within-species conjugation rate (within E. coli) was higher than the cross-388 
species LDM estimate by almost six orders of magnitude (comparison B in Figure 6; t-389 
test, p<0.001), a difference that could explain the inflated SIM estimate. To further explore 390 
this explanation, we performed an additional cross-species SIM experiment with a shorter 391 
incubation time. In Figure 3c, as the incubation time was shortened, the SIM estimate 392 
approached the LDM estimate of the donor conjugation rate. Running the SIM protocol 393 
with a truncated incubation period (5 hours) resulted in a significantly lower cross-species 394 
conjugation rate estimate relative to the standard SIM estimate (comparison C in Figure 395 
6; t-test, p<0.05), a result consistent with the pattern predicted under heterogeneous 396 
conjugation rates.  397 

 398 
Discussion 399 

Conjugation is one of the primary modes of horizontal gene transfer in bacteria, 400 
facilitating the movement of genetic material between non-related neighboring cells. In 401 
microbial communities, conjugation can lead to the dissemination of genes among 402 
distantly related species. Since these genes are often of adaptive significance (e.g., 403 
antibiotic resistance), a comprehensive understanding of microbial evolution requires a 404 
full account of the process of conjugation. One of the most fundamental aspects of this 405 
process is the rate at which it occurs. Here we have presented a new method for 406 
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estimating the rate of plasmid conjugative transfer from a donor cell to a recipient cell. 407 
We derived our LDM estimate using a mathematical approach that captures the 408 
stochastic process of conjugation, which was inspired by the method Luria and Delbrück 409 
applied to the process of mutation (19). We explored the connection between mutation 410 
and conjugation further in SI section 7. Our new method departs from the mathematical 411 
approach for other conjugation rate estimates, which assume underlying deterministic 412 
frameworks guiding the dynamics of transconjugants (10, 11, 14). Beyond the 413 
incorporation of stochasticity, the model and derivation behind the LDM estimate relaxes 414 
assumptions that constrain former approaches, which makes calculating conjugation 415 
rates accessible to a wide range of experimenters that use different plasmid-donor-416 
recipient combinations.  417 
 418 
The LDM approach has improved accuracy 419 

The most widely used approaches to estimate conjugation rate are derived from 420 
the Levin et al. model (SI section 1) which assumes that all strains grow and conjugate at 421 
the same rate (𝜓𝐷 = 𝜓𝑅 = 𝜓𝑇 and 𝛾𝐷 = 𝛾𝑇). These assumptions and constraints are 422 
problematic because bacterial growth and conjugation can and do vary (23, 24). 423 
Specifically, donors and recipients are often different taxa and contain chromosomal 424 
differences that translate to growth or conjugation rate differences (𝜓𝐷 ≠ 𝜓𝑅 or 𝛾𝐷 ≠ 𝛾𝑇). 425 
Additionally, plasmid carriage can change growth rate substantially (25) and therefore 426 
recipients can grow differently from donors (𝜓𝑅 ≠ 𝜓𝐷) or transconjugants (𝜓𝑅 ≠ 𝜓𝑇). In 427 
microbial communities, heterogeneous rates of growth and conjugation are the rule and 428 
not the exception. Therefore, a general estimation approach should be robust to this 429 
heterogeneity. While the estimates of popular approaches are insensitive to certain forms 430 
of heterogeneity, they can also be inaccurate under other forms. In contrast, the LDM 431 
estimate remains accurate across a broad range of heterogeneities. 432 

A recent approach by Huisman et al. (14) relaxed the assumption of parametric 433 
homogeneity, yielding useful revisions to the SIM approach. However, when 434 
transconjugants exhibit much larger rates of plasmid transfer than the donors (𝛾𝑇 ≫ 𝛾𝐷), 435 
this new method can become inapplicable. Unfortunately, this kind of difference in 436 
conjugation rates is likely not uncommon in microbial communities (15, 26). Indeed, a 437 
mating assay involving two species can be thought of as a miniaturized microbial 438 
community where cross-species conjugation (between donors and recipients) and within-439 
species conjugation (between transconjugants and recipients) both occur. Both previous 440 
work (15, 26) and experimental data from this study (Figure 6) demonstrate that the 441 
transconjugant (within-species) conjugation rate can be significantly higher than the donor 442 
(cross-species) rate. In addition, a similar difference in conjugation rates can arise from 443 
transitory de-repression, a molecular mechanism encoded on the conjugative plasmid 444 
that temporarily elevates the conjugation rate of a newly formed transconjugant (10, 27). 445 
The LDM approach is robust to these differences because it focuses on the creation of 446 
the first transconjugant (an event that must be between a donor and recipient) and ignores 447 
subsequent transconjugant dynamics (which is affected by transconjugant transfer). The 448 
LDM method produces an accurate estimate for donor conjugation rate in systems with 449 
unequal conjugation rates, whether the differences are taxonomic or molecular in origin.  450 
 451 
The LDM approach has improved precision 452 

In addition to improved accuracy, the LDM estimate has advantages in terms of 453 
precision. Since conjugation is a stochastic process, the number of transconjugants at 454 
any given time is a random variable with a certain distribution. Therefore, estimates that 455 
rely on the number of transconjugants (which includes nearly all available methods) or 456 
the probability of their absence (the LDM approach) will also fall into distributions. Even 457 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2022. ; https://doi.org/10.1101/2021.01.06.425583doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.06.425583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

in cases where the mean (first moment of the distribution) is close to the actual 458 
conjugation rate, the variance (second central moment) may differ among estimates. For 459 
the number of parallel co-cultures in our protocol, the LDM estimate had smaller variance 460 
compared to other estimates, even under parameter settings where different estimates 461 
shared similar accuracy (e.g., Figure 4). This greater precision likely originates from the 462 
difference in the distribution of the number of transconjugants (𝑇𝑡) and the distribution of 463 
the probability of transconjugant absence (𝑝0(𝑡̃)), something we explore analytically in SI 464 

section 8. Beyond the mean and variance, other features of these distributions (i.e., higher 465 
moments) may also be important. For certain parameter settings, the estimates relying 466 
on transconjugant numbers were asymmetric (the third moment was non-zero). In such 467 
cases, a small number of replicate estimates could lead to bias (SI section 4). Typically, 468 
a small number of conjugation assays is standard; thus, the general position and shape 469 
of these estimate distributions may matter. Over the portion of parameter space that we 470 
explored, the LDM distribution facilitated accurate and precise estimates through its 471 
position (a mean reflecting the true value) and its shape (a small variance and a low 472 
skew). 473 

 474 
The LDM approach has implementation advantages  475 

As discussed above, violations of modeling assumptions can lead to significant 476 
bias when estimating conjugation rate. Therefore, when implementing a conjugation 477 
protocol, the degree to which the experimental system satisfies the relevant assumptions 478 
is of prime importance. The most straightforward way to deal with this issue is to 479 
experimentally confirm that assumptions hold. For instance, the model underlying the 480 
LDM estimate assumes that growth rates of each cell type remain constant throughout 481 
the assay. This verification is part of the LDM protocol (see Materials and Methods and 482 
SI section 6). We emphasize that confirming the satisfaction of an assumption for one 483 
experimental system does not guarantee that the assumption holds for other systems. 484 
For example, the model underlying the SIM estimate assumes that growth and 485 
conjugation rates respond in a functionally similar way to changes in resources. While 486 
this assumption was verified for the IncF plasmid used in the original SIM study (10), other 487 
plasmid systems will readily violate it (e.g., some IncP plasmids conjugate during 488 
stationary phase after growth has stopped (28)), which can lead to bias in the estimate 489 
(SI section 4). Some approaches do not experimentally verify modeling assumptions as 490 
part of their corresponding protocol, but rather rely on simulated sensitivity analyses 491 
showing violations have little to no effect on the estimate (11, 14). For instance, the SIM 492 
estimate is robust to relatively small differences in growth rates or conjugation rates (11). 493 
Overall, for any conjugation rate estimate, either the underlying assumptions should be 494 
validated for the focal experimental system, or a rationale offered for why certain 495 
violations by the focal system will not significantly bias the estimate.  496 

Given recent interest in the impacts of model assumption violations on conjugation 497 
rate estimates (14, 29), there has been a matching interest in altering conjugation 498 
protocols such that bias is minimized when violations apply. A common procedural 499 
adjustment involves shortening the incubation period of the mating assay because the 500 
bias resulting from modeling violations can increase over time (12, 13). For instance, 501 
when the transconjugant transfer rate is much higher than the donor rate, shortening the 502 
incubation time can mitigate some of the inaccuracies in the SIM estimate (Figure 3 and 503 
6). However, there are a few caveats to this adjustment for estimates that rely on 504 
transconjugant density (which includes all common approaches, but not the LDM). First, 505 
as the incubation time decreases, the benefits in estimate accuracy come at the expense 506 
of costs in estimate precision. Specifically, variation in the timing of the first 507 
transconjugant cell appearance (𝑡∗ in Figure 3) has a greater impact on estimate variance 508 
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with earlier incubation times. In part because the LDM approach does not rely on a 509 
measurement of transconjugant density, the LDM estimate remains both accurate and 510 
precise across various incubation times. Second, as incubation time decreases the 511 
transconjugant population can become extremely small and therefore technical problems 512 
with measuring an accurate transconjugant density through plating can arise (13). For 513 
instance, when the transconjugants are rare in the mating culture, the low dilution factor 514 
required for selective agar plating for transconjugants ensures a very high density of 515 
donors and recipients are simultaneously plated. Before complete inhibition of the donors 516 
and recipients by the transconjugant-selecting medium, conjugation events on the plate 517 
can generate additional transconjugants inflating the conjugation rate estimate (7, 13, 30, 518 
31). Recently, a spectrophotometric technique was introduced to avoid selective plating 519 
altogether, which addresses this second caveat (13), but not the first. Notably, neither of 520 
these two caveats apply to the LDM approach because a binary output (turbid or non-521 
turbid cultures) is used in lieu of measuring transconjugant density. Overall, the LDM 522 
protocol is both experimentally streamlined and insensitive to factors that can confound 523 
other approaches. 524 
 525 
The LDM approach is broadly applicable 526 
 In this paper, we have highlighted the possibility that the rate of conjugation may 527 
change (substantially) with the identity of the plasmid-bearing cell (32–34). For instance, 528 
as a plasmid moves from the original donor strain to the recipient background (forming a 529 
transconjugant), the transfer rate can change (i.e., 𝛾𝐷 ≠ 𝛾𝑇). However, the conjugation 530 
rate changes with much more than just the identity of the cell holding the plasmid. The 531 
rate of transfer can additionally depend on the identity of the recipient as well as 532 
environmental conditions (e.g., level of nutrients, presence of antibiotics, etc.) (35). Thus, 533 
there is no single conjugation rate “belonging to” a plasmid-bearing strain. Some previous 534 
conjugation estimate methods (e.g., the SIM approach) build conditionality into their 535 
underlying model (e.g., conjugation rate changes dynamically with limiting resources). In 536 
such a case, the estimate is for a parameter (e.g., maximum conjugation rate) of the 537 
functional response, although additional assumptions about the functional response (e.g., 538 
conjugation and growth change proportionally) may introduce new methodological 539 
limitations. Our LDM approach is meant to be a conditional “snapshot,” where the 540 
conjugation rate depends on conditions of the protocol and the strains used. It is entirely 541 
possible to run the LDM approach under different conditions (e.g., changing nutrients) 542 
and assess the effect of environmental factors on transfer rate. The donor conjugation 543 
rate can be calculated under any condition as long as strain growth rates are constant 544 
over the protocol. But the distinguishing feature that gives the LDM method relative 545 
breadth of application is that it is robust to a form of conditionality that is tied to the mating 546 
assay itself. Specifically, because transconjugants are formed during a mating assay and, 547 
like donors, can deliver the plasmid to additional recipients, a form of rate conditionality 548 
is an unavoidable possibility for any protocol employing a mating assay. As we have 549 
shown (Figure 1, 3, 4, and 6), a difference in transfer rate between donors and 550 
transconjugants can make popular estimates inaccurate. However, by focusing on the 551 
first transconjugant formed (which only involves the donor and recipient, Figure 6), the 552 
LDM sidesteps this conditionality altogether, allowing an unbiased estimate of donor 553 
conjugation rate under a user-defined environment. 554 

In conclusion, the LDM offers new possibilities for measuring the conjugation rate 555 
for many types of plasmids, species, and environmental conditions. We have presented 556 
evidence that supports our method being more accurate and precise than other widely 557 
used approaches. Importantly, the LDM eliminates bias caused by relatively high 558 
transconjugant conjugation rates, which is not unlikely when the donor and recipient 559 
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belong to different species. We experimentally explored a case where the transconjugant 560 
transfer rate was dramatically higher than the donor rate and found that a standard 561 
estimate could inflate the conjugation rate (Figure 6). More generally, violations of model 562 
assumptions, intrinsic stochasticity, and implementation constraints can cause problems 563 
for currently available approaches. However, an adjustment of the approach Luria and 564 
Delbrück used to explore and estimate mutation over 75 years ago can address many of 565 
these issues. This new approach greatly expands the ability of experimentalists to 566 
accurately measure conjugation rates under the diverse conditions found in natural 567 
microbial communities. 568 
  569 
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Materials and Methods 570 
More detailed information for the mathematical models, simulations, and experiments are 571 
provided in the Supplementary Information. 572 
 573 
Bacterial Strains, Media, and Culture Conditions. 574 

Donor strains included two Enterobacteriaceae species: Escherichia coli K-12 575 
BW25113 (36) and Klebsiella pneumoniae Kp08 (7). We use the first letter of the genus 576 
(E and K) to refer to these species throughout. The recipient strain is derived from the 577 
same isogenic strain as the E. coli donor strain but encodes additional chromosomal 578 
streptomycin resistance, providing a unique selectable marker to distinguish the donor 579 
and recipient hosts in both the cross- (K to E) and within-species (E to E) mating assays. 580 
The focal conjugative plasmid was used previously (37): plasmid F’42 from the IncF 581 
incompatibility group. A tetracycline resistance gene was cloned into the F’42 plasmid 582 
(38) and used as the selectable marker to distinguish plasmid-containing from plasmid-583 
free hosts. This derived plasmid is referred to as ‘pF’ throughout.  584 
 585 
Conjugation Assays. 586 

Strains were inoculated into LB medium from frozen isogenic glycerol stocks and 587 
grown for approximately 24 hours. The plasmid-containing cultures were supplemented 588 
with 15 μg ml-1 tetracycline to maintain the plasmid. The saturated cultures were diluted 589 
100-fold into LB medium to initiate another 24 hours of growth (to acclimate the previously 590 
frozen strains to laboratory conditions). The acclimated cultures were then diluted 10,000-591 
fold into LB medium and incubated for strain specific times to ensure the cultures entered 592 
exponential growth (SI section 6b). The exponentially growing cultures were diluted by a 593 
factor specific to the donor-recipient pair (SI section 6e), mixed at equal volumes, and 594 
dispensed into 84 wells of a deep-well microtiter plate at 100 μl per well (Figure 5a black-595 
bordered wells, these wells were the co-cultures used to estimate 𝑝0(𝑡̃)). In an additional 596 
3 wells, 130 μl (per well) of the mixture was dispensed and immediately 30 μl was 597 
removed to determine the initial densities (𝐷0 and 𝑅0) via selective plating (Figure 5a 598 
black-bordered wells in top row). An additional 3 wells contained monocultures of the 599 
three strains. Specifically, 100 μl of donor, recipient and transconjugant cultures were 600 
placed in their own well (Figure 5a red-, blue- and purple-bordered wells, respectively, in 601 
the top left). Later in the assay, these monocultures determined if the transconjugant-602 
selecting medium prohibited growth of both donors and recipients, while permitting growth 603 
of transconjugants. An additional 4 wells contained diluted monocultures of donors and 604 
recipients (2 wells each at 100 μl, Figure 5a red- and blue-bordered wells, respectively, 605 
in the top middle). These monocultures were used to create co-cultures (in empty wells, 606 
Figure 5a dash-bordered wells) during the assay itself (see below). The deep-well plate 607 
was incubated for a pre-determined time 𝑡̃ (SI section 6e), after which three events 608 
occurred in rapid succession. First, 30 μl was removed from each of the wells used to 609 
determine initial densities, to uncover the final densities (𝐷𝑡 and 𝑅𝑡) via selective plating 610 
(Figure 5b). Second, donor and recipient monocultures were mixed at equal volumes into 611 
the two empty wells (Figure 5b, gray arrows). At a later point in the assay, these two wells 612 
verified that new transconjugants did not form via conjugation after transconjugant-613 
selecting medium was added. Third, 900 μl of transconjugant-selecting medium (7.5 μg 614 
ml-1 tetracycline and 25 μg ml-1 streptomycin; see SI section 6c and 6d) was added to all 615 
co-cultures used to estimate 𝑝0(𝑡̃) as well as relevant control wells (Figure 5c, yellow 616 

background). This medium disrupted new conjugation events—immediately by diluting 617 
cells then by inhibiting donors and recipients—while simultaneously selecting for 618 
transconjugant growth. The deep-well plate was incubated for 4 days, and the state of all 619 
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wells (turbid or non-turbid) was recorded. For both mating assays in this study (i.e., cross- 620 
and within-species), this conjugation protocol was repeated 6 times. 621 

For the cross-species mating, the SIM method was executed alongside the LDM 622 
method described above. The SIM approach was conducted for two incubation periods: 623 
a standard 24 hours and a truncated 5 hours. In an additional deep-well plate, 100 μl of 624 
the donor-recipient co-culture was dispersed into six wells, split into two groups of three 625 
wells each where each group corresponded to a different incubation period. To derive the 626 
SIM estimate for each incubation group, 30 μl was removed from each of the three wells 627 
in the group at the time point (𝑡̃ = 5 and 𝑡̃ = 24) to determine the final donor (𝐷𝑡), recipient 628 
(𝑅𝑡), and transconjugant (𝑇𝑡) densities via selective plating. This protocol was repeated 629 
six times alongside the LDM replicates. Note the initial densities came from the matching 630 
LDM replicate. Similar to the LDM protocol, we ran a control to confirm that conjugation 631 
did not occur after co-cultures were exposed to transconjugant-selecting medium, but in 632 
this case, it was for agar plates instead of liquid medium. Specifically, for the first SIM 633 
replicate, an additional six donor monocultures and six recipient monocultures were 634 
initiated as above, again each split into two groups of three wells each. At each time point 635 
(5 and 24 hours), three new donor-recipient co-cultures were created in empty wells and, 636 
immediately plated on transconjugant-selecting agar at dilutions used to determine 637 
transconjugant densities. For this case, no transconjugant colonies formed (indicating that 638 
conjugation does not occur on the selective agar plate). We emphasize that this is a 639 
necessary step for any new system as post-plating conjugation has been reported (7, 13, 640 
31). 641 

For both the LDM and SIM approaches, the working assumption is that a cell will 642 
successfully establish a lineage under the appropriate selective conditions. As one 643 
example, a well with a single transconjugant will become turbid after incubation with 644 
transconjugant-selective medium. As another example, a donor cell on a donor-selecting 645 
agar plate will form a visible colony after incubation. A recent paper (39) has clearly 646 
demonstrated that this working assumption needs to be checked. In SI section 6, we offer 647 
adjustments to the protocols to improve the chances that this assumption holds. 648 
Additionally, we present ways to correct estimates if the assumption does not hold. In 649 
Figure 6, we used these corrections (see SI section 6 and 7 for details).  650 
 651 
Stochastics simulations.  652 

We used the Gillespie algorithm available in the GillesPy2 open-source Python 653 
package for stochastic simulations (40). We specified starting cell densities and 654 
parameters and simulated population dynamics using equations [1]-[3] for a set 655 
incubation time in a 1 ml culture volume. For each parameter setting, we simulated 10,000 656 
populations and calculated the conjugation rate using the LDM and SIM estimates. Each 657 
estimate has different requirements for calculating the conjugation rate (Figure 3). The 658 
LDM estimate needs multiple populations to calculate 𝑝̂0(𝑡̃); therefore, we reserved 100 659 
populations to compute 𝑝̂0(𝑡̃) then one random population was used to calculate the initial 660 
and final cell densities. In other words, the 10,000 populations yielded 100 LDM 661 
estimates. In contrast, one simulated population yields one SIM estimate. 662 

For the incubation time sweeps (Figure 3), the conjugation rate was estimated at 663 
30-minute intervals up until the total population size reached 109 cfu ml-1. A 30-minute 664 
interval was analyzed if at least 90 percent of the estimates were finite and non-zero. 665 
Notably, the 30-minute intervals occur over an earlier time range for the LDM estimate 666 
then for the SIM estimate due to the different estimate requirements. Given that these 667 
simulations are incubated until high population density is reached, the computational time 668 
for the Gillespie algorithm can be considerable. Therefore, 100 out of the 10,000 669 
populations were incubated for the full incubation time (required to reach the saturated 670 
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density of 109 cfu ml-1) to provide SIM estimates over the time frame of interest. The 671 
remaining simulations were incubated for a truncated time frame until on average 100 672 
transconjugants were generated to provide the populations needed to compute the 100 673 
LDM estimates. 674 

To compare across various parameter settings (Figure 4), a single incubation time 675 
was chosen. For each parameter setting, the incubation time 𝑡̃ for the LDM estimate is 676 
set to the average 𝑡∗. In addition, the incubation time for the SIM estimate is given by the 677 

time point for which an average of 50 transconjugants is reached. This choice resulted in 678 
a truncated SIM approach (i.e., 𝑡̃ < 24). However, any estimate bias from a truncated 679 
simulation would be conservative relative to the standard SIM approach. At each 680 
incubation time, 10,000 simulated populations were used to calculate the estimate 681 
distribution.  682 
 683 
Data and Code Availability. 684 
All generated data and custom software are deposited in a GitHub repository 685 
(https://github.com/livkosterlitz/LDM). 686 
 687 
Acknowledgements  688 
This work is supported by the National Institute of Allergy and Infectious Diseases 689 
Extramural Activities grant no. R01 AI084918 of the National Institutes of Health. O.K. is 690 
supported by the NSF Graduate Research Fellowship grant no. DGE-1762114. C.E. is 691 
supported by the NSF Graduate Research Fellowship. We thank Hannah Jordt and 692 
members of the Kerr and Top laboratories for useful suggestions on the manuscript.   693 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2022. ; https://doi.org/10.1101/2021.01.06.425583doi: bioRxiv preprint 

https://github.com/livkosterlitz/LDM
https://doi.org/10.1101/2021.01.06.425583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

 
Figure 1 : Basic model parameters and the effects of unequal conjugation rates on 694 
the SIM estimate. (a) In this schematic, the conjugative plasmid is a red circle, a donor 695 
is a red cell containing the plasmid, a recipient is a blue cell, and a transconjugant is 696 
indicated with a purple interior (a blue cell containing a red plasmid). The 𝜓𝐷, 𝜓𝑅, and 𝜓𝑇 697 
parameters are donor, recipient, and transconjugant growth rates, respectively, illustrated 698 
by one cell dividing into two. The 𝛾𝐷 and 𝛾𝑇 parameters are donor and transconjugant 699 

conjugation rates, respectively, shown by conjugation events transforming recipients into 700 
transconjugants. (b) When the transconjugant conjugation rate (𝛾𝑇) is higher than the 701 
donor conjugation rate (𝛾𝐷), transconjugants exhibit super-exponential increase (purple 702 
curve) while donors and recipients increase exponentially (red and blue lines). The SIM 703 
estimate (orange line) increases over time, deviating from the actual donor conjugation 704 
rate (gray dashed line). (c) In contrast, when the conjugation rates are equal (𝛾𝑇 = 𝛾𝐷), 705 
the transconjugant increase is muted relative to part b (purple line). The SIM assumptions 706 
are met, and the estimate is constant and accurate over time (orange line). Equations [1]-707 

[3] were used to produce the top graphs, with 𝐷0 = 𝑅0 = 105, 𝑇0 = 0, 𝜓𝐷 = 𝜓𝑅 = 𝜓𝑇 = 1, 708 

𝛾𝐷 = 10−14, and either 𝛾𝑇 = 10−8 (in part b) or 𝛾𝑇 = 10−14 (in part c). The donor and 709 
recipient trajectories overlapped but were staggered for visibility. Equation [4] was used 710 
to produce the bottom graphs.  711 
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Figure 2 : Schematic comparing the process of mutation (a-d) to the process of 712 
conjugation (e-h). (a) In a growing population of wild-type cells, mutants arise 713 
(highlighted purple cells) and reproduce (non-highlighted purple cells). (b) The rate at 714 
which mutants are generated grows as the number of wild-type cells increases (i.e., 𝜇𝑁𝑡). 715 
(c) The rate of transformation per wild-type cell is the mutation rate 𝜇. (d) Wild-type cells716 
growing in 9 separate populations where mutants arise in a portion of the populations717 
(those with purple backgrounds) at different cell divisions. (e) In a growing population of718 
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donors and recipients, transconjugants arise (highlighted purple cells) and reproduce 719 
(non-highlighted purple cells). (f) The rate at which transconjugants are generated grows 720 
as the numbers of donors and recipients increase (i.e., 𝛾𝐷𝐷𝑡𝑅𝑡). (g) The rate of 721 

transformation per recipient cell grows as the number of donors increases (i.e., 𝛾𝐷𝐷𝑡) 722 
where 𝛾𝐷 is the constant conjugation rate parameter. (h) Donor and recipient cells growing 723 
in 9 separate populations where transconjugants arise in a portion of the populations 724 
(purple backgrounds) at different points in time. For all panels, this is a conceptual figure, 725 
and the rates are inflated for illustration purposes.   726 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2022. ; https://doi.org/10.1101/2021.01.06.425583doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.06.425583
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

Figure 3 : Overview of stochastic simulation framework and the effects of 727 
incubation time on estimating the conjugation rate. (a) The mating assay starts (𝑡 =728 
0) with donors and recipients and their populations increase over time. At a critical time729 
(𝑡∗, marked by a purple asterisk), the first transconjugant cell is generated through a730 

conjugation event between a donor and recipient. After 𝑡∗, all possible growth and731 
conjugation events can occur (including transconjugant division and conjugation). (b) A732 
stochastic simulation of the equations [1]-[3] shows the donor, recipient, and733 
transconjugant densities (red, blue, and purple thin trajectories, respectively) increasing734 
over time. The deterministic numerical solution of the same equations and parameter735 
settings from Figure 1b is shown for reference (thick lines). We note that for large736 
densities, the stochastic and deterministic trajectories are closely aligned (i.e., the thick737 
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red and blue lines are overlaying their thin counterparts). After a specified incubation time 738 
(𝑡̃SIM, dotted orange line), we measure the densities of the three populations (orange 𝐷𝑡, 739 
𝑅𝑡, and 𝑇𝑡̃), which can be used to calculate the (c) SIM estimate. (d) Multiple mating 740 

assays are needed for the LDM estimate. Here, five stochastic simulations are shown, 741 
which display variation in 𝑡∗. At a specified incubation time (𝑡̃LDM, dotted brown line), we 742 
determine the number of assay cultures with transconjugants (purple circles, where for a 743 
relevant culture 𝑖,  𝑡𝑖

∗ < 𝑡̃LDM) and without (gray circles, where for a relevant culture 𝑗,  𝑡𝑗
∗ >744 

𝑡̃LDM). These numbers are used to calculate 𝑝̂0(𝑡̃), which, along with the donor and745 
recipient densities (brown 𝐷0, 𝑅0, 𝐷𝑡 and 𝑅𝑡) are used for the (e) LDM estimate. The SIM 746 

(part c) and LDM (part e) estimates are calculated for different incubation times, where 747 
the 𝑡̃SIM (part b) and 𝑡̃LDM (part d) are indicated with orange and brown dotted arrows, 748 
respectively. The simulated trajectories in parts b and d would correspond to a single SIM 749 
or LDM estimate (the diamond points where the arrows terminate). The light orange and 750 
brown backgrounds indicate the range of incubation times giving a finite non-zero 751 
estimate of donor conjugation rate for the stochastic runs illustrated in parts b and d. In 752 
parts c and e, each box represents the estimate distribution using 10,000 simulations for 753 
a given 𝑡̃, spanning from the 25th to 75th percentile. Given the log y-axis, the zero 754 
estimates are placed at the bottom of the y-axis range. The whiskers (i.e., vertical lines 755 
connected to the box) contain 1.5 times the interquartile range with the caveat that the 756 
whiskers were always constrained to the range of the data. The colored line in the box 757 
indicates the median. The solid black line indicates the mean. Parameter values are 758 
identical to Figure 1b and used throughout. 759 
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Figure 4 : The effect of parametric heterogeneity on estimating conjugation rate. 760 
The Gillespie algorithm was used to simulate population dynamics. Donor conjugation 761 
rate for each parameter combination was estimated using 10,000 simulations 762 
(summarized using boxplots with the same graphical convention as in Figure 3). The gray 763 
dashed line indicates the true value for the donor conjugation rate (here, 10−6). The boxes 764 
in gray indicate the baseline parameter setting, and all colored boxes represent deviation 765 
of one or two parameters from baseline. The baseline parameter values were 𝜓𝐷 =  𝜓𝑅 =766 

𝜓𝑇 =  1 and 𝛾𝐷 = 𝛾𝑇 = 10−6. The dynamic variables were initialized with 𝐷0 = 𝑅0 =  102767 
and 𝑇0 = 0. All incubation times are short but are specific to each parameter setting (see 768 
Materials and Methods). (a) Unequal growth rates were explored over a range of growth 769 
rates for the plasmid-bearing strains, namely 𝜓𝐷 =  𝜓𝑇 ∈  {0.0625, 0.125, 0.25, 0.5, 1, 2,4, 770 
8}. (b) Unequal conjugation rates were probed over a range of transconjugant conjugation 771 
rates, namely 𝛾𝑇 ∈ {10-9, 10-8, 10-7, 10-6, 10-5, 10-4, 10-3, 10-2}. For the 10-2 transconjugant772 
conjugation rate, many of the runs resulted in SIM estimates of zero; therefore, the 773 
median (colored line) and the box are placed at the bottom of the plot (given that the y-774 
axis is on a log scale). The bulk of the data for this x-value is substantially lower than the 775 
mean SIM estimate (black line).   776 
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Figure 5 : Overview for executing the LDM conjugation protocol. (a) The wells of a 777 
microtiter plate are inoculated with parallel co-cultures (black-bordered circles) at the 778 
target initial densities (𝐷0

′  and 𝑅0
′ ). In addition, donor, recipient, and transconjugant 779 

monocultures serve as controls (red-, blue-, and purple-bordered wells, respectively). 780 
Three co-cultures (top-right) are sampled to determine the actual initial densities (𝐷0 and 781 
𝑅0). Note empty wells (dash-bordered circles) are used later in the assay. (b) After the 782 
incubation time (𝑡̃), the same three co-cultures are sampled for final densities (𝐷𝑡 and 𝑅𝑡).783 

In addition, donor and recipient monocultures are mixed into the empty wells (indicated 784 
by grey arrows) to create co-culture controls to verify that diluting with transconjugant-785 
selecting medium effectively prevents conjugation. (c) Subsequently, transconjugant-786 
selecting medium is added to the microtiter plate (indicated by the yellow background) 787 
and incubated for a long period. The transconjugant-selecting medium should inhibit 788 
donor and recipient growth, leading to non-turbid (gray-filled) donor and recipient control 789 
wells, but a turbid (purple-filled) transconjugant control well. In addition, the 790 
transconjugant-selecting medium should prevent new conjugation events leading to non-791 
turbid co-culture controls (gray-filled). Focusing on the wells inoculated with parallel co-792 
cultures, the proportion of transconjugant-free (i.e., non-turbid, gray-filled) cultures is 793 
𝑝̂0(𝑡̃). Using the actual incubation time (𝑡̃), initial densities (𝐷0 and 𝑅0), final densities (𝐷𝑡794 
and 𝑅𝑡), and the experimental culture volume correction (𝑓), the LDM estimate of the 795 
donor conjugation rate (𝛾𝐷) can be calculated. One microtiter plate yields one LDM 796 

estimate.  797 

control wellsa

b

c

co-cultures for plating

co-cultures

create co-culture controls

add transconjugant-selecting medium
then incubate

calculate conjugation rate

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2022. ; https://doi.org/10.1101/2021.01.06.425583doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.06.425583
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

 
Figure 6 : Experimental estimates for cross-species and within-species 798 
conjugation rates. Each box summarizes six replicate estimates by the LDM, SIM or 799 
truncated SIM approach, where each data point corresponds to a replicate. We note each 800 
of these estimates involved a correction (see Materials and Methods), but the same 801 
patterns hold for uncorrected values. [A] compares the LDM and standard SIM approach 802 
for a cross-species mating (between K. pneumoniae and E. coli). [B] compares the cross- 803 
and within-species mating using the LDM approach. [C] compares the standard and 804 
truncated SIM approach for a cross-species mating. The asterisks indicate statistical 805 
significance by a t-test (one, three and four asterisks convey p-values in the following 806 

ranges: 0.01 < p < 0.05, 0.0001 < p < 0.001 and p < 0.0001, respectively).   807 
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