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ABSTRACT

Novel X-ray methods are transforming the study of the functional dynamics of biomolecules. Key to
this revolution is detection of often subtle conformational changes from diffraction data. Diffraction
data contain patterns of bright spots known as reflections. To compute the electron density of a
molecule, the intensity of each reflection must be estimated, and redundant observations reduced to
consensus intensities. Systematic effects, however, lead to the measurement of equivalent reflections
on different scales, corrupting observation of changes in electron density. Here, we present a
modern Bayesian solution to this problem, which uses deep learning and variational inference to
simultaneously rescale and merge reflection observations. We successfully apply this method to
monochromatic and polychromatic single-crystal diffraction data, as well as serial femtosecond
crystallography data. We find that this approach is applicable to the analysis of many types of
diffraction experiments, while accurately and sensitively detecting subtle dynamics and anomalous
scattering.

Keywords X-ray crystallography · Diffraction · Variational inference · Machine learning · Deep learning

X-ray crystallography has revolutionized our understanding of the molecular basis of life by providing atomic-resolution
experimental access to the structure and dynamics of macromolecules and their assemblies. In an X-ray diffraction
experiment, the electrons of a molecular crystal scatter X-rays, yielding patterns of constructive interference recorded
on an X-ray detector. The resulting images contain discrete spots, known as reflections, with intensities proportional to
the squared amplitudes of the Fourier components (structure factors) of the crystal’s electron density. Each structure
factor reports on the electron density at a specific spatial frequency and direction, indexed by triplets of integers termed
Miller indices. Estimates of the amplitudes and phases of these structure factors allow one to reconstruct the 3D electron
density in the crystal by Fourier synthesis.

Based on these principles, advances in X-ray diffraction now permit direct visualization of macromolecules in action[1]
using short X-ray pulses generated at synchrotrons[2, 3] and X-ray Free-Electron Lasers (XFELs)[4, 5]. Full realization
of the promise of these methods hinges on the ability to separate signals in X-ray diffraction that result from subtle
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(a) (b)

(c) (d)

Figure 1: The intensity of observed reflections depends on physical factors. (a) Geometry of a conventional
diffraction experiment: a crystal (shown as a hexagon) scatters an incident X-ray beam and yields a pattern of reflections
(gray spots) on a detector. Three metadata of the measurements are indicated: scattering angle 2θ, crystal rotation angle,
and polar angle, ϕ. (b-d) depict the dependence of the observed intensity distributions on these metadata for a hen
egg-white lysozyme dataset. The 2-dimensional histograms show the number of counts in each of bins on a logarithmic
scale. White dashed lines indicate the median intensity in each x-axis bin. Reflections with I/σI <= 0 were discarded
from this analysis. (b) Diffraction intensities decrease with increasing scattering angle, or resolution. (c) Diffraction
intensities vary with crystal rotation angle, a proxy for cumulative radiation dose and variations in diffracting volume.
(d) Diffraction intensities depend on polar angle due to polarization of the X-ray source and absorption effects.

structural changes from a multitude of systematic errors that can be specific to a crystal, X-ray source, detector, or
sample environment[6]. Even under well-controlled experimental conditions, redundant reflections are expressed on
the X-ray detector with different scales (Fig. 1). These scales depend non-linearly on the context of each observed
reflection as illustrated in Figure 1b-1d. For example, beam properties like intensity fluctuations[7] and polarization[8],
crystal imperfections like mosaicity[9] and radiation damage[10], and absorption and scattering of X-rays by material
around the crystal all modulate the measured diffraction intensities in a manner which varies throughout the experiment.

Traditionally, these artifacts are accounted for by estimating a series of scale parameters that are intended to explicitly
model the physics of the sources of error [11, 6, 12, 13] (see Supplementary Note 3.1 for a description of crystallographic
data reduction). The observed intensities are then corrected by each scale parameter to yield scaled intensities. To
obtain consensus merged intensities, equivalent observations are then merged by weighted averaging assuming normally
distributed errors. This approach thus uses a series of simplifying ’data reduction’ steps that work well for standard
diffraction experiments at synchrotron beamlines, but are less suited for a rapidly evolving array of next-generation
X-ray diffraction experiments.

We took inspiration for an alternative approach from French-Wilson scaling. Although intensities are proportional to
squared structure factor amplitudes, negative intensities can result from processing steps such as background subtraction.
French-Wilson scaling is commonly used to ensure that inferred structure factor amplitudes are strictly positive [14].
Rather than being based on a physical model of diffraction, this step is based on a Bayesian argument. Namely, structure
factor amplitudes are positive and can be expected to follow the so-called Wilson distribution [15]. In a Bayesian sense,
the Wilson distribution serves as a prior probability distribution, or prior. This prior can be combined with a statistical
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model of the true intensity given the observed merged intensity to obtain a posterior probability distribution, or posterior,
of the true merged intensity that is strictly positive.

To address the needs of new X-ray diffraction experiments, we introduce a Bayesian model which builds on the
paradigm of French and Wilson [14]. We implement this model in an open-source software, Careless, which performs
scaling, merging, and French-Wilson corrections in a single step by directly inferring structure factor amplitudes from
unscaled, unmerged intensities. In our model, the probability calculation is “forward,” predicting integrated intensities
from structure factor amplitudes and experimental metadata. As a consequence, analytical tractability of the inference
is no longer a concern and the model relating structure factor amplitudes to integrated intensities can be arbitrarily
complex and include both explicit physics and machine learning concepts.

We demonstrate that this model can accurately and sensitively extract anomalous signal from single-crystal, monochro-
matic diffraction at a synchrotron, time-resolved signal from single-crystal, polychromatic diffraction at a synchrotron,
and anomalous signal from a serial femtosecond experiment at an XFEL. Our analyses show that this single model
can implicitly account for the physical parameters of diffraction experiments with performance competitive with
domain-specific, state-of-the-art analysis methods. Although we focus on X-ray diffraction, we believe the same
principles can be applied to any diffraction experiment.

Results

Accurate inference of scale parameters and structure factor amplitudes from noisy observations

In a typical diffraction experiment, reflection intensities are recorded along with error estimates and metadata, like
crystal orientation, location on the detector, image number, and Miller indices. As shown in Figure 1, the scale on
which these observed intensities are expressed can vary systematically due to physical artifacts correlated with the
metadata. These different scales must be accounted for in the analysis of diffraction experiments. Here, we present a
probabilistic forward model of X-ray diffraction, which we implemented in a software package called Careless. As
illustrated in Figure 2a, this model can be abstractly expressed as a so-called probabilistic graphical model. Specifically,
the distribution of observable intensities, Ihi, for Miller index h in image i, is predicted from structure factor amplitudes
Fh and scale factors Σ, which are estimated concurrently. We do so in a Bayesian sense—we estimate the posterior
distributions of both the structure factor amplitudes and scale function. We approximate the structure factor amplitudes
as statistically independent across Miller indices and use the Wilson distribution as a prior on their magnitudes [15].

By contrast, most contributions to scale factors vary slowly across the data set and are accounted for using a global
parametrization. By default, this scale function, Σ, is implemented as a deep neural network which takes the metadata as
arguments and predicts the mean and standard deviation of the scale function for each observation (Fig. 2b). To describe
measurement error, Careless supports both a normally distributed error model, and a robust Student’s t-distributed error
model. The implementation of Careless is described in further detail in the Online Methods. The full Bayesian model
will typically contain tens of thousands of unique structure factor amplitudes and a dense neural network for the scale
function. Use of Markov chain Monte Carlo methods [16], which sample from the posterior, would be computationally
prohibitive. Instead, inference is made possible by variational inference [17, 18], in which the parameters of proposed
posterior distributions are directly optimized.

We first illustrate the application of the Careless model using a small simulated dataset as shown in Figure 2. As shown
in Fig. 2c, we did so by generating true intensities for a toy "crystal" with 3 structure factors of different amplitudes in a
mock diffraction experiment with a sharply varying scale function (similar to Fig. 1d). The observed intensities would
be recorded with measurement error, yielding a small set of noisy observations (Fig. 2d). Using Careless, we can infer
the posterior distributions of the structure factor amplitudes and of the scale factors, and therefore of the true intensities
(Fig. 2e). The inferred parameters from Careless show a close correspondence with the true values used to simulate the
noisy observations.

Robust inference of anomalous signal from monochromatic diffraction

We next assessed the ability of Careless to extract small crystallographic signals from conventional monochromatic
rotation series data (a detailed walk-through of each example is available at https://github.com/Hekstra-Lab/careless-
examples). To do so, we applied Careless to a sulfur single-wavelength anomalous diffraction (SAD) data set of
lysozyme collected at ambient temperature[19]. It consists of a single 1,440 image rotation series collected in 0.5 degree
increments at a low X-ray energy, 6.55 keV, at Advanced Photon Source beamline 24-ID-C. These data are challenging
to analyze for several reasons. First, they were collected at a low dose rate to limit radiation damage. Approximately
50% of the pixels on each image did not record a photon. Secondly, there is a shadow from the beam stop mounting
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(a) Probabilistic graphical model (b) Global scale function

(c) Ground Truth

(d) Noisy observations

Experiment

Careless

(e) Inference

Figure 2: Estimation of scales and structure factor amplitudes from simulated data. (a) A probabilistic graphical
model summarizes our basic statistical formalism: Careless calculates a probabilistic scale, Σ, as a function of the
recorded metadata, M , and learned parameters, θ. Observed intensities, Ih,i, for Miller index h and image i are modeled
as the product of the scale and the square of the structure factor amplitude Fh, that is, as Σhi · F 2

h . (b) The global scale
function that maps the recorded metadata to the probabilistic scale, Σ, takes the form of a multilayer perceptron. (c-e)
Inference of scales and structure factors from simulated data. (c) Input parameters for the simulated data were chosen to
recapitulate the non-linear scales observed in diffraction data. (d) Noisy observations were generated from these input
parameters, which reflects the measurement errors in a diffraction experiment. (e) This statistical model allows for joint,
rather than sequential, inference of the posterior distributions of structure factor amplitudes and scales, and therefore of
implied intensity (bottom panel). For this toy example, the inferred values in (e) can be compared to the known ground
truth in (c). Error bars in (d) and shaded bands in (e) indicate 95% confidence intervals. Top panel of (e) violin plots of
posterior probability with whiskers indicating the extrema of 10,000 samples drawn from the posterior distribution of
the inferred F .

bracket on each image near the edge of the detector (in the 2 to 2.2 Å range). Finally, leakage from a higher energy
undulator harmonic resulted in a second, smaller diffraction pattern in the center of each image. This artifact, combined
with the shadow, means that there are outliers at both high and low resolution in this data set. (Figure 3a).

To address the outliers, we used the cross-validation implemented in Careless (Online Methods 2.7) to select an
appropriate degrees of freedom (d.f.) parameter of a Student’s t-distributed likelihood function for these data. Titrating
the number of degrees of freedom, we found that 16 d.f. resulted in the best Spearman correlation coefficient between
observations and model predictions (Figure 3b). Accordingly, at 16 degrees of freedom, the structure factor amplitudes
exhibit comparatively high half-dataset anomalous correlations (Fig. 3c). As is apparent in Figure 3c, the tuned
likelihood function recovers comparable signal to the conventional merging program, Aimless[23].
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(a) Sources of outliers in the lysozyme data set

(b) Cross-validation of merging (c) Anomalous half-dataset correlations

(d) Experimental electron density maps

Careless (normal) Careless (16 d.f.) Aimless

Figure 3: Accurate processing of sulfur SAD data with Careless. a) A sample diffraction pattern from the lysozyme
data set indicating strong spots which could not be indexed by DIALS [20]. Insets show sources of outliers in the data
(left: a beam stop shadow; right: a secondary diffraction pattern resulting from an undulator harmonic). b) Ten-fold
cross-validation of merging as a function of the likelihood degrees of freedom. Gray bands: bootstrap 95% confidence
intervals from 10 repeats with different randomly chosesn test reflections. c) Spearman correlation coefficient between
anomalous differences estimated from half-datasets with jointly trained scale function parameters. (d) Density-modified
experimental electron density maps produced with PHENIX Autosol [21] using the sulfur substructure from a reference
structure (PDBID: 7L84), contoured at 1.0 σ. Rendered with PyMOL[22].
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SAD phasing provides a further test of the quality of anomalous signal inferred by Careless. We used Autosol[21]
to phase our merging results, comparing the Careless output with a Student’s t-distributed likelihood with ∞ or 16
degrees of freedom to the same data merged by the conventional method, Aimless. In order to ensure a consistent origin,
we supplied the sulfur atom substructure from the final refined model (PDBID: 7L84) during phasing. Although we
provided the heavy atom substructure in the experiments reported here, we were able to phase each of these data sets ab
initio (Table S1). It is evident from the density-modified experimental maps in Figure 3d that the Careless output with
the normally distributed error model (∞ d.f.) is of much lower quality. By contrast, both Careless with 16 d.f. and
Aimless produced clearly interpretable experimental maps. The refined heavy atom structure factors yield similar sulfur
peak heights (Table S2) for all three processing modalities despite the apparent difference in initial phase estimates
for the protein, underscoring the subtle differences in processing quality necessary for successful SAD phasing of this
data set. As we illustrate in the online example “Boosting SAD signal with transfer learning”, it is possible to further
improve the Careless output by using a simple transfer-learning procedure in which the parameters of the scale function
are learned by a non-anomalous pre-processing step (see Table S2 for anomalous peak heights). In summary, Careless
supports the robust recovery of high-quality experimental electron density maps and anomalous signal in the presence
of physical artifacts.

Sensitive detection of time-resolved change from polychromatic diffraction data

Polychromatic (Laue) X-ray diffraction provides an attractive modality for serial and time-resolved X-ray crystallogra-
phy, as many photons can be delivered in bright femto- or picosecond X-ray pulses [24]. In particular, most reflections
in these diffraction snapshots are fully, rather than partially, observed even in still diffraction images. Laue diffraction
processing remains, however, a major bottleneck [3] due to its polychromatic nature: The spectrum of a Laue beam is
typically peaked with a long tail toward lower energies. This so-called “pink” beam means that reflections recorded
at different wavelengths are inherently on different scales. In addition, reflections which lie on the same central ray
in reciprocal space will be superposed on the detector. These “harmonic” reflections need to be deconvolved to be
merged[25].

Typical polychromatic data reduction software addresses these issues in a series of steps—it uses the experimental
geometry to infer which photon energy contributed most strongly to each reflection observation. It then scales the
reflections in a wavelength-dependent manner by inferring a wavelength normalization curve related to the spectrum of
the X-ray beam [26]. Finally, it deconvolves the contributions to each harmonic reflection by solving a system of linear
equations for each image [25]. The need for these steps made it difficult to scale and merge polychromatic data. Not
surprisingly, there are no modern open-source merging packages supporting wavelength normalization and harmonic
deconvolution.

By contrast, the forward modelling approach implemented in Careless readily extends to the treatment of Laue
diffraction. First, to handle wavelength normalization, providing the wavelength of each reflection estimated from
experimental geometry as metadata enables the scale function to account for the non-uniform spectrum of the beam.
Harmonic deconvolution requires accounting for the fact that the intensity of a reflection is the sum over contributions
from all Miller indices lying on the relevant central ray—in the forward probabilistic model implemented in Careless
this is a simple extension of the monochromatic case (Online Methods 2.9).

To demonstrate that Careless effectively merges Laue data, we applied it to a time-resolved crystallography data set—20
images from a single crystal of photoactive yellow protein (PYP) in the dark state and 20 images each collected 2 ms
after a blue laser pulse. Blue light induces a trans- to-cis isomerization in the p-coumaric acid chromophore in the PYP
active site which can be observed in time-resolved experiments[27] (Fig. 4a). We first integrated the Bragg peaks using
the commercial Laue data analysis software, Precognition (Renz Research). Then we merged the resulting intensities
using Careless.

Careless produces high-quality structure factor amplitudes for this data set, as judged by half-data set correlation
coefficients (Fig 4c and 4b). We refined a ground-state model against the ‘dark’ data starting from a reference model
(PDBID: 2PHY) [28], yielding excellent 2Fo − Fc electron density maps (Fig. 4d). Using the phases from this refined
ground state model, we then constructed unweighted difference maps |∆Fh| ≈ (|F 2ms

h | − |F dark
h |), ϕh ≈ ϕdark

h,calc. As
shown in Figure 4e, these maps contain peaks around the PYP chromophore. To better visualize these maps, we applied
a previously described weighting procedure [29]. The weighted maps (Figure 4f, 4g) show strong difference density
localized to the chromophore, consistent with published models of the dark and excited-state structures[27].

Previous generations of Laue merging software required discarding reflections below a particular I/σI cutoff during
scaling and merging. Otherwise, the resulting structure factor estimates are not accurate enough to be useful in the
analysis of time-resolved structural changes. Here, we applied no such cutoff. Likewise, the appearance of interpretable
difference electron density in the absence of a weighting scheme (Fig. 4e) is extraordinary. The ability of Careless to
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(a) Photoisomerization of the PYP chro-
mophore

(b) Structure Factor Estimates from
Half Data Sets

(c) Half-Dataset Correlation

(d) Ground state 2Fo-Fc map

(f) Weighted difference map

(e) Unweighted difference map

Contour Level
−3.0σ
+3.0σ

(g) Weighted difference map

Figure 4: Careless accurately merges time-resolved polychromatic diffraction data. (a) When exposed to blue light,
the PYP chromophore undergoes trans-to-cis isomerization. In total, 40 images from a single crystal of PYP were
processed: 20 were recorded in the dark state and 20 were recorded 2 ms after illumination with a blue laser pulse. (b)
The data were randomly divided in half by image and merged with scale function parameters learned by merging the full
data set. Merging with Careless gave excellent correlation between the structure factor estimates of both halves. Error
bars indicate the standard deviation of the structure factor posteriors for the half data sets. (c) Half-dataset correlation
coefficients as a function of resolution, including both the dark and 2 ms data. (d) Ground-state 2Fo − Fc map created
by refining the ground-state model (PDBID: 2PHY) against the dark merging results (countoured at 1.5 σ). The phases
of this refined model were used for the difference maps in (e-g). (e) F 2ms −F dark time-resolved difference map showing
the accumulation of blue positive density around the excited state chromophore (blue model, PDBID: 3UME) and
depletion of the ground state (yellow model, PDBID: 2PHY). (f) F 2ms − F dark weighted time-resolved difference map
showing localization of the difference density to the region surrounding the chromophore. (g) F 2ms − F dark weighted
time-resolved difference map showing large differences around the chromophore. All difference maps are contoured at
±3.0σ.

identify these difference signals demonstrates an unprecedented degree of accuracy and robustness to outliers. As such,
Careless improves on the state of the art for the analysis of Laue experiments.

Recovering anomalous signal from a serial experiment at an X-ray Free-Electron Laser

X-ray Free-Electron Lasers (XFELs) are revolutionizing the study of light-driven proteins[30, 31, 32, 33, 34], enzyme
microcrystals amenable to rapid mixing[35, 36, 37], and the determination of damage-free structures of difficult-to-
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crystallize targets [38, 39]. Diffraction data from XFEL sources involve two unique challenges that result from the
serial approach commonly used to outrun radiation damage[4]. The first challenge of serial crystallography is that each
image originates from a different crystal with a different scattering mass, which diffracts one intense X-ray pulse before
structural damage occurs. A completely global scaling model is therefore not appropriate. To overcome this limitation,
we exploited the modular design of Careless to incorporate local parameters into the scale function. Specifically, we
appended layers with per-image kernel and bias parameters to the global scale function (Fig. 5a). Effectively, these
additional layers allow the model to learn a separate scale function for each image. To address the risk of overfitting
posed by the additional parameters, we determined the optimal number of image layers by crossvalidation (see Fig. S4
for determination of optimal the number of image-specific layers). A second challenge of serial crystallography is that
all images are stills—there is neither time to rotate the crystal during exposure, nor the spectral bandwidth to observe
the entirety of each reciprocal lattice point (Fig. 5b). For a still image, the maximal intensity for a given reflection is
observed on the detector when the so-called Ewald sphere intersects the reflection centroid. The Ewald offset (EO)
measures the degree to which a particular reflection observation deviates from its maximal diffraction condition (the
length of the orange arrow in Fig. 5b) and can be estimated from the experimental geometry for each observation. To
account for partiality, we hence provided the EO estimates as a metadata.

To test if our model could leverage per-image scale parameters and EO estimates, we applied Careless to unmerged
intensities from an XFEL serial crystallography experiment (CXIDB, entry 81). In this experiment[40], a slurry of
thermolysin microcrystals was delivered to the XFEL beam by a liquid jet. The data contain significant anomalous
signal from the zinc and calcium ions in the structure. We limited analysis to a single run containing 3,160 images. We
processed the integrated intensities in Careless using ten global layers and two image layers, both with and without the
inclusion of the Ewald offset metadata to evaluate whether its inclusion improves the analysis.

As shown in Figure 5, Careless successfully processes the serial XFEL data. In particular, use of the EO metadatum
yielded markedly superior results as judged by the half-dataset correlation coefficient (Fig. 5c) as well as the refinement
residuals (Fig. 5d). To verify that including the metadata also improved the information content of the output, we
constructed anomalous omit maps after phasing the merged structure factor amplitudes by isomorphous replacement
with PDBID 2TLI [41]. Specifically, we omitted the anomalously scattering ions in the reference structure during
refinement against the Careless output. The anomalous difference peak heights at the former location of each of the
anomalous scatterers, tabulated in Figure 5f, confirm that the inclusion of Ewald offsets not only improved the accuracy
of structure factor amplitudes estimates but also yielded anomalous differences on par with XFEL-specific analysis
methods.

Discussion

Statistical modeling can account for diverse physical effects

We have shown that Careless successfully scales and merges X-ray diffraction data without the need for explicit
physical models of X-ray scattering—comparing favorably to established algorithms tailored to specific crystallography
experiments. This begs the question: What sorts of physical effects can the Careless scale function account for using a
general-purpose neural network and Wilson’s prior distributions on structure factor amplitudes[15]? Though our scale
function operates in a high-dimensional space, making it difficult to interrogate directly, we have found that the impact
of excluding specific reflection metadata can be used to assess the physical effects that are implicitly accounted for by
Careless.

For example, the resolution of each observed reflection is essential for proper data reduction in Careless. This suggests
that, among other corrections, the model learns an isotropic scale factor akin to the per-image temperature factors
included in most scaling packages[6]. We have also found that in some cases the merging model benefits from the
inclusion of the observed Miller indices during scaling, as was the case with the lysozyme and PYP data presented here.
This indicates that for some data sets Careless learns an effective anisotropic scaling model. Likewise, the inclusion of
the detector positions of the reflections seems to improve merging performance. Since no prior polarization correction
has been applied to the PYP and thermolysin intensities used here, this suggests that source polarization is implicitly
corrected by the model. Specific crystallographic experiments can also benefit from the inclusion of domain-specific
metadata. The success of merging Laue data implies that Careless can learn a function of the spectrum of the X-ray
source (Fig. 4). Finally, the XFEL example shows the model is competent to infer partialities in still images (Fig.
5). In principle, the inclusion of local parameters in the form of image layers allows the model to make geometric
corrections similar to the partiality models implemented in other packages[42, 43, 44]. The major difference is that our
work does not require an explicit model of the line shape of Bragg peaks nor of the resolution-dependence of the peak
size (mosaicity).
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(a) Serial crystallography scaling model

(b) Diffraction condition for stills

(c) Half data set correlation

(d) Refinement R value

(e) Zn Anomalous Difference Map

(f) Anomalous peak heights

Site Careless Careless
(EO) CCTBX

Zn-317 11.58 20.42 20.07
Ca-318 <3.5 5.42 6.17
Ca-319 <3.5 3.61 3.81
Ca-320 4.17 7.32 7.05
Ca-321 <3.5 5.49 7.25

Figure 5: Careless can leverage geometric metadata to improve XFEL data processing. (a) By adding image-
specific layers to the neural network, Careless can scale diffraction data from serial XFEL experiments. (b) The Ewald
offset (EO), shown in red, can optionally be included during processing. S0 and S1 represent the directions of the
unscattered and diffracted X-rays, respectively. (c) Half-dataset correlation coefficients by resolution bin for data
processed in Careless, with and without Ewald offsets, and CCTBX. (d) Refinement R-factors from phenix.refine using
Careless, with and without Ewald offsets, and CCTBX. e) Careless 2Fo − Fc electron density map, from inclusion of
EO, contoured at 2.0 σ (purple mesh) overlayed with thermolysin anomalous omit map contoured at 5.0 σ (orange
mesh). f) Peak heights of anomalous scatterers in an anomalous omit map, in σ units, for Careless output with and
without Ewald offsets and conventional data processing with CCTBX.

Robust statistics instead of outlier rejection

Occasionally, observed reflections have spurious measured intensities. These outliers can arise from various physical
effects during a diffraction experiment, such as ice or salt crystals, detector readout noise, or absorption and scattering
by surrounding material[6]. In conventional data reduction, outlier observations are frequently detected and filtered
during data processing to improve the estimates of merged intensities and statistics[6, 13]. This step is necessary
because the inverse-variance weighting scheme[45] is otherwise easily skewed by spurious observations.

Instead of outlier rejection, Careless employs robust statistical estimators. The processing of the native SAD data from
lysozyme (Fig. 3) show its benefit. These data have significant outliers at low and high resolution (Fig. 3a), and the
anomalous content is notably improved through the use of a robust error model (Fig. 3c). Importantly, doing so also
improves experimental electron density maps compared to the corresponding normally distributed error models (Fig.
3d). The influence of outlier observations can be tuned using the degrees of freedom of the Student’s t-distribution
during data processing. This approach to handling outlier observations highlights the flexibility of the Careless model
and reduces the need for data filtering steps.

Sensitive detection of small structural signals in change-of-state experiments

Our processing of the time-resolved PYP photoisomerization Laue dataset demonstrates that Careless can accurately
recover the signal from small structural changes (Fig. 4). The use of Careless in this context involved fitting a common
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scaling model for both the dark and 2ms datasets, while inferring two separate sets of structure factor amplitudes, one
for each state. The quality of the difference maps generated from this processing (Fig. 5e-g) suggests that the common
scaling model employed by Careless is effective for analyzing these change-of-state experiments. Importantly, the
common scaling model may improve difference maps by ensuring that inferred structure factor amplitudes are on the
same scale, producing a balanced difference map with both positive and negative features.

These features suggest that Careless will have strong applications in time-resolved experiments and related change-of-
state crystallography experiments. Furthermore, although Careless currently only provides Wilson’s distributions as a
prior over structure factor amplitudes, it is possible to imagine using stronger priors to further constrain the inference
problem. Such priors are an active area of research, and may further improve the sensitivity of Careless to small
differences between conditions in time-resolved data sets (see the online example “Using a bivariate prior to exploit
correlations between Friedel mates" for a prototype implementation).

Supporting next-generation diffraction experiments

In its current implementation, Careless requires that the full data set reside in memory on a single compute node or
accelerator card. This is a significant limitation for free-electron laser applications. The next generation of X-ray
free-electron lasers will provide data acquisition rates of 103 − 106 diffraction images per second[46] leading to very
large data sets with images numbering in the millions or more. In this setting, it would be advantageous to have an
online merging algorithm which did not require access to the entire data set at each training step. Currently, the reliance
on local parameters to handle serial crystallography data precludes this. However, we are exploring strategies to replace
these local parameters with a global function. This will enable Careless to be implemented with stochastic training[47],
in which gradient descent is conducted on a subset of the data at each iteration. This training paradigm allows variational
inference to be used for data sets too large to fit in memory. With stochastic training, Careless will be an excellent
candidate for merging large XFEL data sets on-the-fly during data acquisition.

In summary, we have described a general, extensible framework for inference of structure factor amplitudes from
integrated X-ray diffraction intensities. We find the approach to be accurate, and applicable to a wide range of X-ray
diffraction modalities. Careless is modular and open-source. We encourage users to report their experiences with
downstream software and to contribute extensions through github.com/Hekstra-Lab/careless. Careless provides a
foundation for the ongoing development and systematic application of advanced probabilistic models to the analysis of
ever more powerful diffraction experiments.
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structure is deposited in the Protein Data Bank (PDBID: 7L84), and the raw lysozyme diffraction images are available
through the SBGrid Data Bank (ID: 816). The three data sets discussed in this manuscript have been adapted
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1 Merging X-ray Data by Variational Inference

Observed reflection intensities can be thought of as the product of diffraction in an ideal experiment and a local scale
which describes the systematic error in each reflection observation. This implies the graphical model,

Merging as a Graphical Model Observed Data
• Ih,i : Intensities
• σIh,i

: Uncertainties
Latent Variables

• Σ : Reflection scales
• Fh : Structure factor amplitudes

Figure S1

with a corresponding joint distribution which factorizes as

p(I, F,Σ) = p(I|F,Σ)p(F )p(Σ).

In this setting, it is most desirable to estimate the posterior,

p(F,Σ|I) = p(I, F,Σ)

p(I)

=
p(I|F,Σ)p(F )p(Σ)

p(I)
.

The exact posterior is generally intractable for such problems. So, we posit an approximate posterior q taken from a
parametric family of distributions. This is the so-called variational distribution or surrogate posterior. We then use
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optimization to learn parameters of q such that it approximates the desired posterior. One way to accomplish this is to
minimize the Kullback-Leibler divergence between q and the posterior.

DKL [q||p(F,Σ|I)] = Eq [log q − log p(F,Σ|I)]
= Eq [log q − log p(I|F,Σ)− log p(F )− log p(Σ) + log p(I)]

Note that the expectation, Eq [log p(I)] does not depend on the parameters of q. It is therefore a constant. Disregarding
this constant term,

DKL [q||p(F,Σ|I)] ∝ Eq [log q − log p(I|F,Σ)− log p(F )− log(Σ)] ,

and negating,

ELBO(q) = Eq [− log q + log p(I|F,Σ) + log p(F ) + log(Σ)] ,

leads to the optimization objective of variational inference, which is called the Evidence Lower BOund (ELBO), [1, 2].
Maximizing this quantity with respect to the variational distribution, q, recovers an approximation to the posterior
distribution. After re-arranging the terms,

ELBO (q) = Eq [log p(I|F,Σ)− log q + log p(F ) + log p(Σ)]

= Eq [log p(I|F,Σ)]− Eq [log q − log p(F )− log p(Σ)]

= Eq [log p(I|F,Σ)]−DKL (q||p(F )p(Σ)) ,

it is clear that the ELBO can be thought of as the sum of expected log-likelihood of the data and the Kullback-
Leibler divergence between the surrogate posterior and the the prior. The KL divergence term acts as a penalty which
discourages the surrogate posterior from wandering too far from the prior distribution. From the frequentist perspective,
this is similar to a regularized maximum-likelihood estimator. This general form of the ELBO applies equally to any
parameterization of the graphical model in Figure S1. The parameterization used in this work slightly simplifies this
objective, as we’ll show in the following section.

2 The parameterization used in Careless

The graphical model in Figure S1, implies that the prior distribution p(F,Σ) factorizes p(F )p(Σ). Therefore, it is
convenient to assume the surrogate posterior,

q(F,Σ) = qF (F )qΣ(Σ),

consists of statistically independent distributions for F and Σ. This is a modeling choice, and it need not be the case in
other variational merging models with this graph. Factorizing q leads to an ELBO,

ELBO (q) = Eq [log p(I|F,Σ)]−DKL (qF ||p(F ))−DKL (qΣ||p(Σ)) ,

with separate Kullback-Leibler divergences for F and Σ. We can now begin to consider priors for each of these
surrogate posteriors.

2.1 An Uninformative Prior on Scales

It is difficult to reason about the appropriate prior distribution for scales, p(Σ). In all likelihood, this prior depends
intimately on the details of the experiment. It will vary by sample and apparatus. In this work we choose an

2
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Model Parameters

Scale function
θ : MLP kernels and biases

Structure factors
µqFh

: location

σqFh
: scale

Variational Distributions

qFh
= T runcN ormal(µqFh

, σqFh
, 0,∞)

µΣh,i
, σΣh,i

= fθ (Mh,i)

qΣh,i
= N ormal

(
µΣh,i

, σΣh,i

)

Model Parameterization

Fh ∼ qh
Σh,i ∼ qΣh,i

Ih,i ∼ N ormal
(
F 2
hΣh,i, σIh,i

)
or

Ih,i ∼ StudentT
(
d.f., F 2

hΣh,i, σIh,i

)
Priors

Fh ∼ Wilson(h, ϵh)

Σh,i ∼ qΣh,i

Figure S2: Summary of the model parameterization

uninformative prior, Σ ∼ q(Σ). Thereby, the second divergence term in the ELBO becomes zero, and whatever
parameters define qΣ are simply allowed to optimize as dictated by the likelihood term. The objective used in this work
is therefore

ELBO (q) = Eq [log p(I|F,Σ)]−DKL (qF ||p(F )) .

2.2 Posterior Structure Factors

In this work, the surrogate posteriors of structure factors are independently parameterized by truncated normal
distributions.

qFh
(F ) = T runcatedN ormal (F |µFh

, σFh
)

with location and scale parameters µFh
and σFh

and support

F ∈
{
[0,∞) centric

(0,∞) acentric.

Both the location and scale parameters are constrained to be positive. In our work this constraint is implemented with
the softplus function, softplus(x) = log(exp(x) + 1).

2.3 Posterior Scales

As noted in section 2.1, we choose not to impose a structured prior on reflection scales. Rather, we assert that the scale
of a reflection should be computable from the geometric metadata recorded about each reflection during integration.
Therefore, our model infers a function which ingests metadata and outputs scale factors (Figure S3).

By default, we parameterize this function as a deep neural network with parameters θ. In particularly, we use a
multilayer perceptron with leaky rectified linear units (ReLU) as the activation. The parameters, correspond to the
kernels and biases of each layer. The kernels are initialized to the identity matrix and biases to zeros. The number of
hidden units in each layer takes the width of the metadata by default, but this is user-configurable. We set the default
depth of the neural network to twenty layers which we find offers a reasonable balance of performance and stability.
The model has a final, linear layer with 2 units. The output of the last layer is interpreted as the mean and standard
deviation of the scale distribution.
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Figure S3: Graphical model with a scale function

[
µΣh,i

, σΣh,i

]
= fθ(Mh,i)

qΣh,i
= N ormal

(
µΣh,i

, σΣh,i

)
The correct scale function is the one which allows the model to recapitulate the data while letting the structure factors
follow the desired prior distribution. Provided rich enough metadata about each reflection observation, variational
inference will recover such a function.

One must use caution when selecting metadata. If information about the reflection intensities is provided to the scale
function, the scale function may bypass the structure factors to directly minimize the expected log likelihood. This
leads to poor structure factor estimates. We recommend against including data such as the reflection uncertainties in the
metadata, as they are strongly correlated with the intensities.

2.4 Wilson’s Priors

Wilson’s priors,

p(Fh) = Wilson(Fh) =


Halfnormal (Fh|ϵh) =

√
2

πϵh
exp

(
− F 2

h

2ϵh

)
h is centric

Rayleigh (Fh|ϵh) = 2
ϵFh exp

(
−F 2

h

ϵh

)
h is acentric,

(1)

express the expected distributions of structure factors under the assumption that atoms are uniformly distributed within
the unit cell[3]. The probability distribution over the structure factor amplitude Fh with Miller index h is expressed in
terms of the multiplicity of the reflection ϵh. The multiplicity, a feature of the crystal’s space group, is a constant which
can be determined for each Miller index. It corresponds to the contribution to the relative intensity of each reflection
solely due to crystal symmetry. The Wilson prior has separate parameterizations for centric and acentric reflections.
This form of Wilson’s priors differs from the one employed in the French Wilson algorithm [4] in that it is independent
of the scale, Σ. Because of this choice, the scale function can be inferred in parallel with the structure factor amplitudes.
However, it implies that the structure factors output by Careless are on the same scale across resolution bins. This is an
important consideration for downstream processing. Careless output may, for some applications, need to be rescaled to
meet the expectations of crystallographic data analysis packages.

2.5 Likelihood functions

The first term in the ELBO is an expected log likelihood. In this work, we present two parameterizations of this term:
a normal distribution

p(Ih,i|Fh,Σh,i) = N ormal(Ih,i|F 2
hΣh,i, σIh,i

),

which is suitable for data with few outliers, as well as a robust t-distribution

p(Ih,i|Fh,Σh,i) = StudentT (Ih,i|d.f., F 2
hΣh,i, σIh,i

),

which adds an additional hyperparameter. The degrees of freedom, d.f., titrates the robustness of the model toward
outliers. In the limit d.f. −→ ∞, the t-distribution approaches a normal distribution.

4
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2.6 Model training

In this work, we use the reparameterization trick to estimate gradients of the ELBO with respect to the parameters of
the variational distributions, q. First applied in the Variational Autoencoder [5], reparameterization is a common tool to
estimate gradients of probabilistic programs. In our implementation, the ELBO is approximated by random samples
from the surrogate distributions,

ELBO (µqF , σqF , θ) = Eq

[
log p

(
I|F 2Σ

)]
−DKL(qF ||p(F ))

≈
S∑

s=1

[∑
i

∑
h

log p(Ih,i|F 2
h,sΣh,i,s, σIh,i

)−
∑
h

(log qFh
(Fh,s)− log p(Fh,s))

]

where Fh,s and Σh,i,s denote reparameterized samples from the surrogate posteriors, and the number of Monte Carlo
samples, S is a hyperparameter. By default a single sample is used (S = 1). For training, we use the Adam optimizer
[6] with hyperparameters α = 0.001, β1 = 0.9, and β2 = 0.99.

2.7 Cross-validation

Careless provides two modes of cross-validation. In the first paradigm, the model is first trained on the full data set
yielding structure factor estimates and neural network weights. Next, the data are partitioned randomly into halves by
image. Using the neural network weights learned from the full data set, each half is merged separately by optimizing
the structure factors. During this process the neural network weights remain fixed. The resulting pair of structure factor
estimates may be correlated to produce a measure similar to the canonical CC1/2 widely used in crystallography. This
mode of cross-validation does not necessarily inform the user about the degree of overfitting. Rather, the CC1/2 value
is more indicative of the data consistency.

The second type of cross-validation supported by Careless is intended to explicitly test for overfitting in the scale
function. In this mode, a fraction of the data is held out during training time. After training, the model is applied to
these data in order to predict intensities for the held out fraction. The correlation between the observed intensities
and the predictions provides an estimate for how well the model generalizes. The choice of summary statistic is up to
the user. However, we recommend Spearman’s rank correlation coefficient as a robust alternative to Pearson’s. In the
following section, we address the issue of how to recover intensity predictions and moments from our model.

2.8 Predictions

Model predictions are essential to quantify model overfitting by cross-validation. The predicted reflections implied by
our model are the product of random variables,

Îh,i = Σh,iF
2
h ,

which is itself a distribution for which we do not have an analytical expression. It is however possible to compute the
expected value,

⟨Îh,i⟩ = ⟨Σh,i⟩⟨F 2
h ⟩

= ⟨Σh,i⟩
(
⟨Fh⟩2 + σ2

Fh

)
.

The first term in the product,

⟨Σh,i⟩ = µΣh,i

= fθ(Mh,i)1,

is computed by the scale function, fθ, from the metadata vector, Mh,i. The second term, is calculated from the moments
of the truncated normal surrogate posterior, qFh

. These moments have analytical expressions which are implemented in
many statistical libraries including TensorFlow Probability[7] which we use in this work.
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It is also possible to compute the second moment of the predictions,

σ2
Îh,i

= ⟨Î2h,i⟩ − ⟨Îh,i⟩2

= ⟨F 4
h ⟩⟨Σ2

h,i⟩ − ⟨Îh,i⟩2

= ⟨F 4
h ⟩

(
σ2
Σh,i

+ µ2
Σh,i

)
− ⟨Îh,i⟩2,

where the fourth non-central moment, ⟨F 4
h ⟩ of qFh

has an analytical expression which is implemented in SciPy [8].

2.9 Harmonic deconvolution for Laue diffraction

To implement harmonic deconvolution, the Careless ELBO approximator needs to be modified to update the center
of the likelihood distribution. By summing over each contributor on the central ray, the new ELBO approximation
becomes

ELBO (µqF , σqF , θ) ≈
S∑

s=1

∑
i

∑
ray

log p

Iray,i

∣∣∣∣ ∑
h∈ray

(
F 2
h,sΣh,i,s

)
, σIray,i

−
∑
h

(log qFh
(Fh,s)− log p(Fh,s))



which is readily optimized by same protocol demonstrated in Figure S5. In the code base, harmonics are handled
by having a separate class of likelihood objects for Laue experiments. In practice, one could use the polychromatic
likelihood to merge monochromatic data with no ill effect on the quality of the results. In that sense, this is the
more general version of the ELBO for diffraction data. However, doing so would incur a performance cost given the
underlying implementation, which is why we maintain separate likelihoods for mono and polychromatic experiments.
Regardless, the core merging class inside Careless is competent to fit both sorts of data.
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3 Supplementary Information

3.1 Supplementary Note: Summary of conventional X-ray diffraction data processing

For reference, we summarize the conventional workflow for conversion of diffraction images to a non-redundant set
of structure factor amplitudes—a process known as data reduction. This involves sequential application of a series of
algorithms. First, during indexing, the orientation of the crystal lattice is determined, starting from a subset of strong
reflections in each image, mapping each observed reflection to its Miller index ((h, k, l), abbreviated here as h). Next,
in geometry refinement the mismatch between predicted and observed reflection centroids is minimized by optimizing
estimates of detector position, beam center, crystal unit cell parameters, goniometer rotation axis, and other geometric
parameters. In integration, the intensities of the reflections are then estimated, either by summing the pixel values in
a region around the predicted spot centroid or by fitting a profile model to each reflection. In either case the region
around a reflection can be used to estimate the background contribution from X rays resulting from other processes,
such as inelastic scatter and scatter by sample mounts, bulk liquid, or air. This background is typically subtracted from
the raw integrated intensity to yield an intensity estimate for each predicted reflection.

Next, the integrated intensities need to be converted into structure factor amplitudes. Traditionally this is done in three
steps. In scaling, scale parameters are learned per image to account for beam intensity fluctuations, crystal disorder,
radiation damage, sample absorption, and other effects which vary systematically throughout a diffraction experiment.
The parameters are applied to each reflection to yield scaled intensities. At this point, the data still contain many
redundant observations for each Miller index. In merging, equivalent observations are merged by weighted averaging.
This step assumes that the errors in the reflection intensities are normally distributed. This works well if the errors in
the reflection intensities are dominated by photon counting statistics or other random additive errors, but is sensitive to
outliers. In French-Wilson scaling, the merged intensities are then “corrected” because they can be negative, resulting
from errors in the estimated intensity of reflections and background, and inconsistent with the reflection intensities
being proportional to squared structure factor amplitudes, and therefore positive.

In this last step, the Wilson distribution [3] serves as a prior probability distribution, or prior. This prior is combined
with a statistical model of the true intensity given the observed merged intensity to yield a posterior probability
distribution, or posterior, of the true merged intensity. This true intensity, the squared structure factor amplitude, is
guaranteed to be positive. The Wilson distribution is parametrized by the mean intensity which is usually modeled as
resolution-dependent.

3.2 Data collection and analysis

Data collection for hen egg white lysozyme was described in ref. [9]. Data for photoactive yellow protein were
collected as described in ref. [10]. Collection of thermolysin data was described in [11]. Scaling and merging was
performed using Careless version 0.2.0. DIALS version 3.1.4 was used to index and integrate observed reflections
for hen egg white lysozyme. Aimless version 0.7.4 was used to merge the integrated intensities for hen egg white
lysozyme data. Precognition version 5.2.2 was used to index and integrate the polychromatic PYP data. cctbx.xfel
version 2021.11.dev3+4.g05389c3054 was used to scale and merge thermolysin XFEL data; the merging parameters
are available in the Zenodo deposition. All model refinement and phasing was performed in PHENIX version 1.18.2.
The refinement outputs and log files including parameter settings are deposited in Zenodo. The anomalous peak heights
presented in Figure 5 and Table S2, were quantified using the “Difference map peaks...” function Coot version 0.9.6.

4 Supplementary Figures and Tables
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Figure S4: Selection of the number of image layers by 10-fold cross-validation of observed against predicted intensities
for merging thermolysin serial crystallography.
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1 steps=10000
2 n_layers = 20
3 mc_samples = 3
4 p_centric = tfd.HalfNormal(np.sqrt(multiplicity))
5 p_acentric = tfd.Weibull(2., np.sqrt(multiplicity))
6
7 #Construct variational distributions
8 loc_init = tf.where(centric, p_centric.mean(), p_acentric.mean())
9 scale_init = tf.where(centric, p_centric.stddev(), p_acentric.stddev())

10 q = tfd.TruncatedNormal(
11 loc = tf.Variable(loc_init),
12 scale = tfp.util.TransformedVariable(scale_init, tfp.bijectors.Softplus()),
13 low = tf.where(centric, 0., 1e-30),
14 high = 1e30,
15 )
16
17 #Construct error model
18 likelihood = tfd.Normal(loc=intensities, scale=uncertainties)
19
20 #Construct scale function
21 n,d = metadata.shape
22 NN = tf.keras.models.Sequential()
23 NN.add(tf.keras.Input(d))
24 for i in range(n_layers):
25 NN.add(tf.keras.layers.Dense(d, kernel_initializer='identity'))
26 NN.add(tf.keras.layers.Dense(2, kernel_initializer='identity'))
27
28 #Evaluate the elbo
29 def minus_elbo():
30 z = q.sample(mc_samples)
31 F = tf.gather(z, miller_id, axis=1)
32 loc, scale = tf.unstack(NN(metadata), axis=1)
33 Sigma = tfd.Normal(loc, scale).sample(mc_samples)
34 log_likelihood = tf.reduce_sum(likelihood.log_prob(F * F * Sigma))
35 log_p_z = tf.where(centric, p_centric.log_prob(z), p_acentric.log_prob(z))
36 log_q_z = q.log_prob(z)
37 kl_div = tf.reduce_sum(log_q_z - log_p_z)
38 return -log_likelihood + kl_div
39
40 #Train the model
41 optimizer = tf.keras.optimizers.Adam()
42 for i in range(steps):
43 optimizer.minimize(minus_elbo, [q.trainable_variables , NN.trainable_variables])
44
45 #Export the results
46 F,SigF = q.mean().numpy(), q.stddev().numpy()

Figure S5: Example implementation of the Careless model using TensorFlow Probability. This example code is
fully functional and available as a script on the Careless GitHub page [12].
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Degrees of Freedom Figure of Merit Bayes-CC ± S.D. Sites
aimless 0.45 27.3 ± 14.4 11
0.125 0.23 9.9 ± 12.3 10
0.25 0.19 15.8 ± 14.0 10
0.5 0.4 25.7 ± 14.4 11
1 0.21 13.3 ± 13.3 10
2 0.42 32.1 ± 13.7 10
4 0.43 31.6 ± 13.6 11
8 0.43 31.8 ± 13.6 10

16 0.42 33.8 ± 13.4 11
32 0.43 26.6 ± 14.6 11
64 0.43 32.6 ± 13.3 10
128 0.41 33.4 ± 13.3 10
256 0.42 28.3 ± 14.1 10
512 0.41 30.1 ± 13.9 10

1024 0.39 27.0 ± 14.2 11
∞ 0.39 24.3 ± 14.5 11

Table S1: Ab initio phasing results from AutoSOL using thorough defaults and searching for 10 sulfur sites. The Figure
of Merit of phasing places an upper bound on the quality of an experimentally phased electron density map. The
Bayes-CC is an effective estimate of the quality of an experimental map before density modification based on its skew.
See [13] for further description of both metrics.

Site Aimless Careless (16 d.f.) Careless (∞ d.f.) Careless (image layers) Careless (transfer)
Cys-6 14.91 11.97 10.45 14.48 15.86

Met-12 17.52 10.92 9.8 16.48 17.33
Cys-30 19.75 14.63 12.10 19.47 20.51
Cys-64 17.59 14.01 9.75 18.02 19.06
Cys-76 14.84 11.39 10.85 13.71 15.82
Cys-80 18.29 15.30 12.88 18.63 20.90
Cys-94 14.98 12.28 8.86 14.54 15.95

Met-105 19.89 14.84 11.67 20.30 21.48
Cys-115 19.38 16.13 11.41 18.92 20.29
Cys-127 14.62 10.64 10.16 14.50 15.35

Table S2: Anomalous omit map peak heights from PHENIX refinement with isotropic b-factors and rigid body
refinement. The careless merging options used here are described in detail on the careless-examples GitHub page.
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