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Abstract

Motivation: Integrating multimodal data represents an effective approach to predicting biomedical
characteristics, such as protein functions and disease outcomes. However, existing data integration
approaches do not sufficiently address the heterogeneous semantics of multimodal data. In particular,
early and intermediate approaches that rely on a uniform integrated representation reinforce the
consensus among the modalities, but may lose exclusive local information. The alternative late integration
approach that can address this challenge has not been systematically studied for biomedical problems.
Results: We propose Ensemble Integration (El) as a novel systematic implementation of the late
integration approach. El infers local predictive models from the individual data modalities using
appropriate algorithms, and uses effective heterogeneous ensemble algorithms to integrate these local
models into a global predictive model. We also propose a novel interpretation method for EI models. We
tested El on the problems of predicting protein function from multimodal STRING data, and mortality due
to COVID-19 from multimodal data in electronic health records. We found that El accomplished its goal of
producing significantly more accurate predictions than each individual modality. It also performed better
than several established early integration methods for each of these problems. The interpretation of a
representative El model for COVID-19 mortality prediction identified several disease-relevant features,
such as laboratory test (blood urea nitrogen (BUN) and calcium) and vital sign measurements (minimum
oxygen saturation) and demographics (age). These results demonstrated the effectiveness of the El
framework for biomedical data integration and predictive modeling.

Availability: Code and data are available at https://github.com/GauravPandeylab/ensemble_integration.
Contact: gaurav.pandey@mssm.edu

1 IntI‘OdllCtiOIl characteristics or outcomes, such as the functions of proteins and disease
phenotypes of patients (Boehm et al. (2021); Krassowski et al. (2020);
Hasin et al. (2017)).

However, the integration and predictive modeling of multimodal data
are still challenging because of the heterogeneity of the individual data
modalities, which are usually structured differently and have different
semantics (Zitnik et al. (2019); Gligorijevi¢ and Przulj (2015)). For
instance, gene expression data can be structured as matrices, each entry
of which individually denotes the expression level of a gene in a sample.
In contrast, string-formatted amino acid sequences are unstructured, since

Multimodal data are a collection of diverse types of data that capture
complementary aspects of a biomedical entity and its characteristics
of interest (Boehm et al. (2021)). For instance, a protein may be
characterized by its amino acid sequence, three-dimensional structure,
evolutionary history and interactions with other proteins. These different
types of information may be used to infer the function(s) of the
protein (Pandey et al. (2006)). Similarly, Electronic Health Record
(EHR) systems contain diverse types of clinical data, such as from
questionnaires, imaging and laboratory tests, that collectively provide a

. . . each position in these sequences needs to be studied in the context of
comprehensive view of a patient’s health (Jensen et al. (2012)). These P q

its surrounding positions to infer its biological role. Several data types

multimodal data are expected to be complementary. For instance, data . . . . .
also present their own challenges, such as the high dimensionality of

from questionnaires provides baseline information of a patient’s health,

. L . ene expression profiles, which can make their analysis difficult (Saeys
while laboratory test measurements indicate their current health state. Due 8 P P y (Sacy

et al. (2007)). Similar issues exist with the multimodal data in EHR

to this complementarity, integrating these multimodal data can result in a . .
systems as well. Due to the varying semantics and challenges of the

more comprehensive understanding and accurate predictions of biomedical A . X R . . .
individual modalities, it has been challenging to identify a uniformly
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Fig. 1: Overview of early, intermediate and late approaches for integrating multimodal data. (a) The early approach combines multiple datasets into

an intermediate representation, from which predictive models can be inferred. (b) The intermediate approach jointly models the multiple datasets and their

elements through an intermediate representation. (c) The late approach first builds local model(s) for each individual modality, which are then integrated

into the final predictive model.

effective prediction method for diverse multimodal data (Zitnik et al.
(2019)).

Several data integration methods have been proposed to address
the challenge of heterogeneity among multimodal data (Zitnik et al.
(2019); Gligorijevi¢ and Przulj (2015)). These methods can be generally
categorized into three groups, namely early, intermediate and late
integration (Fig. 1). Early integration strategies (Fig. la) first combine
the multimodal data into a uniform intermediate representation, such as a
network (Caldera et al. (2017); Wang et al. (2014)), which is then used for
prediction and other analysis purposes. Intermediate strategies (Fig. 1b)
jointly model the multiple datasets and their elements, such as genes,
proteins, etc., also through a uniform intermediate representation. These
uniform representations reinforce the consensus among modalities, but
may obfuscate the local signal exclusive to each individual modality, and
thus adversely affect prediction performance (Greene and Cunningham
(2009); Libbrecht and Noble (2015)).

In view of these limitations of the early and intermediate approaches,
the late approach (Fig. 1c) offers an alternative path to improved prediction
performance by first deriving specialized local predictive models from the
individual modalities, and aggregating those models (Zitnik ez al. (2019);
Gligorijevi¢ and Przulj (2015)). This approach has the potential to capture
maximal information in the individual modalities into the local predictors,
whose aggregation then builds consensus, thus effectively utilizing both the
commonalities and diversity among the modalities. However, this approach
has not been systematically implemented and studied for biomedical data
integration and predictive modeling problems (Zitnik et al. (2019)).

In this work, we propose heterogeneous ensembles as a novel
systematic realization of the late integration strategy to build effective
integrative predictive models from multimodal biomedical data. These
ensembles can aggregate an unrestricted number and types of local models,
thus providing an effective framework for aggregating diverse information
captured in these models (Whalen er al. (2016)). Significantly, this
approach differs from homogeneous ensembles, such as random forest
(Breiman (2001)) and boosting (Schapire and Freund (2013)), which
typically aggregate only one type of individual models, e.g., decision trees
in random forests. Furthermore, homogeneous methods learn individual
models as a part of the ensemble process, and thus cannot integrate
models that have been derived independently a priori. The advantages of
heterogeneous ensembles have been demonstrated in several biomedical
applications, such as protein function prediction (Whalen ez al. (2016);
Wang et al. (2018); Stanescu and Pandey (2017)), enhancing the predictive
power of DREAM Challenges (Sieberts et al. (2016, 2021)) and modeling
infectious disease epidemics (Ray and Reich (2018)). However, these
applications were limited to individual (unimodal) datasets.

In the current work, we leverage the flexibility of the heterogeneous
ensemble framework to advance predictive modeling from multimodal data
in an approach that we name Ensemble Integration (EI; Fig. 2). Specifically,
EI uses the same heterogeneous ensemble methods as used for unimodal
data to integrate local models derived from individual data types. Through

this process, El is capable of incorporating both the consensus and diversity
among the individual modalities.

A challenge associated with multimodal data integration using EI is
that the ensembles generated may be complex and difficult to interpret, not
unlike other sophisticated machine learning-based models (Doshi-Velez
and Kim (2017)). The interpretation of these ensembles is important for
understanding the rationale behind their predictions and generating trust for
the user. To address this challenge, we also propose a novel interpretation
framework for El-based models built from multimodal data.

We tested the prediction and interpretation capabilities of EI on two
diverse and challenging problems: protein function prediction (PFP)
and disease outcome (COVID-19 mortality) prediction. Specifically,
we evaluated EI’s performance at predicting the functions (GO terms)
of human proteins from multimodal datasets in the STRING database
(Szklarczyk et al. (2021)). We also tested the effectiveness of EI for
predicting the likelihood of a COVID-19 patient’s mortality (death) from
the disease using the multimodal data collected in a treating hospital’s
EHRs (Wynants et al. (2020)). We compared EI’s performance with those
of established data integration methods that have been used for these
problems. Finally, in addition to evaluating EI’s prediction abilities, we
also used our ensemble interpretation method to reveal the key features

Multimodal data

_Bes!-performing
Prediction performance Interpretation
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Fig. 2: Overview of the Ensemble Integration (EI) framework for
multimodal data. In the implementation of EI tested in this work, we
used ten standard binary classification algorithms, such as support vector
machine (SVM), random forest (RF) and logistic regression (LR), as
implemented in Weka (Frank et al. (2005)), to derive sets of local predictive
models 1, 2,. . .,N from the data modalities 1, 2,. . .,N. We then applied the
stacking and ensemble selection methods to these local models to generate
the EImodels. These models generated prediction scores for the entities and
multimodal data of interest that were evaluated to assess their performance.
Finally, we used our novel interpretation method to identify the features
that contributed the most substantially to the best-performing EI model’s
predictions.
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that contributed to the El-based predictive model of COVID-19 mortality,
and verified the relevance of these features from the literature.

2 Methods

Here, we describe the methodologies and datasets used in our development
and evaluation of the EI framework and other approaches. We followed
the Data, Optimization, Model and Evaluation (DOME) recommendations
(Walsh er al. (2021)), as detailed in the opening subsection of
Supplementary Materials.

2.1 Ensemble Integration (EI)

Fig. 2 shows the general EI framework for multimodal data, as well as
the implementation of EI built and tested in this work. First, predictive
models were trained on each data modality; we refer to these as local
models below. We used ten established binary classification algorithms
implemented in Weka (Frank er al. (2005)) for training local models.
These algorithms were AdaBoost, Decision Tree (J48), Gradient Boosting,
K-nearest Neighbors, Support Vector Machine (SVM), Random Forest,
Logistic Regression (LR), Rule-based Classification (PART), Naive Bayes
and Voted Perceptron. All the algorithms were used with their default
parameters in Weka, with the exception of specifying C=0.001 for SVM
and M=100 for LR to control time to convergence. To handle potential
imbalance between the classes being predicted, the entities belonging to
the majority negative class in each modality were randomly under-sampled
to balance the number of positive and negative class entities before training
the local models. The corresponding test sets retained the same class ratio.

Next, using the base predictions generated by the local models, EI used
the following heterogeneous ensemble methods to build the integrative
predictive model.

e Mean aggregation, which calculates the ensemble output as the mean
of the base prediction scores.

o The iterative ensemble selection method of Caruana et al. (2004, 2006)
(CES), which starts with an empty set as the current ensemble. In
each iteration, CES adds the local model that improves the current
ensemble’s prediction performance by the largest amount. The iterative
process, which samples the local models with replacement, continues
until there is no further gain in performance.

e Stacking (Sesmero et al. (2015)), which uses the base predictions as
features to train a second-level predictive model (meta-predictor) as
the final ensemble. We used eight established binary classification
algorithms available in Python’s sklearn library (Pedregosa et al.
(2011)) to train meta-predictors. These algorithms were AdaBoost,
Decision Tree, Gradient Boosting, K-nearest Neighbors, SVM,
Random Forest, LR and Naive Bayes. We also included the XGBoost
classifier (Chen and Guestrin (2016)) as a meta-prediction algorithm.
All the algorithms were executed using their default parameter settings,
with the exception of the linear kernel being used with SVM to control
the runtime.

Thus, each execution of EI yielded eleven models, i.e., one each based on
mean aggregation and CES, and nine based on stacking. These EI models
then generated the final prediction scores for the entities of interest. These
scores were evaluated to assess the models’ performance.

2.2 Interpretation of EI models

To aid the interpretation of EI models and build trust in them, we propose
a novel method to identify the key features in the various data modalities
that contribute the most to the model’s predictions (Supplementary Fig. 1).
This method first quantifies the contributions the features in the individual
modalities (local features) make to the corresponding local models. It then
quantifies the contribution of each local model to the EI ensemble. Finally,
it combines these contributions to determine the most important features
for the EI model.

Algorithmically, the method calculates the local feature ranks (L F' Rs)
from the local models and the local model ranks (LM Rs) from the
EI model (Algorithm 1) as follows. The LF Rs for each local model
are calculated based on the difference of the performance of the model

Algorithm 1: Calculate percentile ranks of local models in an
ensemble

Data:

M All local models trained for EI

ensb: The ensemble method

Result:

L M R: Percentile rank of local models in the ensb method

Initialization;

if ensb == mean then

| for eachiin M do; LM R[i] <+ 1/length(M)

end

if ensb == CES then

for each i in M do

LMRJ[i] < count(i, CES) ;

with which local model ¢ selected in CES
*/

end

/* The frequency

end

if ensb == stacking then
LMR «+

sklearn.inspection.permutation_importance(M, ensb)

end
LMR < sort(LMR) ; /* LMR is sorted in
ascending order to yield percentile rank.

*/

Algorithm 2: Calculate final ranking of features for an ensemble
Data:
F: Features in the whole multimodal dataset
M All local models trained for EI
M : Local models trained with feature f
LFR[f, m]: Percentile rank of local feature f in local model m
LM R[m)]: Percentile rank of local model m in ensemble under

consideration
Result:
P_rank[f, m]: Product of feature f and model m percentile rank
RPS|f]: Average of P_rank|[f]
Final_rank]f]: Final rank of feature f for the ensemble
Initialization;
for each ¢ in F do

for each j in M; do

| P_rankl[i,j] < LMR[j] x LFR[i,j]

end

RPS[i] + mean(P_rank]i,:])
end
Final_rank < sort(RPS)

when each feature is held out. This calculation is carried out using
the ClassifierAttributeEval function in Weka. The calculation of LM Rs
depends on the type of ensemble algorithm used to build the EI model
under consideration. If the model under consideration is based on mean
aggregation, all the local models are assigned the same L M Rs. Ifitis based
on CES, the local models are assigned L M Rs based on how many times
they are included in the final ensemble. Finally, if the EI ensemble is based
on stacking, L M Rs are determined using the permutation importance of
each constituent local model (Breiman (2001)). This importance measure
is calculated as the average change in performance of the ensemble when
the local model’s output is randomly permuted a hundred times and as
many ensembles are retrained. This calculation is conducted using the
permutation_importance function in the sklearn library (Pedregosa et al.
(2011)). LM Rs are then determined based on the descending order of the
permutation importance values. Due to the varying number of local models
and features these ranks are calculated for, all the ranks are normalized into
percentile ranks that range from 1/n to 1, where n is the total number of
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Lietal.

local models in the ensemble or the total number of features in the modality
being considered.

Next, we combined these two lists of ranks to compute the feature
ranking for the EI model as shown in Algorithm 2. We first calculated
the product of the LM R and LF'R for each valid pair of local model and
feature. We then averaged these products for each local feature across all the
local models to generate its rank product scores (RPS's), which quantified
the feature’s overall contribution to the EI model. All the features in all the
modalities were then sorted in ascending order of RP.S's to determine the
final ranking of the features.

Note that this interpretation method is applicable to any EI model.
However, in order to focus its use in our experiments, we applied it only to
the best-performing ensemble algorithm within EI for the label of interest
(Fig. 2). This ensemble algorithm was used to train an EI model on the
whole dataset, which was then interpreted.

2.3 Biomedical problems used for evaluating EI

To evaluate the effectiveness of EI for biomedical problems, we tested the
framework on two representative problems, one each from bioinformatics
and clinical informatics. These problems were protein function prediction
from STRING data (Szklarczyk et al. (2021)), and COVID-19 mortality
prediction from EHR data, respectively. Below, we provide details of these
problems, as well as the associated multimodal datasets used.

2.3.1 Protein function prediction from STRING data

As discussed in the Introduction, a variety of complementary data
modalities can be used to predict the functions of proteins (Pandey
et al. (2006)), and the most accurate predictions are often obtained by
integrating these modalities (Zitnik et al. (2019)). Thus, protein function
prediction (PFP) is an ideal problem to test EI’s effectiveness for integrating
multimodal data and producing accurate predictions. We followed the
most commonly used definition of protein functions as Gene Ontology
(GO) terms (Radivojac et al. (2013)). We predicted annotations of human
proteins to these terms using diverse multimodal datasets from version
11.5 of the STRING database (Szklarczyk et al. (2021)) released in
August 2021. These datasets consist of pairwise functional associations
between thousands of proteins from several species, including human.
These associations are derived from the multi-omic data sources listed
in Table 1. Since these data sources provide complementary information
about protein function (Pandey et al. (2006); Zitnik et al. (2019); Radivojac
et al. (2013)), the associations derived from them in STRING are also
multi-modal.

We tested the effectiveness of EI for predicting protein function
(GO term annotations) from these multimodal STRING datasets. For all

Table 1: Modalities of STRING data used for protein
function prediction. For each modality of STRING, the
description and number of features are included in the table.

Modality # features Description
PPI 17,901 Protein-protein interactions
Curated database 10,501 Interactions in curated databases

Co-expression relationships

18,618 .
between proteins

Co-expression

-location in th
Neighborhood 3,974 Co-location in the same
genomic neighborhood
Co-occurrence 2936 Co—o?currence of orthologs
in other genomes
Fusion of orthologs

Fusion 6,053 .
in other genomes

the individual datasets, the adjacency vector of each protein was used
as its feature vector for PFP model training and evaluation, since this
representation has been shown to be effective for automated network-based
gene/protein classification (Liu ez al. (2020)). If a certain protein was not
included in any of the STRING datasets, its corresponding feature vector
was assigned to be all zeros before integration and prediction. EI was
executed for each GO term individually on the multimodal datasets.

We compared EI’s performance with those of established network-
based early integration algorithms, namely Mashup (Cho et al. (2016))
and deepNF (Gligorijevi¢ er al. (2018)) following the methodology
described in Supplementary Fig. 2. Mashup and deepNF use graph
propagation- and deep learning-based algorithms, respectively, to derive an
integrated network corresponding to the input networks. In our study, these
algorithms were applied to the STRING data described above to generated
corresponding integrated networks. The same adjacency vector as feature
vector representation was used for the integrated networks generated using
these methods. This representation yielded feature vectors of lengths 800
and 1200 from the Mashup and deepNF integrated networks. Note that
these networks already represent a layer of integration of the STRING
data. Thus, to generate predictive models of GO term annotations from
these networks that were consistent with the single layer of integration in
EI (Supplementary Fig. 2), we used the local modeling algorithms listed in
Section 2.1. Finally, to assess the value of integrating multimodal data, we
also predicted annotations from each of the STRING datasets individually
using the same heterogeneous ensemble algorithms as included in EI
(Section 2.1). Again, these heterogeneous ensembles represented a single
layer of integration of the base models derived from the individual
modalities (Supplementary Fig. 2).

EI and the baseline methods were used to predict the annotations of
18,866 human proteins to 2,139 GO Molecular Function and Biological
Process terms that were used to annotate at least fifty human proteins in the
data released on January 13th, 2022. This lower limit was chosen to reduce
the variability and enhance the reliability of the results obtained. For each
GO term, the proteins annotated to it with non-IEA evidence codes were
defined as positive examples. We defined negative examples as follows: a
protein p was labeled as a negative example for a term ¢ in an ontology
o (e.g., Molecular Function) if p had at least one annotation to a term in
o, but was not manually annotated (i.e., with a non-IEA evidence code)
to t nor to its ancestors or descendants (Mostafavi et al. (2008)). For each
term, only the positively or negatively annotated proteins were used for the
evaluation of EI and the baseline methods.

It is noteworthy that GO terms are organized within hierarchical
ontologies (The Gene Ontology Consortium (2017); Ashburner et al.
(2000)), with deeper terms representing more specific functions and
annotating fewer proteins. These properties of a GO term, namely its
depth and the number of proteins annotated with it, have been shown
to substantially influence the performance of PFP methods (Zhou et al.
(2019)). Thus, to compare the performance of EI and the baseline methods
more comprehensively, we also assessed how their performance varied
with these properties. For this, we first compared the performances of the
prediction methods across GO terms grouped by the number of human
genes annotated to them. In our consideration set, there were 166 terms
with more than 1000 annotations, 162 with 500 to 1000 annotations, 388
with 200 to 500 annotations, 544 with 100 to 200 annotations and 879
with 50 to 100 annotations. Since these numbers of proteins annotated to
GO terms varied over several orders of magnitude, we also considered a
more normalized measure of these number known as information content
of a term (Zhou et al. (2019)). For a term ¢, this quantity is defined as
—logqo(p(t)), where p(t) is the probability of a human protein being
annotated with ¢. Finally, the depth of GO term ¢ was defined as the shortest
path from the root of the corresponding ontology to ¢. The depth and
information content of GO terms were calculated using the GOATOOLS
package (version 1.0.3) (Klopfenstein et al. (2018)).

2.3.2 COVID-19 mortality prediction from EHR data

The COVID-19 pandemic has infected over 570 million individuals and
caused over 6 million deaths globally, as of July 227¢, 2022, as per
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the Johns Hopkins University Coronavirus Resource Center (Dong et al.
(2020)). It thus represents the most serious public health threat the world
has faced in a long time. For a patient being treated for this disease,
it is immensely useful for healthcare providers to have an estimate of
the patient’s outcomes, since they can adapt the treatment accordingly
(Wynants et al. (2020)). The multimodal data collected from these patients
into their EHRs, such as data collected at admission, co-morbidity
information, vital signs and laboratory test measurements, represent useful
sources of information that can be integrated and used for predicting these
outcomes.

We tested EI's ability to address this need. Specifically, we used EI to
predict the likelihood of an individual dying from COVID-19 (mortality),
the most serious outcome, for patients treated at Mount Sinai between
March 15 and October 1, 2020 from the data modalities in the EHR
system described in Table 2 (details of the features are in Supplementary
Table 1). These modalities and features were selected and processed by
expert clinicians and informaticians, and provided by the Mount Sinai
Data Warehouse. Since vital signs and laboratory tests were measured
multiple times for each patient, we used their respective first values
recorded during the first 36 hours of hospitalization to enable early outcome
prediction, as recommended by another study (Vaid et al. (2020)). Only
features with fewer than 30% missing values were included in the analysis.
Any remaining missing values in each modality were imputed using the
KNNImpute method (Troyanskaya et al. (2001)) with K set to 5. The
categorical features in all the modalities were transformed to numerical
values by one-hot encoding. The continuous features were normalized into
z-scores. The resultant number of features included in each modality are
specified in the descriptions above. Using the above data, we tested EI for
predicting if a patient died from COVID-19 (mortality) during the course
of their hospitalization. This outcome was determined using the value of
the Boolean “deceased” flag in the patient’s EHR. In our dataset covering
4,783 patients, 1, 325 (27.7%) passed away from the disease.

Specifically, we compared EI’s performance with that of an early
integration approach proposed by another study (Vaid er al. (2020)). This
approach concatenated the feature vectors from the individual modalities
for a given patient, and built mortality prediction models using XGBoost

Table 2: Modalities of electronic health record (EHR) data used for
predicting mortality due to COVID-19. For each modality of EHR data,
the description and number of features are included in the table.

Modality # features Description

Admission 23 Baseline information collected from
patients at hospital admission, including
age, race/ethnicity, sex, and some vital
signs, such as oxygen saturation and body
temperature.

Co-morbidities 22 Simultaneous presence of other common
conditions in patients, such as asthma
and obesity, that can affect COVID-19
trajectory and outcomes.

Clinically appropriate maximum and/or

minimum values of heart rate, body

Vital signs 9

temperature, respiratory rate, diastolic
and systolic blood pressure, and oxygen
saturation level that define a patient’s
clinical state during hospitalization.
Laboratory 44 Values of laboratory tests, such as the
tests number of white blood cells and platelets
in blood, conducted on samples taken
from patients during the course their
hospitalization to monitor their internal
health.

(Chen and Guestrin (2016)), which is considered the most effective method
for tabular data (Shwartz-Ziv and Armon (2021)). The default parameters
specified in the Python xgboost library (Chen and Guestrin (2016)) were
used for this baseline method. Additionally, similar to the PFP experiments,
we also considered heterogeneous ensembles built on the individual data
modalities as alternative baselines.

Finally, we used the novel method described in Section 2.2 to identify
the features in the above data modalities that contributed the most to the
EI predictive models for COVID-19 mortality. We also compared these
features with those that contributed the most to the XGBoost model for the
same outcome. For this, as in Vaid et al. (2020)’s study, we calculated the
mean absolute SHAP value ( Lundberg et al. (2020)) for all the features in
the XGBoost model, and ranked them in descending order of this value to
identify the most important features. We then conducted the Fisher’s exact
test to calculate the statistical significance of the overlap between the two
feature tests.

2.4 Evaluation methodology

All the heterogeneous ensembles, both from EI and baseline approaches,
were trained and evaluated in a five-fold nested cross-validation (Nested
CV) setup (Whalen er al. (2016)) in the above experiments. In this
setup, the whole dataset is split into five outer folds, which are further
divided into inner folds. The inner folds are used for training the local
models, while the outer folds are used for training and evaluating the
ensembles. Nested CV helps reduce overfitting during heterogeneous
ensemble learning by separating the set of examples on which the local
and ensemble models are trained and evaluated (Whalen ef al. (2016)).
The Mashup and deepNF baselines in PFP, and XGBoost baseline in the
COVID-19 mortality prediction experiments were executed in the standard
5-fold cross-validation setup.

All the GO terms and COVID-19 mortality outcomes predicted in
our experiments were unbalanced, as is common knowledge for PFP
(Radivojac et al. (2013); Zhou et al. (2019)). To assess the performance of
the prediction methods for the more challenging minority positive class
in each experiment, we used Fi,qz in all our evaluations. Fi,qqz i
the maximum value of F-measure across all prediction score thresholds
among the combinations of precision and recall for the positive class,
and has been recommended for PFP assessment by the CAFA initiative
(Radivojac et al. (2013); Zhou et al. (2019)). We also we measured
the prediction performances for both problems in terms of the precision
and recall yielding the Fi,qq value reported. Furthermore, since our
PFP experiments involved evaluations on over 2,000 GO terms, we
also statistically compared the performances of EI and the baselines
using Friedman and Nemenyi tests (DemsSar (2006)) to assess the overall
performance of all the methods tested.

Finally, as explained in the EI interpretation method (Section 2.2),
performance assessment was also needed for calculating LM Rs in EI
ensembles , as well as for calculating L F'Rs for features included in the
local models. For both these calculations, we used the Area Under the
Precision-Recall Curve (AUPRC), since it was the only class imbalance-
aware performance measure available as an option in the sklearn and Weka
functions used (Section 2.2).

The code implementing all the above methods and the data used are
available at https://github.com/GauravPandeyLab/ensemble_integration.

3 Results

Below, we describe and analyze the results obtained in our experiments on
protein function and COVID-19 mortality prediction.

3.1 Protein function prediction

Fig. 3 shows the distributions of the Fyy,q4 scores of all the protein function
prediction (PFP) approaches tested in Section 2.3.1. For each approach, this
figure shows a box plot denoting the distribution of one Fiy, 4, score for
each GO term. This score is for the algorithm implementing the approach
that performed the best for that GO term, e.g., stacking using logistic
regression for Ensemble Integration for GO:0000976 (transcription cis-
regulatory region binding). As explained in Section 2.3.1, each of the
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Fig. 3: The distributions of the performances of the protein function
prediction approaches tested in this work. This performance was
measured in terms of the Fy,q. score for each of the 2,139 GO terms.
For EI and the individual modalities, the score for the best performing
heterogeneous ensemble method for each GO term is shown here. For the
Mashup and deepNF early integration methods, the score of the best local
modeling algorithm for each term is shown.

prediction approaches tested here, namely EI, deepNF and Mashup with
local modeling algorithms and the individual STRING modalities with
heterogeneous ensembles, represented a single layer of data integration
(Supplementary Fig. 2). Thus, the selection of the algorithm that yielded
the best performance for each approach for each GO term is intended to
present the corresponding strongest integrative predictor for each term, and
thus facilitate consistency across the diverse approaches evaluated.

These results show that the performance of Ensemble Integration (EI)
was significantly better than those of Mashup and deepNF (Friedman-
Nemenyi FDR = 9.34 x 10714 and < 2 x 10716, respectively), as well
as each of the individual STRING data modalities (Friedman-Nemenyi
FDR < 2 x 107 16). These results were generally consistent with those
obtained in terms of the precision and recall yielding the above Frqz
values (Supplementary Fig. 4).

We also examined how the performance of EI, deepNF and Mashup
varied with the depth (Fig. 4a) and information content (Fig. 4b) of the
GO terms included in our evaluation. Across all depths and information
content levels, EI consistently performed better than both deepNF and
Mashup, exemplified by the higher median Fj,qz values across all the
GO term subsets. We also assessed the performance of all the prediction
approaches across GO term subsets grouped by the number of human genes
annotated to them (Supplementary Fig. 3). Although the performance of all
the approaches deteriorated, as expected, for terms with fewer annotations,
EI generally performed well, and better than the other approaches. The
only exception to this observation was the set of terms with the fewest
annotations (50-100), where Mashup produced significantly more accurate
predictions than EIL.

Collectively, these results indicated that EI was able to achieve the
goals of data integration and predictive modeling for PFP more effectively
than other alternate approaches.

Finally, to gain insight into which ensemble methods performed
the best for EI, we analyzed this distribution for all the GO terms
tested (Supplementary Fig. 5). Stacking with random forest and logistic
regression were generally the best-performing EI methods, consistent with
observations in our previous work with single datasets (Whalen et al.
(2016); Wang et al. (2018)).

3.2 COVID-19 mortality prediction

Fig. 5 shows the distributions of the performance of the various
implementations of EI and heterogeneous ensembles derived from
the individual EHR data modalities for predicting the mortality over
hospitalization outcome. Note that, unlike Fig. 3, the performance of all the
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- Integration

.
t .
H 7T e
3 4 5 6 7 8 9 10 11 12 13

Depth in GO Hierarchy

[0 deepNF

Fmax

0.0

(a) Distribution of performances across GO terms stratified by their depths in the
respective ontologies.
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— ' \ ' \
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(b) Distribution of performances across GO terms stratified by their information
content. The information content bins on the z-axis were created to include an equal
number (20%) of GO terms included in the PFP experiments.

Fig. 4: Distribution of the performances (F},, . scores) of Ensemble
Integration (EI), deepNF and Mashup for GO terms at varying depths
and information content levels. The depth and information content values
of the 2,139 GO terms included in this experiment were calculated using
the GOATOOLS package (version 1.0.3) (Klopfenstein et al. (2018)).

implementations of each of the approaches are shown in the corresponding
box plots, since these results are only for one outcome. Also shown is
the performance of the baseline XGBoost method (dotted red line). As in
the PFP experiments, EI performed significantly better than the individual
modalities (Wilcoxon rank-sum FDR < 0.0082). Two of the eleven EI
ensembles tested performed better than XGBoost. The best-performing EI
method (stacking using logistic regression) scored a 0.011 (1.66%) higher
Finax than XGBoost.

We also examined the variation of precision and recall values for this
best-performing EI method, the best-performing heterogeneous ensembles
inferred from individual modalities and XGBoost (Fig. 6). The comparative
results were generally consistent with those shown in Fig. 5, with EI
generally performing well and slightly better than XGBoost. EI also
achieved a slightly better balance between precision (0.569) and recall
(0.752) at the point where F-measure was maximized than the other
approaches, including XGBoost (precision=0.529, recall=0.801).

Overall, these results showed the slight advantage of EI over early
integration for COVID-19 mortality prediction.

3.3 Interpretation of COVID-19 mortality prediction

Using the method described in Section 2.2, we also identified the ten
features that contributed the most to the best-performing EI model for
the COVID-19 mortality outcome (Table 3). These features included five
from laboratory tests, three from admission, one from vital signs and one
from co-morbidities. This distribution was consistent with the observation


https://doi.org/10.1101/2020.05.29.123497
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.29.123497; this version posted July 25, 2022. The copyright holder for this preprint (which was not certified by peer
review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

Data integration through heterogeneous ensembles 7
----- XGBoost 1.0 —— Ensemble Integration (0.648)
0.65 —— XGBoost (0.637)
. K —— Lab Tests (0.606)
0.9 Admission (0.560)
Vital Signs (0.505)
0.60 . 0.8 Co-morbidities (0.439)
g c
x o 0.7
£0.55 1]
w G 0.6
g
. o 0.5
0.50
0.4
3 " -
0.45 . 0.3
. = —]
Ensemble Lab Admission Vital Co-morbi- 0.2
Integration Tests (23) Signs dities
(a4) (9) (22) 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5: The distribution of F, .. values of various ensemble models
and XGBoost for predicting mortality from COVID-19 over a patient’s
hospitalization. The performance distributions of Ensemble Integration
(EI) and the heterogeneous ensembles derived from the individual EHR
data modalities are shown as box-and-whisker plots. Each plot includes
eleven ensemble models built using mean aggregation, CES, and nine
stacking algorithms. The numbers in parentheses next to the names on the
z-axis indicate the number of features in the corresponding modality. The
dotted red line indicates the performance of the XGBoost model trained
after concatenating the feature vectors in each individual modality.

that that laboratory tests produced the most accurate predictions across all
the modalities (Fig. 5).

We also identified the ten most contributing features in the XGBoost
model (Supplementary Table 2). Four of these features, namely age at
admission, minimum oxygen saturation among vital signs, and blood urea
nitrogen and calcium measurements among laboratory tests, overlapped
with the ten most predictive features for the EI model. This overlap was
statistically significant (Fisher’s exact test p=0.0089, odds ratio=8.74).

The results in the above subsections illustrate the utility of our EI
framework for addressing biomedical prediction problems, as well as
interpreting the predictive models generated by the framework.

4 Discussion

We proposed a novel framework named Ensemble Integration (EI)
to perform data integration and predictive modeling on heterogeneous

Recall

Fig. 6: Precision-recall curves of representative models from EI,
individual EHR modalities and XGBoost for predicting COVID-19
mortality. The values in parentheses show the F,qz value of each of
these models, and the cross marker on each curve indicates the precision
and recall at which the corresponding Fiy,q, Was obtained.

multimodal data. In contrast to the more commonly used early and
intermediate data integration approaches, EI adopts the late integration
approach. In EI, one or more local models are derived from the individual
data modalities using appropriate algorithms. These local models are then
integrated into a global predictive model using effective heterogeneous
ensemble methods, such as stacking and ensemble selection. Thus, EI
offers the flexibility of deriving individually effective local models from
each of the data modalities, which addresses challenges related to the
differing semantics of these modalities. The use of heterogeneous ensemble
methods then enables the incorporation of both the consensus and diversity
among the local models and individual data modalities.

We tested EI for the diverse problems of protein function prediction
(PFP) from multimodal STRING datasets and predicting mortality due to
COVID-19 from multimodal EHR datasets. In both these experiments, we
compared EI’s performance with those obtained from the individual data
modalities, as well as established early integration methods, specifically
deepNF and Mashup for PFP, and XGBoost for COVID-19 mortality
prediction. In all these experiments, EI performed significantly better
than the individual data modalities, showing that it accomplishes its

Table 3: Ten highest contribution features identified from the best-performing EI model for predicting mortality due to COVID-19.
The table provides detailed information on the features, including their names, the modality they were included in, and their description.
The features are sorted in terms of increasing rank product scores (third column), which is the EI interpretation metric our method calculates

(Section 2.2.)
Modality Feature l:z::(e [(J;;)gl;)t Description

Admission Age 0.023 A patient’s age at the time of hospital admission.
Laboratory Tests Chloride 0.051 The amount of chloride in a patient’s blood sample.

Vital Signs Minimum O Saturation 0.055 The minimum oxygen saturation recorded during the first 36 hours of hospitalization.
Laboratory Tests ~ Blood Urea Nitrogen 0.072 The amount of nitrogen from the waste product urea in a patient’s blood sample.
Laboratory Tests Calcium 0.088 The amount of calcium in a patient’s blood sample.

Admission Respiratory Rate 0.093 The respiratory rate recorded at the time of hospital admission.
Laboratory Tests Sodium 0.118 The amount of sodium in a patient’s blood sample.

Laboratory Tests Venous PCO2 0.120 The partial pressure of carbon dioxide measured in a patient’s venous blood.

Admission O Saturation 0.120 A patient’s oxygen saturation recorded at the time of hospital admission.

Co-morbidities Atrial Fibrillation 0.123 A diagnosis of atrial fibrillation at the time of hospital admission.
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data integration goals successfully. EI also performed better than the
early integration approaches, most likely due to its ability to aggregate
the complementary information encapsulated in the local models, which
may be lost in the uniform integrated representations used by early and
intermediate strategies.

We also proposed a novel interpretation method for EI models that ranks
the features in the individual modalities in terms of their contributions to the
EI model under consideration. We tested this method on the representative
EI model constructed for predicting the COVID-19 mortality outcome. We
found that several of the ten most important features identified for mortality
due to COVID-19 were laboratory test measurements (Table 3), which was
consistent with the observation that this modality yielded the most accurate
predictions among all the individual modalities (Fig. 5). In particular, we
found that the measurements of blood urea nitrogen (BUN) and calcium in
patients’ blood samples were key features. These findings were consistent
with prior research on the relevance of these measurements to mortality
due to COVID-19 (Basheer et al. (2021); Lippi et al. (2020)). Patients’ age
and minimum oxygen saturation were also found to be important features,
again consistent with prior evidence (Price-Haywood et al. (2020); Yadaw
et al. (2020); Berenguer et al. (2020); Pun et al. (2021)). We also analyzed
the consistency of our list of most predictive features with the ten features
found to be most predictive of the same outcome using Vaid et al. (2020)’s
XGBoost method that was considered the baseline in our prediction
experiments (Section 3.2). We found that four features, namely age at
admission, minimum oxygen saturation among vital signs, and calcium and
BUN measurements among laboratory tests, were common to both lists.
This overlap was statistically significant, indicating that EI can identify
important features consistent with other prediction methodologies, as well
as reveal novel relevant features. A deeper investigation of the predictive
features we identified can shed further light on the pathophysiology of
COVID-19 and mortality due to the disease.

In summary, this paper presented the novel EI framework, and evidence
in support of its ability to address challenging biomedical prediction
problems. We also discussed challenges with the current work, and avenues
for future work. Our efforts represent the first step in the systematizing and
expanding the use of the late integration approach for complex, multimodal
biomedical data.

Our work also has some limitations, which offer avenues for future
work. First, although EI is capable of integrating both structured and
unstructured data modalities, as well as a variety of local models derived
from these modalities, we only tested EI with structured datasets and
standard classification algorithms used to derive local models from these
datasets. In the future, it would be valuable to test EI with unstructured
data and specialized local models as well, such as label propagation
on network data (Cowen et al. (2017)), convolutional neural networks
(CNNs) derived from the biomedical images (Shen et al. (2017)) and
recurrent neural networks (RNNs) trained on sequential or time series
data (Geraci et al. (2017)). Furthermore, in our experimental evaluations,
we only compared EI to the more commonly used early data integration
approaches, namely Mashup and deepNF for PFP and XGBoost for
COVID-19 mortality prediction. These comparisons should be expanded to
intermediate integration approaches as well. Finally, our PFP evaluations
were based on multimodal functional associations derived from diverse
types of omic data in the STRING database. It would be valuable to evaluate
the ability of EI for predicting protein function directly from the raw omic
data types. Such expanded applications and evaluations will enable a more
comprehensive assessment of the capabilities of EI.

There are some limitations with the EI interpretation method and its
application as well. First, since predictive model interpretation can be
subjective, and hence, not scalable (Doshi-Velez and Kim (2017)), we only
tested this method on the COVID-19 datasets and mortality outcome, not
the considerably more numerous (2,139) and diverse GO terms considered
in the PFP experiments. To interpret the EI models built for these terms,
it would be useful to prioritize these terms based on their relevance to the
biological topic of interest.

Furthermore, the implementation of the proposed feature ranking
method was based on AUPRC, since this was the only class imbalance-
aware measure available in the Weka and sklearn functions used for
determining local ranks of features and models respectively. However,
since the basic principles of these rankings are general, they can be
implemented with other performance measures, such as Fyqz, as well
using custom code. Also, due to the use of percentile ranks in the
interpretation method, it is slightly biased in favor of modalities with larger
sets of features. Thus, in addition to the clinical relevance of laboratory
test measurements to monitoring patients’ COVID-19 status, this bias also
played a role in these features being the highest ranked for the mortality
outcome. This limitation can potentially be addressed by considering
normalized versions of model and feature ranks.
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