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Abstract
The gastrointestinal tract, its resident microorganisms and the central nervous system are
connected by biochemical signaling, also known as "microbiome-gut-brain-axis." Both the
human brain and the gut microbiome have critical developmental windows in the first three
years of life, raising the possibility that their development is co-occurring and likely
co-dependent. Emerging evidence implicates gut microorganisms and microbiota composition in
cognitive outcomes and neurodevelopmental disorders (e.g., autism and anxiety), but the
influence of gut microbial metabolism on typical neurodevelopment has not been explored in
detail. We investigated the relationship of the microbiome with the neuroanatomy and cognitive
function of 361 healthy children, demonstrating that differences in gut microbial taxa and gene
functions are associated with overall cognitive function as well as with differences in the size of
multiple brain regions. Using a combination of multivariate linear models and machine learning
(ML) models, we showed that many species, including Gordonibacter pamelae and Blautia
wexlerae, were significantly associated with higher cognitive function, while some species such
as Ruminococcus gnavus were more commonly found in children with low cognitive scores
regardless of age or maternal education. Microbial genes for enzymes involved in the
metabolism of neuroactive compounds, particularly short-chain fatty acids such as glutamate
and propionate, were also associated with cognitive function. In addition, ML models were able
to use microbial taxa to predict the volume of brain regions, with particular taxa often dominating
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the feature importance metric for individual brain regions, such as B. wexlerae being the most
dominant for the parahippocampal region or GABA-producing Bacteroidetes ovatus for left
accumbens. These findings provide potential biomarkers of neurocognition and may lead to the
future development of targets for early detection and early intervention.

Introduction
The gut and the brain are intimately linked. Signals from the brain reach the gut through the
autonomic nervous system and the endocrine system, and the gut can communicate with the
brain through the vagus nerve and through endocrine and immune (cytokine) signaling
molecules (Cerdó et al., 2019; Pronovost and Hsiao, 2019; Sharon et al., 2016; Tognini, 2017).
In addition, the products of microbial metabolism generated in the gut can influence the brain,
both indirectly by stimulating the enteric nervous and immune systems, as well as directly
through molecules that enter circulation and cross the blood-brain barrier. Causal links between
the gut microbiome and neural development, particularly atypical development, are increasingly
being identified (Spichak et al., 2021). Both human epidemiology and animal models point to the
effects of gut microbes on the development of autism spectrum disorder (Laue et al., 2020; Wan
et al., 2021) and particular microbial taxa have been associated with depression
(Mayneris-Perxachs et al., 2022; Valles-Colomer et al., 2019) and Alzheimer’s disease (Fung et
al., 2017; Kim et al., 2021). But information about this “microbiome-gut-brain axis” in normal
neurocognitive development remains lacking, particularly early in life.

The first years of life are critical developmental windows for both the microbiome and the brain
(Laue et al., 2022). Fetal development in utero is believed to be mostly sterile, but is rapidly
seeded at birth through contact with the birth canal (if birthed vaginally), caregivers, food
sources (breastmilk or formula), and other environmental sources such as antibiotics (Bäckhed
et al., 2015; Bokulich et al., 2016; Dominguez-Bello et al., 2010; Louwies et al., 2020). The early
microbiome is characterized by low microbial diversity, rapid succession and evolution, and
domination by Actinobacteria, particularly the genus Bifidobacterium, Bacteroidetes, especially
Bacteroides, and Proteobacteria (Koenig et al., 2011). Many of these microbes have specialized
metabolic capabilities for digesting human breast milk, such as Bifidobacterium infantis and
Bacteroides fragilis (Sela et al., 2008; Tso et al., 2021). Upon the introduction of solid foods, the
gut microbiome undergoes another categorical transformation, with most taxa of the infant
microbiome being replaced by taxa more reminiscent of adult microbiomes (Bäckhed et al.,
2015). Many prior studies have focused on either infant microbiomes or adult microbiomes,
since performing statistical analyses across this transition poses particular challenges.
Nevertheless, since this transition coincides with critical neural developmental windows and
neural synaptogenesis, investigation across this solid-food boundary is incredibly important (Tau
and Peterson, 2010).

A child’s brain undergoes remarkable anatomical, microstructural, organizational, and functional
changes in the first years of life. By age 5, a child’s brain has reached >85% of its adult size,
has achieved near-adult levels of myelination, and the pattern of axonal connections has been
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established (Silbereis et al., 2016). Much of this development occurs in discrete windows or
“sensitive-” or “critical periods” (CPs) (Knudsen, 2004) when neural plasticity is particularly high,
and particular modes of learning and skill development are preferred. The timing of these
sensitive periods is driven in part by genetics, but can also be affected by the environment,
including the gut microbiome (Cowan et al., 2020). In fact, emerging evidence suggests that the
timing and duration of CPs may be driven in part by cues from the developing gut microbiome
(Callaghan, 2020). As such, understanding the normal spectrum of healthy microbiome
development and how it relates to normal neurocognitive development may provide
opportunities for identifying atypical development earlier and offer opportunities for intervention.

To begin to address this need, we investigated the gut microbiome and neurocognitive
development of children from infancy through 10 years of age in an accelerated longitudinal
study design. Gut microbial communities were assessed using shotgun metagenomic
sequencing, enabling profiling at both the taxonomic and gene-functional level, and
neurocognitive development was measured using expert-assessment of cognitive function and
neuroimaging using magnetic resonance imaging (MRI). Using a combination of classical
statistical analysis and machine learning, we showed that the development of the gut
microbiome, the brain, and children’s cognitive abilities are intimately linked, with both microbial
taxa and gene functions able to predict cognitive performance and brain structure.

Results

Cohort overview and summary data
We investigated the co-development of the brain and the microbiome in early childhood in a
cohort of typically-developing children in their first years of life using a variety of orthogonal
microbial and neurocognitive assessments, including shotgun metagenomic sequencing,
cognitive and behavioral assessments, and neuroimaging. In all, 361 children from
RESONANCE, an accelerated longitudinal cohort of early development (Forrest, Blackwell, and
Camargo 2018) between the ages of 82 days and 10 years old (median age 2.21 years,
Supplementary Figure 1)  were included in this study (Table 1, Figure 1A). To measure cognitive
function, we used age-appropriate assessments that can be normalized to a common, IQ-like
scale (Figure 1B), including the Mullen scale of early learning (MSEL) for children from birth to 3
years of age (Mullen and others, 1995), Wechsler preschool and primary scale of intelligence
(WPPSI) for 4–5-year-olds (Wechsler, 2012), and the Wechsler intelligence scale for children
(WISC) for children 6 years and up (Wechsler, 1949).

As expected, the greatest differences in microbial taxa were driven by age (Figure 1B-C,  PCoA
axis 1), while older children were primarily stratified into Bacteroidetes-dominant,
Firmicutes-dominant, or high-Prevotella copri (Supplementary Figure 2). Overall variation in gut
microbial genes and also in brain volume profiles was similarly driven largely by subject age
(Figure 1C-F).

Table1: Subject demographics
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Group Subgroup All Under 6 mo Over 18 mo

N subjects 361 74 257

Samples

1 262 (72.6%) 74 (100.0%) 203 (79.0%)

2 72 (19.9%) 0 (0.0%) 46 (17.9%)

>2 27 (7.5%) 0 (0.0%) 8 (3.1%)

Age (months)

Min 2.8 2.8 18.0

Max 119.3 6.0 119.3

Median 25.8 3.7 45.9

Sex
F 163 (45.2%) 37 (50.0%) 114 (44.4%)

M 198 (54.8%) 37 (50.0%) 143 (55.6%)

Race

White 252 (69.8%) 42 (56.8%) 191 (74.3%)

Black 40 (11.1%) 16 (21.6%) 21 (8.2%)

Asian 1 (0.3%) 0 (0.0%) 1 (0.4%)

Mixed 7 (1.9%) 1 (1.4%) 6 (2.3%)

Other 48 (13.3%) 12 (16.2%) 29 (11.3%)

Unknown/Declined 2 (0.6%) 1 (1.4%) 2 (0.8%)

Maternal Ed.

Junior high school 1 (0.3%) 0 (0.0%) 1 (0.4%)

Some high school 6 (1.7%) 3 (4.1%) 4 (1.6%)

High school grad 37 (10.2%) 13 (17.6%) 16 (6.2%)

Some college 95 (26.3%) 25 (33.8%) 57 (22.2%)

College grad 90 (24.9%) 17 (23.0%) 69 (26.8%)

Grad/professional
school 123 (34.1%) 15 (20.3%) 104 (40.5%)

Several studies have demonstrated links between specific taxa and measures of anxiety and
depression (Mayneris-Perxachs et al., 2022; Needham et al., 2022), cognitive flexibility in adults
(Magnusson et al., 2015), and atypical neural development (Liu et al., 2019; Wan et al., 2021).
We, therefore, set out to identify whether specific taxa or gene functions were linked with normal
cognitive development in children. In order to assess whether variations in gut microbial taxa,
their genes, or their metabolism are linked with neurocognitive development, we tested whether
the beta diversity of microbial taxa and gene functions, as well as variation in brain development
as assessed by neuroimaging, were associated with these contemporaneous measures of
cognitive function using permutation analysis of variance (PERMANOVA). Due to the large
ecological shift in the microbiome that occurs upon the introduction of solid food, and a relatively
wide range of ages when infants are transitioned to solid food, we considered the pre-transition
(less than 6 months old) and post-transition (over 18 months old) microbiomes separately. Even
still, age was a major driver of variation in gut microbiomes in children over 18 months old
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(Figure 1G). We also found that overall variation in microbial species in children over 18 months
old was associated with a small but significant variation in cognitive function score (Figure 1G,
R2 = 0.0124, q < 0.001), as was variation in microbial gene functions (R2 = 0.0119, q < 0.001).
Variation in microbial taxa and genes was not significantly associated with cognitive function in
children under 6 months, though this may be due to the low taxonomic diversity, and broad lack
of overlap between taxa in infants. As expected, age was significantly associated with microbial
beta diversity (taxa R2 = 0.0215, and UniRef90s R2 = 0.0245, q < 0.001), and very strongly
associated with neuroimaging profiles (R2 = 0.256, q < 0.001).

Consistent with prior studies, different microbial measurement types captured overlapping
variation, with species profiles and gene function profiles (annotated with clusters of 90%
similarity (Suzek et al., 2007)), both generated from DNA sequencing data, being tightly coupled
(Figure 1H, p < 0.001). Interestingly, other functional groupings (Enzyme commission level4 -
ECs (Bairoch, 2000), and KEGG orthologues - KOs (Kanehisa et al., 2004)) overlapped only
slightly with taxonomic profiles in both age cohorts, despite being derived from UniRef90 labels.
In children over 18 months, some variation (15.9%, p < 0.01) in neuroimaging overlapped with
microbial measures, though this may be due to the residual variation due to age in both
measures.

Microbial species and neuroactive genes are associated with cognitive
performance
To assess whether individual microbial species were associated with cognitive function, we fit
multivariable linear regression (Mallick et al., 2021) to the relative abundance of each species
that had at least 15% prevalence in a given age group (Figure 2A, N = 92 for 0–120 months, N
= 46 for 0–6 months, N = 97 for 18–120 months). Only Blautia wexlerae was significantly
associated (q value = 0.14, β = 0.0015) with cognitive function in children under 6 months old
after adjusting for age and maternal education (Figure 2B). B. wexlerae was previously shown
to be depleted in children with diabetes (Benítez-Páez et al., 2020), and that oral administration
of B. wexlerae partially ameliorated weight gain and inflammation from a high-fat diet in a
mouse model of T2D (Hosomi et al., 2022; Liu et al., 2021). In children over 18 months of age,
several microbial species were significantly enriched (q-value < 0.20) in children with higher
cognitive function scores, including Gordonibacter pamelaeae, which produces the
neuroprotective metabolite urolithin (Gong et al., 2022; Selma et al., 2014), Asaccharobacter
celatus and Adelcreutzia equolifaciens, which produce phytoestrogen-derived equol (Maruo et
al., 2008; Thawornkuno et al., 2009), and the SCFA-producing probiotic species such as
Eubacterium eligens and Faecalibacterium prausnitzii (Ghosh et al., 2020; Lopez-Siles et al.,
2017; Mukherjee et al., 2020) (Figure 2B).

Given that different microbial species might occupy the same metabolic niche in different
individuals, we hypothesized that microbial genes grouped by functional activity would be
associated with cognition. To test this, we performed feature set enrichment analysis (FSEA) on
groups of genes with neuroactive potential (Valles-Colomer et al., 2019) and concurrent
cognitive function score (Table 2, Figure 2C-G) and found that several metabolic pathways were
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significantly enriched or depleted in children with higher cognitive function scores. This was true
both when considering all age groups together, though the enrichment of most pathways was
more pronounced in children under 6 months or over 18 months. For example, genes for
degrading the 3-carbon SCFA propionate were significantly depleted in children with higher
cognitive function scores across all age groups tested (Table 2; propionate degradation I, under
6 months, enrichment score (E.S.) =  -0.542, corrected p-value (q) = 0.020; over 18 months,
E.S. = -0.674, q = 0.041). Interestingly, genes for propionate synthesis were also significantly
depleted in higher scoring children over 18 months (E.S. -0.676, q = 0.023), as were genes for
synthesizing the 2 carbon SCFA acetate in children under 6 months old (acetate synthesis I,
E.S. = -0.194, q = 0.153; acetate synthesis II, E.S. = -0.342, q = 0.020; acetate synthesis III,
E.S. = -0.31, q = 0.052). SCFAs are produced by anaerobic fermentation of dietary fiber and
have been linked with immune system regulation as well as directly with brain function (Dalile et
al., 2019).

Synthesis of menaquinone (vitamin K) was also negatively associated with cognitive function
score in older children (menaquinone synthesis I, E.S. = -0.170, q = 0.0183). Menaquinone has
several isoforms, one of which, MK-4, has been found to be decreased in children diagnosed
with ASD (Dong et al., 2021) and is potentially neuroprotective in both rodents and humans
(Elkattawy et al., 2022). In children over 18 months old, genes for the synthesis of the amino
acids glutamate and tryptophan were significantly enriched in children with higher cognitive
function scores (Glutamate synthesis I, E.S. = 0.242, q = 0.047; Tryptophan synthesis, E.S. =
0.119, q = 0.041). Glutamate is a critical neurotransmitter controlling neuronal
excitatory/inhibitory signaling along with gamma-aminobutyric acid (GABA), and their balance in
the brain controls neural plasticity and learning, particularly in the developing brain (Cohen
Kadosh et al., 2015; Palomo-Buitrago et al., 2019). Tryptophan metabolism, including microbial
metabolism of tryptophan, has previously been linked with autism in children (Hoshino et al.,
1984; Xiao et al., 2021). Taken together, these results suggest that microbial metabolic activity,
particularly the metabolism (synthesis and degradation) of neuroactive compounds may have
effects on cognitive development.

Table 2 - Feature set enrichment analysis on neuroactive microbial gene sets
All under 6 months over 18 months

geneset E.S. q value E.S. q value E.S. q value

Acetate syn. I -0.1223 0.5549 -0.1944 0.1533 0.1269 0.6023

Acetate syn. II -0.2201 0.0660 -0.3424 0.0198 -0.0946 0.9199

Acetate syn. III -0.2104 0.0859 -0.3098 0.0518 -0.0857 0.9199

Glutamate deg. I -0.4037 0.1802 -0.2840 0.8159 -0.2489 0.6023

Glutamate syn. II 0.0953 0.6022 -0.1342 0.9802 0.2421 0.0466

Menaquinone syn. I -0.0853 0.5635 -0.0833 0.8159 -0.1699 0.1825

Propionate deg. I -0.4612 0.1302 -0.5421 0.0198 -0.6738 0.0414

Propionate syn. I -0.3344 0.5549 -0.3201 0.5713 -0.6760 0.0227
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Tryptophan syn. 0.0573 0.9742 -0.0725 0.8159 0.1186 0.0414

Gut microbial taxonomic and functional profiles predict cognitive function

FSEA relies on understanding functional relationships between individual genes. However,
because the relationships between individual taxa are still largely unknown, we turned to
Random Forest (RF) models, an unsupervised non-parametric machine learning (ML) method
that enables the identification of underlying patterns in large numbers of individual features
(here, microbial species). Previous studies have reported successful use of RFs for processing
highly-dimensional and sparse data from the domain of genomics (Amaratunga et al., 2008;
Brieuc et al., 2018; Chen and Ishwaran, 2012; Franzosa et al., 2019; Stephan et al., 2015),
along with other works where it was used to predict cognitive conditions related to Alzheimer’s
disease in different scenarios (Ardekani et al., 2017; Velazquez et al., 2021). Additionally, given
the sequential nature of variable consideration in each tree, RFs are naturally able to work out
complex input feature interactions, such as those present in a microbiome-wide study, without
the necessity to explicitly compute interaction terms.
Given that gut microbial profiles, as well as neurocognitive development, may partially reflect
socioeconomic and demographic factors, we assessed the performance of RF regressors where
maternal education (a proxy of socioeconomic status (SES)), sex, and age were included as
possible predictors, either alone or in combination with microbial taxonomic profiles (Table 3).

Table 3. Benchmark metrics for the cognitive assessment score prediction models.
Confidence intervals are calculated from the distribution of metrics from repeated CV at a
confidence level of 95%

Subject Ages
(months)

Microbial
feature

Demo. Test set correlation (± C.I.) Test set
Root-mean-squa
re error (± C.I.)

0 to 6 - + -0.14 ± 0.01 13.01 ± 0.05

0 to 6 taxa - -0.10 ± 0.01 12.66 ± 0.05

0 to 6 taxa + -0.13 ± 0.01 12.70 ± 0.05

0 to 6 genes - -0.01 ± 0.01 12.56 ± 0.05

0 to 6 genes + -0.01 ± 0.01 12.56 ± 0.05

18 to 120 - + 0.506 ± 0.003 16.27 ± 0.04

18 to 120 taxa - 0.363 ± 0.003 17.66 ± 0.04

18 to 120 taxa + 0.429 ± 0.003 17.29 ± 0.04
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18 to 120 genes - 0.303 ± 0.003 18.01 ± 0.04

18 to 120 genes + 0.333 ± 0.004 17.86 ± 0.04

As with linear models, RF models for children under 6 months old were less generalizable
(mean test-set correlation -0.13, mean RMSE 12.70), but RFs were consistently able to learn
the relationship between taxa and cognitive function scores in children over 18 months of age
(mean test-set correlation 0.429, mean RMSE 17.29). For both age groups, species that were
important in RF overlapped with those that were significant when testing the relationship with
linear models (Figure 3A-B, Supplementary Table XXA-B), though there were substantial
differences. For children under 6 months, only B. wexlerae was significantly associated with
cognitive function in linear models, but was ranked 20th in importance for RF models. The
importance metric employed (MDI) is a measure of how well the variable differentiates (splits)
sets of samples by creating subgroups that reduce the intra-group deviations, while also
accounting for the amount of samples affected by a split. All taxa significantly associated with
cognitive function score in children over 18 months using LMs belong to the top-ranking group
responsible for 60% of the total relative importance, except for Eubacterium ramulus (Table 3,
Figure 3A).

Interestingly, several taxa highly ranked in importance in both age groups, including several that
were significant in LMs for children over 18 months old, including R. gnavus (0–6 months, rank
= 13; 18–120 months, rank = 7) and G. pamelaeae (0–6 months, rank = 16; 18–120 months,
rank = 20), while others such as Allistipes finegoldii were age-group specific. Several taxa
important in RF models were not statistically significant when using linear models after multiple
hypothesis correction. However,  these taxa had small nominal p-values. For example,
Erysipelatoclostridium ramosum was the most important feature in RF models for children under
6 months old and had an LM p-value of 0.04. Subject age was consistently ranked highly in
feature importance, which could indicate that decision branches based on microbial taxa have
increased purity when considering the subject’s age or that age itself is a useful predictor.

Gut microbial taxonomic profiles predict brain structure differences
If there are causal effects of microbial metabolism on cognitive function, they might be reflected
in changes in neuroanatomy. We again employed a Random Forest modeling approach to
associate gut taxonomic profiles with individual brain regions identified in MRI  scans,
normalized to total brain volume. Some brain regions were more readily predicted by RF models
trained on microbial taxa (Table 4, Supplementary Table XX), in particular those that were highly
correlated with age. These included the L/R lingual gyrus (mean RF correlations, Left = 0.421,
Right = 0.434; relative age importances, Left = 7.5%, Right = 8.3%) and the L/R pericalcarine
cortex (mean RF correlations, Left = 0.200, Right = 0.273; relative age importances, Left =
3.7%, Right = 6.3%). In many cases, however, age was not an important variable in
high-performing models, such as that for the left accumbens area (mean RF correlations =
0.288; relative age importances = 1.2%).
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Table 4. Summary statistics for the neuroanatomy prediction benchmarks

Statistic Mean absolute proportional
error (MAPE)

Correlation coefficient (R)

mean 0.072 0.137

Standard deviation 0.028 0.136

maximum 0.206 0.605

75th percentile 0.082 0.195

50th percentile 0.067 0.134

25th percentile 0.056 0.062

minimum 0.035 -0.147

We also observed that many brain regions had high accordance across the left and right
hemispheres in terms of both model performance and microbial feature importance. In contrast,
other regions had substantial differences between the hemispheres. For example, the left
accumbens area, which plays an important role in reward circuits (Ernst et al., 2005; Yau et al.,
2012), has one of the highest test-set correlations of our brain region models (R = 0.288), as
compared to the right accumbens models which could not adequately generalize, and had a
negative mean test-set correlation (R = -0.041). Most healthy individuals have a rightward
asymmetry in the nucleus accumbens, and reduced asymmetry has been linked to substance
use disorder in young adults (Cao et al., 2021). Feature importance for models of the left
accumbens area were dominated by three species of Bacteroides, B. vulgatus (3.4% relative
importance), B. ovatus (3.7% relative importance), and B. uniformis (3.0% relative importance)..
The accumbens area is associated with reward control, and in individuals diagnosed with
ADHD, it has been shown to have a divergent neuromorphology (Hoogman et al., 2017).
Independently, B. ovatus, B. uniformis and B. vulgatus have been linked to ADHD (Wang et al.,
2020). In fact, there are studies showing that alterations on the striatal dopamine transporters
can cause effects resembling hyperactivity and attention deficit (Yael et al., 2019), and that B.
uniformis is gut-microbial modulator of the brain dopamine transporter (Hartstra et al., 2020).

Many of the taxa identified included taxa also identified in LMs and RF models of cognitive
function. Interesting to note, while RF models for multiple brain regions had many important
microbial taxa, others were dominated by a small number of taxa. In general, for all segments, a
consistent number of species between 14 and 22 (median = 20) was responsible for one third of
the fitness-weighted cumulative importance (see Methods), regardless of the model
benchmarks. We proceeded to select a subset of the most important taxa (averaged over all
segments) and the segments whose importance was more heavily loaded to further analyze the
multiple relationships unveiled by the RF models (Figure 4 A and B)
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Our analysis revealed two major patterns of importance distribution from taxa over the brain
segments; some species portrayed high contributions to multiple different segments, while
others contributed modestly to just one or two brain segments. Notable cases of the first pattern
included seven species - Anaerostipes hadrus, Bacteroides vulgatus, Fusicatenibacter
saccharivorans, Ruminococcus torques, Eubacterium rectale, Coprococcus comes and Blautia
wexlerae - that combined, account for approximately one third of the cumulative relative
importances, computed after subsetting on the taxa of interest (Figure 4C).

Among these, the most important variable is Anaerostipes hadrus, which is a butyrate-producing
anaerobe that has been positively associated with cognitive function (Kant et al., 2015; Li et al.,
2022). Its importance is, however, heavily loaded on the volume of entire major lobes (frontal,
parietal), which cannot be readily correlated to specific cognitive functions. After accounting for
the major lobes, it is found to be highly important on the prediction of the cerebellar vermal
lobules VIII-X, pars opercularis, cuneus and precuneus, and anterior-cingulate (Figure 4B).

To better understand this relationship, we performed hierarchical cluster analysis, which
revealed a well defined cluster of species with high importance loadings on close segments of
the lower temporal and close occipital lobe, to which A. hadrus belongs. The other species on
this cluster are B. wexlerae, R. torques, R. intestinalis, R. bicirculans and F. saccahrivorans,
who contribute heavily to the entorhinal, fusiform, lingual and parahippocampal segments.

This group of taxa and their related segments drew our attention because they contained B.
wexlerae, a highlight from the cognitive assessment results. Previous works exploring Parkinson
Disease patients found out that issues in the cognitive task of confrontation naming were
positively correlated with thinning in the fusiform gyrus and parahippocampal gyrus
(Pagonabarraga et al., 2013). Additionally, the left and right parahippocampal, where B.
wexlerae had the highest importance in both models, are important in visual/spatial processing
and memory (Aminoff et al., 2013). B. wexlerae can also produce acetylcholine in the gut
(Hosomi et al., 2022), and this molecule plays an important role in modulating memory function
(Haam and Yakel, 2017).

Another notable importance cluster contains taxa associated with the basal forebrain, especially
the cingulate and the accumbens. This cluster contains the previously-discussed B. ovatus and
B. uniformis, but also Alistipes finegoldii and Streptococcus salivaris. Reduction in the nucleus
accumbens has been associated with depression symptoms (Wacker et al., 2009), and
increased levels of the Alistipes genus have been observed in patients with depressive disorder
(Jiang et al., 2015). While these reports are important, simultaneously probing of the gut
metagenome and brain structure relationship is novel.

Both A. equolofaciens and A. celatus, two closely-related equol-producing species, are
examples of the second contribution pattern, and had high importance in predicting the relative
volume of the right anterior cingulate (respectively, 3.0% and 2.6% relative importances), which
has been linked to social cognition and reward-based decision making (Apps et al., 2016; Boes
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et al., 2008; Bush et al., 2002). Equol has a strong estrogenic effect (Setchell et al., 2005), and
in anterior cingulate, estrogen, has been shown to regulate pain-related aversion (Xiao et al.,
2013). Another example of this pattern is R. gnavus, which was the only species with significant
negative association with cognitive function. It is heavily associated with the left pars opercularis
(2.7% relative importance), a relationship that may be explained by the emerging understanding
that this species is increased in individuals with insulin resistance and obesity (Ley et al., 2006),
conditions that are known to produce structural abnormalities in the brain (Opel et al., 2021).
Finally, Coprococcus comes displays an importance distribution that splits almost evenly among
the two previously reported clusters. Its loading on the prediction of the left posterior cingulate is
the highest for a microbe in RF models (4.0% relative importance) (only age had higher relative
importance in any model), while also being one of the most important predictors for neighboring
areas of the posterior cingulate such as the pars opercularis (relative importances, Left = 2.3%,
Right = 2.8%), along with upper regions like the left precentral (2.3% relative importance) and
paracentral lobes (relative importances, Left = 2.6%, Right = 1.8%).

Discussion

The relationship between the gut microbiome and brain function via the gut-microbiome-brain
axis has gained increasing acceptance largely as a result of human epidemiological studies
investigating atypical neurocognition (eg anxiety and depression, neurodegeneration, attention
deficit / hyperactivity disorder, and autism) and mechanistic studies in animal models. The
results from these studies point to the possibility that gut microbes and their metabolism may be
causally implicated in cognitive development, but this study is the first to our knowledge that
directly investigates microbial species and their genes in relation to typical development in
young children. Understanding the gut-brain-axis in early life is particularly important, since
differences or interventions in early life can have outsized and longer-term consequences than
those at later ages. Further, even in the absence of causal impacts of microbial metabolism,
identifying risk factors that could point to other early interventions would also have value.

The use of shotgun metagenomic sequencing enabled us to get species-level resolution of
microbial taxa. A previous study of cognition in 3 year old subjects used 16S rRNA gene
amplicon sequencing, and showed that genera from the Lachnospiraceae family as well as
unclassified Clostridiales (now Eubacteriales) were associated with higher scores on the Ages
and Stages Questionnaire (Sordillo et al., 2019). However, each of these clades encompass
dozens of genera with diverse functions, each of which may have different effects. Indeed,
several of the taxa that were positively associated with cognitive function in this study, including
B. wexlerae, the only species identified by linear models in children under 6 months, D.
longicatena, R. faecis, and A. finegoldii are Clostridiales, as is R. gnavus, which we found was
negatively associated with cognitive function (Figure 2A-B). This kind of species-level resolution
is typically not possible with amplicon sequencing.

We identified several species in the family Eggerthelaceae that were associated with cognitive
function, including Gordonibacter pamelaeae, Aldercreutzia equolofaciens, Asaccharobacter
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celatus (formerly regarded a subspecies of A. equolofaciens (Takahashi et al., 2021)), and
Eggerthella lenta. Many members of this family are known in part due to unique metabolic
activities. For example, A. equolofaciens produces the nonsteroidal estrogen equol from
isoflaven found in soybeans (Wang et al., 2005), and G. pamelaeae can metabolize the
polyphenol ellagic acid (found in pomegranates and some berries) into urolithin, which has been
shown in some studies to have a neuroprotective effect (Gong et al., 2022; Selma et al., 2014).
E. lenta has been extensively studied for its ability to metabolize drug compounds such as the
plant-derived heart medication digoxin (Haiser et al., 2013). The metabolic versatility of this
clade, and the large number of species that are associated with cognition make these microbes
prime targets for further mechanistic studies.

In addition to improved species-level resolution, shotgun metagenomic sequencing also enables
gene-functional insight. We showed here that genes for the metabolism of SCFAs, both their
degradation and synthesis, are associated with cognitive function scores. However, while the
differential abundance of genes for the metabolism of neuroactive compounds like these is
suggestive, it is difficult to reason about the relationship between levels of these genes and the
gut concentrations of the molecules their product enzymes act on. For example, while it might
be intuitive to reason that increased levels of menaquinone synthesis genes is indicative of
increased menaquinone, it could be the case that menaquinone deficiency selects for microbes
that can synthesize it. For the same reason, increased propionate degradation genes may
counterintuitively be indicative of high levels of propionate in the gut lumen, since high
propionate would select for microbes that can metabolize it. For this reason, future studies
coupling shotgun metagenomics with stool metabolomics could improve our understanding of
the relationship between microbial metabolism and cognitive development. Further, strain-level
analysis linking specific gene content in species of interest could further refine targeted efforts at
identifying specific metabolic signatures of microbe-brain interactions.

The use of multiple age-appropriate cognitive assessments that could be normalized to a
common scale enabled us to analyze microbial associations across multiple developmental
periods, but carries several drawbacks. In particular, the test-retest reliability, as well as
systematic differences between test administrators may introduce substantial noise into these
observations, particularly in the youngest children. In addition, our study period overlapped with
the beginning of the COVID-19 pandemic, and we and others have observed some reduction in
measured scores for children that were assessed after the implementation of lockdowns. In our
subject set for this study, these effects are more pronounced in some age groups due to our
sampling schedule (Blackwell et al., 2022; Deoni et al., 2021) (Supplementary Figure 3).

This analysis allowed us to establish links between microbial taxa and their functional potential
with cognition and brain structure. Although we cannot test causality or the chemistry behind the
interactions between gut microbial taxa, gut, and brain, this study provides clear and statistically
significant associations between the infant and early child gut microbiota and neurocognition.
Future studies should focus on characterizing the early-life microbiome and neurocognitive
development across different geographic regions and lifestyles such as covering traditionally
understudied low-resource urban, peri-urban and rural communities to obtain the more
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comprehensive understanding of the variability within the different gut microbiomes reflects on
neurocognition. These studies would also provide us with the wealth of data on different strains
from the same species to better understand the effect of genes and their products. Furthermore,
culturing and microbial community enrichment studies combined with genetic manipulation and
genomic approaches to understand microbial metabolism at the molecular level is the key, as
the metabolic functions shape and influence the human host and its health. The discovery of the
neuroactive metabolites could provide us with biomarkers for early detection or necessary
medicinally useful molecules that can be applied in intervention.

Material and Methods

Study Ethics
All procedures for this study were approved by the local institutional review board at Rhode
Island Hospital, and all experiments adhered to the regulation of the review board. Written
informed consent was obtained from all parents or legal guardians of enrolled participants.

Participants
Data used in this study were drawn from the ongoing longitudinal RESONANCE study of
healthy and neurotypical brain and cognitive development, based at Brown University in
Providence, RI, USA. The RESONANCE study is part of the NIH initiative Environmental
influences on Child Health Outcomes (ECHO) (Forrest et al., 2018; Gillman and Blaisdell, 2018),
a longitudinal observational study of healthy and neurotypical brain development that spans the
fetal and infant to adolescent life stages, combining neuroimaging (magnetic resonance
imaging, MRI), neurocognitive assessments, bio-specimen analyses, subject genetics,
environmental exposures such as lead, and rich demographic, socioeconomic, family and
medical history information. From the RESONANCE cohort, 361 typically-developing children
between the ages of 2.8 months and 10 years old (median age 2 years, 2 months) were
selected for analysis in this study.

General participant demographics are provided in Table 1. Children are representative of the RI
population. Children in the RESONANCE cohort were born full-term (< 37 weeks gestation) with
height and weight normal for gestational age, and from uncomplicated singleton pregnancies.
Children with known major risk factors for developmental abnormalities at enrollment were
excluded. In addition to screening at the time of enrollment, on-going screening for worrisome
behaviors using validated tools was performed to identify at-risk children and remove them from
subsequent analysis.

Exclusion criteria included: in utero exposure to alcohol, cigarette or illicit substance exposure;
preterm (< 37 weeks gestation) birth; small for gestational age or less than 1500 g; fetal
ultrasound abnormalities; preeclampsia, high blood pressure, or gestational diabetes; 5 minute
APGAR scores < 8; NICU admission; neurological disorder (e.g., head injury resulting in loss of
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consciousness, epilepsy); and psychiatric or learning disorder (including maternal depression) in
the infant, parents, or siblings requiring medication in the year prior to pregnancy.

Demographic and other non-biospecimen data such as race and ethnicity, parental education
and occupation, feeding behavior (breast- and formula-feeding), child weight and height, were
collected through questionnaires or direct examination as appropriate. All data were collected at
every assessment visit, if possible.

Cognitive Assessments
Overall cognitive function was assessed using age-appropriate methods. For children from birth
to 30 months, we used an Early Learning Composite as assessed via the Mullen Scales of Early
Learning (MSEL) (Mullen and others, 1995), a standardized and population-normed tool for
assessing fine and gross motor, expressive and receptive language, and visual reception
functioning in children from birth through 68 months of age. The Wechsler Intelligence Quotient
for Children (WISC) (Wechsler, 2012) is an individually administered standard intelligence test
for children aged 6 to 16 years. It derives a full scale intelligence quotient (IQ) score, which we
used to assess overall cognitive functioning. The fourth edition of the Wechsler Preschool and
Primary Scale of Intelligence (WPPSI-IV) is an individually administered standard intelligence
test for children aged 2 years 6 months to 7 years 7 months, trying to meet the increasing need
for the assessment of preschoolers. Just as the WISC, it derives a full scale IQ score, which we
used to assess overall cognitive functioning.

Stool Sample Collection and Sequencing
Stool samples (n=493) were collected by parents in OMR-200 tubes (OMNIgene GUT, DNA
Genotek, Ottawa, Ontario, Canada), stored on ice, and brought within 24 hrs to the lab in RI
where they were immediately frozen at -80 ˚C. Stool samples were not collected if the subject
had taken antibiotics within the last two weeks. DNA extraction was performed at Wellesley
College (Wellesley, MA). Nucleic acids were extracted from stool samples using the RNeasy
PowerMicrobiome kit, excluding the DNA degradation steps. Briefly, the samples were lysed by
bead beating using the Powerlyzer 24 Homogenizer (Qiagen, Germantown, MD) at 2500 rpm
for 45 s and then transferred to the QIAcube (Qiagen, Germantown, MD) to complete the
extraction protocol. Extracted DNA was sequenced at the Integrated Microbiome Resource
(IMR, Dalhousie University, NS, Canada).

Shotgun metagenomic sequencing was performed on all samples. A pooled library (max 96
samples per run) was prepared using the Illumina Nextera Flex Kit for MiSeq and NextSeq from
1 ng of each sample. Samples were then pooled onto a plate and sequenced on the Illumina
NextSeq 550 platform using 150+150 bp paired-end “high output” chemistry, generating 400
million raw reads and 120 Gb of sequence per plate.
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Computational analysis of metagenomes
Shotgun metagenomic sequences were analyzed using the bioBakery suite of computational
tools (Beghini et al. 2021). First, KneadData (v0.7.7) was used to perform quality control of raw
sequence reads, such as read trimming and removal of reads matching a human genome
reference. Next, MetaPhlAn (v3.0.7, using database mpa_v30_CHOCOPhlAn_201901) was
used to generate taxonomic profiles by aligning reads to a reference database of marker genes.
Finally, HUMAnN (v3.0.0a4) was used to functionally profile the metagenomes.

Machine learning for cognitive development
Prediction of cognitive scores was carried out as a set of regression experiments targeting
real-valued continuous assessment scores. Different experiment sets were designed to probe
how different representations of the gut microbiome (taxonomic profiles or functional profiles
encoded as ECs) would behave, with and without the addition of demographics (sex and
maternal education as a proxy of socioeconomic status) on participants from different age
groups. Age (in months) was provided as a covariate for all models (Table 3).

Table 5. Experimental design and input composition for Random Forest experiments

Input set Age bracket Microbiome encoding
type

Demographics
Provided?

(sex, education)

1 0 to 6 months Not provided yes

2 0 to 6 months Taxonomic profile no

3 0 to 6 months Taxonomic profile yes

4 0 to 6 months Functional Profile (ECs) no

5 0 to 6 months Functional Profile (ECs) yes

6 18 to 120 months Not provided yes

7 18 to 120 months Taxonomic profile no

8 18 to 120 months Taxonomic profile yes

9 18 to 120 months Functional Profile (ECs) no

10 18 to 120 months Functional Profile (ECs) yes

Random Forests (RFs) (Breiman 1996) were selected as the prediction engine and processed
using the DecisionTree.jl (Sadeghi et al., 2022) implementation, inside the MLJ.jl (Blaom et al.,
2020) Machine Learning framework. Independent RFs were trained for each experiment, using
a set of default regression hyperparameters from Breiman and Cutler (Breiman, 2001), on a
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repeated cross-validation approach with different RNG seeds. One hundred repetitions of 3-fold
CV with 10 different intra-fold RNG states each were employed, for a total of 3000 experiments
per input set.

After the training procedures, the root-mean-square error (RMSE) for cognitive assessment
scores and mean absolute proportional error (MAPE) for the brain segmentation data, along
with Pearson's correlation coefficient (R) were benchmarked on the validation and train sets.
MAPE was chosen as the metric for brain segments due to magnitude differences between
median volumes of each segment, which would hinder interpretation of raw error values without
additional reference.

To derive biological insight from the models, the covariate variable importances for all the input
features, measured by mean decrease in impurity (MDI, or GINI importance), was also
analyzed. Leveraging the distribution of results from the extensive repeated cross validation
experiments, rather than electing a representative model or picking the highest validation-set
correlation, a measure of model fitness (Equation 1) was designed to weight the importances
from each trained forest. The objective was to give more weight to those with higher
benchmarks on the validation sets (or higher generalizability), while penalizing information from
highly overfit models, drawing inspiration from the approach used on another work employing
repeated CV on Random Forests with high-dimensional, low sample size microbiome datasets
(Woodruff et al., 2022). The resulting fitness-weighted importances were used to generate the
values in Figure 3.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑚𝑎𝑥(𝑟
𝑡𝑟𝑎𝑖𝑛

,  0) · 𝑚𝑎𝑥(𝑟
𝑡𝑒𝑠𝑡

,  0)

Equation 1. Mathematical expression of the fitness measure used to weight feature
importances based on model benchmarks

MRI / segmentation
MRI data was acquired at a 3T Siemens Trio scanner with the following parameters:
TE=5.6msec, TR=1400msec, FA=15 degrees, 1.1x1.1x1.1mm resolution, 160x160 matrix, with
an average of 112 slices. FOV was adjusted to infant size. Using a combination of linear and
nonlinear image registration, we created representative age-specific templates using the ANTs
package (Avants et al., 2014). After age specific templates were created, a single flow from
each age to the 12-month template was estimated and a final warp from the 12-month template
to standard adult MNI space was performed. For each individual infant/ child brain image, we
then calculated the warp from their native T1w image space to their nearest-in-age template.
Using the resulting warps (native → nearest age template → 12-month template → MNI
template), we could move the standard adult brain atlas to the space of an individual infant in a
single step. In this case, we used the Harvard-Oxford brain atlas to provide a coarse-grained
parcellation of individual brains into subcortical regions (e.g., thalamus, putamen) and total grey
and white matter volumes (included as part of the FSL package (Jenkinson et al., 2012). Total
tissue and brainstem volume as well as left and right hemisphere volumes were derived for total
white and cortical gray matter, lateral ventricle, thalamus, caudate, putamen, pallidum,
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hippocampus, amygdala, and accumbens as well as total brainstem volume (Bruchhage et al.,
n.d.).

Data and code availability
Taxonomic and functional microbial profiles, as well as subject demographics necessary for
statistical analyses and machine learning are available on the Open Science Framework
(Bonham et al., 2022). Data processing, generation of summary statistics, and generation of
plots was performed using the julia programming language (Bezanson et al., 2017; Bonham et
al., 2021; Danisch and Krumbiegel, 2021). All code for data analysis and figure generation, as
well as scripts for automated download of input files are available on github .
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Figures

Figure 1: Cohort overview and summary data.
(A) Study design and overview. Stool samples, cognitive assessments and neuroimaging were
collected from participants in an accelerated longitudinal design. (B) Cognitive function scores
are assessed by different instruments, but may be normalized to a common IQ-like scale. (C-D)
Principal coordinates analysis using Bray-Curtis dissimilarity on taxonomic profiles
demonstrates high beta diversity, with much of the first axis of variation explained by increasing
age and alpha diversity. Differences in gene function profiles (E) and neuroimaging (PCA based
on the Euclidean distance of brain region volumes) (F) are likewise dominated by changes as
children age. (G) Permutation analysis of variance (PERMANOVA) of taxonomic profiles,
functional profiles (annotated as UniRef90s) and neuroimaging, against the metadata of
interest. Variations in taxonomic and functional profiles explain a modest but significant percent
of the variation in cognitive development in children over 18 months of age. (H) Mantel testing of
different microbial feature matrices, shows overlapping but distinct patterns of variation. Dotted
lines in (B) and (C) show 6 and 18 months, which are used as cut-offs in some following
models.
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Figure 2 - Taxa and gene functional groups are associated with cognitive
function.
(A) Volcano plot of multivariable linear model results showing the relationship between individual
taxa and cognitive function score in children over 18 months of age, controlling for age,
maternal education, and sequencing depth. Taxa that were significant after FDR correction (q <
0.2) are colored red. (B) For taxa that were significantly associated with cognitive function,
heatmaps of prevalence, mean relative abundance, and correlation with cognitive function in
different age groups. (C-F) Enrichment plots for selected neuroactive gene sets used in feature
set enrichment analysis (FSEA). (G) summary of FSEA results across all samples (left) as well
as in the under 6 months (middle) and over 18 months (right) subsets, colored based on the
significance of the association. Markers indicate the individual correlation of genes within a gene
set, and vertical bars represent the median correlation of that gene set.
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Figure 3 - Random forest models predict concurrently measured cognitive
function.
Comparison of RF predictor importance versus linear models for children between birth and 6
months old (A), and for those older than 18 months (B). Colors represent whether the species
belong to the group of top-important features that account for 60% of the cumulative importance
on the RF model, if that species was significant (q < 0.2) in linear models, both, or neither.
Ranked feature importance for taxa in RF models for children between birth and 6 months old
(C), and for those older than 18 months (D). Taxa that are important for RF models both for
children under 6 months and for those over 18 months (E), only for children under 6 months (F),
and only for children over 18 months (G)
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Figure 4: Microbial feature importance in predicting brain volumes in
children over 18 months of age.
(A) Average test-set correlations for prediction of MRI segmentation data from microbiome and
demographics on select segments after repeated cross validation. (B) Heatmap of average
individual relative taxa importances on each brain segment. Importances are reported as
proportions relative to the sum of importances for each model - since every model is trained with
132 features, and even distribution of importance would be 0.75% for each feature. Segments
and taxa ordered by HCA on a select list of species with high ranks on average importances,
and their respective highest-load segments. (C)
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Supplementary Figures

Figure S1 - Samples collected at different ages
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Figure S2 - Relative abundance of select phyla and genera
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Figure S3 - Cognitive function scores in different age groups collected
before or after March 2020.
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Supplementary Tables

Supplementary Table XXA. List of most important taxa for Random Forest models on the
0 to 6 months age bracket, microbiome + demographics, ordered by relative weighted
importance rank

Rank variable Average
fitness-weighted

importance

Relative
fitness-weighted

importance

Rank-cumulative
relative importance

1 Erysipelatoclostridium
ramosum

4.56E-03 5.57% 5.57%

2 ageMonths 3.52E-03 4.31% 9.88%

3 Eggerthella lenta 3.12E-03 3.82% 13.70%

4 Escherichia coli 3.10E-03 3.80% 17.50%

5 Bifidobacterium longum 2.87E-03 3.51% 21.01%

6 Veillonella parvula 2.79E-03 3.42% 24.43%

7 Bifidobacterium breve 2.66E-03 3.26% 27.68%

8 Klebsiella variicola 2.44E-03 2.98% 30.66%

9 Enterococcus faecalis 2.38E-03 2.91% 33.57%

10 Streptococcus salivarius 2.33E-03 2.84% 36.42%

11 Klebsiella pneumoniae 2.31E-03 2.82% 39.24%

12 Bifidobacterium bifidum 2.12E-03 2.59% 41.83%

13 Flavonifractor plautii 2.08E-03 2.55% 44.38%

14 Ruminococcus gnavus 2.06E-03 2.52% 46.90%

15 Veillonella atypica 1.97E-03 2.41% 49.31%

16 Klebsiella
quasipneumoniae

1.87E-03 2.29% 51.60%

17 Gordonibacter pamelaeae 1.77E-03 2.17% 53.77%

18 Clostridioides difficile 1.65E-03 2.02% 55.79%

19 Clostridium innocuum 1.53E-03 1.87% 57.66%
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20 Streptococcus
parasanguinis

1.41E-03 1.73% 59.38%

21 Blautia wexlerae 1.35E-03 1.65% 61.03%

22 Bacteroides vulgatus 1.35E-03 1.65% 62.68%

23 Clostridium neonatale 1.24E-03 1.51% 64.19%

24 Enterococcus gallinarum 1.14E-03 1.40% 65.59%

25 Veillonella dispar 1.09E-03 1.33% 66.92%

26 Collinsella aerofaciens 1.08E-03 1.32% 68.24%

27 Clostridium paraputrificum 1.04E-03 1.27% 69.51%

28 Parabacteroides distasonis 1.03E-03 1.26% 70.78%

29 Collinsella stercoris 1.02E-03 1.25% 72.02%

30 Intestinibacter bartlettii 1.00E-03 1.22% 73.25%

31 Bacteroides uniformis 9.93E-04 1.21% 74.46%

32 Streptococcus mitis 9.52E-04 1.16% 75.63%

33 Bacteroides ovatus 9.00E-04 1.10% 76.73%

34 Klebsiella oxytoca 8.97E-04 1.10% 77.82%

35 Hungatella hathewayi 8.43E-04 1.03% 78.86%

36 Veillonella infantium 8.01E-04 0.98% 79.84%

37 Clostridium sp 7 2 43FAA 7.74E-04 0.95% 80.78%

38 Haemophilus
parainfluenzae

7.67E-04 0.94% 81.72%

39 Parabacteroides merdae 7.16E-04 0.88% 82.60%

40 Clostridium bolteae 6.81E-04 0.83% 83.43%

41 Clostridium perfringens 6.76E-04 0.83% 84.26%

42 Bifidobacterium
adolescentis

6.67E-04 0.82% 85.07%

43 Bifidobacterium
pseudocatenulatum

6.09E-04 0.75% 85.82%
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44 Enterococcus avium 5.86E-04 0.72% 86.53%

45 Bacteroides
thetaiotaomicron

5.72E-04 0.70% 87.23%

46 Akkermansia muciniphila 5.55E-04 0.68% 87.91%

47 Bacteroides caccae 5.46E-04 0.67% 88.58%

48 Citrobacter youngae 5.18E-04 0.63% 89.21%

49 Sellimonas intestinalis 5.10E-04 0.62% 89.84%

50 Enterobacter cloacae
complex

4.94E-04 0.60% 90.44%

51 Streptococcus
thermophilus

4.90E-04 0.60% 91.04%

52 Lactobacillus rhamnosus 4.75E-04 0.58% 91.62%

53 Bacteroides stercoris 4.56E-04 0.56% 92.18%

54 Klebsiella michiganensis 4.51E-04 0.55% 92.73%

55 Enterococcus faecium 3.64E-04 0.45% 93.18%

56 Veillonella sp T11011 6 3.55E-04 0.43% 93.61%

57 Streptococcus vestibularis 3.48E-04 0.43% 94.04%

58 Ruthenibacterium
lactatiformans

3.41E-04 0.42% 94.45%

59 Bacteroides fragilis 3.31E-04 0.41% 94.86%

60 Anaerostipes caccae 3.24E-04 0.40% 95.25%

61 Enterococcus casseliflavus 3.22E-04 0.39% 95.65%

62 Citrobacter freundii 3.16E-04 0.39% 96.03%

63 Proteus mirabilis 3.16E-04 0.39% 96.42%

64 Collinsella intestinalis 3.06E-04 0.37% 96.80%

65 Varibaculum cambriense 3.00E-04 0.37% 97.16%

66 Bilophila wadsworthia 2.75E-04 0.34% 97.50%

67 Bifidobacterium scardovii 2.48E-04 0.30% 97.80%
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68 Aeriscardovia aeriphila 2.39E-04 0.29% 98.10%

69 Morganella morganii 2.16E-04 0.26% 98.36%

70 Bacteroides massiliensis 2.08E-04 0.25% 98.61%

71 Clostridium symbiosum 1.82E-04 0.22% 98.84%

72 Lactococcus lactis 1.79E-04 0.22% 99.05%

73 Bacteroides dorei 1.66E-04 0.20% 99.26%

74 Actinomyces sp HPA0247 1.51E-04 0.19% 99.44%

75 Bacteroides xylanisolvens 1.10E-04 0.14% 99.58%

76 Phascolarctobacterium
faecium

9.68E-05 0.12% 99.70%

77 Streptococcus
pasteurianus

8.79E-05 0.11% 99.80%

78 Fusicatenibacter
saccharivorans

8.52E-05 0.10% 99.91%

79 Ruminococcus torques 7.58E-05 0.09% 100.00%
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Supplementary Table XXB. List of most important taxa for Random Forest models on the
18 to 120 months age bracket, microbiome + demographics, ordered by relative weighted
importance rank

Rank variable Average
fitness-weighted

importance

Relative
fitness-weighted

importance

Rank-cumulative
relative importance

1 ageMonths 2.13E-02 6.48% 6.48%

2 Faecalibacterium
prausnitzii

8.59E-03 2.61% 9.09%

3 Bifidobacterium
pseudocatenulatum

5.98E-03 1.82% 10.91%

4 Asaccharobacter celatus 5.86E-03 1.78% 12.70%

5 Eubacterium eligens 5.36E-03 1.63% 14.33%

6 Bifidobacterium longum 5.36E-03 1.63% 15.96%

7 Streptococcus
parasanguinis

5.17E-03 1.57% 17.53%

8 Ruminococcus gnavus 5.07E-03 1.54% 19.08%

9 Roseburia faecis 5.06E-03 1.54% 20.62%

10 Bacteroides vulgatus 4.82E-03 1.47% 22.08%

11 Megamonas funiformis 4.75E-03 1.45% 23.53%

12 Fusicatenibacter
saccharivorans

4.71E-03 1.43% 24.96%

13 Blautia wexlerae 4.68E-03 1.42% 26.38%

14 Roseburia hominis 4.64E-03 1.41% 27.79%

15 Eubacterium hallii 4.62E-03 1.41% 29.20%

16 Parasutterella
excrementihominis

4.40E-03 1.34% 30.54%

17 Anaerostipes hadrus 4.36E-03 1.33% 31.87%

18 Blautia obeum 4.13E-03 1.26% 33.12%

19 Agathobaculum
butyriciproducens

3.95E-03 1.20% 34.32%
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20 Haemophilus
parainfluenzae

3.86E-03 1.18% 35.50%

21 Gordonibacter pamelaeae 3.80E-03 1.16% 36.66%

22 Alistipes finegoldii 3.76E-03 1.14% 37.80%

23 Dorea longicatena 3.73E-03 1.14% 38.94%

24 Flavonifractor plautii 3.65E-03 1.11% 40.05%

25 Streptococcus salivarius 3.62E-03 1.10% 41.15%

26 Adlercreutzia equolifaciens 3.55E-03 1.08% 42.23%

27 Veillonella parvula 3.55E-03 1.08% 43.31%

28 Intestinibacter bartlettii 3.50E-03 1.07% 44.38%

29 Alistipes putredinis 3.41E-03 1.04% 45.41%

30 Ruthenibacterium
lactatiformans

3.35E-03 1.02% 46.43%

31 Bacteroides ovatus 3.31E-03 1.01% 47.44%

32 Bacteroides fragilis 3.31E-03 1.01% 48.45%

33 Bacteroides uniformis 3.30E-03 1.00% 49.45%

34 Eubacterium rectale 3.20E-03 0.97% 50.43%

35 Roseburia inulinivorans 3.07E-03 0.94% 51.36%

36 Streptococcus
thermophilus

3.06E-03 0.93% 52.29%

37 Roseburia intestinalis 3.05E-03 0.93% 53.22%

38 Bacteroides caccae 2.98E-03 0.91% 54.13%

39 Ruminococcus bicirculans 2.96E-03 0.90% 55.03%

40 Parabacteroides distasonis 2.89E-03 0.88% 55.91%

41 Ruminococcus torques 2.87E-03 0.87% 56.78%

42 Clostridium symbiosum 2.83E-03 0.86% 57.65%

43 Collinsella stercoris 2.81E-03 0.85% 58.50%

44 Bifidobacterium bifidum 2.78E-03 0.85% 59.35%
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45 Collinsella aerofaciens 2.78E-03 0.85% 60.19%

46 Ruminococcus bromii 2.75E-03 0.84% 61.03%

47 Eubacterium sp CAG 38 2.75E-03 0.84% 61.87%

48 Erysipelatoclostridium
ramosum

2.70E-03 0.82% 62.69%

49 Gemmiger formicilis 2.66E-03 0.81% 63.50%

50 Eggerthella lenta 2.61E-03 0.79% 64.29%

51 Dorea formicigenerans 2.53E-03 0.77% 65.06%

52 Parabacteroides merdae 2.47E-03 0.75% 65.81%

53 Odoribacter splanchnicus 2.46E-03 0.75% 66.56%

54 Bacteroides
thetaiotaomicron

2.46E-03 0.75% 67.31%

55 Coprococcus eutactus 2.46E-03 0.75% 68.06%

56 Coprococcus comes 2.45E-03 0.74% 68.80%

57 Tyzzerella nexilis 2.41E-03 0.73% 69.54%

58 Megamonas hypermegale 2.36E-03 0.72% 70.25%

59 Ruminococcus lactaris 2.36E-03 0.72% 70.97%

60 Eubacterium siraeum 2.34E-03 0.71% 71.69%

61 Clostridium sp CAG 58 2.27E-03 0.69% 72.38%

62 Clostridium spiroforme 2.25E-03 0.69% 73.06%

63 Veillonella atypica 2.19E-03 0.67% 73.73%

64 Bifidobacterium
adolescentis

2.14E-03 0.65% 74.38%

65 Monoglobus pectinilyticus 2.12E-03 0.64% 75.03%

66 Alistipes shahii 2.10E-03 0.64% 75.67%

67 Eubacterium ramulus 2.10E-03 0.64% 76.31%

68 Prevotella copri 2.09E-03 0.64% 76.94%

69 Bacteroides xylanisolvens 2.02E-03 0.62% 77.56%
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70 Oscillibacter sp 57 20 2.01E-03 0.61% 78.17%

71 Blautia sp CAG 257 1.98E-03 0.60% 78.77%

72 Sutterella parvirubra 1.98E-03 0.60% 79.38%

73 Akkermansia muciniphila 1.92E-03 0.58% 79.96%

74 Clostridium bolteae 1.86E-03 0.57% 80.53%

75 Clostridium leptum 1.85E-03 0.56% 81.09%

76 Lachnospira pectinoschiza 1.85E-03 0.56% 81.66%

77 Bacteroides stercoris 1.85E-03 0.56% 82.22%

78 Clostridium innocuum 1.84E-03 0.56% 82.78%

79 Escherichia coli 1.83E-03 0.56% 83.33%

80 Eubacterium sp CAG 180 1.79E-03 0.55% 83.88%

81 Intestinimonas
butyriciproducens

1.79E-03 0.55% 84.42%

82 Dialister invisus 1.77E-03 0.54% 84.96%

83 Anaerotruncus colihominis 1.71E-03 0.52% 85.48%

84 Bifidobacterium breve 1.68E-03 0.51% 85.99%

85 Sellimonas intestinalis 1.66E-03 0.51% 86.50%

86 Veillonella infantium 1.62E-03 0.49% 86.99%

87 Bacteroides dorei 1.61E-03 0.49% 87.48%

88 Proteobacteria bacterium
CAG 139

1.60E-03 0.49% 87.97%

89 Megamonas funiformis
CAG 377

1.52E-03 0.46% 88.43%

90 Bilophila wadsworthia 1.52E-03 0.46% 88.89%

91 Hungatella hathewayi 1.45E-03 0.44% 89.33%

92 Veillonella dispar 1.44E-03 0.44% 89.77%

93 Turicimonas muris 1.41E-03 0.43% 90.20%

94 Roseburia sp CAG 471 1.41E-03 0.43% 90.63%
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95 Eisenbergiella massiliensis 1.37E-03 0.42% 91.05%

96 Firmicutes bacterium CAG
83

1.27E-03 0.39% 91.44%

97 Barnesiella intestinihominis 1.26E-03 0.38% 91.82%

98 Turicibacter sanguinis 1.22E-03 0.37% 92.19%

99 Bifidobacterium
catenulatum

1.17E-03 0.36% 92.55%

100 Bacteroides finegoldii 1.15E-03 0.35% 92.90%

101 Phascolarctobacterium
faecium

1.15E-03 0.35% 93.25%

102 Clostridium disporicum 1.15E-03 0.35% 93.60%

103 Eubacterium ventriosum 1.06E-03 0.32% 93.92%

104 Haemophilus sp
HMSC71H05

1.06E-03 0.32% 94.24%

105 Coprococcus catus 1.04E-03 0.32% 94.56%

106 Firmicutes bacterium CAG
145

1.02E-03 0.31% 94.87%

107 Collinsella intestinalis 9.58E-04 0.29% 95.16%

108 Clostridium clostridioforme 8.79E-04 0.27% 95.43%

109 Oscillibacter sp CAG 241 8.16E-04 0.25% 95.68%

110 Clostridium lavalense 8.11E-04 0.25% 95.93%

111 Eisenbergiella tayi 7.55E-04 0.23% 96.16%

112 Butyricimonas virosa 7.45E-04 0.23% 96.38%

113 Bacteroides cellulosilyticus 7.29E-04 0.22% 96.60%

114 Ruminococcus callidus 7.17E-04 0.22% 96.82%

115 Bacteroides massiliensis 6.84E-04 0.21% 97.03%

116 Clostridium citroniae 6.73E-04 0.20% 97.24%

117 Dielma fastidiosa 6.66E-04 0.20% 97.44%
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118 Lawsonibacter
asaccharolyticus

6.54E-04 0.20% 97.64%

119 Clostridium bolteae CAG
59

6.10E-04 0.19% 97.82%

120 Holdemania filiformis 5.40E-04 0.16% 97.99%

121 Coprobacillus cateniformis 5.23E-04 0.16% 98.15%

122 Romboutsia ilealis 5.10E-04 0.16% 98.30%

123 Alistipes indistinctus 4.73E-04 0.14% 98.45%

124 Coprobacter sp 4.65E-04 0.14% 98.59%

125 Clostridium sp CAG 299 4.63E-04 0.14% 98.73%

126 Roseburia sp CAG 309 4.17E-04 0.13% 98.86%

127 Lactobacillus rogosae 4.17E-04 0.13% 98.98%

128 Bacteroides faecis 4.16E-04 0.13% 99.11%

129 Butyricimonas synergistica 4.00E-04 0.12% 99.23%

130 Holdemanella biformis 3.42E-04 0.10% 99.33%

131 Clostridium sp CAG 253 3.21E-04 0.10% 99.43%

132 Firmicutes bacterium CAG
110

3.21E-04 0.10% 99.53%

133 Eubacterium sp CAG 251 3.20E-04 0.10% 99.63%

134 Slackia
isoflavoniconvertens

3.08E-04 0.09% 99.72%

135 Bacteroides intestinalis 2.97E-04 0.09% 99.81%

136 Clostridium scindens 2.47E-04 0.08% 99.89%

137 Clostridium sp CAG 167 2.17E-04 0.07% 99.95%

138 Paraprevotella xylaniphila 1.55E-04 0.05% 100.00%
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Supplementary Table XX. Benchmark metrics for each brain segment prediction
experiment. Confidence intervals are calculated from the distribution of metrics from
repeated CV at a confidence level of 95%

Brain segment
Root-mean-square

Error
(RMSE)

Mean Absolute
Proportional

Error (MAPE)

Correlation
coefficient (R)

Brain-stem 0.0876 0.077 0.605

cerebellar-vermal-lobules-I-V 0.0321 0.085 0.156

cerebellar-vermal-lobules-VI-VII 0.0132 0.081 0.006

cerebellar-vermal-lobules-VIII-X 0.0217 0.083 0.078

CSF 0.0193 0.162 0.071

left-accumbens-area 0.0020 0.094 0.288

right-accumbens-area 0.0020 0.102 -0.041

left-amygdala 0.0037 0.063 0.288

right-amygdala 0.0035 0.070 0.179

left-anterior-cingulate 0.0375 0.069 0.092

right-anterior-cingulate 0.0264 0.074 0.245

left-basal-forebrain 0.0008 0.206 0.154

right-basal-forebrain 0.0010 0.117 0.123

left-caudate 0.0257 0.099 0.029

right-caudate 0.0221 0.083 -0.010

left-cerebellum-white-matter 0.0689 0.067 0.413

right-cerebellum-white-matter 0.0694 0.070 0.434

left-cuneus 0.0274 0.082 0.234

right-cuneus 0.0264 0.075 0.065

left-entorhinal 0.0107 0.080 0.190

right-entorhinal 0.0105 0.082 0.099
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left-fusiform 0.0510 0.057 0.333

right-fusiform 0.0334 0.053 0.248

left-hippocampus 0.0128 0.054 0.075

right-hippocampus 0.0150 0.059 -0.094

left-insula 0.0294 0.057 -0.119

right-insula 0.0303 0.056 0.077

left-isthmus-cingulate 0.0161 0.077 -0.041

right-isthmus-cingulate 0.0166 0.085 0.074

left-lateral-occipital 0.0661 0.062 0.224

right-lateral-occipital 0.0716 0.054 0.221

left-lingual 0.0410 0.069 0.421

right-lingual 0.0440 0.072 0.434

left-middle-frontal 0.0875 0.052 0.000

right-middle-frontal 0.0636 0.039 0.083

left-orbitofrontal 0.0715 0.055 0.186

right-orbitofrontal 0.0814 0.061 0.133

left-pallidum 0.0075 0.064 0.297

right-pallidum 0.0081 0.061 0.264

left-paracentral 0.0335 0.078 0.131

right-paracentral 0.0364 0.084 0.023

left-parahippocampal 0.0098 0.058 0.154

right-parahippocampal 0.0092 0.060 0.134

left-parietal 0.0755 0.035 0.177

right-parietal 0.1099 0.045 -0.147
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left-pars-opercularis 0.0197 0.057 0.146

right-pars-opercularis 0.0261 0.060 0.030

left-pars-orbitalis 0.0157 0.082 0.003

right-pars-orbitalis 0.0233 0.112 0.024

left-pars-triangularis 0.0226 0.063 0.174

right-pars-triangularis 0.0322 0.076 0.043

left-pericalcarine 0.0178 0.111 0.200

right-pericalcarine 0.0185 0.089 0.273

left-postcentral 0.0495 0.052 0.168

right-postcentral 0.0552 0.059 0.135

left-posterior-cingulate 0.0460 0.134 0.137

right-posterior-cingulate 0.0480 0.139 0.063

left-precentral 0.0830 0.065 0.248

right-precentral 0.0594 0.046 0.066

left-precuneus 0.0489 0.056 0.144

right-precuneus 0.0622 0.068 0.150

left-putamen 0.0243 0.059 0.154

right-putamen 0.0242 0.066 0.011

left-superior-frontal 0.0867 0.040 0.101

right-superior-frontal 0.1206 0.044 -0.096

left-supramarginal 0.0767 0.067 0.061

right-supramarginal 0.0734 0.068 -0.001

left-temporal 0.1530 0.040 0.128

right-temporal 0.1503 0.039 0.068
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left-thalamus-proper 0.0347 0.053 0.170

right-thalamus-proper 0.0304 0.050 0.162
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