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Highlights 36 

- Temporal expectations can be based on both regular beats and predictable patterns 37 

- Behavioral effects differentiate between beat-based and pattern-based expectations 38 

- EEG power tracks the beat, but not the pattern, outlasting rhythmic stimuli 39 

- Pattern-based and beat-based expectations differentially affect evoked potentials 40 

- Decoding and entropy may index temporal expectations in a time-resolved way 41 
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Abstract 43 

The brain uses temporal structure in the environment, like rhythm in music and speech, 44 

to predict the timing of events, thereby optimizing their processing and perception. Temporal 45 

expectations can be grounded in different aspects of the input structure, such as a regular beat 46 

or a predictable pattern. One influential account posits that a generic mechanism underlies beat-47 

based and pattern-based expectations, namely entrainment of low frequency neural oscillations 48 

to rhythmic input, while other accounts assume different underlying neural mechanisms. Here, 49 

we addressed this outstanding issue by examining EEG activity and behavioral responses 50 

during silent periods following rhythmic auditory sequences. We measured responses 51 

outlasting the rhythms both to avoid confounding the EEG analyses with evoked responses, and 52 

to directly test whether beat-based and pattern-based expectations persist beyond stimulation, 53 

as predicted by entrainment theories. To properly disentangle beat-based and pattern-based 54 

expectations, which often occur simultaneously, we used non-isochronous rhythms with a beat, 55 

a predictable pattern, or random timing. In Experiment 1 (N = 32), beat-based expectations 56 

affected behavioral ratings of probe events for two beat-cycles after the end of the rhythm, 57 

while the effects of pattern-based expectations reflected one interval. In Experiment 2 (N = 27), 58 

using EEG, we found enhanced spectral power at the beat frequency for beat-based sequences 59 

both during listening and the silence, but for pattern-based sequences, enhanced power at a 60 

pattern-specific frequency was only present during listening, not silence. Moreover, we found 61 

a difference in the evoked signal following pattern-based and beat-based sequences. Finally, 62 

we show how multivariate pattern decoding and multi scale entropy – measures sensitive to 63 

non-oscillatory components of the signal – can be used to probe temporal expectations. 64 

Together, our results suggest that different mechanisms implement temporal expectations, 65 

depending on the input structure. We suggest climbing activity may reflect pattern-based, and 66 

persistent low frequency oscillations beat-based expectations specifically. 67 

Keywords: Temporal expectations, EEG, rhythm, entrainment, decoding, entropy 68 

69 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2020.01.08.899278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.899278
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

4 

Introduction 70 

Predicting the timing of incoming events optimizes processing in our dynamic environment 71 

(Nobre & van Ede, 2018), as it allows the brain to increase sensitivity to events at predicted 72 

times (Auksztulewicz, Myers, Schnupp, & Nobre, 2019), without the need for constant 73 

vigilance (Breska & Deouell, 2017; Rimmele, Morillon, Poeppel, & Arnal, 2018; Schroeder & 74 

Lakatos, 2009b, 2009a). Entrainment models (Large & Jones, 1999) provide a mechanistic 75 

explanation for temporal expectations, by assuming that the phase and period of low-frequency 76 

neural oscillations synchronize to external rhythmic stimulation, causing optimal neural 77 

excitability at expected times (Haegens & Zion Golumbic, 2018; Henry & Herrmann, 2014; 78 

Schroeder & Lakatos, 2009a). In line with this, behavioral performance is improved for events 79 

in phase with an external rhythm (Bouwer & Honing, 2015; Herbst, Stefanics, & Obleser, 2022; 80 

Jones, Moynihan, MacKenzie, & Puente, 2002; Large & Jones, 1999), behavioral responses 81 

depend on the phase of delta oscillations (Arnal, Doelling, & Poeppel, 2014; Cravo, Rohenkohl, 82 

Wyart, & Nobre, 2013; Henry, Herrmann, & Obleser, 2014; Henry & Obleser, 2012), and low 83 

frequency oscillations phase lock to rhythmic input (Doelling, Assaneo, Bevilacqua, Pesaran, 84 

& Poeppel, 2019; Nozaradan, Peretz, Missal, & Mouraux, 2011; Stefanics et al., 2010). 85 

Entrainment has mainly been studied in the context of periodic (“beat-based”) sensory 86 

input, but temporal expectations can also be based on memory for absolute intervals (Breska & 87 

Deouell, 2017; Breska & Ivry, 2016; Morillon, Schroeder, Wyart, & Arnal, 2016; Teki, Grube, 88 

Kumar, & Griffiths, 2011), either in isolation (“cue-based”), or as part of a predictable pattern 89 

of intervals (“pattern-based”, see (Nobre & van Ede, 2018)). Predictable temporal patterns may 90 

be especially important in speech and non-Western music, which is not necessarily periodic. 91 

Expectations based on predictable patterns in aperiodic sequences afford similar behavioral 92 

benefits as expectations based on a beat (Bouwer, Honing, & Slagter, 2020; Heideman, van 93 

Ede, & Nobre, 2018; O’Reilly, McCarthy, Capizzi, & Nobre, 2008), but pose a possible 94 
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challenge for entrainment models, which are arguably better suited to explain temporal 95 

expectations for periodic input (Breska & Deouell, 2017; Rimmele et al., 2018). Some have 96 

suggested that entrainment models can account for pattern-based expectations by assuming 97 

multiple coupled oscillators at different frequencies and with different phases (Tichko & Large, 98 

2019), or by assuming flexible top-down phase resets at expected moments, though this would 99 

entail some top-down mechanism, making observed entrainment the consequence, rather than 100 

the cause of expectations (Meyer, Sun, & Martin, 2019; Obleser & Kayser, 2019; Rimmele et 101 

al., 2018).  102 

Alternatively, however, pattern-based and beat-based expectations could arise from 103 

dissociable neural mechanisms. For cue-based expectations, tentative evidence for a different 104 

underlying mechanism comes from a series of studies looking at the contingent negative 105 

variation (CNV), an event-related potential (ERP) component that peaks at expected moments 106 

(Praamstra, Kourtis, Kwok, & Oostenveld, 2006). The CNV resolved faster for beat-based than 107 

cue-based expectations (Breska & Deouell, 2017), and cerebellar patients showed selective 108 

impairments in forming cue-based, but not beat-based expectations (Breska & Ivry, 2018, 109 

2020). However, in these studies, the intended beat-based sequences were isochronous. 110 

Isochronous sequences can, in addition to a beat, elicit temporal expectations through learning 111 

the repeated, identical interval (Breska & Ivry, 2016; Keele, Nicoletti, Ivry, & Pokorny, 1989). 112 

Thus, the differences in responses may here be explained by more precise cue-based or pattern-113 

based expectations in the isochronous, beat-based condition. Moreover, these studies tested 114 

temporal expectations based on the contingency between a cue and an interval (e.g., learning a 115 

single interval), and it is unclear whether temporal expectations based on patterns are based on 116 

the same mechanism (Nobre & van Ede, 2018). In our own recent work, we specifically 117 

compared beat-based and pattern-based expectations, and we found no difference in the effects 118 

of these expectations on early auditory ERP responses, suggestive of similar modulation of 119 
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sensory processing (Bouwer et al., 2020), but we observed suppression of sensory processing 120 

of unexpected events in beat-based rhythms, even when these events were fully predictable 121 

based on their pattern, suggesting different underlying mechanisms (Bouwer et al., 2020). 122 

However, in this study, we did not directly probe and contrasted the neural mechanisms 123 

underlying beat-based and pattern-based expectations, rendering it unclear whether they are 124 

subserved by shared or separate neural dynamics. 125 

In the current study, we directly examined the role of entrainment in beat-based and 126 

pattern-based expectations, using non-isochronous rhythms designed to properly disentangle 127 

these two types of expectations. When studying entrainment, an important challenge has been 128 

to differentiate between real entrainment (“in the narrow sense”, see Obleser & Kayser, 2019) 129 

and regular evoked potentials, or similar phase locked responses that resemble entrainment with 130 

common analysis techniques (Zoefel, ten Oever, & Sack, 2018), and that may not differentiate 131 

between beat-based and memory-based expectations (Breska & Deouell, 2017). Crucially, to 132 

sidestep these issues, here we examined responses in a silent window after cessation of the 133 

rhythmic input, directly testing the prediction of entrainment models that entrainment should 134 

outlast sensory stimulation (Haegens & Zion Golumbic, 2018; Obleser & Kayser, 2019; Pesnot 135 

Lerousseau, Trébuchon, Morillon, & Schön, 2021; Zoefel et al., 2018).  136 

Behaviorally, persistent entrainment has been shown for auditory rhythm (Hickok, 137 

Farahbod, & Saberi, 2015; Jones et al., 2002), though this effect is not always found (Bauer, 138 

Jaeger, Thorne, Bendixen, & Debener, 2015; Lin et al., 2021), possibly due to heterogeneity in 139 

the population and effects of musical training (Assaneo et al., 2019; Cameron & Grahn, 2014; 140 

Sun, Michalareas, & Poeppel, 2021). At a neural level, several studies reported persistent 141 

entrainment in the visual (de Graaf et al., 2013; Mathewson et al., 2012), and auditory (Kösem 142 

et al., 2018; Pesnot Lerousseau et al., 2021; van Bree, Sohoglu, Davis, & Zoefel, 2021; Wilsch, 143 

Mercier, Obleser, Schroeder, & Haegens, 2020) domain. However, in these studies, 144 
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isochronous stimuli were used, making it unclear whether the expectations probed were based 145 

on a beat, or were formed based on the single repeating interval (i.e., cue- or pattern-based). 146 

Moreover, persistent entrainment was not specific to the frequency of the input (Wilsch et al., 147 

2020), or only occurred in the gamma (Pesnot Lerousseau et al., 2021), or alpha ranges (de 148 

Graaf et al., 2013; Mathewson et al., 2012), while humans have a preference for forming 149 

temporal expectations at slower rates (Ding et al., 2017; Merchant, Grahn, Trainor, Rohrmeier, 150 

& Fitch, 2015; Zalta, Petkoski, & Morillon, 2020), as naturally present in speech and music 151 

(i.e., the delta and theta range). Thus, not only is evidence for whether entrainment can account 152 

for pattern-based expectations lacking, evidence for persistent entrainment in response to beat-153 

based rhythms remains elusive as well.  154 

In the current study, participants listened to non-isochronous auditory sequences 155 

(similar to those used in Bouwer et al., 2020) with either a regular beat (eliciting beat-based 156 

expectations), a predictable pattern (eliciting pattern-based expectations), or random timing (no 157 

expectations). The non-isochronous beat-based sequences had a varying surface structure, 158 

similar to patterns used to probe beat-based processing in many neuroimaging (Grahn & Brett, 159 

2007; Grahn & Rowe, 2009; Leow & Grahn, 2014), behavioral (Bouwer et al., 2018, 2021; 160 

Cameron & Grahn, 2014; Povel & Essens, 1985), and electrophysiological studies (Lenc et al., 161 

2021). While each beat was marked by a sound, between beats, sounds could occur at different 162 

times, or not at all. Therefore, the beat could not be extracted from the rhythmic signal by 163 

simply learning the transition of temporal intervals – as is possible in isochronous sequences. 164 

Moreover, in our previous study, using the same stimuli, we showed that the behavioral 165 

facilitation caused by introducing a regular beat was smaller than the facilitation caused by 166 

introducing a predictable pattern (Bouwer et al., 2020). Hence, the non-isochronous beat-based 167 

sequences used here did not allow for easy learning of the interval of the beat using a pattern-168 
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based strategy, in contrast to the pattern-based sequences, in which the surface structure of the 169 

rhythm was fully predictable.  170 

Each sequence was followed by a silent period. In Experiment 1, we asked participants 171 

to rate how well probe tones, presented at various time points during the silent period, fitted the 172 

preceding sequence. We expected the ratings to be affected by both the beat-based and pattern-173 

based expectations elicited by the sequences. In Experiment 2, we recorded EEG activity both 174 

during presentation of the sequences and during the silence. If entrainment underlies temporal 175 

expectations, we should see persistent power at the frequency of the beat or pattern during the 176 

silence. Alternatively, if climbing activity in the form of a CNV underlies temporal 177 

expectations, we should see a CNV peaking at expected time points in the silence.   178 

In addition to examining the spectral power at the frequencies of the beat and the pattern, 179 

and the evoked responses, we explored two new methods to index temporal expectations that 180 

do not rely on the EEG signal being a static oscillation. As recently argued, the oscillatory 181 

dynamics underlying such expectations may be subject to changes in power and frequency, 182 

depending on coupling between sound and brain, and on the properties of the neural dynamics 183 

themselves (e.g., to which extent the system shows damping of an oscillation without input, see 184 

Doelling & Assaneo, 2021). Once the rhythmic sensory input ceases, the oscillatory activity in 185 

the brain may quickly return to an intrinsic resonance frequency (Doelling & Assaneo, 2021). 186 

Also, the presence of non-sinusoidal recurring activity may not be captured by traditional 187 

analyses relying on Fourier transforms (Donoghue, Schaworonkow, & Voytek, 2021), while it 188 

may be important for cognition (Waschke, Kloosterman, Obleser, & Garrett, 2021). Therefore, 189 

we here explore indexing temporal expectations in the silence using multi scale entropy (MSE) 190 

– a measure of signal irregularity (Kosciessa, Kloosterman, & Garrett, 2020) – and multivariate 191 

pattern decoding. These methods may provide useful tools to study the neural dynamics 192 

underlying rhythm processing and temporal expectations, which are often hard to study due to 193 
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methodological issues with analyzing the EEG signal (Zoefel et al., 2018). While MSE provides 194 

us with a method to look at possible non-sinusoidal contributions to the EEG signal related to 195 

temporal expectations, decoding allows us to look at how entrainment evolves over time. Note 196 

that we consider these analyses exploratory in nature, and results should be interpreted as such.  197 

198 
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Materials and methods 199 

Participants  200 

Thirty-two participants (18 women), aged between 18 and 44 years old (M = 24, SD = 201 

5.6) took part in the behavioral Experiment 1, and 32 participants (26 women), aged between 202 

19 and 28 years old (M = 23, SD = 2.5) took part in the EEG experiment (Experiment 2), in 203 

exchange for course credit or monetary compensation. Due to technical problems, the EEG data 204 

from five participants was not recorded correctly, hence we report the results for 27 participants 205 

(21 women, between 19 and 28 years old, M = 23, SD = 2.4). For the behavioral experiments, 206 

we used mixed-effects models, which need both the number of participants and the number of 207 

items to be taken into account to assess power (Brysbaert & Stevens, 2018). In two similar 208 

experiments in which ratings in response to rhythms of varying complexity were analyzed, 209 

small-sized effects were replicated with a total number of around 275 responses per condition 210 

(Bouwer, Burgoyne, Odijk, Honing, & Grahn, 2018). For our new experimental paradigm, we 211 

here included a multiple of this amount of trials (960 responses per condition and probe position 212 

in Experiment 1 – 32 participants with 30 responses each in each cell – and, after loss of data 213 

was accounted for, 486 responses per condition and probe position in Experiment 2 – 27 214 

participants and 18 responses per cell). Previous EEG experiments examining persistent 215 

entrainment in the auditory domain used sample sizes ranging from fifteen (Pesnot Lerousseau 216 

et al., 2021) to twenty-one (van Bree et al., 2021), similar to the sample size used in a study 217 

looking at different types of temporal expectations (twenty-one, Breska & Deouell, 2017). To 218 

obtain robust power, we here tested thirty-two participants, which, even when loss of data is 219 

accounted for, thus exceeded typical sample sizes as used previously. None of the participants 220 

reported a history of hearing or neurological problems, and all provided written informed 221 

consent prior to the onset of the study. The experiment was approved by the Ethics Review 222 

Board of the Faculty of Social and Behavioral Sciences of the University of Amsterdam. 223 
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 224 

Figure 1. Schematic overview of the rhythmic stimuli used and the task. A) Twelve patterns of five 225 
temporal intervals with integer ratio durations and an event at each 600 ms period were created to form beat-226 
based sequences. Equivalent patterns without a regular beat every 600 ms were created by using non-integer 227 
ratio durations, while keeping the number of intervals and grouping structure the same (random condition). 228 
For the pattern-based sequences, only pattern 1 was used, to allow for learning of the intervals. B) Four semi-229 
randomly chosen patterns were concatenated to form rhythmic sequences. In both the beat-based and random 230 
sequences, the last pattern was always pattern 1 or 2, to equate the acoustic context preceding the silent 231 
period. C) To measure behavioral effects of expectations, a probe tone could appear at various temporal 232 
positions in the silent period (indicated by the dashed red lines), predictable based on a beat (B+, light 233 
orange), predictable based on the pattern (P+, light purple), or unpredictable based on the beat (B-) or pattern 234 
(P-). Subjects had to indicate how well the probe tone fitted the preceding rhythm. In Experiment 1, all 6 235 
probe tone positions were used. In Experiment 2, only the last 3 probe positions were used. 236 
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Stimuli  237 

We used patterns marked by woodblock sounds of 60 ms length, generated in 238 

GarageBand (Apple Inc.), as previously used in (Bouwer et al., 2020) to elicit beat-based and 239 

pattern-based expectations (Figure 1). Each pattern was 1800 ms long and consisted of five 240 

temporal intervals. The number of tones was chosen to be within the range that was previously 241 

shown to allow for learning of a predictable pattern (Schultz, Stevens, Keller, & Tillmann, 242 

2013), while the length of the pattern was such that the formation of beat-based expectations 243 

with a period of the entire pattern would be unlikely in the pattern-based sequences, given that 244 

this would require hearing a beat at 0.55 Hz, which is very far from the range at which humans 245 

can typically perceive a beat (Honing & Bouwer, 2019; London, 2012). Sequences (beat-based, 246 

pattern-based, or with random timing) were constructed by concatenating four patterns and a 247 

final tone, for a total sequence length of 7260 ms (four patterns of 1800 ms, plus 60 ms for the 248 

final tone).  249 

In the twelve patterns used to create beat-based sequences (Figure 1), temporal intervals 250 

were related to each other with integer-ratio durations. The shortest interval had a length of 150 251 

ms, with the relation between the five intervals used of 1:2:2:3:4 (i.e., 150, 300, 300, 450, and 252 

600 ms). The sounds were grouped such that a perceptually accented sound (Povel & 253 

Okkerman, 1981) occurred every 600 ms (every unit length 4), giving rise to a beat at 100 beats 254 

per minute, or 1.67 Hz, within the range of preferred tempo for humans (London, 2012). All 255 

beat-based patterns were strictly metric, with the beat always marked by a sound (Grahn & 256 

Brett, 2007). Sequences of beat-based patterns were constructed from four semi-randomly 257 

chosen patterns, with the restriction that the last pattern of the sequences was always pattern 1 258 

or 2 (see Figure 1). This way, the final 600 ms preceding the silence epoch was equated in terms 259 

of the acoustic context, to make the bleed of auditory ERPs into the silence as similar between 260 

conditions as possible. Note that in beat-based sequences, a sound could be expected every 600 261 
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ms based on the beat, but the surface structure of the pattern was unpredictable, due to the 262 

random concatenation of patterns.  263 

To create patterns that did not allow for beat-based expectations (“aperiodic” patterns, 264 

see Figure 1), the ratios by which the temporal intervals were related were changed to be non-265 

integer (1:1.4:1.4:3:5.2, or 150, 210, 450, and 780 ms respectively). In these patterns, no marked 266 

beat was present at unit length four, nor at any other subdivision of the 1800 ms pattern (Bouwer 267 

et al., 2020), while the patterns were matched to their periodic counterparts in terms of overall 268 

length, event density, number of sounds, and grouping structure.  269 

From the aperiodic patterns, two types of sequences were created: pattern-based and 270 

random sequences. To create sequences allowing for pattern-based expectations, we 271 

concatenated four identical patterns. To be able to use the data with an EEG-based decoding 272 

analysis (Experiment 2), we needed the timing of expectations in the silence to be identical for 273 

each sequence, hence we restricted the pattern-based sequences to only pattern 1. The use of a 274 

single pattern was not only necessary for decoding, but also optimized the experiment for 275 

pattern-based expectations, since participants only had to memorize one pattern, allowing them 276 

to easily form expectations, even if the single sequences were only four patterns long. 277 

For the random sequences, four semi-randomly chosen aperiodic patterns were 278 

concatenated. Like for the beat-based sequences, the final pattern was always pattern 1 or 2, 279 

equating the final 600 ms of the sequences in terms of acoustics. In the random sequences, the 280 

timing of sounds could not be predicted based on the surface structure of the pattern, nor on the 281 

basis of an underlying beat. 282 

A spectral analysis of the stimuli in the range in which a beat can normally be perceived 283 

(the delta-range, 0.5-4 Hz) confirmed that in the beat-based sequences, a peak was present at 284 

the beat frequency of 1.67 Hz as well as at 3.33 Hz (see Figure 2). The 3.33 Hz peak is a 285 

harmonic of the beat frequency, but also the frequency at which participants may perceive 286 
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subdivisions of the beat (e.g., an extra layer of perceived metrical regularity with a period of 287 

300 ms). In the pattern-based and random sequences, peaks were more distributed, in line with 288 

the more irregular nature of these rhythms, and the highest peaks in the delta range were at 2.22 289 

and 3.89 Hz. 290 

 291 

Figure 2. Spectral analysis of the sound signal of the different rhythmic sequences. Ten sequences per 292 
condition were generated to base the spectral analysis on. Note that these sequences were identical for the 293 
pattern-based condition, but semi-random for the beat-based and random conditions. The envelope of each 294 
sequence was obtained by performing a Hilbert transform, and subsequently, a fast fourier transform (fft) 295 
was used to obtain the spectral decomposition and power values were averaged over ten sequences. n.a.= 296 
normalized amplitude. 297 

 298 

In Experiment 1, to assess the persistence of temporal expectations behaviorally, on 299 

each trial, a probe tone was presented at 600, 780, 885, 990, 1200, or 1485 ms after the onset 300 

of the last tone of the sequence (see Figure 1C), and participants provided ratings for how well 301 

probe tones fitted the preceding rhythm. These positions were carefully chosen to represent 302 

times at which a tone could be expected based on the beat (600, 1200 ms), based on memory 303 

for the pattern (780, 990, 1200 ms), or neither (885, 1485 ms). Note that the latter two probe 304 

tones that were unexpected based on the beat (780, 885, 990, and 1485 ms) did not fall on 305 

subdivisions of the beat. 306 

Experiment 2 contained both trials in which a probe tone was presented (25% of the 307 

trials, using only the last three probe positions), and trials in which a 7260 ms sequence was 308 

followed by a silence period without a probe tone (75% of the trials). The latter were used for 309 

EEG analyses, uncontaminated by a probe presentation. The silent period lasted for 2100 ms 310 
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after the onset of the last sound, providing 300 ms immediately following the final sound to 311 

allow for ERPs to mostly return to baseline, and 1800 ms (three full beat cycles, or a full cycle 312 

of the repeating pattern) of silence for the analysis. After the silence, the onset of the next 313 

sequence was jittered between 25 and 75 ms to prevent carryover of the beat from previous 314 

sequences (e.g., the next trial started between 325 and 375 ms after the last beat in the silence, 315 

which is not on the beat, nor at a subdivision of the beat). On trials that contained a probe tone, 316 

we chose to only use the last three probe positions, to 1) limit the time for the EEG experiment 317 

to prevent fatigue, 2) still provide participants with the incentive to form expectations well into 318 

the silence period, as a probe tone could appear as late as 1485 ms into the trial, and 3) obtain 319 

some measure of whether participants formed expectations, by including positions that were 320 

expected based on the beat and the pattern (1200 ms), based on the pattern only (990 ms) or 321 

neither (1485 ms).  322 

Procedure 323 

Participants were tested individually in a dedicated lab at the University of Amsterdam. 324 

Upon arrival, participants were provided with information about the experiment, provided 325 

written informed consent, and were allowed to practice the task. On probe tone trials (all trials 326 

in Experiment 1, 25% of the trials in Experiment 2), participants were asked to judge on a four-327 

point scale (“very poorly”, “poorly”, “well”, “very well”) how well the probe tone fitted the 328 

preceding sequence, similar to previous studies investigating the perception of musical meter 329 

(Manning, Harris, & Schutz, 2017; Manning & Schutz, 2013; Palmer & Krumhansl, 1990). 330 

Participants could respond with four buttons on the armrest of their chair, two on each side. The 331 

order of the answer options on the screen in front of the participants was randomized on each 332 

trial, to avoid any artefacts of motor preparation in participants that anticipated which answer 333 

they would provide. There was no time limit for responses and the next trial started after a 334 

response was made. 335 
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In Experiment 1, each participant was presented with 18 blocks of 30 trials, amounting 336 

to 540 trials in total (30 trials per probe position for each condition). In Experiment 2, 337 

participants were presented with 18 blocks of 36 trials, for a total of 648 trials (18 per condition 338 

and position). In Experiment 2, for each condition, 162 trials were silence trials, and did not 339 

contain a probe tone. Fifty-four trials for each condition contained a probe tone. In both 340 

experiments, in each block, only one type of sequence (beat-based, pattern-based, or random) 341 

could appear to optimize for the formation of expectations. Blocks were semi-randomized, with 342 

each type appearing once in a set of three blocks. In each block of Experiment 2, the number 343 

of probe trials was varied between 3 and 11, for an average of 25% probe trials, and 75% silent 344 

trials. 345 

Sounds were presented through a single speaker positioned in front of the participant 346 

using Presentation® software (version 14.9, www.neurobs.com). After completion of the 347 

experiment, participants performed the Beat Alignment Task (Iversen & Patel, 2008; 348 

Müllensiefen, Gingras, Musil, & Stewart, 2014) to assess their beat perception abilities, and 349 

completed the musical training subscale from the Goldsmith Musical Sophistication Index 350 

(GMSI) questionnaire to assess their musical training (Müllensiefen et al., 2014). In total, a 351 

behavioral session lasted two hours, and the EEG session lasted between 3.5 and 4 hours. 352 

Behavioral analysis  353 

A total of 17280 responses was included in the analysis of Experiment 1 (32 participants, 354 

3 conditions, 6 probe positions, 30 responses each), and 4374 in the analysis of Experiment 2 355 

(27 participants, 3 conditions, 3 probe positions, 18 responses each). To account for the ordinal 356 

nature of the Likert-scale responses (Bouwer et al., 2018; Carifio & Perla, 2008; Jamieson, 357 

2004), we used a mixed ordinal regression model. With this model, the ordinal responses are 358 

normalized, to correct for potential unequal distances between rating points. The results can 359 

subsequently be interpreted similar to the results from a normal mixed model regression. Two 360 
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independent variables and their interaction were included in the model as fixed factors: 361 

Condition (beat-based, pattern-based, or random), and Probe Position (600, 780, 885, 990, 362 

1200, or 1485 ms; only the latter three in Experiment 2). Additionally, the score on the GMSI 363 

musical training questionnaire was included as a continuous variable (Musical Training), as 364 

well as its interactions with the two fixed factors. We used a random intercept for each subject 365 

to account for between-subject variation.  366 

The initial model showed a significant effect of Probe Position in the random condition, 367 

most likely due to recency effects. To assess the effect of Probe Position in the beat-based and 368 

pattern-based conditions while accounting for recency effects, for each participant we 369 

subtracted the mean response in the random condition at each position from the responses in 370 

the beat-based and pattern-based condition. Subsequently, we submitted the random-baseline-371 

corrected ratings to a second ordinal regression model, with only two levels for the factor 372 

Condition (beat-based and pattern-based) and without the random intercept for each participant 373 

(as the baseline correction already corrected for between-subject variability). For both the 374 

original model, and the baseline corrected model, significant interactions were followed up by 375 

tests of simple effects, corrected for multiple comparisons using a Bonferroni correction. 376 

The statistical analysis was conducted in R (R Development Core Team, 2008). The 377 

ordinal mixed model was implemented using the clmm() function from the ordinal package 378 

(Christensen, 2019). Subsequently, we used the Anova() function from the car package (Fox & 379 

Weisberg, 2019) to look at omnibus effects for the main factors of interest, and the emmeans 380 

package (Lenth, 2019) to assess simple effects and compare slopes between conditions. 381 

EEG recording  382 

EEG was recorded at 1024 Hz using a 64-channel Biosemi Active-Two acquisition 383 

system (Biosemi, Amsterdam, The Netherlands), with a standard 10/20 configuration and 384 
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additional electrodes for EOG channels (located under and on the left and right sides of the 385 

eye), on the nose, on both mastoids, and on both earlobes.  386 

EEG analysis  387 

Preprocessing was performed in MATLAB, version 2015a (Mathworks) and EEGLAB, 388 

version 14.1.1 (Delorme & Makeig, 2004). Data were offline down-sampled to 256 Hz, re-389 

referenced to averaged mastoids, bad channels were manually removed, and eye-blinks were 390 

removed using independent component analysis. Subsequently, bad channels were replaced by 391 

values interpolated from the surrounding channels.  392 

ERPs. For the ERP analysis, the continuous data were filtered using 0.1 Hz high-pass 393 

and 40 Hz low-pass finite impulse response filters (as implemented in the standard EEGLAB 394 

filter function pop_eegfiltnew). Epochs were extracted from the data from -1800 till 2100 ms 395 

relative to the onset of the last sound. Epochs with a voltage change of more than 150 microvolts 396 

in a 200 ms sliding window were rejected from further analysis. For each participant and 397 

condition, epochs were averaged to obtain the ERPs, and ERPs were averaged over participants 398 

to obtain grand average waveforms for plotting. All waveforms were initially baseline corrected 399 

using the average voltage of a 50 ms window preceding the onset of the last sound of the 400 

sequence. This baseline can be regarded as preceding the “cue” (the last event before the onset 401 

of the expectation). Such a baseline is customary in CNV analyses. However, visual inspection 402 

suggested that this baseline was biased, as baseline correction resulted in an overall shift of the 403 

waveform amplitude relative to each other, as also reflected in a significant cluster when 404 

comparing beat-based and pattern-based conditions that spanned the entire analysis epoch (see 405 

Supplementary Figure 1). This was likely caused by the rapid succession of sounds preceding 406 

the onset of the silence, which made it impossible to find a clean, unbiased baseline. Therefore, 407 

we repeated the analysis without baseline correction, to confirm that the results were not caused 408 

by a noisy baseline.  409 
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As a control analysis, we repeated the above analysis for the longest intervals during the 410 

presentation of the rhythmic streams, to assess whether in those longer intervals, we could 411 

observe similar deflections in the evoked potentials as observed in the silence. For this analysis, 412 

epochs were extracted from -200 till 880 ms around the onset of the sound preceding the long 413 

interval (600 ms in the beat-based condition, and 780 ms in the other conditions, see Figure 1). 414 

All preprocessing steps were identical to the analysis of the ERPs in the silence. The control 415 

analysis is reported in the Supplementary Materials (Supplementary Figure 1). 416 

Three cluster-based permutation tests (Oostenveld, Fries, Maris, & Schoffelen, 2011) 417 

were used to compare all three conditions against each other (i.e., beat-based vs. random; 418 

pattern-based vs. random; beat-based vs. pattern-based), comparing all timepoints from 300 till 419 

1200 ms after the onset of the final sound for the silence (see Figure 1), and all timepoints from 420 

300 till 600 ms after the onset of the preceding sound for the long intervals during the sequences 421 

(as the next sound came in at 600 ms for the beat-based condition, we could not compare the 422 

conditions beyond this timepoint). This window excluded a large portion of the ERP response 423 

to the previous sound, and included both the first expected moments for beat-based (600 ms) 424 

and pattern-based (780 ms) expectations in the silence window, and additional time to allow 425 

for an evaluation of possible return to baseline of the CNV (Breska & Deouell, 2017). For the 426 

ERP analysis, clusters were formed based on adjacent time-electrode samples.  427 

For all EEG analyses, cluster-based tests were evaluated statistically by forming clusters 428 

of samples based on dependent samples t-tests and a threshold of p < 0.05, and using 429 

permutation tests with 2000 permutations of the data. We report corrected p-values to account 430 

for two-sided testing (multiplied by a factor of two).    431 

Frequency-domain analysis. To obtain the spectrum of the EEG signal in the silence, 432 

we used the raw, unfiltered data. Epochs were extracted from the continuous data both from -433 

1800 till 0 ms relative to the onset of the last sound (control window, see Figure 1), and from 434 
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300 till 2100 ms relative to the onset of the last sound (silence window, see Figure 1), the latter 435 

starting at 300 ms to avoid contamination from the final ERPs. Both windows thus had equal 436 

length, both spanning three full cycles of the beat. Epochs with an amplitude change of 250 437 

microvolts or more in a sliding 200 ms window were rejected from further analysis. The more 438 

lenient rejection criterium compared to the ERP analysis was used to account for the fact that 439 

these data were unfiltered, and to avoid rejection of too many trials that showed some slow 440 

drift. All epochs were baseline corrected using the mean of the entire epoch. Subsequently, 441 

epochs were averaged for each condition separately to obtain the evoked signal, phase locked 442 

to the onset of the final sound, and similar to previous studies using frequency tagging to look 443 

at beat-based perception (Lenc et al., 2021; Nozaradan et al., 2011; Nozaradan, Peretz, & 444 

Mouraux, 2012).  445 

For each participant and condition separately, the average waveforms were transformed 446 

into the frequency domain using an FFT, with the data zero-padded to 4608 samples (NFFT) to 447 

obtain a better frequency resolution (0.056 Hz), and importantly, be able to extract data at 448 

exactly the frequencies of interest. Note that the zero-padding can only improve the frequency 449 

resolution, but not the frequency precision, which by definition with the 1800 ms epochs is 450 

limited to 0.56 Hz. While the design of the experiment simply does not allow for a better 451 

resolution, the 0.56 Hz does allow us to differentiate between the frequencies of interest, which 452 

are 0.56 Hz or more apart. The obtained power values at each frequency were normalized to 453 

account for the 1/f distribution of noise (Nozaradan et al., 2011, 2012), by subtracting the 454 

average of neighboring bins four to six on either side for all frequencies (e.g., 1.33 – 1.44 Hz 455 

and 1.89 – 2.00 Hz for the beat frequency, 1.89 – 2.00 Hz and 2.44 – 2.56 Hz for the pattern-456 

based frequency, and 3.00 – 3.11 Hz and 3.56 – 3.67 Hz for the beat subdivisions). To account 457 

for bleeding into neighboring frequency bins (Nozaradan et al., 2011, 2012), for each 458 

frequency, we averaged over 5 bins centered on that frequency (e.g., for the frequencies of 459 
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interest, this was 1.56 – 1.78 Hz for the beat frequency, 2.11 – 2.33 Hz for the pattern-based 460 

frequency, and 3.22 – 3.44 Hz for the beat subdivisions).  461 

To statistically test differences between conditions in the evoked power at the 462 

frequencies of interest, we used cluster-based permutation tests. First, this avoided bias by 463 

selecting only a subset of electrodes, as we used all scalp electrodes, as was done in previous 464 

research (Lenc, Keller, Varlet, & Nozaradan, 2018; Nozaradan et al., 2011; Tal et al., 2017). 465 

Second, the permutation tests accounted for the non-normal distribution of the data. Like for 466 

the ERPs, we ran t-tests comparing the normalized data for all conditions and for each frequency 467 

of interest (e.g., those most prominent in the sound signal). We included the frequencies that 468 

showed the highest peaks in the spectral analysis of the sound (i.e. 1.67 Hz, 2.22 Hz, and 3.33 469 

Hz), except for 3.89 Hz, since a peak at this frequency was absent on visual inspection in the 470 

spectral decomposition of the EEG data. For the frequency-domain analysis, clusters were 471 

formed based on adjacent electrodes.    472 

The cluster-based tests yielded null results for the pattern-based condition in the silence 473 

(e.g., there was no larger power at 2.22 Hz in the pattern-based than in the random condition, 474 

see Results). To quantify the possible absence of persistent entrainment for the pattern-based 475 

condition, we performed a Bayesian t test using JASP (JASP, 2019; Wagenmakers et al., 2018). 476 

We compared the power in the pattern-based and random conditions at 2.22 Hz in the silence, 477 

averaged over electrodes contributing to the significant cluster in the silence for the beat-based 478 

condition at 1.67 Hz, to optimize for finding entrainment effects. We estimated Bayes factors 479 

using a Cauchy prior distribution (r =.71) and performed a robustness check to assess the effect 480 

of a different prior (r = 1; see (Jeffreys, 1961; Wagenmakers et al., 2018)).  481 

We performed an additional exploratory analysis to assess phase alignment directly. 482 

First, we computed inter-trial phase consistency for each participant, condition, and frequency 483 

of interest separately, by transforming single epochs both in the control window and the silence 484 
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window into the frequency domain, using an FFT with the same parameters as described above. 485 

Subsequently, we extracted the single phase value associated with the FFT for each epoch and 486 

computed phase coherence as the length of the mean phase vector (Cohen, 2014), for each 487 

participant, condition, frequency, and electrode. While the power for each condition and 488 

frequency was thus computed taking the average over all epochs (e.g., the evoked signal), the 489 

phase consistency was computed on single trial data. We used cluster-based permutation tests 490 

to compare the phase consistency between conditions, with parameters identical to the analysis 491 

of power. 492 

Multiscale entropy (MSE). MSE is a measure of signal irregularity. To compute MSE, 493 

the EEG signal is divided into patterns of a certain length, and throughout the signal, the number 494 

of repeating patterns is counted. More repetitions indicate a more regular signal, and yield a 495 

lower entropy value. By calculating entropy for patterns of different lengths (“multiscale”), the 496 

contributions of slower and faster timescales in the signal can be assessed. However, the 497 

mapping between entropy timescales and spectral frequencies is not absolute, especially since 498 

entropy is not per se related to a signal being oscillatory in nature (Kloosterman, Kosciessa, 499 

Lindenberger, Fahrenfort, & Garrett, 2020; Kosciessa et al., 2020). The advantage of using 500 

MSE is that it does not require filtering of the data, and it does not assume stationarity (e.g., it 501 

can pick up on regularities that are asymmetrical, or that do not have a fixed amplitude or 502 

period). Here, we computed MSE on the control and silence epochs separately.  503 

We computed MSE on high-pass filtered data (0.5 Hz). Epochs were extracted identical 504 

to the epochs for the frequency domain analysis. To compute MSE, we used the mMSE toolbox, 505 

a plugin to the Fieldtrip toolbox (Kloosterman et al., 2020), with m = 2 and  r = 0.5, as was 506 

done previously for EEG data (Kloosterman et al., 2020). For details on how MSE is computed, 507 

see the Supplementary Materials. As for the frequency-domain analysis, we used cluster-based 508 

permutation tests to assess statistical significance. For each comparison between conditions, we 509 
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used paired t-tests comparing each electrode-timescale combination (note that the above 510 

computation of entropy yields one value per condition for each electrode and timescale) to form 511 

clusters.   512 

Multivariate decoding. Our exploratory decoding approach is based on the assumption 513 

that temporal expectations are always coupled with feature or spatial expectations (e.g., we 514 

cannot predict “when” without also predicting “what”), as suggested by studies showing that 515 

we only use temporal expectations to improve perception if we can also predict the content 516 

(Morillon et al., 2016; Wollman & Morillon, 2018) or location (O’Reilly et al., 2008) of an 517 

upcoming event. Thus, we expected to be able to decode the representation of the expected 518 

sound at expected moments. As the expected moments are different for each condition, this 519 

then allows us to decode in the silence window whether participants were previously listening 520 

to a beat-based, pattern-based, or random sequence. 521 

The decoding was conducted on data that was preprocessed in a similar way as for the 522 

MSE analysis, but with epochs extending from -1800 to 2100 ms relative to the onset of the last 523 

sound. Since the decoding is done in a time resolved way (e.g., sample by sample), there is no 524 

need to leave out the response to the ERPs in the analysis. Additionally, the data were resampled 525 

to 32 Hz to increase signal to noise, using shape-preserving piecewise cubic interpolation, as 526 

implemented in the Fieldtrip toolbox (Oostenveld et al., 2011). Using the ADAM toolbox 527 

(Fahrenfort, van Driel, van Gaal, & Olivers, 2018), we applied a classification algorithm to the 528 

preprocessed data for each participant. Using all electrodes, each dataset was split into 10 529 

equally sized subsets, for 10-fold cross-validation of the decoding. For each subset, a linear 530 

discriminant classifier trained on the remaining 9 subsets was tested. Each condition was 531 

decoded against both other conditions (e.g., beat-based vs. pattern-based, beat-based vs. 532 

random, and pattern-based vs. random), creating a temporal generalization matrix of 533 

classification accuracy at each possible combination of training and testing time points (King 534 
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& Dehaene, 2014). Subsequently, we examined whether we could observe a pattern of recurrent 535 

activity (King & Dehaene, 2014). Classification accuracies averaged over the 10 folds for each 536 

comparison of two conditions for the silence window (300-2100 ms after the onset of the last 537 

sound) were submitted to cluster-based permutation tests to assess whether they exceeded the 538 

chance level of 0.5. Clusters were based on T-tests with a threshold of 0.05 for each training-539 

testing time point combination, comparing the accuracy to 0.5.    540 

The initial decoding analysis yielded large effects that may be task-related (see Results 541 

for an explanation of these results). Therefore, we ran an additional decoding analysis in which 542 

we decoded expected and unexpected positions against each other within each condition. 543 

Details on this additional analysis can be found in the Supplementary Materials. 544 

Musical expertise. In an exploratory analysis, we assessed the relationship between the 545 

EEG data and musical expertise. We divided participants in two groups, based on a median split 546 

on the GMSI questionnaire scores. For each EEG marker, we extracted the relevant values 547 

indexing beat-based and pattern-based expectations, and we performed a t-test, comparing the 548 

two musical expertise groups. First, for the CNV-like component in the ERP, we extracted 549 

average amplitudes for each condition in the two windows in which the cluster-based analysis 550 

yielded a significant cluster (300-450 ms and 925-1005 ms, see also Figure 5), from central 551 

electrodes (FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, CP2). To index the effects of temporal 552 

expectations, we then followed the subtraction logic we also used in the analysis of the 553 

behavioral results: the effects of beat-based expectations were quantified as the amplitude in 554 

the beat-based condition minus that in the random condition, and the effects of pattern-based 555 

expectations were quantified as the amplitude in the pattern-based condition minus that in the 556 

random condition. Likewise, for the frequency-domain analysis, we extracted the difference in 557 

power at 1.67 Hz between the beat-based and random conditions, and the difference in power 558 

at 2.22 Hz between the pattern-based and random conditions. Here, we used only electrodes 559 

that contributed to the significant cluster we had found in the silence for the frequency-domain 560 
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analysis. For the MSE, we similarly extracted differences between entropy in the beat-based 561 

and pattern-based conditions when compared to the random condition, using only electrodes 562 

and timescales that contributed to the significant cluster found in the silence for the MSE 563 

analysis. For decoding, we extracted the classification accuracy when decoding expected 564 

against unexpected times for each participant from the beat-based and pattern-based conditions, 565 

and again contrasted those with the random condition (see Supplementary Materials for details 566 

on this decoding analysis).  567 

Code and data availability. All datafiles, and code used for data acquisition, data 568 

analysis, and figure creation, are available through https://osf.io/uwny8/. 569 

570 
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Results 571 

Behavioral effects of beat-based expectations last multiple beat cycles, while those of 572 

pattern-based expectations reflect one interval 573 

Figure 3A shows the average ratings for each condition and probe position from 574 

Experiment 1. Visual inspection of this figure suggests that beat-based expectations were 575 

associated with higher fitness ratings for sounds at expected times than unexpected times for 576 

two beat cycles in the silence window (at 600 and 1200 ms), while the effects of pattern-based 577 

expectations appeared to reflect mainly the first expected time point in the silence window (780 578 

ms). This was confirmed by our statistical analyses. The ordinal regression showed main effects 579 

of Condition (𝜒!(2) = 300.72, p < 0.001), Position (𝜒!(5) = 1067.05, p < 0.001), as well as 580 

Musical Training (𝜒!(1) = 5.16, p = 0.023). However, crucially, these main effects were 581 

accompanied by a very large two-way interaction between Condition and Position (𝜒!(10) = 582 

2478.98, p < 0.001), showing that the effects of beat-based and pattern-based expectations on 583 

fitness ratings differed, depending on the position of the probe. We found additional smaller 584 

interactions between Position and Musical Training (𝜒!(5) = 67.26, p < 0.001), Condition and 585 

Musical Training (𝜒!(2) = 6.01, p = 0.05), and, interestingly, Condition, Position, and Musical 586 

Training (𝜒!(10) = 204.88, p < 0.001). Following the interactions, tests of simple main effects 587 

showed that the effect of Position was significant in all conditions (all ps < 0.001), and the 588 

effect of Condition was significant for all probe positions (all ps < 0.001). The main effect of 589 

Position in the random condition showed that even after sequences in which no specific 590 

temporal structure was present, ratings depended on the position of the probe. This likely was 591 

due to recency effects. To account for these effects when comparing the ratings at different 592 

positions in the beat-based and pattern-based conditions, we subtracted the ratings in the 593 

random condition at each position from the ratings in the other conditions. The baseline 594 

corrected model (Figure 3B) showed similar interactions between Position and Condition 595 
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(𝜒!(5) = 2147.55, p < 0.001), and between Position, Condition, and Musical Training (𝜒!(5) = 596 

154.46, p < 0.001). The latter indicated that the correlation between Musical Training and the 597 

rating score depended on both the Position and the Condition of the probe tone. 598 

 599 

 600 

Figure 3. The effects of beat-based expectations on fitness ratings can be differentiated from those of 601 
pattern-based expectations, and are associated with musical training. A) Mean ratings for all conditions 602 
and positions. Colored asterixis indicate positions where ratings in the beat-based (orange) and pattern-based 603 
(purple) conditions differed from the random condition at p < 0.05. B) Single participant data, with the 604 
random condition subtracted to account for serial position effects. The expectedness pattern is indicated by 605 
colored lines on the bottom of the plots (orange: expected based on the beat; purple: expected based on 606 
pattern; grey: neither). For the beat-based condition, ratings followed this pattern for two beat cycles. For the 607 
pattern-based condition, ratings followed the pattern for one interval. C) Data median split based on scores 608 
on the musical training questionnaire. The pattern of results, while present for both groups of participants, is 609 
enhanced for the group of participants with most musical training (“experts”). Note: the median split is for 610 
visualization purposes only, the models were run with musical training as a covariate. Error bars in panels 611 
A-C are 2 standard errors (note: these are computed on the complete dataset, not the participant averages, as 612 
the ordinal model is run on trial-level data). D) Association between musical training and rating for each 613 
condition and position. Colored asterixis show positions in which the association between musical training 614 
and the ratings was significantly correlated (p < 0.05). A positive association was observed for the beat-based 615 
condition at 600 and 1200 ms (expected positions) and for the pattern-based condition at 780 (expected) and 616 
885 ms (unexpected). Negative associations were observed in the beat-based condition at 780, 885, and 990 617 
ms (all unexpected), and in the pattern-based condition at 990 (unexpected) and 1200 ms (expected). 618 

 619 
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Beat-based expectations. At both 600 ms and 1200 ms (expected in terms of a beat), 620 

probes in the beat-based condition were rated as better fitting than probes in the random 621 

condition (p < 0.001 and p = 0.004) as evident from the full model; all simple effects from the 622 

full model can be found in Supplementary Table 1). At 780, 885, 990, and 1485 ms (unexpected 623 

in terms of a beat), probes in the beat-condition were rated as worse fitting than probes in the 624 

random condition (all ps < 0.001). Moreover, within the beat-based condition, at 600 ms, 625 

baseline corrected ratings were higher than at any other probe position (all ps < 0.001), and at 626 

1200 ms baseline corrected ratings were higher than at 780, 885, 990, or 1485 ms (all ps < 627 

0.001). Baseline corrected ratings for probes at 780, 885, and 990 ms (all unexpected in terms 628 

of the beat) did not differ from each (all ps > 0.93). Probes at 1485 ms (unexpected in terms of 629 

the beat) were rated as better fitting than probes at 780, 885, and 990 ms (all ps < 0.001). All 630 

simple effects from the corrected model can be found in Supplementary Table 2.  631 

As can be seen in Figure 3C and 3D, higher scores on the Musical Training 632 

questionnaire were associated with higher fitness ratings in the beat-based condition at 600 and 633 

1200 ms (expected in terms of the beat), but lower fitness ratings at 780, 885, 990, and 1485 634 

ms (unexpected in terms of the beat). In other words, musically trained participants were better 635 

able to differentiate between probes that were in expected and unexpected positions (Figure 636 

3C). Slopes reach significance at all positions except 1485 ms (all ps < 0.022). Also, the 637 

association between Musical Training and ratings differed between beat-based and pattern-638 

based conditions, at 600, 780, 885, and 1200 ms (all ps < 0.004).  639 

To sum up, for the beat-based sequences, we could observe a clear pattern in the results 640 

indicating that beat-based expectations were used to rate the probes well into the silence 641 

window, affecting ratings up to 1200 ms after the onset of the last sound. Beat-based 642 

expectations lead to higher ratings for expected probes (600 and 1200 ms), and lower ratings 643 

for unexpected probes (780, 885, 990, and 1485 ms), both when comparing ratings for each 644 
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position to the random condition, and when comparing ratings for each position within the beat-645 

based condition. At 1200 ms, these effects resulted in a classic inverted U-curve, as previously 646 

associated with beat-based processing (Bauer et al., 2015; Jones et al., 2002), with optimal 647 

performance on the beat, and diminished performance on either side (e.g., both earlier and 648 

later). The effects of beat-based expectations did diminish over time, as is apparent from 649 

differences between ratings at 600 and 1200 ms, and at 1485 ms and other unexpected time 650 

points. Both the enhancing and attenuating effects of beat-based expectations were correlated 651 

with musical training. It is worth noting that the longer lasting effects of beat-based expectations 652 

(at 1200 ms) were very heterogenous in our participant pool. Out of 32 participants in 653 

Experiment 1, only 18 showed the inverted U, with higher ratings at 1200 than at 990 and 1485 654 

ms. 655 

Pattern-based expectations. For pattern-based sequences, ratings at 600 ms 656 

(unexpected based on the pattern) were lower than for the random sequences (p < 0.001) and 657 

lower than at any other position (all ps < 0.001, baseline corrected model), showing that 658 

participants also formed predictions based on the sequences. In line with this, at 780 ms 659 

(expected in terms of the pattern), ratings were numerically higher in the pattern-based 660 

condition than in the random condition, though this difference did not survive the Bonferroni 661 

correction (p = 0.058). After this point, ratings did not differ between pattern-based and random 662 

conditions for probes at 885 (unexpected) and 990 (expected) ms, suggesting that the responses 663 

followed the rhythmic pattern mainly in the beginning of the silent period. In line with this, in 664 

the remainder of the silence window, the ratings continued to deviate from what would be 665 

predicted based on the pattern, with lower ratings for the pattern-based than random condition 666 

at 1200 ms (expected; p < 0.001). Ratings were also lower for the pattern-based than random 667 

condition at 1485 ms (unexpected, p < 0.001), and ratings at 780 ms (expected) did not differ 668 

from ratings at 885 ms (unexpected), while being marginally higher than at 990 (expected, p = 669 
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0.080), and higher than at 1200 (expected), and 1485 (unexpected) ms (both ps < 0.032). In 670 

addition, ratings at 885 and 990 ms were higher than at 1200 and 1485 ms (all ps < 0.002). See 671 

Supplementary Tables 1 and 2 for all simple effects. 672 

As for beat-based expectations, for pattern-based expectations, there was a positive 673 

association between ratings and musical training at an expected time point (780 ms; p < 0.001), 674 

and a negative, albeit nonsignificant, association at an unexpected time point (600 ms). Thus, 675 

like for beat-based expectations, at these early time points, musicians were better able than non-676 

musicians at differentiating between expected and unexpected moments in time. However, at 677 

885 ms (unexpected in terms of the pattern), the results behaved like at 780 ms, with higher 678 

ratings associated with more Musical Training (p = 0.002). At 990 and 1200 ms, Musical 679 

Training was associated with lower ratings (both ps < 0.05), but these results are 680 

counterintuitive, as these are expected positions based on the pattern.  681 

The results for pattern-based expectations suggest that just like for beat-based 682 

expectations, participants were able to predict the timing of probes based on the preceding 683 

sequence. However, the results show that while this was still the case at 780 ms after the onset 684 

of the last tone, at later probe positions, the effects of pattern-based expectations did not reflect 685 

the preceding sequence. At 885 ms, the results, both in terms of the ratings and how they were 686 

associated with musical training, behaved similar to at 780 ms. After this point, the results 687 

suggest that participants did not use the preceding sequence to guide their responses, but 688 

instead, used a different heuristic.  689 

Figure 4 shows the behavioral results obtained from the EEG experiment. Replicating 690 

Experiment 1, we found main effects of Condition (𝜒!(2) = 92.30, p < 0.001) and Position 691 

(𝜒!(2) = 49.36, p < 0.001), accompanied by interactions between Condition and Position (𝜒!(4) 692 

= 96.62, p < 0.001), and Condition, Position, and Musical Training (𝜒!(4) = 11.04, p = 0.03). 693 

Following the analysis strategy from Experiment 1, we subtracted the ratings from the Random 694 
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condition from the ratings for the other two conditions, yielding a baseline corrected model 695 

with similar interactions (Condition and Position: 𝜒!(2) = 31.46, p < 0.001; Condition, Position, 696 

and Musical Training: 𝜒!(2) = 8.29, p = 0.02).  697 

 698 
Figure 4. Behavioral results during the EEG experiment replicate findings from Experiment 1. Even 699 
with only 18 trials per participant per condition and position, we could replicate the inverted U-curve for 700 
beat-based sequences at the end of the silence epoch. Like in Experiment 1, the results for the pattern-based 701 
condition do not follow the pattern, but instead, are consistent with building expectations for the next trial. 702 
A) Mean ratings for all conditions and positions. Colored asterixis indicate positions where ratings in the 703 
beat-based (orange) and pattern-based (purple) conditions differed from the random condition (with p < 704 
0.05). B) Single participant data, with the random condition subtracted to account for serial position effects. 705 
C) Data median split based on scores on the musical training questionnaire. Error bars in panels A-C are 2 706 
standard errors. D) Association between musical training and rating for each condition and position. See 707 
Figure 3 for more details. 708 

 709 

In line with the preceding beat-based sequences, probes at 990 and 1485 ms (both 710 

unexpected times based on the beat) were rated lower in the beat-based condition than in the 711 

random and pattern-based conditions (all ps < 0.012), and within the beat-based condition, 712 

probes at 1200 ms were rated as better fitting than at 990 (p < 0.001) and 1485 ms, though the 713 

latter difference did not reach significance. Thus, like in Experiment 1, we found an inverted 714 

U-curve at 1200 ms after the final tone, suggestive of beat-based expectations lasting at least 715 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2020.01.08.899278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.899278
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

32 

two beat cycles. As in Experiment 1, at 1200 ms (expected based on the beat), higher ratings in 716 

the beat-based condition were associated with more musical training (p = 0.047), suggesting 717 

that the effects of beat-based expectations correlate with musical expertise. Additionally, probes 718 

at 990 ms were rated lower than at 1485 ms (p < 0.001), possibly because the effects of beat-719 

based expectations diminished over the course of the silence. 720 

In the pattern-based condition, ratings did not follow the pattern of the preceding 721 

sequences. At 990 ms (expected based on the pattern), probes were rated as worse fitting than 722 

in the random condition (p < 0.001), and as worse fitting than at 1200 (expected) and 1485 723 

(unexpected) ms (both ps < 0.023), while at 1485 ms (unexpected), probes were rated as better 724 

fitting than in the random condition, and as better fitting than at 1200 (expected) ms (both ps < 725 

0.001). Also, at 1200 ms (expected), higher ratings were associated with less musical training 726 

for the pattern-based condition (though after the Bonferroni correction, only marginally so: p = 727 

0.06), contrary to what would be expected if the effects of expectations are enlarged in musical 728 

experts. All simple effects can be found in Supplementary Tables 1 and 2. 729 

Thus, the behavioral results from Experiment 2, though based on less trials than 730 

Experiment 1, suggest a similar pattern as found in Experiment 1: while beat-based expectations 731 

exert their effect well into the silent period, with participant faithfully following the beat in their 732 

goodness-of-fit ratings, pattern-based expectations do not affect ratings in the second half of 733 

the silent period in a manner consistent with the learned pattern. Albeit speculatively, the results 734 

for the pattern-based expectations may be more in line with expectations for the start of the next 735 

trial leading to higher ratings for probe positions closer to the end of the silent period, as in 736 

Experiment 2, after non-probe trials, the next trial followed each silent period at a somewhat 737 

predictable time. 738 

Differences in the evoked potential elicited by beat-based and pattern-based sequences 739 

Figure 5 shows the average ERPs for each condition, without baseline correction (see 740 

Materials and Methods), and scalp topographies for windows in which we found significant 741 
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clusters. In line with previous research, we may expect climbing neuronal activity, or a CNV, 742 

flexibly adapting its slope to peak at the moment that participants expect the next event (Breska 743 

& Deouell, 2017; Breska & Ivry, 2020; Damsma, Schlichting, & van Rijn, 2021; Mento, 2013). 744 

We did observe differences in the ERPs between conditions, but the peak of the differences was 745 

not at the expected time, but rather, fell earlier (see Supplementary Figure 1 for the difference 746 

waveforms between conditions). Without baseline correction, the random condition elicited a 747 

significantly more negative ERP (p = 0.011) than the beat-based condition in a frontocentral 748 

cluster between 300 and 614 ms after the onset of the last sound (though note that we did not 749 

include timepoints preceding 300 ms in the cluster-based tests). Likewise, in the same latency 750 

range (300 – 473 ms), there was a trend for the pattern-based condition to elicit a more negative 751 

ERP than the beat-based condition (p = 0.077). Thus, in a window between approximately 300 752 

and 450 ms, we found tentative evidence for more negative-going waveforms in both the 753 

random and pattern-based condition compared to the beat-based condition, with a central scalp 754 

topography (Figure 5B). In a later window, the pattern-based condition elicited a second 755 

negative deflection, which showed a trend to be larger than in the beat-based condition (p = 756 

0.077, 864 – 1005 ms). While these results were somewhat different depending on the choice 757 

of baseline (see Supplementary Figure 1 for the results with a traditional pre-cue baseline), the 758 

overall picture is the same, with significant clusters in an early and later window indicating 759 

differences between conditions in the ERPs. 760 

The time course of the effect deviated from what we expected: the negative deflection 761 

did not peak at the next expected moment in time, but rather, peaked much earlier. Also, 762 

contrary to previous research (Breska & Deouell, 2017), the beat-based condition elicited the 763 

most positive-going ERP, instead of a typical CNV. To further explore and confirm these 764 

results, as a control analysis, we performed the same ERP analysis on the longest time intervals 765 

during the sound presentation. The waveforms showed a negative deflection very similar in 766 
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morphology and scalp distribution to the one we found in the silence window (see 767 

Supplementary Figure 1). During the sound presentation, like in the silence, this negative 768 

deflection was largest for the pattern-based condition, though the difference was only 769 

significant when comparing the pattern-based condition to the random (p = 0.039) but not the 770 

beat-based condition (p = 0.1). The latter non-significant result may be due to a noisy baseline, 771 

as during sound presentation, the succession of intervals in the beat-based and random 772 

sequences was (semi-)randomly chosen, and therefore, the baseline was not consistent over 773 

conditions. Overall, however, this control analysis yielded very similar results to the analysis 774 

of ERPs in the silence window.  775 

As an exploratory analysis, since musical training was related to larger effects of 776 

entrainment in behavior, we also examined whether there was a relationship between the 777 

amplitude of the negative deflection in the silence window (extracted from the time-electrode 778 

clusters depicted in Figure 5, see Materials and Methods for details) and musical expertise. 779 

However, we found no difference in the effects of expectations on the amplitude of the negative 780 

ERP component between musically trained and untrained subjects (all ps > 0.3). 781 

 782 
Figure 5. Beat-based and pattern-based can be differentiated based on ERPs. A) Left panel show the 783 
grand average waveforms for the silence window for a central electrode cluster (FC1, FCz, FC2, C1, Cz, C2, 784 
CP1, CPz, CP2). Time 0 is the onset of the last tone of the sequence. Colored bars on the bottom of the plots, 785 
and vertical orange and purple lines, indicate at which times a tone would be expected based on the beat 786 
(light orange) and the pattern (light purple). Note that these are expected times, but no sounds were played 787 
during the window shown after time 0. Sounds during the sequence are depicted in dark orange and purple. 788 
B) The scalp distributions for windows in which a significant cluster was observed. 789 

Beat-based > Random (p < 0.1)
Beat-based > Random (p < 0.05)

Beat-based > Pattern-based (p < 0.1)
Beat-based > Pattern-based (p < 0.05)

Random > Pattern-based (p < 0.1)
Random > Pattern-based (p < 0.05)

A Central electrodes - No baseline
Beat−based Pattern−based Random

−2 μV

2 μV

300-450 ms

925-1005 ms
Beat−based Pattern−based Random

−2 μV

2 μV

-3 μV

3 μV

B

Random

Beat-based
Pattern-based

-600 ms 1800300 600 900 1200 1500 2100 ms300 0

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2020.01.08.899278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.899278
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

35 

Frequency-domain analysis shows persistent power at the beat frequency following beat-790 

based sequences  791 

A strong prediction of entrainment theories is that the entrainment outlasts stimulation 792 

with the entraining stimulus. Therefore, we next looked at the frequency content of the EEG 793 

signal in the silent period. Specifically, we predicted that if entrainment occurs, we would find 794 

enhanced power at the frequencies associated with the rhythmic sounds to be found in the 795 

silence. In Figure 6A, the average power for all electrodes, separated for each condition in the 796 

control (i.e. during the auditory sequence) and silence windows is depicted as a function of 797 

frequency. In the control window (Figure 6A, left, and Figure 7, top), the frequency response 798 

followed the sound input. That is, at the beat frequency (1.67 Hz), significant clusters indicated 799 

higher power in the control window for the beat-based sequences than the pattern-based (p < 800 

0.001) and random (p = 0.006) sequences. At 2.22 Hz, prominent in the pattern-based and 801 

random sound sequences, higher power was observed in the EEG signal in the pattern-based 802 

than beat-based (p = 0.02) and random (p = 0.023) sequences, and higher power was observed 803 

in the random than beat-based sequences (p = 0.035). Finally, at 3.33 Hz (subdivisions of the 804 

beat), power in the control window was larger for the beat-based than pattern-based (p = 0.013) 805 

and random (p = 0.005) conditions. Thus, in the control window, the EEG signal reflected the 806 

spectral properties of the sound signal, as can be expected, since each sound will have elicited 807 

an ERP, which are represented in steady-state potentials, and thus picked up by the frequency 808 

analysis (Keitel, Obleser, Jessen, & Henry, 2021).  809 

Importantly, during the silence (Figure 6A, right, and Figure 7, bottom), no significant 810 

clusters were found at 2.22 Hz, but at the beat frequency (1.67 Hz), power was significantly 811 

larger for the beat-based than the pattern-based (p = 0.01) and random (p = 0.012) conditions. 812 

In addition, at 3.33 Hz, power for the beat-based condition was larger than for the pattern-based 813 

condition (p = 0.038), with a trend when comparing the beat-based with the random condition 814 
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(p = 0.077). Thus, while the pattern-based and random conditions showed tracking of the sound 815 

during stimulation (which is sometimes considered entrainment “in the broad sense” (Obleser 816 

& Kayser, 2019)), in the silence, entrainment was only present for the beat-based condition. 817 

This finding fits our behavioral observations that beat-based expectations persisted longer in 818 

the silence than pattern-based expectations. To further substantiate the absence of persistent 819 

entrainment at the pattern frequency in the silence, we performed a Bayesian T-test comparing 820 

the normalized power at 2.22 Hz between the pattern-based and random conditions. We found 821 

moderate evidence in favor of the null hypothesis (no difference between conditions) (BF01 = 822 

4.5). The results did not change as a function of the prior used (with a more traditional prior of 823 

r = 1, BF01 = 6.17).  824 

Exploratively, we also compared phase consistency between conditions. Figure 6B 825 

shows the phase consistency averaged over all electrodes for all conditions. In the control 826 

window, there was larger phase consistency at 1.67 and 3.33 Hz in the beat-based than pattern-827 

based and random conditions (all ps < 0.001), and larger phase consistency at 2.22 Hz in the 828 

pattern-based than beat-based and random conditions (all ps < 0.003). In addition, at 2.22 Hz, 829 

phase consistency was higher for the random than beat-based condition (p = 0.025). These 830 

results can be expected based on alignment of the evoked potentials in response to the sound. 831 

Crucially, in the silence, phase consistency was larger at 1.67 Hz in the beat-based than random 832 

condition (p = 0.025). Neither the difference between the beat-based and pattern-based 833 

condition at 1.67 Hz (p = 0.095), nor the difference between the pattern-based and random 834 

condition at 2.22 Hz (p = 0.063) reached significance in the cluster-based tests, and none of the 835 

other comparisons yielded any clusters. Thus, this exploratory analysis is in line with the results 836 

obtained from the power analysis. Arguably, this analysis did not yield very strong results, since 837 

phase consistency is also affected by climbing neuronal activity (Breska & Deouell, 2017). 838 
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 839 
Figure 6. Oscillatory power and phase consistency at the beat frequency persist during the silence 840 
window. In the control window, during auditory stimulation, peaks in power (panel A) and phase consistency 841 
(panel B) can be observed at all frequencies of interest, and for the relevant conditions (1.67 and 3.33 Hz in 842 
the beat-based condition, and 2.22 Hz in the pattern-based condition). In the silence window, the peaks in 843 
power at 1.67 and 3.33 Hz were larger in the beat-based condition than in the pattern-based and random 844 
conditions, while peaks at 2.22 Hz did not differ between conditions. The peak in phase coherence at 1.67Hz 845 
in the beat-based condition was larger than in the random condition, while the peak at 2.22 Hz did not differ 846 
between conditions. This suggests that only beat-based expectations persisted in the silence window. Note: 847 
the raw data is depicted here, before the normalization procedure. Data shown is averaged over all electrodes. 848 

 849 

Note that like for the behavioral results indicative of entrainment, there was large 850 

heterogeneity between participants (see Figure 7). While the power differences were significant 851 

in the overall cluster-based analyses, out of 27 participants, only 16 showed on average (i.e. 852 

over all electrodes) numerically larger power in the beat-based condition at the beat frequency 853 

when compared to both the random and pattern-based condition. As for the ERP differences, 854 

musical training did not affect the difference in power between the beat-based and random 855 

condition at 1.67 Hz, nor the difference in power between the pattern-based and random 856 

condition at 2.22 Hz (both ps >  0.54). 857 
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 859 
Figure 7. Individual participant data shows heterogeneity of the effects of temporal expectations on 860 
spectral power. All plots depict the spectral power at the frequency of interest, averaged over all electrodes, 861 
and normalized to account for the 1/f distribution (see Materials and Methods). A) Single participant data, 862 
with all data points in grey. Boxplots show the median, with the lower and upper hinges corresponding to the 863 
first and third quartiles (25th and 75th percentiles), and the whiskers corresponding to values no further than 864 
1.5 times the inter-quartile range from the hinges. Error bars depict 2 standard errors around the mean. B) 865 
Scalp topographies for all conditions. Electrodes contributing to significant clusters in the cluster-based tests 866 
are highlighted on the plots for the conditions from each comparison in which power was largest.  867 
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Multiscale entropy as a non-stationary measure of temporal expectations 868 

Figure 8 shows sample entropy for each condition separately, as well as the electrodes 869 

contributing to significant clusters in the analysis. Given that MSE indexes signal irregularity, 870 

we would expect entropy to be higher for the random and pattern-based conditions than for the 871 

beat-based condition in the silence. A cluster-based test on all electrodes and timescales showed 872 

that both in the control window, and in the silence window, entropy was higher for the pattern-873 

based than for the random condition (control: p = 0.03; silence: p = 0.021). Note that in the 874 

silence window, all but the two highest timescales were included in the cluster. In the control 875 

window, the cluster spanned all timescales from 35 till 406 ms (see Materials and Methods for 876 

an explanation of the timescales). These results suggest that the signal was more irregular in 877 

the pattern-based than the random condition, over a broad range of timescales. Neither the beat-878 

based condition compared to pattern-based nor the beat-based compared to the random 879 

condition reached significant differences in entropy, in either control or silence windows (all 880 

ps > 0.24).  881 

Entropy has been related to various other EEG measures, such as spectral power and 882 

overall differences in signal variability (Kosciessa et al., 2020). To account for these, we ran 883 

several additional analyses. First, to check whether the differences in signal variability may 884 

have been caused by differences in low frequency activity, we repeated the MSE analysis on 885 

high-pass filtered data (Kloosterman et al., 2020), using a 5 Hz high-pass filter. This completely 886 

removed the effects (all ps > 0.43), suggesting that the differences between conditions were 887 

caused by low frequency activity in the signal (see Supplementary Figure 2).    888 

Second, we checked whether differences in signal variability caused the differences in 889 

entropy, since entropy is calculated relative to the overall signal standard deviation (e.g., a 890 

pattern is considered a match at a lower threshold when overall signal variability is high). As 891 

can be seen in Supplementary Figure 3, the similarity bounds used to compute entropy (derived 892 
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from the time-domain signal standard deviation) differed between conditions, and this 893 

difference mirrored the differences in entropy, suggesting that at least some of the variance we 894 

observed was due to overall signal variability, and not necessarily signal irregularity. Finally, 895 

musical training did not affect the difference in sample entropy between the beat-based and 896 

random condition, nor the difference in entropy between the pattern-based and random 897 

condition (both ps > 0.66). 898 

 899 
Figure 8. Entropy was higher for pattern-based than random sequences in both control and silence 900 
windows. Entropy in the Control window (left) and Silence window (right), averaged over frontocentral 901 
electrodes, and scalp distributions averaged over all timescales, depicting electrodes contributing to 902 
significant clusters. 903 

 904 

Multivariate decoding as a time-resolved method for studying entrainment 905 

With multivariate decoding, we expected that training at expected times would yield 906 

above chance performance when testing at expected times, regardless of whether these time 907 

points were the same (e.g., when training at 600 ms, we expected to be able to accurately 908 

distinguish the beat-based from the random condition when testing at not just 600 ms, but also 909 

at 1200 and 1800 ms, as all these times were on the beat, or similarly expected). Figure 9A 910 

shows the temporal generalization matrices for each comparison, with significant clusters 911 

indicated by a black contour. In the silence window we found above chance decoding when 912 

decoding the beat-based against the random condition (p = 0.043), the pattern-based against the 913 

random condition (p < 0.001), and the beat-based and pattern-based conditions against each 914 
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other (p = 0.009), indicating that based on the EEG signal in the silence, we could classify 915 

which type of rhythm participants had heard just before. However, looking at the temporal 916 

generalization matrices, it becomes apparent that contrary to our expectations, this above-917 

chance decoding was not due to recurrent activity for expected events. Only clusters on the 918 

diagonal were significant for each comparison. In addition, decoding for all three comparisons 919 

was best in the second halve of the silence window, which is where the probe tones were 920 

presented. This suggests that the decoding mainly picked up on task-related differences. While 921 

the probes were physically identical across conditions, participants may have had different 922 

strategies to perform the task, depending on the type of sequence, and this could have resulted 923 

in above-chance decoding related to the task and probes, even when only analyzing the silence 924 

window. 925 

 926 
Figure 9. No recurrent activation in group average decoding, example of recurrency in single 927 
participant. A) Temporal generalization matrices for each comparison for the group analysis. The Y-axis 928 
shows the training time points, and the X-axis testing time points. The color scale indicates the classification 929 
accuracy, with 0.5 being chance level (all analyses are based on decoding two conditions against each other). 930 
Significance of classification accuracy was assessed by using cluster-based permutation tests on the silence 931 
window (300-2100 ms after the last note onset). The black contour indicates significant clusters. Note that 932 
the upper right quadrant, highlighted by the black box, is the entire silence window. B) Temporal 933 
generalization matrix for a participant showing recurrent activity following the expected beats. When 934 
decoding the beat-based vs. the other two conditions (left- and rightmost plots), peaks in accuracy follow a 935 
clear oscillatory pattern, with a phase consistent with the beat-based sequence (600 ms between beats and 936 
decoding peaks). 937 
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Of note, the decoding results varied considerably between participants. In one 938 

participant in particular (Figure 9B), we observed a pattern in the temporal generalization 939 

matrix that was consistent with the hypothesized result for an oscillatory process (King & 940 

Dehaene, 2014). However, even though some other participants also showed recurrent activity, 941 

the exact times of most accurate decoding, and the exact period of the recurrent process, differed 942 

widely between participants, obscuring these effects in the grand averages. These individual 943 

differences may be caused by individual preferences for a level of regularity in the beat-based 944 

stimuli (Drake, Jones, & Baruch, 2000), with some people attending mostly to the beat level 945 

(1.67 Hz), but others possibly attending to subdivisions (3.33 Hz) or the level of the meter (0.83 946 

Hz). Also, for different people, the optimal phase of delta oscillations (i.e., the phase that aligns 947 

with expected moments) may differ (Breska & Deouell, 2017; Henry & Obleser, 2012), 948 

possibly causing optimal decoding at different time points. To circumvent the large task-related 949 

effects apparent in the decoding results, and the possible individual differences in phase and 950 

metrical level attended to, we ran an additional exploratory decoding analysis looking at 951 

decoding within instead of between conditions. Here, we found above-chance decoding of beat 952 

positions against offbeat positions only following the beat-based condition. However, while 953 

decoding was above chance in the beat-based condition, it was in fact not better than in the 954 

other conditions. As such, these results provide only weak support for persistent effects of beat-955 

based, but not pattern-based expectations. Detailed results of the within-condition decoding 956 

analysis can be found in the Supplementary Materials (Supplementary Figure 4).  957 

958 
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Discussion 959 

In the current study, we aimed to identify and directly compare the neural mechanisms 960 

underlying temporal expectations based on a regular beat, as well as temporal expectations 961 

based on learning a predictable pattern, by examining the development of climbing activity and 962 

the persistence of neural entrainment after cessation of rhythmic input with either a regular beat, 963 

a predictable pattern of temporal intervals, or random timing. Instead of relying on isochrony 964 

to elicit beat-based expectations, which can also elicit different forms of memory-based 965 

expectations, we used varying non-isochronous patterns to clearly separate beat-based and 966 

pattern-based expectations. Moreover, we assessed responses in a silent period after the 967 

auditory input ceased, side stepping the many possible confounds associated with acoustic 968 

differences between conditions (Capilla, Pazo-Alvarez, Darriba, Campo, & Gross, 2011; 969 

Haegens & Zion Golumbic, 2018; Novembre & Iannetti, 2018; Zoefel et al., 2018).  970 

We found several indicators of separate mechanisms for beat-based and pattern-based 971 

expectations. First, behaviorally, we found that while the effects of beat-based expectations 972 

spanned at least two beat cycles, the effects of pattern-based expectations only reflected the 973 

first expected moment in time. Second, a negative ERP component at around 300 to 450 ms 974 

after the onset of the last sound was larger for pattern-based, and possibly random, than beat-975 

based sequences. Third, we observed significantly more power at the beat frequency in the 976 

silence window when participants were previously listening to a beat-based sequence as 977 

compared to a pattern-based or random sequence, tentatively accompanied by significantly 978 

more phase coherence at the beat frequency in the beat-based condition compared to the random 979 

condition. The observed difference between the behavioral effects of beat-based and pattern-980 

based expectations and increased oscillatory power at the beat frequency following beat-based 981 

but not pattern-based sequences both point towards entrainment underlying beat-based, but not 982 

pattern-based expectations. The time-domain results showing differences in ERP components 983 
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between pattern-based and beat-based sequences suggest that the former may rely on a different 984 

mechanism, tentatively more like climbing neuronal activity. Together, these findings provide 985 

support for the notion that beat-based and pattern-based expectations rely on different neural 986 

mechanisms, as has previously been suggested for cue-based expectations (Breska & Deouell, 987 

2017; Breska & Ivry, 2020), but our results do not support models that assume shared 988 

mechanisms, be it entrainment (Tichko & Large, 2019), or a general top-down mechanism for 989 

temporal expectations (Rimmele et al., 2018). 990 

Behaviorally, for the beat-based condition, we observed a pattern clearly in line with 991 

entrainment models, with an inverted U-curve, an indication of entrainment (Bauer et al., 2015; 992 

Jones et al., 2002), present as late as 1200 ms after the final tone of each sequence in both 993 

experiments. Beat-based expectations thus affected the fitness ratings for at least two beat 994 

cycles after the end of the sequences, as predicted by nonlinear oscillator models, that assume 995 

oscillations are self-sustaining (Large, 2008; Large & Palmer, 2002). Expectations in the beat-996 

based condition not only led to higher ratings for expected events, but also to lower ratings for 997 

unexpected events, when compared to the random and pattern-based conditions. Suppression 998 

of unexpected events may be metabolically beneficial (van Atteveldt et al., 2015), and as such, 999 

has been suggested to be a hallmark of entrainment and the associated “rhythmic” mode of 1000 

processing (Schroeder & Lakatos, 2009a; Zoefel & Vanrullen, 2017). Indeed, suppression off 1001 

the beat has even been proposed to be a better indication of beat-based expectations than 1002 

facilitation on the beat (Bouwer et al., 2020; Breska & Deouell, 2017), in line with the current 1003 

results, where the effects of beat-based expectations at unexpected time points exceeded those 1004 

at expected time points.  1005 

Pattern-based expectations similarly affected fitness ratings, with enhanced ratings at 1006 

the first expected time point, and lower ratings at the first unexpected time point, showing that 1007 

participants did form expectations based on the predictable pattern. However, importantly, for 1008 
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the pattern-based condition, the results are qualitatively different from those for the beat-based 1009 

condition, as the effects of expectations only reflected the first expected moment, but not the 1010 

subsequent structure of the pattern. We did observe lower ratings for the last probe positions 1011 

after pattern-based than random sequences in Experiment 1. One speculative explanation for 1012 

this is that while listeners are able to form expectations following temporal patterns, they only 1013 

do so one interval at a time (e.g., they use each event as a cue for the next interval, but in the 1014 

absence of an event, no next interval is predicted), and in a probabilistic way (Cannon, 2021; 1015 

Damsma et al., 2021; van der Weij, Pearce, & Honing, 2017). In this case, it is possible that the 1016 

expectation for an event at 780 ms would lead to an inverted U-shape in responses, similar to 1017 

the inverted U around a beat, but with a wider distribution. This could explain the ratings being 1018 

equal for probes at 780 and 885 ms, as they would still fall within the time window where a 1019 

tone could be expected, while probes at 1200 and 1485 ms were considered as unexpected, as 1020 

they fell far from the expected time. A tentative alternative explanation could also be that the 1021 

repetitiveness of the pattern lead participants to use a different heuristic during the pattern-1022 

based sequences to guide their ratings, considering only one interval at a time, while the varying 1023 

rhythmic pattern of the beat-based condition induced a strategy whereby participants were more 1024 

inclined to consider positions after the first expected tone. 1025 

Crucial to entrainment models of beat-based expectations (Haegens & Zion Golumbic, 1026 

2018; Henry & Herrmann, 2014; Large, 2008; Large & Jones, 1999; Obleser & Kayser, 2019), 1027 

we found that power at the beat frequency (1.67 Hz) and its harmonic (3.33 Hz) in the EEG 1028 

signal during the silence window was larger following beat-based than pattern-based or random 1029 

sequences. Such enhanced power was not found for a frequency inherent to the pattern-based 1030 

sequence (2.22 Hz). Methodologically, measuring phase locking during rhythmic stimulation 1031 

can lead to confounding contributions from tone-evoked responses (Capilla et al., 2011; 1032 

Novembre & Iannetti, 2018; Zoefel et al., 2018). Ongoing oscillations in silence, after sensory 1033 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2020.01.08.899278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.08.899278
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

46 

input has stopped, are therefore regarded as strong evidence for entrainment (Breska & Deouell, 1034 

2017; Haegens & Zion Golumbic, 2018; Obleser & Kayser, 2019; van Bree et al., 2021; Zoefel 1035 

et al., 2018). As such, our observation of enhanced power at the beat frequency during silence 1036 

provides important novel support for the notion that entrainment of low-frequency neural 1037 

oscillations underlies beat-based perception, and our design, using non-isochronous rhythms, 1038 

allows us to separate beat-based aspects from other structure present in natural rhythm (Bouwer, 1039 

Nityananda, Rouse, & ten Cate, 2021).  1040 

Interestingly, a recent paper that assessed ongoing oscillations following auditory 1041 

rhythmic input did not find any evidence for persistent entrainment at the frequency of the 1042 

rhythm (Pesnot Lerousseau et al., 2021). Two differences between this study and our work may 1043 

provide directions for future work. First, as mentioned before, isochronous rhythm allows for 1044 

several different ways of forming temporal expectations, including not only beat-based, but 1045 

also cue-based and pattern-based expectations. In the current study, this was the motivation to 1046 

design stimuli that allowed for differentiating between these types of expectations. However, 1047 

an additional concern could be that when presented with stimuli that do not require beat-based 1048 

expectations to perform the task of tracking the temporal structure, the brain may not engage in 1049 

forming such expectations. Thus, in addition to variation between individuals (Assaneo et al., 1050 

2019), variation in the input signal may also determine which mechanism is used to form 1051 

temporal expectations.  1052 

Second, the presence of persistent entrainment may also depend on task demands 1053 

(Shalev, Nobre, & van Ede, 2019). In our study, the auditory sequences were task relevant, and 1054 

the task itself was rhythm-related. In the study by Pesnot Lerousseau et al. (2021), participants 1055 

listened to rhythms passively. This raises the possibility that persistent entrainment is the result 1056 

of explicit, top-down guided expectations, rather than being the result of some passive, 1057 

automatic process (Bouwer, 2022). Interestingly, in our study, the scalp topographies for power 1058 
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at 1.67 Hz differed between the silence and control windows, with power in the control window 1059 

largest above a frontocentral region, and in the silence window above a parieto-central region. 1060 

This raises the question to what extent the phase locking as measured during the sound 1061 

presentation has the same source as phase locking during the silence. During sound 1062 

presentation, oscillations picked up at the scalp likely contain large contributions from evoked 1063 

responses in auditory cortex that are phase locked to the input (“entrainment in the broad sense”, 1064 

see (Obleser & Kayser, 2019). Possibly, instead of resulting from a sustained automatic 1065 

oscillation, persistent entrainment could originate from other sources, such as explicit 1066 

predictions made by a motor network (Rimmele et al., 2018). The influence of contextual 1067 

factors on entrainment, be it person, stimulus, or task, and the source of phase-locked activity, 1068 

be it automatic phase alignment in sensory cortices, or active top-down expectations, are 1069 

important topics for future research. 1070 

The absence of power at 2.22 Hz following the pattern-based sequences suggests that 1071 

entrainment does not underlie expectations based on learning a pattern, contrary to a recently 1072 

proposed oscillator model that can capture aspects of pattern-based expectations (Tichko & 1073 

Large, 2019). In the time-domain, we found a negative deflection in the silence window 1074 

following the pattern-based and random sequences, but less so following the beat-based 1075 

sequences. The observed differences in the ERP suggest that rather than one entrainment 1076 

mechanism for both regular and irregular rhythms, an alternative mechanism, possibly based 1077 

on climbing neuronal activity, specifically supports formation of pattern-based expectations.  1078 

The ERP component we observed in the silence window differed from previous work 1079 

and our hypotheses in two respects. First, while previous studies showed a CNV peaking at an 1080 

expected time (Breska & Deouell, 2017; Mento, 2017; Praamstra et al., 2006), here, the peak 1081 

latency of the negative deflection in the signal was earlier, peaking around 400 ms for the 1082 

pattern-based condition, while the first expected time point in the silence was at 780 ms. 1083 
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Second, in previous research, a CNV was found peaking at expected times not only for cue-1084 

based, but also for beat-based expectations when compared to a random condition (Breska & 1085 

Deouell, 2012, 2017; Breska & Ivry, 2020; Praamstra et al., 2006). Given the differences 1086 

between our study and previous work looking at the CNV, the question is to what extent the 1087 

negative component we observed in the current study is related to the CNV. Tentatively, we 1088 

would like to suggest that the negative deflection in the current experiment may still be 1089 

interpreted as a CNV, and that differences with previous work may be explained by considering 1090 

the design of the rhythmic stimuli. 1091 

First, the CNV may index temporal expectations in a probabilistic, and context-1092 

dependent way (Capizzi, Correa, & Sanabria, 2013; Damsma et al., 2021; Los & Heslenfeld, 1093 

2005). While the design of most studies looking at the CNV involves isochronous stimulation 1094 

(Breska & Deouell, 2017; Mento, 2017; Praamstra et al., 2006), here, the pattern-based 1095 

sequences contained several temporal intervals with durations between 150 and 780 ms. The 1096 

peak at 400 ms may have indexed the average interval presented in the sequence (~360 ms). 1097 

This explanation is supported by the presence of a deflection with a similar time course and 1098 

morphology for the random condition. Like in the pattern-based condition, in the random 1099 

condition, participants could not use a beat-based strategy to perform the task. Thus, they may 1100 

have attempted to predict the timing of an upcoming sound based on the distribution of the 1101 

absolute intervals, which while random in terms of transitional probabilities, was on average 1102 

identical to the pattern-based condition. Interestingly, the average interval in the beat-based 1103 

condition was also 360 ms, but here, the same component was less present, suggesting that in 1104 

the presence of a possible beat-based strategy, the brain may operate in a rhythmic mode of 1105 

processing (Rimmele et al., 2018; Schroeder & Lakatos, 2009a). Of note, the CNV has indeed 1106 

been shown to be susceptible to its probabilistic context (Capizzi, Correa, & Sanabria, 2013; 1107 

Damsma et al., 2021; Los & Heslenfeld, 2005), and probabilistic models incorporating 1108 
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statistical regularities in inter-onset intervals at different levels have been used to explain 1109 

aspects of temporal processing (Cannon, 2021; Elliott, Wing, & Welchman, 2014; van der Weij 1110 

et al., 2017). In future work, linking such models directly to neural markers of pattern-based 1111 

expectations may provide more insight in the mechanisms underlying pattern-based 1112 

expectations and how they relate to the CNV. 1113 

Secondly, studies finding a CNV for beat-based expectations have typically also used 1114 

isochronous stimulation. Therefore, memory-based expectations, be it pattern-based or cue-1115 

based, could also have been formed in response to these sequences (Bouwer et al., 2020, 2021; 1116 

Bouwer, Werner, Knetemann, & Honing, 2016; Breska & Ivry, 2016; Keele et al., 1989), and 1117 

may have contributed to the elicitation of a CNV. Here, using a beat-based sequence that did 1118 

not allow for expectations based on simply learning transitional probabilities, we did not 1119 

observe the same negative deflection as in the pattern-based sequences. This raises the 1120 

possibility that a CNV (or CNV-like) component is specific to pattern-based and cue-based 1121 

(Mento, 2013, 2017), temporal expectations. 1122 

It could also be argued that the differences we observed in ERPs should not be 1123 

interpreted as a CNV, but rather, were caused by differences in the P3 response to the last sound 1124 

of each sequence, which would be apparent at a similar latency (peaking between 300 and 450 1125 

ms). This would mean that the P3 response would have been largest for expected sounds in the 1126 

beat-based sequences, smallest for expected sounds in the pattern-based sequences, with the 1127 

response to unexpected sounds in the random sequences in between. The P3 has indeed been 1128 

shown to be susceptible to temporal expectations, with larger amplitude responses for 1129 

temporally predictable targets (Lange, 2009; Mento, 2017; Schmidt-Kassow, Schubotz, & 1130 

Kotz, 2009). However, these effects can be observed for beat-based and memory-based 1131 

expectations in a similar direction (Breska & Deouell, 2017; Breska & Ivry, 2020; Mento, 2017; 1132 

Schmidt-Kassow et al., 2009). Thus, we feel it is unlikely that the differences observed in the 1133 
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ERPs here are caused by differences in the P3, as the P3, if anything, should have been larger 1134 

for the pattern-based than random sequences, which is not the case. Thus, we tentatively suggest 1135 

that here, the observed ERP differences are more likely to be due to a CNV-like mechanism.   1136 

Various other challenges for future research remain. First, in the beat-based condition, 1137 

it could be argued that participants used an interval-based strategy to perform the task, in which 1138 

they predicted an event every 600 ms. However, listening to strictly metric patterns, as the ones 1139 

used here, is associated with activity in a circuit including the basal ganglia, while listening to 1140 

non-metric patterns is associated with activity in a circuit including the cerebellum, making it 1141 

unlikely that the same, interval-based mechanism would be used for both types of rhythms 1142 

(Leow & Grahn, 2014). Also, predicting the timing of events in non-isochronous strictly metric 1143 

sequences would require participants to learn not just the transitional probabilities of single 1144 

intervals, but also to combine multiple intervals into groups that together last the length of a 1145 

beat. It is currently unclear whether humans, when faced with rhythmic patterns, use such a 1146 

hierarchical interval-based strategy. Indeed, future research could examine if beat-based 1147 

expectations in general can be explained by such multilevel interval learning, akin to a recent 1148 

model for beat-based perception (Cannon & Patel, 2021), as this could provide a general 1149 

challenge to oscillator models of beat-based perception. In such a view, the difference between 1150 

beat-based and pattern-based timing may be the importance of hierarchical structure in beat-1151 

based rhythms (Fitch, 2013), rather than the presence of oscillations.  1152 

A second challenge concerns the result from the frequency-domain analysis. The 1153 

Fourier transform assumes stationarity in the oscillating signal, while entrainment models 1154 

propose a dampening factor to account for decreasing oscillatory power over time (Large, 1155 

Herrera, & Velasco, 2015). To assess power at specific frequencies in a time-resolved way, 1156 

wavelet convolution is often used as an alternative. But, in the current study, differentiating 1157 

between the specific frequencies of the beat and the pattern would require wavelet parameters 1158 
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that would result in a temporal resolution too low to disentangle activity during and before the 1159 

silence (i.e., many wavelet cycles would be needed). Recently, a promising alternative to assess 1160 

oscillatory activity in the time domain was proposed in the form of cycle-by-cycle analysis 1161 

(Cole & Voytek, 2019). However, this approach requires filtering the signal at the specific 1162 

frequency of interest, again posing problems for disentangling low frequency oscillations due 1163 

to the beat, the pattern, and ongoing ERPs. Assessing the time course of low frequency 1164 

oscillations thus remains a challenge for future research. 1165 

Multi scale entropy and multivariate pattern analysis may provide alternative ways to 1166 

examine neural entrainment with high temporal precision. At the group level, entropy was 1167 

higher following the pattern-based than random sequences. This could be explained by 1168 

assuming that the brain uses a vigilance mode to track the pattern-based regularities, which at 1169 

the neural level, translates in more irregular patterns of activity. Attention and arousal, which 1170 

are both associated with temporal expectations (Schroeder & Lakatos, 2009b), have indeed 1171 

been linked to neural variability as well (Waschke et al., 2021). However, the group level results 1172 

can be explained at least to some extent by overall differences in signal variability (e.g., the 1173 

signal variance), so this hypothesis remains to be confirmed in future research. Considering the 1174 

decoding results, the observed above-chance decoding seemed to primarily reflect general task-1175 

related activity. The best decoding was observed in the second half of the silence window, 1176 

where probes could be presented. Also, in the group-average decoding results, above chance 1177 

decoding was limited to training and testing on the same time points. In other words, we did 1178 

not observe recurrent activity, as reflected in stronger decoding accuracy at expected time 1179 

points. Yet, we did show a proof of concept for our approach in at least one participant, who 1180 

showed a clear oscillatory pattern in decoding accuracy when decoding the beat-based against 1181 

the other two conditions. This pattern of activity is in line with the strength or sharpness of the 1182 
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neural representation of tones varying over time as a function of temporal expectations 1183 

(Auksztulewicz et al., 2019, 2018). 1184 

At the group level, the behavioral results, along with the results obtained using 1185 

frequency-domain analysis and ERPs provide evidence for differential processing of the beat 1186 

and the pattern in rhythm, while the results from the decoding and entropy analyses are less 1187 

clear. One reason for this is heterogeneity between individuals. This heterogeneity may be 1188 

present at several levels. First, people may attend to different levels of regularity in beat-based 1189 

perception (Drake et al., 2000), and the optimal phase of delta oscillations (e.g., the phase that 1190 

aligns with expected moments) may differ across individuals (Breska & Deouell, 2017; Henry 1191 

& Obleser, 2012; Sun et al., 2021). Second, while it is often assumed that most people 1192 

automatically form beat-based expectations (Honing, 2012), recent evidence showed phase 1193 

locking to speech in only about half of the population (Assaneo et al., 2019). Indeed, in our 1194 

study, only about two-thirds of the participants behaviorally showed evidence for beat-based 1195 

expectations in the second half of the silence window and we only observed enhanced power 1196 

at the beat frequency following beat-based sequences in about half of the participants. 1197 

In the current study, the behavioral effects of beat-based and pattern-based expectations 1198 

were associated with musical training, consistent with previous research using beat-based 1199 

(Bouwer et al., 2018, 2016; Cameron & Grahn, 2014; Matthews, Thibodeau, Gunther, & 1200 

Penhune, 2016; Vuust et al., 2005) and pattern-based (Cameron & Grahn, 2014) rhythms. Some 1201 

previous studies have failed to show differences between musicians and non-musicians, 1202 

however (Bouwer, Van Zuijen, & Honing, 2014; Geiser et al., 2009; Grahn & Brett, 2007), 1203 

possibly due to differences in task design (Bouwer et al., 2018). The current study used an 1204 

explicit rating task, for which performance may be particularly improved by musical training, 1205 

as musically trained participants may have additional strategies to perform the task. The use of 1206 

implicit timing tasks may be a better probe of innate differences in timing abilities, which need 1207 
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not necessarily be related to musical training (Law & Zentner, 2012), and implicit tasks may 1208 

also be less susceptible to task-related effects as we observed in the decoding analysis, which 1209 

may stem from individual strategies in performing the explicit task.  1210 

We did not find an association between musical expertise and the neural results. This 1211 

may be due to neural activity being more reflective of innate abilities, as argued above. Also, 1212 

our sample scored relatively low on the musical training scale, with a mean of 20.5 on the GMSI 1213 

subscale, which is comparable to the 32nd percentile of the norm scores, which have a mean of 1214 

26.5 (Müllensiefen et al., 2014). This may have made it hard to find the effects of musical 1215 

training. However, with the current sample size, we may have simply lacked power to detect 1216 

associations between neural data and musical expertise. Undoubtedly, given the heterogeneity 1217 

we and others (Assaneo et al., 2019; Bauer et al., 2015; Sun et al., 2021) have observed in tasks 1218 

probing temporal expectations, understanding individual differences is an important direction 1219 

for future research, with significant implications for applications of musical rhythm, such as in 1220 

motor rehabilitation (Dalla Bella, Dotov, Bardy, & Cochen De Cock, 2018). 1221 

Conclusion 1222 

In summary, we have shown that beat-based and pattern-based expectations can be 1223 

differentiated in terms of their behavioral and neurophysiological effects once sensory input 1224 

has ceased. These findings provide novel, more conclusive evidence for the notion that different 1225 

mechanisms implement temporal expectations based on periodic and aperiodic input streams, 1226 

with the former based on entrainment of low frequency neural oscillations, and the latter on 1227 

climbing neural activity indexing a memorized interval. 1228 
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Supplementary materials for “A silent disco: Persistent entrainment of low-frequency 
neural oscillations underlies beat-based, but not pattern-based temporal expectations” 

(Bouwer, Fahrenfort, Millard, Kloosterman, & Slagter, 2022) 
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Supplementary Figure 1. ERPs with traditional 50 ms baseline and difference waves. A) With the more 
traditional pre-cue baseline, there was a trend for the random condition to elicit a more negative deflection 
than the beat-based condition (p = 0.058, 300 – 446 ms) and for the pattern-based condition to elicit a more 
negative deflection than the random condition (early window: p = 0.083, 380 – 551 ms; later window: p = 
0.022, 774 – 1200 ms). Note that a significant cluster spanning the entire analysis window of 300 – 1200 ms 
was found when comparing between the pattern-based and beat-based condition with baseline correction (p 
= 0.011), indicative of a possible overall shift due to the baseline correction. However, the overall picture 
stays the same as when not using a baseline, a negative deflection can be seen around 300-450 ms after the 
last sound onset for the pattern-based and random, but not the beat-based condition. B) Scalp distributions 
for windows with a significant cluster (see also Figure 5). C) Difference waves depicting condition 
differences and the 95% confidence interval around the mean difference waveforms. The scalp distributions 
similarly depict condition differences. D) Evoked potential showing the ERPs during sound presentation. 
Time 0 here is the presentation of a sound, with the next sound being presented at 600 (beat-based condition) 
or 780 ms (pattern-based and random condition). As in the silence window, a negative deflection can be 
observed, which was larger for the pattern-based than random condition (p = 0.039), and peaks around 350 
ms after the onset of the previous sound. The difference between the pattern-based and beat-based condition 
here did not reach significance (p = 0.1), likely because of the noisy baseline. 
 
 
 

 
Supplementary Figure 2. MMSE after highpass filtering at 5 Hz. Here, all differences between conditions 
are eliminated by the highpass filtering. 

 

 
Supplementary Figure 3. Similarity bounds used to calculate MMSE values mirror the condition 
differences. This finding suggests that condition differences found in the entropy measure, with higher 
entropy for the pattern-based than random condition in the silence window, may be due to overall variability 
differences, with lower variability for the pattern-based than random condition, rather than differences in 
entropy of the signal. 
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Supplementary Figure 4. Above chance decoding for beat vs offbeat time points only after listening to 
beat-based sequences. For the within-condition decoding analysis, we used a classification algorithm to 
differentiate between times that were expected or unexpected based on the beat (on the beat: 600 and 1200 
ms after the onset of the last tone; offbeat: 780 and 885 ms after the onset of the last tone) or pattern 
(predicted: 780 and 1200 ms after the onset of the last tone; unpredicted: 600 and 880 ms after the onset of 
the last tone). The graphs depict the average classification accuracy in a 100 ms time window centered on 
these expected and unexpected time points in the silence window. Here, the beat-offbeat comparison should 
yield better decoding if preceded by the beat-based sequences, while the predicted-unpredicted comparison 
should be decoded better if preceded by the pattern-based sequences. Only decoding of beat vs offbeat 
positions after the beat-based sequences yielded above-chance decoding (t26 = 2.84, p = 0.009). None of the 
other comparisons lead to decoding above chance (all ps > 0.18), but decoding of predicted vs unpredicted 
positions in the beat-based condition did yield below-chance decoding (p = 0.026). However, a subsequent 
ANOVA comparing decoding of beat against offbeat positions in all three conditions showed that decoding 
was not significantly better for the beat-based condition than the other conditions (effect of condition in the 
silence: c2 = 2.1, p = 0.35). Like for the other analyses, there were larger differences between participants, 
and decoding, while above chance, did not exceed 0.55 accuracy. As for the other EEG measures, the 
difference in decoding accuracy between the beat-based and random condition, and the patten-based and 
random condition did not depend on musical training (both ps > 0.21). 
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Supplementary Table 1. Simple effects per position from the full models, comparing three conditions. All 
p-values have been Bonferroni corrected for 18 (Experiment 1) or 9 (Experiment 2) comparisons. 

 Experiment 1 Experiment 2 
Position Contrast Estimate SE Z ratio p Estimate SE Z ratio p 
600 ms Random – Pattern 2.4 0.09 26.2 <.0001  

Random – Beat -1.2 0.09 13.3 <.0001 
Pattern - Beat -3.5 0.09 -38.3 <.0001 

780 ms Random – Pattern -0.3 0.09 -2.9 0.058 
Random – Beat 1.6 0.09 18.3 <.0001 
Pattern - Beat 1.8 0.09 20.7 <.0001 

885 ms Random – Pattern -0.1 0.09 -1.6 1 
Random – Beat 1.5 0.09 17.0 <.0001 
Pattern - Beat 1.6 0.09 18.4 <.0001 

990 ms Random – Pattern 0.1 0.09 1.1 1 0.6 0.1 4.8 <.0001 
Random – Beat 1.4 0.09 16.2 <.0001 1.4 0.1 11.4 <.0001 
Pattern - Beat 1.3 0.09 15.0 <.0001 0.8 0.1 6.5 <.0001 

1200 ms Random – Pattern 0.6 0.08 7.5 <.0001 0.2 0.1 1.6 0.92 
Random – Beat -0.3 0.09 -3.7 0.004 0.1 0.1 0.9 1 
Pattern - Beat -1.0 0.09 -10.9 <.0001 -0.1 0.1 -0.7 1 

1485 ms Random – Pattern 0.5 0.09 5.2 <.0001 -0.5 0.1 -4.4 <.0001 
Random – Beat 0.6 0.09 6.5 <.0001 0.4 0.1 3.2 0.011 
Pattern - Beat 0.1 0.09 1.3 1 0.9 0.1 7.5 <.0001 

Supplementary Table 2. Simple effects per condition from the baseline corrected model, using the random 
condition as baseline, for all positions. All p-values have been Bonferroni corrected for 30 (Experiment 1) 
or 6 (Experiment 2) comparisons.  

Experiment 1 Experiment 2 
Condition Contrast Estimate SE Z ratio p Estimate SE Z ratio p 
Beat-based 600 ms - 780 ms 2.3 0.08 28.7 <.0001 

    

600 ms - 885 ms 2.2 0.08 27.8 <.0001 
    

600 ms - 990 ms 2.1 0.08 27.0 <.0001 
    

600 ms - 1200 ms 0.6 0.08 6.9 <.0001 
    

600 ms - 1485 ms 1.5 0.08 18.0 <.0001 
    

780 ms - 885 ms -0.1 0.08 -1.3 1 
    

780 ms - 990 ms -0.2 0.08 -1.9 1 
    

780 ms - 1200 ms -1.8 0.08 -21.3 <.0001 
    

780 ms - 1485 ms -0.9 0.08 -10.5 <.0001 
    

885 ms - 990 ms -0.1 0.08 -0.7 1 
    

885 ms - 1200 ms -1.7 0.08 -20.3 <.0001 
    

885 ms - 1485 ms -0.8 0.08 -9.4 <.0001 
    

990 ms - 1200 ms -1.6 0.08 -19.5 <.0001 -1.1 0.1 -9.6 <.0001 
990 ms - 1485 ms -0.7 0.08 -8.7 <.0001 -0.9 0.1 -7.9 <.0001 
1200 ms - 1485 ms 0.9 0.08 10.9 <.0001 0.2 0.1 1.8 0.46 

Pattern-based 600 ms - 780 ms -2.3 0.09 -27.0 <.0001 
    

600 ms - 885 ms -2.2 0.08 -26.4 <.0001 
    

600 ms - 990 ms -2.1 0.08 -24.8 <.0001 
    

600 ms - 1200 ms -1.7 0.08 -20.2 <.0001 
    

600 ms - 1485 ms -1.7 0.09 -20.3 <.0001 
    

780 ms - 885 ms 0.1 0.08 1.0 1 
    

780 ms - 990 ms 0.2 0.08 3.0 0.080 
    

780 ms - 1200 ms 0.6 0.08 7.6 <.0001 
    

780 ms - 1485 ms 0.6 0.08 6.9 <.0001 
    

885 ms - 990 ms 0.2 0.08 2.0 1 
    

885 ms - 1200 ms 0.5 0.08 6.7 <.0001 
    

885 ms - 1485 ms 0.5 0.08 6.0 <.0001 
    

990 ms - 1200 ms 0.4 0.08 4.7 <.0001 -0.3 0.1 -2.9 0.022 
990 ms - 1485 ms 0.3 0.08 4.1 0.001 -0.9 0.1 -8.3 <.0001 
1200 ms - 1485 ms 0.0 0.08 -0.5 1.00 -0.6 0.1 -5.4 <.0001 
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Supplementary Methods: MSE computation 

To compute entropy, epochs were concatenated. Sample entropy was then calculated by 

taking the following steps: 

1. In each time series, a template is selected, consisting of m samples. The calculation 

of entropy is an iterative process, using each sample in the time series as a starting 

point for the template once. 

2. Throughout the time series, the algorithm searches for patterns that match the 

template pattern. A section of samples is considered a match if it resembles the 

template pattern enough to fall within a set boundary, which is defined as r x SD 

(the similarity bound). 

3. The number of pattern matches is counted. 

4. Subsequently, the same procedure is followed for patterns of m + 1 samples long. 

5. For the total counts of pattern matches throughout the time series, sample entropy is 

then calculated as the logarithm of the ratio between pattern matches of length m 

and pattern matches of length m + 1. 

Thus, sample entropy reflects the proportion of patterns in the time series that stays similar 

when an extra sample is added to the pattern. Here, we used m = 2 and  r = 0.5, as was done 

previously for EEG data (Kloosterman, Kosciessa, Lindenberger, Fahrenfort, & Garrett, 2020).  

 Sample entropy is then repeated for multiple timescales, to account for contributions of 

both low and high frequency neural activity. The time series is coarsened step by step, by taking 

the average of a group of adjacent samples with step-wise increasing group size. This means 

that long, or coarse, timescales are equivalent to low frequency activity. For example, at a 

sampling rate of 256 Hz, a timescale of 4 (e.g., averaged over four adjacent samples, or 15.6 

ms) is roughly the equivalent of looking at activity at 64 Hz, while a timescale of 153 at that 

sample rate corresponds to averaging over 598 ms, or the equivalent of activity at roughly 1.67 

Hz. Here, we used twenty timescales ranging from 4 till 153, with 153 being the maximum 

timescale given the length of an epoch of 1800 ms (e.g., one epoch equals 460 samples, but 
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since entropy is calculated on patterns of 2 and 3 samples, the maximum coarsening to retain 

the possibility of having a 3-sample pattern is by averaging over 153 samples). Similarity 

bounds were recomputed for each time scale (Kloosterman et al., 2020; Kosciessa, 

Kloosterman, & Garrett, 2020). To control for the contribution of delta, we repeated the analysis 

on high-pass filtered data (5 Hz).  

Supplementary methods: Within condition decoding 

The initial decoding analysis yielded large effects that may be task-related, and 

individual differences in phase and metrical level attended to may have additionally hampered 

finding condition differences at the group level. Therefore, we ran an additional decoding 

analysis in which we decoded expected and unexpected positions against each other within each 

condition. For this analysis, we only included frontocentral electrodes (C1, C2, C3, C4, Cz, 

FC1, FC2, FC3, FC4, FCz, F1, F2, F3, F4, Fz), which were the same electrodes that showed 

the largest P1 responses to the initial sounds of the sequences, indicative of representing the 

auditory cortex. Here, we defined time points in the silence as expected or unexpected based 

on the rhythmic sequences. To equate the choice of expected and unexpected time points as 

much as possible in terms of number of time points included and distance between time points, 

we used times that were also used in the probe tone experiment: 600, 780, 885, and 1200 ms. 

For beat-based sequences, time points 600 and 1200 were expected (on the beat), while time 

points 780 and 885 were unexpected (offbeat). The same time points take on a different 

meaning if preceded by the pattern-based sequences. Then, 780 and 1200 ms are considered 

expected (predictable based on the pattern), while both 600 and 885 ms are unexpected 

(unpredictable based on the pattern). For all conditions, we examined whether we could classify 

above chance whether a time window of 100 ms centered on the time point of interest was an 

expected or  unexpected moment in time. As for the first decoding analysis, the data were 

resampled to improve signal to noise, here to 128 Hz to retain enough data points in the 100 ms 

window for analysis. After the decoding, we extracted the average classification accuracy for 

the 100 ms time window to test significance for each condition separately against chance level, 

using t-tests against 0.5, and between conditions in the silence, using a repeated measures 
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ANOVA, with condition as an independent factor, a random intercept for participant, and 

decoding accuracy as the dependent variable.  
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