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Highlights
- Temporal expectations can be based on both regular beats and predictable patterns
- Behavioral effects differentiate between beat-based and pattern-based expectations
- EEG power tracks the beat, but not the pattern, outlasting rhythmic stimuli
- Pattern-based and beat-based expectations differentially affect evoked potentials

- Decoding and entropy may index temporal expectations in a time-resolved way
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Abstract

The brain uses temporal structure in the environment, like rhythm in music and speech,
to predict the timing of events, thereby optimizing their processing and perception. Temporal
expectations can be grounded in different aspects of the input structure, such as a regular beat
or a predictable pattern. One influential account posits that a generic mechanism underlies beat-
based and pattern-based expectations, namely entrainment of low frequency neural oscillations
to rhythmic input, while other accounts assume different underlying neural mechanisms. Here,
we addressed this outstanding issue by examining EEG activity and behavioral responses
during silent periods following rhythmic auditory sequences. We measured responses
outlasting the rhythms both to avoid confounding the EEG analyses with evoked responses, and
to directly test whether beat-based and pattern-based expectations persist beyond stimulation,
as predicted by entrainment theories. To properly disentangle beat-based and pattern-based
expectations, which often occur simultaneously, we used non-isochronous rhythms with a beat,
a predictable pattern, or random timing. In Experiment 1 (N = 32), beat-based expectations
affected behavioral ratings of probe events for two beat-cycles after the end of the rhythm,
while the effects of pattern-based expectations reflected one interval. In Experiment 2 (N = 27),
using EEG, we found enhanced spectral power at the beat frequency for beat-based sequences
both during listening and the silence, but for pattern-based sequences, enhanced power at a
pattern-specific frequency was only present during listening, not silence. Moreover, we found
a difference in the evoked signal following pattern-based and beat-based sequences. Finally,
we show how multivariate pattern decoding and multi scale entropy — measures sensitive to
non-oscillatory components of the signal — can be used to probe temporal expectations.
Together, our results suggest that different mechanisms implement temporal expectations,
depending on the input structure. We suggest climbing activity may reflect pattern-based, and
persistent low frequency oscillations beat-based expectations specifically.

Keywords: Temporal expectations, EEG, rhythm, entrainment, decoding, entropy
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Introduction

Predicting the timing of incoming events optimizes processing in our dynamic environment
(Nobre & van Ede, 2018), as it allows the brain to increase sensitivity to events at predicted
times (Auksztulewicz, Myers, Schnupp, & Nobre, 2019), without the need for constant
vigilance (Breska & Deouell, 2017; Rimmele, Morillon, Poeppel, & Arnal, 2018; Schroeder &
Lakatos, 2009b, 2009a). Entrainment models (Large & Jones, 1999) provide a mechanistic
explanation for temporal expectations, by assuming that the phase and period of low-frequency
neural oscillations synchronize to external rhythmic stimulation, causing optimal neural
excitability at expected times (Haegens & Zion Golumbic, 2018; Henry & Herrmann, 2014;
Schroeder & Lakatos, 2009a). In line with this, behavioral performance is improved for events
in phase with an external rhythm (Bouwer & Honing, 2015; Herbst, Stefanics, & Obleser, 2022;
Jones, Moynihan, MacKenzie, & Puente, 2002; Large & Jones, 1999), behavioral responses
depend on the phase of delta oscillations (Arnal, Doelling, & Poeppel, 2014; Cravo, Rohenkohl,
Wyart, & Nobre, 2013; Henry, Herrmann, & Obleser, 2014; Henry & Obleser, 2012), and low
frequency oscillations phase lock to rhythmic input (Doelling, Assaneo, Bevilacqua, Pesaran,
& Poeppel, 2019; Nozaradan, Peretz, Missal, & Mouraux, 2011; Stefanics et al., 2010).

Entrainment has mainly been studied in the context of periodic (“beat-based”) sensory
input, but temporal expectations can also be based on memory for absolute intervals (Breska &
Deouell, 2017; Breska & Ivry, 2016; Morillon, Schroeder, Wyart, & Arnal, 2016; Teki, Grube,
Kumar, & Griffiths, 2011), either in isolation (“cue-based”), or as part of a predictable pattern
of intervals (“pattern-based”, see (Nobre & van Ede, 2018)). Predictable temporal patterns may
be especially important in speech and non-Western music, which is not necessarily periodic.
Expectations based on predictable patterns in aperiodic sequences afford similar behavioral
benefits as expectations based on a beat (Bouwer, Honing, & Slagter, 2020; Heideman, van

Ede, & Nobre, 2018; O’Reilly, McCarthy, Capizzi, & Nobre, 2008), but pose a possible
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95  challenge for entrainment models, which are arguably better suited to explain temporal
96  expectations for periodic input (Breska & Deouell, 2017; Rimmele et al., 2018). Some have
97  suggested that entrainment models can account for pattern-based expectations by assuming
98  multiple coupled oscillators at different frequencies and with different phases (Tichko & Large,
99  2019), or by assuming flexible top-down phase resets at expected moments, though this would
100  entail some top-down mechanism, making observed entrainment the consequence, rather than
101  the cause of expectations (Meyer, Sun, & Martin, 2019; Obleser & Kayser, 2019; Rimmele et
102 al., 2018).
103 Alternatively, however, pattern-based and beat-based expectations could arise from
104  dissociable neural mechanisms. For cue-based expectations, tentative evidence for a different
105  underlying mechanism comes from a series of studies looking at the contingent negative
106  variation (CNV), an event-related potential (ERP) component that peaks at expected moments
107  (Praamstra, Kourtis, Kwok, & Oostenveld, 2006). The CNV resolved faster for beat-based than
108  cue-based expectations (Breska & Deouell, 2017), and cerebellar patients showed selective
109  impairments in forming cue-based, but not beat-based expectations (Breska & Ivry, 2018,
110  2020). However, in these studies, the intended beat-based sequences were isochronous.
111  Isochronous sequences can, in addition to a beat, elicit temporal expectations through learning
112 the repeated, identical interval (Breska & Ivry, 2016; Keele, Nicoletti, Ivry, & Pokorny, 1989).
113 Thus, the differences in responses may here be explained by more precise cue-based or pattern-
114  based expectations in the isochronous, beat-based condition. Moreover, these studies tested
115  temporal expectations based on the contingency between a cue and an interval (e.g., learning a
116  single interval), and it is unclear whether temporal expectations based on patterns are based on
117  the same mechanism (Nobre & van Ede, 2018). In our own recent work, we specifically
118  compared beat-based and pattern-based expectations, and we found no difference in the effects

119  of these expectations on early auditory ERP responses, suggestive of similar modulation of
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120 sensory processing (Bouwer et al., 2020), but we observed suppression of sensory processing
121 of unexpected events in beat-based rhythms, even when these events were fully predictable
122 based on their pattern, suggesting different underlying mechanisms (Bouwer et al., 2020).
123 However, in this study, we did not directly probe and contrasted the neural mechanisms
124 underlying beat-based and pattern-based expectations, rendering it unclear whether they are
125  subserved by shared or separate neural dynamics.

126 In the current study, we directly examined the role of entrainment in beat-based and
127  pattern-based expectations, using non-isochronous rhythms designed to properly disentangle
128  these two types of expectations. When studying entrainment, an important challenge has been
129  to differentiate between real entrainment (“in the narrow sense”, see Obleser & Kayser, 2019)
130  andregular evoked potentials, or similar phase locked responses that resemble entrainment with
131  common analysis techniques (Zoefel, ten Oever, & Sack, 2018), and that may not differentiate
132 between beat-based and memory-based expectations (Breska & Deouell, 2017). Crucially, to
133 sidestep these issues, here we examined responses in a silent window after cessation of the
134 rhythmic input, directly testing the prediction of entrainment models that entrainment should
135  outlast sensory stimulation (Haegens & Zion Golumbic, 2018; Obleser & Kayser, 2019; Pesnot
136  Lerousseau, Trébuchon, Morillon, & Schon, 2021; Zoefel et al., 2018).

137 Behaviorally, persistent entrainment has been shown for auditory rhythm (Hickok,
138  Farahbod, & Saberi, 2015; Jones et al., 2002), though this effect is not always found (Bauer,
139 Jaeger, Thorne, Bendixen, & Debener, 2015; Lin et al., 2021), possibly due to heterogeneity in
140  the population and effects of musical training (Assaneo et al., 2019; Cameron & Grahn, 2014;
141  Sun, Michalareas, & Poeppel, 2021). At a neural level, several studies reported persistent
142 entrainment in the visual (de Graaf et al., 2013; Mathewson et al., 2012), and auditory (Kdsem
143 etal., 2018; Pesnot Lerousseau et al., 2021; van Bree, Sohoglu, Davis, & Zoefel, 2021; Wilsch,

144  Mercier, Obleser, Schroeder, & Haegens, 2020) domain. However, in these studies,
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145  isochronous stimuli were used, making it unclear whether the expectations probed were based
146  on a beat, or were formed based on the single repeating interval (i.e., cue- or pattern-based).
147  Moreover, persistent entrainment was not specific to the frequency of the input (Wilsch et al.,
148  2020), or only occurred in the gamma (Pesnot Lerousseau et al., 2021), or alpha ranges (de
149  Graaf et al., 2013; Mathewson et al., 2012), while humans have a preference for forming
150 temporal expectations at slower rates (Ding et al., 2017; Merchant, Grahn, Trainor, Rohrmeier,
151 & Fitch, 2015; Zalta, Petkoski, & Morillon, 2020), as naturally present in speech and music
152 (i.e., the delta and theta range). Thus, not only is evidence for whether entrainment can account
153  for pattern-based expectations lacking, evidence for persistent entrainment in response to beat-
154  based rhythms remains elusive as well.

155 In the current study, participants listened to non-isochronous auditory sequences
156  (similar to those used in Bouwer et al., 2020) with either a regular beat (eliciting beat-based
157  expectations), a predictable pattern (eliciting pattern-based expectations), or random timing (no
158  expectations). The non-isochronous beat-based sequences had a varying surface structure,
159  similar to patterns used to probe beat-based processing in many neuroimaging (Grahn & Brett,
160  2007; Grahn & Rowe, 2009; Leow & Grahn, 2014), behavioral (Bouwer et al., 2018, 2021;
161  Cameron & Grahn, 2014; Povel & Essens, 1985), and electrophysiological studies (Lenc et al.,
162 2021). While each beat was marked by a sound, between beats, sounds could occur at different
163  times, or not at all. Therefore, the beat could not be extracted from the rhythmic signal by
164  simply learning the transition of temporal intervals — as is possible in isochronous sequences.
165  Moreover, in our previous study, using the same stimuli, we showed that the behavioral
166  facilitation caused by introducing a regular beat was smaller than the facilitation caused by
167  introducing a predictable pattern (Bouwer et al., 2020). Hence, the non-isochronous beat-based

168  sequences used here did not allow for easy learning of the interval of the beat using a pattern-


https://doi.org/10.1101/2020.01.08.899278
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.08.899278; this version posted September 27, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

169  based strategy, in contrast to the pattern-based sequences, in which the surface structure of the
170  rhythm was fully predictable.

171 Each sequence was followed by a silent period. In Experiment 1, we asked participants
172 to rate how well probe tones, presented at various time points during the silent period, fitted the
173 preceding sequence. We expected the ratings to be affected by both the beat-based and pattern-
174  based expectations elicited by the sequences. In Experiment 2, we recorded EEG activity both
175  during presentation of the sequences and during the silence. If entrainment underlies temporal
176  expectations, we should see persistent power at the frequency of the beat or pattern during the
177  silence. Alternatively, if climbing activity in the form of a CNV underlies temporal
178  expectations, we should see a CNV peaking at expected time points in the silence.

179 In addition to examining the spectral power at the frequencies of the beat and the pattern,
180  and the evoked responses, we explored two new methods to index temporal expectations that
181  do not rely on the EEG signal being a static oscillation. As recently argued, the oscillatory
182  dynamics underlying such expectations may be subject to changes in power and frequency,
183  depending on coupling between sound and brain, and on the properties of the neural dynamics
184  themselves (e.g., to which extent the system shows damping of an oscillation without input, see
185  Doelling & Assaneo, 2021). Once the rhythmic sensory input ceases, the oscillatory activity in
186  the brain may quickly return to an intrinsic resonance frequency (Doelling & Assaneo, 2021).
187  Also, the presence of non-sinusoidal recurring activity may not be captured by traditional
188  analyses relying on Fourier transforms (Donoghue, Schaworonkow, & Voytek, 2021), while it
189  may be important for cognition (Waschke, Kloosterman, Obleser, & Garrett, 2021). Therefore,
190  we here explore indexing temporal expectations in the silence using multi scale entropy (MSE)
191  —ameasure of signal irregularity (Kosciessa, Kloosterman, & Garrett, 2020) — and multivariate
192  pattern decoding. These methods may provide useful tools to study the neural dynamics

193 underlying rhythm processing and temporal expectations, which are often hard to study due to
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194  methodological issues with analyzing the EEG signal (Zoefel et al., 2018). While MSE provides
195  us with a method to look at possible non-sinusoidal contributions to the EEG signal related to
196  temporal expectations, decoding allows us to look at how entrainment evolves over time. Note

197  that we consider these analyses exploratory in nature, and results should be interpreted as such.

198
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199 Materials and methods

200  Participants

201 Thirty-two participants (18 women), aged between 18 and 44 years old (M = 24, SD =
202  5.6) took part in the behavioral Experiment 1, and 32 participants (26 women), aged between
203 19 and 28 years old (M = 23, SD = 2.5) took part in the EEG experiment (Experiment 2), in
204  exchange for course credit or monetary compensation. Due to technical problems, the EEG data
205  from five participants was not recorded correctly, hence we report the results for 27 participants
206 (21 women, between 19 and 28 years old, M = 23, SD = 2.4). For the behavioral experiments,
207  we used mixed-effects models, which need both the number of participants and the number of
208 items to be taken into account to assess power (Brysbaert & Stevens, 2018). In two similar
209  experiments in which ratings in response to rhythms of varying complexity were analyzed,
210  small-sized effects were replicated with a total number of around 275 responses per condition
211  (Bouwer, Burgoyne, Odijk, Honing, & Grahn, 2018). For our new experimental paradigm, we
212 here included a multiple of this amount of trials (960 responses per condition and probe position
213 in Experiment 1 — 32 participants with 30 responses each in each cell — and, after loss of data
214  was accounted for, 486 responses per condition and probe position in Experiment 2 — 27
215  participants and 18 responses per cell). Previous EEG experiments examining persistent
216  entrainment in the auditory domain used sample sizes ranging from fifteen (Pesnot Lerousseau
217  etal., 2021) to twenty-one (van Bree et al., 2021), similar to the sample size used in a study
218  looking at different types of temporal expectations (twenty-one, Breska & Deouell, 2017). To
219  obtain robust power, we here tested thirty-two participants, which, even when loss of data is
220  accounted for, thus exceeded typical sample sizes as used previously. None of the participants
221  reported a history of hearing or neurological problems, and all provided written informed
222 consent prior to the onset of the study. The experiment was approved by the Ethics Review

223 Board of the Faculty of Social and Behavioral Sciences of the University of Amsterdam.

10
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225  Figure 1. Schematic overview of the rhythmic stimuli used and the task. A) Twelve patterns of five
226  temporal intervals with integer ratio durations and an event at each 600 ms period were created to form beat-
227  based sequences. Equivalent patterns without a regular beat every 600 ms were created by using non-integer
228  ratio durations, while keeping the number of intervals and grouping structure the same (random condition).
229  For the pattern-based sequences, only pattern 1 was used, to allow for learning of the intervals. B) Four semi-
230  randomly chosen patterns were concatenated to form rhythmic sequences. In both the beat-based and random
231 sequences, the last pattern was always pattern 1 or 2, to equate the acoustic context preceding the silent
232 period. C) To measure behavioral effects of expectations, a probe tone could appear at various temporal
233 positions in the silent period (indicated by the dashed red lines), predictable based on a beat (B+, light
234 orange), predictable based on the pattern (P+, light purple), or unpredictable based on the beat (B-) or pattern
235 (P-). Subjects had to indicate how well the probe tone fitted the preceding rhythm. In Experiment 1, all 6
236  probe tone positions were used. In Experiment 2, only the last 3 probe positions were used.
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237  Stimuli

238 We used patterns marked by woodblock sounds of 60 ms length, generated in
239  GarageBand (Apple Inc.), as previously used in (Bouwer et al., 2020) to elicit beat-based and
240  pattern-based expectations (Figure 1). Each pattern was 1800 ms long and consisted of five
241  temporal intervals. The number of tones was chosen to be within the range that was previously
242 shown to allow for learning of a predictable pattern (Schultz, Stevens, Keller, & Tillmann,
243 2013), while the length of the pattern was such that the formation of beat-based expectations
244  with a period of the entire pattern would be unlikely in the pattern-based sequences, given that
245  this would require hearing a beat at 0.55 Hz, which is very far from the range at which humans
246  can typically perceive a beat (Honing & Bouwer, 2019; London, 2012). Sequences (beat-based,
247  pattern-based, or with random timing) were constructed by concatenating four patterns and a
248  final tone, for a total sequence length of 7260 ms (four patterns of 1800 ms, plus 60 ms for the
249  final tone).

250 In the twelve patterns used to create beat-based sequences (Figure 1), temporal intervals
251  were related to each other with integer-ratio durations. The shortest interval had a length of 150
252  ms, with the relation between the five intervals used of 1:2:2:3:4 (i.e., 150, 300, 300, 450, and
253 600 ms). The sounds were grouped such that a perceptually accented sound (Povel &
254  Okkerman, 1981) occurred every 600 ms (every unit length 4), giving rise to a beat at 100 beats
255  per minute, or 1.67 Hz, within the range of preferred tempo for humans (London, 2012). All
256  beat-based patterns were strictly metric, with the beat always marked by a sound (Grahn &
257  Brett, 2007). Sequences of beat-based patterns were constructed from four semi-randomly
258  chosen patterns, with the restriction that the last pattern of the sequences was always pattern 1
259  or2(see Figure 1). This way, the final 600 ms preceding the silence epoch was equated in terms
260  of the acoustic context, to make the bleed of auditory ERPs into the silence as similar between

261  conditions as possible. Note that in beat-based sequences, a sound could be expected every 600

12
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262  ms based on the beat, but the surface structure of the pattern was unpredictable, due to the
263  random concatenation of patterns.

264 To create patterns that did not allow for beat-based expectations (“aperiodic” patterns,
265  see Figure 1), the ratios by which the temporal intervals were related were changed to be non-
266  integer (1:1.4:1.4:3:5.2, 0r 150,210, 450, and 780 ms respectively). In these patterns, no marked
267  beat was present at unit length four, nor at any other subdivision of the 1800 ms pattern (Bouwer
268  etal., 2020), while the patterns were matched to their periodic counterparts in terms of overall
269  length, event density, number of sounds, and grouping structure.

270 From the aperiodic patterns, two types of sequences were created: pattern-based and
271  random sequences. To create sequences allowing for pattern-based expectations, we
272 concatenated four identical patterns. To be able to use the data with an EEG-based decoding
273 analysis (Experiment 2), we needed the timing of expectations in the silence to be identical for
274  each sequence, hence we restricted the pattern-based sequences to only pattern 1. The use of a
275  single pattern was not only necessary for decoding, but also optimized the experiment for
276  pattern-based expectations, since participants only had to memorize one pattern, allowing them
277  to easily form expectations, even if the single sequences were only four patterns long.

278 For the random sequences, four semi-randomly chosen aperiodic patterns were
279  concatenated. Like for the beat-based sequences, the final pattern was always pattern 1 or 2,
280  equating the final 600 ms of the sequences in terms of acoustics. In the random sequences, the
281  timing of sounds could not be predicted based on the surface structure of the pattern, nor on the
282  basis of an underlying beat.

283 A spectral analysis of the stimuli in the range in which a beat can normally be perceived
284  (the delta-range, 0.5-4 Hz) confirmed that in the beat-based sequences, a peak was present at
285  the beat frequency of 1.67 Hz as well as at 3.33 Hz (see Figure 2). The 3.33 Hz peak is a

286  harmonic of the beat frequency, but also the frequency at which participants may perceive
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287  subdivisions of the beat (e.g., an extra layer of perceived metrical regularity with a period of
288 300 ms). In the pattern-based and random sequences, peaks were more distributed, in line with
289  the more irregular nature of these rhythms, and the highest peaks in the delta range were at 2.22

290  and 3.89 Hz.

Beat-based Pattern-based Random
. 0.4 . 0.4 ;o
03] i Sos| i 03| i 1.67Hz
S : s s & Sl e 2.22Hz
g 0.2 . E g 0.2 ; H E 0.2 : E 3.33Hz
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291 Frequency(Hz) Frequency(Hz) Frequency(Hz)

292 Figure 2. Spectral analysis of the sound signal of the different rhythmic sequences. Ten sequences per
293 condition were generated to base the spectral analysis on. Note that these sequences were identical for the
294 pattern-based condition, but semi-random for the beat-based and random conditions. The envelope of each
295  sequence was obtained by performing a Hilbert transform, and subsequently, a fast fourier transform (fft)
296  was used to obtain the spectral decomposition and power values were averaged over ten sequences. n.a.=
297  normalized amplitude.

298

299 In Experiment 1, to assess the persistence of temporal expectations behaviorally, on
300  each trial, a probe tone was presented at 600, 780, 885, 990, 1200, or 1485 ms after the onset
301  of the last tone of the sequence (see Figure 1C), and participants provided ratings for how well
302  probe tones fitted the preceding rhythm. These positions were carefully chosen to represent
303  times at which a tone could be expected based on the beat (600, 1200 ms), based on memory
304  for the pattern (780, 990, 1200 ms), or neither (885, 1485 ms). Note that the latter two probe
305 tones that were unexpected based on the beat (780, 885, 990, and 1485 ms) did not fall on
306  subdivisions of the beat.

307 Experiment 2 contained both trials in which a probe tone was presented (25% of the
308 trials, using only the last three probe positions), and trials in which a 7260 ms sequence was
309 followed by a silence period without a probe tone (75% of the trials). The latter were used for

310  EEG analyses, uncontaminated by a probe presentation. The silent period lasted for 2100 ms
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311  after the onset of the last sound, providing 300 ms immediately following the final sound to
312 allow for ERPs to mostly return to baseline, and 1800 ms (three full beat cycles, or a full cycle
313 of the repeating pattern) of silence for the analysis. After the silence, the onset of the next
314  sequence was jittered between 25 and 75 ms to prevent carryover of the beat from previous
315  sequences (e.g., the next trial started between 325 and 375 ms after the last beat in the silence,
316  which is not on the beat, nor at a subdivision of the beat). On trials that contained a probe tone,
317  we chose to only use the last three probe positions, to 1) limit the time for the EEG experiment
318  to prevent fatigue, 2) still provide participants with the incentive to form expectations well into
319 the silence period, as a probe tone could appear as late as 1485 ms into the trial, and 3) obtain
320 some measure of whether participants formed expectations, by including positions that were
321  expected based on the beat and the pattern (1200 ms), based on the pattern only (990 ms) or
322 neither (1485 ms).

323 Procedure

324 Participants were tested individually in a dedicated lab at the University of Amsterdam.
325  Upon arrival, participants were provided with information about the experiment, provided
326  written informed consent, and were allowed to practice the task. On probe tone trials (all trials
327  in Experiment 1, 25% of the trials in Experiment 2), participants were asked to judge on a four-
328  point scale (“very poorly”, “poorly”, “well”, “very well”’) how well the probe tone fitted the
329  preceding sequence, similar to previous studies investigating the perception of musical meter
330 (Manning, Harris, & Schutz, 2017; Manning & Schutz, 2013; Palmer & Krumhansl, 1990).
331  Participants could respond with four buttons on the armrest of their chair, two on each side. The
332 order of the answer options on the screen in front of the participants was randomized on each
333 trial, to avoid any artefacts of motor preparation in participants that anticipated which answer
334  they would provide. There was no time limit for responses and the next trial started after a

335  response was made.
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336 In Experiment 1, each participant was presented with 18 blocks of 30 trials, amounting
337  to 540 trials in total (30 trials per probe position for each condition). In Experiment 2,
338  participants were presented with 18 blocks of 36 trials, for a total of 648 trials (18 per condition
339  and position). In Experiment 2, for each condition, 162 trials were silence trials, and did not
340  contain a probe tone. Fifty-four trials for each condition contained a probe tone. In both
341  experiments, in each block, only one type of sequence (beat-based, pattern-based, or random)
342 could appear to optimize for the formation of expectations. Blocks were semi-randomized, with
343  each type appearing once in a set of three blocks. In each block of Experiment 2, the number
344  of probe trials was varied between 3 and 11, for an average of 25% probe trials, and 75% silent
345  trials.

346 Sounds were presented through a single speaker positioned in front of the participant

347  using Presentation® software (version 14.9, www.neurobs.com). After completion of the

348  experiment, participants performed the Beat Alignment Task (Iversen & Patel, 2008;
349  Miillensiefen, Gingras, Musil, & Stewart, 2014) to assess their beat perception abilities, and
350  completed the musical training subscale from the Goldsmith Musical Sophistication Index
351  (GMSI) questionnaire to assess their musical training (Miillensiefen et al., 2014). In total, a
352  behavioral session lasted two hours, and the EEG session lasted between 3.5 and 4 hours.

353  Behavioral analysis

354 A total of 17280 responses was included in the analysis of Experiment 1 (32 participants,
355 3 conditions, 6 probe positions, 30 responses each), and 4374 in the analysis of Experiment 2
356 (27 participants, 3 conditions, 3 probe positions, 18 responses each). To account for the ordinal
357 nature of the Likert-scale responses (Bouwer et al., 2018; Carifio & Perla, 2008; Jamieson,
358  2004), we used a mixed ordinal regression model. With this model, the ordinal responses are
359 normalized, to correct for potential unequal distances between rating points. The results can

360  subsequently be interpreted similar to the results from a normal mixed model regression. Two
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361 independent variables and their interaction were included in the model as fixed factors:
362  Condition (beat-based, pattern-based, or random), and Probe Position (600, 780, 885, 990,
363 1200, or 1485 ms; only the latter three in Experiment 2). Additionally, the score on the GMSI
364  musical training questionnaire was included as a continuous variable (Musical Training), as
365  well as its interactions with the two fixed factors. We used a random intercept for each subject
366  to account for between-subject variation.

367 The initial model showed a significant effect of Probe Position in the random condition,
368  most likely due to recency effects. To assess the effect of Probe Position in the beat-based and
369  pattern-based conditions while accounting for recency effects, for each participant we
370  subtracted the mean response in the random condition at each position from the responses in
371  the beat-based and pattern-based condition. Subsequently, we submitted the random-baseline-
372 corrected ratings to a second ordinal regression model, with only two levels for the factor
373  Condition (beat-based and pattern-based) and without the random intercept for each participant
374  (as the baseline correction already corrected for between-subject variability). For both the
375  original model, and the baseline corrected model, significant interactions were followed up by
376  tests of simple effects, corrected for multiple comparisons using a Bonferroni correction.

377 The statistical analysis was conducted in R (R Development Core Team, 2008). The
378  ordinal mixed model was implemented using the clmm() function from the ordinal package
379  (Christensen, 2019). Subsequently, we used the Anova() function from the car package (Fox &
380  Weisberg, 2019) to look at omnibus effects for the main factors of interest, and the emmeans
381  package (Lenth, 2019) to assess simple effects and compare slopes between conditions.

382  EEG recording

383 EEG was recorded at 1024 Hz using a 64-channel Biosemi Active-Two acquisition

384  system (Biosemi, Amsterdam, The Netherlands), with a standard 10/20 configuration and
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385  additional electrodes for EOG channels (located under and on the left and right sides of the
386  eye), on the nose, on both mastoids, and on both earlobes.

387  EEG analysis

388 Preprocessing was performed in MATLAB, version 2015a (Mathworks) and EEGLAB,
389  wversion 14.1.1 (Delorme & Makeig, 2004). Data were offline down-sampled to 256 Hz, re-
390  referenced to averaged mastoids, bad channels were manually removed, and eye-blinks were
391 removed using independent component analysis. Subsequently, bad channels were replaced by
392 values interpolated from the surrounding channels.

393 ERPs. For the ERP analysis, the continuous data were filtered using 0.1 Hz high-pass
394  and 40 Hz low-pass finite impulse response filters (as implemented in the standard EEGLAB
395 filter function pop_eegfiltnew). Epochs were extracted from the data from -1800 till 2100 ms
396 relative to the onset of the last sound. Epochs with a voltage change of more than 150 microvolts
397 in a 200 ms sliding window were rejected from further analysis. For each participant and
398  condition, epochs were averaged to obtain the ERPs, and ERPs were averaged over participants
399  to obtain grand average waveforms for plotting. All waveforms were initially baseline corrected
400 using the average voltage of a 50 ms window preceding the onset of the last sound of the
401  sequence. This baseline can be regarded as preceding the “cue” (the last event before the onset
402  of the expectation). Such a baseline is customary in CNV analyses. However, visual inspection
403  suggested that this baseline was biased, as baseline correction resulted in an overall shift of the
404  waveform amplitude relative to each other, as also reflected in a significant cluster when
405  comparing beat-based and pattern-based conditions that spanned the entire analysis epoch (see
406  Supplementary Figure 1). This was likely caused by the rapid succession of sounds preceding
407  the onset of the silence, which made it impossible to find a clean, unbiased baseline. Therefore,
408  we repeated the analysis without baseline correction, to confirm that the results were not caused

409 by a noisy baseline.
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410 As a control analysis, we repeated the above analysis for the longest intervals during the
411  presentation of the rhythmic streams, to assess whether in those longer intervals, we could
412 observe similar deflections in the evoked potentials as observed in the silence. For this analysis,
413 epochs were extracted from -200 till 880 ms around the onset of the sound preceding the long
414  interval (600 ms in the beat-based condition, and 780 ms in the other conditions, see Figure 1).
415  All preprocessing steps were identical to the analysis of the ERPs in the silence. The control
416  analysis is reported in the Supplementary Materials (Supplementary Figure 1).

417 Three cluster-based permutation tests (Oostenveld, Fries, Maris, & Schoffelen, 2011)
418  were used to compare all three conditions against each other (i.e., beat-based vs. random;
419  pattern-based vs. random; beat-based vs. pattern-based), comparing all timepoints from 300 till
420 1200 ms after the onset of the final sound for the silence (see Figure 1), and all timepoints from
421 300 till 600 ms after the onset of the preceding sound for the long intervals during the sequences
422  (as the next sound came in at 600 ms for the beat-based condition, we could not compare the
423 conditions beyond this timepoint). This window excluded a large portion of the ERP response
424  to the previous sound, and included both the first expected moments for beat-based (600 ms)
425  and pattern-based (780 ms) expectations in the silence window, and additional time to allow
426  for an evaluation of possible return to baseline of the CNV (Breska & Deouell, 2017). For the
427  ERP analysis, clusters were formed based on adjacent time-electrode samples.

428 For all EEG analyses, cluster-based tests were evaluated statistically by forming clusters
429  of samples based on dependent samples t-tests and a threshold of p < 0.05, and using
430  permutation tests with 2000 permutations of the data. We report corrected p-values to account
431  for two-sided testing (multiplied by a factor of two).

432 Frequency-domain analysis. To obtain the spectrum of the EEG signal in the silence,
433  we used the raw, unfiltered data. Epochs were extracted from the continuous data both from -

434 1800 till 0 ms relative to the onset of the last sound (control window, see Figure 1), and from
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435 300 till 2100 ms relative to the onset of the last sound (silence window, see Figure 1), the latter
436  starting at 300 ms to avoid contamination from the final ERPs. Both windows thus had equal
437  length, both spanning three full cycles of the beat. Epochs with an amplitude change of 250
438  microvolts or more in a sliding 200 ms window were rejected from further analysis. The more
439  lenient rejection criterium compared to the ERP analysis was used to account for the fact that
440  these data were unfiltered, and to avoid rejection of too many trials that showed some slow
441  drift. All epochs were baseline corrected using the mean of the entire epoch. Subsequently,
442  epochs were averaged for each condition separately to obtain the evoked signal, phase locked
443  to the onset of the final sound, and similar to previous studies using frequency tagging to look
444  at beat-based perception (Lenc et al., 2021; Nozaradan et al., 2011; Nozaradan, Peretz, &
445  Mouraux, 2012).

446 For each participant and condition separately, the average waveforms were transformed
447  into the frequency domain using an FFT, with the data zero-padded to 4608 samples (NFFT) to
448  obtain a better frequency resolution (0.056 Hz), and importantly, be able to extract data at
449  exactly the frequencies of interest. Note that the zero-padding can only improve the frequency
450  resolution, but not the frequency precision, which by definition with the 1800 ms epochs is
451  limited to 0.56 Hz. While the design of the experiment simply does not allow for a better
452  resolution, the 0.56 Hz does allow us to differentiate between the frequencies of interest, which
453  are 0.56 Hz or more apart. The obtained power values at each frequency were normalized to
454  account for the 1/f distribution of noise (Nozaradan et al., 2011, 2012), by subtracting the
455  average of neighboring bins four to six on either side for all frequencies (e.g., 1.33 — 1.44 Hz
456  and 1.89 — 2.00 Hz for the beat frequency, 1.89 —2.00 Hz and 2.44 — 2.56 Hz for the pattern-
457  based frequency, and 3.00 — 3.11 Hz and 3.56 — 3.67 Hz for the beat subdivisions). To account
458  for bleeding into neighboring frequency bins (Nozaradan et al., 2011, 2012), for each

459  frequency, we averaged over 5 bins centered on that frequency (e.g., for the frequencies of
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460 interest, this was 1.56 — 1.78 Hz for the beat frequency, 2.11 — 2.33 Hz for the pattern-based
461  frequency, and 3.22 — 3.44 Hz for the beat subdivisions).

462 To statistically test differences between conditions in the evoked power at the
463  frequencies of interest, we used cluster-based permutation tests. First, this avoided bias by
464  selecting only a subset of electrodes, as we used all scalp electrodes, as was done in previous
465  research (Lenc, Keller, Varlet, & Nozaradan, 2018; Nozaradan et al., 2011; Tal et al., 2017).
466  Second, the permutation tests accounted for the non-normal distribution of the data. Like for
467  the ERPs, we ran t-tests comparing the normalized data for all conditions and for each frequency
468  of interest (e.g., those most prominent in the sound signal). We included the frequencies that
469  showed the highest peaks in the spectral analysis of the sound (i.e. 1.67 Hz, 2.22 Hz, and 3.33
470  Hz), except for 3.89 Hz, since a peak at this frequency was absent on visual inspection in the
471  spectral decomposition of the EEG data. For the frequency-domain analysis, clusters were
472  formed based on adjacent electrodes.

473 The cluster-based tests yielded null results for the pattern-based condition in the silence
474  (e.g., there was no larger power at 2.22 Hz in the pattern-based than in the random condition,
475  see Results). To quantify the possible absence of persistent entrainment for the pattern-based
476  condition, we performed a Bayesian t test using JASP (JASP, 2019; Wagenmakers et al., 2018).
477  We compared the power in the pattern-based and random conditions at 2.22 Hz in the silence,
478  averaged over electrodes contributing to the significant cluster in the silence for the beat-based
479  condition at 1.67 Hz, to optimize for finding entrainment effects. We estimated Bayes factors
480  using a Cauchy prior distribution (r =.71) and performed a robustness check to assess the effect
481  of a different prior (r = 1; see (Jeffreys, 1961; Wagenmakers et al., 2018)).

482 We performed an additional exploratory analysis to assess phase alignment directly.
483  First, we computed inter-trial phase consistency for each participant, condition, and frequency

484  of interest separately, by transforming single epochs both in the control window and the silence
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485  window into the frequency domain, using an FFT with the same parameters as described above.
486  Subsequently, we extracted the single phase value associated with the FFT for each epoch and
487  computed phase coherence as the length of the mean phase vector (Cohen, 2014), for each
488  participant, condition, frequency, and electrode. While the power for each condition and
489  frequency was thus computed taking the average over all epochs (e.g., the evoked signal), the
490 phase consistency was computed on single trial data. We used cluster-based permutation tests
491  to compare the phase consistency between conditions, with parameters identical to the analysis
492  of power.

493 Multiscale entropy (MSE). MSE is a measure of signal irregularity. To compute MSE,
494  the EEG signal is divided into patterns of a certain length, and throughout the signal, the number
495  of repeating patterns is counted. More repetitions indicate a more regular signal, and yield a
496  lower entropy value. By calculating entropy for patterns of different lengths (“multiscale”), the
497  contributions of slower and faster timescales in the signal can be assessed. However, the
498  mapping between entropy timescales and spectral frequencies is not absolute, especially since
499  entropy is not per se related to a signal being oscillatory in nature (Kloosterman, Kosciessa,
500 Lindenberger, Fahrenfort, & Garrett, 2020; Kosciessa et al., 2020). The advantage of using
501  MSE is that it does not require filtering of the data, and it does not assume stationarity (e.g., it
502  can pick up on regularities that are asymmetrical, or that do not have a fixed amplitude or
503  period). Here, we computed MSE on the control and silence epochs separately.

504 We computed MSE on high-pass filtered data (0.5 Hz). Epochs were extracted identical
505  tothe epochs for the frequency domain analysis. To compute MSE, we used the mMSE toolbox,
506  a plugin to the Fieldtrip toolbox (Kloosterman et al., 2020), with m =2 and » = 0.5, as was
507  done previously for EEG data (Kloosterman et al., 2020). For details on how MSE is computed,
508  see the Supplementary Materials. As for the frequency-domain analysis, we used cluster-based

509  permutation tests to assess statistical significance. For each comparison between conditions, we
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510  used paired t-tests comparing each electrode-timescale combination (note that the above
511  computation of entropy yields one value per condition for each electrode and timescale) to form
512 clusters.

513 Multivariate decoding. Our exploratory decoding approach is based on the assumption
514  that temporal expectations are always coupled with feature or spatial expectations (e.g., we
515  cannot predict “when” without also predicting “what”), as suggested by studies showing that
516  we only use temporal expectations to improve perception if we can also predict the content
517  (Morillon et al., 2016; Wollman & Morillon, 2018) or location (O’Reilly et al., 2008) of an
518 upcoming event. Thus, we expected to be able to decode the representation of the expected
519  sound at expected moments. As the expected moments are different for each condition, this
520  then allows us to decode in the silence window whether participants were previously listening
521  to abeat-based, pattern-based, or random sequence.

522 The decoding was conducted on data that was preprocessed in a similar way as for the
523  MSE analysis, but with epochs extending from -1800 to 2100 ms relative to the onset of the last
524  sound. Since the decoding is done in a time resolved way (e.g., sample by sample), there is no
525  need to leave out the response to the ERPs in the analysis. Additionally, the data were resampled
526  to 32 Hz to increase signal to noise, using shape-preserving piecewise cubic interpolation, as
527  implemented in the Fieldtrip toolbox (Oostenveld et al., 2011). Using the ADAM toolbox
528  (Fahrenfort, van Driel, van Gaal, & Olivers, 2018), we applied a classification algorithm to the
529  preprocessed data for each participant. Using all electrodes, each dataset was split into 10
530  equally sized subsets, for 10-fold cross-validation of the decoding. For each subset, a linear
531  discriminant classifier trained on the remaining 9 subsets was tested. Each condition was
532 decoded against both other conditions (e.g., beat-based vs. pattern-based, beat-based vs.
533  random, and pattern-based vs. random), creating a temporal generalization matrix of

534  classification accuracy at each possible combination of training and testing time points (King
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535 & Dehaene, 2014). Subsequently, we examined whether we could observe a pattern of recurrent
536  activity (King & Dehaene, 2014). Classification accuracies averaged over the 10 folds for each
537  comparison of two conditions for the silence window (300-2100 ms after the onset of the last
538  sound) were submitted to cluster-based permutation tests to assess whether they exceeded the
539  chance level of 0.5. Clusters were based on T-tests with a threshold of 0.05 for each training-
540 testing time point combination, comparing the accuracy to 0.5.

541 The initial decoding analysis yielded large effects that may be task-related (see Results
542  for an explanation of these results). Therefore, we ran an additional decoding analysis in which
543  we decoded expected and unexpected positions against each other within each condition.
544  Details on this additional analysis can be found in the Supplementary Materials.

545 Musical expertise. In an exploratory analysis, we assessed the relationship between the
546  EEG data and musical expertise. We divided participants in two groups, based on a median split
547  on the GMSI questionnaire scores. For each EEG marker, we extracted the relevant values
548  indexing beat-based and pattern-based expectations, and we performed a t-test, comparing the
549  two musical expertise groups. First, for the CNV-like component in the ERP, we extracted
550  average amplitudes for each condition in the two windows in which the cluster-based analysis
551  yielded a significant cluster (300-450 ms and 925-1005 ms, see also Figure 5), from central
552  electrodes (FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, CP2). To index the effects of temporal
553  expectations, we then followed the subtraction logic we also used in the analysis of the
554  behavioral results: the effects of beat-based expectations were quantified as the amplitude in
555  the beat-based condition minus that in the random condition, and the effects of pattern-based
556  expectations were quantified as the amplitude in the pattern-based condition minus that in the
557  random condition. Likewise, for the frequency-domain analysis, we extracted the difference in
558  power at 1.67 Hz between the beat-based and random conditions, and the difference in power
559  at 2.22 Hz between the pattern-based and random conditions. Here, we used only electrodes

560  that contributed to the significant cluster we had found in the silence for the frequency-domain
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analysis. For the MSE, we similarly extracted differences between entropy in the beat-based
and pattern-based conditions when compared to the random condition, using only electrodes
and timescales that contributed to the significant cluster found in the silence for the MSE
analysis. For decoding, we extracted the classification accuracy when decoding expected
against unexpected times for each participant from the beat-based and pattern-based conditions,
and again contrasted those with the random condition (see Supplementary Materials for details
on this decoding analysis).

Code and data availability. All datafiles, and code used for data acquisition, data

analysis, and figure creation, are available through https://osf.io/uwny8/.

25


https://doi.org/10.1101/2020.01.08.899278
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.08.899278; this version posted September 27, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

571 Results

572  Behavioral effects of beat-based expectations last multiple beat cycles, while those of
573  pattern-based expectations reflect one interval

574 Figure 3A shows the average ratings for each condition and probe position from
575  Experiment 1. Visual inspection of this figure suggests that beat-based expectations were
576  associated with higher fitness ratings for sounds at expected times than unexpected times for
577  two beat cycles in the silence window (at 600 and 1200 ms), while the effects of pattern-based
578  expectations appeared to reflect mainly the first expected time point in the silence window (780
579  ms). This was confirmed by our statistical analyses. The ordinal regression showed main effects
580  of Condition (¥2(2) = 300.72, p < 0.001), Position (y2(5) = 1067.05, p < 0.001), as well as
581  Musical Training (x2(1) = 5.16, p = 0.023). However, crucially, these main effects were
582  accompanied by a very large two-way interaction between Condition and Position (y2(10) =
583  2478.98, p <0.001), showing that the effects of beat-based and pattern-based expectations on
584  fitness ratings differed, depending on the position of the probe. We found additional smaller
585  interactions between Position and Musical Training (y2(5) = 67.26, p < 0.001), Condition and
586  Musical Training (x2(2) = 6.01, p = 0.05), and, interestingly, Condition, Position, and Musical
587  Training (x2(10) = 204.88, p < 0.001). Following the interactions, tests of simple main effects
588  showed that the effect of Position was significant in all conditions (all ps < 0.001), and the
589  effect of Condition was significant for all probe positions (all ps < 0.001). The main effect of
590  Position in the random condition showed that even after sequences in which no specific
591  temporal structure was present, ratings depended on the position of the probe. This likely was
592  due to recency effects. To account for these effects when comparing the ratings at different
593  positions in the beat-based and pattern-based conditions, we subtracted the ratings in the
594  random condition at each position from the ratings in the other conditions. The baseline

595  corrected model (Figure 3B) showed similar interactions between Position and Condition
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596  (x*(5)=2147.55, p <0.001), and between Position, Condition, and Musical Training (y%(5) =
597  154.46, p < 0.001). The latter indicated that the correlation between Musical Training and the
598  rating score depended on both the Position and the Condition of the probe tone.
599
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601  Figure 3. The effects of beat-based expectations on fitness ratings can be differentiated from those of
602  pattern-based expectations, and are associated with musical training. A) Mean ratings for all conditions
603  and positions. Colored asterixis indicate positions where ratings in the beat-based (orange) and pattern-based
604  (purple) conditions differed from the random condition at p < 0.05. B) Single participant data, with the
605  random condition subtracted to account for serial position effects. The expectedness pattern is indicated by
606  colored lines on the bottom of the plots (orange: expected based on the beat; purple: expected based on
607  pattern; grey: neither). For the beat-based condition, ratings followed this pattern for two beat cycles. For the
608  pattern-based condition, ratings followed the pattern for one interval. C) Data median split based on scores
609  on the musical training questionnaire. The pattern of results, while present for both groups of participants, is
610  enhanced for the group of participants with most musical training (“experts”). Note: the median split is for
611 visualization purposes only, the models were run with musical training as a covariate. Error bars in panels
612  A-C are 2 standard errors (note: these are computed on the complete dataset, not the participant averages, as
613  the ordinal model is run on trial-level data). D) Association between musical training and rating for each
614  condition and position. Colored asterixis show positions in which the association between musical training
615  and the ratings was significantly correlated (p < 0.05). A positive association was observed for the beat-based
616  condition at 600 and 1200 ms (expected positions) and for the pattern-based condition at 780 (expected) and
617 885 ms (unexpected). Negative associations were observed in the beat-based condition at 780, 885, and 990
618  ms (all unexpected), and in the pattern-based condition at 990 (unexpected) and 1200 ms (expected).
619
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620 Beat-based expectations. At both 600 ms and 1200 ms (expected in terms of a beat),
621  probes in the beat-based condition were rated as better fitting than probes in the random
622  condition (p < 0.001 and p = 0.004) as evident from the full model; all simple effects from the
623  full model can be found in Supplementary Table 1). At 780, 885, 990, and 1485 ms (unexpected
624  in terms of a beat), probes in the beat-condition were rated as worse fitting than probes in the
625 random condition (all ps < 0.001). Moreover, within the beat-based condition, at 600 ms,
626  baseline corrected ratings were higher than at any other probe position (all ps < 0.001), and at
627 1200 ms baseline corrected ratings were higher than at 780, 885, 990, or 1485 ms (all ps <
628  0.001). Baseline corrected ratings for probes at 780, 885, and 990 ms (all unexpected in terms
629  of the beat) did not differ from each (all ps > 0.93). Probes at 1485 ms (unexpected in terms of
630 the beat) were rated as better fitting than probes at 780, 885, and 990 ms (all ps < 0.001). All
631  simple effects from the corrected model can be found in Supplementary Table 2.

632 As can be seen in Figure 3C and 3D, higher scores on the Musical Training
633  questionnaire were associated with higher fitness ratings in the beat-based condition at 600 and
634 1200 ms (expected in terms of the beat), but lower fitness ratings at 780, 885, 990, and 1485
635  ms (unexpected in terms of the beat). In other words, musically trained participants were better
636  able to differentiate between probes that were in expected and unexpected positions (Figure
637  3C). Slopes reach significance at all positions except 1485 ms (all ps < 0.022). Also, the
638  association between Musical Training and ratings differed between beat-based and pattern-
639  based conditions, at 600, 780, 885, and 1200 ms (all ps < 0.004).

640 To sum up, for the beat-based sequences, we could observe a clear pattern in the results
641 indicating that beat-based expectations were used to rate the probes well into the silence
642  window, affecting ratings up to 1200 ms after the onset of the last sound. Beat-based
643  expectations lead to higher ratings for expected probes (600 and 1200 ms), and lower ratings

644  for unexpected probes (780, 885, 990, and 1485 ms), both when comparing ratings for each
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645  position to the random condition, and when comparing ratings for each position within the beat-
646  based condition. At 1200 ms, these effects resulted in a classic inverted U-curve, as previously
647  associated with beat-based processing (Bauer et al., 2015; Jones et al., 2002), with optimal
648  performance on the beat, and diminished performance on either side (e.g., both earlier and
649 later). The effects of beat-based expectations did diminish over time, as is apparent from
650  differences between ratings at 600 and 1200 ms, and at 1485 ms and other unexpected time
651  points. Both the enhancing and attenuating effects of beat-based expectations were correlated
652  with musical training. It is worth noting that the longer lasting effects of beat-based expectations
653  (at 1200 ms) were very heterogenous in our participant pool. Out of 32 participants in
654  Experiment 1, only 18 showed the inverted U, with higher ratings at 1200 than at 990 and 1485
655 ms.

656 Pattern-based expectations. For pattern-based sequences, ratings at 600 ms
657  (unexpected based on the pattern) were lower than for the random sequences (p < 0.001) and
658 lower than at any other position (all ps < 0.001, baseline corrected model), showing that
659  participants also formed predictions based on the sequences. In line with this, at 780 ms
660  (expected in terms of the pattern), ratings were numerically higher in the pattern-based
661  condition than in the random condition, though this difference did not survive the Bonferroni
662  correction (p = 0.058). After this point, ratings did not differ between pattern-based and random
663  conditions for probes at 885 (unexpected) and 990 (expected) ms, suggesting that the responses
664  followed the rhythmic pattern mainly in the beginning of the silent period. In line with this, in
665  the remainder of the silence window, the ratings continued to deviate from what would be
666  predicted based on the pattern, with lower ratings for the pattern-based than random condition
667  at 1200 ms (expected; p < 0.001). Ratings were also lower for the pattern-based than random
668  condition at 1485 ms (unexpected, p < 0.001), and ratings at 780 ms (expected) did not differ

669  from ratings at 885 ms (unexpected), while being marginally higher than at 990 (expected, p =
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670  0.080), and higher than at 1200 (expected), and 1485 (unexpected) ms (both ps < 0.032). In
671  addition, ratings at 885 and 990 ms were higher than at 1200 and 1485 ms (all ps < 0.002). See
672  Supplementary Tables 1 and 2 for all simple effects.

673 As for beat-based expectations, for pattern-based expectations, there was a positive
674  association between ratings and musical training at an expected time point (780 ms; p <0.001),
675 and a negative, albeit nonsignificant, association at an unexpected time point (600 ms). Thus,
676 like for beat-based expectations, at these early time points, musicians were better able than non-
677  musicians at differentiating between expected and unexpected moments in time. However, at
678 885 ms (unexpected in terms of the pattern), the results behaved like at 780 ms, with higher
679  ratings associated with more Musical Training (p = 0.002). At 990 and 1200 ms, Musical
680  Training was associated with lower ratings (both ps < 0.05), but these results are
681  counterintuitive, as these are expected positions based on the pattern.

682 The results for pattern-based expectations suggest that just like for beat-based
683  expectations, participants were able to predict the timing of probes based on the preceding
684  sequence. However, the results show that while this was still the case at 780 ms after the onset
685  of the last tone, at later probe positions, the effects of pattern-based expectations did not reflect
686  the preceding sequence. At 885 ms, the results, both in terms of the ratings and how they were
687  associated with musical training, behaved similar to at 780 ms. After this point, the results
688  suggest that participants did not use the preceding sequence to guide their responses, but
689 instead, used a different heuristic.

690 Figure 4 shows the behavioral results obtained from the EEG experiment. Replicating
691  Experiment 1, we found main effects of Condition (¥?(2) = 92.30, p < 0.001) and Position
692  (x¥2(2)=49.36,p <0.001), accompanied by interactions between Condition and Position (y2(4)
693 =96.62, p <0.001), and Condition, Position, and Musical Training (y2(4) = 11.04, p = 0.03).

694  Following the analysis strategy from Experiment 1, we subtracted the ratings from the Random
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condition from the ratings for the other two conditions, yielding a baseline corrected model
with similar interactions (Condition and Position: y2(2) =31.46, p < 0.001; Condition, Position,

and Musical Training: y2(2) = 8.29, p = 0.02).
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Figure 4. Behavioral results during the EEG experiment replicate findings from Experiment 1. Even
with only 18 trials per participant per condition and position, we could replicate the inverted U-curve for
beat-based sequences at the end of the silence epoch. Like in Experiment 1, the results for the pattern-based
condition do not follow the pattern, but instead, are consistent with building expectations for the next trial.
A) Mean ratings for all conditions and positions. Colored asterixis indicate positions where ratings in the
beat-based (orange) and pattern-based (purple) conditions differed from the random condition (with p <
0.05). B) Single participant data, with the random condition subtracted to account for serial position effects.
C) Data median split based on scores on the musical training questionnaire. Error bars in panels A-C are 2
standard errors. D) Association between musical training and rating for each condition and position. See
Figure 3 for more details.

In line with the preceding beat-based sequences, probes at 990 and 1485 ms (both
unexpected times based on the beat) were rated lower in the beat-based condition than in the
random and pattern-based conditions (all ps < 0.012), and within the beat-based condition,
probes at 1200 ms were rated as better fitting than at 990 (p < 0.001) and 1485 ms, though the

latter difference did not reach significance. Thus, like in Experiment 1, we found an inverted

U-curve at 1200 ms after the final tone, suggestive of beat-based expectations lasting at least
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716  two beat cycles. As in Experiment 1, at 1200 ms (expected based on the beat), higher ratings in
717  the beat-based condition were associated with more musical training (p = 0.047), suggesting
718  that the effects of beat-based expectations correlate with musical expertise. Additionally, probes
719  at 990 ms were rated lower than at 1485 ms (p < 0.001), possibly because the effects of beat-
720  based expectations diminished over the course of the silence.

721 In the pattern-based condition, ratings did not follow the pattern of the preceding
722 sequences. At 990 ms (expected based on the pattern), probes were rated as worse fitting than
723 in the random condition (p < 0.001), and as worse fitting than at 1200 (expected) and 1485
724 (unexpected) ms (both ps < 0.023), while at 1485 ms (unexpected), probes were rated as better
725  fitting than in the random condition, and as better fitting than at 1200 (expected) ms (both ps <
726  0.001). Also, at 1200 ms (expected), higher ratings were associated with less musical training
727  for the pattern-based condition (though after the Bonferroni correction, only marginally so: p =
728  0.06), contrary to what would be expected if the effects of expectations are enlarged in musical
729  experts. All simple effects can be found in Supplementary Tables 1 and 2.

730 Thus, the behavioral results from Experiment 2, though based on less trials than
731  Experiment 1, suggest a similar pattern as found in Experiment 1: while beat-based expectations
732 exert their effect well into the silent period, with participant faithfully following the beat in their
733 goodness-of-fit ratings, pattern-based expectations do not affect ratings in the second half of
734 the silent period in a manner consistent with the learned pattern. Albeit speculatively, the results
735  for the pattern-based expectations may be more in line with expectations for the start of the next
736  trial leading to higher ratings for probe positions closer to the end of the silent period, as in
737  Experiment 2, after non-probe trials, the next trial followed each silent period at a somewhat
738  predictable time.

739  Differences in the evoked potential elicited by beat-based and pattern-based sequences
740 Figure 5 shows the average ERPs for each condition, without baseline correction (see

741  Materials and Methods), and scalp topographies for windows in which we found significant
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742 clusters. In line with previous research, we may expect climbing neuronal activity, or a CNV,
743  flexibly adapting its slope to peak at the moment that participants expect the next event (Breska
744 & Deouell, 2017; Breska & Ivry, 2020; Damsma, Schlichting, & van Rijn, 2021; Mento, 2013).
745  We did observe differences in the ERPs between conditions, but the peak of the differences was
746  not at the expected time, but rather, fell earlier (see Supplementary Figure 1 for the difference
747  waveforms between conditions). Without baseline correction, the random condition elicited a
748  significantly more negative ERP (p = 0.011) than the beat-based condition in a frontocentral
749  cluster between 300 and 614 ms after the onset of the last sound (though note that we did not
750  include timepoints preceding 300 ms in the cluster-based tests). Likewise, in the same latency
751  range (300 — 473 ms), there was a trend for the pattern-based condition to elicit a more negative
752 ERP than the beat-based condition (p = 0.077). Thus, in a window between approximately 300
753  and 450 ms, we found tentative evidence for more negative-going waveforms in both the
754  random and pattern-based condition compared to the beat-based condition, with a central scalp
755  topography (Figure 5B). In a later window, the pattern-based condition elicited a second
756  negative deflection, which showed a trend to be larger than in the beat-based condition (p =
757  0.077, 864 — 1005 ms). While these results were somewhat different depending on the choice
758  of baseline (see Supplementary Figure 1 for the results with a traditional pre-cue baseline), the
759  overall picture is the same, with significant clusters in an early and later window indicating
760  differences between conditions in the ERPs.

761 The time course of the effect deviated from what we expected: the negative deflection
762  did not peak at the next expected moment in time, but rather, peaked much earlier. Also,
763  contrary to previous research (Breska & Deouell, 2017), the beat-based condition elicited the
764  most positive-going ERP, instead of a typical CNV. To further explore and confirm these
765  results, as a control analysis, we performed the same ERP analysis on the longest time intervals

766  during the sound presentation. The waveforms showed a negative deflection very similar in
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767  morphology and scalp distribution to the one we found in the silence window (see
768  Supplementary Figure 1). During the sound presentation, like in the silence, this negative
769  deflection was largest for the pattern-based condition, though the difference was only
770  significant when comparing the pattern-based condition to the random (p = 0.039) but not the
771  beat-based condition (p = 0.1). The latter non-significant result may be due to a noisy baseline,
772  as during sound presentation, the succession of intervals in the beat-based and random
773  sequences was (semi-)randomly chosen, and therefore, the baseline was not consistent over
774  conditions. Overall, however, this control analysis yielded very similar results to the analysis
775  of ERPs in the silence window.

776 As an exploratory analysis, since musical training was related to larger effects of
777  entrainment in behavior, we also examined whether there was a relationship between the
778  amplitude of the negative deflection in the silence window (extracted from the time-electrode
779  clusters depicted in Figure 5, see Materials and Methods for details) and musical expertise.
780  However, we found no difference in the effects of expectations on the amplitude of the negative

781  ERP component between musically trained and untrained subjects (all ps > 0.3).

A Central electrodes - No baseline B 300-450 ms

[ Beat-based Beat-based Pattern-based Random

2uv
[l Pattern-based
[ Random
-2V
7

925-1005 ms

Beat-based Pattern-based Random

QO e

mmm Beat-based > Random (p < 0.05) == Beat-based > Pattern-based (p < 0.05) mmm Random > Pattern-based (p < 0.05)
782 mmm Beat-based > Random (p < 0.1) mmm Beat-based > Pattern-based (p < 0.1) mmm Random > Pattern-based (p < 0.1)

783  Figure 5. Beat-based and pattern-based can be differentiated based on ERPs. A) Left panel show the
784 grand average waveforms for the silence window for a central electrode cluster (FC1, FCz, FC2, C1, Cz, C2,
785  CP1, CPz CP2). Time 0 is the onset of the last tone of the sequence. Colored bars on the bottom of the plots,
786  and vertical orange and purple lines, indicate at which times a tone would be expected based on the beat
787  (light orange) and the pattern (light purple). Note that these are expected times, but no sounds were played
788  during the window shown after time 0. Sounds during the sequence are depicted in dark orange and purple.
789  B) The scalp distributions for windows in which a significant cluster was observed.
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790  Frequency-domain analysis shows persistent power at the beat frequency following beat-
791  based sequences

792 A strong prediction of entrainment theories is that the entrainment outlasts stimulation
793  with the entraining stimulus. Therefore, we next looked at the frequency content of the EEG
794  signal in the silent period. Specifically, we predicted that if entrainment occurs, we would find
795  enhanced power at the frequencies associated with the rhythmic sounds to be found in the
796  silence. In Figure 6A, the average power for all electrodes, separated for each condition in the
797  control (i.e. during the auditory sequence) and silence windows is depicted as a function of
798  frequency. In the control window (Figure 6A, left, and Figure 7, top), the frequency response
799  followed the sound input. That is, at the beat frequency (1.67 Hz), significant clusters indicated
800  higher power in the control window for the beat-based sequences than the pattern-based (p <
801  0.001) and random (p = 0.006) sequences. At 2.22 Hz, prominent in the pattern-based and
802  random sound sequences, higher power was observed in the EEG signal in the pattern-based
803  than beat-based (p = 0.02) and random (p = 0.023) sequences, and higher power was observed
804  in the random than beat-based sequences (p = 0.035). Finally, at 3.33 Hz (subdivisions of the
805  beat), power in the control window was larger for the beat-based than pattern-based (p = 0.013)
806  and random (p = 0.005) conditions. Thus, in the control window, the EEG signal reflected the
807  spectral properties of the sound signal, as can be expected, since each sound will have elicited
808 an ERP, which are represented in steady-state potentials, and thus picked up by the frequency
809  analysis (Keitel, Obleser, Jessen, & Henry, 2021).

810 Importantly, during the silence (Figure 6A, right, and Figure 7, bottom), no significant
811  clusters were found at 2.22 Hz, but at the beat frequency (1.67 Hz), power was significantly
812  larger for the beat-based than the pattern-based (p = 0.01) and random (p = 0.012) conditions.
813  Inaddition, at 3.33 Hz, power for the beat-based condition was larger than for the pattern-based

814  condition (p = 0.038), with a trend when comparing the beat-based with the random condition
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815  (p=0.077). Thus, while the pattern-based and random conditions showed tracking of the sound
816  during stimulation (which is sometimes considered entrainment “in the broad sense” (Obleser
817 & Kayser, 2019)), in the silence, entrainment was only present for the beat-based condition.
818  This finding fits our behavioral observations that beat-based expectations persisted longer in
819  the silence than pattern-based expectations. To further substantiate the absence of persistent
820  entrainment at the pattern frequency in the silence, we performed a Bayesian T-test comparing
821  the normalized power at 2.22 Hz between the pattern-based and random conditions. We found
822  moderate evidence in favor of the null hypothesis (no difference between conditions) (BFo; =
823  4.5). The results did not change as a function of the prior used (with a more traditional prior of
824 r=1,BFo =6.17).

825 Exploratively, we also compared phase consistency between conditions. Figure 6B
826  shows the phase consistency averaged over all electrodes for all conditions. In the control
827  window, there was larger phase consistency at 1.67 and 3.33 Hz in the beat-based than pattern-
828  based and random conditions (all ps < 0.001), and larger phase consistency at 2.22 Hz in the
829  pattern-based than beat-based and random conditions (all ps < 0.003). In addition, at 2.22 Hz,
830  phase consistency was higher for the random than beat-based condition (p = 0.025). These
831  results can be expected based on alignment of the evoked potentials in response to the sound.
832  Crucially, in the silence, phase consistency was larger at 1.67 Hz in the beat-based than random
833  condition (p = 0.025). Neither the difference between the beat-based and pattern-based
834  condition at 1.67 Hz (p = 0.095), nor the difference between the pattern-based and random
835  condition at 2.22 Hz (p = 0.063) reached significance in the cluster-based tests, and none of the
836  other comparisons yielded any clusters. Thus, this exploratory analysis is in line with the results
837  obtained from the power analysis. Arguably, this analysis did not yield very strong results, since

838  phase consistency is also affected by climbing neuronal activity (Breska & Deouell, 2017).
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840  Figure 6. Oscillatory power and phase consistency at the beat frequency persist during the silence

841 window. In the control window, during auditory stimulation, peaks in power (panel A) and phase consistency

842 (panel B) can be observed at all frequencies of interest, and for the relevant conditions (1.67 and 3.33 Hz in
843  the beat-based condition, and 2.22 Hz in the pattern-based condition). In the silence window, the peaks in
844  power at 1.67 and 3.33 Hz were larger in the beat-based condition than in the pattern-based and random
845  conditions, while peaks at 2.22 Hz did not differ between conditions. The peak in phase coherence at 1.67Hz
846  in the beat-based condition was larger than in the random condition, while the peak at 2.22 Hz did not differ
847  between conditions. This suggests that only beat-based expectations persisted in the silence window. Note:
848  theraw data is depicted here, before the normalization procedure. Data shown is averaged over all electrodes.
849

850 Note that like for the behavioral results indicative of entrainment, there was large

851  heterogeneity between participants (see Figure 7). While the power differences were significant

852  in the overall cluster-based analyses, out of 27 participants, only 16 showed on average (i.e.
853  over all electrodes) numerically larger power in the beat-based condition at the beat frequency
854  when compared to both the random and pattern-based condition. As for the ERP differences,
855  musical training did not affect the difference in power between the beat-based and random
856  condition at 1.67 Hz, nor the difference in power between the pattern-based and random
857  condition at 2.22 Hz (both ps > 0.54).

858
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Figure 7. Individual participant data shows heterogeneity of the effects of temporal expectations on
spectral power. All plots depict the spectral power at the frequency of interest, averaged over all electrodes,
and normalized to account for the 1/f distribution (see Materials and Methods). A) Single participant data,
with all data points in grey. Boxplots show the median, with the lower and upper hinges corresponding to the
first and third quartiles (25™ and 75" percentiles), and the whiskers corresponding to values no further than
1.5 times the inter-quartile range from the hinges. Error bars depict 2 standard errors around the mean. B)
Scalp topographies for all conditions. Electrodes contributing to significant clusters in the cluster-based tests
are highlighted on the plots for the conditions from each comparison in which power was largest.
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868  Multiscale entropy as a non-stationary measure of temporal expectations

869 Figure 8 shows sample entropy for each condition separately, as well as the electrodes
870  contributing to significant clusters in the analysis. Given that MSE indexes signal irregularity,
871  we would expect entropy to be higher for the random and pattern-based conditions than for the
872  beat-based condition in the silence. A cluster-based test on all electrodes and timescales showed
873  that both in the control window, and in the silence window, entropy was higher for the pattern-
874  based than for the random condition (control: p = 0.03; silence: p = 0.021). Note that in the
875  silence window, all but the two highest timescales were included in the cluster. In the control
876  window, the cluster spanned all timescales from 35 till 406 ms (see Materials and Methods for
877  an explanation of the timescales). These results suggest that the signal was more irregular in
878  the pattern-based than the random condition, over a broad range of timescales. Neither the beat-
879  based condition compared to pattern-based nor the beat-based compared to the random
880  condition reached significant differences in entropy, in either control or silence windows (all
881  ps>0.24).

882 Entropy has been related to various other EEG measures, such as spectral power and
883  overall differences in signal variability (Kosciessa et al., 2020). To account for these, we ran
884  several additional analyses. First, to check whether the differences in signal variability may
885  have been caused by differences in low frequency activity, we repeated the MSE analysis on
886  high-pass filtered data (Kloosterman et al., 2020), using a 5 Hz high-pass filter. This completely
887  removed the effects (all ps > 0.43), suggesting that the differences between conditions were
888  caused by low frequency activity in the signal (see Supplementary Figure 2).

889 Second, we checked whether differences in signal variability caused the differences in
890  entropy, since entropy is calculated relative to the overall signal standard deviation (e.g., a
891  pattern is considered a match at a lower threshold when overall signal variability is high). As

892  can be seen in Supplementary Figure 3, the similarity bounds used to compute entropy (derived
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893  from the time-domain signal standard deviation) differed between conditions, and this
894  difference mirrored the differences in entropy, suggesting that at least some of the variance we
895  observed was due to overall signal variability, and not necessarily signal irregularity. Finally,
896  musical training did not affect the difference in sample entropy between the beat-based and
897  random condition, nor the difference in entropy between the pattern-based and random

898  condition (both ps > 0.66).
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900  Figure 8. Entropy was higher for pattern-based than random sequences in both control and silence
901 windows. Entropy in the Control window (left) and Silence window (right), averaged over frontocentral
902  electrodes, and scalp distributions averaged over all timescales, depicting electrodes contributing to
903  significant clusters.

904

905  Multivariate decoding as a time-resolved method for studying entrainment

906 With multivariate decoding, we expected that training at expected times would yield
907  above chance performance when testing at expected times, regardless of whether these time
908  points were the same (e.g., when training at 600 ms, we expected to be able to accurately
909  distinguish the beat-based from the random condition when testing at not just 600 ms, but also
910  at 1200 and 1800 ms, as all these times were on the beat, or similarly expected). Figure 9A
911 shows the temporal generalization matrices for each comparison, with significant clusters
912  indicated by a black contour. In the silence window we found above chance decoding when
913  decoding the beat-based against the random condition (p = 0.043), the pattern-based against the

914  random condition (p < 0.001), and the beat-based and pattern-based conditions against each
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915  other (p = 0.009), indicating that based on the EEG signal in the silence, we could classify
916  which type of rhythm participants had heard just before. However, looking at the temporal
917  generalization matrices, it becomes apparent that contrary to our expectations, this above-
918  chance decoding was not due to recurrent activity for expected events. Only clusters on the
919  diagonal were significant for each comparison. In addition, decoding for all three comparisons
920  was best in the second halve of the silence window, which is where the probe tones were
921  presented. This suggests that the decoding mainly picked up on task-related differences. While
922  the probes were physically identical across conditions, participants may have had different
923  strategies to perform the task, depending on the type of sequence, and this could have resulted

924  in above-chance decoding related to the task and probes, even when only analyzing the silence

925  window.
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927  Figure 9. No recurrent activation in group average decoding, example of recurrency in single
928  participant. A) Temporal generalization matrices for each comparison for the group analysis. The Y-axis
929  shows the training time points, and the X-axis testing time points. The color scale indicates the classification
930  accuracy, with 0.5 being chance level (all analyses are based on decoding two conditions against each other).
931 Significance of classification accuracy was assessed by using cluster-based permutation tests on the silence
932 window (300-2100 ms after the last note onset). The black contour indicates significant clusters. Note that
933  the upper right quadrant, highlighted by the black box, is the entire silence window. B) Temporal
934  generalization matrix for a participant showing recurrent activity following the expected beats. When
935  decoding the beat-based vs. the other two conditions (left- and rightmost plots), peaks in accuracy follow a
936  clear oscillatory pattern, with a phase consistent with the beat-based sequence (600 ms between beats and
937  decoding peaks).
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938 Of note, the decoding results varied considerably between participants. In one
939  participant in particular (Figure 9B), we observed a pattern in the temporal generalization
940  matrix that was consistent with the hypothesized result for an oscillatory process (King &
941  Dehaene, 2014). However, even though some other participants also showed recurrent activity,
942  the exact times of most accurate decoding, and the exact period of the recurrent process, differed
943  widely between participants, obscuring these effects in the grand averages. These individual
944  differences may be caused by individual preferences for a level of regularity in the beat-based
945  stimuli (Drake, Jones, & Baruch, 2000), with some people attending mostly to the beat level
946  (1.67 Hz), but others possibly attending to subdivisions (3.33 Hz) or the level of the meter (0.83
947  Hz). Also, for different people, the optimal phase of delta oscillations (i.e., the phase that aligns
948  with expected moments) may differ (Breska & Deouell, 2017; Henry & Obleser, 2012),
949  possibly causing optimal decoding at different time points. To circumvent the large task-related
950  effects apparent in the decoding results, and the possible individual differences in phase and
951  metrical level attended to, we ran an additional exploratory decoding analysis looking at
952 decoding within instead of between conditions. Here, we found above-chance decoding of beat
953  positions against offbeat positions only following the beat-based condition. However, while
954  decoding was above chance in the beat-based condition, it was in fact not better than in the
955  other conditions. As such, these results provide only weak support for persistent effects of beat-
956  based, but not pattern-based expectations. Detailed results of the within-condition decoding
957  analysis can be found in the Supplementary Materials (Supplementary Figure 4).

958
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959 Discussion

960 In the current study, we aimed to identify and directly compare the neural mechanisms
961 underlying temporal expectations based on a regular beat, as well as temporal expectations
962  based on learning a predictable pattern, by examining the development of climbing activity and
963 the persistence of neural entrainment after cessation of rhythmic input with either a regular beat,
964  a predictable pattern of temporal intervals, or random timing. Instead of relying on isochrony
965  to elicit beat-based expectations, which can also elicit different forms of memory-based
966  expectations, we used varying non-isochronous patterns to clearly separate beat-based and
967  pattern-based expectations. Moreover, we assessed responses in a silent period after the
968  auditory input ceased, side stepping the many possible confounds associated with acoustic
969  differences between conditions (Capilla, Pazo-Alvarez, Darriba, Campo, & Gross, 2011;
970  Haegens & Zion Golumbic, 2018; Novembre & lannetti, 2018; Zoefel et al., 2018).

971 We found several indicators of separate mechanisms for beat-based and pattern-based
972  expectations. First, behaviorally, we found that while the effects of beat-based expectations
973  spanned at least two beat cycles, the effects of pattern-based expectations only reflected the
974  first expected moment in time. Second, a negative ERP component at around 300 to 450 ms
975  after the onset of the last sound was larger for pattern-based, and possibly random, than beat-
976  based sequences. Third, we observed significantly more power at the beat frequency in the
977  silence window when participants were previously listening to a beat-based sequence as
978  compared to a pattern-based or random sequence, tentatively accompanied by significantly
979  more phase coherence at the beat frequency in the beat-based condition compared to the random
980  condition. The observed difference between the behavioral effects of beat-based and pattern-
981  based expectations and increased oscillatory power at the beat frequency following beat-based
982  but not pattern-based sequences both point towards entrainment underlying beat-based, but not

983  pattern-based expectations. The time-domain results showing differences in ERP components
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984  between pattern-based and beat-based sequences suggest that the former may rely on a different
985  mechanism, tentatively more like climbing neuronal activity. Together, these findings provide
986  support for the notion that beat-based and pattern-based expectations rely on different neural
987  mechanisms, as has previously been suggested for cue-based expectations (Breska & Deouell,
988  2017; Breska & Ivry, 2020), but our results do not support models that assume shared
989  mechanisms, be it entrainment (Tichko & Large, 2019), or a general top-down mechanism for
990  temporal expectations (Rimmele et al., 2018).
991 Behaviorally, for the beat-based condition, we observed a pattern clearly in line with
992  entrainment models, with an inverted U-curve, an indication of entrainment (Bauer et al., 2015;
993  Jones et al., 2002), present as late as 1200 ms after the final tone of each sequence in both
994  experiments. Beat-based expectations thus affected the fitness ratings for at least two beat
995  cycles after the end of the sequences, as predicted by nonlinear oscillator models, that assume
996  oscillations are self-sustaining (Large, 2008; Large & Palmer, 2002). Expectations in the beat-
997  based condition not only led to higher ratings for expected events, but also to lower ratings for
998  unexpected events, when compared to the random and pattern-based conditions. Suppression
999  of unexpected events may be metabolically beneficial (van Atteveldt et al., 2015), and as such,
1000  has been suggested to be a hallmark of entrainment and the associated “rhythmic” mode of
1001  processing (Schroeder & Lakatos, 2009a; Zoefel & Vanrullen, 2017). Indeed, suppression off
1002  the beat has even been proposed to be a better indication of beat-based expectations than
1003  facilitation on the beat (Bouwer et al., 2020; Breska & Deouell, 2017), in line with the current
1004  results, where the effects of beat-based expectations at unexpected time points exceeded those
1005  at expected time points.
1006 Pattern-based expectations similarly affected fitness ratings, with enhanced ratings at
1007  the first expected time point, and lower ratings at the first unexpected time point, showing that

1008  participants did form expectations based on the predictable pattern. However, importantly, for
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1009  the pattern-based condition, the results are qualitatively different from those for the beat-based
1010  condition, as the effects of expectations only reflected the first expected moment, but not the
1011  subsequent structure of the pattern. We did observe lower ratings for the last probe positions
1012 after pattern-based than random sequences in Experiment 1. One speculative explanation for
1013 this is that while listeners are able to form expectations following temporal patterns, they only
1014  do so one interval at a time (e.g., they use each event as a cue for the next interval, but in the
1015  absence of an event, no next interval is predicted), and in a probabilistic way (Cannon, 2021;
1016  Damsma et al., 2021; van der Weij, Pearce, & Honing, 2017). In this case, it is possible that the
1017  expectation for an event at 780 ms would lead to an inverted U-shape in responses, similar to
1018  the inverted U around a beat, but with a wider distribution. This could explain the ratings being
1019  equal for probes at 780 and 885 ms, as they would still fall within the time window where a
1020  tone could be expected, while probes at 1200 and 1485 ms were considered as unexpected, as
1021  they fell far from the expected time. A tentative alternative explanation could also be that the
1022 repetitiveness of the pattern lead participants to use a different heuristic during the pattern-
1023 based sequences to guide their ratings, considering only one interval at a time, while the varying
1024  rhythmic pattern of the beat-based condition induced a strategy whereby participants were more
1025  inclined to consider positions after the first expected tone.

1026 Crucial to entrainment models of beat-based expectations (Haegens & Zion Golumbic,
1027  2018; Henry & Herrmann, 2014; Large, 2008; Large & Jones, 1999; Obleser & Kayser, 2019),
1028  we found that power at the beat frequency (1.67 Hz) and its harmonic (3.33 Hz) in the EEG
1029  signal during the silence window was larger following beat-based than pattern-based or random
1030  sequences. Such enhanced power was not found for a frequency inherent to the pattern-based
1031  sequence (2.22 Hz). Methodologically, measuring phase locking during rhythmic stimulation
1032 can lead to confounding contributions from tone-evoked responses (Capilla et al., 2011;

1033  Novembre & lannetti, 2018; Zoefel et al., 2018). Ongoing oscillations in silence, after sensory
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1034 input has stopped, are therefore regarded as strong evidence for entrainment (Breska & Deouell,
1035  2017; Haegens & Zion Golumbic, 2018; Obleser & Kayser, 2019; van Bree et al., 2021; Zoefel
1036  etal., 2018). As such, our observation of enhanced power at the beat frequency during silence
1037  provides important novel support for the notion that entrainment of low-frequency neural
1038  oscillations underlies beat-based perception, and our design, using non-isochronous rhythms,
1039  allows us to separate beat-based aspects from other structure present in natural rhythm (Bouwer,
1040  Nityananda, Rouse, & ten Cate, 2021).

1041 Interestingly, a recent paper that assessed ongoing oscillations following auditory
1042 rhythmic input did not find any evidence for persistent entrainment at the frequency of the
1043 rhythm (Pesnot Lerousseau et al., 2021). Two differences between this study and our work may
1044  provide directions for future work. First, as mentioned before, isochronous rhythm allows for
1045  several different ways of forming temporal expectations, including not only beat-based, but
1046  also cue-based and pattern-based expectations. In the current study, this was the motivation to
1047  design stimuli that allowed for differentiating between these types of expectations. However,
1048  an additional concern could be that when presented with stimuli that do not require beat-based
1049  expectations to perform the task of tracking the temporal structure, the brain may not engage in
1050  forming such expectations. Thus, in addition to variation between individuals (Assaneo et al.,
1051  2019), variation in the input signal may also determine which mechanism is used to form
1052  temporal expectations.

1053 Second, the presence of persistent entrainment may also depend on task demands
1054  (Shalev, Nobre, & van Ede, 2019). In our study, the auditory sequences were task relevant, and
1055  the task itself was rhythm-related. In the study by Pesnot Lerousseau et al. (2021), participants
1056  listened to rhythms passively. This raises the possibility that persistent entrainment is the result
1057  of explicit, top-down guided expectations, rather than being the result of some passive,

1058  automatic process (Bouwer, 2022). Interestingly, in our study, the scalp topographies for power
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1059  at 1.67 Hz differed between the silence and control windows, with power in the control window
1060  largest above a frontocentral region, and in the silence window above a parieto-central region.
1061  This raises the question to what extent the phase locking as measured during the sound
1062  presentation has the same source as phase locking during the silence. During sound
1063  presentation, oscillations picked up at the scalp likely contain large contributions from evoked
1064  responses in auditory cortex that are phase locked to the input (“entrainment in the broad sense”,
1065 see (Obleser & Kayser, 2019). Possibly, instead of resulting from a sustained automatic
1066  oscillation, persistent entrainment could originate from other sources, such as explicit
1067  predictions made by a motor network (Rimmele et al., 2018). The influence of contextual
1068  factors on entrainment, be it person, stimulus, or task, and the source of phase-locked activity,
1069  be it automatic phase alignment in sensory cortices, or active top-down expectations, are
1070  important topics for future research.

1071 The absence of power at 2.22 Hz following the pattern-based sequences suggests that
1072 entrainment does not underlie expectations based on learning a pattern, contrary to a recently
1073  proposed oscillator model that can capture aspects of pattern-based expectations (Tichko &
1074  Large, 2019). In the time-domain, we found a negative deflection in the silence window
1075  following the pattern-based and random sequences, but less so following the beat-based
1076  sequences. The observed differences in the ERP suggest that rather than one entrainment
1077  mechanism for both regular and irregular rhythms, an alternative mechanism, possibly based
1078  on climbing neuronal activity, specifically supports formation of pattern-based expectations.
1079 The ERP component we observed in the silence window differed from previous work
1080  and our hypotheses in two respects. First, while previous studies showed a CNV peaking at an
1081  expected time (Breska & Deouell, 2017; Mento, 2017; Praamstra et al., 2006), here, the peak
1082  latency of the negative deflection in the signal was earlier, peaking around 400 ms for the

1083  pattern-based condition, while the first expected time point in the silence was at 780 ms.
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1084  Second, in previous research, a CNV was found peaking at expected times not only for cue-
1085  Dbased, but also for beat-based expectations when compared to a random condition (Breska &
1086  Deouell, 2012, 2017; Breska & Ivry, 2020; Praamstra et al., 2006). Given the differences
1087  between our study and previous work looking at the CNV, the question is to what extent the
1088  negative component we observed in the current study is related to the CNV. Tentatively, we
1089  would like to suggest that the negative deflection in the current experiment may still be
1090  interpreted as a CNV, and that differences with previous work may be explained by considering
1091  the design of the rhythmic stimuli.

1092 First, the CNV may index temporal expectations in a probabilistic, and context-
1093  dependent way (Capizzi, Correa, & Sanabria, 2013; Damsma et al., 2021; Los & Heslenfeld,
1094  2005). While the design of most studies looking at the CNV involves isochronous stimulation
1095  (Breska & Deouell, 2017; Mento, 2017; Praamstra et al., 2006), here, the pattern-based
1096  sequences contained several temporal intervals with durations between 150 and 780 ms. The
1097  peak at 400 ms may have indexed the average interval presented in the sequence (~360 ms).
1098  This explanation is supported by the presence of a deflection with a similar time course and
1099  morphology for the random condition. Like in the pattern-based condition, in the random
1100  condition, participants could not use a beat-based strategy to perform the task. Thus, they may
1101  have attempted to predict the timing of an upcoming sound based on the distribution of the
1102  absolute intervals, which while random in terms of transitional probabilities, was on average
1103  identical to the pattern-based condition. Interestingly, the average interval in the beat-based
1104  condition was also 360 ms, but here, the same component was less present, suggesting that in
1105  the presence of a possible beat-based strategy, the brain may operate in a rhythmic mode of
1106  processing (Rimmele et al., 2018; Schroeder & Lakatos, 2009a). Of note, the CNV has indeed
1107  been shown to be susceptible to its probabilistic context (Capizzi, Correa, & Sanabria, 2013;

1108  Damsma et al.,, 2021; Los & Heslenfeld, 2005), and probabilistic models incorporating
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1109  statistical regularities in inter-onset intervals at different levels have been used to explain
1110  aspects of temporal processing (Cannon, 2021; Elliott, Wing, & Welchman, 2014; van der Weij
1111 et al., 2017). In future work, linking such models directly to neural markers of pattern-based
1112 expectations may provide more insight in the mechanisms underlying pattern-based
1113 expectations and how they relate to the CNV.

1114 Secondly, studies finding a CNV for beat-based expectations have typically also used
1115  isochronous stimulation. Therefore, memory-based expectations, be it pattern-based or cue-
1116  based, could also have been formed in response to these sequences (Bouwer et al., 2020, 2021;
1117  Bouwer, Werner, Knetemann, & Honing, 2016; Breska & Ivry, 2016; Keele et al., 1989), and
1118  may have contributed to the elicitation of a CNV. Here, using a beat-based sequence that did
1119  not allow for expectations based on simply learning transitional probabilities, we did not
1120  observe the same negative deflection as in the pattern-based sequences. This raises the
1121  possibility that a CNV (or CNV-like) component is specific to pattern-based and cue-based
1122 (Mento, 2013, 2017), temporal expectations.

1123 It could also be argued that the differences we observed in ERPs should not be
1124 interpreted as a CNV, but rather, were caused by differences in the P3 response to the last sound
1125  of each sequence, which would be apparent at a similar latency (peaking between 300 and 450
1126  ms). This would mean that the P3 response would have been largest for expected sounds in the
1127  beat-based sequences, smallest for expected sounds in the pattern-based sequences, with the
1128  response to unexpected sounds in the random sequences in between. The P3 has indeed been
1129  shown to be susceptible to temporal expectations, with larger amplitude responses for
1130  temporally predictable targets (Lange, 2009; Mento, 2017; Schmidt-Kassow, Schubotz, &
1131  Kotz, 2009). However, these effects can be observed for beat-based and memory-based
1132 expectations in a similar direction (Breska & Deouell, 2017; Breska & Ivry, 2020; Mento, 2017;

1133 Schmidt-Kassow et al., 2009). Thus, we feel it is unlikely that the differences observed in the
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1134  ERPs here are caused by differences in the P3, as the P3, if anything, should have been larger
1135  for the pattern-based than random sequences, which is not the case. Thus, we tentatively suggest
1136  that here, the observed ERP differences are more likely to be due to a CNV-like mechanism.
1137 Various other challenges for future research remain. First, in the beat-based condition,
1138 it could be argued that participants used an interval-based strategy to perform the task, in which
1139  they predicted an event every 600 ms. However, listening to strictly metric patterns, as the ones
1140  used here, is associated with activity in a circuit including the basal ganglia, while listening to
1141  non-metric patterns is associated with activity in a circuit including the cerebellum, making it
1142 unlikely that the same, interval-based mechanism would be used for both types of rhythms
1143 (Leow & Grahn, 2014). Also, predicting the timing of events in non-isochronous strictly metric
1144  sequences would require participants to learn not just the transitional probabilities of single
1145  intervals, but also to combine multiple intervals into groups that together last the length of a
1146  beat. It is currently unclear whether humans, when faced with rhythmic patterns, use such a
1147  hierarchical interval-based strategy. Indeed, future research could examine if beat-based
1148  expectations in general can be explained by such multilevel interval learning, akin to a recent
1149  model for beat-based perception (Cannon & Patel, 2021), as this could provide a general
1150  challenge to oscillator models of beat-based perception. In such a view, the difference between
1151  beat-based and pattern-based timing may be the importance of hierarchical structure in beat-
1152 based rhythms (Fitch, 2013), rather than the presence of oscillations.

1153 A second challenge concerns the result from the frequency-domain analysis. The
1154  Fourier transform assumes stationarity in the oscillating signal, while entrainment models
1155  propose a dampening factor to account for decreasing oscillatory power over time (Large,
1156  Herrera, & Velasco, 2015). To assess power at specific frequencies in a time-resolved way,
1157  wavelet convolution is often used as an alternative. But, in the current study, differentiating

1158  between the specific frequencies of the beat and the pattern would require wavelet parameters
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1159  that would result in a temporal resolution too low to disentangle activity during and before the
1160  silence (i.e., many wavelet cycles would be needed). Recently, a promising alternative to assess
1161  oscillatory activity in the time domain was proposed in the form of cycle-by-cycle analysis
1162  (Cole & Voytek, 2019). However, this approach requires filtering the signal at the specific
1163  frequency of interest, again posing problems for disentangling low frequency oscillations due
1164  to the beat, the pattern, and ongoing ERPs. Assessing the time course of low frequency
1165  oscillations thus remains a challenge for future research.

1166 Multi scale entropy and multivariate pattern analysis may provide alternative ways to
1167  examine neural entrainment with high temporal precision. At the group level, entropy was
1168  higher following the pattern-based than random sequences. This could be explained by
1169  assuming that the brain uses a vigilance mode to track the pattern-based regularities, which at
1170  the neural level, translates in more irregular patterns of activity. Attention and arousal, which
1171  are both associated with temporal expectations (Schroeder & Lakatos, 2009b), have indeed
1172 been linked to neural variability as well (Waschke et al., 2021). However, the group level results
1173 can be explained at least to some extent by overall differences in signal variability (e.g., the
1174  signal variance), so this hypothesis remains to be confirmed in future research. Considering the
1175  decoding results, the observed above-chance decoding seemed to primarily reflect general task-
1176  related activity. The best decoding was observed in the second half of the silence window,
1177  where probes could be presented. Also, in the group-average decoding results, above chance
1178  decoding was limited to training and testing on the same time points. In other words, we did
1179  not observe recurrent activity, as reflected in stronger decoding accuracy at expected time
1180  points. Yet, we did show a proof of concept for our approach in at least one participant, who
1181  showed a clear oscillatory pattern in decoding accuracy when decoding the beat-based against

1182  the other two conditions. This pattern of activity is in line with the strength or sharpness of the
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1183  neural representation of tones varying over time as a function of temporal expectations
1184  (Auksztulewicz et al., 2019, 2018).

1185 At the group level, the behavioral results, along with the results obtained using
1186  frequency-domain analysis and ERPs provide evidence for differential processing of the beat
1187  and the pattern in rhythm, while the results from the decoding and entropy analyses are less
1188  clear. One reason for this is heterogeneity between individuals. This heterogeneity may be
1189  present at several levels. First, people may attend to different levels of regularity in beat-based
1190  perception (Drake et al., 2000), and the optimal phase of delta oscillations (e.g., the phase that
1191  aligns with expected moments) may differ across individuals (Breska & Deouell, 2017; Henry
1192 & Obleser, 2012; Sun et al., 2021). Second, while it is often assumed that most people
1193  automatically form beat-based expectations (Honing, 2012), recent evidence showed phase
1194  locking to speech in only about half of the population (Assaneo et al., 2019). Indeed, in our
1195  study, only about two-thirds of the participants behaviorally showed evidence for beat-based
1196  expectations in the second half of the silence window and we only observed enhanced power
1197  at the beat frequency following beat-based sequences in about half of the participants.

1198 In the current study, the behavioral effects of beat-based and pattern-based expectations
1199  were associated with musical training, consistent with previous research using beat-based
1200  (Bouwer et al., 2018, 2016; Cameron & Grahn, 2014; Matthews, Thibodeau, Gunther, &
1201  Penhune, 2016; Vuust et al., 2005) and pattern-based (Cameron & Grahn, 2014) rhythms. Some
1202  previous studies have failed to show differences between musicians and non-musicians,
1203  however (Bouwer, Van Zuijen, & Honing, 2014; Geiser et al., 2009; Grahn & Brett, 2007),
1204  possibly due to differences in task design (Bouwer et al., 2018). The current study used an
1205  explicit rating task, for which performance may be particularly improved by musical training,
1206  as musically trained participants may have additional strategies to perform the task. The use of

1207  implicit timing tasks may be a better probe of innate differences in timing abilities, which need
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1208  not necessarily be related to musical training (Law & Zentner, 2012), and implicit tasks may
1209  also be less susceptible to task-related effects as we observed in the decoding analysis, which
1210  may stem from individual strategies in performing the explicit task.

1211 We did not find an association between musical expertise and the neural results. This
1212 may be due to neural activity being more reflective of innate abilities, as argued above. Also,
1213 our sample scored relatively low on the musical training scale, with a mean of 20.5 on the GMSI
1214 subscale, which is comparable to the 32" percentile of the norm scores, which have a mean of
1215  26.5 (Miillensiefen et al., 2014). This may have made it hard to find the effects of musical
1216  training. However, with the current sample size, we may have simply lacked power to detect
1217  associations between neural data and musical expertise. Undoubtedly, given the heterogeneity
1218  we and others (Assaneo et al., 2019; Bauer et al., 2015; Sun et al., 2021) have observed in tasks
1219  probing temporal expectations, understanding individual differences is an important direction
1220  for future research, with significant implications for applications of musical rhythm, such as in
1221  motor rehabilitation (Dalla Bella, Dotov, Bardy, & Cochen De Cock, 2018).

1222 Conclusion

1223 In summary, we have shown that beat-based and pattern-based expectations can be
1224  differentiated in terms of their behavioral and neurophysiological effects once sensory input
1225  has ceased. These findings provide novel, more conclusive evidence for the notion that different
1226  mechanisms implement temporal expectations based on periodic and aperiodic input streams,
1227  with the former based on entrainment of low frequency neural oscillations, and the latter on
1228  climbing neural activity indexing a memorized interval.
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Supplementary materials for “A silent disco: Persistent entrainment of low-frequency
neural oscillations underlies beat-based, but not pattern-based temporal expectations”
(Bouwer, Fahrenfort, Millard, Kloosterman, & Slagter, 2022)
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Supplementary Figure 1. ERPs with traditional 50 ms baseline and difference waves. A) With the more
traditional pre-cue baseline, there was a trend for the random condition to elicit a more negative deflection
than the beat-based condition (p = 0.058, 300 — 446 ms) and for the pattern-based condition to elicit a more
negative deflection than the random condition (early window: p = 0.083, 380 — 551 ms; later window: p =
0.022, 774 — 1200 ms). Note that a significant cluster spanning the entire analysis window of 300 — 1200 ms
was found when comparing between the pattern-based and beat-based condition with baseline correction (p
= 0.011), indicative of a possible overall shift due to the baseline correction. However, the overall picture
stays the same as when not using a baseline, a negative deflection can be seen around 300-450 ms after the
last sound onset for the pattern-based and random, but not the beat-based condition. B) Scalp distributions
for windows with a significant cluster (see also Figure 5). C) Difference waves depicting condition
differences and the 95% confidence interval around the mean difference waveforms. The scalp distributions
similarly depict condition differences. D) Evoked potential showing the ERPs during sound presentation.
Time 0 here is the presentation of a sound, with the next sound being presented at 600 (beat-based condition)
or 780 ms (pattern-based and random condition). As in the silence window, a negative deflection can be
observed, which was larger for the pattern-based than random condition (p = 0.039), and peaks around 350
ms after the onset of the previous sound. The difference between the pattern-based and beat-based condition
here did not reach significance (p = 0.1), likely because of the noisy baseline.
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Supplementary Figure 2. MMSE after highpass filtering at 5 Hz. Here, all differences between conditions
are eliminated by the highpass filtering.
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Supplementary Figure 3. Similarity bounds used to calculate MMSE values mirror the condition
differences. This finding suggests that condition differences found in the entropy measure, with higher
entropy for the pattern-based than random condition in the silence window, may be due to overall variability
differences, with lower variability for the pattern-based than random condition, rather than differences in
entropy of the signal.
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Supplementary Figure 4. Above chance decoding for beat vs offbeat time points only after listening to
beat-based sequences. For the within-condition decoding analysis, we used a classification algorithm to
differentiate between times that were expected or unexpected based on the beat (on the beat: 600 and 1200
ms after the onset of the last tone; oftbeat: 780 and 885 ms after the onset of the last tone) or pattern
(predicted: 780 and 1200 ms after the onset of the last tone; unpredicted: 600 and 880 ms after the onset of
the last tone). The graphs depict the average classification accuracy in a 100 ms time window centered on
these expected and unexpected time points in the silence window. Here, the beat-offbeat comparison should
yield better decoding if preceded by the beat-based sequences, while the predicted-unpredicted comparison
should be decoded better if preceded by the pattern-based sequences. Only decoding of beat vs offbeat
positions after the beat-based sequences yielded above-chance decoding (f26 = 2.84, p = 0.009). None of the
other comparisons lead to decoding above chance (all ps > 0.18), but decoding of predicted vs unpredicted
positions in the beat-based condition did yield below-chance decoding (p = 0.026). However, a subsequent
ANOVA comparing decoding of beat against offbeat positions in all three conditions showed that decoding
was not significantly better for the beat-based condition than the other conditions (effect of condition in the
silence: x> = 2.1, p = 0.35). Like for the other analyses, there were larger differences between participants,
and decoding, while above chance, did not exceed 0.55 accuracy. As for the other EEG measures, the
difference in decoding accuracy between the beat-based and random condition, and the patten-based and
random condition did not depend on musical training (both ps > 0.21).
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Supplementary Table 1. Simple effects per position from the full models, comparing three conditions. All

p-values have been Bonferroni corrected for 18 (Experiment 1) or 9 (Experiment 2) comparisons.

Experiment 1 Experiment 2
Position | Contrast Estimate | SE | Zratio Estimate | SE | Z ratio | p
600 ms Random — Pattern 2.4 1 0.09 26.2 | <.0001
Random — Beat -1.2 ] 0.09 13.3 | <.0001
Pattern - Beat -3.5 1 0.09 -38.3 | <.0001
780 ms Random — Pattern -0.3 | 0.09 -2.9 0.058
Random — Beat 1.6 | 0.09 18.3 | <.0001
Pattern - Beat 1.8 | 0.09 20.7 | <.0001
885 ms Random — Pattern -0.1 | 0.09 -1.6 1
Random — Beat 1.5 | 0.09 17.0 | <.0001
Pattern - Beat 1.6 | 0.09 18.4 | <.0001
990 ms Random — Pattern 0.1 | 0.09 1.1 1 0.6 | 0.1 4.8 | <.0001
Random — Beat 1.4 | 0.09 16.2 | <.0001 14| 0.1 11.4 | <.0001
Pattern - Beat 1.3 | 0.09 15.0 | <.0001 0.8 | 0.1 6.5 | <0001
1200 ms | Random — Pattern 0.6 | 0.08 7.5 | <.0001 0.2 ] 0.1 1.6 0.92
Random — Beat -0.3 | 0.09 -3.7 0.004 0.1 0.1 0.9 1
Pattern - Beat -1.0 | 0.09 -10.9 | <.0001 -0.1 ] 0.1 -0.7 1
1485 ms | Random — Pattern 0.5 | 0.09 5.2 | <0001 -0.5] 0.1 -4.4 | <.0001
Random — Beat 0.6 | 0.09 6.5 | <.0001 04| 0.1 3.2 0.011
Pattern - Beat 0.1 | 0.09 1.3 1 0.9 0.1 7.5 | <0001

Supplementary Table 2. Simple effects per condition from the baseline corrected model, using the random
condition as baseline, for all positions. All p-values have been Bonferroni corrected for 30 (Experiment 1)
or 6 (Experiment 2) comparisons.

Experiment 1 Experiment 2

Condition Contrast Estimate SE Z ratio D Estimate | SE [ Z ratio )2
Beat-based 600 ms - 780 ms 2.3 0.08] 28.7] <.0001

600 ms - 885 ms 2.2 0.08] 27.8] <.0001

600 ms - 990 ms 2.1 0.08 27.0] <.0001

600 ms - 1200 ms 0.6 0.08 6.9 ] <.0001

600 ms - 1485 ms 1.5 0.08 18.0] <.0001

780 ms - 885 ms -0.1 0.08 -1.3 1

780 ms - 990 ms -0.2 0.08 -1.9 1

780 ms - 1200 ms -1.8 0.08] -21.3] <.0001

780 ms - 1485 ms -0.9 0.08] -10.5] <.0001

885 ms - 990 ms -0.1 0.08 -0.7 1

885 ms - 1200 ms -1.7 0.08] -20.3] <.0001

885 ms - 1485 ms -0.8 0.08 -9.41 <.0001

990 ms - 1200 ms -1.6 0.08] -19.5] <.0001 -1.11 0.1 -9.6] <.0001

990 ms - 1485 ms -0.7 0.08 -8.7] <.0001 -0.9] 0.1 -7.91 <.0001

1200 ms - 1485 ms 0.9 0.08 10.9] <.0001 0.2] 0.1 1.8 0.46
Pattern-based [ 600 ms - 780 ms -2.3 0.09] -27.0] <.0001

600 ms - 885 ms -2.2 0.08] -26.4] <.0001

600 ms - 990 ms -2.1 0.08] -24.8] <.0001

600 ms - 1200 ms -1.7 0.08] -20.2] <.0001

600 ms - 1485 ms -1.7 0.09] -20.3] <.0001

780 ms - 885 ms 0.1 0.08 1.0 1

780 ms - 990 ms 0.2 0.08 3.0] 0.080

780 ms - 1200 ms 0.6 0.08 7.6 ] <.0001

780 ms - 1485 ms 0.6 0.08 6.9 ] <.0001

885 ms - 990 ms 0.2 0.08 2.0 1

885 ms - 1200 ms 0.5 0.08 6.7 ] <.0001

885 ms - 1485 ms 0.5 0.08 6.0 ] <.0001

990 ms - 1200 ms 0.4 0.08 4.7] <.0001 -0.3] 0.1 -2.9] 0.022

990 ms - 1485 ms 0.3 0.08 4.1] 0.001 -0.9] 0.1 -8.3] <.0001

1200 ms - 1485 ms 0.0 0.08 -0.5 1.00 -0.61 0.1 -5.4] <.0001
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Supplementary Methods: MSE computation

To compute entropy, epochs were concatenated. Sample entropy was then calculated by

taking the following steps:

1. In each time series, a template is selected, consisting of m samples. The calculation
of entropy is an iterative process, using each sample in the time series as a starting
point for the template once.

2. Throughout the time series, the algorithm searches for patterns that match the
template pattern. A section of samples is considered a match if it resembles the
template pattern enough to fall within a set boundary, which is defined as » x SD
(the similarity bound).

3. The number of pattern matches is counted.

4. Subsequently, the same procedure is followed for patterns of m + 1 samples long.

5. For the total counts of pattern matches throughout the time series, sample entropy is
then calculated as the logarithm of the ratio between pattern matches of length m
and pattern matches of length m + 1.

Thus, sample entropy reflects the proportion of patterns in the time series that stays similar
when an extra sample is added to the pattern. Here, we used m = 2 and » = 0.5, as was done
previously for EEG data (Kloosterman, Kosciessa, Lindenberger, Fahrenfort, & Garrett, 2020).

Sample entropy is then repeated for multiple timescales, to account for contributions of
both low and high frequency neural activity. The time series is coarsened step by step, by taking
the average of a group of adjacent samples with step-wise increasing group size. This means
that long, or coarse, timescales are equivalent to low frequency activity. For example, at a
sampling rate of 256 Hz, a timescale of 4 (e.g., averaged over four adjacent samples, or 15.6
ms) is roughly the equivalent of looking at activity at 64 Hz, while a timescale of 153 at that
sample rate corresponds to averaging over 598 ms, or the equivalent of activity at roughly 1.67
Hz. Here, we used twenty timescales ranging from 4 till 153, with 153 being the maximum

timescale given the length of an epoch of 1800 ms (e.g., one epoch equals 460 samples, but
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since entropy is calculated on patterns of 2 and 3 samples, the maximum coarsening to retain
the possibility of having a 3-sample pattern is by averaging over 153 samples). Similarity
bounds were recomputed for each time scale (Kloosterman et al., 2020; Kosciessa,
Kloosterman, & Garrett, 2020). To control for the contribution of delta, we repeated the analysis
on high-pass filtered data (5 Hz).
Supplementary methods: Within condition decoding

The initial decoding analysis yielded large effects that may be task-related, and
individual differences in phase and metrical level attended to may have additionally hampered
finding condition differences at the group level. Therefore, we ran an additional decoding
analysis in which we decoded expected and unexpected positions against each other within each
condition. For this analysis, we only included frontocentral electrodes (C1, C2, C3, C4, Cz,
FCl1, FC2, FC3, FC4, FCz, F1, F2, F3, F4, Fz), which were the same electrodes that showed
the largest P1 responses to the initial sounds of the sequences, indicative of representing the
auditory cortex. Here, we defined time points in the silence as expected or unexpected based
on the rhythmic sequences. To equate the choice of expected and unexpected time points as
much as possible in terms of number of time points included and distance between time points,
we used times that were also used in the probe tone experiment: 600, 780, 885, and 1200 ms.
For beat-based sequences, time points 600 and 1200 were expected (on the beat), while time
points 780 and 885 were unexpected (oftbeat). The same time points take on a different
meaning if preceded by the pattern-based sequences. Then, 780 and 1200 ms are considered
expected (predictable based on the pattern), while both 600 and 885 ms are unexpected
(unpredictable based on the pattern). For all conditions, we examined whether we could classify
above chance whether a time window of 100 ms centered on the time point of interest was an
expected or unexpected moment in time. As for the first decoding analysis, the data were
resampled to improve signal to noise, here to 128 Hz to retain enough data points in the 100 ms
window for analysis. After the decoding, we extracted the average classification accuracy for
the 100 ms time window to test significance for each condition separately against chance level,

using t-tests against 0.5, and between conditions in the silence, using a repeated measures
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ANOVA, with condition as an independent factor, a random intercept for participant, and

decoding accuracy as the dependent variable.
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