

1 Holobiont Evolution: 2 Population Theory for the Hologenome

3
4 **Joan Roughgarden¹**

5 September 29, 2022

6 **Abstract**

7 This article develops mathematical theory for the population dynamics of microbiomes
8 with their hosts and for holobiont evolution caused by holobiont selection. The objective is to
9 account for the formation of microbiome-host integration.

10 Microbial population-dynamic parameters must mesh with the host's for coexistence.

11 A horizontally transmitted microbiome is a genetic system with "collective inheritance".
12 The microbial source pool in the environment corresponds to the gamete pool for nuclear
13 genes. Poisson sampling of the microbial source pool corresponds to binomial sampling of the
14 gamete pool. However, holobiont selection on the microbiome does not lead to a counterpart
15 of the Hardy-Weinberg Law nor to directional selection that always fixes microbial genes
16 conferring the highest holobiont fitness.

17 A microbe might strike an optimal fitness balance between lowering its within-host fit-
18 ness while increasing holobiont fitness. Such microbes are replaced by otherwise identical
19 microbes that contribute nothing to holobiont fitness. This replacement can be reversed by
20 hosts that initiate immune responses to non-helpful microbes. This discrimination leads to
21 microbial species sorting. Host-orchestrated species sorting (HOSS) followed by microbial
22 competition, rather than co-evolution or multi-level selection, is predicted to be the cause of
23 microbiome-host integration.

24 **1 Introduction**

25 The combination of a host with its microbiome has been termed a "holobiont" (Margulies 1991).
26 A "microbiome" is an "ecological community of commensal, symbiotic, and pathogenic microor-
27 ganisms" that shares the "body space" of a host (Lederberg and McCray 2001). The union of the
28 host nuclear genes with the genes from all the microbes in its microbiome is a "hologenome"
29 (Zilber-Rosenberg and Rosenberg 2008). The configuration of the hologenome in a particular
30 holobiont is a "hologenotype" (Roughgarden 2020). "Holobiont selection" is natural selection on
31 holobionts wherein a holobiont's survival and/or fecundity depends on the phenotype brought
32 about by its hologenotype.

33 Studies reveal integration between microbiomes and their hosts extending to development,
34 metabolism, physiology and behavior (Gilbert *et al.* 2012, McFall-Ngai *et al.* 2013, Bordenstein

¹Hawaii Institute of Marine Biology, University of Hawaii and Department of Biology, Stanford University

35 and Theis 2015, Theis *et al.* 2016). New peer-reviewed papers documenting microbiome-host
36 integration appear every day for groups ranging from sponges, corals, various other marine
37 invertebrates, as well as terrestrial invertebrates and vertebrates (Google watch set for “holo-
38 biont”). Moreover, experimental studies of joint microbiome-host dynamics and evolution are
39 increasingly appearing (eg. Burns *et al.* 2017, Wang *et al.* 2020, 2021).

40 The purpose of this paper is two-fold. The first is to understand the dynamics of coupled
41 microbe and host populations. What conditions permit the coexistence of microbes within their
42 hosts? The second is to determine whether a microbiome can form an extended genetic system
43 that contributes to holobiont evolution. And in particular, a major task is to account for the
44 formation of microbiome-host integration.

45 2 Preliminary Concepts

46 A holobiont contains two genetic systems that together comprise the hologenome—the micro-
47 bial genes and the nuclear genes. Most of this paper focuses on the microbial genes because
48 this component of holobiont inheritance is conceptually understudied relative to nuclear inheri-
49 tance. The nuclear component is also considered toward the end of the paper in the section on
50 microbiome-host integration.

51 2.1 Mode of Transmission

52 The inheritance of the microbiome is tied to the mode of microbial transmission—horizontal
53 or vertical. Vertical transmission of microbes invites analogy with the transmission of nuclear
54 genes. It is facilitated by mechanisms such as the acquisition of a maternal microbiome by
55 embryos as they pass through the birth canal and the acquisition of a parental microbiome by
56 chicks incubating in a nest. A many such mechanisms have been described during the last two
57 decades (Rosenberg and Zilber-Rosenberg 2018.)

58 In many groups the phylogeny of the hosts parallels the composition of their microbiomes, a
59 phenomenon called “phylosymbiosis”—this is taken as evidence of host specificity (e.g. Moeller
60 *et al.* 2016, Mallott and Amato 2021). However, as Lim and Bordenstein (2020) note, “Phylosym-
61 biosis does not necessarily imply vertical transmission.”

62 Especially in marine environments, horizontal transmission appears to be the generic mode
63 of microbe transmission, with vertical transmission being a special case. For example, in a few
64 species of corals the zooxanthellae are transmitted vertically in the coral’s gametes (Hirose and
65 Hidaka 2006) and in a few brooding species, planulae larvae are directly released from the coral
66 polyps, possibly also allowing for vertical transmission of zooxanthellae and other microbes
67 acquired during the brooding (Atoda 1947, Harrison and Wallace 1990, Prasetia *et al.* 2017). But

68 the vast majority of zooxanthellae are acquired from the open sea water surrounding the coral
69 (Babcock *et al.* 1986, Trench 1993).

70 Even terrestrial groups may offer less vertical transmission than might be expected. In a live-
71 bearing cockroach, researchers found only one component of the microbiome to be transmitted
72 vertically, the rest horizontally (Jennings 2019). Another study with cockroaches found that the
73 microbiome in early development was acquired vertically from the parent on egg casings but the
74 microbiome thereafter acquired its microbes horizontally (Renelies-Hamilton *et al.* 2021). Experi-
75 ments with new-born, microbiota-free honeybees showed that horizontal transmission from hive
76 materials and social contact with nest-mates established a typical gut composition (Powell *et al.*
77 2014) whereas vertical transmission from queen to workers takes place in bumblebees (Su *et al.*
78 2021). Thus in terrestrial environments, although vertical transmission occurs to some extent in
79 some groups, horizontal transmission is widespread too.

80 At this time, many models have been developed using an assumption of vertical transmission
81 or combined vertical/horizontal transmission (Lipsitch *et al.* 1996, Fitzpatrick 2014, Shapiro and
82 Turner 2014, Foster *et al.* 2017, Hurst 2017, Roughgarden 2017, Zeng *et al.* 2017, Osmanovic *et*
83 *al.* 2018, Roughgarden *et al.* 2018, van Vilet and Doebeli 2019, Roughgarden 2020, Bruijning *et*
84 *al.* 2021, Obeng *et al.* 2021, Xiong *et. al.* 2022.) Generally speaking, the models tend to argue
85 that vertical transmission promotes, and horizontal transmission degrades, the effectiveness of
86 holobiont selection. Still, Roughgarden (2020) showed that holobiont selection can be effective
87 even with solely horizontal transmission. So, this paper differs from the preceding models in
88 emphasizing horizontal transmission. Vertical transmission can be added in future research as
89 situations require.

90 2.2 Collective Inheritance

91 Horizontal transmission brings about a kind of inheritance of its own, “collective inheritance,” as
92 distinct from the “lineal inheritance” of a vertically transmitted microbiome, as detailed in the left
93 panel of Figure 1. Collective inheritance is perfectly Darwinian because it supports evolutionary
94 descent through modification, just as lineal inheritance does. However, collective inheritance is
95 not consistent with Neo-Darwinism which relies on Mendelian inheritance (Wright 1931).

96 Some skepticism concerning the possibility of evolution *via* holobiont selection with horizon-
97 tally transmitted microbiomes flows from a mistaken assumption that the mode of inheritance
98 must be lineal for evolution by natural selection to proceed. Lewontin (1970) famously wrote
99 that evolution by natural selection requires three conditions: (1) phenotypic variation, (2) differ-
100 ential fitness, and (3) heritable fitness. The third requirement is stated too narrowly. The third
101 requirement should state that the offspring fitness must correlate with the fitness of the *selected*
102 parents. That is, the offspring must resemble the selected parents including, but not limited to,

103 their immediate parents. Further criticism of the Lewontin criteria appears in Papale (2020).

104 Other skepticism about holobiont selection pertains to whether a microbiome is intact—
105 instead, it may change during the host’s life time through diet and contact with the environment
106 (c.f. Knowlton and Rohwer 2003, Moran and Sloan 2015). This paper refers to “core” components
107 of the microbiome that are relatively permanent (eg. Jorge *et al.* 2020, Unzueta-Martínez, *et al.*
108 2022). The transient component of the microbiome might be addressed in future research with a
109 modeling approach drawn from island biogeography (MacArthur and Wilson 1963).

110 2.3 Multilevel Selection

111 Holobiont selection bears some similarity to concepts of multilevel selection. However, it does
112 not accord with a well-known distinction between multilevel selection 1 (MLS1) and multilevel
113 selection 2 (MLS2) as detailed in the right panel of Figure 1. (Mayo and Gilinsky 1987, Damuth
114 and Heisler 1988, Okasha 2006).

115 Coevolution, as with flowers and their pollinators, differs from holobiont selection. In co-
116 evolution the fitnesses in species depend on the gene frequencies and population sizes of other
117 species at the same organizational level. (Roughgarden 1983, Dieckmann and Law 1996; Car-
118 mona *et. al.* 2015). The coupled equations for coevolution differ from coupled equations for a
119 host with its microbes because host and microbes occupy different organizational levels.

120 This research contribution is organized as a single narrative together with mathematical sup-
121 plementary material. The supplementary material is self-contained and can be read by itself,
122 except for reference to some figures found only in the narrative. The narrative—which is this
123 article, offers a verbal account of what is shown in the supplementary material.

124 3 Host with One Microbial Strain

125 This section investigates the population dynamics of a host with a single-species microbiome. It
126 discusses conditions for the coexistence of the host with its microbes. This population-dynamic
127 analysis is first step prior to analyzing the evolution that results when the microbiome consists
128 of two (or more) microbial strains.

129 3.1 Model

130 The model assumes that larval hosts are colonized at random by microbes according to a Poisson
131 distribution (Ellis and M. Delbrück 1939). The colonization takes place from environmental
132 source pools (Yamashita *et al.* 2014, Nitschke 2015, Amend *et al.* 2022). The assumption of Poisson

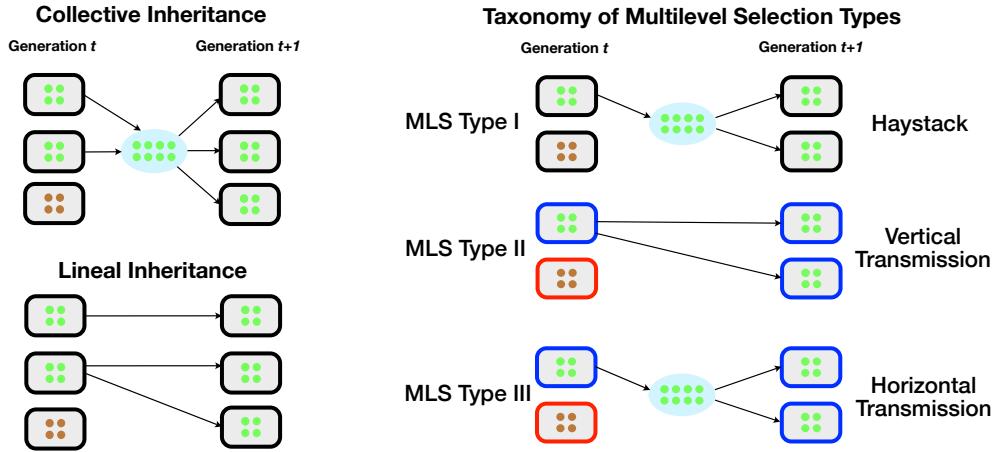


Figure 1: The left panel, top, illustrates collective inheritance as occurs with horizontal microbe transmission and left panel, bottom, illustrates lineal inheritance as occurs with vertical microbe transmission. In both cases the green microbes are selected and the brown ones are not. With collective inheritance the selected parents contribute their microbes to a collective from which the microbes are distributed into the larval hosts. With lineal inheritance the selected parents contribute microbes directly to their own offspring larvae. Either way, the next generation consists of larval hosts whose microbiomes reflect the selection process from the preceding generation. The right panel presents a taxonomy of multilevel selection types. In multilevel selection 1 (MLS1), the environment provides locations indicated as black rectangles with rounded corners. In these locations the organisms undergo natural selection favoring selfish genes, in brown. After selection, offspring are released into a common pool that are redistributed to the locations for the next generation. Locations with many altruistic genes, in green, deliver more offspring into the common pool than locations dominated by selfish genes. If the between-location productivity advantage of altruistic genes exceeds their within-location disadvantage to selfish genes, then altruistic genes evolve overall. Thus, the organisms evolve but the locations themselves do not because they are physical features of the environment. (Maynard Smith in 1964 referred to such locations as haystacks.) In multilevel selection 2 (MLS2), small organisms (microbes) are contained in larger organisms (hosts). While in the host, the microbes undergo natural selection favoring brown selfish microbes. However, hosts containing green altruistic microbes, shown as blue rectangles with rounded corners, survive and reproduce with their microbes better than hosts with brown selfish genes, shown as orange rectangles with rounded corners. The pair is inherited as a unit from one generation to the next. Multilevel selection 3 (MLS3) is defined here as a combination of MLS1 and MLS2. MLS3 shares with MLS1 that microbes are released into a common pool from which they are redistributed into hosts for the next generation. MLS3 shares with MLS2 that hosts themselves evolve along with the microbes. Holobiont selection with vertical transmission is somewhat similar to MLS2 and with horizontal transmission to MLS3. However, holobiont selection differs from MLS by including density dependence within the hosts.

133 colonization implies that some larval hosts remain uncolonized by any microbes while others
134 are colonized by one or more microbes. This assumption was previously used in Roughgarden
135 (2020). Any microbes left over in the microbial pool die. (Nitschke 2015 reports that unincorpo-
136 rated *Symbiodinium* live up to seven days.) Also, colonization takes place when hosts are born not
137 during their later life, consistent with the model's focus on core rather than transient components
138 of the microbiome.

139 The generation time for the microbes is assumed to be short relative to the generation time
140 of the host. As a result, the microbes come to population-dynamic equilibrium within the host
141 during each host generation. This assumption in turn implies that the initial condition for larval
142 hosts colonized by one or more microbes is erased. That is, the number of microbes in a mature
143 host is either 0, for larval hosts not colonized by any microbes, or k for all larval hosts colonized
144 by one or more microbes because the microbes in all the colonized hosts come to the same
145 within-host equilibrium abundance, k . The assumption of short microbial to host generation
146 times allows results to be derived mathematically, unlike Roughgarden (2020) that lacked this
147 assumption and relied on computer iteration instead.

148 The Poisson distribution has one parameter, sometimes called the "Poisson density", often
149 denoted as μ . If μ is low, then many larval hosts are left uncolonized whereas if μ is large almost
150 all larvae are colonized. The μ depends on the ratio of microbes in the microbial source pool to
151 the number of larval hosts in the host source pool. If there are few microbes per larval host, then
152 μ is low and few hosts are colonized, and conversely if there are many microbes per host, then
153 many hosts are colonized. The μ changes through time as the ratio of microbes to larval hosts
154 change. According to the Poisson distribution, the probability that a host is colonized by one or
155 more hosts is $P(t) = 1 - e^{-\mu(t)}$ and not colonized by any microbes is $1 - P(t) = e^{-\mu(t)}$.

156 Let $H(t)$ be the number of larvae in the host source pool and $G(t)$ the number of microbes in
157 the microbial source pool at time t . (The notation is H for "host" and G for "guest".) The Poisson
158 density parameter, $\mu(t)$, is then assumed to equal $d \times g(t)$, where $g(t)$ is the ratio of microbes to
159 hosts in their source pools, $G(t)/H(t)$, and d is an important parameter, usually small, between
160 0 and 1. The earlier model did not use the parameter d , which in effect was assumed to equal 1.
161 Here, the d assumes considerable importance.

162 A low d indicates a dilute microbial source pool relative to the host source pool, and a rel-
163 atively high d indicates a dense microbial source pool relative to the host source pool. The d
164 might arise from physical mixing processes in the water column that contains the microbial and
165 host source pools. For example, a low d might arise if the host source pool is concentrated near
166 one spot on the benthos while the microbial source pool is broadly distributed in the water col-
167 umn. The d might also be interpreted as a coefficient of transmission such as found in models of
168 disease dynamics in epidemiology. For example, a low d might describe a microbe transmitted

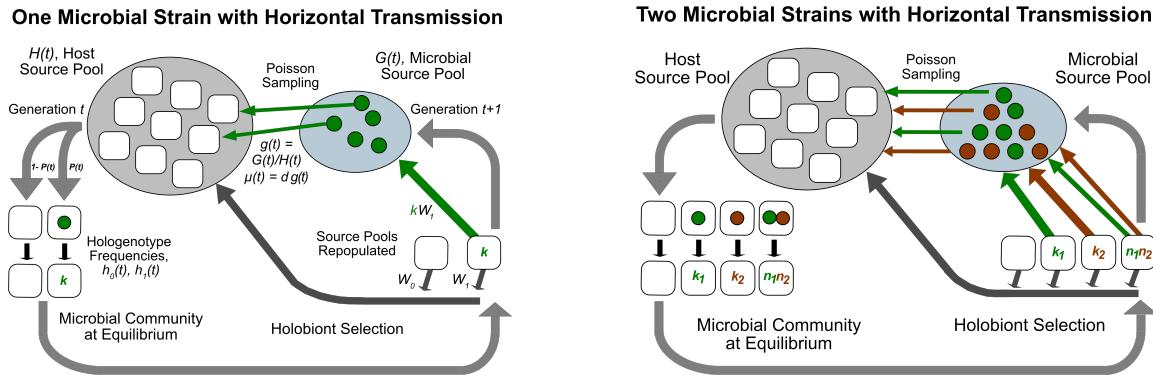


Figure 2: Left: Holobiont life cycle for one microbial strain. Large gray arrows surrounding the diagram indicate progress through a generation starting at t and leading to $t+1$. The rectangles with rounded corners in black indicate hosts and the green circles indicate microbes. Right: Holobiont life cycle where microbiome consists of one or two microbial strains (green or brown circle).

169 only through physical contact and a high d might describe a microbe transmitted through water
 170 droplets in the air. Furthermore, the d might be interpreted as a recruitment coefficient such as
 171 found in marine-biology models whereby a high d indicates a high recruitment rate by microbes
 172 to empty hosts. The d may also be a host trait indicating the degree to which the host accepts or
 173 rejects the microbes, perhaps mediated through the host's immune system. Accordingly, a low d
 174 indicates a microbe strain rejected by the host and a high d a microbial strain whose colonization
 175 is allowed or even promoted by the host. Depending on context, d may be called the dilution
 176 factor, the transmission parameter, or the colonization parameter.

177 The life cycle of a holobiont with a microbiome consisting of one horizontally transmitted
 178 microbial strain is diagrammed in the left panel of Figure 2. The life cycle begins with $H(t)$ and
 179 $G(t)$ for the host and microbial source pools. Then the larval hosts are colonized by microbes
 180 according to a Poisson distribution that establishes the hologenotypes and their frequencies.
 181 After colonization, microbes proliferate within the juvenile hosts and come to an equilibrium
 182 abundance. At this point the hologenotypes are $\{0\}$ and $\{k\}$ indicating holobionts containing 0
 183 and k microbes in them respectively. The frequencies of these hologenotypes are $h_0(t)$ and $h_1(t)$.
 184 Next, the holobiont fitnesses depends on the hologenotype. Let W_0 be the holobiont fitness with
 185 an empty microbiome and W_1 be the holobiont fitness with a strain-1 microbial abundance of
 186 k . The W is interchangeably referred to as the holobiont fitness or as the host fitness depending
 187 on context. Finally, each holobiont contributes larval hosts to the host source pool based on
 188 W_0 or W_1 depending on whether the holobiont has microbes or not. That is, each holobiont
 189 without any microbes contributes W_0 larvae to the new host source pool and each holobiont

190 with k microbes contributes W_1 larvae to the new host source pool. Turning to the microbes,
191 in population genetics an organism's overall fitness is typically assembled from its components,
192 say for two loci or two alleles at one locus, based on either an additive or multiplicative formula
193 (eg. Ridley 2004). Here, the microbe's multilevel fitness is assumed to be multiplicative based on
194 contributions from both the within-host fitness and between-host fitness according to $w = k \times W_1$.
195 (Upper case pertains to hosts and lower case to microbes.) Hence, the holobionts with microbes
196 in them contribute $k \times W_1$ microbes to the microbial source pool. The next go-around of the life
197 cycle begins with the repopulated larval host and microbial source pools.

198 The hosts contribute W_0 or W_1 larval hosts to the host source pool depending on their
199 hologenotype. These fitnesses are "single-level" because they depend only on microbe *number*
200 and not microbe *fitness*—the hosts are assumed to be indifferent to the welfare of the microbes in
201 them and sense only their number. Hence, microbe abundance is a trait from the standpoint of
202 the host. But microbe abundance is not a host trait in the usual sense because the host does not
203 contain a gene for the microbe abundance, *per se*, as it does for other traits such as size, color etc.
204 Instead, the microbe abundance is controlled by the *microbe's* own population dynamics. Still, se-
205 lection on the host indirectly controls the microbial abundance because of "population-dynamic
206 feedback." If the microbe is beneficial, then the selection favoring hosts whose microbe strains
207 have a large k increases the number of high- k microbes in the microbial pool that in turn leads
208 to a higher number of microbes colonizing the larval hosts in the next generation. Conversely, if
209 the microbe is deleterious, then the selection favoring hosts whose microbe strains have a low k
210 increases the number of low- k microbes in the microbial pool that in turn leads to a lower number
211 of microbes colonizing the larval hosts in the next generation. Because of population-dynamic
212 feedback, microbe abundance effectively becomes a host trait.

213 In contrast, the microbe fitness is "multilevel" because a microbe's overall success at supply-
214 ing the microbial pool for the next generation depends somehow on *both* its own fitness and the
215 fitness of the host it resides in. In ecological terminology, the microbes undergo "K-selection"
216 within their hosts and "r-selection" between hosts, *cf.* MacArthur 1962, Roughgarden 1971).

217 A physiological interpretation for the product, $k \times W$, supposes that a component of W refers
218 to host survival. Consider a solitary coral. Compare one polyp whose zooxanthellae strain has
219 a $k_1 = 50$ and another polyp whose strain has a $k_2 = 100$. Now, the 100 algal cells of strain-2
220 supply their coral host with twice as much photosynthate as the 50 cells of strain-1. With the
221 extra photosynthate, twice as many hosts with strain-2 survive desiccation from global warming
222 ($W_2 = 2$) than hosts with strain-1 ($W_1 = 1$). Hence, surviving strain-2 hosts release 100×2
223 microbes to the pool. But surviving strain-1 hosts release only 50×1 microbes because strain-1
224 has a lower k and because the death of many strain-1 hosts denies their microbes the chance to
225 reproduce.

226 In future work the multilevel microbe fitness might be taken as a general function, $w =$
227 $f(k, W_1)$, where f is an increasing function of both its arguments. In particular, a reviewer has
228 suggested that the multilevel microbe fitness might be taken as $w = b \times k \times W_1$ where b is the
229 number of daughter microbes contributed by each microbe to the microbe source pool. Here, b
230 is taken as 1. The reviewer has suggested that the b divides out in subsequent analysis, leaving
231 the analysis unaffected. This possibility merits further investigation.

232 Overall, the model contains only four parameters: k , which is the equilibrium number of
233 microbes in the microbe-containing hosts; d , which is the colonization parameter; W_0 , which
234 is the fitness of holobionts without microbes; and W_1 , which is the fitness of holobionts with
235 k microbes in each. The model is defined mathematically in Eqs. 4–5 in the Supplementary
236 Material.

237 3.2 Analysis

238 **Host with Beneficial Microbes.** Figure S2 details conditions for three scenarios for the popula-
239 tion dynamics of a beneficial microbe with a host. Scenario-1 is where the microbe's k is above
240 a certain threshold shown in the figure. In this scenario the microbes coexist with the host and
241 both microbes and host populations increase geometrically according to Figure S1. In scenario-1,
242 the microbe can increase when rare and also can coexist with the host.

243 Scenario-2 is where the microbe's k is between the threshold for scenario-1 and a certain
244 lower threshold, also shown in Figure S2. In scenario-2 the microbe can increase when rare but
245 cannot coexist with the host. In this puzzling situation, the microbes increase when introduced
246 to the host population but do not increase fast enough to keep up with the host's increase.
247 Hence the *frequency* of hosts containing microbes declines to zero even though both microbe
248 and host populations are increasing in absolute terms. Scenario-2 is illustrated in Figure S3.
249 This scenario is termed "microbial shedding" because the host population effectively sheds its
250 microbes without altogether eliminating them.

251 In scenario-3, the microbe's k is below the threshold for scenario-2 in Figure S2. In scenario-3
252 the microbes can neither increase when rare nor coexist with the host and so are completely
253 eliminated, as shown in Figure S4.

254 The prospect of host productivity exceeding microbe productivity leading to microbe shed-
255 ding may seem empirically unlikely. Nonetheless, this mathematical possibility resurfaces in the
256 quantitative analysis of further cases. The qualitative insight behind scenario-2 is brought out
257 with an analogy. Image two airplanes, one of which is fueling the other behind it. The airplanes
258 have to match speeds to support a hose connecting them to deliver the fuel. If one plane cannot
259 slowdown enough or the other cannot speed up enough to match speeds, no connection can
260 occur. Indeed, if both planes can fly forward, but the front plane flies faster than the rear plane,

261 then the distance between them gradually increases. Similarly, if one species is to live within
262 another, as microbes do with their hosts, then their speeds of population growth must match.

263 Microbial shedding occurs here with geometrically growing populations. One might conjecture
264 that microbial shedding relies on the absence of density dependence in the host. However,
265 if host population were density regulated, then some counterpart of the conditions for synchro-
266 nization of microbe-host population-dynamics would still emerge. If the environmental carrying
267 capacity for the host were K , and for the within-host microbes were k , some condition involving
268 both K and k would still be needed for coexistence. In the limit that K is large, the situation might
269 converge to that in this paper where $K \rightarrow \infty$. Furthermore, density dependence cannot be taken
270 as a default assumption as decades of challenges to density-dependent population regulation
271 have documented (Andrewartha and Birch 1954, Sale 1977, Strong 1986, Hanski 1990).

272 **Host with Deleterious Microbes.** If the microbes are deleterious, then a fourth scenario is pos-
273 sible as detailed in Figure S5. Suppose that deleterious microbes are introduced to a holobiont
274 population. Initially, the holobiont population can grow because most holobionts lack any dele-
275 terious microbes. But as the microbe population increases, the average growth rate of the holobiont
276 population declines as more holobionts harbor the deleterious microbes. If the microbes increase
277 to the point where the average holobiont fitness drops below 1, then the holobiont population
278 declines. This scenario is one where the microbe and host coexist in the sense that the condition
279 for a microbe-host equilibrium ratio to exist is satisfied, but the equilibrium deleterious microbe
280 to host ratio is large enough to drive the average holobiont fitness below 1. In this situation,
281 the microbe enters the host population, then both microbe and host coexist in a stable ratio, and
282 finally both decline together to extinction. This scenario is illustrated in Figure S6.

283 No scenarios have been found that involve microbe-host oscillation.

284 4 Host with Two Microbial Strains

285 This section extends the model of a host with one microbial strain to include two strains. The
286 presence of two strains provides hologenotypic variation among the holobionts upon which holobiont
287 selection can operate.

288 4.1 Model

289 To set the stage, recall the setup for one locus with two alleles in population genetics. The alleles
290 are A_1 and A_2 with frequencies in the gamete pool of p_1 and $(1 - p_1)$, respectively. The three
291 zygotic genotypes, A_1A_1 , A_1A_2 and A_2A_2 , are formed from binomial sampling of the gamete
292 pool and occur in Hardy-Weinberg ratios of p_1^2 , $2p_1(1 - p_1)$ and $(1 - p_1)^2$. In keeping with

293 this paper's terminology, one might say instead that the A_1 and A_2 alleles "colonize" the empty
294 zygotes from the gametic source pool according to binomial sampling. The "copy number" of
295 the A_1 allele is 2 in a A_1A_1 homozygote and is 1 in a A_1A_2 heterozygote, and similarly for the
296 copy number of A_2 in its homozygote and the heterozygote.

297 Here, the microbes of each strain supply genes for the hologenome. The abundance of a
298 microbial strain is the copy number of the gene in that strain. The four hologenotypes are
299 $\{0,0\}$, $\{k_1,0\}$, $\{0,k_2\}$, and $\{n_1,n_2\}$ where k_1 and k_2 are the within-host equilibrium abundances
300 of single-strain microbiomes consisting of strain-1 and of strain-2 respectively, and n_1 and n_2 are
301 the within-host equilibrium abundances in a two-strain microbiome obtained from a within-host
302 population-dynamic model.

303 The ratio of these four hologenotypes after colonization results from independent Poisson
304 sampling of each microbial strain from the microbial source pool. Let the Poisson probability of a
305 host being colonized by one or more microbes of strain-1 as P_1 and for strain-2 as P_2 . Accordingly,
306 the probability of empty hosts not being colonized by any microbes of strain-1 is $(1 - P_1)$ and of
307 not being colonized by any microbes of strain-2 is $(1 - P_2)$. Then the Poisson ratios for the four
308 hologenotypes, $\{0,0\}$, $\{k_1,0\}$, $\{0,k_2\}$, and $\{n_1,n_2\}$, are $(1 - P_1)(1 - P_2)$, $P_1(1 - P_2)$, $(1 - P_1)P_2$
309 and P_1P_2 .

310 The life cycle of a holobiont with a microbiome consisting of two horizontally transmitted
311 microbial strains is diagrammed in the right panel of Figure 2. The life cycle begins with the
312 three state variables for the source pools, $H(t)$, $G_1(t)$ and $G_2(t)$ where $H(t)$ is number of empty
313 hosts in the host pool at time t , and $G_1(t)$ and $G_2(t)$ are the number of microbes of strain-1 and
314 strain-2 in the microbial pool at time t . The total number of microbes in the microbial source pool
315 at time t , $G(t)$, is $G_1(t) + G_2(t)$. The ratio of strain-1 microbes to hosts in their source pools, $g_1(t)$,
316 is $G_1(t)/H(t)$, and similarly $g_2(t)$ is $G_2(t)/H(t)$. The ratio of both microbe strains combined to
317 hosts in their source pools, $g(t)$, is $G(t)/H(t)$. The frequency of strain-1 in the microbial pool at
318 time t , $p_1(t)$ is $G_1(t)/G(t)$ and for strain-2, $p_2(t)$ is $G_2(t)/G(t)$. The Poisson density parameters
319 for strain-1 at time t , $\mu_1(t)$, is $d_1 \times g_1(t)$ and for strain-2, $\mu_2(t)$ is $d_2 \times g_2(t)$, where d_1 is the
320 dilution factor for strain-1 and d_2 is the dilution factor for strain-2.

321 The two strains independently colonize the empty hosts according to a Poisson distribution.
322 Once the juvenile hosts have been initially populated, the microbes proliferate within their hosts,
323 coming to an equilibrium microbiome community. The process of attaining the population-
324 dynamic equilibrium within the hosts erases the initial conditions with which the hosts were
325 colonized. Hence, the equilibrium abundances of single-strain microbiomes consisting of only
326 strain-1 or strain-2 are k_1 and k_2 , regardless of the number of colonizing microbes. Similarly,
327 the equilibrium abundances in a dual-strain microbiome consisting of strain-1 and strain-2 are
328 n_1 and n_2 regardless of the number of colonizing microbes. The n_1 and n_2 are the equilibrium

329 within-host microbe population sizes from the Lotka-Volterra (LV) competition equations or other
330 species-interaction model.

331 Next, the holobiont fitness depend on the hogenotype. Let the holobiont fitness of the
332 hogenotypes, $\{0, 0\}$, $\{k_1, 0\}$, $\{0, k_2\}$ and $\{n_1, n_2\}$ be W_0 , W_1 , W_2 and W_{12} , respectively. The
333 holobionts release their empty larval hosts into the host source pool based on these fitnesses.

334 Turning now to the microbes, the products of within-host microbe population sizes and the
335 holobiont fitnesses are combined into measures of multilevel microbe fitness per holobiont. These
336 measures represent simultaneous success in both within-holobiont K -selection and between-
337 holobiont r -selection. The multilevel microbe fitnesses per holobiont are: $w_{1,1}$ is $k_1 \times W_1$, $w_{1,12}$ is
338 $n_1 \times W_{12}$, $w_{2,12}$ is $n_2 \times W_{12}$ and $w_{2,2}$ is $k_2 \times W_2$. These coefficients refer to the multilevel success
339 of a specific microbial strain within a specific microbiome. Thus, $w_{1,1}$ is the multilevel fitness
340 per holobiont of a strain-1 microbe in a single-strain microbiome consisting only of strain-1, $w_{1,12}$
341 is the multilevel fitness per holobiont of a strain-1 microbe in a dual-strain microbiome, and so
342 forth. Each single-strain holobiont with k_1 microbes in it contributes $k_1 \times W_1$ microbes of strain-1
343 to the microbial source pool. Each dual-strain holobiont contributes $n_1 \times W_{12}$ microbes of strain-1
344 and $n_2 \times W_{12}$ microbes of strain-2 to the microbial source pool, and so forth. The next go-around
345 of the life cycle begins with the repopulated larval host and microbial source pools.

346 Overall, the model now contains ten parameters: k_1 and k_2 , which are the equilibrium number
347 of microbes in the single-strain hosts hosts; n_1 and n_2 which are the equilibrium number of
348 microbes of each strain in the two-strain hosts; d_1 and d_2 , which are the colonization parameters
349 for each strain; W_0 , which is the fitness of holobionts without microbes; W_1 , which is the fitness
350 of single-strain holobionts with k_1 strain-1 microbes in each; W_2 , which is the fitness of single-
351 strain holobionts with k_2 strain-2 microbes in each; and W_{12} , which is the fitness of dual-strain
352 holobionts with n_1 strain-1 microbes and n_2 strain-2 microbes in each. If the n_1 and n_2 are
353 obtained from the LV competition equations, the LV reciprocal competition coefficients, denoted
354 as a_{12} and a_{21} , together with k_1 and k_2 are sufficient to determine n_1 and n_2 . Mathematically, the
355 model is defined by Eqs. 18, 24, and 25 in the Supplementary Material.

356 4.2 Analysis

357 The model's predictions are best viewed in relation to specific situations. It is impractical to
358 give an exhaustive list of all possible outcomes as was done for the host-single strain model of
359 the previous section. The following subsections present some scenarios of holobiont selection on
360 microbial genes that can be contrasted with corresponding scenarios of ordinary natural selection
361 on nuclear genes.

362 **No Hardy-Weinberg Analogue.** A feature of classical population genetics is the possibility of
363 selective neutrality provided the mating system consists of random union of gametes (or random
364 mating). If the fitnesses for all the genotypes are equal, then any initial allele frequency persists
365 unchanged—the Hardy-Weinberg Law.

366 The colonization process producing a random assortment of microbe strains in the hosts ac-
367 cording to Poisson sampling is analogous to the mating system producing a random assortment
368 of alleles in the nucleus according to binomial sampling. However, the Poisson colonization pro-
369 cess is *not* neutral and it produces changes in the frequency of the microbial strains by itself even
370 if the microbial strains have the same fitnesses. There is no analogue of the Hardy-Weinberg Law
371 for the hologenome. Instead, the Poisson colonization process supplies a strong pull to the cen-
372 ter. The effect of any selection is combined with this central pull to yield a net result. Figure S10
373 illustrates what happens to two identical strains that start out with different frequencies. After
374 several generations, both strain frequencies converge to 1/2, as illustrated in Figure S10.

375 **Limited Response to Directional Selection.** In classical population genetics, directional selec-
376 tion results in fixation of the favored allele and elimination of the alternative allele. Now suppose
377 that the same two alleles from the nucleus are instead found in two strains of the microbiome—
378 microbes are the vehicles delivering genes to the host instead of gametes. If so, is the outcome of
379 directional selection on microbial genes similar to that of directional selection on nuclear genes?

380 Not necessarily. Directional holobiont selection in favor of say, strain-2, does *not* necessarily
381 result in the elimination of strain-1 and fixation of strain-2. Instead, polymorphism may result,
382 as illustrated in Figure S13. The polymorphism reveals the strong pull to the center caused by
383 the colonization dynamics. The holobiont selection in favor of strain-2 does pull the frequency of
384 strain-2 up above the center at 1/2 and pushes the frequency of strain-1 down below the center
385 of 1/2, but nonetheless, strain-1 is not eliminated nor is strain-2 fixed.

386 The power of the colonization process to override the holobiont selection is controlled by the
387 colonization parameter, d . If d is low enough, then the directional selection is able to drive the
388 frequency of the inferior strain-1 down to 0 and the frequency of strain-2 up to 1, as illustrated
389 in Figure S14. Furthermore, Figure S15 illustrates the dependence of the equilibrium frequency
390 of strain-1 as a function of d , showing that the frequency of strain-1 is zero if d is low enough.

391 The colonization process matters because d controls whether the strains are able to express
392 their fitness differences. If d is high, then the strains often co-occur in the same host and thus
393 share the same holobiont fitness. Hence, neither can realize an advantage over the other. Con-
394 versely, if d is low, then the strains often occupy different hosts by themselves and the fitness
395 differences between the strains are expressed so that strain-2 can benefit from its advantage over
396 strain-1. High colonization rates homogenize the hologenotypes across the larval hosts. Con-

397 versely, a low colonization rates allow hogenotypic variation to form that is then acted upon
398 by holobiont selection leading to fixation of the selectively favored microbial gene.

399 This analysis demonstrates that hogenotype frequencies show a limited response to direc-
400 tional holobiont selection, and the extent to which they do respond is qualified by the coloniza-
401 tion parameter. This limited response implies that holobiont selection has a limited power to
402 produce holobiont adaptation.

403 The limited response to holobiont selection has precedence in the classical population genetics
404 of multiple locus genetic systems (Moran 1964, Karlin 1975). There, the evolutionary outcome
405 depends on combining the dynamics of selection with the dynamics of recombination. Here,
406 the evolutionary outcome depends on combining the dynamics of selection with the dynamics
407 of colonization. Evolutionary biology over the years has relied on the canonical one-locus-two-
408 allele setup as a metaphor in which selection completely determines the outcome. It is more
409 realistic, both in classical population genetics and here as well, to regard evolutionary outcomes
410 as resulting from mixing multiple processes, only one of which is natural selection.

411 The Supplementary Material further explores further situations where the two-strain holobiont
412 is superior or inferior to either of the single-strain holobionts—these correspond to the
413 other standard one-locus-two-allele cases in classical population genetics.

414 **Microbial Colonization-Extinction Coexistence.** In the previous scenario the microbes did not
415 directly interact with each other. They did affect the host fitness differently, but were otherwise
416 identical just as two alleles in a nucleus might affect host fitness differently but not directly
417 interact with each other. Consider now the converse situation. Suppose the two strains of mi-
418 crobes do interact with each other within the host but each strain has the same effect on the
419 host. From the host's point of view, the strains are identical, but from the microbes' point of
420 view, one strain is superior to the other—say, strain-1 out-competes strain-2 whenever the two
421 strains are within the same host. Can strain-2 persist in the holobiont population despite losing
422 in competition to strain-1 whenever both occur together? Yes, the two strains may coexist in a
423 colonization-extinction equilibrium within the holobiont population.

424 The reason that the strains can coexist despite the competitive asymmetry is that the coloniza-
425 tion process provides some empty hosts that end up being colonized only by strain-2, thereby
426 providing a refuge for the competitively inferior strain from the competitively superior strain.
427 However, the production of strain-2 microbes in these refuge hosts must be high enough to com-
428 pensate for their inability to produce anything in those hosts where strain-1 is also present. Fig-
429 ure S11 illustrates the elimination of strain-2 because its production in hosts where it is by itself
430 does not compensate for the loss of production in hosts where strain-1 is also present, whereas
431 Figure S12 illustrates the coexistence of both strains. This coexistence-scenario is an instance

432 of a meta-population model for patch dynamics featuring a colonization-extinction equilibrium
433 (Levins and Culver 1971, Amarasekare and Possingham 2001).

434 **Polymorphism between Altruistic and Selfish Microbes.** Can dynamics at the host and mi-
435 crobe levels interact? In the scenario involving directional selection, the fitness differences were
436 solely at the host level. In the scenario involving microbial colonization-extinction coexistence,
437 the fitness differences were solely at the microbe level. Here, the two levels interact.

438 Suppose again that strain-1 always excludes strain-2 in a host where both are present but now
439 also allow directional holobiont selection in favor of strain-2. That is, strain-2 (the altruistic mi-
440 crobe) sacrifices its competitive ability with respect to strain-1 (the selfish microbe), but receives
441 a higher fitness at the holobiont level. Can holobiont selection favoring strain-2 rescue it from
442 going extinct?

443 Yes, if the degree of altruism conferred to the host by strain-2 is high enough. Figure S22
444 illustrates holobiont selection rescuing an altruistic microbe that would otherwise be excluded
445 by the selfish microbe. The Supplementary Material provides the mathematical details.

446
447 This section has presented several scenarios for how the microbiome responds to inter-
448 microbial dynamics combined with selection on the host. The model, simple as it is, still in-
449 volves ten parameters and allows a great many situations to be modeled. Other scenarios can
450 be analyzed with this model without altering the model itself but simply by choosing different
451 parameter values. For example, in all the scenarios presented here the host fitness in the absence
452 of microbes, W_0 , has been assumed to equal 1. The possibility that the host requires the microbes
453 to survive might be modeled by assuming $W_0 < 1$. With this assumption, scenarios in which
454 host and microbe coexist depending on sufficient microbe colonization ability can be explored.
455 Undoubtedly empirical situations arise to motivate still other scenarios.

456 What is remarkable about the hologenome is the difference for the host between the popula-
457 tion genetics of its nuclear genes *vs.* its microbial genes. Although nuclear genes can indirectly
458 affect each other by differentially impacting the host phenotype they generally do not directly
459 impact each other even though mechanisms of intragenic conflict such as segregation distortion
460 and meiotic drive do exist (*e.g.* Sandler and Golic 1985, Taylor and Ingvarsson 2003, Lindholm
461 *et al.* 2016). In contrast, the host's microbial genes always directly impact each other and enjoy
462 their own community ecology spanning the host and their source pools in the environment. This,
463 together with the action of holobiont selection, leads overall to remarkably different evolution-
464 ary dynamics compared with the classical evolutionary dynamics of one-locus two-allele nuclear
465 genes.

Two Host Alleles with Vertical Transmission Two Microbial Strains with Horizontal Transmission

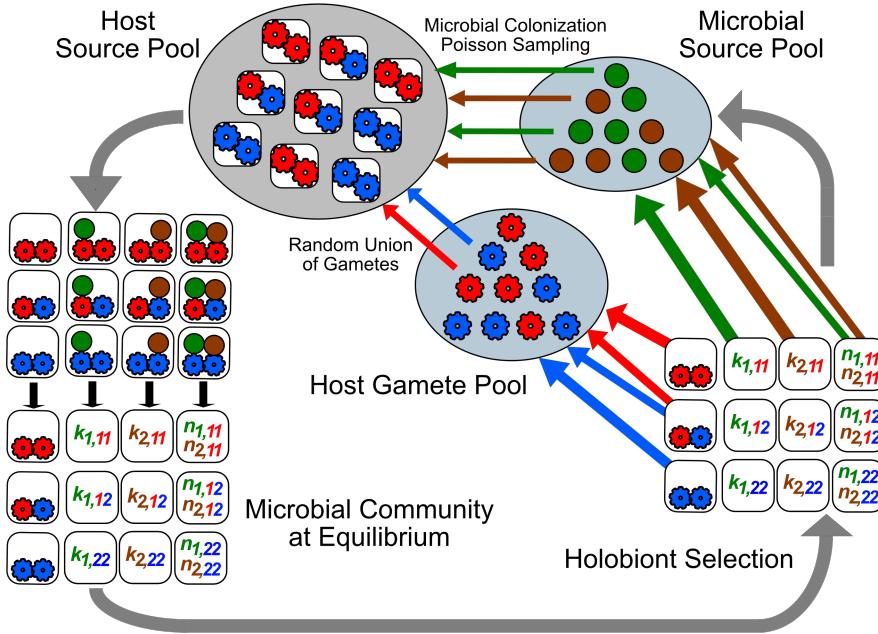


Figure 3: *Holobiont life cycle where microbiome consists of one or two microbial strains (green or brown circles) and the host nucleus contains two alleles (red or blue gears).*

466 5 Microbiome-Host Integration

467 A common conjecture in discussions of holobiont evolution is that selection on the holobiont as
 468 a unit produces a mutualistic interaction between microbiome and host that is adaptive for the
 469 holobiont. The remarkable integration between microbiomes and their hosts might be interpreted
 470 as a mutualistic coadaptation that results from holobiont selection. This section investigates how
 471 microbiome-host integration might form and whether the integration is correctly viewed as a
 472 mutualism and whether the integration results from holobiont selection.

473 5.1 Host with Two Nuclear Alleles and Two Microbial Strains

474 To investigate the formation of holobiont integration one might extend the preceding models
 475 to include two vertically transmitted nuclear alleles together with two horizontally transmitted
 476 microbial strains. Such a model would describe the coupled population dynamics and genetic
 477 changes of both host and microbes jointly.

478 Figure 3 presents the life cycle for this setup. At the start of each generation the genetically
 479 varied larval hosts acquire their microbiomes by independent Poisson sampling of the two strains

480 from the microbial source pool leading to twelve “hologenotypes”. The microbiomes come to a
481 community equilibrium within each host generation that depend on the genetic composition of
482 their hosts. Then holobiont selection occurs. The hosts contribute gametes to a gamete pool.
483 Then larval hosts are assembled with binomial sampling of these gametes (random union of
484 gametes). Meanwhile, the microbiomes contribute microbes to a microbial source pool that are
485 then available for Poisson sampling to begin the next generation.

486 The equations for this model are a straight-forward extension of the preceding models, but
487 twelve equations are needed for the twelve hologenotypes. The two-microbe model of the preced-
488 ing section required ten parameters for one genotype of host. With three host genotypes, thirty
489 parameters would be needed for the twelve hologenotypes. Although this setup would poten-
490 tially allow all conceivable scenarios of microbiome-host interaction to be studied, the model is
491 so large and complicated that the work required for its analysis is not obviously time well spent.

492 5.2 Phenotypic “Effort” Model for Microbiome-Host Integration

493 Instead, an alternative approach is offered that differs in how the model coefficients are inter-
494 preted. In the preceding sections, the microbial and host fitnesses and the colonization coeffi-
495 cients were taken as primitive and simply stipulated for each example. Here, these parameters
496 are interpreted in terms of underlying phenotypic models for the microbes and the host that
497 express what a host and/or a microbe does.

498 What a host does, or a microbe does, is its “effort”. For example, algae in the microbiome
499 might contribute sugars to the host. The amount of sugar the algae contributes is its “effort”,
500 denoted as x , which might be expressed in units of micrograms of sugar contributed per time.
501 This effort lowers the microbe’s within-host fitness, k , but increases the host’s fitness, W . Simi-
502 larly, the host might expend effort, z , to inhibit the colonization of microbes by manufacturing
503 antibodies, or might promote colonization by producing chemical attractants. The units for this
504 effort might be the amount of ATP needed per time to produce the antibodies or attractants. The
505 net production of this effort considers both the costs of manufacture and the benefits that the
506 antibodies or attractants confer.

507 Thus, the host fitness is a function of both the microbes’ effort and its own effort, $W(x, z)$;
508 the microbe’s within-host fitness is a function of its own effort, $k(x)$; and the microbe’s coloniza-
509 tion parameter is a function of the host’s effort, $d(z)$. The question to be answered is whether
510 holobiont selection adjusts the values of x and z to promote holobiont adaptation and maximize
511 holobiont fitness.

512 **Microbial Altruism vs. Selfishness.** One might suppose that multilevel selection would lead
513 to an optimal tradeoff by a microbe between its within-host carrying capacity and the between-

514 host fitness of the holobiont. Let the microbe's effort be called its "altruistic effort". What is the
515 optimal degree of altruism a microbe should supply the host?

516 To answer, an optimality criterion is needed. One possibility is the multilevel microbial fitness,
517 w . An example of the optimal altruistic effort, \hat{x} , that maximizes w appears in Figure S23.

518 Next, do microbes with the optimal effort exclude all other microbe strains with a non-optimal
519 effort? Suppose a mutant strain arises that is identical in all respects to the optimal strain except
520 for expending a different altruistic effort, $y \neq \hat{x}$. Can the optimal altruistic strain exclude all
521 non-optimal altruistic strains? If it can, then \hat{x} would represent a microbial counterpart to an
522 evolutionarily stable strategy (ESS), which for nuclear genes, is a strategy that cannot be invaded
523 by any other strategy (Maynard Smith 1974).

524 Indeed, consider the more general question of whether a selfish mutant can invade *any* estab-
525 lished altruistic strain, including an optimally altruistic strain. Let the established strain exhibit
526 some degree of altruism, not necessarily optimal, at $x > 0$. Can an otherwise identical but
527 completely selfish mutant with $y = 0$ invade any altruistic strain with $x > 0$?

528 The Supplementary Material shows that the completely selfish mutant with $y = 0$ *always*
529 increases when rare into a holobiont population fixed for a strain supplying *any* altruistic effort,
530 $x > 0$, including $x = \hat{x}$. The reason is that a completely selfish mutant has a higher k than that of
531 any altruism-providing strain because it does not incur any cost of altruism, assuming all else is
532 equal. Therefore, when the mutant and established strain both colonize a holobiont together, the
533 selfish strain always competitively excludes any established altruistic strain. Hence, the optimal
534 degree of altruism, \hat{x} , or indeed any altruism at all cannot be the counterpart of an evolutionarily
535 stable strategy because it can always be invaded by a more selfish strategy. Instead, only the
536 completely selfish microbe itself, $x = 0$, is an evolutionarily stable strategy. Figure S24 illustrates
537 a selfish microbe with $y = 0$ excluding an altruistic microbe with $x = \hat{x}$.

538 **Host Intervention.** To obtain an evolutionarily stable altruistic effort by the microbes to the
539 host, the host needs to discriminate against microbial selfishness through its production of anti-
540 bodies. The quantity of antibodies a host makes results from a balance between the *direct* fitness
541 benefit and cost of its antibody production. The optimal antibody production is a decreasing
542 function of the amount of resources being supplied by the microbes because the more resources
543 being supplied, the less deleterious (or even beneficial) the microbes are. An example of how
544 the optimal antibody production declines as function of the microbe's contribution to the host
545 appears in Figure S28.

Holobiont Assembly with Host-Orchestrated Species Sorting

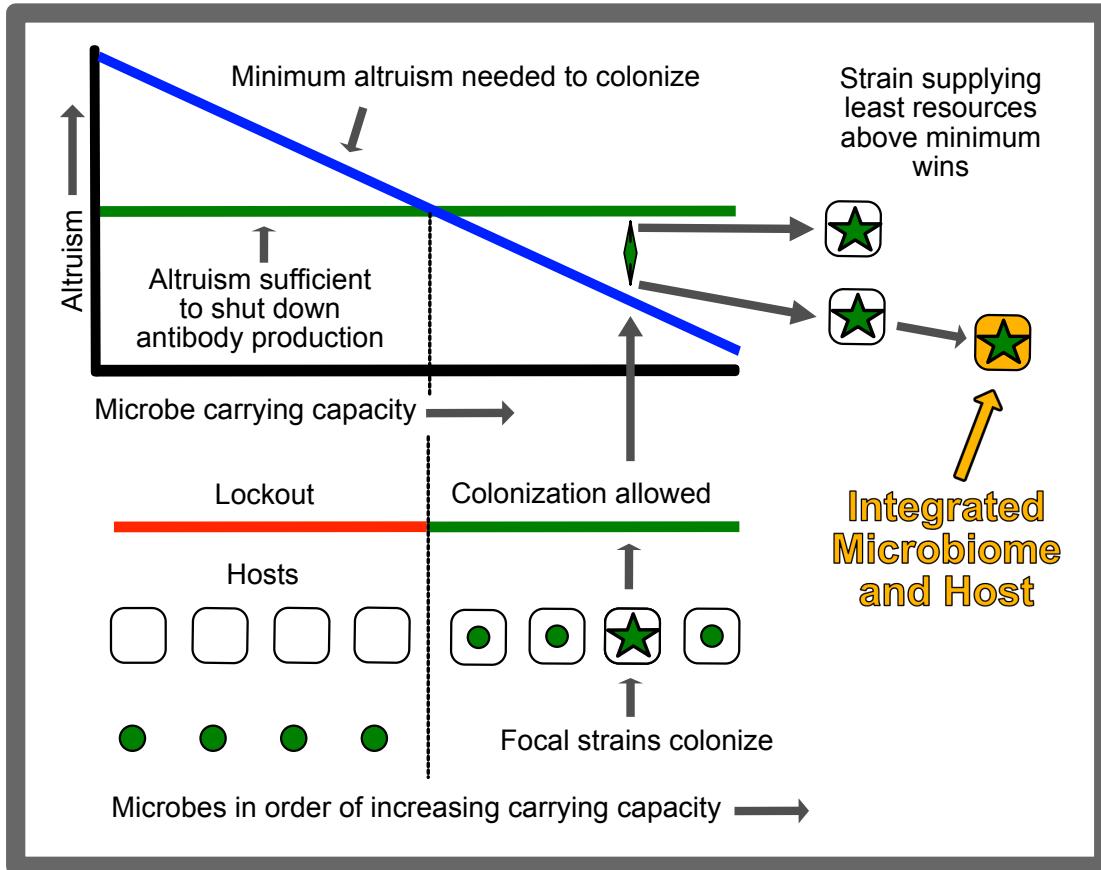


Figure 4: *Holobiont assembly with host-orchestrated species sorting (HOSS)*. At top left, descending blue line indicates minimum altruism microbe must supply to colonize as function of the microbe's carrying capacity. Horizontal green line indicates amount of altruism that shuts down host antibody production. Microbes required to supply more altruism than needed to shutdown antibody production are locked out. Demarcation between rejected and eligible microbes occurs at intersection of blue and green lines. Suite of microbes differing in carrying capacities depicted at bottom. Microbes with carrying capacities left of demarcation are locked out. Microbes right of demarcation can become incorporated into hosts. Thus, host's altruism requirement "sorts" available microbes into those that can and cannot colonize. A focal microbe is shown with a star (*). Some strains with this carrying capacity supply the minimum altruism needed to colonize—their altruism level is near the blue line. Other strains supply more than the minimum—their altruism is near the green line. Minimum altruism strain excludes all other strains. Host-orchestrated species sorting followed by competition among strains to supply least altruism consistent with colonization results in holobionts that integrate altruism-supplying microbes with hosts that produce a corresponding level of antibodies.

546 A “side effect” of the host’s antibody production is to lower the selfish microbe’s colonization
547 parameter. It is a side effect because the host determines its antibody production solely
548 from balancing the immediate fitness benefit and cost regardless of how the microbe population
549 dynamics are subsequently affected.

550 The Supplementary Material shows that there is a minimum amount of altruism, $x_{min}(k)$, the
551 microbe must supply for it to increase when rare into the holobiont population. This minimum
552 is a decreasing function of the microbial k as shown in Figure S30. The lower the microbe’s k ,
553 the fewer microbes it is capable of releasing into the microbial source pool. Then these fewer
554 microbes in turn need a higher colonization rate to sustain their population, and the only way to
555 obtain a higher colonization parameter is to increase the amount of altruistic effort it supplies to
556 the host.

557 However, from the host’s perspective, if the altruism supplied is greater than a certain maximum
558 level, \hat{x}_{max} , it will shutdown antibody production altogether because the benefit of making
559 antibodies is no longer worth the cost. So, the possibility arises that a microbe’s k may be low
560 enough that the altruistic effort it would need to increase when rare exceeds the level at which
561 the host has already shut down antibody production. Increasing altruistic effort beyond \hat{x}_{max}
562 does nothing to improve colonization.

563 If a microbe cannot make it into the holobiont population when the host is not making any
564 antibodies at all, then it is locked out of the holobiont population. Figure S30 shows \hat{x}_{max} as a
565 horizontal line. All microbes whose carrying capacity lie to the left of the intersection between
566 the curve and the line are locked out from the holobiont population.

567 If a microbe’s carrying capacity is to the right of the intersection between the curve
568 and line in Figure S30, then the microbe is not locked out. Accordingly, if a microbe’s k is large
569 enough that it can enter the holobiont population it must supply at least $x_{min}(k)$. However, the
570 microbe also should not bother to supply more than what is necessary to shutdown the host’s
571 antibody production, \hat{x}_{max} . So, a microbe whose within-host carrying capacity is k needs to
572 supply some level of altruistic effort between $x_{min}(k)$ and \hat{x}_{max} .

573 Well, which is it? Should the microbe supply the minimum altruism needed to enter the
574 holobiont population, $x_{min}(k)$, or enough altruism to shut down the host antibody production,
575 \hat{x}_{max} ? The Supplementary Material shows that the holobionts wind up consisting of microbes that
576 have a bit more altruism than the bare minimum together with hosts that make a corresponding
577 level of antibodies in response. This arguably imperfect outcome, which is worse than the best
578 possible for both parties, nonetheless does represent host-microbiome integration.

579 **Host-Orchestrated Species Sorting (HOSS).** The process whereby the host through its anti-
580 body production determines which microbes are eligible to colonize represents a kind of species

581 sorting that is here termed as “host-orchestrated species sorting (HOSS).” Species sorting is well
582 known in environmental microbiology. Baas-Becking (1934, *cf.* de Wit and Bouvier. 2006) fa-
583 mously wrote “everything is everywhere, but the environment selects.” As Van der Gucht *et. al.*
584 (2007) note, this phrase assumes that high dispersal rates for microorganisms are ubiquitous, an
585 assumption receiving active investigation (Székely and Langenheder 2014, Wu *et. al.* 2018). Here,
586 the idea of species sorting refers to hosts selecting, through their antibody production, which
587 strains in the microbial source pool can colonize.

588 Metaphorically, the holobiont is a seller’s market for the host. The host sets up the price
589 schedule—for each level of resource the microbes supply there is a corresponding level of anti-
590 bodies produced, irrespective of any impact on the microbes. In contrast, the microbes must pay
591 to play. They must provide enough resources to obtain a colonization parameter that permits
592 successful colonization. From the microbes’ point of view, the situation is take-it-or-leave-it—
593 provide enough resources to colonize and you’re in, otherwise you’re out. And even after paying
594 the price for successful colonization, a microbial strain faces competition from other strains who
595 may have paid less and still successfully colonized.

596 The combination of host-orchestrated species sorting followed by competition among the
597 colonizing microbes leads to a conceptual model of holobiont assembly. A diagram illustrat-
598 ing the process of holobiont assembly appears in Figure 4. This holobiont assembly based on
599 host-orchestrated species sorting followed by microbial competition, rather than coevolution or
600 multilevel selection, is the likely cause of host-microbiome integration.

601 The theory of HOSS was developed assuming the species sorting is accomplished by the
602 host’s immune system. However, the logic of HOSS remains valid for other mechanisms of host
603 selectivity. The host could employ toxic mucus, chemicals or physical deterrents like spines—any
604 mechanism applied in proportion to the benefit that the microbes supply will suffice. Moreover,
605 the host could facilitate the entry of benefit-producing microbes depending on the amount of
606 benefit supplied. Host facilitation could be represented as a negative antibody, *i.e.*, a “probody”.

607 6 Discussion

608 This article has developed mathematical theory for the population dynamics, evolution and as-
609 sembly of holobionts.

610 Several population-dynamic outcomes for microbes and hosts have been found, including
611 that a microbe might be excluded from the microbiome, a microbe might initially enter the
612 microbiome only to be shed thereafter from the holobiont, a microbe might join the microbiome
613 and coexist with the host, or a deleterious microbe might enter the microbiome culminating in
614 its own extinction together with the host.

615 This article has also developed the idea that a horizontally transmitted microbiome constitutes
616 a genetic system with “collective inheritance”. This form of inheritance supports Darwinian
617 descent with modification but is inconsistent with neoDarwinism. With this form of inheritance,
618 the microbial source pool in the environment is the counterpart for the microbiome of the gamete
619 pool for nuclear genes. Poisson sampling of the microbial source pool is the counterpart of
620 binomial sampling of the gamete pool. However, holobiont selection on the microbiome does
621 not lead to a counterpart of the Hardy-Weinberg Law or directional selection that necessarily
622 produces fixation of microbial genes conferring the highest holobiont fitness. The effectiveness
623 of holobiont selection on microbial genes is limited compared to the effectiveness of natural
624 selection on nuclear genes.

625 The article has further shown that in the absence of holobiont selection, a competitively infe-
626 rior microbial strain may coexist with a superior strain in a colonization-extinction equilibrium.
627 Alternatively, the presence of holobiont selection permits a polymorphism between altruistic and
628 selfish microbial strains.

629 The article shows that although a microbe might strike an optimal balance between lowering
630 its within-host fitness while increasing holobiont fitness it is replaced by otherwise identical
631 microbes that contribute nothing to holobiont fitness. This replacement can be reversed by hosts
632 that discriminate against colonization by non-helpful microbes—likely brought about by hosts
633 producing an immune response against non-helpful microbes. This discrimination constitutes
634 microbial species sorting orchestrated by the host immune system.

635 Holobiont assembly with host-orchestrated species sorting (HOSS) brought about by the host
636 immune system followed by microbial competition extends existing discussion about how the
637 immune system determines biological individuality (Pradeu 2010, 2012, 2016, Gilbert and Tauber
638 2016). Pradeu (2016) writes “The immune system constitutes a discrimination mechanism, ac-
639 cepting some entities in the organism and rejecting others, thus participating decisively in the
640 delineation of the organism’s boundaries” (p. 803). Gilbert and Tauber (2016) write, the “immune
641 system [is] the mediator of both defensive and assimilative environmental intercourse, where a
642 balance of immune rejection and tolerance governs the complex interactions of the organism’s
643 ecological relationships” (p. 839). This article shows that this discrimination by the immune
644 system results in a composite entity, the holobiont, that possesses a degree of integrated func-
645 tion involving both the microbes and host, even though such integration is generally less than
646 optimal.

647 This article shows that microbiome-host functional integration is not the result of coevolu-
648 tion because holobiont evolution is a multilevel process whereas coevolution is a single-level
649 process. Moreover, the host-microbiome association is not mutualistic because each party is in-
650 different to the other’s welfare and neither reciprocally evolves mutual altruism. Furthermore,

651 microbiome-host functional integration does not result from any of the commonly defined ver-
652 sions of multilevel selection. Finally, microbiome-host functional integration is not brought about
653 solely by holobiont selection itself because the effectiveness of holobiont selection on microbial
654 genes is limited. Thus, although a holobiont is a functional unit, it is not an evolutionary unit.

655 Instead, holobiont formation is a unique and simultaneous combination of both evolutionary
656 and ecological processes. At the upper level, hosts evolve their immune responses by ordinary
657 natural selection on host nuclear genes. At the lower level, microbes colonize hosts in an eco-
658 logical community-assembly process. The processes at the two levels are coupled because the
659 host's immune response affects microbial community assembly, sorting the available microbes
660 into those that can and those that cannot enter the holobiont. Competition between microbes
661 that have entered the holobiont reduces the within-host microbial species diversity leaving only
662 those that supply the least possible resources to the host consistent with being able to colonize
663 successfully.

664 7 Acknowledgments

665 The author thanks Seth Bordenstein, Ford Doolittle, Scott Gilbert, Jeremy Van Cleve, Forest Ro-
666 hwer with members of the BioMath Reading Group at San Diego State University and Priscilla
667 San Juan and Katherine Lagerstrom with members of the Stanford University biology depart-
668 ment's microbiome reading group for helpful comments on the manuscript. The author also
669 thanks Daniel Bolnick and Michael Cortez for superb editing of the manuscript and three anonym-
670 ous reviewers for extensive and constructive comments. This article is Contribution #1 from a
671 project, The Theory of Holobiont Evolution, funded by the Gordon and Betty Moore Foundation
672 through Grant GBMF10000 to the University of Hawaii.

673 8 References

674 Amarasekare, P. and H. Possingham. 2001. "Patch Dynamics and Metapopulation Theory: the
675 Case of Successional Species." *J. Theor. Biol.* 209:333–344, doi:10.1006/jtbi.2001.2269

676 Andrewartha H. and L. C. Birch. 1954. *The Distribution and Abundance of Animals*. University of
677 Chicago Press. Chicago Ill. USA

678 A. S. Amend, S. O. I. Swift, J. L. Darcy, M. Belcaid, C. E. Nelson, J. Buchanan , N. Cetraro, K. M.
679 S. Fraiola, K. Frank , K. Kajihara , T. G. McDermot, M. McFall-Ngai , M. Medeiros, C. Mora,
680 K. K. Nakayama, N. H. Nguyen, R. L. Rollins , P. Sadowski, W. Sparagon, M. A. Téfit, J.
681 Y. Yew , D. Yogi, and N. A. Hynson. 2022. "A Ridge-to-Reef Ecosystem Microbial Census

682 Reveals Environmental Reservoirs for Animal and Plant Microbiomes". *Proc Nat Acad Sci*
683 (USA) 119(33) e2204146119 <https://doi.org/10.1073/pnas.2204146119>

684 Atoda K. 1947. "The Larva and Postlarval Development of Some Reef-building Corals. I. *Pocil-*
685 *lopora damicornis cespitosa* (Dana)". *Sci Reports Tohoku Univ.* 18: 24–47.

686 Babcock, R. C., G. D. Bull, P. L. Harrison, A. J. Heyward, J. K. Oliver, C. C. Wallace and B.
687 L. Willis. 1986. "Synchronous Spawnings of 105 Scleractinian Coral Species on the Great
688 Barrier Reef." *Marine Biology* 90:379–394.

689 Baas-Becking L. G. M. 1934. *Geologie of Inleidning tot de Milieukunde*. W. P. Van Stokum, The
690 Hague, The Netherlands.

691 Bordenstein, S. R. and K. R. Theis. 2015. "Host Biology in Light of the Microbiome: Ten Princi-
692 ples of Holobionts and Hologenomes." *PLoS Biol.* 13(8):e1002226.

693 Bruijning, M., L. Henry, S. K. G. Forsberg, C. J. E. Metcalf, J. F. Ayroles. 2021. "Natural selec-
694 tion for Imprecise Vertical Transmission in Host-microbiota Systems." *Nature Ecology and*
695 *Evolution*. <https://doi.org/10.1038/s41559-021-01593-y>

696 Burns, A., E. Miller, M. Agarwal, A. S. Rolig, K. Milligan-Myhre, S. Seredick, K. Guillemin,
697 and B. J. M. Bohannan. 2017. "Interhost Dispersal Alters Microbiome Assembly and Can
698 Overwhelm Host Innate Immunity in an Experimental Zebrafish Model". *Proc. Nat. Acad.*
699 *Sci. USA* 114(42):11181–11186. www.pnas.org/cgi/doi/10.1073/pnas.1702511114

700 Carmona, D., C. R. Fitzpatrick, and M. T. Johnson. 2015. "Fifty years of Co-evolution and Be-
701 yond: Integrating Co-evolution from Molecules to Species." *Mol. Ecol.* 24:5315–5329.

702 Damuth, J. and L. Heisler. 1988. "Alternative Formulations of Multilevel Selection." *Biology and*
703 *Philosophy* 3:407–430.

704 de Wit, R. and T. Bouvier. 2006. " 'Everything is Everywhere, *but*, the Environment Selects';
705 What did Baas Becking and Beijerinck Really Say?" *Environmental Microbiology* 8:755–758.
706 doi:10.1111/j.1462-2920.2006.01017.x

707 Dieckmann, U., and R. Law. 1996. "The Dynamical Theory of Coevolution: a Derivation from
708 Stochastic Ecological Processes." *J. Math. Biol.* 34:579–612.

709 Ellis, E., and M. Delbrück. 1939. "The Growth of Bacteriophage." *J. General Physiology* 22:365–
710 384. doi: 10.1085/jgp.22.3.365

711 Fitzpatrick, B. 2014. "Symbiote Transmission and Maintenance of Extra-genomic Associations.
712 *Frontiers in Microbiology* 5(46)1–15. doi:10.3389/fmicb.2014.00046

713 Foster, K. R., J. Schluter, K. Coyte, and S. Rakoff-Nahoum. 2017. "The Evolution of the Host
714 Microbiome as an Ecosystem on a Leash". *Nature* 548:43–51.

715 Gilbert, S. F., J. Sapp, and A. I. Tauber. 2012. "A Symbiotic View of Life: We Have Never Been
716 Individuals." *Q. Rev. Biol.* 87:325–341.

717 Gilbert, S. F., and A. I. Tauber. 2016. "Rethinking Individuality: the Dialectics of the Holobiont".
718 *Biol. Philos.* 31:839–853, DOI 10.1007/s10539-016-9541-3

719 Hanski, I. 1990. "Density Dependence, Regulation and Variability in Animal Populations".
720 *Philosophical Transactions: Biological Sciences*. 330:141–150

721 Harrison P. L. and C. C. Wallace 1990. "Reproduction, Dispersal and Recruitment of Scler-
722 actinian Corals". In: Dubinsky Z, editor. *Ecosystems of the World*. Amsterdam: Elsevier
723 Science; 1990. pp. 133–207.

724 Hirose, M. and M. Hidaka. 2006. "Early Development of Zooxanthella-containing Eggs of the
725 Corals, *Porites cylindrica* and *Montipora digitata*: The Endodermal Localization of Zooxan-
726 thellae." *Zoological Science* 23:873–881.

727 Hurst, G. D. D. 2017. "Extended Genomes: Symbiosis and Evolution." *Interface Focus* 7: 20170001.
728 <http://dx.doi.org/10.1098/rsfs.2017.0001>

729 Jennings, E. C. 2019. "A Holobiont Characterization of Reproduction in a Live-bearing Cock-
730 roach, *Diploptera punctata*." Phd. diss. Retrieved from <https://etd.ohiolink.edu>.

731 Jorge, Fátima, Nolwenn M. Dheilly and Robert Poulin. 2020. "Persistence of a Core Micro-
732 biome Through the Ontogeny of a Multi-Host Parasite." *Front. Microbiol.* 11:954. doi:
733 10.3389/fmicb.2020.00954

734 Karlin, S. 1975. "General Two Locus Selection Models: Some Objectives, Rules and Interpreta-
735 tions." *Theoretical Population Biology* 7:364–398.

736 N. Knowlton and F. Rohwer. 2003. "Multispecies Microbial Mutualisms on Coral Reefs: The
737 Host as a Habitat". *Amer Naturalist* 162(Supplement):S51–S62.

738 Lederberg J, McCray AT. 2001. "Ome Sweet Omics"—a Genealogical Treasury of Words. *Scienc-
739 tist*. 15:8.

740 Levins, R. and D. Culver. 1971. "Regional Coexistence of Species and Competition between
741 Rare Species." *Proc. Nat. Acad. Sci. (USA)* 68:1246–1248.

742 Lewontin, R. C. 1970. "The Units of Selection." *Annual Review of Ecology and Systematics*, 1:1–18.

743 Lim, S. J. and S. R. Bordenstein. 2020. "An Introduction to Phylosymbiosis" *Proc. R. Soc. B* 287:
744 20192900. <http://dx.doi.org/10.1098/rspb.2019.2900>.

745 Lindholm, A. K., K. A. Dyer, R. C. Firman, L. Fishman, W. Forstmeier, L. Holman, H. Joha-
746 nesson, U. Knief, H. Kokko, A. M. Larracuente, A. Manser, C. Montchamp-Moreau, V.
747 G. Petrosyan, A. Pomiankowski, D. C. Presgraves, L. D. Safronova, A. Sutter, R. L. Unck-
748 less, R. L. Verspoor, N. Wedell, G. S. Wilkinson, and T. A. R. Price. 2016. "The Ecol-
749 ogy and Evolutionary Dynamics of Meiotic Drive". *Trends in Ecology & Evolution*, 31(4)
750 <http://dx.doi.org/10.1016/j.tree.2016.02.001>

751 Lipsitch, M. S. Siller, and M. Nowak. 1996. "The Evolution of Virulence in Pathogens with
752 Vertical and Horizontal Transmission." *Evolution* 50:1729–1741.

753 MacArthur, R. H. 1962. "Some Generalized Theorems of Natural Selection". *Proc. Natl. Acad.*
754 *Sci. USA*. 48(11):1893–1897. doi: 10.1073/pnas.48.11.1893

755 MacArthur R. H. and E. O. Wilson. 1963. "An Equilibrium Theory of Insular Zoogeography."
756 *Evolution* 17:373–387.

757 E. K. Mallott and K. R. Amato. 2021. "Host Specificity of the Gut Microbiome". *Nature Reviews:*
758 *Microbiology* 19:639–653. <https://doi.org/10.1038/s41579-021-00562-3>

759 Margulies, L. 1991. "Symbiosis as a Source of Evolutionary Innovation: Speciation and Mor-
760 phogenesis." In *Symbiogenesis and Symbioticism*, edited by L. Margulies and R. Fester, 1–14,
761 Cambridge: MIT Press.

762 Maynard Smith, J. 1964. "Group Selection and Kin Selection." *Nature* 201:1145–1147.

763 Maynard Smith, J. 1974. "The Theory of Games and the Evolution of Animal Conflicts". *J. theor.*
764 *Biol.* 47(1):209–221 [https://doi.org/10.1016/0022-5193\(74\)90110-6](https://doi.org/10.1016/0022-5193(74)90110-6)

765 Mayo, D. and N. Gilinsky. 1987. "Models of Group Selection." *Philosophy of Science* 54:515–538.

766 McFall-Ngai, M., M. G. Hadfield, T. C. Bosch, H. V. Carey, T. Domazet-Loo, A. E. Douglas, N.
767 Dubilier, et al. 2013. "Animals in a Bacterial World, A New Imperative for the Life Sciences." *Proc. Natl. Acad. Sci. (USA)* 110:3229–3236.

769 Moeller, A. H., A. Caro-Quintero, D. Mjungu, A. V. Georgiev, E. V. Lonsdorf, M. N. Muller, A.
770 E. Pusey, M. Peeters, B. H. Hahn, and H. Ochman. 2016. "Cospeciation of gut microbiota
771 with hominids" *Science* 353(6297):380–382.

772 Moran, P. A. P. 1964. "On the Non-Existence of Adaptive Topographies." *Annals of Human*
773 *Genetics* 27:383–393.

774 Moran N. A., and D. B. Sloan. 2015. "The Hologenome Concept: Helpful or Hollow?" *PLoS Biol*
775 13(12): e1002311. doi:10.1371/journal.pbio.1002311

776 Narayana, J. K., M. M. Aogáin, W. W. B. Goh, K. Xia, K. Tsaneva-Atanasova, S. H. Chotirmall.
777 2021. "Mathematical-based Microbiome Analytics for Clinical Translation." *Computational*
778 *and Structural Biotechnology Journal*. 19:6272–6281.

779 Nitschke, M. R. 2015. The Free-Living *Symbiodinium* reservoir and Scleractinian Coral Symbiont
780 Acquisition. PhD. thesis, School of Biological Sciences. The University of Queensland.

781 Obeng, N., F. Bansept, M. Sieber, A. Traulsen, and H. Schulenburg. 2021. "Evolution of
782 Microbiota-Host Associations: The Microbe's Perspective". *Trends in Microbiology*
783 <https://doi.org/10.1016/j.tim.2021.02.005>

784 Okasha, S. 2006. *Evolution and the Levels of Selection*. Oxford UK: Oxford University Press

785 Osmanovic, D., D. A. Kessler, Y. Rabin, and Y. Soen. 2018. "Darwinian Selection of Host and
786 Bacteria Supports Emergence of Lamarckian-like Adaptation of the System as a Whole."
787 *Biology Direct*. <https://doi.org/10.1186/s13062-018-0224-7>.

788 Papale, François. 2020. "Evolution by means of natural selection without reproduction: revamp-
789 ing Lewontin's account." *Synthese* <https://doi.org/10.1007/s11229-020-02729-6>

790 Powell J. E., V. G. Martinson, K. Urban-Mead, N. A. Moran. 2014. "Routes of Acquisition of
791 the Gut Microbiota of the Honey Bee *Apis mellifera*. *Appl Environ Microbiol*. 80(23):7378–87.
792 <https://doi.org/10.1128/AEM.01861-14>.

793 Pradeu, T. 2010. "What is an Organism? an Immunological Answer". *Hist. Philos. Life Sci.*
794 32:247–268.

795 Pradeu, T. 2012. *The Limits of the Self: Immunology and Biological Identity*. Oxford University Press,
796 New York.

797 Pradeu, T. 2016. "Organisms or Biological Individuals? Combining Physiological and Evolu-
798 tionary Individuality". *Biol. Philos.* 31:797–817, DOI 10.1007/s10539-016-9551-1

799 Prasetya, R., F. Sinniger, K. Hashizume, S. Harii 2017. "Reproductive Biology of the Deep
800 Brooding Coral *Seriatopora hystric*: Implications for Shallow Reef Recovery". *PLOS ONE*
801 <https://doi.org/10.1371/journal.pone.0177034>

802 Renelies-Hamilton, J., K. Germer, D. Sillam-Dussès, K. H. Bodawatta, M. Poulsena. 2021. "Dis-
803 entangling the Relative Roles of Vertical Transmission, Subsequent Colonizations, and Diet
804 on Cockroach Microbiome Assembly". *mSphere* 6:e01023-20.
805 <https://doi.org/10.1128/mSphere.01023-20>.

806 Ridley, M. 2004. *Evolution. 3rd Edition*, Blackwell Pub., Oxford.

807 Rosenberg, Eugene and Ilana Zilber-Rosenberg. 2018. "The Hologenome Concept of Evolution
808 after 10 years." *Microbiome* 6:78 <https://doi.org/10.1186/s40168-018-0457-9>

809 Roughgarden, J. 1971. "Density-dependent Natural Selection". *Ecology*. 52(3):453–468.
810 <https://doi.org/10.2307/1937628>

811 Roughgarden, J. 1983. "The Theory of Coevolution." In *Coevolution*, edited by D. J. Futuyma and
812 M. Slatkin, 33–64, Sunderland MA: Sinauer.

813 Roughgarden, J. 2017. "Model of Holobiont Population Dynamics and Evolution: a Preliminary
814 Sketch." In *Landscapes of Collectivity in the Life Sciences*, edited by S. B. Gissis, E. Lamm, and
815 A. Shavit, pp. 325–350. London: The MIT Press.

816 Roughgarden, J., S. F. Gilbert, E. Rosenberg, I. Zilber-Rosenberg, and E. Lloyd. 2018. "Holobionts
817 as Units of Selection and a Model of Their Population Dynamics and Evolution." *Biological
818 Theory* 13:44–65. <https://doi.org/10.1007/s13752-017-0287-1>.

819 Roughgarden, J. 2020. "Holobiont Evolution: Mathematical Model with Vertical *vs.* Horizontal
820 Microbiome Transmission." *Philosophy, Theory and Practice in Biology*, 12:2.
821 <http://dx.doi.org/10.3998/ptpbio.16039257.0012.002>.

822 Sale, P. 1977. Maintenance of High Diversity in Coral Reef Fish Communities. *Amer. Natur.*
823 111:337–359.

824 Sandler, L. and K. Golic. 1985. "Segregation Distortion in *Drosophila*". *Trends in Genetics* 1:181–
825 185. [https://doi.org/10.1016/0168-9525\(85\)90074-5](https://doi.org/10.1016/0168-9525(85)90074-5)

826 Shapiro, J. and P. E. Turner. 2014. "The Impact of Transmission Mode on the Evolution of
827 Benefits Provided by Microbial Symbionts". *Ecology and Evolution* 4: 3350–3361.

828 Strong, D. 1986. "Density-Vague Population Change". *Trends in Ecology and Evolution*. 1(2):39–42.

829 Su, Q., Q. Wang, X. Mu, H. Chen, Y. Meng, X. Zhang, L. Zheng, X. Hu, Y. Zhai and H Zheng.
830 2021. "Strain-level Analysis Reveals the Vertical Microbial Transmission During the Life
831 Cycle of Bumblebee". *Microbiome* 9:216 <https://doi.org/10.1186/s40168-021-01163-1>

832 Székely, A. J. and S. Langenheder. 2014. "The Importance of Species Sorting Differs Between
833 Habitat Generalists and Specialists in Bacterial Communities." *FEMS Microbiol Ecol* 87:102–
834 112. DOI: 10.1111/1574-6941.12195

835 Taylor, D. R. and P. Ingvarsson. 2003. "Common Features of Segregation Distortion in Plants
836 and Animals." *Genetica* 117:27–35.

837 Theis K. R., N. M. Dheilly, J. L. Klassen, R. M. Brucker, J. F. Baines, T. C. G. Bosch, J. F. Cryan, S.
838 F. Gilbert, C. J. Goodnight, E. A. Lloyd, J. Sapp, P. Vandenkoornhuyse, I. Zilber-Rosenberg,
839 E. Rosenberg, S. R. Bordenstein. 2016. Getting the Hologenome Concept Right: an Eco-
840 Evolutionary Framework for Hosts and Their Microbiomes. *mSystems* 1(2):e00028-16. doi:
841 10.1128/mSystems.00028-16.

842 Trench, R. K. 1993. "Microalgal-Invertebrate Symbioses: A Review." *Endocytobiosis Cell Res.*
843 9:135–175.

844 Unzueta-Martínez, A., H. Welch and J. L. Bowen. 2022. "Determining the Composition of
845 Resident and Transient Members of the Oyster Microbiome." *Front. Microbiol.* 12:828692.
846 doi: 10.3389/fmicb.2021.828692

847 van Vilet, S. and M. Doebeli. 2019. "The Role of Multilevel Selection in Microbiome Evolution."
848 *Proc. Natl. Acad. Sci. (USA)* www.pnas.org/cgi/doi/10.1073/pnas.1909790116.

849 Van der Gucht, K., K. Cottenie, K. Muylaert, N. Vloemans, S. Cousin, S. Declerck, E. Jeppesen,
850 J-M. Conde-Porcuna, K. Schwenk, G. Zwart, H. Degans, W. Vyverman, and L. De Meester.
851 2007. "The Power of Species Sorting: Local Factors Drive Bacterial Community Compo-
852 sition Over a Wide Range of Spatial Scales." *Proc. Natl. Acad. Sci. (USA)* 104:20404–20409.
853 doi/10.1073/pnas.0707200104

854 Wang, G. H., B. M. Berdy, O. Velasquez, N. Jovanovic, S. Alkhaliwa, K. P. C. Minbile, and R.
855 M. Brucker. 2020. "Changes in Microbiome Confer Multigenerational Host Resistance after
856 Sub-toxic Pesticide Exposure." *Cell Host & Microbe* 27, 213–224
857 <https://doi.org/10.1016/j.chom.2020.01.009>

858 Wang, G. H., J. Dittmer, B. Douglas, L. Huang, R. M. Brucker. 2021. "Coadaptation between
859 Host Genome and Microbiome under Long-term Xenobiotic-induced Selection." *Sci. Adv.*
860 7:eabd4473 pp1–15.

861 Wright, S. 1931. "Evolution in Mendelian populations." *Genetics* 16:97–159. *The ISME Journal*
862 12:485–494. doi:10.1038/ismej.2017.183.

863 Wu, W., HP. Lu, A. Sastri, YC. Yeh, GC. Gong, WC. Chou and CH. Hsieh. 2018. "Contrasting the
864 Relative Importance of Species Sorting and Dispersal Limitation in Shaping Marine Bacte-
865 rial versus Protist Communities." *The ISME Journal* 12:485–494; doi:10.1038/ismej.2017.183

866 Xiong, X., S. Loo, and M. Tanaka. 2022. "Gut mutualists can persist in host populations despite
867 low fidelity of vertical transmission." *Evolutionary Human Sciences*. DOI: 10.1017/ehs.2022.38.

868 Yamashita, H., G. Suzuki, S. Kai, T. Hayashibara, K. Koike. 2014. "Establishment of Coral-Algal
869 Symbiosis Requires Attraction and Selection" PLoS ONE 9(5): e97003.
870 doi:10.1371/journal.pone.0097003

871 Zeng, Q., S. Wu, J. Sukumaran, and A. Rodrigo. 2017. "Models of Microbiome Evolution Incorpor-
872 ating Host and Microbial selection." *Microbiome* 5(1):127. doi:10.1186/s40168-017-0343-x.

873 Zilber-Rosenberg, I. and E. Rosenberg. 2008. "Role of Microorganisms in the Evolution of Ani-
874 mals and Plants: the Hologenome Theory of Evolution." *FEMS Microbiology Reviews* 32:723–
875 735. <https://doi.org/10.1111/j.1574-6976.2008.00123.x>