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The brain contains an astronomical number of neurons, but
it is their collective activity that underlies brain function. The
number of degrees of freedom that this collective activity ex-
plores — its dimensionality — is therefore a fundamental signa-
ture of neural dynamics and computation (1-7). However, it is
not known what controls this dimensionality in the biological
brain — and in particular whether and how local synaptic net-
works play a role (8§-10). Through analysis of high-density Neu-
ropixels recordings (11), we argue that areas across the mouse
cortex operate in a sensitive regime that gives these synaptic net-
works a very strong role in controlling dimensionality. More-
over, we show that this control is expressed through highly
tractable features of these synaptic networks. We then analyze
these key features via a massive synaptic physiology dataset (12).
Quantifying these features in terms of cell-type specific network
motifs, we find that the synaptic patterns that impact dimen-
sionality are prevalent in both mouse and human brains. Thus
local circuitry scales up systematically to help control the de-
grees of freedom that brain networks may explore and exploit.

Introduction

The complexity of a neural network’s activity can be
measured by its dimensionality — that is, the number of
collective degrees of freedom that its neurons explore. Di-
mensionality is closely linked to neural computation. Signal
classification, for example, benefits from network activities
that increase the dimensionality of the incoming signals to
be classified (24, 13, 14). However, compressing inputs
into lower-dimensional activity patterns helps generalization
to novel signals (1, 15, 16). Studies have emphasized the
comparatively high (3, 6, 7) or low (17, 18) dimensionality
of recordings in various experimental settings. Moreover,
the dimensionality of neural dynamics can change over
time (19), throughout the information processing hierarchy
(20), or during learning (15, 21, 22). These findings, taken
together, highlight the importance of dimensionality as a
property of network activity that will vary depending on the
type of computation performed in a circuit. A key question
is: how can the connectivity of a network regulate the
dimensionality of its activity (8, 9, 23-25)?
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This question is of particular interest for cortical networks.
The preponderance of inhibitory feedback in these networks
leads to a balanced, asynchronous state with weak correla-
tions between neurons (26-29). Such asynchronous dynam-
ics at first appear to imply high dimensional dynamics, in
which all neurons are roughly independent. However, by ana-
lyzing electrophysiological recordings from over 30,000 neu-
rons (11, 30) we show that the opposite is the case: dynamics
are constrained to spaces of very low dimension relative to
the number of neurons in areas across the brain. This results
from the rapid accumulation of many weak but diverse pair-
wise correlations across the networks (cf. (31)) — as quan-
tified by the variance of these correlations, over and above
their average.

To understand the mechanistic origins of this low relative di-
mensionality of cortical activity, we advance the theory of
dynamics in balanced networks, to show how the key vari-
ance of correlations results from the network’s recurrent con-
nectivity. Moreover, we show that in this strongly recur-
rent regime, dimensionality is highly sensitive to changes
in the structure of recurrent connections. Beyond overall
synaptic strength, specific connectivity patterns, or motifs,
between pairs and triplets of cells (25, 32-40) can signif-
icantly tune the dimensionality of neural activity. To test
whether this is broadly the case in biological circuits, we an-
alyze newly released synaptic physiology datasets (12, 41),
quantifying connections among more than 22,000 pairs of
neurons. We find that the connectivity motifs implicated by
our theory were strongly present in both mouse and human
brain, that they differ across cortical layers in ways consis-
tent with layer-specific dimensionality of neural activity, and
show how previously established patterns of cell-type spe-
cific modulation and adaptation can have a new effect: to
further regulate connectivity motifs and hence dimensional-
ity across time and brain state.

Low dimensionality across brain regions

We quantify the dimensionality of neural activity via the par-
ticipation ratio DpR, a widely used measure of dimensional-
ity which, in particular, often corresponds to the number of
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Fig. 1. Intrinsic dimensionality estimation in neural circuits. a) Figure focus: Dimensionality inferred via electrophysiology recordings. b) Sites of Neuropixels recordings
colored by brain region. c) Raster plot example of Neuropixels recordings for one experimental session (session id=715093703). d) Dimensionality based on full covariance
across brain regions and conditions (evoked and spontaneous) for a network of size N' = 10° neurons (cf. Methods). €) Intrinsic dimensionality based on intrinsic covariance
across brain regions and conditions (evoked and spontaneous) for a network of size N' = 10° neurons (cf. Methods). f) Neural activity of example session for spontaneous
(green) and evoked (red) condition in the coordinate axes given by the top Principal Components (PC) determined across both conditions. The evoked condition corresponds
to drifting grating stimuli with 75 repeats per stimulus orientation. The three panels represent the total, shared, and intrinsic activity, respectively (cf. Methods, Fig. S5).
Operating points are defined as the average activity per condition. g) Top panels: Schematic of Latent Factor Analysis decomposition of the full covariance into shared and
intrinsic covariances (cf. Fig. S5a). Bottom panels: distribution of cross-covariances for the three matrices.

principal components required to capture roughly 80% of a 1
signal’s variability (17) (Fig. S2a). 104
Dpr is defined via the eigenvalues of the covariance matrix 1s
and can be rewritten in terms of the statistics of covariances 1os
(19) (Fig. S2b) (see Methods). The mean and variance of 17
cross-covariances across neurons define the participation ra- 1os

tio Dpr for a large number of recorded neurons N: 109
N 110
Dpr(C) " ————5——~. 1
pr(C) T+ N2 +52) ( ):;
dc

Specifically, m = g and s = ¢ are the ratios between the "
mean ¢ or standard deviation dc of cross-covariances and the 114
average auto-covariance a, the latter acting as a firing rate 115
normalization (Fig. S2b). The two, m and s, correspond to 116
independent factors influencing dimensionality. For exam- 117
ple, a high m can be driven by a small number of “low-rank” 11
behavioral components (42) while s, as we will show, may
result from strong recurrent connections between neurons. 20
However, both contribute equally to modulating dimension- 21
ality, since even unstructured correlations between neurons, 122
measured by s, can accumulate in large networks to substan- 12s
tially constrain the possible modes of neural activity. 124
We applied this measure Eq. (1) to large-scale Neuropixels 2
recordings collected across multiple regions of the mouse 12
brain at the Allen Institute for Brain Science, Figs. 1b to 1c 12
(cf. (11, 30)). We analyzed 32,043 neurons across 5 brain 12s
regions (Table S1), recorded during sessions lasting on aver- 129
age more than 3 hours (cf. sample of 2 minutes of recorded 13
activity, Fig. 1c). We focused on periods of spontaneous ac- 1
tivity (no stimulus was presented to the animal) and evoked s
activity (where drifting gratings were displayed), cf. Meth- 1

ods and Fig. S1. The results revealed that dimensionality
— when extrapolating to realistic cortical network sizes (see
Methods) — had values in the order of ~ 100 dimensions (cf.
Fig. 1d, Fig. S3a), extremely low when compared to the num-
ber of neurons in each brain region (normalized dimension-
ality, right y-axis) — on the range of 0.01%. Subdividing the
data for visual cortex, we further found an increase in di-
mensionality across visual areas aligned with the underlying
functional hierarchy (11) for the evoked condition (Fig. S4),
underscoring a likely functional role for dimensionality in the
circuits’ computations.

However, in electrophysiology recordings there are two fac-
tors that could drive such a low dimensionality: low-rank
components driven by inputs to the network (7) and intrin-
sic network connectivity constraining neural dynamics. Dis-
tinct from recent studies that have focused on the dimension-
ality of extrinsic, stimulus-related activity (6, 17), here we
focus on intrinsic network connectivity. While sensory in-
puts may entrain the network’s neural responses to be low-
dimensional, the question of whether neural activity is inher-
ently low-dimensional captures the effects of recurrent con-
nectivity and therefore indicates the operating regime of the
underlying circuits.

To isolate the contribution of intrinsic network connectivity
we use a cross-validated Latent Factor Analysis (LFA) (9),
which removes low rank components of shared neural vari-
ability (Figs. S5a to S5e). We deem the remaining variabil-
ity intrinsic — inherent to the analyzed brain region — and it
may be regarded as an upper bound on the dimensionality of
network responses (cf. Fig. le, (19)). The resulting dimen-
sionality values were in the hundreds, which was an order of
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magnitude greater than the dimensionality of the full covari-
ance; nevertheless, they are extremely low, on the range of
0.1%, when compared to the average number of neurons in
each of these brain regions. These values were also consis-
tent across conditions despite being evaluated around distinct
operating points (Fig. 1f). We verified our approach by utiliz-
ing cross-validated Principal Component Analysis instead of
LFA (Fig. S6), as well as simulations in a network model with
established ground truth (Fig. S7), which confirmed that our
method produced tight upper bounds in dimensionality esti-
mation. In addition, for the spontaneous condition, we uti-
lized a Hidden Markov Model to evaluate the results’ robust-
ness with respect to different behaviorally relevant stationary
intervals in the activity (Fig. S8); while for the evoked con-
dition, we demonstrated consistency of our findings across
drifting grating orientations (Fig. S9).

Strong recurrence as a mechanism for low di-
mensionality in cortical networks

In the case of cortical areas, we propose a mechanistic theory
for the origin of the remarkably low dimensionality (< 0.1%)
of neural activity, in terms of the reverberation of this activ-
ity through the underlying network. Recall that Eq. (1) iso-
lates two factors that can drive low dimensionality, m and
s. The theory of balanced cortical networks predicts that
there is strong inhibitory feedback which drives nearly asyn-
chronous activity and hence a nearly vanishing average cor-
relation m ~ 0 (26, 29), a feature we also find for intrinsic
covariances in our cortical data. Consequently the leading
factor in determining the dimensionality is the standard devi-
ation of cross-covariances s.

Fig. 2b illustrates how the value of s is determined by the
level of recurrency in a balanced network (23, 43): as this
recurrency becomes stronger, there is the potential for longer
and longer paths that significantly impact the co-variation in
activity between each pair of neurons. These longer paths
are highly variable from one neuron pair to the next, and this
variability drives a wide range in the cross-covariances across
neural pairs. This intuition can be formalized through a single
number R, derived from the eigenvalues of the connectivity
matrix, which characterizes the overall strength of recurrent
coupling (see Suppl. Mat. for a formal derivation based on
(23, 43) and (25) for an alternative derivation).

Therefore, establishing a three-way link between low-
dimensional neural activity (Fig. 2b bottom), large variance
of correlations (Fig. 2b center) and strong recurrent connec-
tions (Fig. 2b top), we found a direct relationship between
dimensionality and recurrency R in the balanced regime:

Dpgr/N = (1—R?)2, (2)

This relationship is extremely robust as shown by our vali-
dation in complex nonlinear spiking networks (Fig. 2c and
Figs. S10 to S11) and holds for networks with a wide range
of topologies, as we will further explore below.

Analyzing the intrinsic dimensionality of activity across cor-
tical layers we found a wide variation across layers, yet con-
sistent across conditions. Intrinsic dimensionality was on the
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Fig. 2. Dimensionality and recurrency R across the visual cortical circuit. a)
Figure focus: Dimensionality is linked to recurrency. b) Three-way connection be-
tween recurrency, width of covariances distribution and dimensionality of neural
activity. c) Left: Normalized dimensionality Dpgr /N for a balanced network as
a function of the recurrency R. Theoretical predictions for the dimensionality in
homogeneous inhibitory networks (gray) are accurate for simulations of rate mod-
els (light colors) and spiking models (dark colors) across various network topolo-
gies (blue: homogeneous single population inhibitory networks, red: homogeneous
two-population excitatory-inhibitory networks, green: spatially organized single-
population inhibitory networks). d) Dimensionality of intrinsic covariances across
visual cortical layers. Dimensionality values are for networks of size N = 10° neu-
rons (cf. Methods). e) Relative modulation of dimensionality as a function of the
recurrency, Eqg. (3). Blue and red curves overlap. The shaded gray area highlights
the sensitive regime. f) Dimensionality of intrinsic covariances across visual cortical
areas ordered according to the visual cortical hierarchy identified in (11).

order of 0.1% or less (Fig. 2d), consistent with the hypothesis
that cortical circuits operate in a strongly recurrent regime.
Layers 2 and 5 had respectively the lowest and highest in-
trinsic dimensionality, a result consistent with the hypothe-
sis that recurrence in layer 2 is stronger than in layer 5 (44)
(Fig. 2d). We then performed the analysis of intrinsic di-
mensionality for areas along the visual processing hierarchy
(Fig. 2f and Fig. S12) (11). Without further subdividing neu-
ral activity layerwise, intrinsic dimensionality appeared to be
quite constant — consistent with anatomical studies suggest-
ing that connectivity differs less across areas than across lay-
ers (45). Dimensionalities in the evoked condition appeared


https://doi.org/10.1101/2020.11.02.365072
http://creativecommons.org/licenses/by/4.0/

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.02.365072; this version posted February 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

to be lower than in the spontaneous condition, suggesting that
networks approach more recurrent operating points as they
adapt to stimuli.

Overall our analysis shows how trends in the intrinsic
dimensionality in strongly coupled, balanced regimes relate
to modulations in network recurrency, hypotheses that we
revisit in detailed connectivity studies below.

Sensitive control of dimensionality

The connection between Dpg and R, coupled with the anal-
ysis of cortical areas, suggests that the network’s dimension-
ality in cortical circuits is tightly constrained, being much
less than the number of neurons Dpgr /N < 0.1%. Further-
more, in the same regime, the relative change in dimension-
ality with respect to the recurrency R is highest (Fig. 2e):

5DPR_dDPR 1 _ 4R
"~ dR Dpr R2-1

Dpr @)
As aresult, with increasing R balanced neural networks gain
sensitive control of dimensionality as a function of recur-*
rency. In summary, the low values of Dpg obtained for corti- **
cal areas of the mouse brain indicate that recurrency for these **
brain areas is strong (Fig. 2f), suggesting, in turn, that the re- **
current strength R has sensitive control over the dimensional- **
ity of neural activity (Fig. 2e). We next show that this control **
can be enacted systematically via the internal structure of re- **
current connections. =

30

238
239

Local tuning of the global recurrency R

240

We asked how balanced neural networks can regulate 2+
their overall recurrency R and hence their dimensionality 2
(Fig. 3a). While many previous studies established how 24
global features of recurrent connectivity affect R (23, 46, 47), 244
here we focus on the impact of local connectivity motifs. 25
These motifs are statistics of the neural connectivity W that 24
involve pairs of connections (see Methods), and are the fun- 2+7
damental local building blocks of networks. Second order s
motifs appear in four types: reciprocal, divergent, conver- 29
gent, and chain motifs (Fig. 3b), together with the variance 2
(strength) of neural connections already present in purely

random models (46). These motifs have been shown to play ,.,
important roles determining neuron-to-neuron correlations -
and allied circuit dynamics (32-34, 38, 48-53) and emerge

from learning rules consistent with biological STDP mecha- **
nisms (54, 55).
We developed a comprehensive theory that takes full ac- ess
count of all second order motifs in networks of excitatory s
and inhibitory neurons, generalizing allied results developed 257
via distinct theoretical tools (25, 51). Our analysis yields a 2s
novel compact analytical quantity that shows how recurrency ase
is modulated by local structure R = o - Ry;,0ti1s Where o stems s
from the overall synaptic strength and

254

261
262

(4) 263
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Fig. 3. Theory for recurrency and dimensionality in balanced networks with
second-order motifs. a) Figure focus: Modulation of recurrency and dimension-
ality by local circuit motifs. b) Theoretical dependence of recurrency on motif abun-
dances. c) Theoretical dependence of dimensionality on motif abundances. Solid
lines: theory. Markers: simulations.

compactly describes the influence of second order motifs.
Here Trec, Tehn, Tdivs Tcon denote correlation coefficients be-
tween pairs of synapses that capture the abundance of recip-
rocal, chain, divergent, and convergent motifs, respectively
(cf. Methods and Suppl. Mat.). This formula describes how
the recurrency R is affected by increasing or decreasing the
prevalence of second order motifs (Fig. 3b) and thus links
the modulation of auto- and cross-covariances and the dimen-
sionality of neural responses across the global network to the
statistics of local circuit connectivity, as shown in Figs. 3b
to 3c. While Eq. (4) is exact for the simplest type of balanced
networks, which are networks of inhibitory neurons whose
recurrent interactions balance the excitatory external input,
we show that it generalizes to models of balanced excitatory-
inhibitory networks (56). Here, 0 and 7 combine the corre-
sponding statistics of the excitatory and inhibitory subpop-
ulations (cf. Fig. S13 and Suppl. Mat.). This direct link be-
tween quantifiable, local connectivity statistics and the global
network property R opened the door to novel functional anal-
yses of very large-scale synaptic physiology datasets in both
mouse and human, as we describe next.

Cortical circuits in mouse and human employ
local synaptic motifs to modulate their recur-
rent coupling

We analyzed newly released synaptic physiology datasets
from both mouse and human cortex (12, 41) to assess the
involvement of synaptic motifs in modulating network re-
currency and to probe their possible role in driving the
changes in dimensionality seen across layers and conditions
in Fig. 2d. This synaptic physiology dataset was based
on simultaneous in-vitro recordings of 3-to-8 cell groups
(cf. Methods) and consisted of 1,368 identified synapses
from mouse primary visual cortex (out of more than 22,000
potential connections that were tested) and 363 synapses
from human cortex. Recall that the recurrency R as defined
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above has an overall scaling term, o, and a motif contribu-
tion term given by Eq. (4). We begin by assessing the prob-
ability of occurrence of individual motifs and hence estimat-
ing Riotifs, cf. Methods. The relationship Eq. (4) defines
a specific hypothesis for empirical motif statistics that modu-
late global circuit dimensionality: if they combine to produce
Rpotifs > 1 then they are tuned to reduce dimensionality, and
vice-versa for Ry otits < 1.

Beginning with the mouse data, we calculated the statistics
of individual motifs, separating those for excitatory (E) and
inhibitory (I) synapses (EE, EIL, II, Fig. 4b), and found many
motifs to be significantly present. We then combined these to
compute R .ifs- This requires two parameters: one regulat-
ing the overall ratio of inhibitory to excitatory neurons (7),
and another the relative strength of the inhibitory synapses
(g) (cf. Suppl. Mat.). We found that Rp,otits < 1 across all
choices of these parameters (Fig. 4c).

Many different motifs, distinctly involving E and I cell types,
combine to produce this value of Ry,qtits. To study how this
occurs, we separated the contribution to R, otifs from motifs
within the excitatory population (EE type only) by assuming
that other motifs occur at chance level. Interestingly, the EE
motifs operating alone produced the opposite trend, increas-
ing the radius Rigtfley > 1 (Fig. 4d center, one-sided t-test
p-value< 10720). The same was true for motifs within the
inhibitory population Rg;’fg > 1 (Fig. 4d right, one-sided
t-test p-value< 10729), and for motifs within the excitatory
population in human cortical circuits (Fig. 4e). We further
confirmed that this effect is also predicted for previously pub-
lished data on excitatory connections in rat visual cortex (36)
(cf. Methods). The increased recurrent coupling strengths
within both the excitatory and inhibitory populations under-
score the prominent role of EI motifs, specifically reciprocal
EI motifs, in decreasing and potentially regulating the overall
recurrency to be Ry, otirs < 1 (Fig. 4c, Fig. S13).

We found evidence that synaptic motifs contribute to the
cross-layer differences in the dimensionality of cortical
activity identified above (Fig. 2d). There, activity in mouse
cortex layer 2 showed lower dimensionality, corresponding
to an increased overall recurrency R = o Ry otifs compared
to layers 4, 5 or 6. Intriguingly, the corresponding motif
contribution R .tifs Was significantly stronger for layer 2
than for layer 5 (Fig. 4f left), suggesting that motifs play
a role in increasing R. Moreover, a similar result held
true when performing the analysis on the human dataset
for excitatory connections in layers 2 and 3 (Fig. 4g and
Figs. S14 to S15). Overall, the distinct roles of motifs among
E and I cells types in regulating R, .tifs point to ways that
the recurrency, and hence dimension, may be controlled ,,,
dynamically in neural circuits. s

324
One pathway for this control is via cell types, which subdi- s2s
vide E and I populations (Fig. 4h) and are separately identi- a2
fied in the synaptic physiology dataset which we analyze. As a7
Table S2e shows, reciprocal EI motifs were prevalent when as
the inhibitory interneuron was a somatostatin cell (SST) or a a2
parvalbumin cell (PV), but not a VIP cell. Recent findings s
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Fig. 4. Motif analysis in synaptic physiology datasets. a) Figure focus: network
recurrency inferred via synaptic physiology datasets. b) Motif abundances in
mouse V1. Inset: Simplified V1 circuit diagram with only prevalent connections
(57). c) Inferred R otifs @s a function of relative strength g of inhibitory and
excitatory synapses and ratio «y of inhibitory to excitatory population size. d)
Estimation of Rmqiss from mouse data (500 bootstraps based on random subsets
of 80% of sessions). Shuffle of synapses within each experimental session
preserving El synapse type (shuffle El syn.). Effect of all EI motifs (g = 4 and

v = 0.25). e) Same as d for EE motifs in human dataset. f) Layer-wise estimation
of Rmoiits for El balanced muotifs (left), EE-only motifs (right) in mouse. g)
Layer-wise estimation of Rurs for EE-only motifs in human. h) Effect of VIP
regulation on Rpqiss- Left: SST is inactive and Ruyoiifs iS computed over the
displayed circuit involving PV and VIP. Right: SST is active and VIP is inhibited
resulting in PV and SST balancing the activity of the Pyr population. i) Schematic
of sensitive regime and its advantages.

have shown that VIP interneurons (58, 59) are important reg-
ulators of cortical functions, are modulated by arousal and
movement (60), and are recruited by reinforcement signals
(61). We thus hypothesized that VIP interneurons could ad-
just the recurrent coupling of cortical circuits by exerting dis-
inhibitory control via the SST population (57, 58) (this could
occur while preserving the balanced regime, given the very
sparse connectivity within the VIP population and from VIP
to pyramidal cells (Fig. 4h)). Under the simplest form of this
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hypothesis, there exists a mutual antagonism between VIP a5
and SST populations that results in only one of these popula- ass
tions being active at a time. We derived the values of R,otifs 389
in this case, and found that activation of the VIP pathway s
substantially increased R,otits (Fig. 4h) and hence decreased ss1
predicted dimensionality. This shows how VIP interneurons, as
which themselves may collect top-down signals from higher as
cortical areas, can selectively tune the dimensionality of local se
cortical activity. This adds another channel for population- as
level control of information processing in cortical circuits, ass
on top of existing hypotheses for on how VIP neurons reg- ss7
ulate gain in individual neurons (59). Furthermore, we pre- sss
dicted that a similar trend of increasing Ry,otifs follows from as
short-term synaptic plasticity (STP) in modulating cell-type 0
specific connections upon stimulus onset, although a detailed 4o
analysis awaits future investigation (Figs. S16a to S16c). Fi-

nally, we note that our results were robust to inclusion of es- ,,
timates of the relative synaptic strength of cell type specific

connections (Fig. S16d) and the cell type specific prevalence **
of the three inhibitory subpopulations (Fig. S16d) (see Meth- **
ods). 408
In sum, in this section we asked whether the experimentally *“*
derived structure of cortical networks — quantified by their *”
motifs — enables the tuning of the recurrency R and hence **
dimensionality. We found that the answer is yes, and that the “*
VIP disinhibitory pathway and STP both provide examples of **°
how motifs are likely to play a substantial role in this tuning. *"
Specifically, upon accounting for STP modulation, our pre- *
liminary analysis suggested that recurrency is increased and, **°
henceforth, dimensionality decreased; this is consistent with ***
the finding that intrinsic dimensionality is lower for evoked, **°
rather than spontaneous, activity across visual cortical areas *'°
Fig. 2f. As we reviewed above, high dimensional activity can *”
retain stimulus details, while lower dimensional activity can *'®
promote robust and general downstream decoding. Taken to-

gether, this points to new functional roles for modulatory and «1s
adaptive mechanisms known to take effect across time during

stimulus processing and to be engaged across brain states.

Summary and discussion

422

We showed that neural networks across the mouse cortex ,,,
operate in a strongly recurrent regime, in which the dimen- ,,
sionality of their activity is much smaller than the number of ,,,
neurons. A feature of circuits in this regime is the ability to ,,,
sensitively modulate the relative dimensionality of their ac-

tivity patterns via their recurrency R, a unifying measure of a

network’s overall recurrent coupling strength (Fig. 4i). This *
has potentially important consequences for computation. In- ¥
deed, our analyses of large scale Neuropixels recordings from s
the cortex showed systematic trends in this dimensionality ;)
across cortical layers and stimulus conditions. Our theory «:
links these findings to clear predictions for the recurrency in ;!
cortical areas: a higher dimensionality suggests a lower re- s
currency and vice-versa. Moreover, we showed that the crit- :2;
ical circuit features that determine a circuit’s recurrency R 43
— and hence the dimensionality of its activity patterns — are "’

1
not just its overall synaptic strength, but also a tractable set s

of local synaptic motifs. We use theoretical tools to quantify
the effect of these motifs via a compact index Ryqtifs. This
provides a concrete target quantity that can, as we show, be
readily obtained from emerging, large-scale synaptic connec-
tivity datasets and used to check predictions about the role of
synaptic structure in controlling dimensionality. Thus the-
ory and brain-wide experimental analyses converge to pro-
vide new evidence for an intriguing concept (51, 62, 63): that
the connectivity of cortical brain networks exert global con-
trol over their activity in a highly local and tractable manner,
via the building blocks of their local circuitry (Fig. 4i). This
concept may extend beyond cortex: indeed, individual areas
in hippocampal and thalamic circuits also show systematic
trends in dimensionality (Fig. S4 and Fig. S12) whose mech-
anistic origins could be similar.
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