

Strong and localized recurrence controls dimensionality of neural activity across brain areas

David Dahmen^{1,*}, Stefano Recanatesi^{2,*}, Xiaoxuan Jia³, Gabriel K. Ocker^{3,4}, Luke Campagnola³, Tim Jarsky³, Stephanie Seeman³, Moritz Helias^{1,5,+}, and Eric Shea-Brown^{2,3,+}

¹Institute of Neuroscience and Medicine (INM-6 and INM-10) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany

²University of Washington Center for Computational Neuroscience and Swartz Center for Theoretical Neuroscience, Seattle, WA, USA

³Allen Institute, Seattle, WA, USA

⁴Department of Mathematics and Statistics, Boston University, MA, USA

⁵Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany

*These authors share first authorship

+These authors share senior authorship

1 The brain contains an astronomical number of neurons, but 41
2 it is their collective activity that underlies brain function. The 42
3 number of degrees of freedom that this collective activity ex- 43
4 plores – its dimensionality – is therefore a fundamental signa- 44
5 ture of neural dynamics and computation (1–7). However, it is 45
6 not known what controls this dimensionality in the biological 46
7 brain – and in particular whether and how local synaptic net- 47
8 works play a role (8–10). Through analysis of high-density Neu- 48
9 ropixels recordings (11), we argue that areas across the mouse 49
10 cortex operate in a *sensitive regime* that gives these synaptic net- 50
11 works a very strong role in controlling dimensionality. More- 51
12 over, we show that this control is expressed through highly 52
13 tractable features of these synaptic networks. We then analyze 53
14 these key features via a massive synaptic physiology dataset (12). 54
15 Quantifying these features in terms of cell-type specific network 55
16 motifs, we find that the synaptic patterns that impact dimen- 56
17 sionality are prevalent in both mouse and human brains. Thus 57
18 local circuitry scales up systematically to help control the de- 58
19 grees of freedom that brain networks may explore and exploit. 59

20 Introduction

21 The complexity of a neural network's activity can be 62
22 measured by its dimensionality – that is, the number of 63
23 collective degrees of freedom that its neurons explore. Di- 64
24 mensionality is closely linked to neural computation. Signal 65
25 classification, for example, benefits from network activities 66
26 that increase the dimensionality of the incoming signals to 67
27 be classified (2–4, 13, 14). However, compressing inputs 68
28 into lower-dimensional activity patterns helps generalization 69
29 to novel signals (1, 15, 16). Studies have emphasized the 70
30 comparatively high (3, 6, 7) or low (17, 18) dimensionality 71
31 of recordings in various experimental settings. Moreover, 72
32 the dimensionality of neural dynamics can change over 73
33 time (19), throughout the information processing hierarchy 74
34 (20), or during learning (15, 21, 22). These findings, taken 75
35 together, highlight the importance of dimensionality as a 76
36 property of network activity that will vary depending on the 77
37 type of computation performed in a circuit. A key question 78
38 is: how can the connectivity of a network regulate the 79
39 dimensionality of its activity (8, 9, 23–25)?

40 This question is of particular interest for cortical networks. 41
42 The preponderance of inhibitory feedback in these networks 43
43 leads to a *balanced*, asynchronous state with weak corre- 44
44 lations between neurons (26–29). Such asynchronous dynamics 45
45 at first appear to imply high dimensional dynamics, in 46
46 which all neurons are roughly independent. However, by ana- 47
47 lyzing electrophysiological recordings from over 30,000 neu- 48
48 rons (11, 30) we show that the opposite is the case: dynamics 49
49 are constrained to spaces of very low dimension relative to 50
50 the number of neurons in areas across the brain. This results 51
51 from the rapid accumulation of many weak but diverse pair- 52
52 wise correlations across the networks (cf. (31)) – as quanti- 53
53 fied by the variance of these correlations, over and above 54
54 their average.

55 To understand the mechanistic origins of this low relative di- 56
56 mensionality of cortical activity, we advance the theory of 57
57 dynamics in balanced networks, to show how the key varia- 58
58 nce of correlations results from the network's recurrent con- 59
59 nectivity. Moreover, we show that in this strongly recur- 60
60 rent regime, dimensionality is highly sensitive to changes 61
61 in the structure of recurrent connections. Beyond overall 62
62 synaptic strength, specific connectivity patterns, or motifs, 63
63 between pairs and triplets of cells (25, 32–40) can signif- 64
64 icantly tune the dimensionality of neural activity. To test 65
65 whether this is broadly the case in biological circuits, we an- 66
66alyze newly released synaptic physiology datasets (12, 41), 67
67 quantifying connections among more than 22,000 pairs of 68
68 neurons. We find that the connectivity motifs implicated by 69
69 our theory were strongly present in both mouse and human 70
70 brain, that they differ across cortical layers in ways consis- 71
71 tent with layer-specific dimensionality of neural activity, and 72
72 show how previously established patterns of cell-type spe- 73
73 cific modulation and adaptation can have a new effect: to 74
74 further regulate connectivity motifs and hence dimension- 75
75 ality across time and brain state.

76 Low dimensionality across brain regions

77 We quantify the dimensionality of neural activity via the par- 78
78 ticipation ratio D_{PR} , a widely used measure of dimension- 79
79 ality which, in particular, often corresponds to the number of

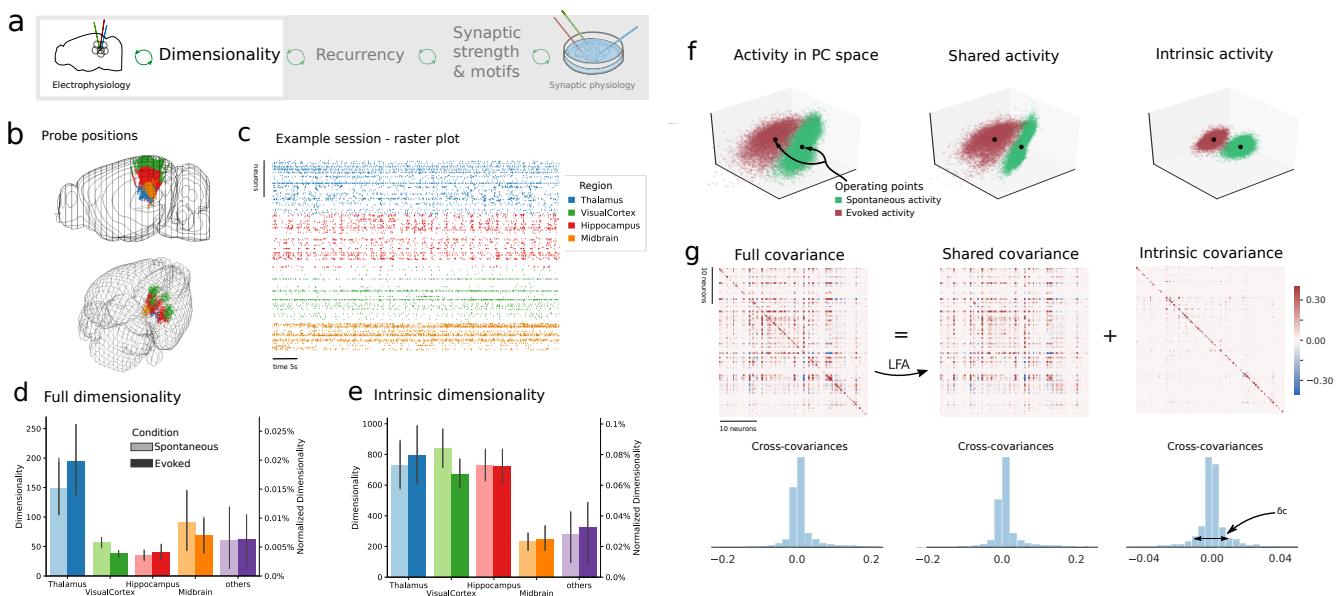


Fig. 1. Intrinsic dimensionality estimation in neural circuits. **a)** Figure focus: Dimensionality inferred via electrophysiology recordings. **b)** Sites of Neuropixels recordings colored by brain region. **c)** Raster plot example of Neuropixels recordings for one experimental session (session id=715093703). **d)** Dimensionality based on full covariance across brain regions and conditions (evoked and spontaneous) for a network of size $N = 10^6$ neurons (cf. Methods). **e)** Intrinsic dimensionality based on intrinsic covariance across brain regions and conditions (evoked and spontaneous) for a network of size $N = 10^6$ neurons (cf. Methods). **f)** Neural activity of example session for spontaneous (green) and evoked (red) condition in the coordinate axes given by the top Principal Components (PC) determined across both conditions. The evoked condition corresponds to drifting grating stimuli with 75 repeats per stimulus orientation. The three panels represent the total, shared, and intrinsic activity, respectively (cf. Methods, Fig. S5). Operating points are defined as the average activity per condition. **g)** Top panels: Schematic of Latent Factor Analysis decomposition of the full covariance into shared and intrinsic covariances (cf. Fig. S5a). Bottom panels: distribution of cross-covariances for the three matrices.

80 principal components required to capture roughly 80% of a 103 signal's variability (17) (Fig. S2a).

81 D_{PR} is defined via the eigenvalues of the covariance matrix 104 and can be rewritten in terms of the statistics of covariances 105 (19) (Fig. S2b) (see Methods). The mean and variance of 106 cross-covariances across neurons define the participation ra- 107 tio D_{PR} for a large number of recorded neurons N :

$$D_{PR}(C) \approx \frac{N}{1 + N(m^2 + s^2)}. \quad (1)$$

82 Specifically, $m = \bar{c}$ and $s = \delta c$ are the ratios between the 113 mean \bar{c} or standard deviation δc of cross-covariances and the 114 average auto-covariance \bar{a} , the latter acting as a firing rate 115 normalization (Fig. S2b). The two, m and s , correspond to 116 independent factors influencing dimensionality. For exam- 117 ple, a high m can be driven by a small number of “low-rank” 118 behavioral components (42) while s , as we will show, may 119 result from strong recurrent connections between neurons. 120 However, both contribute equally to modulating dimension- 121 ality, since even unstructured correlations between neurons, 122 measured by s , can accumulate in large networks to substan- 123 tially constrain the possible modes of neural activity. 124

94 We applied this measure Eq. (1) to large-scale Neuropixels 125 recordings collected across multiple regions of the mouse 126 brain at the Allen Institute for Brain Science, Figs. 1b to 1c 127 (cf. (11, 30)). We analyzed 32,043 neurons across 5 brain 128 regions (Table S1), recorded during sessions lasting on aver- 129 age more than 3 hours (cf. sample of 2 minutes of recorded 130 activity, Fig. 1c). We focused on periods of spontaneous ac- 131 tivity (no stimulus was presented to the animal) and evoked 132 activity (where drifting gratings were displayed), cf. Meth- 133

ods and Fig. S1. The results revealed that dimensionality – when extrapolating to realistic cortical network sizes (see Methods) – had values in the order of ~ 100 dimensions (cf. Fig. 1d, Fig. S3a), extremely low when compared to the number of neurons in each brain region (normalized dimensionality, right y-axis) – on the range of 0.01%. Subdividing the data for visual cortex, we further found an increase in dimensionality across visual areas aligned with the underlying functional hierarchy (11) for the evoked condition (Fig. S4), underscoring a likely functional role for dimensionality in the circuits' computations.

However, in electrophysiology recordings there are two factors that could drive such a low dimensionality: low-rank components driven by inputs to the network (7) and intrinsic network connectivity constraining neural dynamics. Distinct from recent studies that have focused on the dimensionality of extrinsic, stimulus-related activity (6, 17), here we focus on intrinsic network connectivity. While sensory inputs may entrain the network's neural responses to be low-dimensional, the question of whether neural activity is inherently low-dimensional captures the effects of recurrent connectivity and therefore indicates the operating regime of the underlying circuits.

To isolate the contribution of intrinsic network connectivity we use a cross-validated Latent Factor Analysis (LFA) (9), which removes low rank components of shared neural variability (Figs. S5a to S5e). We deem the remaining variability intrinsic – inherent to the analyzed brain region – and it may be regarded as an upper bound on the dimensionality of network responses (cf. Fig. 1e, (19)). The resulting dimensionality values were in the hundreds, which was an order of

134 magnitude greater than the dimensionality of the full covariance;
 135 nevertheless, they are extremely low, on the range of
 136 0.1%, when compared to the average number of neurons in
 137 each of these brain regions. These values were also consistent
 138 across conditions despite being evaluated around distinct
 139 operating points (Fig. 1f). We verified our approach by utilizing
 140 cross-validated Principal Component Analysis instead of LFA (Fig. S6), as well as simulations in a network model with
 141 established ground truth (Fig. S7), which confirmed that our
 142 method produced tight upper bounds in dimensionality estimation.
 143 In addition, for the spontaneous condition, we utilized a Hidden Markov Model to evaluate the results' robustness with
 144 respect to different behaviorally relevant stationary intervals in the activity (Fig. S8); while for the evoked condition,
 145 we demonstrated consistency of our findings across drifting grating orientations (Fig. S9).

150 Strong recurrence as a mechanism for low dimensionality in cortical networks

151 In the case of cortical areas, we propose a mechanistic theory
 152 for the origin of the remarkably low dimensionality ($\lesssim 0.1\%$)
 153 of neural activity, in terms of the reverberation of this activity
 154 through the underlying network. Recall that Eq. (1) isolates
 155 two factors that can drive low dimensionality, m and s . The theory of balanced cortical networks predicts that
 156 there is strong inhibitory feedback which drives nearly asynchronous
 157 activity and hence a nearly vanishing average correlation
 158 $m \sim 0$ (26, 29), a feature we also find for intrinsic covariances
 159 in our cortical data. Consequently the leading factor in determining the dimensionality is the standard deviation
 160 of cross-covariances s .

161 Fig. 2b illustrates how the value of s is determined by the
 162 level of recurrence in a balanced network (23, 43): as this
 163 recurrence becomes stronger, there is the potential for longer
 164 and longer paths that significantly impact the co-variation in
 165 activity between each pair of neurons. These longer paths
 166 are highly variable from one neuron pair to the next, and this
 167 variability drives a wide range in the cross-covariances across
 168 neural pairs. This intuition can be formalized through a single
 169 number R , derived from the eigenvalues of the connectivity
 170 matrix, which characterizes the overall strength of recurrent
 171 coupling (see Suppl. Mat. for a formal derivation based on
 172 (23, 43) and (25) for an alternative derivation).

173 Therefore, establishing a three-way link between low-
 174 dimensional neural activity (Fig. 2b bottom), large variance
 175 of correlations (Fig. 2b center) and strong recurrent connec-
 176 tions (Fig. 2b top), we found a direct relationship between
 177 dimensionality and recurrence R in the balanced regime:

$$D_{PR}/N = (1 - R^2)^2. \quad (2)$$

178 This relationship is extremely robust as shown by our vali-
 179 dation in complex nonlinear spiking networks (Fig. 2c and
 180 Figs. S10 to S11) and holds for networks with a wide range
 181 of topologies, as we will further explore below.
 182 Analyzing the intrinsic dimensionality of activity across cor-
 183 tical layers we found a wide variation across layers, yet con-
 184 sistent across conditions. Intrinsic dimensionality was on the
 185 186 187 188 189 190 191 192 193 194

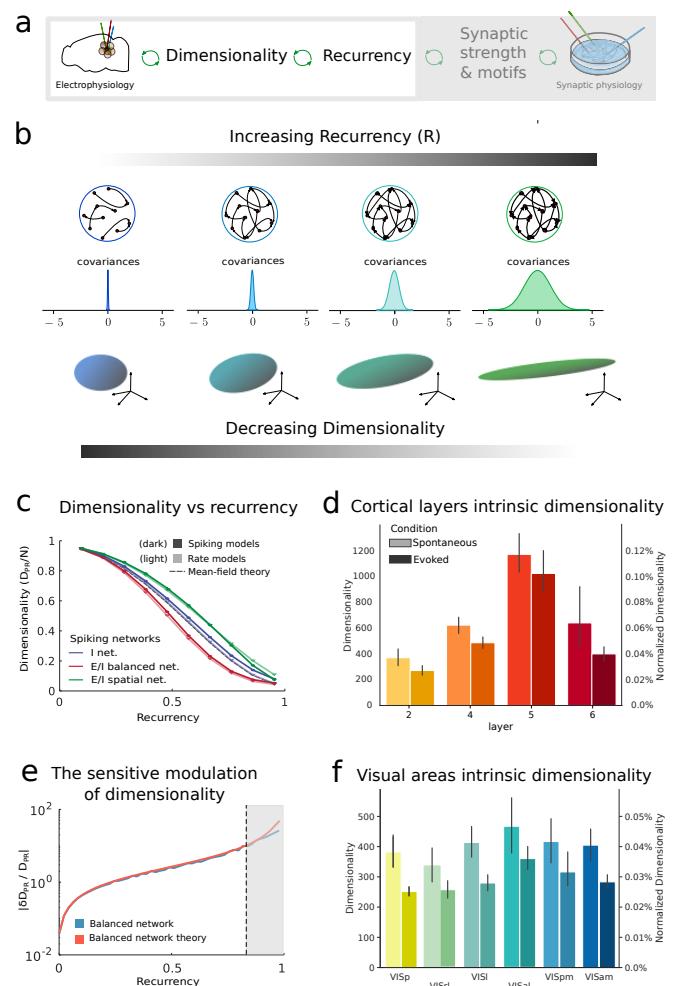


Fig. 2. Dimensionality and recurrence R across the visual cortical circuit. a) Figure focus: Dimensionality is linked to recurrence. b) Three-way connection between recurrence, width of covariances distribution and dimensionality of neural activity. c) Left: Normalized dimensionality D_{PR}/N for a balanced network as a function of the recurrence R . Theoretical predictions for the dimensionality in homogeneous inhibitory networks (gray) are accurate for simulations of rate models (light colors) and spiking models (dark colors) across various network topologies (blue: homogeneous single population inhibitory networks, red: homogeneous two-population excitatory-inhibitory networks, green: spatially organized single-population inhibitory networks). d) Dimensionality of intrinsic covariances across visual cortical layers. Dimensionality values are for networks of size $N = 10^6$ neurons (cf. Methods). e) Relative modulation of dimensionality as a function of the recurrence, Eq. (3). Blue and red curves overlap. The shaded gray area highlights the sensitive regime. f) Dimensionality of intrinsic covariances across visual cortical areas ordered according to the visual cortical hierarchy identified in (11).

order of 0.1% or less (Fig. 2d), consistent with the hypothesis that cortical circuits operate in a strongly recurrent regime. Layers 2 and 5 had respectively the lowest and highest intrinsic dimensionality, a result consistent with the hypothesis that recurrence in layer 2 is stronger than in layer 5 (44) (Fig. 2d). We then performed the analysis of intrinsic dimensionality for areas along the visual processing hierarchy (Fig. 2f and Fig. S12) (11). Without further subdividing neural activity layerwise, intrinsic dimensionality appeared to be quite constant – consistent with anatomical studies suggesting that connectivity differs less across areas than across layers (45). Dimensionalities in the evoked condition appeared

195 to be lower than in the spontaneous condition, suggesting that
196 networks approach more recurrent operating points as they
197 adapt to stimuli.

198 Overall our analysis shows how trends in the intrinsic
199 dimensionality in strongly coupled, balanced regimes relate
200 to modulations in network recurrency, hypotheses that we
201 revisit in detailed connectivity studies below.

203 Sensitive control of dimensionality

The connection between D_{PR} and R , coupled with the analysis of cortical areas, suggests that the network's dimensionality in cortical circuits is tightly constrained, being much less than the number of neurons $D_{PR}/N \lesssim 0.1\%$. Furthermore, in the same regime, the relative change in dimensionality with respect to the recurrency R is highest (Fig. 2e):

$$\frac{\delta D_{PR}}{D_{PR}} = \frac{dD_{PR}}{dR} \frac{1}{D_{PR}} = \frac{4R}{R^2 - 1}. \quad (3)$$

204 As a result, with increasing R balanced neural networks gain
205 sensitive control of dimensionality as a function of recurrency.
206 In summary, the low values of D_{PR} obtained for cortical
207 areas of the mouse brain indicate that recurrency for these
208 brain areas is strong (Fig. 2f), suggesting, in turn, that the re-
209 current strength R has sensitive control over the dimensionality
210 of neural activity (Fig. 2e). We next show that this control
211 can be enacted systematically via the internal structure of re-
212 current connections.

213 Local tuning of the global recurrency R

214 We asked *how* balanced neural networks can regulate
215 their overall recurrency R and hence their dimensionality
216 (Fig. 3a). While many previous studies established how
217 global features of recurrent connectivity affect R (23, 46, 47),
218 here we focus on the impact of local connectivity motifs.
219 These motifs are statistics of the neural connectivity W that
220 involve *pairs* of connections (see Methods), and are the fun-
221 damental local building blocks of networks. Second order
222 motifs appear in four types: reciprocal, divergent, conver-
223 gent, and chain motifs (Fig. 3b), together with the variance
224 (strength) of neural connections already present in purely
225 random models (46). These motifs have been shown to play
226 important roles determining neuron-to-neuron correlations
227 and allied circuit dynamics (32–34, 38, 48–53) and emerge
228 from learning rules consistent with biological STDP mecha-
229 nisms (54, 55).

230 We developed a comprehensive theory that takes full ac-
231 count of all second order motifs in networks of excitatory
232 and inhibitory neurons, generalizing allied results developed
233 via distinct theoretical tools (25, 51). Our analysis yields a
234 novel compact analytical quantity that shows how recurrency
235 is modulated by local structure $R = \sigma \cdot R_{\text{motifs}}$ where σ stems
236 from the overall synaptic strength and

$$R_{\text{motifs}} = \frac{1 - \tau_{\text{div}} - \tau_{\text{con}} - 2\tau_{\text{chn}} + \tau_{\text{rec}}}{\sqrt{1 - \tau_{\text{div}} - \tau_{\text{con}}}} \quad (4)$$

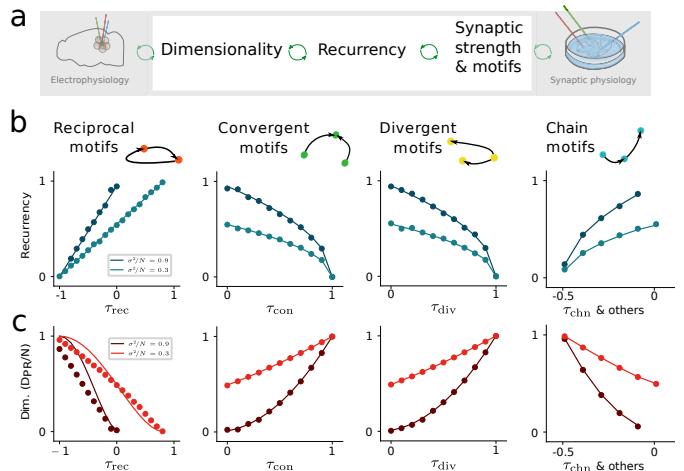


Fig. 3. Theory for recurrency and dimensionality in balanced networks with second-order motifs. a) Figure focus: Modulation of recurrency and dimensionality by local circuit motifs. b) Theoretical dependence of recurrency on motif abundances. c) Theoretical dependence of dimensionality on motif abundances. Solid lines: theory. Markers: simulations.

237 compactly describes the influence of second order motifs.
238 Here τ_{rec} , τ_{chn} , τ_{div} , τ_{con} denote correlation coefficients be-
239 tween pairs of synapses that capture the abundance of recip-
240 rocal, chain, divergent, and convergent motifs, respectively
241 (cf. Methods and Suppl. Mat.). This formula describes how
242 the recurrency R is affected by increasing or decreasing the
243 prevalence of second order motifs (Fig. 3b) and thus links
244 the modulation of auto- and cross-covariances and the dimen-
245 sionality of neural responses across the global network to the
246 statistics of local circuit connectivity, as shown in Figs. 3b
247 to 3c. While Eq. (4) is exact for the simplest type of balanced
248 networks, which are networks of inhibitory neurons whose
249 recurrent interactions balance the excitatory external input,
250 we show that it generalizes to models of balanced excitatory-
251 inhibitory networks (56). Here, σ and τ combine the corre-
252 sponding statistics of the excitatory and inhibitory subpopula-
253 tions (cf. Fig. S13 and Suppl. Mat.). This direct link be-
254 tween quantifiable, local connectivity statistics and the global
255 network property R opened the door to novel functional anal-
256 yses of very large-scale synaptic physiology datasets in both
257 mouse and human, as we describe next.

Cortical circuits in mouse and human employ local synaptic motifs to modulate their recurrent coupling

We analyzed newly released synaptic physiology datasets from both mouse and human cortex (12, 41) to assess the involvement of synaptic motifs in modulating network recurrency and to probe their possible role in driving the changes in dimensionality seen across layers and conditions in Fig. 2d. This synaptic physiology dataset was based on simultaneous in-vitro recordings of 3-to-8 cell groups (cf. Methods) and consisted of 1,368 identified synapses from mouse primary visual cortex (out of more than 22,000 potential connections that were tested) and 363 synapses from human cortex. Recall that the recurrency R as defined

above has an overall scaling term, σ , and a motif contribution term given by Eq. (4). We begin by assessing the probability of occurrence of individual motifs and hence estimating R_{motifs} , cf. Methods. The relationship Eq. (4) defines a specific hypothesis for empirical motif statistics that modulate global circuit dimensionality: if they combine to produce $R_{\text{motifs}} > 1$ then they are tuned to reduce dimensionality, and vice-versa for $R_{\text{motifs}} < 1$.

Beginning with the mouse data, we calculated the statistics of individual motifs, separating those for excitatory (E) and inhibitory (I) synapses (EE, EI, II, Fig. 4b), and found many motifs to be significantly present. We then combined these to compute R_{motifs} . This requires two parameters: one regulating the overall ratio of inhibitory to excitatory neurons (γ), and another the relative strength of the inhibitory synapses (g) (cf. Suppl. Mat.). We found that $R_{\text{motifs}} < 1$ across all choices of these parameters (Fig. 4c).

Many different motifs, distinctly involving E and I cell types, combine to produce this value of R_{motifs} . To study how this occurs, we separated the contribution to R_{motifs} from motifs within the excitatory population (EE type only) by assuming that other motifs occur at chance level. Interestingly, the EE motifs operating alone produced the opposite trend, increasing the radius $R_{\text{motifs}}^{\text{EE only}} > 1$ (Fig. 4d center, one-sided t-test p-value $< 10^{-20}$). The same was true for motifs within the inhibitory population $R_{\text{motifs}}^{\text{II only}} > 1$ (Fig. 4d right, one-sided t-test p-value $< 10^{-20}$), and for motifs within the excitatory population in human cortical circuits (Fig. 4e). We further confirmed that this effect is also predicted for previously published data on excitatory connections in rat visual cortex (36) (cf. Methods). The increased recurrent coupling strengths within both the excitatory and inhibitory populations underscore the prominent role of EI motifs, specifically reciprocal EI motifs, in decreasing and potentially regulating the overall recurrence to be $R_{\text{motifs}} < 1$ (Fig. 4c, Fig. S13).

We found evidence that synaptic motifs contribute to the cross-layer differences in the dimensionality of cortical activity identified above (Fig. 2d). There, activity in mouse cortex layer 2 showed lower dimensionality, corresponding to an increased overall recurrence $R = \sigma R_{\text{motifs}}$ compared to layers 4, 5 or 6. Intriguingly, the corresponding motif contribution R_{motifs} was significantly stronger for layer 2 than for layer 5 (Fig. 4f left), suggesting that motifs play a role in increasing R . Moreover, a similar result held true when performing the analysis on the human dataset for excitatory connections in layers 2 and 3 (Fig. 4g and Figs. S14 to S15). Overall, the distinct roles of motifs among E and I cell types in regulating R_{motifs} point to ways that the recurrence, and hence dimension, may be controlled dynamically in neural circuits.

One pathway for this control is via cell types, which subdivide E and I populations (Fig. 4h) and are separately identified in the synaptic physiology dataset which we analyze. As Table S2e shows, reciprocal EI motifs were prevalent when the inhibitory interneuron was a somatostatin cell (SST) or a parvalbumin cell (PV), but not a VIP cell. Recent findings

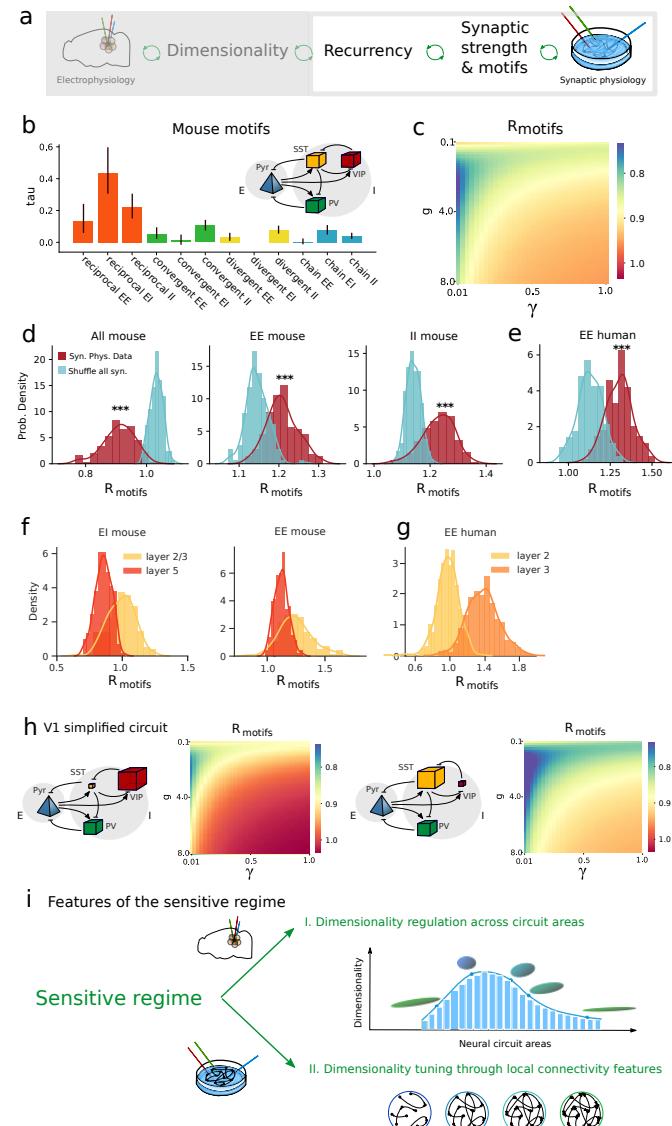


Fig. 4. Motif analysis in synaptic physiology datasets. a) Figure focus: network reciprocity inferred via synaptic physiology datasets. b) Motif abundances in mouse V1. Inset: Simplified V1 circuit diagram with only prevalent connections (57). c) Inferred R_{motifs} as a function of relative strength g of inhibitory and excitatory synapses and ratio γ of inhibitory to excitatory population size. d) Estimation of R_{motifs} from mouse data (500 bootstraps based on random subsets of 80% of sessions). Shuffle of synapses within each experimental session preserving EI synapse type (shuffle EI syn.). Effect of all EI motifs ($g = 4$ and $\gamma = 0.25$). e) Same as d) for EE motifs in human dataset. f) Layer-wise estimation of R_{motifs} for EI balanced motifs (left), EE-only motifs (right) in mouse. g) Layer-wise estimation of R_{motifs} for EE-only motifs in human. h) Effect of VIP regulation on R_{motifs} . Left: SST is inactive and R_{motifs} is computed over the displayed circuit involving PV and VIP. Right: SST is active and VIP is inhibited resulting in PV and SST balancing the activity of the Pyr population. i) Schematic of sensitive regime and its advantages.

have shown that VIP interneurons (58, 59) are important regulators of cortical functions, are modulated by arousal and movement (60), and are recruited by reinforcement signals (61). We thus hypothesized that VIP interneurons could adjust the recurrent coupling of cortical circuits by exerting disinhibitory control via the SST population (57, 58) (this could occur while preserving the balanced regime, given the very sparse connectivity within the VIP population and from VIP to pyramidal cells (Fig. 4h)). Under the simplest form of this

hypothesis, there exists a mutual antagonism between VIP and SST populations that results in only one of these populations being active at a time. We derived the values of R_{motifs} in this case, and found that activation of the VIP pathway substantially increased R_{motifs} (Fig. 4h) and hence decreased predicted dimensionality. This shows how VIP interneurons, which themselves may collect top-down signals from higher cortical areas, can selectively tune the dimensionality of local cortical activity. This adds another channel for population-level control of information processing in cortical circuits, on top of existing hypotheses for how VIP neurons regulate gain in individual neurons (59). Furthermore, we predicted that a similar trend of increasing R_{motifs} follows from short-term synaptic plasticity (STP) in modulating cell-type specific connections upon stimulus onset, although a detailed analysis awaits future investigation (Figs. S16a to S16c). Finally, we note that our results were robust to inclusion of estimates of the relative synaptic strength of cell type specific connections (Fig. S16d) and the cell type specific prevalence of the three inhibitory subpopulations (Fig. S16d) (see Methods).

In sum, in this section we asked whether the experimentally derived structure of cortical networks – quantified by their motifs – enables the tuning of the recurrency R and hence dimensionality. We found that the answer is yes, and that the VIP disinhibitory pathway and STP both provide examples of how motifs are likely to play a substantial role in this tuning. Specifically, upon accounting for STP modulation, our preliminary analysis suggested that recurrency is increased and, henceforth, dimensionality decreased; this is consistent with the finding that intrinsic dimensionality is lower for evoked, rather than spontaneous, activity across visual cortical areas Fig. 2f. As we reviewed above, high dimensional activity can retain stimulus details, while lower dimensional activity can promote robust and general downstream decoding. Taken together, this points to new functional roles for modulatory and adaptive mechanisms known to take effect across time during stimulus processing and to be engaged across brain states.

Summary and discussion

We showed that neural networks across the mouse cortex operate in a strongly recurrent regime, in which the dimensionality of their activity is much smaller than the number of neurons. A feature of circuits in this regime is the ability to sensitively modulate the relative dimensionality of their activity patterns via their recurrency R , a unifying measure of a network's overall recurrent coupling strength (Fig. 4i). This has potentially important consequences for computation. Indeed, our analyses of large scale Neuropixels recordings from the cortex showed systematic trends in this dimensionality across cortical layers and stimulus conditions. Our theory links these findings to clear predictions for the recurrency in cortical areas: a higher dimensionality suggests a lower recurrency and vice-versa. Moreover, we showed that the critical circuit features that determine a circuit's recurrency R – and hence the dimensionality of its activity patterns – are not just its overall synaptic strength, but also a tractable set

of local synaptic motifs. We use theoretical tools to quantify the effect of these motifs via a compact index R_{motifs} . This provides a concrete target quantity that can, as we show, be readily obtained from emerging, large-scale synaptic connectivity datasets and used to check predictions about the role of synaptic structure in controlling dimensionality. Thus theory and brain-wide experimental analyses converge to provide new evidence for an intriguing concept (51, 62, 63): that the connectivity of cortical brain networks exert global control over their activity in a highly local and tractable manner, via the building blocks of their local circuitry (Fig. 4i). This concept may extend beyond cortex: indeed, individual areas in hippocampal and thalamic circuits also show systematic trends in dimensionality (Fig. S4 and Fig. S12) whose mechanistic origins could be similar.

Acknowledgments

We thank Krešimir Josić, Brent Doiron, Luca Mazzucato, Stefan Mihalas, Nicholas Steinmetz, Michael Okun, Byron Yu, Daniel Denman, Yu Hu, Severine Durand and Leenoy Meshulam for helpful discussions. S.R. was supported by a Swartz Fellowship in Theoretical Neuroscience at the University of Washington, and by NIH BRAIN Grant R01EB026908, and E.S.B. by NIH R01EB026908 and NSF DMS Grant 1514743. D.D. and M.H. were supported by the HGF young investigator's group VH-NG-1028, the European Union's Horizon2020 research and innovation program under Grant agreements No. 785907 (Human Brain Project SGA2) and No.945539 (Human Brain Project SGA3), and funded under the Excellence Strategy of the Federal Government and the Länder (G:(DE-82)EXS-PF-JARA-SDS005). We thank the Allen Institute for Brain Science founder, Paul G. Allen, for his vision, encouragement, and support.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code for the numerical simulations and data analyses are immediately available from the corresponding author upon reasonable request, and will be released in a public repository before final publication of the manuscript.

Bibliography

1. S. Fusi, E. K. Miller, M. Rigotti, *Current opinion in neurobiology* **37**, 66 (2016).
2. A. Litwin-Kumar, K. D. Harris, R. Axel, H. Sompolinsky, L. F. Abbott, *Neuron* **93**, 1153 (2017).
3. M. Rigotti, *et al.*, *Nature* **497**, 585 (2013). Number: 7451 Publisher: Nature Publishing Group.
4. N. A. Cayco-Gajic, C. Clopath, R. A. Silver, *Nature Communications* **8**, 1116 (2017).
5. J. P. Cunningham, B. M. Yu, *Nature Neuroscience* **17**, 1500 (2014).
6. C. Stringer, M. Pachitariu, N. Steinmetz, M. Carandini, K. D. Harris, *Nature* **571**, 361 (2019).
7. C. Stringer, *et al.*, *Science* **364** (2019).
8. C. Huang, *et al.*, *Neuron* **101**, 337 (2019).
9. R. C. Williamson, *et al.*, *PLOS Computational Biology* **12**, 1 (2016).
10. T. A. Engel, N. A. Steinmetz, *Current opinion in neurobiology* **58**, 181 (2019).
11. J. H. Siegle, *et al.*, *Nature* **592**, 86 (2021).
12. L. Campagnola, *et al.*, *bioRxiv* (2021).
13. T. M. Cover, *IEEE Transactions on Electronic Computers* **EC-14**, 326 (1965).
14. V. N. Vapnik, *Statistical learning theory* (1998).
15. M. Farrell, S. Recanatesi, G. Lajoie, E. Shea-Brown, *bioRxiv* p. 564476.

443 16. V. Papyan, X. Han, D. L. Donoho, *Proceedings of the National Academy of Sciences* **117**,
444 24652 (2020).

445 17. P. Gao, *et al.*, *BioRxiv* p. 214262 (2017).

446 18. J. A. Gallego, M. G. Perich, L. E. Miller, S. A. Solla, *Neuron* **94**, 978 (2017).

447 19. L. Mazzucato, A. Fontanini, G. La Camera, *Frontiers in Systems Neuroscience* **10** (2016).

448 20. U. Cohen, S. Chung, D. D. Lee, H. Sompolinsky, *Nature communications* **11**, 1 (2020).

449 21. S. Recanatesi, *et al.*, *bioRxiv* p. 471987 (2019).

450 22. M. e. a. Stern, In the footsteps of learning: Changes in network dynamics and dimensionality
451 with task acquisition. (2020). COSYNE Conference Abstract.

452 23. D. Dahmen, S. Grün, M. Diesmann, M. Helias, *Proceedings of the National Academy of Sci-
453 ences* **116**, 13051 (2019).

454 24. S. Recanatesi, *et al.*, *arXiv preprint arXiv:1906.00443*.

455 25. Y. Hu, H. Sompolinsky, *bioRxiv* (2020).

456 26. T. Tetzlaff, M. Helias, G. T. Einevoll, M. Diesmann, *Plos Computational Biology* **8**, e1002596
457 (2012). WOS:000308553500003.

458 27. C. van Vreeswijk, H. Sompolinsky, *Science (New York, N.Y.)* **274**, 1724 (1996).

459 28. A. S. Ecker, *et al.*, *Science* **327**, 584 (2010). WOS:000274020500039.

460 29. A. Renart, *et al.*, *Science* **327**, 587 (2010). WOS:000274020500040.

461 30. V. C. . . S. dev documentation, https://allenSDK.readthedocs.io/en/v2.2.0/visual_coding_neuropixels.

462 31. E. Schneidman, M. J. Berry, R. Segev, W. Bialek, *Nature* **440**, 1007 (2006).
463 WOS:000236906000026.

464 32. Y. Hu, J. Trousdale, K. Josic, E. Shea-Brown, *Physical Review E* **89**, 032802 (2014).
465 WOS:000332672200015.

466 33. V. Pernice, B. Staude, S. Cardanobile, S. Rotter, *Plos Computational Biology* **7**, e1002059
467 (2011). WOS:000291015800032.

468 34. J. Trousdale, Y. Hu, E. Shea-Brown, K. Josic, *Plos Computational Biology* **8**, e1002408
469 (2012). WOS:000302244000016.

470 35. Y. Hu, J. Trousdale, K. Josic, E. Shea-Brown, *Journal of Statistical Mechanics-Theory and
471 Experiment* p. P03012 (2013). WOS:000316056900012.

472 36. S. Song, P. J. Sjöström, M. Reigl, S. Nelson, D. B. Chklovskii, *Plos Biology* **3**, 507 (2005).
473 WOS:000227984000018.

474 37. R. Perin, T. K. Berger, H. Markram, *Proceedings of the National Academy of Sciences* p.
475 201016051 (2011).

476 38. L. Zhao, B. Beverlin, T. Netoff, D. Q. Nykamp, *Frontiers in Computational Neuroscience* **5**
477 (2011).

478 39. O. Sporns, *Discovering the human connectome* (MIT press).

479 40. F. Mastrogiuseppe, S. Ostojic, *Plos Computational Biology* **13**, e1005498 (2017).
480 WOS:000402542900036.

481 41. S. P. A. documentation, [https://portal.brain-map.org/explore/connectivity/synaptic-
physiology](https://portal.brain-map.org/explore/connectivity/synaptic-
482 physiology).

483 42. R. Rosenbaum, M. A. Smith, A. Kohn, J. E. Rubin, B. Doiron, *Nature Neuroscience* **20**, 107
484 (2017). WOS:000391085500018.

485 43. D. Dahmen, *et al.*, *BioRxiv* (2020).

486 44. S. Peron, *et al.*, *Nature* **579**, 256 (2020).

487 45. J. A. Harris, *et al.*, *Nature* **575**, 195 (2019).

488 46. H. Sompolinsky, A. Crisanti, H.-J. Sommers, *Physical review letters* **61**, 259 (1988).

489 47. J. Aljaied, D. Renfrew, M. Vegué, T. O. Sharpee, *Physical Review E* .

490 48. N. Brunel, *Nature Neuroscience* **19**, 749 (2016).

491 49. D. Martí, N. Brunel, S. Ostojic, *Physical Review E* **97**, 062314 (2018). Publisher: American
492 Physical Society.

493 50. G. K. Ocker, *et al.*, *Current Opinion in Neurobiology* **26**, 109 (2017).

494 51. S. Recanatesi, G. K. Ocker, M. A. Buice, E. Shea-Brown, *PLoS computational biology* **15**,
495 e1006446.

496 52. D. Zhang, C. Zhang, A. Stepaniants, *Journal of Neuroscience* **39**, 6888. Publisher: Soc
497 Neuroscience.

498 53. Y. Hu, J. Trousdale, K. Josic, E. Shea-Brown, *Journal of Statistical Mechanics: Theory and
499 Experiment* **2013**, P03012 (2013).

500 54. M. Gilson, A. N. Burkitt, D. B. Grayden, D. A. Thomas, J. L. van Hemmen, *Biological Cyber-
501 netics* **101**, 427 (2009). WOS:000272176000008.

502 55. G. K. Ocker, A. Litwin-Kumar, B. Doiron, *Plos Computational Biology* **11**, e1004458 (2015).
503 WOS:000360824500049.

504 56. N. Brunel, *Journal of Computational Neuroscience* **8**, 183 (2000). WOS:000087725300001.

505 57. D. J. Millman, *et al.*, *Elife* **9**, e55130 (2020).

506 58. M. M. Karnani, *et al.*, *Journal of Neuroscience* **36**, 3471 (2016).

507 59. K. A. Ferguson, J. A. Cardin, *Nature Reviews Neuroscience* **21**, 80 (2020).

508 60. Y. Fu, *et al.*, *Cell* **156**, 1139 (2014).

509 61. H.-J. Pi, *et al.*, *Nature* **503**, 521 (2013).

510 62. V. Pernice, B. Staude, S. Cardanobile, S. Rotter, *Physical Review E* **85**, 031916 (2012).
511 WOS:000302117900006.

512 63. Y. Hu, *et al.*, *Phys. Rev. E* **98**, 062312 (2018).

513 64. M. M. Churchland, *et al.*, *Nature neuroscience* **13**, 369 (2010).