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The brain contains an astronomical number of neurons, but1

it is their collective activity that underlies brain function. The2

number of degrees of freedom that this collective activity ex-3

plores – its dimensionality – is therefore a fundamental signa-4

ture of neural dynamics and computation (1–7). However, it is5

not known what controls this dimensionality in the biological6

brain – and in particular whether and how local synaptic net-7

works play a role (8–10). Through analysis of high-density Neu-8

ropixels recordings (11), we argue that areas across the mouse9

cortex operate in a sensitive regime that gives these synaptic net-10

works a very strong role in controlling dimensionality. More-11

over, we show that this control is expressed through highly12

tractable features of these synaptic networks. We then analyze13

these key features via a massive synaptic physiology dataset (12).14

Quantifying these features in terms of cell-type specific network15

motifs, we find that the synaptic patterns that impact dimen-16

sionality are prevalent in both mouse and human brains. Thus17

local circuitry scales up systematically to help control the de-18

grees of freedom that brain networks may explore and exploit.19

Introduction20

The complexity of a neural network’s activity can be21

measured by its dimensionality – that is, the number of22

collective degrees of freedom that its neurons explore. Di-23

mensionality is closely linked to neural computation. Signal24

classification, for example, benefits from network activities25

that increase the dimensionality of the incoming signals to26

be classified (2–4, 13, 14). However, compressing inputs27

into lower-dimensional activity patterns helps generalization28

to novel signals (1, 15, 16). Studies have emphasized the29

comparatively high (3, 6, 7) or low (17, 18) dimensionality30

of recordings in various experimental settings. Moreover,31

the dimensionality of neural dynamics can change over32

time (19), throughout the information processing hierarchy33

(20), or during learning (15, 21, 22). These findings, taken34

together, highlight the importance of dimensionality as a35

property of network activity that will vary depending on the36

type of computation performed in a circuit. A key question37

is: how can the connectivity of a network regulate the38

dimensionality of its activity (8, 9, 23–25)?39

40

This question is of particular interest for cortical networks.41

The preponderance of inhibitory feedback in these networks42

leads to a balanced, asynchronous state with weak correla-43

tions between neurons (26–29). Such asynchronous dynam-44

ics at first appear to imply high dimensional dynamics, in45

which all neurons are roughly independent. However, by ana-46

lyzing electrophysiological recordings from over 30,000 neu-47

rons (11, 30) we show that the opposite is the case: dynamics48

are constrained to spaces of very low dimension relative to49

the number of neurons in areas across the brain. This results50

from the rapid accumulation of many weak but diverse pair-51

wise correlations across the networks (cf. (31)) – as quan-52

tified by the variance of these correlations, over and above53

their average.54

To understand the mechanistic origins of this low relative di-55

mensionality of cortical activity, we advance the theory of56

dynamics in balanced networks, to show how the key vari-57

ance of correlations results from the network’s recurrent con-58

nectivity. Moreover, we show that in this strongly recur-59

rent regime, dimensionality is highly sensitive to changes60

in the structure of recurrent connections. Beyond overall61

synaptic strength, specific connectivity patterns, or motifs,62

between pairs and triplets of cells (25, 32–40) can signif-63

icantly tune the dimensionality of neural activity. To test64

whether this is broadly the case in biological circuits, we an-65

alyze newly released synaptic physiology datasets (12, 41),66

quantifying connections among more than 22,000 pairs of67

neurons. We find that the connectivity motifs implicated by68

our theory were strongly present in both mouse and human69

brain, that they differ across cortical layers in ways consis-70

tent with layer-specific dimensionality of neural activity, and71

show how previously established patterns of cell-type spe-72

cific modulation and adaptation can have a new effect: to73

further regulate connectivity motifs and hence dimensional-74

ity across time and brain state.75

Low dimensionality across brain regions76

We quantify the dimensionality of neural activity via the par-77

ticipation ratio DPR, a widely used measure of dimensional-78

ity which, in particular, often corresponds to the number of79
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Fig. 1. Intrinsic dimensionality estimation in neural circuits. a) Figure focus: Dimensionality inferred via electrophysiology recordings. b) Sites of Neuropixels recordings
colored by brain region. c) Raster plot example of Neuropixels recordings for one experimental session (session id=715093703). d) Dimensionality based on full covariance
across brain regions and conditions (evoked and spontaneous) for a network of sizeN = 106 neurons (cf. Methods). e) Intrinsic dimensionality based on intrinsic covariance
across brain regions and conditions (evoked and spontaneous) for a network of size N = 106 neurons (cf. Methods). f) Neural activity of example session for spontaneous
(green) and evoked (red) condition in the coordinate axes given by the top Principal Components (PC) determined across both conditions. The evoked condition corresponds
to drifting grating stimuli with 75 repeats per stimulus orientation. The three panels represent the total, shared, and intrinsic activity, respectively (cf. Methods, Fig. S5).
Operating points are defined as the average activity per condition. g) Top panels: Schematic of Latent Factor Analysis decomposition of the full covariance into shared and
intrinsic covariances (cf. Fig. S5a). Bottom panels: distribution of cross-covariances for the three matrices.

principal components required to capture roughly 80% of a80

signal’s variability (17) (Fig. S2a).81

DPR is defined via the eigenvalues of the covariance matrix
and can be rewritten in terms of the statistics of covariances
(19) (Fig. S2b) (see Methods). The mean and variance of
cross-covariances across neurons define the participation ra-
tio DPR for a large number of recorded neurons N :

DPR(C)≈ N

1 +N(m2 +s2) . (1)

Specifically, m = c̄
ā and s = δc

ā are the ratios between the82

mean c̄ or standard deviation δc of cross-covariances and the83

average auto-covariance ā, the latter acting as a firing rate84

normalization (Fig. S2b). The two, m and s, correspond to85

independent factors influencing dimensionality. For exam-86

ple, a high m can be driven by a small number of “low-rank”87

behavioral components (42) while s, as we will show, may88

result from strong recurrent connections between neurons.89

However, both contribute equally to modulating dimension-90

ality, since even unstructured correlations between neurons,91

measured by s, can accumulate in large networks to substan-92

tially constrain the possible modes of neural activity.93

We applied this measure Eq. (1) to large-scale Neuropixels94

recordings collected across multiple regions of the mouse95

brain at the Allen Institute for Brain Science, Figs. 1b to 1c96

(cf. (11, 30)). We analyzed 32,043 neurons across 5 brain97

regions (Table S1), recorded during sessions lasting on aver-98

age more than 3 hours (cf. sample of 2 minutes of recorded99

activity, Fig. 1c). We focused on periods of spontaneous ac-100

tivity (no stimulus was presented to the animal) and evoked101

activity (where drifting gratings were displayed), cf. Meth-102

ods and Fig. S1. The results revealed that dimensionality103

– when extrapolating to realistic cortical network sizes (see104

Methods) – had values in the order of ∼ 100 dimensions (cf.105

Fig. 1d, Fig. S3a), extremely low when compared to the num-106

ber of neurons in each brain region (normalized dimension-107

ality, right y-axis) – on the range of 0.01%. Subdividing the108

data for visual cortex, we further found an increase in di-109

mensionality across visual areas aligned with the underlying110

functional hierarchy (11) for the evoked condition (Fig. S4),111

underscoring a likely functional role for dimensionality in the112

circuits’ computations.113

However, in electrophysiology recordings there are two fac-114

tors that could drive such a low dimensionality: low-rank115

components driven by inputs to the network (7) and intrin-116

sic network connectivity constraining neural dynamics. Dis-117

tinct from recent studies that have focused on the dimension-118

ality of extrinsic, stimulus-related activity (6, 17), here we119

focus on intrinsic network connectivity. While sensory in-120

puts may entrain the network’s neural responses to be low-121

dimensional, the question of whether neural activity is inher-122

ently low-dimensional captures the effects of recurrent con-123

nectivity and therefore indicates the operating regime of the124

underlying circuits.125

To isolate the contribution of intrinsic network connectivity126

we use a cross-validated Latent Factor Analysis (LFA) (9),127

which removes low rank components of shared neural vari-128

ability (Figs. S5a to S5e). We deem the remaining variabil-129

ity intrinsic – inherent to the analyzed brain region – and it130

may be regarded as an upper bound on the dimensionality of131

network responses (cf. Fig. 1e, (19)). The resulting dimen-132

sionality values were in the hundreds, which was an order of133
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magnitude greater than the dimensionality of the full covari-134

ance; nevertheless, they are extremely low, on the range of135

0.1%, when compared to the average number of neurons in136

each of these brain regions. These values were also consis-137

tent across conditions despite being evaluated around distinct138

operating points (Fig. 1f). We verified our approach by utiliz-139

ing cross-validated Principal Component Analysis instead of140

LFA (Fig. S6), as well as simulations in a network model with141

established ground truth (Fig. S7), which confirmed that our142

method produced tight upper bounds in dimensionality esti-143

mation. In addition, for the spontaneous condition, we uti-144

lized a Hidden Markov Model to evaluate the results’ robust-145

ness with respect to different behaviorally relevant stationary146

intervals in the activity (Fig. S8); while for the evoked con-147

dition, we demonstrated consistency of our findings across148

drifting grating orientations (Fig. S9).149

Strong recurrence as a mechanism for low di-150

mensionality in cortical networks151

In the case of cortical areas, we propose a mechanistic theory152

for the origin of the remarkably low dimensionality (/ 0.1%)153

of neural activity, in terms of the reverberation of this activ-154

ity through the underlying network. Recall that Eq. (1) iso-155

lates two factors that can drive low dimensionality, m and156

s. The theory of balanced cortical networks predicts that157

there is strong inhibitory feedback which drives nearly asyn-158

chronous activity and hence a nearly vanishing average cor-159

relation m ∼ 0 (26, 29), a feature we also find for intrinsic160

covariances in our cortical data. Consequently the leading161

factor in determining the dimensionality is the standard devi-162

ation of cross-covariances s.163

Fig. 2b illustrates how the value of s is determined by the164

level of recurrency in a balanced network (23, 43): as this165

recurrency becomes stronger, there is the potential for longer166

and longer paths that significantly impact the co-variation in167

activity between each pair of neurons. These longer paths168

are highly variable from one neuron pair to the next, and this169

variability drives a wide range in the cross-covariances across170

neural pairs. This intuition can be formalized through a single171

number R, derived from the eigenvalues of the connectivity172

matrix, which characterizes the overall strength of recurrent173

coupling (see Suppl. Mat. for a formal derivation based on174

(23, 43) and (25) for an alternative derivation).175

Therefore, establishing a three-way link between low-
dimensional neural activity (Fig. 2b bottom), large variance
of correlations (Fig. 2b center) and strong recurrent connec-
tions (Fig. 2b top), we found a direct relationship between
dimensionality and recurrency R in the balanced regime:

DPR/N = (1−R2)2. (2)

This relationship is extremely robust as shown by our vali-176

dation in complex nonlinear spiking networks (Fig. 2c and177

Figs. S10 to S11) and holds for networks with a wide range178

of topologies, as we will further explore below.179

Analyzing the intrinsic dimensionality of activity across cor-180

tical layers we found a wide variation across layers, yet con-181

sistent across conditions. Intrinsic dimensionality was on the182
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Fig. 2. Dimensionality and recurrency R across the visual cortical circuit. a)
Figure focus: Dimensionality is linked to recurrency. b) Three-way connection be-
tween recurrency, width of covariances distribution and dimensionality of neural
activity. c) Left: Normalized dimensionality DPR/N for a balanced network as
a function of the recurrency R. Theoretical predictions for the dimensionality in
homogeneous inhibitory networks (gray) are accurate for simulations of rate mod-
els (light colors) and spiking models (dark colors) across various network topolo-
gies (blue: homogeneous single population inhibitory networks, red: homogeneous
two-population excitatory-inhibitory networks, green: spatially organized single-
population inhibitory networks). d) Dimensionality of intrinsic covariances across
visual cortical layers. Dimensionality values are for networks of size N = 106 neu-
rons (cf. Methods). e) Relative modulation of dimensionality as a function of the
recurrency, Eq. (3). Blue and red curves overlap. The shaded gray area highlights
the sensitive regime. f) Dimensionality of intrinsic covariances across visual cortical
areas ordered according to the visual cortical hierarchy identified in (11).

order of 0.1% or less (Fig. 2d), consistent with the hypothesis183

that cortical circuits operate in a strongly recurrent regime.184

Layers 2 and 5 had respectively the lowest and highest in-185

trinsic dimensionality, a result consistent with the hypothe-186

sis that recurrence in layer 2 is stronger than in layer 5 (44)187

(Fig. 2d). We then performed the analysis of intrinsic di-188

mensionality for areas along the visual processing hierarchy189

(Fig. 2f and Fig. S12) (11). Without further subdividing neu-190

ral activity layerwise, intrinsic dimensionality appeared to be191

quite constant – consistent with anatomical studies suggest-192

ing that connectivity differs less across areas than across lay-193

ers (45). Dimensionalities in the evoked condition appeared194
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to be lower than in the spontaneous condition, suggesting that195

networks approach more recurrent operating points as they196

adapt to stimuli.197

Overall our analysis shows how trends in the intrinsic198

dimensionality in strongly coupled, balanced regimes relate199

to modulations in network recurrency, hypotheses that we200

revisit in detailed connectivity studies below.201

202

Sensitive control of dimensionality203

The connection between DPR and R, coupled with the anal-
ysis of cortical areas, suggests that the network’s dimension-
ality in cortical circuits is tightly constrained, being much
less than the number of neurons DPR/N / 0.1%. Further-
more, in the same regime, the relative change in dimension-
ality with respect to the recurrency R is highest (Fig. 2e):

δDPR
DPR

= dDPR
dR

1
DPR

= 4R
R2−1 . (3)

As a result, with increasing R balanced neural networks gain204

sensitive control of dimensionality as a function of recur-205

rency. In summary, the low values ofDPR obtained for corti-206

cal areas of the mouse brain indicate that recurrency for these207

brain areas is strong (Fig. 2f), suggesting, in turn, that the re-208

current strengthR has sensitive control over the dimensional-209

ity of neural activity (Fig. 2e). We next show that this control210

can be enacted systematically via the internal structure of re-211

current connections.212

Local tuning of the global recurrency R213

We asked how balanced neural networks can regulate214

their overall recurrency R and hence their dimensionality215

(Fig. 3a). While many previous studies established how216

global features of recurrent connectivity affectR (23, 46, 47),217

here we focus on the impact of local connectivity motifs.218

These motifs are statistics of the neural connectivity W that219

involve pairs of connections (see Methods), and are the fun-220

damental local building blocks of networks. Second order221

motifs appear in four types: reciprocal, divergent, conver-222

gent, and chain motifs (Fig. 3b), together with the variance223

(strength) of neural connections already present in purely224

random models (46). These motifs have been shown to play225

important roles determining neuron-to-neuron correlations226

and allied circuit dynamics (32–34, 38, 48–53) and emerge227

from learning rules consistent with biological STDP mecha-228

nisms (54, 55).229

We developed a comprehensive theory that takes full ac-
count of all second order motifs in networks of excitatory
and inhibitory neurons, generalizing allied results developed
via distinct theoretical tools (25, 51). Our analysis yields a
novel compact analytical quantity that shows how recurrency
is modulated by local structureR= σ ·Rmotifs where σ stems
from the overall synaptic strength and

Rmotifs = 1− τdiv− τcon−2τchn + τrec√
1− τdiv− τcon

(4)
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Fig. 3. Theory for recurrency and dimensionality in balanced networks with
second-order motifs. a) Figure focus: Modulation of recurrency and dimension-
ality by local circuit motifs. b) Theoretical dependence of recurrency on motif abun-
dances. c) Theoretical dependence of dimensionality on motif abundances. Solid
lines: theory. Markers: simulations.

compactly describes the influence of second order motifs.230

Here τrec, τchn, τdiv, τcon denote correlation coefficients be-231

tween pairs of synapses that capture the abundance of recip-232

rocal, chain, divergent, and convergent motifs, respectively233

(cf. Methods and Suppl. Mat.). This formula describes how234

the recurrency R is affected by increasing or decreasing the235

prevalence of second order motifs (Fig. 3b) and thus links236

the modulation of auto- and cross-covariances and the dimen-237

sionality of neural responses across the global network to the238

statistics of local circuit connectivity, as shown in Figs. 3b239

to 3c. While Eq. (4) is exact for the simplest type of balanced240

networks, which are networks of inhibitory neurons whose241

recurrent interactions balance the excitatory external input,242

we show that it generalizes to models of balanced excitatory-243

inhibitory networks (56). Here, σ and τ combine the corre-244

sponding statistics of the excitatory and inhibitory subpop-245

ulations (cf. Fig. S13 and Suppl. Mat.). This direct link be-246

tween quantifiable, local connectivity statistics and the global247

network propertyR opened the door to novel functional anal-248

yses of very large-scale synaptic physiology datasets in both249

mouse and human, as we describe next.250

Cortical circuits in mouse and human employ251

local synaptic motifs to modulate their recur-252

rent coupling253

We analyzed newly released synaptic physiology datasets254

from both mouse and human cortex (12, 41) to assess the255

involvement of synaptic motifs in modulating network re-256

currency and to probe their possible role in driving the257

changes in dimensionality seen across layers and conditions258

in Fig. 2d. This synaptic physiology dataset was based259

on simultaneous in-vitro recordings of 3-to-8 cell groups260

(cf. Methods) and consisted of 1,368 identified synapses261

from mouse primary visual cortex (out of more than 22,000262

potential connections that were tested) and 363 synapses263

from human cortex. Recall that the recurrency R as defined264
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above has an overall scaling term, σ, and a motif contribu-265

tion term given by Eq. (4). We begin by assessing the prob-266

ability of occurrence of individual motifs and hence estimat-267

ing Rmotifs, cf. Methods. The relationship Eq. (4) defines268

a specific hypothesis for empirical motif statistics that modu-269

late global circuit dimensionality: if they combine to produce270

Rmotifs > 1 then they are tuned to reduce dimensionality, and271

vice-versa for Rmotifs < 1 .272

Beginning with the mouse data, we calculated the statistics273

of individual motifs, separating those for excitatory (E) and274

inhibitory (I) synapses (EE, EI, II, Fig. 4b), and found many275

motifs to be significantly present. We then combined these to276

compute Rmotifs. This requires two parameters: one regulat-277

ing the overall ratio of inhibitory to excitatory neurons (γ),278

and another the relative strength of the inhibitory synapses279

(g) (cf. Suppl. Mat.). We found that Rmotifs < 1 across all280

choices of these parameters (Fig. 4c).281

Many different motifs, distinctly involving E and I cell types,282

combine to produce this value of Rmotifs. To study how this283

occurs, we separated the contribution to Rmotifs from motifs284

within the excitatory population (EE type only) by assuming285

that other motifs occur at chance level. Interestingly, the EE286

motifs operating alone produced the opposite trend, increas-287

ing the radius REE only
motifs > 1 (Fig. 4d center, one-sided t-test288

p-value< 10−20). The same was true for motifs within the289

inhibitory population RII only
motifs > 1 (Fig. 4d right, one-sided290

t-test p-value< 10−20), and for motifs within the excitatory291

population in human cortical circuits (Fig. 4e). We further292

confirmed that this effect is also predicted for previously pub-293

lished data on excitatory connections in rat visual cortex (36)294

(cf. Methods). The increased recurrent coupling strengths295

within both the excitatory and inhibitory populations under-296

score the prominent role of EI motifs, specifically reciprocal297

EI motifs, in decreasing and potentially regulating the overall298

recurrency to be Rmotifs < 1 (Fig. 4c, Fig. S13).299

We found evidence that synaptic motifs contribute to the300

cross-layer differences in the dimensionality of cortical301

activity identified above (Fig. 2d). There, activity in mouse302

cortex layer 2 showed lower dimensionality, corresponding303

to an increased overall recurrency R = σRmotifs compared304

to layers 4, 5 or 6. Intriguingly, the corresponding motif305

contribution Rmotifs was significantly stronger for layer 2306

than for layer 5 (Fig. 4f left), suggesting that motifs play307

a role in increasing R. Moreover, a similar result held308

true when performing the analysis on the human dataset309

for excitatory connections in layers 2 and 3 (Fig. 4g and310

Figs. S14 to S15). Overall, the distinct roles of motifs among311

E and I cells types in regulating Rmotifs point to ways that312

the recurrency, and hence dimension, may be controlled313

dynamically in neural circuits.314

315

One pathway for this control is via cell types, which subdi-316

vide E and I populations (Fig. 4h) and are separately identi-317

fied in the synaptic physiology dataset which we analyze. As318

Table S2e shows, reciprocal EI motifs were prevalent when319

the inhibitory interneuron was a somatostatin cell (SST) or a320

parvalbumin cell (PV), but not a VIP cell. Recent findings321
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Fig. 4. Motif analysis in synaptic physiology datasets. a) Figure focus: network
recurrency inferred via synaptic physiology datasets. b) Motif abundances in
mouse V1. Inset: Simplified V1 circuit diagram with only prevalent connections
(57). c) Inferred Rmotifs as a function of relative strength g of inhibitory and
excitatory synapses and ratio γ of inhibitory to excitatory population size. d)
Estimation of Rmotifs from mouse data (500 bootstraps based on random subsets
of 80% of sessions). Shuffle of synapses within each experimental session
preserving EI synapse type (shuffle EI syn.). Effect of all EI motifs (g = 4 and
γ = 0.25). e) Same as d for EE motifs in human dataset. f) Layer-wise estimation
of Rmotifs for EI balanced motifs (left), EE-only motifs (right) in mouse. g)
Layer-wise estimation of Rmotifs for EE-only motifs in human. h) Effect of VIP
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have shown that VIP interneurons (58, 59) are important reg-322

ulators of cortical functions, are modulated by arousal and323

movement (60), and are recruited by reinforcement signals324

(61). We thus hypothesized that VIP interneurons could ad-325

just the recurrent coupling of cortical circuits by exerting dis-326

inhibitory control via the SST population (57, 58) (this could327

occur while preserving the balanced regime, given the very328

sparse connectivity within the VIP population and from VIP329

to pyramidal cells (Fig. 4h)). Under the simplest form of this330
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hypothesis, there exists a mutual antagonism between VIP331

and SST populations that results in only one of these popula-332

tions being active at a time. We derived the values of Rmotifs333

in this case, and found that activation of the VIP pathway334

substantially increasedRmotifs (Fig. 4h) and hence decreased335

predicted dimensionality. This shows how VIP interneurons,336

which themselves may collect top-down signals from higher337

cortical areas, can selectively tune the dimensionality of local338

cortical activity. This adds another channel for population-339

level control of information processing in cortical circuits,340

on top of existing hypotheses for on how VIP neurons reg-341

ulate gain in individual neurons (59). Furthermore, we pre-342

dicted that a similar trend of increasing Rmotifs follows from343

short-term synaptic plasticity (STP) in modulating cell-type344

specific connections upon stimulus onset, although a detailed345

analysis awaits future investigation (Figs. S16a to S16c). Fi-346

nally, we note that our results were robust to inclusion of es-347

timates of the relative synaptic strength of cell type specific348

connections (Fig. S16d) and the cell type specific prevalence349

of the three inhibitory subpopulations (Fig. S16d) (see Meth-350

ods).351

In sum, in this section we asked whether the experimentally352

derived structure of cortical networks – quantified by their353

motifs – enables the tuning of the recurrency R and hence354

dimensionality. We found that the answer is yes, and that the355

VIP disinhibitory pathway and STP both provide examples of356

how motifs are likely to play a substantial role in this tuning.357

Specifically, upon accounting for STP modulation, our pre-358

liminary analysis suggested that recurrency is increased and,359

henceforth, dimensionality decreased; this is consistent with360

the finding that intrinsic dimensionality is lower for evoked,361

rather than spontaneous, activity across visual cortical areas362

Fig. 2f. As we reviewed above, high dimensional activity can363

retain stimulus details, while lower dimensional activity can364

promote robust and general downstream decoding. Taken to-365

gether, this points to new functional roles for modulatory and366

adaptive mechanisms known to take effect across time during367

stimulus processing and to be engaged across brain states.368

Summary and discussion369

We showed that neural networks across the mouse cortex370

operate in a strongly recurrent regime, in which the dimen-371

sionality of their activity is much smaller than the number of372

neurons. A feature of circuits in this regime is the ability to373

sensitively modulate the relative dimensionality of their ac-374

tivity patterns via their recurrencyR, a unifying measure of a375

network’s overall recurrent coupling strength (Fig. 4i). This376

has potentially important consequences for computation. In-377

deed, our analyses of large scale Neuropixels recordings from378

the cortex showed systematic trends in this dimensionality379

across cortical layers and stimulus conditions. Our theory380

links these findings to clear predictions for the recurrency in381

cortical areas: a higher dimensionality suggests a lower re-382

currency and vice-versa. Moreover, we showed that the crit-383

ical circuit features that determine a circuit’s recurrency R384

– and hence the dimensionality of its activity patterns – are385

not just its overall synaptic strength, but also a tractable set386

of local synaptic motifs. We use theoretical tools to quantify387

the effect of these motifs via a compact index Rmotifs. This388

provides a concrete target quantity that can, as we show, be389

readily obtained from emerging, large-scale synaptic connec-390

tivity datasets and used to check predictions about the role of391

synaptic structure in controlling dimensionality. Thus the-392

ory and brain-wide experimental analyses converge to pro-393

vide new evidence for an intriguing concept (51, 62, 63): that394

the connectivity of cortical brain networks exert global con-395

trol over their activity in a highly local and tractable manner,396

via the building blocks of their local circuitry (Fig. 4i). This397

concept may extend beyond cortex: indeed, individual areas398

in hippocampal and thalamic circuits also show systematic399

trends in dimensionality (Fig. S4 and Fig. S12) whose mech-400

anistic origins could be similar.401
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