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Abstract 1 

Antibiotic-resistant pathogens are a major public health threat. A deeper understanding of how 2 

an antibiotic’s mechanism of action influences the emergence of resistance would aid in the 3 

design of new drugs and help to preserve the effectiveness of existing ones. To this end, we 4 

developed a model that links bacterial population dynamics with antibiotic-target binding 5 

kinetics. Our approach allows us to derive mechanistic insights on drug activity from population-6 

scale experimental data and to quantify the interplay between drug mechanism and resistance 7 

selection. We find that whether a drug acts as a bacteriostatic or bactericidal agent has little 8 

influence on resistance selection. We also show that heterogeneous drug-target binding within a 9 

population enables resistant bacteria to evolve fitness-improving secondary mutations even when 10 

drug doses remain above the resistant strain’s minimum inhibitory concentration. Our work 11 

suggests that antibiotic doses beyond this “secondary mutation selection window” could 12 

safeguard against the emergence of high-fitness resistant strains during treatment. 13 

 14 

Keywords: Antibiotic resistance, clinical microbiology, fitness landscape, global health, 15 

multiscale modeling, pharmacodynamics 16 

 17 

18 
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1. Introduction 19 

The emergence and spread of antibiotic-resistant bacterial pathogens is an urgent global problem 20 

that threatens to undermine one of the most essential components of modern medicine [1]. 21 

Antibiotic resistance is also expensive, adding an average of US $1400 to the costs of treatment 22 

for each of the 2.8 million patients who become infected with a drug-resistant bacterium in the 23 

United States annually [2-4]. The scarcity of promising new antimicrobial drugs with novel 24 

mechanisms of action further exacerbates the challenges associated with managing the spread of 25 

drug resistance [5, 6]. Given the increasing incidence of resistant bacterial infections and the lack 26 

of new drugs on the horizon, clinicians, researchers, and global leaders must act to preserve the 27 

effectiveness of the world’s existing antibiotic drug arsenal [1]. 28 

Antibiotic treatment induces a strong selective pressure on bacterial populations to evolve 29 

resistance [7, 8]. Resistance mutations raise the minimum inhibitory concentration (MIC) of an 30 

antibiotic, the amount of drug needed to suppress the growth of a bacterial culture [9]. However, 31 

alleles that confer drug resistance also frequently carry fitness costs [10-12], predominantly 32 

because antibiotics target vital cellular functions (such as DNA replication and protein 33 

synthesis). Resistance mechanisms reduce the ability of a drug to disrupt its target, but do so at 34 

the expense of optimal physiological function [13]. 35 

With few exceptions [14], resistance-causing alleles induce physiological impairments in 36 

both drug-free and drug-containing environments, though resistant strains may only suffer a 37 

strict competitive disadvantage (i.e. a slower growth rate) against sensitive strains in drug-free 38 

conditions. A range of antibiotic concentrations therefore exists within which drug-resistant 39 

strains have a selective advantage over their drug-susceptible counterparts. Drugs dosed within 40 

this “resistance selection window” (also called the “mutant selection window”) favor the 41 
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proliferation of drug-resistant subpopulations [15-17]. Recent advances in antimicrobial 42 

pharmacodynamics have leveraged resistance selection windows to design dosing strategies that 43 

minimize the selection of resistant pathogens without sacrificing treatment efficacy [17-19]. 44 

The existence of resistance mutations that confer physiological impairments in both drug-45 

free and drug-containing environments implies that resistant strains face selective pressures to 46 

evolve secondary mutations that alleviate these impairments, and that these selective pressures 47 

exist even under continuous drug exposure [20, 21]. Secondary mutations can increase bacterial 48 

fitness (through faster growth rates) in the absence of drugs, or they can confer elevated levels of 49 

drug tolerance to preexisting resistant subpopulations (through attenuated drug-target 50 

interactions, faster growth rates in the presence of drugs, or both). In the case of increased 51 

bacterial fitness, secondary mutations enable drug-resistant mutants to compete against drug-52 

susceptible strains in resource-limited, antibiotic-free environments [10, 22, 23], and are 53 

implicated in the spread of drug resistance across a wide range of timescales and clinical settings 54 

[24]. In the case of increased drug tolerance, secondary mutations can be the underlying cause of 55 

treatment failure [25, 26]. Elucidating the dynamics of secondary mutation emergence during 56 

treatment is thus crucial for managing the spread of resistance. 57 

Since resistance mutations are frequently associated with fitness costs [11, 12] both in 58 

vivo [27] and in vitro [28], studies on the resistance selection window and on secondary 59 

adaptation have yielded valuable insights into the emergence of drug-resistant bacteria during 60 

treatment. However, the design of optimal resistance-mitigating drug dosing strategies remains 61 

challenging for two reasons. One obstacle is that bacteria may acquire resistance through a 62 

multitude of mechanisms that reduce antibiotic efficacy [29]. These molecular mechanisms may 63 

themselves influence the fitness landscape of resistance mutations (that is, the relationship 64 
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between the fitness cost of resistance and the selective advantage conferred by the resistance 65 

mutation in drug-containing environments)[30]. A second challenge is that an antibiotic’s 66 

mechanism of action may affect the strength of selection for resistant strains over drug-67 

susceptible strains during treatment. One important feature of an antibiotic’s cellular-level 68 

mechanism of action is whether the drug controls bacterial populations by increasing the rate of 69 

bacterial killing (i.e. bactericidal action) or by decreasing the rate of bacterial replication (i.e. 70 

bacteriostatic action). Clinicians and researchers alike have argued that these modes of 71 

antimicrobial action influence the dynamics of resistance selection [31, 32]. 72 

The design of resistance-mitigating antibiotic usage therefore depends on an 73 

understanding of how a drug’s mechanism of action, a pathogen’s mechanism of resistance, and 74 

the fitness landscape of resistance affect selection pressures during treatment. Tractable and 75 

quantitative strategies for systematically exploring all of these factors have so far been lacking. 76 

To address this gap, we developed a dynamical model that simulates the growth and death of 77 

bacterial populations under antibiotic exposure using molecular-scale descriptions of drug-target 78 

binding kinetics and cellular-scale descriptions of a drug’s mechanism of action. In our model, 79 

higher numbers of inactivated drug-target complexes within a cell lead to increases in antibiotic 80 

effect (either bacteriostatic, bactericidal, or a combination of the two). The relationship between 81 

drug-target inactivation and antibiotic effect can take the shape of a linear (i.e. gradual) or 82 

stepwise (i.e. sudden) function, as well as other intermediate forms (Supplementary Figure S1). 83 

The model enables us to estimate critical pharmacodynamic parameters from experimental 84 

datasets as effectively as with classical approaches [33], to simulate the fitness landscapes of 85 

resistance mutations against drugs with diverse mechanisms of action, and to quantify the 86 
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probability of secondary mutation emergence within resistant subpopulations of bacteria during 87 

treatment. 88 

The mathematical model described here is a linear case of nonlinear formulations we 89 

have reported previously to study the influence of drug-target binding kinetics on optimal 90 

antibiotic dosing [34]. Linearization results in a >102-fold computational speed-up that enables 91 

us to robustly fit experimental kill-curve data and to simulate antibiotic dose-response 92 

relationships at high resolution. Our linear formulation also allows us to calculate an antibiotic’s 93 

MIC directly from experimentally measurable molecular parameters. We leverage the 94 

mathematical tractability and computational efficiency of the linear model to investigate the 95 

selective pressures that antibiotics with diverse mechanisms of action place on growing bacterial 96 

populations, a task that would be impractical with previous approaches. 97 

We find that bacteria with resistance mechanisms that confer even modest reductions in 98 

drug-target binding affinity can incur strikingly high (80-99%) fitness costs while still 99 

maintaining higher drug tolerances than their susceptible counterparts, regardless of the 100 

antibiotic’s mechanism of action. We also find that drugs with stepwise effects on bacterial 101 

growth and death have narrower resistance selection windows than do drugs with linear effects. 102 

However, our model suggests that whether a drug acts primarily through bactericidal or 103 

bacteriostatic action has comparatively little influence on the strength of resistance selection 104 

during treatment. We further demonstrate that, even with aggressive treatment regimens, 105 

heterogeneous drug-target occupancy within a population enables fitness-impaired resistant 106 

strains to develop secondary mutations that can lead to treatment failure. Our work cautions that 107 

fitness costs may not limit the emergence of resistant strains that evolve through reductions in 108 

drug-target binding affinity. We propose the “secondary mutant selection window” as a novel 109 
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pharmacodynamic characteristic of a drug that should be assessed alongside other classic 110 

parameters such as the MIC and the resistance selection window when designing robust 111 

resistance-mitigating antibiotic dosing strategies. 112 

 113 

2. Results 114 

2.1. A model that links bacterial population dynamics with molecular mechanisms of antibiotic 115 

action 116 

We developed a linear dynamical model to describe the effect of a constant concentration of drug 117 

on the growth and death rates of a bacterial population (Figure 1A) (see Methods, Model 118 

formulation and analysis for a mathematical description of the model). We assume that each 119 

bacterial cell in the population carries an identical number N of intracellular proteins that the 120 

drug targets for inactivation. Drug molecules inactivate target proteins by binding to them with a 121 

rate kF and can dissociate from the target with a rate kR. The affinity KD of the drug is thus the 122 

ratio of off-rate to on-rate, KD = kR/kF. The model assumes that the growth and death rates of a 123 

bacterial cell depend on its drug-target occupancy (that is, the number of inactivated drug-target 124 

complexes it contains) [34, 35]. We denote drug-target occupancy with the index i, which ranges 125 

from 0 to N. Cells harboring successively larger numbers of inactivated drug-target complexes 126 

have successively faster death rates and/or slower growth rates, depending on the mechanism of 127 

action of the drug (see Results, Classification of drug action). We thus define the growth rate 128 

(G[i]) and death rate (D[i]) of each subpopulation as discrete monotonic functions of drug-target 129 

occupancy. In practice, G[i] and D[i] take the form of constrained logistic functions each 130 

controlled by a steepness and inflection point parameter, allowing us to define quasi-linear, 131 

quasi-stepwise, quasi-exponential, and sigmoid curves (Supplementary Figure S1). 132 

133 
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 134 

 135 
 136 

Figure 1 – Features of a model that links bacterial population dynamics with the cellular 137 

mechanisms of antibiotic drug action. (A) Illustration of the model. We consider a population 138 

Bi of bacterial cells harboring i inactive drug-target complexes. The change in the size of Bi is a 139 

function of cellular growth and death rates (each of which is determined by the value of i, 140 

Supplementary Figure S1), and of the molecular kinetics of the drug binding and unbinding to 141 

its protein target. The total bacterial population is given by the sum B0 + B1 + … + BN-1 + BN, 142 

where N is the number of drug targets per cell. (B) Dynamics of a bacterial population exposed 143 

to a drug dose above the minimum inhibitory concentration (MIC). The black line represents the 144 

total bacterial population; shaded lines represent subpopulations with x and fewer inactivated 145 
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drug-target complexes. Population dynamics as a function of drug concentration are shown in 146 

Supplementary Figure S2. (C) Proportion of the bacterial subpopulation Bi as a share of total 147 

population for the first three hours of the curve shown in panel (B). (D) Pharmacodynamic 148 

curves derived from the model for a wild-type (light green) and drug-resistant (dark green) 149 

bacterial strain. The MIC is denoted as the drug concentration at which the net bacterial growth 150 

rate is zero. Inset: the resistance selection window (green shading) is given by the drug 151 

concentration range within which the drug-resistant strain exhibits a higher—but still positive—152 

net growth rate compared to the wild-type strain. G0 denotes the growth rate of the wild-type 153 

strain in the absence of antibiotic (i.e. the growth rate for subpopulation B0). DN denotes the 154 

maximum death rate of bacterial strains when all N cellular targets are inactivated (i.e. the death 155 

rate of subpopulation BN). 156 

______________________________________________________________________________ 157 

The model tracks the growth and death of all N+1 bacterial subpopulations, each denoted 158 

Bi, over time (Figure 1B). Drug concentration determines the net growth rate of the entire 159 

bacterial population (Supplementary Figure S2). In the absence of drug, the population grows 160 

exponentially at a rate equal to the difference between the drug-free growth and death rates (G0 161 

and Do, respectively). When drug is present, the composition of bacterial subpopulations 162 

asymptotes towards a steady state after a transient phase during which drug molecules bind to 163 

their targets (Figure 1C). At steady state, the relative composition of bacterial subpopulations 164 

does not depend on the total size of the population. 165 

We can calculate the MIC of a drug directly from model parameters (see Methods, 166 

Calculation of the minimum inhibitory concentration), and we can simulate clinically observed 167 

drug resistance mutations by modulating the parameters of the model that influence the value of 168 

the MIC. Changes in the binding kinetics of the drug (i.e. kF and kR) simulate target modification 169 

mutations that decrease the affinity of an antibiotic molecule to a cellular protein [36-38]. 170 

Changes to the value of N represent changes in the number of protein targets per cell, equivalent 171 

to target up- or downregulation [39-41]. We assume that fitness costs associated with resistance 172 

alleles take the form of reduced growth rates, and we simulate this cost by reducing the drug-free 173 

growth rate of resistant strains by a factor cR such that the maximum growth rate of a resistant 174 
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strain (G0,RES) relative to that of a wild-type strain is G0,RES = G0(1–cR). When cR ranges from 0 175 

(no cost) to 1 (no growth), the resistant strain exhibits a slower growth rate relative to that of the 176 

wild-type. If cR is negative, the resistant strain exhibits a faster drug-free growth rate than does 177 

the wild-type strain, as has been observed in rare cases with some fluoroquinolone-resistant 178 

Escherichia coli isolates [42]. The model also enables us to generate pharmacodynamic curves 179 

by calculating the net growth rates of simulated bacterial populations over a range of drug 180 

concentrations (Figure 1D). The resistance selection window constitutes the range of drug 181 

concentrations over which a drug-resistant mutant strain has a higher but strictly positive net 182 

growth rate relative to that of its wild-type counterpart (Figure 1D, inset). 183 

 184 

2.2. Inferring cellular mechanisms of antibiotic action from population-scale data 185 

To test the utility of our biochemical model for gaining cellular-scale insights into antimicrobial 186 

drug mechanisms from population-scale experiments, we calibrated our model to a family of 187 

experimental time-kill curves of the gram-negative bacterium Escherichia coli challenged to 188 

ciprofloxacin, a fluoroquinolone first brought to market in 1987. Ciprofloxacin has two known 189 

molecular targets in bacteria, both of which are heterotetrameric type-II topoisomerases: the 190 

DNA gyrase complex (GyrA2B2) and DNA topoisomerase IV (ParC2E2). However, ciprofloxacin 191 

preferentially binds to the GyrA2B2 complex in gram-negative bacteria [43]. We used a mass-192 

spectrometry based estimate for the number of GyrA2B2 complexes per E. coli cell (N ~ 183) as 193 

the number of drug targets within each bacterium [44]. 194 

We implemented an adaptive simulated annealing algorithm to calibrate the parameters 195 

of our model to an experimental dataset of ciprofloxacin time-kill curves (Methods, Model 196 

calibration via simulated annealing). We performed 249 independent parameterizations using 197 
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the algorithm and selected the parameter set that yielded the lowest objective function value 198 

(Figure 2A, Table 1, Supplementary Figure S3). Bacterial persistence [45, 46] likely plays a 199 

role in the slower-than-expected population decline that we observe experimentally at high drug 200 

concentrations. At antibiotic doses below those that elicit persistence, the calibrated model 201 

accurately recapitulates the pharmacodynamic curve derived from experimental data 202 

(Supplementary Figure S4). 203 

 204 

 205 
 206 

Figure 2 – Calibrating the model to experimental data reveals underlying mechanisms of 207 

drug action. (A) Comparison between calibrated biochemical model (solid lines) and 208 

experimental data (shaded points). The experimental data (Supporting Data File S1) represent 209 

time-kill curves of Escherichia coli exposed to ciprofloxacin. A summary of all independent 210 

model calibrations is shown in Supplementary Figure S3. (B) Comparison of the calibrated 211 

biochemical model with the EMAX pharmacodynamic model [33]. We fit the EMAX model to the 212 

same experimental dataset shown in panel (A) and compared Pearson correlation coefficients 213 

(R2) and MICs. Red points in the MIC panel denote experimentally-measured ciprofloxacin 214 

MICs for E. coli strains isolated prior to the widespread emergence of quinolone resistance 215 

(Supporting Data File S2). The solid horizontal line represents the mean of experimental 216 
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measurements, and the dashed lines indicate the 95% confidence interval. A comparison of the 217 

pharmacodynamic curves obtained from the models is shown in Supplementary Figure S4. (C) 218 

Cellular growth and death rates as a function of ciprofloxacin-GyrA2B2 complex number (i) for 219 

the model calibrated to the experimental data shown in panel (A). (D) Four extreme schemes of 220 

drug action resulting from two characteristics (activity and steepness) of a drug’s effect on 221 

growth and death rates as a function of drug-target occupancy. Supplementary Figure S5 shows 222 

the simulated bacterial kill curves for these schemes at 4x MIC. Model fits for drug-free growth 223 

rate (G0) and drug-saturated death rate (DN) are shown in Supplementary Figure S6. 224 

______________________________________________________________________________ 225 

 226 

Model parameters 

Name Description Value Units Source 

N 
Number of target proteins per cell (i.e. 

GyrA2B2 copy number) 
183 cell-1 [44] 

G0 Bacterial growth rate in the absence of drug 0.526 hr-1 Model calibration 

D0 Bacterial death rate in the absence of drug 5.40 x 10-3 hr -1 [47] 

DN 
Bacterial death rate in saturating 

concentrations of drug 
7.53 hr -1 Model calibration 

kF Drug-target binding rate 5.23 x 103 M -1 sec -1 Model calibration 

kR Drug-target unbinding rate 3.17 x 10-4 sec -1 Model calibration 

αG Steepness of growth rate function G[i] 16.8 
# drug-target 

complexes-1 
Model calibration 

αD Steepness of death rate function D[i] 7.29 
# drug-target 

complexes-1 
Model calibration 

γG Inflection point of growth rate function G[i] 24.9 
# drug-target 

complexes 
Model calibration 

γD Inflection point of death rate function D[i] 359 
# drug-target 

complexes 
Model calibration 

B0 
Initial size of bacterial population at the start 

of drug treatment 
6.88 x 109 cell ml-1 Model calibration 

µR Mutation rate for drug resistance emergence 2.00 x 10-7 cell-1 division-1 [48, 49] 

µC 
Mutation rate for emergence of secondary 

mutations in resistant strains 
2.00 x 10-6 cell-1 division-1 [48, 49] 

cR 

Cost of resistance mutation, such that the 

antibiotic-free growth rate of a resistant 

mutant is G0 (1 - cR) 

0.25 
Non-

dimensional 
[50] 

 227 

Table 1 – Model parameters. We obtained the values of kF, kR, αG, αD, γG, γD, and B0 by 228 

calibrating the model to experimental data (Figure 2). We inferred antibiotic-free growth rate 229 

and antibiotic-saturated death rate (G0 and DN) by fitting an exponential curve to ciprofloxacin 230 

kill curves using 0 and 2.19 µg/ml of drug, respectively (Supplementary Figure S6). We use a 231 

constrained logistic function to model the growth and death rates of bacterial cells as a function 232 

of bound target number, where α controls the steepness of the logistic function and γ controls the 233 

inflection point of the logistic function (Supplementary Figure S1). Parameters not obtained 234 

from model calibrations to experimental data were retrieved from the literature. For the bacterial 235 

death rate in the absence of drug (D0), we used the mean of death rates reported in Wang et al., 236 

2010. 237 

______________________________________________________________________________ 238 
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We compared our biochemical model’s ability to capture critical pharmacodynamic 239 

characteristics of a drug against that of an EMAX model [33]. The EMAX approach describes net 240 

bacterial growth rate directly as a function of drug concentration and does not accommodate 241 

molecular descriptions of drug-target interactions. Such models have been used extensively to 242 

estimate pharmacodynamic parameters, to design drug dosing regimens, and to predict the 243 

strength of resistance selection at nonzero drug concentrations. Our formulation delivers 244 

performance comparable to that of the EMAX model for fitting experimental time-kill curves 245 

(Figure 2B, left panel) and more accurately estimates MIC (which we calculated to be 8.9 x 10-3 246 

µg/ml for ciprofloxacin) from these data (Figure 2B, right panel). This demonstrates the validity 247 

of our approach for deriving pharmacodynamic insights similar to what an EMAX model provides. 248 

Our model furthermore offers capabilities that the EMAX approach lacks, including the 249 

ability to estimate molecular kinetic parameters of drug-target binding from population-scale 250 

data. To test the robustness of these estimates, we analyzed the KD values for ciprofloxacin 251 

binding to E. coli GyrA2B2 generated for the 249 independent parameterizations described 252 

above. As our fitting method is stochastic, not all model calibrations reach local minima. 253 

However, the best 90% of all calibrations (that is, the 224 fits with the lowest objective function 254 

values) consistently converged upon a narrow range of affinity values (95% confidence interval: 255 

7.2 x 10-8 to 1.6 x 10-7 M) (Supporting Data File S3). Our estimates lie within the range of KD 256 

values of ciprofloxacin for E. coli GyrA2B2 reported from experimental measurements, which 257 

span from 3.2 x 10-8 to 3.0 x 10-6 M [51-54]. 258 

 259 

 260 

 261 
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2.3. Classification of antibiotic action 262 

Another unique feature of our approach is the ability to describe bacterial growth and death rates 263 

as a function of drug-target occupancy. For ciprofloxacin, the calibrated model predicts three 264 

regimes of bacterial subpopulation dynamics in relation to GyrA2B2 inactivation: a growth 265 

regime in which bacterial replication dominates among subpopulations with low numbers of 266 

inactivated targets, a stalling regime for intermediate numbers of drug-target complexes in which 267 

neither growth nor death is appreciable, and a killing regime at high numbers of inactivated 268 

targets in which bacterial death increases quasi-exponentially (Figure 2C). The forms of G[i] 269 

and D[i] that we obtain here suggest that ciprofloxacin has a multimodal mechanism of action, a 270 

result consistent with prior experimental studies [43, 55, 56] and with more complex nonlinear 271 

modeling approaches [34]. The drug stalls cellular replication at intermediate target occupancies 272 

and induces killing only at higher doses. Like many antibiotics, ciprofloxacin thus exhibits both 273 

bactericidal and bacteriostatic effects on microbial populations [56, 57]. Our biochemical model 274 

represents this explicitly. 275 

Most drugs nonetheless demonstrate a greater degree of bactericidal or bacteriostatic 276 

activity at clinically relevant doses [58], and we hypothesized that the ability of a drug to stall 277 

growth or to accelerate death may affect the selection for resistant strains and the emergence of 278 

secondary mutations. We also suspected that the relationship between drug-target occupancy and 279 

antibiotic effect—reflected in the steepness of the G[i] and D[i] functions—could further shape 280 

the dynamics of resistance selection. 281 

These two characteristics (bactericidal versus bacteriostatic activity and drug effect 282 

steepness) represent two general dimensions along which a drug’s mechanism of action can 283 

affect the growth and death of bacterial populations. Four extreme cases of drug action thus exist 284 
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(Figure 2D). In the case of a purely bacteriostatic antibiotic, death rates are a constant function 285 

of inactivated drug-target complex number (that is, D[i] = D0 for all values of i). For a purely 286 

bactericidal antibiotic, the growth rate of all bacterial subpopulations remains constant (G[i] = G0 287 

for all values of i). The steepness of the drug effect is reflected in the form of the function D[i] 288 

for bactericidal antibiotics and G[i] for bacteriostatic antibiotics (Supplementary Figure S1). 289 

We defined linear and stepwise onset of action as our two extremes, as other monotonic forms 290 

are intermediate cases of these curves. 291 

 292 

2.4. The opposing effects of increased drug resistance and decreased cellular fitness 293 

Mutations that confer resistance against antibiotics often come at the cost of reduced growth 294 

rates compared to those of drug-susceptible strains [10, 11]. The balance of replication and death 295 

determines bacterial net growth both in the absence and in the presence of antibiotics, and very 296 

high fitness costs associated with resistance can prevent bacterial viability at any drug 297 

concentration [59]. We sought to investigate the quantitative basis for the trade-off between drug 298 

resistance and cellular growth and to investigate how the drug mechanisms defined above 299 

influence the range of permissible fitness costs that a drug-resistant mutant can incur while still 300 

maintaining a drug susceptibility that is lower than that of a wild-type strain. In the simplest case 301 

of the model, where the number of target molecules per cell is 1, the expression for the MIC 302 

captures the opposing effects of drug resistance and cellular growth (see Methods, Calculation 303 

of minimum inhibitory concentration for derivation): 304 

[Equation 1] 305 

MIC = 
(𝑘𝑅 + 𝐷𝑁)

𝑘𝐹𝐷𝑁

𝐺0 306 
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The MIC increases with reductions of the on-rate kinetics of drug-target binding (kF) and with 307 

increases in the off-rate kinetics of drug-target binding (kR), but decreases with fitness costs that 308 

manifest as reductions in the drug-free growth rate (G0). These proportionalities hold for any 309 

number N of drug targets. 310 

We modeled the opposing effects of biochemical changes that reduce drug susceptibility 311 

(i.e. altered drug-target binding kinetics or target upregulation) and the fitness costs of these 312 

biochemical changes. We considered a set of five antibiotics with an identical protein target and 313 

identical molecular kinetic parameters (that is, the target number N, the drug-target on-rate kF, 314 

and the drug-target off-rate kR are constant for the wild-type strain) (Supplementary File S2, 315 

Supplementary Figure S5). One antibiotic in the set features growth and death dynamics 316 

derived from the model calibration to ciprofloxacin time-kill curve data (Figure 2C). The other 317 

four antibiotics are hypothetical and feature growth and death dynamics that represent four 318 

extremes of antibiotic action (Figure 2D). We simulated mutant strains of E. coli that acquire 319 

drug resistance phenotypes either through changes in the molecular kinetics of drug binding (kF 320 

or kR) or by increasing the copy number N of the drug’s cellular protein target. Each of these 321 

resistance mechanisms has been observed in clinical isolates of drug-resistant, gram-negative 322 

bacteria [11, 29, 60]. We then simulated fitness costs associated with the resistance mutation and 323 

calculated the mutant strain’s MIC relative to that of the wild-type strain. 324 

For resistance acquired through changes in the kinetics of drug-target binding (kF and kR), 325 

we found that mutants can tolerate strikingly high (80-99%) fitness costs while still maintaining 326 

an MIC that is greater than that of the drug-susceptible wild-type (Figure 3, top and middle 327 

rows). This permissibility of fitness costs exists for all five of the drug mechanisms we 328 

simulated, although drugs that act with linear effects (Bacteriostatic/Linear and 329 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2022. ; https://doi.org/10.1101/2020.06.01.127571doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.127571
http://creativecommons.org/licenses/by-nc/4.0/


 17 

Bactericidal/Linear) have a narrower range of permissible fitness costs than do drugs that act 330 

with stepwise effects. For all drug mechanisms, mutant strains make larger gains in MIC by 331 

decreasing the on-rate kinetics of drug-target binding (kF) than they do by increasing the off-rate 332 

kinetics of drug-target binding (kR) by the same amount (Supplementary Figure S7). That is, 333 

mutations that lead to the same change in drug-target affinity (as quantified by the dissociation 334 

constant KD = kR/kF) through different changes in the on- and off-rate binding kinetics do not 335 

necessarily have the same range of permissible fitness costs. This has biological significance—336 

limiting the opportunity for a drug to bind to its target, thereby preventing the drug from 337 

actuating its effects on cellular growth and death, should lead to lower drug susceptibilities than 338 

would accelerating the rate at which an already-formed drug-target complex disassociates. The 339 

difference in the fitness effects of mutations that modify kF and kR is especially pronounced for 340 

bactericidal drugs that elicit linear increases in cellular death (Bactericidal/Linear). 341 

Ciprofloxacin exhibits a bactericidal effect by permitting GyrA2B2-mediated cleavage of 342 

DNA but preventing DNA re-ligation, resulting in widespread and eventually insurmountable 343 

chromosome fragmentation [43, 61]. When simulating the overexpression of target proteins in 344 

resistant cells (Figure 3, bottom row) we therefore assumed that bacterial killing is induced 345 

when a fixed number of inactivated drug-target molecules form within a cell (that is, we assume 346 

a toxicity threshold whereby γD remains constant with changing N). Conversely, we assumed that 347 

a resistant cell requires a fixed number of active, non-complexed target proteins in order to 348 

maintain its maximum growth rate (that is, a survival threshold). γG thus changes in step with N 349 

such that N-γG remains constant. We made these same assumptions for the four hypothetical 350 

antibiotics. 351 

 352 

353 
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 354 

 355 
 356 

Figure 3 – Drug mechanism influences the fitness landscapes of resistance mutations. We 357 

calculated the MIC, expressed as a fold-change relative to the MIC of the wild-type, for mutant 358 

strains carrying (top row) drug targets with reduced binding kinetics (kF), (middle row) drug 359 

targets with accelerated unbinding kinetics (kR), or (bottom row) increased numbers of drug 360 

target molecules (N). Mutant strains also carry fitness costs, expressed as a fractional reduction 361 

in drug-free growth rate relative to wild-type. Cost-free MIC as a function of kF and kR for all 362 

mechanisms of action are shown in Supplementary Figure S7. When modulating the number of 363 

drug target molecules N (bottom row), we assumed that cells require a fixed number of active 364 

protein targets to grow at a normal rate and that cellular killing is induced when a fixed number 365 

of inactive drug-target complexes form within a cell. Thus, the inflection point for the growth 366 

rate function (γG) changes concomitantly with N such that N-γG remains constant, while the 367 

inflection point for the death rate function (γD) remains constant (see Supplementary Figure S1 368 

for illustrations of the effects of γG and γD on bacterial growth and death rates). 369 

______________________________________________________________________________ 370 

We found that target overexpression has a diversity of effects on resistance that depend 371 

on the mechanism of action of the drug. For ciprofloxacin and its multimodal effects on growth 372 

and death, small increases in target number can lead to modest increases in MIC, even when the 373 

resistant cell faces large fitness costs as a result of GyrA2B2 overexpression. However, larger 374 
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increases in target number lead to reductions in MIC. This result is consistent with experimental 375 

studies on target amplification, in which the overexpression of gyrAB in E. coli resulted in 376 

increased susceptibility to ciprofloxacin [40]. Target overexpression leads to substantial gains in 377 

resistance against bacteriostatic drugs that exhibit stepwise effects, even at very high fitness 378 

costs. The effect of target overexpression on drug resistance is negligible for bactericidal drugs 379 

and for bacteriostatic drugs with a linear effect on growth stalling. 380 

 381 

2.5. Drug mechanism shapes the resistance selection window 382 

To understand how a drug’s mechanism of action affects the propensity to select for resistance 383 

during treatment, we simulated the pharmacodynamics of wild-type and drug-resistant strains 384 

challenged to each of the five drugs in the set outlined above. MICs for clinical isolates of 385 

ciprofloxacin-resistant E. coli strains with single point mutations in GyrA, which may reduce the 386 

affinity of ciprofloxacin to GyrA2B2, range from 10 to 16 times greater than the MIC of a drug-387 

susceptible wild-type [36, 60, 62, 63]. Data on the fitness costs associated with mutant GyrA-388 

mediated ciprofloxacin resistance in E. coli are sparse, but studies of rifampicin-resistant clinical 389 

isolates of Mycobacterium tuberculosis with point mutations in the rpoB gene have suggested 390 

that a 20-30% reduction in growth rate is approximately the maximum fitness cost that drug-391 

resistant mutants can incur before facing extinction in competitive drug-free environments [50]. 392 

To model drug-resistant strains, we therefore scaled kF and kR such that the MIC of the resistant 393 

strain is 12 times that of its drug-susceptible counterpart given a 25% fitness cost (cR = 0.25) 394 

(Figure 4A). 395 

 396 
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 397 
 398 

Figure 4 – The propensity to select for resistant mutants depends on drug mechanism. (A) 399 

We modeled wild-type strains using the parameters obtained from the calibration detailed in 400 

Figure 2. (B) Relationship between MICs of resistant strains (expressed as multiples of MICWT) 401 

and fitness cost of resistance. Horizontal dashed lines indicate the MICs of the wild-type and 402 

resistant strains described in panel (A); the vertical dashed line indicates the fitness cost at which 403 

all resistant strains have the same fold-increase in MIC relative to that of wild-type (cR = 0.25). 404 

(C) Pharmacodynamic curves for the wild-type and resistant strains described in panel (A). (D) 405 

Resistance selection windows for drug-resistant strains. The fitness advantage of resistant strains 406 

over wild-type strains is shown within the drug concentration range in which the resistant strain 407 

has a positive net growth rate that is larger than that of the wild-type. The fitness advantage is 408 

expressed as a proportion of the resistant strain’s growth rate in the absence of drug (G0,RES). 409 

Supplementary Figure S8 illustrates the relationship between the size of the resistance selection 410 

window and the steepness of a drug’s pharmacodynamic curve. 411 

______________________________________________________________________________ 412 

A nearly linear relationship exists between drug resistance and fitness cost for strains 413 

resistant to drugs with a linear effect on growth or death (Figure 4B, Bacteriostatic/Linear and 414 

Bactericidal/Linear). By contrast, drugs with stepwise effects on growth and killing 415 

(Bacteriostatic/Stepwise and Bactericidal/Stepwise) exhibit only modest reductions in MIC until 416 

they incur very high (>90%) fitness costs. We determined resistance selection windows for 417 

strains resistant to the five drugs in our set by simulating pharmacodynamic curves for wild-type 418 
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and resistant strains (Figure 4C). To quantify the magnitudes of selection for resistant strains, 419 

we calculated the difference in net growth rates between wild-type and susceptible strains over 420 

the concentration range that defines the resistance selection window for each drug (Figure 4D). 421 

For linear-effect bacteriostatic drugs (Bacteriostatic/Linear), we found that the resistance 422 

selection window begins at drug concentrations as low as 200x below the MIC of the susceptible 423 

strain. Drugs with stepwise effects on growth or killing (Bacteriostatic/Stepwise and 424 

Bactericidal/Stepwise) have narrower resistance selection windows than their counterparts with 425 

more linear activity profiles. 426 

Consistent with prior studies on the pharmacodynamic profiles of antimicrobial agents 427 

[17, 19, 64], we find that the size of the resistance selection window is associated with the 428 

steepness of a drug’s pharmacodynamic curve. Given a cellular effect (i.e. bacteriostatic or 429 

bactericidal), drugs with steeper pharmacodynamic curves tend to have narrower selection 430 

windows (Supplementary Figure S8). However, we also find that strains resistant to drugs with 431 

narrower resistance selection windows have higher net growth rates within the resistance 432 

selection regime than do strains resistant to drugs with wider resistance selection windows 433 

(Figure 4D). This finding has clear clinical significance: drugs with steeper pharmacodynamic 434 

profiles feature relatively small concentration ranges that select for resistance, but the negative 435 

consequences of dosing within the resistance selection window are higher for these drugs. 436 

 437 

2.6. The secondary mutant selection window is narrower for antibiotics with stepwise effects on 438 

growth and death 439 

The genotypic space for mutations that confer resistance to antibiotics by modifying the binding 440 

kinetics of a drug to its target, such as those described in Figure 4, is typically highly 441 
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constrained [22, 65]. Accordingly, a return to a drug-susceptible state requires reversion of the 442 

specific genetic changes that conferred resistance in a bacterial population. In contrast to 443 

resistance reversion, secondary mutation accumulation can involve a wider range of genetic 444 

changes throughout the cell’s metabolic network. Therefore, the probability that a bacterial 445 

population evolves secondary mutations that compensate for the fitness costs of a resistance 446 

mutation is often higher than the probability that a bacterial population will revert to 447 

susceptibility in drug-free environments [20, 66]. During treatment, resistant bacterial 448 

populations may also accumulate secondary mutations that further raise MIC. In order to 449 

understand how drug mechanism influences such secondary adaptation, we simulated the 450 

emergence of secondary mutants from drug-resistant subpopulations of a bacterial population 451 

faced with antibiotic challenge (Supplementary Figure S9; Methods, Simulating the emergence 452 

of secondary mutations). 453 

The probability of secondary mutation emergence is substantially higher for drugs with 454 

linear effects on cellular growth and death than it is for drugs with stepwise effects (Figure 5A). 455 

This holds true for both bactericidal and bacteriostatic agents. Counterintuitively, then, the 456 

suppression of secondary mutation emergence is not necessarily guaranteed by rapid killing as 457 

suggested by earlier studies [67]. Likewise, rapid attenuation of cell division does not halt the 458 

emergence of secondary mutations. We studied the basis for this result by investigating the 459 

steady-state target occupancy distributions of cells under antibiotic exposure. By accounting for 460 

the kinetics of drug-target binding, our biochemical model shows that target occupancy among 461 

cells follows a distribution and is not a single value even in otherwise clonal bacterial 462 

subpopulations (Figure 5B). This results in heterogeneous replication rates within the drug-463 

resistant subpopulation (Supplementary Figure S10) that allow some bacteria to mutate. 464 
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Classical population-dynamic models of antibiotic action [33, 67], which assume that a drug 465 

affects the net growth rate of all cells equally, overlook this phenomenon. 466 

 467 

 468 
 469 

Figure 5 – Emergence of secondary mutations among resistant subpopulations of infecting 470 

bacteria. (A) Probability of a drug-resistant strain with secondary mutations emerging from an 471 

infecting bacterial population before the infection is cleared (i.e. before the total bacterial 472 

population decreases to less than 1, Supplementary Figure S9). The initial population size for 473 

this simulation is 109 cells. Inset shows probabilities of secondary mutation emergence before 474 

infection clearance when the drug concentration used is 2x MICRES. (B) Frequency distributions 475 

of inactive drug-target complexes for drug-resistant subpopulations undergoing steady-state 476 

exponential decline at 2x MICRES. Growth and death rate distributions for these populations are 477 

shown in Supplementary Figure S10. (C) Probability of secondary mutant emergence from 478 

bacterial subpopulations with i inactivated drug-target complexes, shown for ciprofloxacin dosed 479 

at 2x MICRES. (D) Probability of secondary mutant emergence from bacterial subpopulations as a 480 

function of drug dose, shown for ciprofloxacin dosed at 2x MICRES. Probabilities are shown as 481 

absolute values (left panel) and as values normalized to the total probability of compensation for 482 

the entire bacterial population over the course of treatment (right panel). (E) Resistance and 483 

secondary mutant selection windows for different drug action mechanisms. The resistance 484 

selection window (middle green) is defined as the drug concentration range over which a drug-485 

resistant strain has a growth advantage over wild-type. The secondary mutant selection window 486 

(dark green) is defined as the drug concentration range over which the probability of a resistant 487 

strain with secondary mutations emerging before infection clearance exceeds 10-4 (see 488 

Supplementary Figure S11 and Methods, Simulating the emergence of secondary mutations). 489 

Dashed lines indicate the MICs of the wild-type and resistant strains. CIP: ciprofloxacin; S/S: 490 

bacteriostatic/stepwise effect; S/L: bacteriostatic/linear effect; C/S: bactericidal/stepwise effect; 491 
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C/L: bactericidal/linear effect; MICWT: MIC of the wild-type strain; MICRES: MIC of the resistant 492 

strain. 493 

______________________________________________________________________________ 494 

For ciprofloxacin doses only slightly above the MIC of the resistant strain ([Drug] = 2x 495 

MICRES), we found that secondary mutations are most likely to emerge once the bacterial 496 

population has reached a steady-state target occupancy distribution (Figure 5C). A considerable 497 

probability of secondary mutation emergence nonetheless exists among bacterial subpopulations 498 

with low numbers of inactivated drug-target complexes. These low-occupancy subpopulations 499 

have faster growth rates and thus higher mutation rates. They are also present in very large 500 

numbers during the initial stages of treatment, when drug molecules are binding to their cellular 501 

targets and before the overall population begins to decline (Figure 1C). We found that drug 502 

concentration influences the likelihood of a secondary mutant arising from a steady-state or a 503 

low-occupancy subpopulation (Figure 5D). While the overall probability of secondary mutation 504 

emergence decreases with higher drug dose (Figure 5D, left panel), the relative probability that a 505 

secondary mutation arises from a low-occupancy population is greater for higher drug doses 506 

(Figure 5D, right panel). This implies that secondary mutations are more likely to emerge very 507 

early during treatment when high drug doses are used. 508 

Prior studies have estimated that the probability of the existence of a fitness cost-free 509 

bacterial pathogen prior to treatment ranges from 5 x 10-5 to 3 x 10-4 per infection [68]. We 510 

sought to determine the range of drug concentrations over which the likelihood of secondary 511 

mutation emergence during treatment is at least as high as the likelihood for preexisting 512 

secondary resistance. We therefore determined the drug concentration at which the probability of 513 

secondary mutation emergence before population extinction equals 10-4 (that is, each treatment 514 

course has a 1 in 10,000 chance of giving rise to a resistant strain bearing secondary mutations). 515 
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We used this value as an upper boundary for the “secondary mutant selection window,” the range 516 

of drug concentrations over which the probability of the emergence of a drug-resistant bacterial 517 

strain with secondary mutations is substantial (Supplementary Figure S11). The secondary 518 

mutant selection window extends the range of drug concentrations defined by the resistance 519 

selection window over which drug-resistant strains may be selected (Figure 5E). 520 

As with the resistance selection window, we found that the size of the secondary mutant 521 

selection window varies dramatically depending on a drug’s mechanism of action. Drugs with 522 

linear effects on cellular growth and death have larger secondary mutant selection windows than 523 

do drugs with stepwise effects on cellular growth and death. This is because for drugs with 524 

stepwise effects, it is possible to shift the entire distribution of target occupancy to a range where 525 

bacterial replication is virtually eliminated (or where bacterial death far outweighs replication) 526 

across the entire population. With linear action, replication can still occur even at high target 527 

occupancy, enabling the emergence of mutants. Drugs that fully suppress cellular replication 528 

above MIC (i.e. Bacteriostatic/Stepwise) have small secondary mutant selection windows, as the 529 

probability that additional mutations emerge over the course of treatment is equal to the 530 

probability that a resistant strain with secondary mutations emerges during the transient phase of 531 

drug-target binding immediately after treatment onset, which lasts on the order of a few hours 532 

(Figure 1C). 533 

 534 

3. Discussion 535 

The increasing prevalence of first line- and multi-drug resistant bacteria [1, 2] signals the need 536 

for new antibiotics and robust drug dosing strategies that minimize the emergence and spread of 537 

resistance [4]. Despite this need, little is known about the role that a drug’s mechanism of action 538 
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plays on the evolution of antibiotic resistance. We studied the relationship between drug 539 

mechanism and drug resistance using a mathematical model that connects bacterial population 540 

dynamics with molecular-scale descriptions of drug-target binding kinetics (Figure 1A). Our 541 

biochemical model allows us to describe bacterial replication and death as functions of drug-542 

target occupancy, enables us to estimate molecular kinetic parameters from population-scale 543 

data, and delivers performance on par with that of classical pharmacodynamic models (Figure 544 

2B). 545 

 We calibrate the model to an experimental dataset of ciprofloxacin time-kill curves 546 

(Figure 2A, Table 1), and we show that drug-resistant strains can incur strikingly high fitness 547 

costs associated with mutations that reduce drug-target binding kinetics (Figure 3). We find that 548 

the relationship between drug-target inactivation and antibiotic effect (i.e. bacterial killing, 549 

growth stalling, or both) exerts a strong influence on the strength of selection for resistant strains 550 

during treatment, regardless of whether the drug is bactericidal or bacteriostatic (Figure 4D). We 551 

also show that the molecular kinetics of drug-target binding within cells results in heterogeneous 552 

replication rates among members of an otherwise homogenous population (Figure 5B). This 553 

enables some drug-resistant strains to develop secondary mutations that can further reduce drug 554 

susceptibility, increase resilience in drug-free environments, and ultimately lead to treatment 555 

failure. 556 

 The clinical consequence of the frequently-observed trade-off between bacterial fitness 557 

and drug resistance [10] is the existence of a resistance selection window—a range of drug 558 

concentrations that selects for the propagation of drug-resistant strains over their drug-559 

susceptible counterparts [5, 15]. It is important to note that numerous factors not captured by the 560 

resistance selection window can contribute to resistance selection in clinical settings, most 561 
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notably ecological interactions between drug-susceptible strains, drug-resistant strains, and host 562 

physiology [69]. Our approach nonetheless enables us to isolate the roles that a drug’s 563 

mechanism of action play in driving the emergence of resistance. 564 

We show that the resistance selection window is narrower for drugs that exert their 565 

effects on growth or death in a stepwise (i.e. sudden) manner, resulting in a steeper 566 

pharmacodynamic curve (Figure 4C-4D, Supplementary Figure S8). This result is consistent 567 

with other studies on the pharmacodynamics of antimicrobial agents, which have found that the 568 

size of the resistance selection window is associated with the steepness of the pharmacodynamic 569 

curve [17, 19, 64]. The characteristics of antimicrobial agents that enable steeper 570 

pharmacodynamic curves nonetheless remain poorly described. Models that capture the effects 571 

of antibiotic drugs on multiple scales, such as that described in this study and elsewhere [34, 35], 572 

could serve as helpful tools for studying the interplay between a drug’s molecular mechanism 573 

and its effect on bacterial population dynamics, enabling the design of new antimicrobial agents 574 

with narrow resistance selection windows. 575 

Mutations that alleviate the fitness costs associated with drug resistance and/or that 576 

further raise a strain’s MIC play a major role in driving the spread of antimicrobial resistance 577 

across bacterial populations and clinical settings [24]. Our study sheds quantitative light on the 578 

mechanistic factors that govern the emergence of these secondary mutations during treatment. 579 

We propose the use of the secondary mutant selection window (Supplementary Figure S11) as 580 

a tool for illustrating the likelihood of further mutation acquisition at nonzero drug 581 

concentrations. As with the size of the resistance selection window, the size of the secondary 582 

mutant selection window varies greatly depending on the mechanism of action of the antibiotic 583 

(Figure 5E). We stress that the secondary mutant selection window does not necessarily indicate 584 
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a region on the pharmacodynamic profile of a drug over which the selection of a resistant strain 585 

with secondary mutations is favored. The strength of selection depends on the physiological 586 

effect of the secondary mutation itself—that is, whether the mutation accelerates growth rate, 587 

slows drug-target binding, or exerts a multitude of other possible effects. Indeed, secondary 588 

mutations that act strictly by restoring growth rates to wild-type levels lead only to modest 589 

(usually sublinear) increases in MIC (Figure 4B), implying that strains with cost-free resistance 590 

phenotypes would still have MICs well below the upper boundary for the secondary mutant 591 

selection windows shown in Figure 5E. Rather, the secondary mutant selection window defines 592 

the drug concentration range within which the accumulation of secondary mutations is 593 

substantial and therefore clinically significant. 594 

Suppressing secondary mutation is crucial for reducing the survival of drug-resistant 595 

mutants in antibiotic-free environments, where drug-resistant strains enter into direct competition 596 

with other microbial organisms for limited resources [10, 23]. We demonstrate that dosing drugs 597 

at or slightly above the MIC of a resistant strain may not be sufficient for preventing the spread 598 

of resistance, and that—for drugs with linear effects on bacterial growth and death as a function 599 

of drug-target occupancy—there exist appreciable risks of selecting for secondary mutations 600 

even at doses substantially above the MIC of the resistant strain. Reassessing the range of drug 601 

concentrations that selects for resistant mutants as a composite of the resistance selection 602 

window and the secondary mutant selection window (Figure 5E, Supplementary Figure S11) 603 

could facilitate the design of drug dosing strategies that holistically mitigate the emergence and 604 

spread of resistance. 605 

Our study shows that both bactericidal and bacteriostatic drugs are capable of exhibiting 606 

narrow resistance selection windows and low probabilities of secondary mutation emergence in 607 
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bacterial populations subjected to antibiotic treatment. This finding challenges the long-accepted 608 

notion that bactericidal agents are superior to bacteriostatic agents in suppressing the emergence 609 

of resistance during treatment [31], and signals the need to look beyond a drug’s ability to kill or 610 

stall bacterial replication to assess the risks of resistance emergence. The relationship between 611 

drug-target inactivation and overall antibiotic effect has a much stronger influence on the 612 

strength of resistance selection than does the drug’s bacteriostatic or bactericidal activity (Figure 613 

4D). The processes that may dictate such a relationship for any given antibiotic nonetheless 614 

remain enigmatic. This underscores the need for deeper experimental and theoretical research on 615 

the molecular processes that govern the pharmacodynamics of antibiotic drugs. 616 

We note that the model reported here makes a number of simplifying assumptions that 617 

limit its scope and generalizability. One key assumption made is that growth and death rates are 618 

monotonically decreasing and increasing functions, respectively, of drug-target occupancy. Non-619 

monotonic dose-response curves have been described for numerous drugs since the early years of 620 

the antibiotic era [70], and these imply the existence of non-monotonic drug-target occupancy 621 

schemes or of drug-induced cellular responses (such as reduced outer membrane permeability) 622 

that lower drug-target occupancy at high antibiotic concentrations. Our model also has 623 

limitations on the scope of resistance mechanisms that it can recapitulate—a consequence of the 624 

trade-off between mathematical tractability and generalizability. While some classes of 625 

antibiotics (particularly fluoroquinolones and rifamycins) frequently elicit resistance through 626 

altered drug-target affinity, other classes elicit resistance through additional mechanisms 627 

(including drug efflux, enzymatic degradation, and off-target binding) not captured in the linear 628 

model presented here. Other models have been devised that link these additional mechanisms of 629 

resistance (such as efflux pump activity, membrane permeability, and cellular metabolic states) 630 
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with critical pharmacologic parameters (i.e. MIC) [30, 71], but do not accommodate explicit 631 

descriptions of an antibiotic’s mechanism of action. Other models have provided valuable 632 

insights into the genotypic determinants of antimicrobial resistance fitness landscapes [72]. 633 

Adapting existing models to study the relationship between antibiotic mechanism, fitness cost, 634 

and other mechanisms of resistance constitutes a promising direction for future research. 635 

 636 

3.1. Conclusions 637 

The proper use of antibiotics in clinical and non-clinical settings constitutes a core action for 638 

addressing the worldwide threat of antibiotic resistance [4]. The quantitative approach we 639 

present in this study may prove useful for identifying strategies that manage the emergence of 640 

resistance to existing and future antimicrobial agents. We argue that dosing regimens should 641 

account for a drug’s resistance and secondary mutant selection windows if they are to minimize 642 

the selection of resistance phenotypes during treatment. Our findings suggest that even drugs 643 

with seemingly straightforward pharmacodynamic classifications (i.e. bacteriostatic versus 644 

bactericidal action) can set bacterial populations on complex and sometimes counterintuitive 645 

evolutionary trajectories with respect to resistance selection. In the clinic, there exists little 646 

evidence that bactericidal antibiotics lead to more favorable outcomes than do bacteriostatic 647 

antibiotics, especially for combatting uncomplicated infections [57, 73]. Yet it is precisely in the 648 

treatment of uncomplicated, drug-susceptible infections that the greatest gains are to be made in 649 

mitigating the emergence of resistance. Mechanistic models such as that presented in this study 650 

can help to uncover clinically useful drug characteristics that classical models may overlook. We 651 

envision a coupling of our quantitative approach with high-throughput experimental platforms 652 

[74, 75] to aid in the development of new drugs with optimal pharmacodynamic profiles and to 653 
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accelerate the discovery of drug- and pathogen-specific dosing regimens that minimize resistance 654 

emergence. 655 

 656 

4. Methods 657 

4.1. Bacterial time-kill curve experiment: We conducted time-kill curve experiments using 658 

Escherichia coli strain BW25113 (Coli Genetic Stock Center #7636) [76]. We diluted liquid 659 

overnight cultures of BW25113 1:1000 into pre-warmed lysogeny broth (LB) and grew cells to 660 

an optical density at 600nm (OD600) of 0.50. We then prepared a 1:3 dilution series of 661 

ciprofloxacin (highest concentration: 2.19 µg/ml) and added the antibiotics to bacterial cultures. 662 

We quantified bacterial population sizes at regular (20-30 min) time intervals by plating a 1:10 663 

dilution series of liquid culture onto LB agar plates and counting colony forming units. We 664 

performed colony counting blind to plate condition, and we did not exclude any plates from the 665 

analysis. To keep shot noise below 15% during colony counting, we quantified plates with 50 or 666 

greater colony forming units. 667 

To further assess the biological reproducibility of our experiment, we repeated 668 

cytotoxicity assays on different days, once with a fixed timepoint measurement at 90 minutes 669 

post-drug exposure, and another with a timecourse (i.e. that presented in Figure 2A and 670 

Supporting Data File S1). When compared at matching timepoints of drug exposure (90 671 

minutes), dose-response data from these biological replicates collected on different days were 672 

highly reproducible, with Pearson correlation of 0.987, p < 10-5. Each time the experiment was 673 

performed, counts of colony forming units before drug treatment were conducted in technical 674 

triplicate. 675 
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The time-kill curve obtained at the highest ciprofloxacin concentration (2.19 µg/ml, 676 

~250x MIC) was used to determine the maximum death rate (DN) of bacterial cells, and a growth 677 

curve obtained using the same protocol with the omission of ciprofloxacin was used to determine 678 

the maximum growth rate (G0) of cells in an antibiotic free environment (Supplementary 679 

Figure S6). 680 

 681 

4.2. Model formulation and analysis: Our biochemical model constitutes a system of linear 682 

ordinary differential equations that describe how successive numbers of inactivated drug-target 683 

complexes affect bacterial replication and death. We consider a population of initial size B0 of 684 

phenotypically homogenous bacteria exposed to a constant concentration C0 of drug. When no 685 

drug is present, bacterial cells replicate at a rate G0 and die at a rate D0. All cells have an 686 

identical number N of proteins that drug molecules target for inactivation. We assume first-order 687 

kinetics for drug-target binding: drug molecules bind to cellular protein targets within cells, 688 

thereby inactivating the protein, at a rate kF. Inactivated drug-protein targets dissociate at a rate 689 

kR. The first-order affinity of the drug to its protein target (KD) is therefore the ratio of the 690 

molecular dissociation rate to the molecular on-rate (KD = kR/kF). 691 

We stratify the entire bacterial population into N+1 subpopulations according to the 692 

number i of inactivated drug-target complexes within each cell (i.e. the drug-target occupancy), 693 

and we assume that growth and death rates of each bacterial cell depend on the drug-target 694 

occupancy. That is, bacterial subpopulations with a higher drug-target occupancy have slower 695 

growth rates and/or higher death rates than do bacterial subpopulations with a lower drug-target 696 

occupancy. Growth rate is therefore a monotonically decreasing discrete function of i (G[i]), and 697 

death rate is a monotonically increasing discrete function (D[i]). We use generalized logistic 698 
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equations (Supplementary Figure S1) to describe overall growth and death rates as a function 699 

of drug-target occupancy, allowing these functions to take the form of a line, a sigmoidal curve, 700 

an exponential curve, or a step function. We assume that when a drug inactivates all N protein 701 

targets in a cell, growth rate falls to zero (for bacteriostatic drugs), death rate attains a maximal 702 

value DN (for bactericidal drugs), or growth and death rates are both affected (for drugs with 703 

mixed bactericidal and bacteriostatic action). In all of these cases, the maximal rate of killing or 704 

growth attenuation can occur before all N target proteins are inactivated if, for instance, G[i] 705 

and/or D[i] are step functions with inflection points between 0 and N. During replication, a 706 

bacterial cell partitions its inactivated drug-target complexes to two daughter cells according to a 707 

binomial distribution. 708 

The change over time in the number of bacterial cells with exactly i inactivated drug-709 

target complexes (Bi) thus depends on the growth rate Gi, the death rate Di, and the binding 710 

kinetics of the drug to its protein target: 711 

[Equation 2] 712 

𝑑𝐵𝑖(𝑡)

𝑑𝑡
= (𝑖 + 1)𝑘𝑅𝐵𝑖+1 + (𝑁 − (𝑖 − 1))𝑘𝐹𝐶0𝐵𝑖−1 −  𝑖𝑘𝑅𝐵𝑖 − (𝑁 − 𝑖)𝑘𝐹𝐶0𝐵𝑖 − 𝐷𝑖𝐵𝑖 − 𝐺𝑖𝐵𝑖 + ∑2

(
𝑗
𝑖
)

2𝑗
𝐺𝑗𝐵𝑗

𝑁

𝑗=𝑖

 713 

The first four terms on the right side of Equation 2 describe changes in Bi due to drug-target 714 

binding and unbinding. The fifth term describes bacterial death, the sixth term describes bacterial 715 

growth, and the seventh term describes the partitioning of drug-target complexes upon 716 

replication according to a binomial distribution. Equation 2 is a linear form of a model we have 717 

described previously that treats drug-target complex number as a continuous variable rather than 718 

as a natural number [34]. Linearization allows us to define B(t) as a vector whose elements 719 

comprise the set of all bacterial subpopulations (B0, B1, …, Bi, …, BN-1, BN) at a given time t. We 720 
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can then describe the temporal dynamics of the entire bacterial population as a system of linear 721 

differential equations: 722 

[Equation 3] 723 

𝑑𝐵⃗ (𝑡)

𝑑𝑡
=  𝑨𝐵⃗  724 

In the equation above, A denotes the matrix of coefficients describing the system of equations for 725 

the vector B(t). The values for the coefficients in A depend on the concentration C0 of drug, on 726 

the drug’s binding kinetics, and on the growth and death rate functions G[i] and D[i]. 727 

Equation 3 represents an initial value problem. This system of linear differential 728 

equations with a constant coefficient matrix has a unique solution given by 729 

[Equation 4] 730 

𝐵⃗ (𝑡) =  𝑒𝑨𝑡𝐵⃗ 0 731 

where the vector 𝐵⃗ 0 denotes the initial composition of bacterial subpopulations at t = 0. The 732 

solution can also be written as a linear superposition of a product of complex exponentials (with 733 

arguments determined by eigenvalues) and polynomials (whose degree is determined by the 734 

geometric multiplicity of these eigenvalues and whose coefficients are uniquely determined by 735 

the initial conditions). In practice, B(t) describes a family of exponential growth and decay 736 

curves that represent the replication and death of all N+1 bacterial subpopulations over time 737 

(Figure 1B). We solve for B(t) numerically by calculating the matrix exponential of A using a 738 

scaling and squaring algorithm implemented in MATLAB (MathWorks, Newton, MA) [77]. 739 

 740 

4.3. Calculation of minimum inhibitory concentration: We define the MIC as the concentration 741 

C0 of an antibiotic such that any concentration of drug at or above C0 is guaranteed to cause the 742 

eventual extinction of the bacterial population. This occurs precisely when one eigenvalue of 743 
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matrix A (from Equation 3) is zero and all other eigenvalues have a negative real component. 744 

We thus express the MIC as 745 

[Equation 5] 746 

𝑀𝐼𝐶 = inf {𝐶0 > 0 | max (ℛℯ(𝑒𝑖𝑔(𝑨))) = 0}. 747 

With this formulation, finding the MIC amounts to finding the value of C0 such that the greatest 748 

real component of the eigenvalues of A is zero. Deriving the expression for the MIC in the 749 

simplest case of the model, when N = 1, serves to illustrate this approach. For the purposes of 750 

this derivation, we consider a drug that elicits both a bactericidal and a bacteriostatic effect, so 751 

G[i = 1] = 0 and D[i = 1] = DN. However, the approach for finding the MIC is identical for any 752 

mechanism of drug action. The matrix A describing all bacterial subpopulations (Bi=0 and Bi=1) in 753 

this simple case is 754 

[Equation 6] 755 

𝑨 = [
𝐺0 − 𝑘𝐹𝐶0 𝑘𝑅

𝑘𝐹𝐶0 −(𝑘𝑅 + 𝐷𝑁)
]. 756 

We wish to find the concentration CMIC of antibiotic that yields negative real components of all 757 

but one eigenvalues λ of matrix A. For the 2-by-2 matrix given by Equation 6, the characteristic 758 

polynomial is given by λ2 - tr(A)λ + det(A), and the Routh-Hurwitz stability criterion needed to 759 

satisfy the negative value constraints on λ is tr(A) ≤ 0 and det(A) ≥ 0. For the matrix described in 760 

Equation 6, these expressions correspond to 761 

[Equation 7] 762 

𝐺0 − 𝑘𝐹𝐶0 − 𝑘𝑅 − 𝐷𝑁 ≤ 0 763 

and 764 

[Equation 8] 765 

(𝐺0 − 𝑘𝐹𝐶0)(−𝑘𝑅 − 𝐷𝑁) − 𝑘𝐹𝑘𝑅𝐶0 ≥ 0. 766 
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Solving for the concentration Co in both of these cases yields 767 

[Equation 9] 768 

𝐶0 ≥
𝐺0 − 𝑘𝑅 − 𝐷𝑁

𝑘𝐹
 769 

in the case of Equation 7 and 770 

[Equation 10] 771 

𝐶0 ≥
(𝑘𝑅 + 𝐷𝑁)𝐺0

𝑘𝐹𝐷𝑁
 772 

in the case of Equation 8. We expect the value of kR to be greater than that of G0 (that is, we 773 

expect the rate of drug-target unbinding to be greater than the rate of bacterial replication). We 774 

also expect the value of the death rate at saturating drug concentrations (DN) to be nonzero and 775 

positive. Therefore, Equation 9 is guaranteed to be satisfied if Equation 10 is also satisfied. We 776 

thus find the expression for the MIC to be 777 

 [Equation 11] 778 

𝐶𝑀𝐼𝐶 =  
(𝑘𝑅 + 𝐷𝑁)𝐺0

𝑘𝐹𝐷𝑁
. 779 

From this expression, we can infer the following proportionalities for the value of the MIC 780 

relative to the values of other model parameters: 781 

[Equation 12] 782 

𝐶𝑀𝐼𝐶  ∝  𝐺0 783 

𝐶𝑀𝐼𝐶  ∝  1 𝑘𝐹
⁄  784 

𝐶𝑀𝐼𝐶  ∝  𝑘𝑅 . 785 

Polynomial expressions for the MIC, as shown in Equation 11, become exceedingly 786 

complex beyond N = 3. However, we conjecture (although we have not been able to prove) that 787 

the structure of the linear system shown in Equation 3 guarantees the existence of the MIC for 788 

any N. For larger values of N, we leverage numerical schemes to calculate the eigenvalues of 789 
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matrix A. We use MATLAB’s eig() function, which calculates eigenvalues using the QZ 790 

algorithm [78]. 791 

 792 

4.4. Model calibration via simulated annealing: Numerical values for the model parameters N, 793 

D0, µR, and µC were obtained from the literature (Table 1). The values for G0 and DN were 794 

obtained by fitting experimental kill curves at drug concentrations of zero and 2.19 µg/ml, 795 

respectively, to exponential functions (Supplementary Figure S6). We leveraged an adaptive 796 

simulated annealing algorithm coupled with local gradient descent to obtain the remaining 797 

parameters (kF, kR, αG, αD, γG, and γD). Detailed descriptions of the adaptive simulated annealing 798 

algorithm are available elsewhere [79, 80]; in brief, simulated annealing is a global optimization 799 

algorithm capable of escaping local minima. It is therefore well suited to applications involving 800 

the optimization of many parameters. Adaptive simulated annealing is a variant on the classical 801 

simulated annealing algorithm that probes global parameter space with greater efficiency by 802 

accounting for each parameter’s magnitude when formulating a new parameter set at every 803 

iteration of the algorithm. We used adaptive simulated annealing to minimize the difference 804 

between experimental time-kill curves and model simulations of bacterial populations challenged 805 

to the same antibiotic doses. The difference between experimental observation and simulation is 806 

expressed through the objective function, whose value ψ the algorithm seeks to minimize: 807 

[Equation 13] 808 

𝜓 = ∑∑(𝑾 |𝑬 − 𝑩|)2.

𝑗𝑖

 809 

E denotes an m-by-n matrix of experimentally-measured population sizes at m drug 810 

concentrations and n timepoints, B denotes simulated population sizes at the same drug 811 

concentrations and timepoints, and W denotes an m-by-n weighting matrix (for our application, 812 
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simply a matrix of ones). B is a function of the parameters being optimized (that is, B = f(kF, kR, 813 

αG, αD, γG, γD)). 814 

 Coupling the adaptive simulated annealing optimization with a local gradient descent 815 

assures that our calibration procedure always converges on a local minimum. We used an 816 

exponential cooling schedule for the simulated annealing algorithm, which allows the 817 

optimization to run ergodically [79]. That is, repeating the optimization many times from random 818 

initial starting conditions in parallel yields roughly the same results as running the optimization 819 

once for a very long time. This allowed us to parallelize the optimization procedure by running 820 

the algorithm repeatedly across several cores of a computer and to characterize the distributions 821 

of parameter values obtained from these calibrations (Supplementary Figure S3). After 822 

performing 249 independent model calibrations, we selected the parameter set with the lowest 823 

objective function value to use in subsequent simulations. The parameter values for this set are 824 

shown in Table 1. Parameter sets for all model optimizations performed are available in 825 

Supporting Data File S3. 826 

 827 

4.5. Simulating the emergence of secondary mutations: We assumed that drug-resistant bacterial 828 

strains with secondary mutations that compensate for fitness costs and/or that further increase 829 

MIC emerge from preexisting drug-resistant subpopulations present in the initial population at 830 

the start of treatment (Supplementary Figure S9). The size of the drug-resistant subpopulation 831 

in the absence of antibiotic (B0,R) is given by the mutation-selection balance, which expresses the 832 

equilibrium at which the rate of emergence of drug resistance alleles by spontaneous mutation 833 

equals the rate of elimination of those alleles due to competitive fitness costs [81]: 834 

[Equation 14] 835 
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𝐵0,𝑅 = 
𝐵0µ𝑅

𝑐𝑅
 836 

Here, µR denotes the mutation rate for drug resistance emergence per unit time. 837 

In order to quantify the probability of secondary mutation emergence from this drug-838 

resistant subpopulation, we adapted a formulation that Lipsitch and Levin developed to study the 839 

evolution of drug-resistant bacterial strains during antibiotic treatment [67]. We assumed that 840 

secondary mutations emerge exclusively due to errors in DNA replication during bacterial 841 

growth. The expected number of resistant cells with secondary mutations that emerge from a 842 

bacterial population with i inactivated drug-target complexes (E(MRC,i)) is proportional to the 843 

total number of replications that the subpopulation undergoes before extinction and the rate of 844 

secondary mutation emergence: 845 

[Equation 15] 846 

𝐸(𝑀𝑅𝐶,𝑖) =  µ𝐶 ∫ 𝐺𝑅,𝑖  𝐵𝑅,𝑖(𝑡) 𝑑𝑡

𝑡𝐸𝑋𝑇,𝑖

0

 847 

In this equation, µC denotes the secondary mutation rate, GR,i represents the growth rate of a 848 

resistant strain with exactly i inactivated drug-target complexes, BR,i(t) describes the population 849 

dynamics of the ith drug-resistant bacterial subpopulation, and tEXT,i describes the amount of time 850 

elapsed from treatment onset until the bacterial subpopulation is eliminated (BR,i = 1 when t = 851 

tEXT). The total number E(MRC) of resistant mutants with secondary mutations that we expect to 852 

observe over the course of treatment is thus the sum of Equation 15 over all values of i, and the 853 

probability PRC that a compensated resistant mutant will emerge over the course of treatment 854 

follows from the Poisson assumption that secondary mutations arise stochastically and 855 

independently of other mutations: 856 

[Equation 16] 857 
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𝑃𝑅𝐶 = 1 − 𝑒−(∑ 𝐸(𝑀𝑅𝐶,𝑖)
𝑁
𝑖=0 ). 858 

The summation term in Equation 16 describes the total number of resistant strains with 859 

secondary mutations expected to emerge before extinction. This equation thus quantifies the 860 

Poisson probability that at least one resistant strain with a secondary mutation will emerge over 861 

the course of treatment. 862 

 863 

4.6. Code and data: We wrote all code in MATLAB. All of the code used to implement and 864 

solve our model, to analyze experimental data, and to generate simulation data shown in all 865 

figures is available as a software package in Supplementary File S1. Experimental data 866 

represented in Figures 2A & 2B and in Supplementary Figure S4 are available within Figure 2 867 

– Source Data Files 1, 2 & 4, respectively, and the parameter values for all iterations of model 868 

optimization are available in Supporting Data File S3. 869 
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 1101 
 1102 

Supplementary Figure S1 – Bacterial growth and death rates as a function of drug-target 1103 

occupancy. We define the functions G[i] and D[i] as constrained logistic curves such that G[i = 1104 

0] = Go, G[i = N] = 0, D[i = 0] = D0, and D[i = N] = DN. The parameters αG and αD define the 1105 

steepness of the logistic curves for the growth and death rate function, respectively. αG and αD 1106 

are unitless and range from 1 to 500; 1 yields a quasi-linear function, while 500 yields a quasi-1107 

step function. The parameters γG and γD define the inflection point of the logistic curves for the 1108 

growth and death rate function, respectively. γG ranges from –N to N and γD ranges from 0 to 2N; 1109 

the curve is quasi-sigmoidal if γG and γD are in between 0 and N and is quasi-exponential if γG 1110 

and γD are outside of these bounds. 1111 
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 1114 
 1115 

Supplementary Figure S2 – Simulated time-kill curves of Escherichia coli exposed to a 1116 

range of drug concentrations. We used the parameter set outlined in Table 1 to model the 1117 

growth and death of bacterial populations subjected to drug concentrations up to 16x minimum 1118 

inhibitory concentration (MIC). Drug concentrations are expressed as factors of the MIC. The 1119 

net growth rate of the entire bacterial population over the time course of the simulation decreases 1120 

with increasing drug concentration. 1121 
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 1124 
 1125 

Supplementary Figure S3 – Results from 249 independent model calibrations to 1126 

experimental data. We used adaptive simulated annealing coupled with gradient descent (see 1127 

Methods, Model calibration via simulated annealing) to fit the model to experimental kill curve 1128 

data of E. coli exposed to ciprofloxacin (Supporting Data File S1). Shown in this figure are the 1129 

results for 249 independent model fits (Supporting Data File S3), each beginning with 1130 

randomly-chosen values for the parameters describing drug-target binding rate kF, drug-target 1131 

unbinding rate kR, steepness of the growth rate function αG, steepness of the death rate function 1132 

αD, inflection point of the growth rate function γG, and inflection point of the death rate function 1133 

γD. (A) Frequency distribution of objective function values obtained from independent model 1134 

calibrations. The objective function value describes the goodness of the fit between experimental 1135 

data and simulation; smaller values indicate higher goodness of fit. (B-H) Optimization plots 1136 

showing randomly chosen initial parameter values (x-axis) and calibrated parameter values (y-1137 

axis) for all independent model calibrations. The optimized parameters are kF (B), kR (C), KD (the 1138 

ratio of kR to kF) (D), αG (E), αD (F), γG (G), and γD (H). The final objective function value of 1139 

each model fit is colored according to the color bar above panel (A). 1140 
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 1143 
 1144 

Supplementary Figure S4 – Pharmacodynamic curves generated from experimental data 1145 

and from the calibrated model. The experimental pharmacodynamic curve was generated by 1146 

calculating the net growth rates of E. coli exposed to a set of ciprofloxacin drug concentrations 1147 

(Supporting Data File S1). The time-kill curves of this same experimental dataset are shown in 1148 

Figure 2A; see Supporting Data File S4 for experimental data on net growth rate as a function 1149 

of drug concentration. The model-calibrated pharmacodynamic curve was generated by 1150 

simulating bacterial time-kill curves over the same range of drug concentrations used in the 1151 

experiment and calculating associated net growth rates. 1152 
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 1155 
 1156 

Supplementary Figure S5 – Simulated population curves for ciprofloxacin and for four 1157 

extreme modes of antibiotic drug mechanism. We simulated a bacterial population of 108 cells 1158 

exposed to antibiotic drug at 4x MIC. The ciprofloxacin curve corresponds to the drug 1159 

mechanism obtained from the model calibration to experimental data and detailed in Figure 2C, 1160 

and the remaining curves correspond to the extreme schemes of drug mechanism shown in 1161 

Figure 2D. 1162 
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 1165 
 1166 

Supplementary Figure S6 – Obtaining G0 and DN from experimental data. (A) To obtain the 1167 

value of G0 (growth rate in the absence of antibiotic) used in simulations, we fit an exponential 1168 

growth curve to experimental data for E. coli cells grown in the absence of antibiotic. (B) To 1169 

determine the value of DN (maximum death rate in saturating conditions of antibiotic), we fit an 1170 

exponential decay curve to experimental data for E. coli cells exposed to 2.19 µg/ml of 1171 

ciprofloxacin (~200 x MIC). The population size deviates from exponential decay at later 1172 

timepoints (dashed and shaded) likely because of the emergence of persistent subpopulations of 1173 

bacteria [45]. The R2 values shown are the linear correlation coefficients for the model fit, and 1174 

are not the correlation coefficients for the log-transform of the data. 1175 
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 1178 
 1179 

Supplementary Figure S7 – MIC as a function of drug-target binding and unbinding 1180 

kinetics. The MIC of a mutant (normalized to the MIC of the wild-type) is plotted against the 1181 

fold-change in (A) drug-target binding (kF) or (B) drug-target complex disassociation (kR). For 1182 

this simulation, mutants have no fitness costs associated with changes in kF and kR (cR = 0). For 1183 

drug-target binding (kF), fold increase in MIC is directly proportional to fold decrease in kF for 1184 

all drug mechanisms. In both panels, the dashed line indicates the line of direct proportionality. 1185 

MICWT: MIC of the wild-type strain; MICRES: MIC of the resistant strain. 1186 
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 1189 
 1190 

Supplementary Figure S8 – Drugs with steeper pharmacodynamic curves have narrower 1191 

resistance selection windows given a cellular effect (bacteriostatic/bactericidal). To quantify 1192 

the steepness of pharmacodynamic curves, we fit the curves for drug-resistant strains shown in 1193 

Figure 4C to the pharmacodynamic function formulated by Regoes et al. [33]. The equation 1194 

describes the net growth rate Gnet of a bacterial population as a function of drug concentration C0 1195 

and other parameters (MIC, G0, DN) derived from the model: 1196 

𝐺𝑛𝑒𝑡 =  𝐺0 − 
(𝐺0 − 𝐷𝑁)(

𝐶0
MIC⁄ )𝜅

(𝐶0
MIC⁄ )𝜅 − (𝐷𝑁

𝐺0
⁄ )

 1197 

In this equation, κ describes the Hill coefficient, which serves as a measure of the steepness of 1198 

the pharmacodynamic curve. Larger values of κ indicate steeper curves. For each of the drug 1199 

mechanisms described in this study (Supplementary File S2), we generated pharmacodynamic 1200 

curves for drug-resistant mutants (Figure 4C, solid lines), determined the value of κ that best fits 1201 

the curve, and plotted κ against the range of drug concentrations that represents the resistance 1202 

selection window (Figure 4D). MICWT: MIC of the wild-type strain; MICRES: MIC of the 1203 

resistant strain. 1204 
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 1206 
 1207 

Supplementary Figure S9 – Emergence of secondary mutations within subpopulations of 1208 

drug-resistant bacteria during antibiotic treatment. When simulating the emergence of 1209 

secondary mutations, we assume that a drug-resistant subpopulation (middle green) of bacteria is 1210 

present at the start of treatment; the size of this subpopulation is given by the mutation selection 1211 

balance of the allele that confers the drug-resistance phenotype [81]. We calculate the probability 1212 

that a drug-resistant strain with secondary mutations (dark green) emerges from this 1213 

subpopulation before the elimination of the drug-resistant strain (at time tEXT). 1214 
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 1217 
 1218 

Supplementary Figure S10 – Distributions of growth and death rates for drug-resistant 1219 

bacterial subpopulations undergoing steady-state exponential decline at 2x MICRES. Boxes 1220 

denote the central 50% of the growth and death rate distributions, and whiskers denote the 1221 

central 95% of the growth and death rate distributions. 1222 
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 1225 
 1226 

Supplementary Figure S11 – The secondary mutant selection window. The secondary mutant 1227 

selection window comprises the drug concentration range over which the net growth of the drug-1228 

resistant strain is negative but the probability of secondary resistance emergence before the end 1229 

of treatment exceeds a defined threshold (in our simulations, 10-4, or a 1 in 10,000 chance). Four 1230 

regimes of selection exist: the null selection window in which the wild-type strain dominates, the 1231 

resistance selection window, the secondary mutant selection window, and the complete killing 1232 

window. We simplify these four regimes by disregarding the relative strengths of selection for 1233 

each strain in each regime and we instead illustrate the boundaries of each region along a drug 1234 

concentration axis (top bar); these simplified selection regimes are shown for all five drug 1235 

mechanisms studied in Figure 5E. 1236 
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Additional files included in submission 1239 

 1240 

Supplementary File S1 – MATLAB code package containing the code written for this 1241 

study. This file contains scripts that we used to implement our model, to analyze data, and to 1242 

generate simulation data for all main text and supplementary figures. Documentation detailing 1243 

how to use the software is included in each script of the code package. 1244 

 1245 

Supplementary File S2 – Parameters for a set of five drugs with different mechanisms of 1246 

action. The parameters αG and αD describe the steepness of the growth and death rate functions, 1247 

respectively, around the inflection point. The parameters γG and γD describe the inflection points 1248 

of the growth and death rate functions (see Supplementary Figure S1). Bacteriostatic potency 1249 

refers to the magnitude of growth rate decline at saturating concentrations of drug; a value of 1 1250 

indicates that that growth rate declines to zero in saturating concentrations of drug (G[i = N] = 1251 

0), and a value of 0 indicates that growth rate is unaffected by drug concentration (G[i] = G0 for 1252 

all i). Bactericidal potency refers to the magnitude of death rate increase at saturating conditions 1253 

of drug; a value of 1 indicates that death rate increases to maximum in saturating concentrations 1254 

of drug (D[i = N] = DN > D0), and a value of 0 indicates that death rate is unaffected by drug 1255 

concentration (D[i] = D0 for all i). All other parameters (including drug-target binding rate kF, 1256 

drug-target unbinding rate kR, and target number N) are identical for all drugs in the set. 1257 

 1258 

Supporting Data File S1 – Experimental data for the ciprofloxacin time-kill curve 1259 

experiment represented in Figure 2A and Supplementary Figure S6. 1260 

 1261 

Supporting Data File S2 – Experimentally-measured minimum inhibitory concentrations 1262 

(MICs) for ciprofloxacin against Escherichia coli represented in Figure 2B. We collated this 1263 

list of experimentally-measured MICs from the literature; study sources are given in the file. 1264 

 1265 

Supporting Data File S3 – Model calibrations obtained via simulated annealing. Starting 1266 

and ending values for all model parameters are given for each iteration of the model fitting 1267 

procedure described in Methods, Model calibration via simulated annealing. 1268 

 1269 

Supporting Data File S4 – Experimental pharmacodynamic curve data represented in 1270 

Supplementary Figure S4. We generated these data by calculating the net growth rates of 1271 

bacterial populations at each drug concentration in the experiment detailed in Supporting Data 1272 

File S1. 1273 
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