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Abstract

Antibiotic-resistant pathogens are a major public health threat. A deeper understanding of how
an antibiotic’s mechanism of action influences the emergence of resistance would aid in the
design of new drugs and help to preserve the effectiveness of existing ones. To this end, we
developed a model that links bacterial population dynamics with antibiotic-target binding
kinetics. Our approach allows us to derive mechanistic insights on drug activity from population-
scale experimental data and to quantify the interplay between drug mechanism and resistance
selection. We find that whether a drug acts as a bacteriostatic or bactericidal agent has little
influence on resistance selection. We also show that heterogeneous drug-target binding within a
population enables resistant bacteria to evolve fitness-improving secondary mutations even when
drug doses remain above the resistant strain’s minimum inhibitory concentration. Our work
suggests that antibiotic doses beyond this “secondary mutation selection window” could
safeguard against the emergence of high-fitness resistant strains during treatment.

Keywords: Antibiotic resistance, clinical microbiology, fitness landscape, global health,
multiscale modeling, pharmacodynamics
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1. Introduction

The emergence and spread of antibiotic-resistant bacterial pathogens is an urgent global problem
that threatens to undermine one of the most essential components of modern medicine [1].
Antibiotic resistance is also expensive, adding an average of US $1400 to the costs of treatment
for each of the 2.8 million patients who become infected with a drug-resistant bacterium in the
United States annually [2-4]. The scarcity of promising new antimicrobial drugs with novel
mechanisms of action further exacerbates the challenges associated with managing the spread of
drug resistance [5, 6]. Given the increasing incidence of resistant bacterial infections and the lack
of new drugs on the horizon, clinicians, researchers, and global leaders must act to preserve the
effectiveness of the world’s existing antibiotic drug arsenal [1].

Antibiotic treatment induces a strong selective pressure on bacterial populations to evolve
resistance [7, 8]. Resistance mutations raise the minimum inhibitory concentration (MIC) of an
antibiotic, the amount of drug needed to suppress the growth of a bacterial culture [9]. However,
alleles that confer drug resistance also frequently carry fitness costs [10-12], predominantly
because antibiotics target vital cellular functions (such as DNA replication and protein
synthesis). Resistance mechanisms reduce the ability of a drug to disrupt its target, but do so at
the expense of optimal physiological function [13].

With few exceptions [14], resistance-causing alleles induce physiological impairments in
both drug-free and drug-containing environments, though resistant strains may only suffer a
strict competitive disadvantage (i.e. a slower growth rate) against sensitive strains in drug-free
conditions. A range of antibiotic concentrations therefore exists within which drug-resistant
strains have a selective advantage over their drug-susceptible counterparts. Drugs dosed within

this “resistance selection window” (also called the “mutant selection window”) favor the
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proliferation of drug-resistant subpopulations [15-17]. Recent advances in antimicrobial
pharmacodynamics have leveraged resistance selection windows to design dosing strategies that
minimize the selection of resistant pathogens without sacrificing treatment efficacy [17-19].

The existence of resistance mutations that confer physiological impairments in both drug-
free and drug-containing environments implies that resistant strains face selective pressures to
evolve secondary mutations that alleviate these impairments, and that these selective pressures
exist even under continuous drug exposure [20, 21]. Secondary mutations can increase bacterial
fitness (through faster growth rates) in the absence of drugs, or they can confer elevated levels of
drug tolerance to preexisting resistant subpopulations (through attenuated drug-target
interactions, faster growth rates in the presence of drugs, or both). In the case of increased
bacterial fitness, secondary mutations enable drug-resistant mutants to compete against drug-
susceptible strains in resource-limited, antibiotic-free environments [10, 22, 23], and are
implicated in the spread of drug resistance across a wide range of timescales and clinical settings
[24]. In the case of increased drug tolerance, secondary mutations can be the underlying cause of
treatment failure [25, 26]. Elucidating the dynamics of secondary mutation emergence during
treatment is thus crucial for managing the spread of resistance.

Since resistance mutations are frequently associated with fitness costs [11, 12] both in
vivo [27] and in vitro [28], studies on the resistance selection window and on secondary
adaptation have yielded valuable insights into the emergence of drug-resistant bacteria during
treatment. However, the design of optimal resistance-mitigating drug dosing strategies remains
challenging for two reasons. One obstacle is that bacteria may acquire resistance through a
multitude of mechanisms that reduce antibiotic efficacy [29]. These molecular mechanisms may

themselves influence the fitness landscape of resistance mutations (that is, the relationship
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between the fitness cost of resistance and the selective advantage conferred by the resistance
mutation in drug-containing environments)[30]. A second challenge is that an antibiotic’s
mechanism of action may affect the strength of selection for resistant strains over drug-
susceptible strains during treatment. One important feature of an antibiotic’s cellular-level
mechanism of action is whether the drug controls bacterial populations by increasing the rate of
bacterial killing (i.e. bactericidal action) or by decreasing the rate of bacterial replication (i.e.
bacteriostatic action). Clinicians and researchers alike have argued that these modes of
antimicrobial action influence the dynamics of resistance selection [31, 32].

The design of resistance-mitigating antibiotic usage therefore depends on an
understanding of how a drug’s mechanism of action, a pathogen’s mechanism of resistance, and
the fitness landscape of resistance affect selection pressures during treatment. Tractable and
quantitative strategies for systematically exploring all of these factors have so far been lacking.
To address this gap, we developed a dynamical model that simulates the growth and death of
bacterial populations under antibiotic exposure using molecular-scale descriptions of drug-target
binding kinetics and cellular-scale descriptions of a drug’s mechanism of action. In our model,
higher numbers of inactivated drug-target complexes within a cell lead to increases in antibiotic
effect (either bacteriostatic, bactericidal, or a combination of the two). The relationship between
drug-target inactivation and antibiotic effect can take the shape of a linear (i.e. gradual) or
stepwise (i.e. sudden) function, as well as other intermediate forms (Supplementary Figure S1).
The model enables us to estimate critical pharmacodynamic parameters from experimental
datasets as effectively as with classical approaches [33], to simulate the fitness landscapes of

resistance mutations against drugs with diverse mechanisms of action, and to quantify the
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87  probability of secondary mutation emergence within resistant subpopulations of bacteria during
88  treatment.
89 The mathematical model described here is a linear case of nonlinear formulations we
90 have reported previously to study the influence of drug-target binding kinetics on optimal
91  antibiotic dosing [34]. Linearization results in a >10%-fold computational speed-up that enables
92 us to robustly fit experimental kill-curve data and to simulate antibiotic dose-response
93  relationships at high resolution. Our linear formulation also allows us to calculate an antibiotic’s
94 MIC directly from experimentally measurable molecular parameters. We leverage the
95  mathematical tractability and computational efficiency of the linear model to investigate the
96  selective pressures that antibiotics with diverse mechanisms of action place on growing bacterial
97  populations, a task that would be impractical with previous approaches.
98 We find that bacteria with resistance mechanisms that confer even modest reductions in
99  drug-target binding affinity can incur strikingly high (80-99%) fitness costs while still
100  maintaining higher drug tolerances than their susceptible counterparts, regardless of the
101  antibiotic’s mechanism of action. We also find that drugs with stepwise effects on bacterial
102  growth and death have narrower resistance selection windows than do drugs with linear effects.
103 However, our model suggests that whether a drug acts primarily through bactericidal or
104  bacteriostatic action has comparatively little influence on the strength of resistance selection
105 during treatment. We further demonstrate that, even with aggressive treatment regimens,
106  heterogeneous drug-target occupancy within a population enables fitness-impaired resistant
107  strains to develop secondary mutations that can lead to treatment failure. Our work cautions that
108 fitness costs may not limit the emergence of resistant strains that evolve through reductions in

109  drug-target binding affinity. We propose the “secondary mutant selection window” as a novel
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110  pharmacodynamic characteristic of a drug that should be assessed alongside other classic
111  parameters such as the MIC and the resistance selection window when designing robust
112 resistance-mitigating antibiotic dosing strategies.

113

114 2. Results

115  2.1. A model that links bacterial population dynamics with molecular mechanisms of antibiotic
116  action

117  We developed a linear dynamical model to describe the effect of a constant concentration of drug
118 on the growth and death rates of a bacterial population (Figure 1A) (see Methods, Model
119  formulation and analysis for a mathematical description of the model). We assume that each
120  bacterial cell in the population carries an identical number N of intracellular proteins that the
121  drug targets for inactivation. Drug molecules inactivate target proteins by binding to them with a
122  rate kr and can dissociate from the target with a rate kz. The affinity Kp of the drug is thus the
123 ratio of off-rate to on-rate, Kp = kr/kr. The model assumes that the growth and death rates of a
124  bacterial cell depend on its drug-target occupancy (that is, the number of inactivated drug-target
125  complexes it contains) [34, 35]. We denote drug-target occupancy with the index i, which ranges
126  from 0 to N. Cells harboring successively larger numbers of inactivated drug-target complexes
127  have successively faster death rates and/or slower growth rates, depending on the mechanism of
128  action of the drug (see Results, Classification of drug action). We thus define the growth rate
129  (GJi]) and death rate (D[i]) of each subpopulation as discrete monotonic functions of drug-target
130  occupancy. In practice, G[i] and D[i] take the form of constrained logistic functions each
131  controlled by a steepness and inflection point parameter, allowing us to define quasi-linear,

132  quasi-stepwise, quasi-exponential, and sigmoid curves (Supplementary Figure S1).

133
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137  Figure 1 — Features of a model that links bacterial population dynamics with the cellular
138  mechanisms of antibiotic drug action. (A) Illustration of the model. We consider a population
139  Bi of bacterial cells harboring i inactive drug-target complexes. The change in the size of Bi is a
140 function of cellular growth and death rates (each of which is determined by the value of i,
141  Supplementary Figure S1), and of the molecular kinetics of the drug binding and unbinding to
142  its protein target. The total bacterial population is given by the sum By + B; + ... + Bn.1 + Bn,
143  where N is the number of drug targets per cell. (B) Dynamics of a bacterial population exposed
144 to a drug dose above the minimum inhibitory concentration (MIC). The black line represents the
145  total bacterial population; shaded lines represent subpopulations with x and fewer inactivated
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146  drug-target complexes. Population dynamics as a function of drug concentration are shown in
147  Supplementary Figure S2. (C) Proportion of the bacterial subpopulation B; as a share of total
148  population for the first three hours of the curve shown in panel (B). (D) Pharmacodynamic
149  curves derived from the model for a wild-type (light green) and drug-resistant (dark green)
150  bacterial strain. The MIC is denoted as the drug concentration at which the net bacterial growth
151 rate is zero. Inset: the resistance selection window (green shading) is given by the drug
152  concentration range within which the drug-resistant strain exhibits a higher—but still positive—
153  net growth rate compared to the wild-type strain. Go denotes the growth rate of the wild-type
154  strain in the absence of antibiotic (i.e. the growth rate for subpopulation Bo). Dy denotes the
155  maximum death rate of bacterial strains when all N cellular targets are inactivated (i.e. the death
156  rate of subpopulation Bw).

157

158 The model tracks the growth and death of all N+1 bacterial subpopulations, each denoted
159 B, over time (Figure 1B). Drug concentration determines the net growth rate of the entire
160  bacterial population (Supplementary Figure S2). In the absence of drug, the population grows
161  exponentially at a rate equal to the difference between the drug-free growth and death rates (Go
162 and D,, respectively). When drug is present, the composition of bacterial subpopulations
163  asymptotes towards a steady state after a transient phase during which drug molecules bind to
164  their targets (Figure 1C). At steady state, the relative composition of bacterial subpopulations
165  does not depend on the total size of the population.

166 We can calculate the MIC of a drug directly from model parameters (see Methods,
167  Calculation of the minimum inhibitory concentration), and we can simulate clinically observed
168  drug resistance mutations by modulating the parameters of the model that influence the value of
169  the MIC. Changes in the binding kinetics of the drug (i.e. kr and kr) simulate target modification
170  mutations that decrease the affinity of an antibiotic molecule to a cellular protein [36-38].
171  Changes to the value of N represent changes in the number of protein targets per cell, equivalent
172 to target up- or downregulation [39-41]. We assume that fitness costs associated with resistance
173  alleles take the form of reduced growth rates, and we simulate this cost by reducing the drug-free

174  growth rate of resistant strains by a factor cr such that the maximum growth rate of a resistant
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175  strain (Gores) relative to that of a wild-type strain is Go.res = Go(1—cr). When cr ranges from 0
176  (no cost) to 1 (no growth), the resistant strain exhibits a slower growth rate relative to that of the
177  wild-type. If cr is negative, the resistant strain exhibits a faster drug-free growth rate than does
178  the wild-type strain, as has been observed in rare cases with some fluoroquinolone-resistant
179  Escherichia coli isolates [42]. The model also enables us to generate pharmacodynamic curves
180 by calculating the net growth rates of simulated bacterial populations over a range of drug
181  concentrations (Figure 1D). The resistance selection window constitutes the range of drug
182  concentrations over which a drug-resistant mutant strain has a higher but strictly positive net
183  growth rate relative to that of its wild-type counterpart (Figure 1D, inset).

184

185  2.2. Inferring cellular mechanisms of antibiotic action from population-scale data

186  To test the utility of our biochemical model for gaining cellular-scale insights into antimicrobial
187  drug mechanisms from population-scale experiments, we calibrated our model to a family of
188  experimental time-kill curves of the gram-negative bacterium Escherichia coli challenged to
189  ciprofloxacin, a fluoroquinolone first brought to market in 1987. Ciprofloxacin has two known
190 molecular targets in bacteria, both of which are heterotetrameric type-II topoisomerases: the
191 DNA gyrase complex (GyrA2B2) and DNA topoisomerase IV (ParC2E2). However, ciprofloxacin
192  preferentially binds to the GyrA2B2 complex in gram-negative bacteria [43]. We used a mass-
193  spectrometry based estimate for the number of GyrA2B2 complexes per E. coli cell (N ~ 183) as
194  the number of drug targets within each bacterium [44].

195 We implemented an adaptive simulated annealing algorithm to calibrate the parameters
196 of our model to an experimental dataset of ciprofloxacin time-kill curves (Methods, Model

197  calibration via simulated annealing). We performed 249 independent parameterizations using

10
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198  the algorithm and selected the parameter set that yielded the lowest objective function value
199  (Figure 2A, Table 1, Supplementary Figure S3). Bacterial persistence [45, 46] likely plays a
200 role in the slower-than-expected population decline that we observe experimentally at high drug
201  concentrations. At antibiotic doses below those that elicit persistence, the calibrated model
202  accurately recapitulates the pharmacodynamic curve derived from experimental data

203  (Supplementary Figure S4).
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207  Figure 2 — Calibrating the model to experimental data reveals underlying mechanisms of
208 drug action. (A) Comparison between calibrated biochemical model (solid lines) and
209  experimental data (shaded points). The experimental data (Supporting Data File S1) represent
210  time-kill curves of Escherichia coli exposed to ciprofloxacin. A summary of all independent
211  model calibrations is shown in Supplementary Figure S3. (B) Comparison of the calibrated
212 biochemical model with the Em4x pharmacodynamic model [33]. We fit the Em4x model to the
213  same experimental dataset shown in panel (A) and compared Pearson correlation coefficients
214  (R?) and MICs. Red points in the MIC panel denote experimentally-measured ciprofloxacin
215 MICs for E. coli strains isolated prior to the widespread emergence of quinolone resistance
216  (Supporting Data File S2). The solid horizontal line represents the mean of experimental

11
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217  measurements, and the dashed lines indicate the 95% confidence interval. A comparison of the
218  pharmacodynamic curves obtained from the models is shown in Supplementary Figure S4. (C)
219  Cellular growth and death rates as a function of ciprofloxacin-GyrA2B2 complex number (i) for
220  the model calibrated to the experimental data shown in panel (A). (D) Four extreme schemes of
221  drug action resulting from two characteristics (activity and steepness) of a drug’s effect on
222  growth and death rates as a function of drug-target occupancy. Supplementary Figure S5 shows
223  the simulated bacterial kill curves for these schemes at 4x MIC. Model fits for drug-free growth
224 rate (Go) and drug-saturated death rate (Dn) are shown in Supplementary Figure S6.

225

226
Model parameters
Name Description Value Units Source
Number of target proteins per cell (i.e. 1

N GyrA,B; copy number) 183 cell [44]

Gy Bacterial growth rate in the absence of drug 0.526 hr! Model calibration

Dy Bacterial death rate in the absence of drug 5.40 x 1073 hr-! [47]

Dy Bacterial death .rate in saturating 753 bl Model calibration

concentrations of drug

kr Drug-target binding rate 5.23 x10° M !sec! Model calibration

kr Drug-target unbinding rate 3.17x10* sec”! Model calibration

oG Steepness of growth rate function G[i] 16.8 # drug—targ_elt Model calibration
complexes

op Steepness of death rate function D[i] 7.29 # drug—targ_elt Model calibration
complexes

Y6 Inflection point of growth rate function G[7] 24.9 # drug-target Model calibration
complexes

YD Inflection point of death rate function D[7] 359 # drug-target Model calibration
complexes

By Initial size dg?gg;;gggﬁiilon at the start 6.88 x 10° cell ml! Model calibration

UR Mutation rate for drug resistance emergence | 2.00 x 10”7 | cell’! division'! [48, 49]

ue Mutation rate for‘emergence of gecondary 200x 10 | cell! division'! [48, 49]

mutations in resistant strains
Cost of resistance mutation, such that the Non-
CR antibiotic-free growth rate of a resistant 0.25 Jimensional [50]
mutant is Gy (1 - cg)
227

228 Table 1 — Model parameters. We obtained the values of kr, kr, aG, ap, yG, yp, and Bo by
229  calibrating the model to experimental data (Figure 2). We inferred antibiotic-free growth rate
230 and antibiotic-saturated death rate (Go and Dn) by fitting an exponential curve to ciprofloxacin
231  kill curves using 0 and 2.19 pg/ml of drug, respectively (Supplementary Figure S6). We use a
232  constrained logistic function to model the growth and death rates of bacterial cells as a function
233  of bound target number, where a controls the steepness of the logistic function and y controls the
234  inflection point of the logistic function (Supplementary Figure S1). Parameters not obtained
235  from model calibrations to experimental data were retrieved from the literature. For the bacterial
236  death rate in the absence of drug (Do), we used the mean of death rates reported in Wang et al.,
237  2010.

238

12
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239 We compared our biochemical model’s ability to capture critical pharmacodynamic
240  characteristics of a drug against that of an Emax model [33]. The Emax approach describes net
241  bacterial growth rate directly as a function of drug concentration and does not accommodate
242  molecular descriptions of drug-target interactions. Such models have been used extensively to
243  estimate pharmacodynamic parameters, to design drug dosing regimens, and to predict the
244  strength of resistance selection at nonzero drug concentrations. Our formulation delivers
245  performance comparable to that of the Emax model for fitting experimental time-kill curves
246  (Figure 2B, left panel) and more accurately estimates MIC (which we calculated to be 8.9 x 103
247  ug/ml for ciprofloxacin) from these data (Figure 2B, right panel). This demonstrates the validity
248  of our approach for deriving pharmacodynamic insights similar to what an Em4x model provides.
249 Our model furthermore offers capabilities that the Emax approach lacks, including the
250 ability to estimate molecular kinetic parameters of drug-target binding from population-scale
251  data. To test the robustness of these estimates, we analyzed the Kp values for ciprofloxacin
252  binding to E. coli GyrA:B: generated for the 249 independent parameterizations described
253 above. As our fitting method is stochastic, not all model calibrations reach local minima.
254  However, the best 90% of all calibrations (that is, the 224 fits with the lowest objective function
255  values) consistently converged upon a narrow range of affinity values (95% confidence interval:
256  7.2x10%to 1.6 x 107 M) (Supporting Data File S3). Our estimates lie within the range of Kp
257  values of ciprofloxacin for E. coli GyrA:B: reported from experimental measurements, which
258  span from 3.2 x 10® t0 3.0 x 10°® M [51-54].

259

260

261
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262 2.3. Classification of antibiotic action

263  Another unique feature of our approach is the ability to describe bacterial growth and death rates
264  as a function of drug-target occupancy. For ciprofloxacin, the calibrated model predicts three
265 regimes of bacterial subpopulation dynamics in relation to GyrA2B: inactivation: a growth
266 regime in which bacterial replication dominates among subpopulations with low numbers of
267  inactivated targets, a stalling regime for intermediate numbers of drug-target complexes in which
268  neither growth nor death is appreciable, and a killing regime at high numbers of inactivated
269  targets in which bacterial death increases quasi-exponentially (Figure 2C). The forms of G[i]
270  and D[i] that we obtain here suggest that ciprofloxacin has a multimodal mechanism of action, a
271  result consistent with prior experimental studies [43, 55, 56] and with more complex nonlinear
272  modeling approaches [34]. The drug stalls cellular replication at intermediate target occupancies
273  and induces killing only at higher doses. Like many antibiotics, ciprofloxacin thus exhibits both
274  Dbactericidal and bacteriostatic effects on microbial populations [56, 57]. Our biochemical model
275  represents this explicitly.

276 Most drugs nonetheless demonstrate a greater degree of bactericidal or bacteriostatic
277  activity at clinically relevant doses [58], and we hypothesized that the ability of a drug to stall
278  growth or to accelerate death may affect the selection for resistant strains and the emergence of
279  secondary mutations. We also suspected that the relationship between drug-target occupancy and
280  antibiotic effect—reflected in the steepness of the G[i] and D[i] functions—could further shape
281  the dynamics of resistance selection.

282 These two characteristics (bactericidal versus bacteriostatic activity and drug effect
283  steepness) represent two general dimensions along which a drug’s mechanism of action can

284  affect the growth and death of bacterial populations. Four extreme cases of drug action thus exist
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285  (Figure 2D). In the case of a purely bacteriostatic antibiotic, death rates are a constant function
286  of inactivated drug-target complex number (that is, D[i] = Do for all values of 7). For a purely
287  bactericidal antibiotic, the growth rate of all bacterial subpopulations remains constant (G[i] = Go
288  for all values of 7). The steepness of the drug effect is reflected in the form of the function D[]
289  for bactericidal antibiotics and G[i] for bacteriostatic antibiotics (Supplementary Figure S1).
290 We defined linear and stepwise onset of action as our two extremes, as other monotonic forms
291  are intermediate cases of these curves.

292

293  2.4. The opposing effects of increased drug resistance and decreased cellular fitness

294  Mutations that confer resistance against antibiotics often come at the cost of reduced growth
295  rates compared to those of drug-susceptible strains [10, 11]. The balance of replication and death
296  determines bacterial net growth both in the absence and in the presence of antibiotics, and very
297  high fitness costs associated with resistance can prevent bacterial viability at any drug
298  concentration [59]. We sought to investigate the quantitative basis for the trade-off between drug
299  resistance and cellular growth and to investigate how the drug mechanisms defined above
300 influence the range of permissible fitness costs that a drug-resistant mutant can incur while still
301 maintaining a drug susceptibility that is lower than that of a wild-type strain. In the simplest case
302  of the model, where the number of target molecules per cell is 1, the expression for the MIC
303  captures the opposing effects of drug resistance and cellular growth (see Methods, Calculation
304 of minimum inhibitory concentration for derivation):

305 [Equation 1]

_ (kg + Dy)
306 MIC = D, 0
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307  The MIC increases with reductions of the on-rate kinetics of drug-target binding (kr) and with
308 increases in the off-rate kinetics of drug-target binding (kz), but decreases with fitness costs that
309 manifest as reductions in the drug-free growth rate (Go). These proportionalities hold for any
310 number N of drug targets.

311 We modeled the opposing effects of biochemical changes that reduce drug susceptibility
312  (i.e. altered drug-target binding kinetics or target upregulation) and the fitness costs of these
313  biochemical changes. We considered a set of five antibiotics with an identical protein target and
314  identical molecular kinetic parameters (that is, the target number N, the drug-target on-rate kr,
315 and the drug-target off-rate kz are constant for the wild-type strain) (Supplementary File S2,
316  Supplementary Figure S5). One antibiotic in the set features growth and death dynamics
317  derived from the model calibration to ciprofloxacin time-kill curve data (Figure 2C). The other
318 four antibiotics are hypothetical and feature growth and death dynamics that represent four
319 extremes of antibiotic action (Figure 2D). We simulated mutant strains of E. coli that acquire
320  drug resistance phenotypes either through changes in the molecular kinetics of drug binding (kr
321  or kr) or by increasing the copy number N of the drug’s cellular protein target. Each of these
322  resistance mechanisms has been observed in clinical isolates of drug-resistant, gram-negative
323  bacteria [11, 29, 60]. We then simulated fitness costs associated with the resistance mutation and
324  calculated the mutant strain’s MIC relative to that of the wild-type strain.

325 For resistance acquired through changes in the kinetics of drug-target binding (kr and kr),
326  we found that mutants can tolerate strikingly high (80-99%) fitness costs while still maintaining
327 an MIC that is greater than that of the drug-susceptible wild-type (Figure 3, top and middle
328 rows). This permissibility of fitness costs exists for all five of the drug mechanisms we

329  simulated, although drugs that act with linear effects (Bacteriostatic/Linear and
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330  Bactericidal/Linear) have a narrower range of permissible fitness costs than do drugs that act
331  with stepwise effects. For all drug mechanisms, mutant strains make larger gains in MIC by
332  decreasing the on-rate kinetics of drug-target binding (kr) than they do by increasing the off-rate
333  kinetics of drug-target binding (kz) by the same amount (Supplementary Figure S7). That is,
334  mutations that lead to the same change in drug-target affinity (as quantified by the dissociation
335  constant Kp = kr/kr) through different changes in the on- and off-rate binding kinetics do not
336  necessarily have the same range of permissible fitness costs. This has biological significance—
337  limiting the opportunity for a drug to bind to its target, thereby preventing the drug from
338  actuating its effects on cellular growth and death, should lead to lower drug susceptibilities than
339  would accelerating the rate at which an already-formed drug-target complex disassociates. The
340  difference in the fitness effects of mutations that modify k» and 4z is especially pronounced for
341  bactericidal drugs that elicit linear increases in cellular death (Bactericidal/Linear).

342 Ciprofloxacin exhibits a bactericidal effect by permitting GyrA:B>-mediated cleavage of
343  DNA but preventing DNA re-ligation, resulting in widespread and eventually insurmountable
344  chromosome fragmentation [43, 61]. When simulating the overexpression of target proteins in
345  resistant cells (Figure 3, bottom row) we therefore assumed that bacterial killing is induced
346  when a fixed number of inactivated drug-target molecules form within a cell (that is, we assume
347  atoxicity threshold whereby yp remains constant with changing N). Conversely, we assumed that
348  a resistant cell requires a fixed number of active, non-complexed target proteins in order to
349  maintain its maximum growth rate (that is, a survival threshold). yc thus changes in step with N
350  such that N-y¢ remains constant. We made these same assumptions for the four hypothetical
351 antibiotics.

352

353
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357  Figure 3 — Drug mechanism influences the fitness landscapes of resistance mutations. We
358  calculated the MIC, expressed as a fold-change relative to the MIC of the wild-type, for mutant
359  strains carrying (top row) drug targets with reduced binding kinetics (kr), (middle row) drug
360 targets with accelerated unbinding kinetics (kr), or (bottom row) increased numbers of drug
361 target molecules (N). Mutant strains also carry fitness costs, expressed as a fractional reduction
362  in drug-free growth rate relative to wild-type. Cost-free MIC as a function of kr and &z for all
363  mechanisms of action are shown in Supplementary Figure S7. When modulating the number of
364  drug target molecules N (bottom row), we assumed that cells require a fixed number of active
365  protein targets to grow at a normal rate and that cellular killing is induced when a fixed number
366  of inactive drug-target complexes form within a cell. Thus, the inflection point for the growth
367 rate function (yc) changes concomitantly with N such that N-yc remains constant, while the
368 inflection point for the death rate function (yp) remains constant (see Supplementary Figure S1
369 for illustrations of the effects of y¢ and yp on bacterial growth and death rates).

370

371 We found that target overexpression has a diversity of effects on resistance that depend
372 on the mechanism of action of the drug. For ciprofloxacin and its multimodal effects on growth
373  and death, small increases in target number can lead to modest increases in MIC, even when the

374  resistant cell faces large fitness costs as a result of GyrA2B2 overexpression. However, larger
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375 increases in target number lead to reductions in MIC. This result is consistent with experimental
376  studies on target amplification, in which the overexpression of gyrAB in E. coli resulted in
377  increased susceptibility to ciprofloxacin [40]. Target overexpression leads to substantial gains in
378  resistance against bacteriostatic drugs that exhibit stepwise effects, even at very high fitness
379  costs. The effect of target overexpression on drug resistance is negligible for bactericidal drugs
380  and for bacteriostatic drugs with a linear effect on growth stalling.

381

382  2.5. Drug mechanism shapes the resistance selection window

383  To understand how a drug’s mechanism of action affects the propensity to select for resistance
384  during treatment, we simulated the pharmacodynamics of wild-type and drug-resistant strains
385 challenged to each of the five drugs in the set outlined above. MICs for clinical isolates of
386 ciprofloxacin-resistant E. coli strains with single point mutations in GyrA, which may reduce the
387  affinity of ciprofloxacin to GyrA2Ba, range from 10 to 16 times greater than the MIC of a drug-
388  susceptible wild-type [36, 60, 62, 63]. Data on the fitness costs associated with mutant GyrA-
389  mediated ciprofloxacin resistance in E. coli are sparse, but studies of rifampicin-resistant clinical
390 isolates of Mycobacterium tuberculosis with point mutations in the »poB gene have suggested
391 that a 20-30% reduction in growth rate is approximately the maximum fitness cost that drug-
392  resistant mutants can incur before facing extinction in competitive drug-free environments [50].
393  To model drug-resistant strains, we therefore scaled kr and &z such that the MIC of the resistant
394  strain is 12 times that of its drug-susceptible counterpart given a 25% fitness cost (ck = 0.25)
395  (Figure 4A).

396
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399  Figure 4 — The propensity to select for resistant mutants depends on drug mechanism. (A)
400 We modeled wild-type strains using the parameters obtained from the calibration detailed in
401  Figure 2. (B) Relationship between MICs of resistant strains (expressed as multiples of MICwr)
402  and fitness cost of resistance. Horizontal dashed lines indicate the MICs of the wild-type and
403  resistant strains described in panel (A); the vertical dashed line indicates the fitness cost at which
404  all resistant strains have the same fold-increase in MIC relative to that of wild-type (czr = 0.25).
405 (C) Pharmacodynamic curves for the wild-type and resistant strains described in panel (A). (D)
406  Resistance selection windows for drug-resistant strains. The fitness advantage of resistant strains
407  over wild-type strains is shown within the drug concentration range in which the resistant strain
408  has a positive net growth rate that is larger than that of the wild-type. The fitness advantage is
409  expressed as a proportion of the resistant strain’s growth rate in the absence of drug (Go,res).
410  Supplementary Figure S8 illustrates the relationship between the size of the resistance selection
411  window and the steepness of a drug’s pharmacodynamic curve.

412

413 A nearly linear relationship exists between drug resistance and fitness cost for strains
414  resistant to drugs with a linear effect on growth or death (Figure 4B, Bacteriostatic/Linear and
415 Bactericidal/Linear). By contrast, drugs with stepwise effects on growth and Kkilling
416  (Bacteriostatic/Stepwise and Bactericidal/Stepwise) exhibit only modest reductions in MIC until
417  they incur very high (>90%) fitness costs. We determined resistance selection windows for

418  strains resistant to the five drugs in our set by simulating pharmacodynamic curves for wild-type
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419  and resistant strains (Figure 4C). To quantify the magnitudes of selection for resistant strains,
420  we calculated the difference in net growth rates between wild-type and susceptible strains over
421  the concentration range that defines the resistance selection window for each drug (Figure 4D).
422  For linear-effect bacteriostatic drugs (Bacteriostatic/Linear), we found that the resistance
423  selection window begins at drug concentrations as low as 200x below the MIC of the susceptible
424  strain. Drugs with stepwise effects on growth or killing (Bacteriostatic/Stepwise and
425  Bactericidal/Stepwise) have narrower resistance selection windows than their counterparts with
426  more linear activity profiles.

427 Consistent with prior studies on the pharmacodynamic profiles of antimicrobial agents
428 [17, 19, 64], we find that the size of the resistance selection window is associated with the
429  steepness of a drug’s pharmacodynamic curve. Given a cellular effect (i.e. bacteriostatic or
430  bactericidal), drugs with steeper pharmacodynamic curves tend to have narrower selection
431  windows (Supplementary Figure S8). However, we also find that strains resistant to drugs with
432  narrower resistance selection windows have higher net growth rates within the resistance
433  selection regime than do strains resistant to drugs with wider resistance selection windows
434  (Figure 4D). This finding has clear clinical significance: drugs with steeper pharmacodynamic
435  profiles feature relatively small concentration ranges that select for resistance, but the negative
436  consequences of dosing within the resistance selection window are higher for these drugs.

437

438  2.6. The secondary mutant selection window is narrower for antibiotics with stepwise effects on
439  growth and death

440  The genotypic space for mutations that confer resistance to antibiotics by modifying the binding

441  kinetics of a drug to its target, such as those described in Figure 4, is typically highly
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442  constrained [22, 65]. Accordingly, a return to a drug-susceptible state requires reversion of the
443  specific genetic changes that conferred resistance in a bacterial population. In contrast to
444 resistance reversion, secondary mutation accumulation can involve a wider range of genetic
445  changes throughout the cell’s metabolic network. Therefore, the probability that a bacterial
446  population evolves secondary mutations that compensate for the fitness costs of a resistance
447  mutation is often higher than the probability that a bacterial population will revert to
448  susceptibility in drug-free environments [20, 66]. During treatment, resistant bacterial
449  populations may also accumulate secondary mutations that further raise MIC. In order to
450  understand how drug mechanism influences such secondary adaptation, we simulated the
451  emergence of secondary mutants from drug-resistant subpopulations of a bacterial population
452  faced with antibiotic challenge (Supplementary Figure S9; Methods, Simulating the emergence
453  of secondary mutations).

454 The probability of secondary mutation emergence is substantially higher for drugs with
455  linear effects on cellular growth and death than it is for drugs with stepwise effects (Figure SA).
456  This holds true for both bactericidal and bacteriostatic agents. Counterintuitively, then, the
457  suppression of secondary mutation emergence is not necessarily guaranteed by rapid killing as
458  suggested by earlier studies [67]. Likewise, rapid attenuation of cell division does not halt the
459  emergence of secondary mutations. We studied the basis for this result by investigating the
460  steady-state target occupancy distributions of cells under antibiotic exposure. By accounting for
461  the kinetics of drug-target binding, our biochemical model shows that target occupancy among
462  cells follows a distribution and is not a single value even in otherwise clonal bacterial
463  subpopulations (Figure 5B). This results in heterogeneous replication rates within the drug-

464  resistant subpopulation (Supplementary Figure S10) that allow some bacteria to mutate.
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465  Classical population-dynamic models of antibiotic action [33, 67], which assume that a drug

466  affects the net growth rate of all cells equally, overlook this phenomenon.
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470  Figure 5 — Emergence of secondary mutations among resistant subpopulations of infecting
471  bacteria. (A) Probability of a drug-resistant strain with secondary mutations emerging from an
472  infecting bacterial population before the infection is cleared (i.e. before the total bacterial
473  population decreases to less than 1, Supplementary Figure S9). The initial population size for
474  this simulation is 10° cells. Inset shows probabilities of secondary mutation emergence before
475 infection clearance when the drug concentration used is 2x MICres. (B) Frequency distributions
476  of inactive drug-target complexes for drug-resistant subpopulations undergoing steady-state
477  exponential decline at 2x MICres. Growth and death rate distributions for these populations are
478  shown in Supplementary Figure S10. (C) Probability of secondary mutant emergence from
479  bacterial subpopulations with i inactivated drug-target complexes, shown for ciprofloxacin dosed
480  at 2x MICres. (D) Probability of secondary mutant emergence from bacterial subpopulations as a
481  function of drug dose, shown for ciprofloxacin dosed at 2x MICres. Probabilities are shown as
482  absolute values (left panel) and as values normalized to the total probability of compensation for
483  the entire bacterial population over the course of treatment (right panel). (E) Resistance and
484  secondary mutant selection windows for different drug action mechanisms. The resistance
485  selection window (middle green) is defined as the drug concentration range over which a drug-
486  resistant strain has a growth advantage over wild-type. The secondary mutant selection window
487  (dark green) is defined as the drug concentration range over which the probability of a resistant
488  strain with secondary mutations emerging before infection clearance exceeds 10* (see
489  Supplementary Figure S11 and Methods, Simulating the emergence of secondary mutations).
490 Dashed lines indicate the MICs of the wild-type and resistant strains. CIP: ciprofloxacin; S/S:
491  bacteriostatic/stepwise effect; S/L: bacteriostatic/linear effect; C/S: bactericidal/stepwise effect;
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492  C/L: bactericidal/linear effect; MICwrt: MIC of the wild-type strain; MICres: MIC of the resistant
493  strain.
494

495 For ciprofloxacin doses only slightly above the MIC of the resistant strain ([Drug] = 2x
496  MICres), we found that secondary mutations are most likely to emerge once the bacterial
497  population has reached a steady-state target occupancy distribution (Figure 5C). A considerable
498  probability of secondary mutation emergence nonetheless exists among bacterial subpopulations
499  with low numbers of inactivated drug-target complexes. These low-occupancy subpopulations
500 have faster growth rates and thus higher mutation rates. They are also present in very large
501 numbers during the initial stages of treatment, when drug molecules are binding to their cellular
502  targets and before the overall population begins to decline (Figure 1C). We found that drug
503  concentration influences the likelihood of a secondary mutant arising from a steady-state or a
504  low-occupancy subpopulation (Figure 5D). While the overall probability of secondary mutation
505  emergence decreases with higher drug dose (Figure 5D, left panel), the relative probability that a
506 secondary mutation arises from a low-occupancy population is greater for higher drug doses
507  (Figure 5D, right panel). This implies that secondary mutations are more likely to emerge very
508 early during treatment when high drug doses are used.

509 Prior studies have estimated that the probability of the existence of a fitness cost-free
510 bacterial pathogen prior to treatment ranges from 5 x 107 to 3 x 10* per infection [68]. We
511  sought to determine the range of drug concentrations over which the likelihood of secondary
512  mutation emergence during treatment is at least as high as the likelihood for preexisting
513  secondary resistance. We therefore determined the drug concentration at which the probability of
514  secondary mutation emergence before population extinction equals 10 (that is, each treatment

515  course has a 1 in 10,000 chance of giving rise to a resistant strain bearing secondary mutations).
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516  We used this value as an upper boundary for the “secondary mutant selection window,” the range
517  of drug concentrations over which the probability of the emergence of a drug-resistant bacterial
518  strain with secondary mutations is substantial (Supplementary Figure S11). The secondary
519 mutant selection window extends the range of drug concentrations defined by the resistance
520  selection window over which drug-resistant strains may be selected (Figure SE).

521 As with the resistance selection window, we found that the size of the secondary mutant
522  selection window varies dramatically depending on a drug’s mechanism of action. Drugs with
523  linear effects on cellular growth and death have larger secondary mutant selection windows than
524  do drugs with stepwise effects on cellular growth and death. This is because for drugs with
525  stepwise effects, it is possible to shift the entire distribution of target occupancy to a range where
526  bacterial replication is virtually eliminated (or where bacterial death far outweighs replication)
527  across the entire population. With linear action, replication can still occur even at high target
528  occupancy, enabling the emergence of mutants. Drugs that fully suppress cellular replication
529  above MIC (i.e. Bacteriostatic/Stepwise) have small secondary mutant selection windows, as the
530 probability that additional mutations emerge over the course of treatment is equal to the
531  probability that a resistant strain with secondary mutations emerges during the transient phase of
532  drug-target binding immediately after treatment onset, which lasts on the order of a few hours
533  (Figure 1C).

534

535 3. Discussion

536  The increasing prevalence of first line- and multi-drug resistant bacteria [1, 2] signals the need
537  for new antibiotics and robust drug dosing strategies that minimize the emergence and spread of

538  resistance [4]. Despite this need, little is known about the role that a drug’s mechanism of action
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539 plays on the evolution of antibiotic resistance. We studied the relationship between drug
540 mechanism and drug resistance using a mathematical model that connects bacterial population
541  dynamics with molecular-scale descriptions of drug-target binding kinetics (Figure 1A). Our
542  biochemical model allows us to describe bacterial replication and death as functions of drug-
543  target occupancy, enables us to estimate molecular kinetic parameters from population-scale
544  data, and delivers performance on par with that of classical pharmacodynamic models (Figure
545 2B).

546 We calibrate the model to an experimental dataset of ciprofloxacin time-kill curves
547  (Figure 2A, Table 1), and we show that drug-resistant strains can incur strikingly high fitness
548  costs associated with mutations that reduce drug-target binding kinetics (Figure 3). We find that
549  the relationship between drug-target inactivation and antibiotic effect (i.e. bacterial killing,
550  growth stalling, or both) exerts a strong influence on the strength of selection for resistant strains
551  during treatment, regardless of whether the drug is bactericidal or bacteriostatic (Figure 4D). We
552  also show that the molecular kinetics of drug-target binding within cells results in heterogeneous
553  replication rates among members of an otherwise homogenous population (Figure 5B). This
554  enables some drug-resistant strains to develop secondary mutations that can further reduce drug
555  susceptibility, increase resilience in drug-free environments, and ultimately lead to treatment
556  failure.

557 The clinical consequence of the frequently-observed trade-off between bacterial fitness
558 and drug resistance [10] is the existence of a resistance selection window—a range of drug
559  concentrations that selects for the propagation of drug-resistant strains over their drug-
560  susceptible counterparts [5, 15]. It is important to note that numerous factors not captured by the

561  resistance selection window can contribute to resistance selection in clinical settings, most
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562  notably ecological interactions between drug-susceptible strains, drug-resistant strains, and host
563  physiology [69]. Our approach nonetheless enables us to isolate the roles that a drug’s
564  mechanism of action play in driving the emergence of resistance.

565 We show that the resistance selection window is narrower for drugs that exert their
566  effects on growth or death in a stepwise (i.e. sudden) manner, resulting in a steeper
567  pharmacodynamic curve (Figure 4C-4D, Supplementary Figure S8). This result is consistent
568  with other studies on the pharmacodynamics of antimicrobial agents, which have found that the
569  size of the resistance selection window is associated with the steepness of the pharmacodynamic
570  curve [17, 19, 64]. The characteristics of antimicrobial agents that enable steeper
571  pharmacodynamic curves nonetheless remain poorly described. Models that capture the effects
572  of antibiotic drugs on multiple scales, such as that described in this study and elsewhere [34, 35],
573  could serve as helpful tools for studying the interplay between a drug’s molecular mechanism
574  and its effect on bacterial population dynamics, enabling the design of new antimicrobial agents
575  with narrow resistance selection windows.

576 Mutations that alleviate the fitness costs associated with drug resistance and/or that
577  further raise a strain’s MIC play a major role in driving the spread of antimicrobial resistance
578  across bacterial populations and clinical settings [24]. Our study sheds quantitative light on the
579  mechanistic factors that govern the emergence of these secondary mutations during treatment.
580  We propose the use of the secondary mutant selection window (Supplementary Figure S11) as
581 a tool for illustrating the likelihood of further mutation acquisition at nonzero drug
582  concentrations. As with the size of the resistance selection window, the size of the secondary
583  mutant selection window varies greatly depending on the mechanism of action of the antibiotic

584  (Figure 5E). We stress that the secondary mutant selection window does not necessarily indicate
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585  aregion on the pharmacodynamic profile of a drug over which the selection of a resistant strain
586  with secondary mutations is favored. The strength of selection depends on the physiological
587  effect of the secondary mutation itself—that is, whether the mutation accelerates growth rate,
588  slows drug-target binding, or exerts a multitude of other possible effects. Indeed, secondary
589  mutations that act strictly by restoring growth rates to wild-type levels lead only to modest
590  (usually sublinear) increases in MIC (Figure 4B), implying that strains with cost-free resistance
591  phenotypes would still have MICs well below the upper boundary for the secondary mutant
592  selection windows shown in Figure SE. Rather, the secondary mutant selection window defines
593 the drug concentration range within which the accumulation of secondary mutations is
594  substantial and therefore clinically significant.

595 Suppressing secondary mutation is crucial for reducing the survival of drug-resistant
596  mutants in antibiotic-free environments, where drug-resistant strains enter into direct competition
597  with other microbial organisms for limited resources [10, 23]. We demonstrate that dosing drugs
598 at or slightly above the MIC of a resistant strain may not be sufficient for preventing the spread
599  of resistance, and that—for drugs with linear effects on bacterial growth and death as a function
600 of drug-target occupancy—there exist appreciable risks of selecting for secondary mutations
601 even at doses substantially above the MIC of the resistant strain. Reassessing the range of drug
602  concentrations that selects for resistant mutants as a composite of the resistance selection
603 window and the secondary mutant selection window (Figure SE, Supplementary Figure S11)
604  could facilitate the design of drug dosing strategies that holistically mitigate the emergence and
605  spread of resistance.

606 Our study shows that both bactericidal and bacteriostatic drugs are capable of exhibiting

607  narrow resistance selection windows and low probabilities of secondary mutation emergence in
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608  bacterial populations subjected to antibiotic treatment. This finding challenges the long-accepted
609 notion that bactericidal agents are superior to bacteriostatic agents in suppressing the emergence
610  of resistance during treatment [31], and signals the need to look beyond a drug’s ability to kill or
611  stall bacterial replication to assess the risks of resistance emergence. The relationship between
612  drug-target inactivation and overall antibiotic effect has a much stronger influence on the
613  strength of resistance selection than does the drug’s bacteriostatic or bactericidal activity (Figure
614  4D). The processes that may dictate such a relationship for any given antibiotic nonetheless
615 remain enigmatic. This underscores the need for deeper experimental and theoretical research on
616  the molecular processes that govern the pharmacodynamics of antibiotic drugs.

617 We note that the model reported here makes a number of simplifying assumptions that
618 limit its scope and generalizability. One key assumption made is that growth and death rates are
619 monotonically decreasing and increasing functions, respectively, of drug-target occupancy. Non-
620  monotonic dose-response curves have been described for numerous drugs since the early years of
621 the antibiotic era [70], and these imply the existence of non-monotonic drug-target occupancy
622  schemes or of drug-induced cellular responses (such as reduced outer membrane permeability)
623 that lower drug-target occupancy at high antibiotic concentrations. Our model also has
624  limitations on the scope of resistance mechanisms that it can recapitulate—a consequence of the
625 trade-off between mathematical tractability and generalizability. While some classes of
626  antibiotics (particularly fluoroquinolones and rifamycins) frequently elicit resistance through
627  altered drug-target affinity, other classes elicit resistance through additional mechanisms
628 (including drug efflux, enzymatic degradation, and off-target binding) not captured in the linear
629  model presented here. Other models have been devised that link these additional mechanisms of

630 resistance (such as efflux pump activity, membrane permeability, and cellular metabolic states)

29


https://doi.org/10.1101/2020.06.01.127571
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.01.127571,; this version posted April 25, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

631  with critical pharmacologic parameters (i.e. MIC) [30, 71], but do not accommodate explicit
632  descriptions of an antibiotic’s mechanism of action. Other models have provided valuable
633 insights into the genotypic determinants of antimicrobial resistance fitness landscapes [72].
634  Adapting existing models to study the relationship between antibiotic mechanism, fitness cost,
635 and other mechanisms of resistance constitutes a promising direction for future research.

636

637  3.1. Conclusions

638  The proper use of antibiotics in clinical and non-clinical settings constitutes a core action for
639 addressing the worldwide threat of antibiotic resistance [4]. The quantitative approach we
640 present in this study may prove useful for identifying strategies that manage the emergence of
641 resistance to existing and future antimicrobial agents. We argue that dosing regimens should
642  account for a drug’s resistance and secondary mutant selection windows if they are to minimize
643 the selection of resistance phenotypes during treatment. Our findings suggest that even drugs
644  with seemingly straightforward pharmacodynamic classifications (i.e. bacteriostatic versus
645  bactericidal action) can set bacterial populations on complex and sometimes counterintuitive
646  evolutionary trajectories with respect to resistance selection. In the clinic, there exists little
647  evidence that bactericidal antibiotics lead to more favorable outcomes than do bacteriostatic
648 antibiotics, especially for combatting uncomplicated infections [57, 73]. Yet it is precisely in the
649 treatment of uncomplicated, drug-susceptible infections that the greatest gains are to be made in
650 mitigating the emergence of resistance. Mechanistic models such as that presented in this study
651  can help to uncover clinically useful drug characteristics that classical models may overlook. We
652  envision a coupling of our quantitative approach with high-throughput experimental platforms

653 [74, 75] to aid in the development of new drugs with optimal pharmacodynamic profiles and to
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654  accelerate the discovery of drug- and pathogen-specific dosing regimens that minimize resistance
655 emergence.

656

657 4. Methods

658 4.1. Bacterial time-kill curve experiment. We conducted time-kill curve experiments using
659  Escherichia coli strain BW25113 (Coli Genetic Stock Center #7636) [76]. We diluted liquid
660  overnight cultures of BW25113 1:1000 into pre-warmed lysogeny broth (LB) and grew cells to
661 an optical density at 600nm (ODeoo) of 0.50. We then prepared a 1:3 dilution series of
662 ciprofloxacin (highest concentration: 2.19 ug/ml) and added the antibiotics to bacterial cultures.
663  We quantified bacterial population sizes at regular (20-30 min) time intervals by plating a 1:10
664  dilution series of liquid culture onto LB agar plates and counting colony forming units. We
665  performed colony counting blind to plate condition, and we did not exclude any plates from the
666  analysis. To keep shot noise below 15% during colony counting, we quantified plates with 50 or
667  greater colony forming units.

668 To further assess the biological reproducibility of our experiment, we repeated
669 cytotoxicity assays on different days, once with a fixed timepoint measurement at 90 minutes
670  post-drug exposure, and another with a timecourse (i.e. that presented in Figure 2A and
671  Supporting Data File S1). When compared at matching timepoints of drug exposure (90
672  minutes), dose-response data from these biological replicates collected on different days were
673  highly reproducible, with Pearson correlation of 0.987, p < 107, Each time the experiment was
674  performed, counts of colony forming units before drug treatment were conducted in technical

675 triplicate.
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676 The time-kill curve obtained at the highest ciprofloxacin concentration (2.19 pg/ml,
677 ~250x MIC) was used to determine the maximum death rate (D) of bacterial cells, and a growth
678  curve obtained using the same protocol with the omission of ciprofloxacin was used to determine
679  the maximum growth rate (Go) of cells in an antibiotic free environment (Supplementary
680  Figure S6).

681

682  4.2. Model formulation and analysis: Our biochemical model constitutes a system of linear
683  ordinary differential equations that describe how successive numbers of inactivated drug-target
684  complexes affect bacterial replication and death. We consider a population of initial size Bo of
685 phenotypically homogenous bacteria exposed to a constant concentration Co of drug. When no
686 drug is present, bacterial cells replicate at a rate Go and die at a rate Do. All cells have an
687  identical number N of proteins that drug molecules target for inactivation. We assume first-order
688  kinetics for drug-target binding: drug molecules bind to cellular protein targets within cells,
689 thereby inactivating the protein, at a rate kr. Inactivated drug-protein targets dissociate at a rate
690  kr. The first-order affinity of the drug to its protein target (Kp) is therefore the ratio of the
691  molecular dissociation rate to the molecular on-rate (Kp = kr/kr).

692 We stratify the entire bacterial population into N+1 subpopulations according to the
693 number i of inactivated drug-target complexes within each cell (i.e. the drug-target occupancy),
694 and we assume that growth and death rates of each bacterial cell depend on the drug-target
695 occupancy. That is, bacterial subpopulations with a higher drug-target occupancy have slower
696  growth rates and/or higher death rates than do bacterial subpopulations with a lower drug-target
697  occupancy. Growth rate is therefore a monotonically decreasing discrete function of i (G[i]), and

698  death rate is a monotonically increasing discrete function (D[i]). We use generalized logistic
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699 equations (Supplementary Figure S1) to describe overall growth and death rates as a function
700  of drug-target occupancy, allowing these functions to take the form of a line, a sigmoidal curve,
701  an exponential curve, or a step function. We assume that when a drug inactivates all N protein
702  targets in a cell, growth rate falls to zero (for bacteriostatic drugs), death rate attains a maximal
703  value Dn (for bactericidal drugs), or growth and death rates are both affected (for drugs with
704  mixed bactericidal and bacteriostatic action). In all of these cases, the maximal rate of killing or
705  growth attenuation can occur before all N target proteins are inactivated if, for instance, G[i]
706  and/or DJ[i] are step functions with inflection points between 0 and N. During replication, a
707  bacterial cell partitions its inactivated drug-target complexes to two daughter cells according to a
708  binomial distribution.

709 The change over time in the number of bacterial cells with exactly i inactivated drug-
710  target complexes (B:) thus depends on the growth rate Gi, the death rate Di, and the binding
711  kinetics of the drug to its protein target:

712  [Equation 2]

5 ()
= (i + DkgBiyy + (N — (i — 1))kpCoBi_y — ikgB; — (N — i)kpCoB; — D;B; — G;B; + Z zﬁajfzj

dB;(t)

713 It

=i
714  The first four terms on the right side of Equation 2 describe changes in B; due to drug-target
715  binding and unbinding. The fifth term describes bacterial death, the sixth term describes bacterial
716  growth, and the seventh term describes the partitioning of drug-target complexes upon
717  replication according to a binomial distribution. Equation 2 is a linear form of a model we have
718  described previously that treats drug-target complex number as a continuous variable rather than
719 as a natural number [34]. Linearization allows us to define B(¢) as a vector whose elements

720  comprise the set of all bacterial subpopulations (B, By, ..., Bi, ..., Bn.1, By) at a given time t. We
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721  can then describe the temporal dynamics of the entire bacterial population as a system of linear
722  differential equations:
723  [Equation 3]

724 BO _ a5
dt

725  In the equation above, 4 denotes the matrix of coefficients describing the system of equations for
726  the vector B(7). The values for the coefficients in 4 depend on the concentration Co of drug, on
727  the drug’s binding kinetics, and on the growth and death rate functions G[i] and DJ[i].

728 Equation 3 represents an initial value problem. This system of linear differential
729  equations with a constant coefficient matrix has a unique solution given by

730 [Equation 4]

731 B(t) = "B,

732  where the vector EO denotes the initial composition of bacterial subpopulations at # = 0. The
733  solution can also be written as a linear superposition of a product of complex exponentials (with
734  arguments determined by eigenvalues) and polynomials (whose degree is determined by the
735  geometric multiplicity of these eigenvalues and whose coefficients are uniquely determined by
736  the initial conditions). In practice, B(f) describes a family of exponential growth and decay
737  curves that represent the replication and death of all N+1 bacterial subpopulations over time
738  (Figure 1B). We solve for B(f) numerically by calculating the matrix exponential of 4 using a
739  scaling and squaring algorithm implemented in MATLAB (MathWorks, Newton, MA) [77].

740

741  4.3. Calculation of minimum inhibitory concentration: We define the MIC as the concentration
742  Cp of an antibiotic such that any concentration of drug at or above Co is guaranteed to cause the

743  eventual extinction of the bacterial population. This occurs precisely when one eigenvalue of
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744  matrix A (from Equation 3) is zero and all other eigenvalues have a negative real component.
745  We thus express the MIC as

746  [Equation 5]

747 MIC = inf{C, > 0| max (Re(eig(4))) = 0}.

748  With this formulation, finding the MIC amounts to finding the value of Co such that the greatest
749  real component of the eigenvalues of 4 is zero. Deriving the expression for the MIC in the
750 simplest case of the model, when N = 1, serves to illustrate this approach. For the purposes of
751  this derivation, we consider a drug that elicits both a bactericidal and a bacteriostatic effect, so
752  G[i=1]=0 and D[i = 1] = Dn. However, the approach for finding the MIC is identical for any
753  mechanism of drug action. The matrix 4 describing all bacterial subpopulations (Bi=0 and Bi=/) in
754  this simple case is

755  [Equation 6]

Go — kpCo kg
krCo —(kr + DI

756 A=
757  We wish to find the concentration Cumic of antibiotic that yields negative real components of all
758  but one eigenvalues 4 of matrix 4. For the 2-by-2 matrix given by Equation 6, the characteristic
759  polynomial is given by A2 - tr(4)4 + det(4), and the Routh-Hurwitz stability criterion needed to
760  satisfy the negative value constraints on 4 is tr(4) < 0 and det(A4) > 0. For the matrix described in
761  Equation 6, these expressions correspond to

762  [Equation 7]

763 Go—kpCo—kr—Dy <0

764  and

765 [Equation 8]

766 (GO - kFCO)(_kR - DN) - kaRCO 2 0
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767  Solving for the concentration C, in both of these cases yields

768  [Equation 9]

769 ¢, > S0~ e = D
kr
770  in the case of Equation 7 and
771  [Equation 10]
(kg + Dy)Go

773  in the case of Equation 8. We expect the value of kz to be greater than that of Go (that is, we
774  expect the rate of drug-target unbinding to be greater than the rate of bacterial replication). We
775  also expect the value of the death rate at saturating drug concentrations (Dy) to be nonzero and
776  positive. Therefore, Equation 9 is guaranteed to be satisfied if Equation 10 is also satisfied. We
777  thus find the expression for the MIC to be

778 [Equation 11]

(kg + Dy)Gy
keDy

779 CMIC =
780  From this expression, we can infer the following proportionalities for the value of the MIC
781  relative to the values of other model parameters:

782  [Equation 12]

783 Cuic < Go
784 Cuic 1/kF
785 Curc &< kg.
786 Polynomial expressions for the MIC, as shown in Equation 11, become exceedingly

787  complex beyond N = 3. However, we conjecture (although we have not been able to prove) that
788  the structure of the linear system shown in Equation 3 guarantees the existence of the MIC for

789 any N. For larger values of N, we leverage numerical schemes to calculate the eigenvalues of
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790 matrix 4. We use MATLAB’s eig() function, which calculates eigenvalues using the QZ
791  algorithm [78].

792

793  4.4. Model calibration via simulated annealing: Numerical values for the model parameters N,
794 Do, ur, and uc were obtained from the literature (Table 1). The values for Go and Dy were
795  obtained by fitting experimental kill curves at drug concentrations of zero and 2.19 ug/ml,
796  respectively, to exponential functions (Supplementary Figure S6). We leveraged an adaptive
797  simulated annealing algorithm coupled with local gradient descent to obtain the remaining
798  parameters (kr, kr, ac, ap, yG, and yp). Detailed descriptions of the adaptive simulated annealing
799  algorithm are available elsewhere [79, 80]; in brief, simulated annealing is a global optimization
800 algorithm capable of escaping local minima. It is therefore well suited to applications involving
801 the optimization of many parameters. Adaptive simulated annealing is a variant on the classical
802  simulated annealing algorithm that probes global parameter space with greater efficiency by
803  accounting for each parameter’s magnitude when formulating a new parameter set at every
804  iteration of the algorithm. We used adaptive simulated annealing to minimize the difference
805  between experimental time-kill curves and model simulations of bacterial populations challenged
806 to the same antibiotic doses. The difference between experimental observation and simulation is
807  expressed through the objective function, whose value y the algorithm seeks to minimize:

808 [Equation 13]

809 = ZZ(W |E — B|)2.
i

810 E denotes an m-by-n matrix of experimentally-measured population sizes at m drug
811  concentrations and n timepoints, B denotes simulated population sizes at the same drug

812  concentrations and timepoints, and W denotes an m-by-n weighting matrix (for our application,
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813  simply a matrix of ones). B is a function of the parameters being optimized (that is, B = f{kr, kg,
814  «ac, ap, yaG, yp)).

815 Coupling the adaptive simulated annealing optimization with a local gradient descent
816  assures that our calibration procedure always converges on a local minimum. We used an
817  exponential cooling schedule for the simulated annealing algorithm, which allows the
818  optimization to run ergodically [79]. That is, repeating the optimization many times from random
819 initial starting conditions in parallel yields roughly the same results as running the optimization
820 once for a very long time. This allowed us to parallelize the optimization procedure by running
821  the algorithm repeatedly across several cores of a computer and to characterize the distributions
822  of parameter values obtained from these calibrations (Supplementary Figure S3). After
823  performing 249 independent model calibrations, we selected the parameter set with the lowest
824  objective function value to use in subsequent simulations. The parameter values for this set are
825 shown in Table 1. Parameter sets for all model optimizations performed are available in
826  Supporting Data File S3.

827

828  4.5. Simulating the emergence of secondary mutations: We assumed that drug-resistant bacterial
829  strains with secondary mutations that compensate for fitness costs and/or that further increase
830  MIC emerge from preexisting drug-resistant subpopulations present in the initial population at
831 the start of treatment (Supplementary Figure S9). The size of the drug-resistant subpopulation
832 in the absence of antibiotic (By,r) is given by the mutation-selection balance, which expresses the
833  equilibrium at which the rate of emergence of drug resistance alleles by spontaneous mutation
834  equals the rate of elimination of those alleles due to competitive fitness costs [81]:

835 [Equation 14]
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836 Bog = oM

R

837  Here, ur denotes the mutation rate for drug resistance emergence per unit time.

838 In order to quantify the probability of secondary mutation emergence from this drug-
839  resistant subpopulation, we adapted a formulation that Lipsitch and Levin developed to study the
840  evolution of drug-resistant bacterial strains during antibiotic treatment [67]. We assumed that
841  secondary mutations emerge exclusively due to errors in DNA replication during bacterial
842  growth. The expected number of resistant cells with secondary mutations that emerge from a
843  bacterial population with i inactivated drug-target complexes (E(Mrc,)) is proportional to the
844  total number of replications that the subpopulation undergoes before extinction and the rate of
845  secondary mutation emergence:

846 [Equation 15]

tEXT,i

847 E(Mgc;) = ne f Gg,i Bgi(t) dt

0

848 In this equation, uc denotes the secondary mutation rate, Gr. represents the growth rate of a
849  resistant strain with exactly 7 inactivated drug-target complexes, Br.i(f) describes the population
850  dynamics of the ith drug-resistant bacterial subpopulation, and zzx7; describes the amount of time
851 elapsed from treatment onset until the bacterial subpopulation is eliminated (Br:= 1 when ¢ =
852  texr). The total number E(Mrc) of resistant mutants with secondary mutations that we expect to
853  observe over the course of treatment is thus the sum of Equation 15 over all values of i, and the
854  probability Prc that a compensated resistant mutant will emerge over the course of treatment
855 follows from the Poisson assumption that secondary mutations arise stochastically and
856  independently of other mutations:

857 [Equation 16]
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858 Pre =1 — e (CioE(Mrcy)),

859 The summation term in Equation 16 describes the total number of resistant strains with
860 secondary mutations expected to emerge before extinction. This equation thus quantifies the
861  Poisson probability that at least one resistant strain with a secondary mutation will emerge over
862  the course of treatment.

863

864  4.6. Code and data: We wrote all code in MATLAB. All of the code used to implement and
865 solve our model, to analyze experimental data, and to generate simulation data shown in all
866  figures is available as a software package in Supplementary File S1. Experimental data
867  represented in Figures 2A & 2B and in Supplementary Figure S4 are available within Figure 2
868 — Source Data Files 1, 2 & 4, respectively, and the parameter values for all iterations of model
869  optimization are available in Supporting Data File S3.

870

871
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Supplementary Figure S2 — Simulated time-Kkill curves of Escherichia coli exposed to a
range of drug concentrations. We used the parameter set outlined in Table 1 to model the
growth and death of bacterial populations subjected to drug concentrations up to 16x minimum
inhibitory concentration (MIC). Drug concentrations are expressed as factors of the MIC. The
net growth rate of the entire bacterial population over the time course of the simulation decreases
with increasing drug concentration.
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1126  Supplementary Figure S3 — Results from 249 independent model calibrations to
1127  experimental data. We used adaptive simulated annealing coupled with gradient descent (see
1128  Methods, Model calibration via simulated annealing) to fit the model to experimental kill curve
1129  data of E. coli exposed to ciprofloxacin (Supporting Data File S1). Shown in this figure are the
1130  results for 249 independent model fits (Supporting Data File S3), each beginning with
1131  randomly-chosen values for the parameters describing drug-target binding rate kr, drug-target
1132  unbinding rate kg, steepness of the growth rate function ac, steepness of the death rate function
1133  ap, inflection point of the growth rate function yg, and inflection point of the death rate function
1134  yp. (A) Frequency distribution of objective function values obtained from independent model
1135 calibrations. The objective function value describes the goodness of the fit between experimental
1136  data and simulation; smaller values indicate higher goodness of fit. (B-H) Optimization plots
1137  showing randomly chosen initial parameter values (x-axis) and calibrated parameter values (y-
1138  axis) for all independent model calibrations. The optimized parameters are kr (B), kz (C), Kp (the
1139  ratio of k& to kr) (D), ac (E), ap (F), yc (G), and yp (H). The final objective function value of
1140  each model fit is colored according to the color bar above panel (A).
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1144

1145  Supplementary Figure S4 — Pharmacodynamic curves generated from experimental data
1146  and from the calibrated model. The experimental pharmacodynamic curve was generated by
1147  calculating the net growth rates of E. coli exposed to a set of ciprofloxacin drug concentrations
1148  (Supporting Data File S1). The time-kill curves of this same experimental dataset are shown in
1149  Figure 2A; see Supporting Data File S4 for experimental data on net growth rate as a function
1150 of drug concentration. The model-calibrated pharmacodynamic curve was generated by
1151  simulating bacterial time-kill curves over the same range of drug concentrations used in the
1152  experiment and calculating associated net growth rates.
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1157  Supplementary Figure S5 — Simulated population curves for ciprofloxacin and for four
1158  extreme modes of antibiotic drug mechanism. We simulated a bacterial population of 108 cells
1159  exposed to antibiotic drug at 4x MIC. The ciprofloxacin curve corresponds to the drug
1160  mechanism obtained from the model calibration to experimental data and detailed in Figure 2C,
1161 and the remaining curves correspond to the extreme schemes of drug mechanism shown in
1162  Figure 2D.
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1167  Supplementary Figure S6 — Obtaining Gy and Dy from experimental data. (A) To obtain the
1168  value of Go (growth rate in the absence of antibiotic) used in simulations, we fit an exponential
1169  growth curve to experimental data for E. coli cells grown in the absence of antibiotic. (B) To
1170  determine the value of Dy (maximum death rate in saturating conditions of antibiotic), we fit an
1171  exponential decay curve to experimental data for E. coli cells exposed to 2.19 pg/ml of
1172  ciprofloxacin (~200 x MIC). The population size deviates from exponential decay at later
1173  timepoints (dashed and shaded) likely because of the emergence of persistent subpopulations of
1174  bacteria [45]. The R? values shown are the linear correlation coefficients for the model fit, and
1175  are not the correlation coefficients for the log-transform of the data.
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1179

1180  Supplementary Figure S7 — MIC as a function of drug-target binding and unbinding
1181  Kinetics. The MIC of a mutant (normalized to the MIC of the wild-type) is plotted against the
1182  fold-change in (A) drug-target binding (kr) or (B) drug-target complex disassociation (kr). For
1183  this simulation, mutants have no fitness costs associated with changes in kr and Az (cr = 0). For
1184  drug-target binding (kr), fold increase in MIC is directly proportional to fold decrease in kr for
1185  all drug mechanisms. In both panels, the dashed line indicates the line of direct proportionality.
1186  MICwr: MIC of the wild-type strain; MICres: MIC of the resistant strain.
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1190

1191  Supplementary Figure S8 — Drugs with steeper pharmacodynamic curves have narrower
1192  resistance selection windows given a cellular effect (bacteriostatic/bactericidal). To quantify
1193  the steepness of pharmacodynamic curves, we fit the curves for drug-resistant strains shown in
1194  Figure 4C to the pharmacodynamic function formulated by Regoes et al. [33]. The equation
1195  describes the net growth rate Gre: of a bacterial population as a function of drug concentration Co
1196  and other parameters (MIC, Go, Dn) derived from the model:

(6o = D) 0"

o= )
1198 In this equation, x describes the Hill coefficient, which serves as a measure of the steepness of
1199  the pharmacodynamic curve. Larger values of x indicate steeper curves. For each of the drug
1200  mechanisms described in this study (Supplementary File S2), we generated pharmacodynamic
1201  curves for drug-resistant mutants (Figure 4C, solid lines), determined the value of « that best fits
1202  the curve, and plotted x against the range of drug concentrations that represents the resistance
1203  selection window (Figure 4D). MICwt: MIC of the wild-type strain, MICres: MIC of the

1204  resistant strain.
1205

1197 Gret = Go
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1208 Supplementary Figure S9 — Emergence of secondary mutations within subpopulations of
1209  drug-resistant bacteria during antibiotic treatment. When simulating the emergence of
1210  secondary mutations, we assume that a drug-resistant subpopulation (middle green) of bacteria is
1211  present at the start of treatment; the size of this subpopulation is given by the mutation selection
1212  balance of the allele that confers the drug-resistance phenotype [81]. We calculate the probability
1213  that a drug-resistant strain with secondary mutations (dark green) emerges from this
1214  subpopulation before the elimination of the drug-resistant strain (at time #£x7).
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1219  Supplementary Figure S10 — Distributions of growth and death rates for drug-resistant
1220  bacterial subpopulations undergoing steady-state exponential decline at 2x MICres. Boxes
1221  denote the central 50% of the growth and death rate distributions, and whiskers denote the
1222  central 95% of the growth and death rate distributions.
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1227  Supplementary Figure S11 — The secondary mutant selection window. The secondary mutant
1228  selection window comprises the drug concentration range over which the net growth of the drug-
1229  resistant strain is negative but the probability of secondary resistance emergence before the end
1230  of treatment exceeds a defined threshold (in our simulations, 10, or a 1 in 10,000 chance). Four
1231  regimes of selection exist: the null selection window in which the wild-type strain dominates, the
1232  resistance selection window, the secondary mutant selection window, and the complete killing
1233  window. We simplify these four regimes by disregarding the relative strengths of selection for
1234  each strain in each regime and we instead illustrate the boundaries of each region along a drug
1235  concentration axis (top bar); these simplified selection regimes are shown for all five drug
1236  mechanisms studied in Figure SE.
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1239  Additional files included in submission

1240

1241  Supplementary File S1 — MATLAB code package containing the code written for this
1242  study. This file contains scripts that we used to implement our model, to analyze data, and to
1243  generate simulation data for all main text and supplementary figures. Documentation detailing
1244  how to use the software is included in each script of the code package.

1245

1246  Supplementary File S2 — Parameters for a set of five drugs with different mechanisms of
1247  action. The parameters ac and ap describe the steepness of the growth and death rate functions,
1248  respectively, around the inflection point. The parameters yc and yp describe the inflection points
1249  of the growth and death rate functions (see Supplementary Figure S1). Bacteriostatic potency
1250  refers to the magnitude of growth rate decline at saturating concentrations of drug; a value of 1
1251  indicates that that growth rate declines to zero in saturating concentrations of drug (G[i = N] =
1252  0), and a value of 0 indicates that growth rate is unaffected by drug concentration (G[i] = Go for
1253  all §). Bactericidal potency refers to the magnitude of death rate increase at saturating conditions
1254  of drug; a value of 1 indicates that death rate increases to maximum in saturating concentrations
1255  of drug (D[i = N] = D~ > Dy), and a value of 0 indicates that death rate is unaffected by drug
1256  concentration (D[i] = Do for all i). All other parameters (including drug-target binding rate kr,
1257  drug-target unbinding rate kz, and target number N) are identical for all drugs in the set.

1258

1259  Supporting Data File S1 — Experimental data for the ciprofloxacin time-kill curve
1260 experiment represented in Figure 2A and Supplementary Figure S6.

1261

1262  Supporting Data File S2 — Experimentally-measured minimum inhibitory concentrations
1263  (MIC:s) for ciprofloxacin against Escherichia coli represented in Figure 2B. We collated this
1264  list of experimentally-measured MICs from the literature; study sources are given in the file.
1265

1266  Supporting Data File S3 — Model calibrations obtained via simulated annealing. Starting
1267 and ending values for all model parameters are given for each iteration of the model fitting
1268  procedure described in Methods, Model calibration via simulated annealing.

1269

1270  Supporting Data File S4 — Experimental pharmacodynamic curve data represented in
1271  Supplementary Figure S4. We generated these data by calculating the net growth rates of
1272  bacterial populations at each drug concentration in the experiment detailed in Supporting Data
1273  File S1.

1274
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