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Abstract 

Much of human behaviour is governed by common processes that unfold over varying 

timescales. Standard event-related potential analysis assumes fixed-duration responses 

relative to experimental events. However, recent single unit recordings in animals have 

revealed neural activity scales to span different durations during behaviours demanding 

flexible timing. Here, we employed a general linear modelling approach using a novel 

combination of fixed-duration and variable-duration regressors to unmix fixed-time and 

scaled-time components in human magneto/electroencephalography (M/EEG) data. We use 

this to reveal consistent temporal scaling of human scalp-recorded potentials across four 

independent EEG datasets, including interval perception, production, prediction and value-

based decision making. Between-trial variation in the temporally scaled response predicts 

between-trial variation in subject reaction times, demonstrating the relevance of this 

temporally scaled signal for temporal variation in behaviour. Our results provide a general 

approach for studying flexibly timed behaviour in the human brain. 

 

Significance Statement 

Neural activity is traditionally thought to occur over fixed time scales. However, 

recent animal work has suggested that some neural responses occur over varying timescales. 

We extended this animal result to humans by detecting temporally scaled signals non-

invasively at the scalp in four different tasks. Our results suggest that temporal scaling is an 

important feature of cognitive processes known to unfold over varying timescales.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 25, 2022. ; https://doi.org/10.1101/2020.12.11.421180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.11.421180
http://creativecommons.org/licenses/by/4.0/


 3 

Action and perception in the real world require flexible timing. We can walk quickly 

or slowly, recognize the same piece of music played at different tempos, and form temporal 

expectations over long and short intervals. In many cognitive tasks, reaction time variability 

is modelled in terms of internal evidence accumulation [1], whereby the same dynamical 

process unfolds at different speeds on different trials.  

Flexible timing is critical in our lives, yet despite several decades of research [2–5] its 

neural correlates remain subject to extensive debate. Due to their high temporal resolution, 

magnetoencephalography and electroencephalography (M/EEG) have played a particularly 

prominent role in understanding the neural basis of timing [5–13], and the method typically 

used to analyze such data has been the event-related potential (ERP), which averages event-

locked responses across multiple repetitions. For example, this approach has been used to 

identify the presence of a slow negative-going signal during timed intervals. This signal, 

called the contingent negative variation (CNV) [14], is thought to be timing related because 

its slope depends inversely on the duration of the timed interval [7,8,12]. 

Crucially, the ERP analysis strategy implicitly assumes that neural activity occurs at 

fixed-time latencies with respect to experimental events. However, it has recently been shown 

that brain activity at the level of individual neurons can be best explained by a temporal 

scaling model [15,16], in which activity is explained by a single response that is stretched or 

compressed according to the length of the produced interval. When monkeys are cued to 

produce intervals of different lengths, the temporal scaling model explains the majority of 

variance in neural responses from medial frontal cortex (MFC) single units [15]. This 

suggests that one mechanism by which flexible motor timing can be achieved is by adjusting 

the speed of a common neural process, a perspective readily viewed through the lens of 

dynamical systems theory [16]. Consistent with the broad role played by dynamical systems 

in a range of neural computations [17,18], recent studies in neural populations have revealed 
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time-warping as a common property across many different population recordings and 

behavioural tasks [19]. For example, temporal scaling is also implicit in the neural correlates 

of evidence integration during sensory and value-based decision making [20] (which itself 

has also been proposed as a mechanism for time estimation in previous work [21]).   

Successfully characterising scaled-time components in humans could open the door to 

studying the role of temporal scaling in more complex, hierarchical tasks such as music 

production or language perception, as well as in patient populations in which timing is 

impaired [22]. Yet it is currently unclear how temporal scaling of neural responses may 

manifest at the scalp (if at all) using non-invasive recording in humans. This is because of the 

fixed-time nature of the ERP analysis strategy. Again, one component of the ERP called the 

CNV has been found to ramp at different speeds for different temporal intervals [7,8,12], 

suggestive of temporal scaling. Crucially though, any scaled activity would appear mixed at 

the scalp with fixed-time components due to the superposition problem [23]. 

We therefore developed an approach to unmix scaled-time and fixed-time components 

in the EEG (Fig 1a). Our proposed method builds on recently developed least square 

regression-based approaches [24–29] that have proven useful in unmixing fixed-time 

components that overlap with one another, such as stimulus-related activity and response-

related activity. To overcome the superposition problem, these approaches use a 

convolutional general linear model (GLM) to deconvolve neural responses that are 

potentially overlapping. Following this work, we estimate the fixed-time ERPs using a GLM 

in which the design matrix is filled with time-lagged ‘stick functions’ (a regressor which is 

valued 1 around the timepoint of interest, and 0 otherwise). Importantly, the stick functions 

can overlap in time to capture overlap in the underlying neural responses (Fig 1b), and the 

degree of fit to neural data can be improved by adding a regularisation penalty to the model 
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estimation [29]. In situations without any overlap, the GLM would exactly return the 

conventional ERP.  

 

Fig 1. Regression based unmixing of simulated data successfully recovers scaled-time and fixed-time 

components. (a) EEG data were simulated by summing fixed-time components (cue and response), a scaled-

time component with differing durations for different trials (short, medium, or long), and noise. (b) The 

simulated responses were unmixed via a GLM with stick basis functions: cue-locked, response-locked, and a 

single scaled-time basis spanning from cue to response (i.e., variable duration). (c) The GLM successfully 

recovered all three components, including the scaled-time component. (d) A conventional ERP analysis (cue-

locked and response-locked averages) of the same data obscured the scaled-time component. 

 

The key innovation that we introduce here is to allow for variable-duration regressors 

in such models, in addition to fixed-duration regressors, to test for the presence of scaled-time 

responses. In particular, we allow the duration of the stick function to vary depending upon 
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the interval between stimulus and response, meaning that the same neural response can span 

different durations on different trials. Thus, rather than modelling the mean interval duration 

of each condition (e.g., via traditional ERPs), the proposed method captures trial-to-trial 

response variability. The returned scaled-time potential is no longer a function of real-world 

(‘wall clock’) time, but instead a function of the percentage of time elapsed between stimulus 

and response.  

As a proof of concept, we simulated data at a single EEG sensor for an interval timing 

task, consisting of two fixed-time components (locked to cues and responses), and one scaled-

time component spanning between cues and responses (Fig 1a). Our proposed method was 

successful in recovering all three components (Fig 1c), whereas a conventional ERP approach 

obscured the scaled-time component (Fig 1d). Crucially, in real EEG data we repeated this 

approach across all sensors, potentially revealing different scalp distributions (and hence 

different neural sources) for fixed-time versus scaled-time components. 

By unmixing fixed and scaled components, our method goes beyond previous 

approaches for dealing with timing variability in EEG experiments. For example, the event-

related timing of EEG trials can be aligned by translating either the entire waveform [30] or 

individual ERP components [31]. Such methods allow for component alignment, but do not 

involve any scaling. On the other hand, raw EEG can be scaled to align trials to a common 

time frame, e.g., through upsampling/downsampling [32] or dynamic time warping [33]. 

However, these methods are not designed to unmix fixed-time and scaled-time components. 

Finally, the effect of a continuous variable on EEG can be quantified using the method of 

temporal response functions (TRFs), another regression-based approach [27,34–36]. TRFs 

are particularly flexible in capturing different types of delay activity, e.g., during periods of 

growing expectancy [34] or while listening to fast/slow speech [35]. Our method is related to 

TRFs in that it involves the convolution of a to-be-estimated input signal with a continuous 
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regressor. Unlike TRFs, however, the proposed method involves an additional scaling step in 

which the input signal is stretched or compressed (Fig 1, Supplementary Fig 1).  

We also note that a time-frequency decomposition might also readily separate the 

responses at higher and lower-frequencies. Indeed, a wide range of neural oscillations have 

been implicated in time perception [37]. One might reasonably expect stretched/compressed 

signals to manifest differently in the time-frequency domain, e.g., as they correlate more 

strongly with different stretched/compressed versions of the same wavelet function. Unlike 

our proposed approach, however, a time-frequency decomposition is not readily designed to 

look for temporal scaling of the scaled-time response, namely the same neural response 

unfolding over different timescales on different trials. Nor will a time-frequency 

decomposition separate fixed-time responses from scaled-time responses if the signals 

occupy the same frequency band [38]. 

 We used our approach to analyze EEG recorded across four independent datasets, 

comprising three interval timing tasks and one decision-making task. In the first task, 

participants produced a target interval (short, medium, or long) following a cue (Fig 2a). 

Feedback was provided, and participants were able to closely match the target intervals. In 

the second, participants evaluated a computer-produced interval (Fig 2b). The closer the 

produced interval was to the target interval, the more likely participants were to judge the 

response as ‘on time’. In the third (previously analyzed [39,40]) task, participants made 

temporal predictions about upcoming events based on rhythmic predictions (Fig 2c). 

In the fourth task (also previously analyzed [41,42]) participant chose between pairs 

of snack items (Fig 2d) – a process in which reaction time variability can be modelled as a 

process of internal evidence accumulation across time [43]. Neural activity related to 

evidence accumulation is measurable on the scalp as ramping activity that scales with 

decision difficulty. EEG for fast, easy trials increases at a faster rate compared to EEG for 
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slow, difficult trials, indicating a higher rate of internal evidence accumulation [41]. Thus, we 

predicted that the EEG would contain an underlying scaled component associated with 

different rates of evidence accumulation. 

 

Fig 2. Datasets from three time-estimation and one decision-making paradigm were analyzed. In the 

temporal production task (a) participants successfully produced one of three cued intervals. In the temporal 

perception task (b) participants were able to properly judge a computer-produced interval. In a previously 

analyzed temporal prediction task[39,40], participants responded quickly to targets following either a rhythmic 

or repeated (non-rhythmic) cue. In a previously analyzed decision-making task[41,42] participants were cued to 

choose one of two snack food items, resulting in a range of response times (mean shown as red line). Error bars 

represent 95% confidence intervals. 

 

 In all four tasks, we observed a scaled-time component that was distinct from the 

preceding and following fixed-time components (Fig 3), which resembled conventional ERPs 

(Supplementary Fig 3). Typically, ERP components are defined by their polarity and scalp 
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distribution [44]. The observed scaled-time components shared a common polarity (negative) 

and scalp distribution (central). In each task, cluster-based permutation testing revealed that 

the scaled-time component differed significantly from zero. The differences were driven by 

clusters spanning 36-87% in the production task (p < .001), 42-100% in the perception task (p 

< .001), 18-27% in the prediction task (p = .004), and 36-55% in the decision-making task (p 

< .001). For each task, including a scaled-time component improved model fit compared to a 

model with fixed-time components only: production: t(19) = -3.97, p < .001, Cohen’s d = -

0.89; perception: t(19) = -5.09, p < .001, Cohen’s d = -1.14; prediction: t(18) = -4.90, p < 

.001, Cohen’s d = -1.12; decision-making: t(17) = -7.77, p < .001, Cohen’s d = -1.83 (See 

Supplementary Table 8 for model errors). In many cases, scaled-time components were 

reliably observed at the single-subject level (Supplementary Fig 5-8).  

 
 
Fig 3. Scaled-time components were consistently observed across all four paradigms, with distinct scalp 

topographies from fixed-time components. Each had distinct fixed-time components relative to task-relevant 

events (left/middle columns), and a common negative scaled-time component over central electrodes, reflecting 

interval time (right column). The scalp topographies represent the mean voltage across the intervals indicated by 

the grey bars. For the fixed-time components, the intervals were chosen to visualize prominent deflections in the 

average waveform. For the scaled-time components, the intervals represent regions of significance as 

determined by cluster-based permutation tests. The error bars represent 95% confidence intervals. 
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To further validate our method, we quantified temporal scaling by computing a 

‘scaling index’ [15] for each task and participant (Fig 4). To calculate this, we 

stretched/compressed each epoch to match the longest interval in each task, averaged by 

condition, then calculated the coefficient of determination for predicting the longer interval 

using stretched versions of the shorter intervals. We did this first on the raw data (‘Original’), 

then separately for the data containing only the fixed-time components (‘Fixed-only’, i.e., 

scaled-time components regressed out) and the scaled-time components (‘Scaled-only’, i.e., 

fixed-time components regressed out). In three out of four tasks, the scaling index for the 

scaled component exceeded the scaling index for the fixed component (production: t(19) = 

2.95, p = .008, Cohen’s d = 0.66; perception: t(19) = 2.63, p = .017, Cohen’s d = 0.59; 

prediction: t(18) =5.45, p < .001, Cohen’s d = 1.27; decision-making: t(17) = 5.45, p < .001, 

Cohen’s d = 1.29). 

 

Fig 4. The unmixed signals differed quantitatively in their degree of scaling. The scaling index, defined as 

the coefficient of determination between epochs after stretching, was first computed for the raw data (‘Original’) 

and after isolating either the fixed (‘Fixed-only’) or scaled (‘Scaled-only’) components. In all four tasks the 

scaled-time components had a greater scaling index compared to the fixed time components. Dots represent 

individual participants and error bars represent 95% confidence intervals. 

 

We then examined how the scaled-time component relates to behavioural variability: 

does the latency of the scaled-time component predict participants’ response time? We 
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focussed on the temporal production and decision-making tasks, in which the interval 

duration was equal to the response time. As response time varied from trial to trial, so did the 

modelled scaled component. To measure component latency, we applied an approach 

developed in [45,46], using principal component analysis (PCA) to model delay activity over 

central electrodes in the temporal production task.. The approach works by detecting latency 

shifts in a common underlying component [45,46]. Unlike simple peak detection, PCA can 

account for a range of waveform dynamics (e.g., multiple peaks). We first regressed out the 

fixed-time component as identified by the GLM, resulting in a dataset that consisted only of 

the residual scaled-time activity. We then computed the average scaled-time activity for each 

of the three interval conditions (Fig 5a-c). PCA was applied separately to each interval. This 

consistently revealed a first principal component that matched the shape of the scaled-time 

component and a second principal component that matched its temporal derivative. This 

analysis confirms the presence of the scaled-time component in our data, as it is the first 

principal component of the residuals after removing fixed-time components. Crucially, 

adding or subtracting the second principal component captures variation in the latency of the 

scaled-time component (Supplementary Fig 4). Across response time quantiles, we found that 

PC2 scores (Supplementary Table 6) were significantly related to response times (Fig 5d), 

F(2,38) = 6.18, p = .005, ηp
2 = 0.25, ηg

2 = 0.19). This implies that the earlier in time that the 

scaled-time component peaked, the faster the subject would respond on that trial. This result 

was replicated in the decision-making task, F(2,34) = 4.18, p = .02, ηp
2 = 0.20, ηg

2 = 0.18 (Fig 

5e). 
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Fig 5. Variation in scaled-time components predicts behavioural variation in time estimation. Cue-locked 

EEG, shown as ERPs in (a), was analyzed via GLM. To visualize the unmixing of scaled-time and fixed-time 

components, the residual (noise) was recombined with either the scaled-time component (b) or the fixed-time 

components (c). PCA was run on the ‘scaled-time plus residual’ EEG. The second principal component 

resembled the temporal derivative or ‘rate’ of the scaled component (Supplementary Fig 5). (d) PC2 scores 

depended on response time, implying the scaled-time component peaked earlier for fast responses and later for 

slow responses. (e) The effect replicated in a decision-making task. Error bars represent 95% confidence 

intervals. 

 

Discussion 

Our results provide a general method for recovering temporally scaled signals in 

human M/EEG, where scaled-time components are mixed at the scalp with conventional 

fixed-time ERPs. We focused here on tasks that have been widely used in the timing 

literature, namely interval production, perception, and prediction, as well as an example of a 

cognitive task that exhibits variable reaction times across trials (value-based decision 

making). Distinct scaled-time components and scalp topographies were revealed in all four 

tasks. These results suggest that flexible cognition relies on temporally scaled neural activity, 

as seen in recent animal work [15,16]. 

The existence of temporally scaled signals at the scalp may not be surprising to those 

familiar with the study of time perception. Because of its excellent temporal resolution, EEG 
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has long been used to study delay activity in interval timing tasks. As discussed, one signal of 

interest has been a ramping frontal-central signal called the CNV, which we observed in our 

conventional ERP analysis (Supplementary Fig 3). Notably, CNV slope has been interpreted 

as an accumulation signal in pacemaker-accumulation models of timing [7,8,11,13]. Our 

work differs from these previous studies in one important respect. In a conventional ERP 

analysis, delay activity is assumed to occur over fixed latencies. The CNV is thus computed 

by averaging over many cue-locked EEG epochs of the same duration. In contrast, we have 

considered the possibility that scalped-recorded potentials reflect a mixture of both fixed-time 

and scaled-time components. By modelling fixed-time and scaled-time components 

separately, we revealed scaled activity that was common across all timed intervals. This, in 

turn, is consistent with a recent class of models of timing that propose time estimation reflects 

the variable speed over which an underlying dynamical system unfolds [16–18]. 

We also observed temporally scaled activity in a decision-making task, a somewhat 

surprising result given that the task did not have an explicit timing component (participants 

made simple binary decisions [41]). Nevertheless, time is the medium within which decisions 

are made [47]. Computationally, the timing of binary decisions can be captured in a drift 

diffusion model as the accumulation of evidence in favour of each alternative [1]. This 

accumulation is thought to be indexed by an ERP component called the central parietal 

positivity (CPP) [48]. There is evidence that the slope of the CPP – which can be either 

stimulus-locked or response-locked – captures the rate of evidence accumulation [49]. For 

faster/easier decisions the CPP climbs more rapidly compared to slower/harder decisions 

[48,49]. Perhaps these effects can also be explained by stretching/compressing a common 

scaled-time component while holding stimulus- and response-related activity constant. 

Furthermore, variation in the scaled-time component is relevant to decision making according 

to our results: it predicts when a decision will be made. However, we also note that the 
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topography observed in our scaled-time component was a negative-going potential rather 

than positive (Fig 3d). This can potentially be explained by the standard CPP-like ERP [41] 

being a mixture of our observed negative scaled-time topography with the positive fixed-time 

topographies. 

Although our approach makes no assumptions about the overall shape of the scaled-

time component, it does assume a consistent, linear scaling across intervals. This is an 

assumption that could be relaxed in a more complex model, e.g., using spline regression [25].  

We also note that although we made no a priori predictions about waveform shape, some 

between-task similarities and differences were noted in the resulting scaled-time components. 

For example, similar responses were seen in the tasks for which the interval of interest ended 

with a motor response (temporal production and decision making – see Fig 3a,d). In both 

cases, activity immediately preceding the response depended on a ramping, fixed-time, 

motor-related component, with little contribution from a scaled component. A similar 

observation was made in the temporal prediction task – activity just before the appearance of 

the target depended on anticipatory fixed-time activity, not scaled activity (Fig 3c). In 

contrast, pre-probe activity in the temporal perception task showed almost no fixed-time 

activity, but a robust scaled-time component (Fig 3b). The reason for this difference cannot 

be identified by the current experiments, however. First, the perception and prediction tasks 

involved different tasks instructions (‘listen for the probe’ versus ‘respond to the target’). 

Second, the probe/target distributions differed in the two tasks; the mean duration was 75% 

likely in the prediction task, but only 20% likely in the perception task. We therefore 

speculate that scaled activity may be somewhat task dependent. 

Our approach is not only conceptually different from previous work that models 

variability in timing using a regression framework [27,34–36], it is also a mechanistically 

important finding. It indicates the brain may support flexible timing by adapting the duration 
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of an otherwise consistent neural response. This can be understood as varying the rate of a 

dynamical system [17,18] during interval estimation. Although there is evidence for such 

temporally scaled responses in the monkey neurophysiology literature (e.g., [15,16], which 

inspired the current study), we are not aware of any direct evidence in support of this idea in 

humans. Indeed, it goes against the dominant framework of fixed-duration responses that has 

thus far dominated M/EEG analysis. 

Although we have focused here on interval timing and decision-making tasks, we 

anticipate other temporally-scaled EEG and MEG signals will be discovered for cognitive 

processes known to unfold over varying timescales. For example, the neural basis of flexible 

(fast/slow) speech production and perception is an active area of research [50–52], and may 

involve a form of temporal scaling [32]. Flexible timing is also important across a vast array 

of decision-making tasks, where evidence accumulation can proceed quickly or slowly 

depending on the strength of the evidence [20]. Flexible timing helps facilitate a range of 

adaptive behaviours via temporal attention [4], while disordered timing characterizes several 

clinical disorders [53], underscoring the importance of characterising temporal scaling of 

neural responses in human participants.  
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Methods 

Simulations 

 We simulated cue-related and response-related EEG in a temporal production task 

using MATLAB 2020a (Mathworks, Natick, USA). Cue and response were separated by 

either a short, medium, or long interval. During the delay period, we simulated a scaled 

response that stretched or compressed to fill the interval. All three responses (cue, response, 

scaled) were summed together at appropriate lags (short, medium, or long), with noise – see 

Fig 1a. In total, we simulated 50 trials of each condition (short, medium, long).   

 To unmix fixed-time and scaled-time components, we used a regression-based 

approach [24,25,54] in which the continuous EEG at one sensor Y is modelled as a linear 

combination of the underlying event-related responses , which are unknown initially. The 

model can be written in equation form as: 

𝑌 = 𝑋 +    

where X is the design matrix and  is the residual EEG not accounted for by the 

model. X contains as many rows as EEG data points, and as many columns as predictors (that 

is, the number of points in the estimated event-related responses). In our case, X was 

populated by ‘stick functions’ – non-zero values around the time of the modelled events, and 

zeros otherwise. We included in X two fixed-time components, the cue and the response, as 

stick functions of fixed EEG duration (with variables set to 1). In other words, the height of 

the fixed-time stick function was constant across events of the same type and equal to its 

width. To model a temporally-scaled response, we used the MATLAB imresize function 

(Image Processing Toolbox, R2020b) with ‘box’ interpolation to stretch/compress a stick 

function so that it spanned the duration between cue and response (other interpolation 

methods were tried – see Supplementary Fig 1 – but this choice had little effect on the 

results). Thus, the duration of the scaled stick function varied from trial to trial (Fig 1b). The 
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goal here was to estimate a single scaled-time response to account for EEG activity across 

multiple varying delay periods. For the fixed-time responses, each column of X represents a 

latency in ms before/after an experimental event; by contrast, for the scaled-time responses, 

each column of X represents the percentage of time that has elapsed between two events 

(stimulus and response). Simulation code is available at 

https://github.com/chassall/temporalscaling. 

Production and Perception Tasks 

Participants 

Participants completed both the production and perception tasks within the same 

recording session. We tested ten university-aged participants, 5 male, 2 left-handed, Mage = 

23.40, 95% CI [21.29, 25.51]. Participants had normal or corrected-to-normal vision and no 

known neurological impairments. This study was approved by the Medical Sciences 

Interdivisional Research Ethics Committee at the University of Oxford and participants 

provided informed consent. Following the experiment, participants were compensated £20 

(£10 per hour of participation) plus a mean performance bonus of £3.23, 95% CI [2.92, 3.55]. 

Apparatus and Procedure 

 Participants were seated approximately 64 cm from a 27-inch LCD display (144 Hz, 1 

ms response rate, 1920 by 1080 pixels, Acer XB270H, New Taipei City, Taiwan). Visual 

stimuli were presented using the Psychophysics Toolbox Extension [55,56] for MATLAB 

2014b (Mathworks, Natick, USA). Participants were given written and verbal instructions to 

minimize head and eye movements. The goal of the production task was to produce a target 

interval and the goal of the perception task was to judge whether or not a computer-produced 

interval was correct.  

The experiment was blocked with ten trials per block. There were 18 production 

blocks and 18 perception blocks, completed in random order. Prior to each block, participants 
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listened to five isochronic tones indicating the target interval. Beeps were 400 Hz sine waves 

of duration 50 ms and an onset/offset ramping to a point 1/8 of the length of the wave (to 

avoid abrupt transitions).  The target interval was either short (0.8 s), medium (1.65 s), or 

long (2.5 s). 

In production trials, participants listened to a beep then waited the target time before 

responding. Feedback appeared after a 400-600 ms delay (uniform distribution) and remained 

on the display for 1000 ms. Feedback was a ‘quarter-to’ clockface to indicate ‘too early’, a 

‘quarter-after’ clockface to indicate ‘too late’, or a checkmark to indicate an on-time 

response. Feedback itself was determined by where the participant’s response fell relative to a 

window around the target duration. The response window was initialized to +/- 100 ms 

around each target, then changed following each feedback via a staircase procedure: 

increased on each side by 10 ms following a correct response and decreased by 10 ms 

following an incorrect response (either too early or too late).  

In perception trials, participants heard two beeps, then were asked to judge the 

correctness of the interval, that is, whether or not the test interval matched the target interval. 

Test intervals (very early, early, on time, late, very late) were set such that each subsequent 

interval was 25% longer than the previous (see Supplementary Table 1). Participants were 

then given feedback on their judgement – a checkmark for a correct judgement, or an ‘x’ for 

an incorrect judgement.  

For each task, participants gained 2 points for each correct response and lost 1 point 

for each incorrect response. At the end of the experiment points were converted to a monetary 

bonus at a rate of £0.01 per point.  
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Data Collection 

In the perception task we recorded participant response time from cue, trial outcome 

(early, late, on time), and staircase- response window. In the production task, we recorded 

trial ‘on time’ judgements (yes/no), and trial outcome (correct/incorrect). 

We recorded 36 channels of EEG, referenced to AFz. Data were recorded at 1000 Hz 

using a Synamps amplifier and CURRY 8 software (Compumetrics Neuroscan, Charlotte, 

USA). The electrodes were sintered Ag/AgCl (EasyCap, Herrsching, Germany). 31 of the 

electrodes were laid out according to the 10-20 system. Additional electrodes were placed on 

the left and right mastoids, on the outer canthi of the left and right eyes, and below the right 

eye. The reference electrode was placed at location AFz, and the ground electrode at Fpz.  

Prediction Task 

 In this previously published [39,40] experiment, 19 participants responded to the 

onset of a visual target following a visual warning cue. The delay between cue and target was 

either short (700 ms) or long (1300 ms) and, in some conditions, congruent with a preceding 

stimulus stream. Only congruent trials were included in the current analysis (i.e., the ‘valid’ 

trials in the ‘rhythmic’ and ‘repeated’ conditions). Each trial was preceded by a 500 ms 

fixation cross subtending 0.6 of visual angle. During the pre-cue period, participants were 

shown a flashing stimulus for 4-6 repetitions to indicate the target interval. The stimulus was 

a centrally presented black disc (1.2) that appeared on the display for 100 ms. In the 

rhythmic condition the black disc appeared every 700 ms or 1300 ms (‘short’ or ‘long’). In 

the repeated condition, a red disc appeared either 700 ms or 1300 ms after the appearance of 

the black disc, followed by a variable delay period of either 1500-1900 ms (short) or 1900-

2700 ms (long). Following the pre-cue period participants were then shown the warning cue, 

a white disc (1.2) that appeared for 100 ms. After either a short or long delay (700 ms or 

1300 ms) the target appeared – a green 1.2 disc – for 100 ms, followed by the participant’s 
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response. The experimental program recorded the response time (time since the onset of the 

target). See Supplementary Fig 2c and [39,40] for more detail. 

Decision-Making Task 

 In this experiment, also previously published [41,42], 18 participants were presented 

with two snack foods and asked to pick one. This was not an interval timing task and on 

average participants took 763 ms, 95% CI [713, 813], to respond. Trials began with the 

appearance of a centrally presented fixation cross (0.6) for 2-4 s followed by the 

presentation of the snack items (3  across, in total). Participants were asked to indicate their 

preference by making a left or right button press within a 1.25 s window. The experimental 

program recorded the response time (time since the onset of the snack items). See 

Supplementary Fig 2d and [41] for more detail. 

Data Analysis 

Behavioural data 

For the production task, we computed the mean produced interval for each participant. 

For the perception task, we computed mean likelihood of responding yes to the ‘on time’ 

prompt, for each condition (short, medium, long) and interval (very early, early, on time, late, 

very late). For the prediction task, we computed the mean reaction time for each analyzed 

condition (rhythmic, repeated) and interval (short, long). For the decision-making task, we 

computed the mean response (decision) time. See Fig 2 and Supplementary Tables 2-4 for 

behavioural results. 

EEG Preprocessing 

For all three timing tasks, EEG was preprocessed in MATLAB 2020b (Mathworks, 

Natick, USA) using EEGLAB [57].  We first down-sampled the EEG to 200 Hz, then applied 

a 0.1-20 Hz bandpass filter and 50 Hz notch filter. The EEG was then re-referenced to the 

average of the left and right mastoids (and AFz recovered in the production/perception tasks). 
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Ocular artifacts were removed using independent component analysis (ICA). The ICA was 

trained on 3-second epochs of data following the appearance of the fixation cross at the 

beginning of each trial. Ocular components were identified using the iclabel function and 

then removed from the continuous data.  

EEG for the decision-making task was already preprocessed prior to our analysis. This 

was a simultaneous EEG-fMRI recording, and preprocessing included the removal of MR-

related artifacts via filtering and principal component analysis, as well as a 0.5-40 Hz 

bandpass filter. In line with our other analyses, we re-referenced the EEG to the average of 

TP7 and TP8 (located close to the mastoids) and applied an additional 20 Hz low-pass filter. 

ERPs 

To construct conventional event-related potentials (ERPs), we first created epochs of 

EEG around cues (all tasks), responses (perception task), probes (production task), targets 

(prediction task), and decisions (decision-making task). Cue-locked ERPs extended from 200 

ms pre-cue to either 800, 1650, or 2500 ms post-cue (the short, medium, and long targets) in 

the perception/production tasks, 700 or 1300 ms in the prediction task (the short and long 

targets), and 600 ms in the decision-making task. Epochs were baseline-corrected using a 200 

ms pre-cue window. We also constructed epochs from 800, 1650, or 2500 ms prior to the 

response/probe in the production/perception tasks, 700 or 1300 ms prior to the target in the 

prediction task, and 600 prior to the decision in the decision-making task to 200 ms after the 

response/probe/target/decision. A baseline was defined around the event of interest (mean 

EEG from -20 to 20 ms) and removed in all cases except for the decision-making task, in line 

with the original analysis [41]. We then removed any trials in which the sample-to-sample 

voltage differed by more than 50 V or the voltage change across the entire epoch exceeded 

150 V. We then created conditional cue and response/probe/target/decision averages for 

each participant and task: production/perception (short, medium, and long), prediction (short 
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and long), and decision-making (early and late, via a median split [41]). Finally, participant 

averages in the timing tasks were combined into grand-average waveforms at electrode FCz, 

a location where timing-related activity has been previously observed [5] and Pz in the 

decision-making task, in line with the previously published analysis [41] (Supplementary Fig 

3). 

rERPs 

 To unmix fixed-time and scaled-time components in our EEG data, we estimated 

regression-ERPs (rERPs) following the same GLM procedure we used with our simulated 

data, but now applied to each sensor. We used a design matrix consisting of a regular stick 

functions for cue and response/probe/target and a stretched/compressed stick function 

spanning the interval from cue to response/probe/target/decision. In particular, we estimated 

cue-locked responses that spanned from 200 ms pre-cue to 800 ms post-cue. The 

response/probe/target/decision response interval spanned from -800 to 200 ms. Each fixed-

time response thus spanned 1000 ms, or 200 EEG sample points. The scaled-time component, 

as described earlier, was modelled as a single underlying component (set width in X) that 

spanned over multiple EEG durations (varying number of rows in X). Thus, our method 

required choosing how many scaled-time sample points to estimate (the width in X). For the 

production/perception tasks, we chose to estimate 330 scaled-time points, equivalent to the 

duration of the ‘medium’ interval. For the prediction task, we chose to estimate 200 scaled-

time points, equivalent to the mean of the short and long conditions (700 ms, 1300 ms). For 

the decision-making task, we estimated 153 scaled-time points (roughly equivalent to the 

mean decision time). Unlike the conventional ERP approach, this analysis was conducted on 

the continuous EEG. To identify artifacts in the continuous EEG, we used the basicrap 

function from the ERPLAB [58] toolbox with a 150 V threshold (2000 ms window, 1000 

ms step size). A sample was flagged if it was ‘bad’ for any channel. Flagged samples were 
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excluded from the GLM (samples removed from the EEG and rows removed from the design 

matrix). Additionally, we removed samples/rows associated with unusually fast or slow 

responses in the production task (less than 0.2 s or more than 5 s). On average, we removed 

10.16 % of samples in the production task (95% CI [8.90, 11.42]), 3.75 % of samples in the 

perception task (95% CI [2.39, 5.10]), 5.57% of samples in the prediction task (95% CI [4.94, 

6.20]), and 5.56% of samples in the decision-making task (95% CI [4.99, 6.12]). 

To test for multicollinearity between the regressors we computed the variance 

inflation factor (VIF) for each regressor, i.e., at each timepoint in the estimated waveforms. 

This was done using the uf_vif function in the Unfold toolbox [25]. We were concerned about 

multicollinearity because the fixed-time and scaled-time components occurred over the same 

‘real time’ durations. For example, in the production task the early and later parts of the 

scaled waveform always coincided with the start of the cue-locked and end of the response-

locked responses, respectively. The overlap was not consistent, however; alignment between 

the fixed and scaled regressors was lessened due to distortions in the scaled stick function 

(see Supplementary Fig 1). As a result, the VIF was low (< 10) at nearly all points other than 

the start/end (Supplementary Fig 9). This was true in all tasks except for the temporal 

prediction task (VIFs > 10), as these tasks incorporated greater temporal variability across 

trials. We therefore expected the waveform estimates in the temporal prediction task to be 

noisier relative to the other tasks. We note that future studies could use VIF to evaluate the 

likelihood of successfully unmixing fixed-time and scaled-time components. Introducing 

elements of experimental design (such as increased interval variability across trials) could 

help to address concerns over multicollinearity. 

To lessen the effect of multicollinearity and impose a smoothness constraint on our 

estimates, we used a first-derivative form of Tikhonov regularization [29]. Tikhonov 

regularization reframes the GLM solution as the minimization of: 
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‖𝑋 − Y ‖2 +  λ‖L‖2 

where L is the regularization operator and  is the regularization parameter. In other 

words, we aimed to minimize a penalty term in addition to the usual residual. This has the 

solution 

(𝑋𝑇𝑋 +  λL)−1𝑋𝑇𝑌 

In our case, L approximated the first derivative as a scaled finite difference[59]: 

𝐿 =
1

2
 [

1 −1 0 … 0 0
0 1 −1 … 0 0
… … … … … …
0 0 0 … 1 −1

] 

We then chose regularization parameters for each participant using 10-fold cross 

validation. Our goal here was to minimize the mean-squared error of the residual EEG at 

electrode FCz, our electrode of interest. The following s were tested on each fold: 0.001, 

0.01, 0, 1, 10, 100, 1000, 10000, 100000. An optimal  was chosen for each participant 

corresponding to the parameter with the lowest mean mean-squared error across all folds. See 

Supplementary Table 7 for a summary. 

For each task and participant, we computed the mean squared error (MSE) according 

to the model described above and – for comparison – a model with fixed-components only.  

To make the comparison fair, we only considered those timepoints for which the fixed 

components were active, e.g., from -200 ms to 800 ms relative to the cue and from -800 to 

200 ms relative to the response. 

Statistics 

We quantified the amplitude of the scaled-time component by conducting a 

nonparametric statistical test of the scaled-time component according to the procedure 

outlined in [60]. After computing a single-sample t-statistic at each sample point and 

electrode, we identified clusters of points for which the t-value exceeded a critical threshold, 

corresponding to an alpha value of .001 for the production task, .01 for the perception task, 
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and .05 for the prediction and decision-making tasks. Lower alpha values were used for the 

production and perception tasks to better isolate the effect; using an alpha value of .05 

yielded longer windows of significance but did not change our results. Clusters were 

identified both spatially and temporally. For each electrode, we defined a cluster by 

identifying neighbouring electrodes according to a template available in the FieldTrip toolbox 

[61]. For each spatial cluster, we then identified temporal clusters for which the t-values of all 

the included electrodes exceeded the critical value. Within this common window we 

computed the ‘cluster mass’, defined as the spatial mean of the sum of the absolute values of 

the t-values within the temporal cluster. To determine whether the observed cluster masses 

exceeded what could occur by chance, we permuted the scaled components by randomly 

flipping (multiplying by -1) the entire waveform. We then computed and recorded the cluster 

masses for 1000 permuted waveforms. If more than one temporal cluster was found within a 

spatial cluster, only the maximum cluster mass was recorded. A value of zero was recorded if 

there were no clusters. We then labelled our observed cluster masses as ‘significant’ if they 

exceeded 95% of the maximum cluster masses of the permuted waveforms. Finally, we 

examined and reported the cluster extents and p-values for the clusters of maximum cluster 

mass: (P3, CP5, CP1) in the production task, (F3, Fz, FCz, C3, Cz) in the perception task, 

(FC1, FCz, FC2, C1, C2, CP1, CPz, CP2) in the prediction task, and (Cz, FC1, FCz, FC2, C1, 

C2, CP1, CPz, CP2) in the decision-making task.  

Scaling Index 

To validate the unmixing procedure, we regressed out either the scaled-time 

component or the fixed-time components from the EEG in each task and participant to create 

‘fixed-only’ or ‘scaled-only’ data sets. We then quantified the amount of temporal scaling 

present in each task, participant, and data set (original, fixed-only, scaled only) using a 

similar procedure as [15]. Specifically, we constructed epochs spanning the intervals of 
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interest (e.g., cue to response), then stretched or compressed each epoch to match a common 

duration (the longest duration in the interval timing tasks; the mean of the ‘late’ responses in 

the decision-making task, as defined above). For each task and participant, we averaged by 

condition (e.g., short, medium, long) to create conditional ERPs with a common duration, 

then computed a scaling index defined as the coefficient of determination. Specifically, we 

asked how well the ‘long’ waveform could be predicted by the ‘short’ waveform. If there was 

also a ‘medium’ waveform (the production/perception tasks) another coefficient of 

determination was computed, and the two coefficients were averaged. A larger scaling index 

can therefore be interpreted as a greater post-scaling similarity between conditions. Scaling 

indices in the fixed-only and scaled-only data sets were compared via paired-samples t-tests. 

For each t-test, we computed Cohen’s d as: 

𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 =  
𝑀𝑑𝑖𝑓𝑓

𝑠𝑑𝑖𝑓𝑓
 

where Mdiff is the mean difference between the scores being compared and sdiff is the 

standard deviation of the difference of the scores being compared [62]. Interestingly, the 

scaling index of the original signal appeared to be a mixture of the scaling indices of the 

fixed-only and scaled-only signals in all tasks except for the temporal prediction task (Fig 4). 

We interpreted this as further evidence that the unmixing procedure was less effective here 

due to multicollinearity.  

PCA 

 To explore the link between the scaled-time component and behaviour, we examined 

the scaled-only data set described above – that is, the scaled-time regressors plus residuals. 

Only mid-frontal electrodes were considered: FC1, FCz, FC2, Cz, CP1, CPz, and CP2. We 

then constructed epochs starting at the cue and ending at the target interval (800 ms, 1650 ms, 

or 2500 ms). Epochs within each condition (short, medium, long) were further grouped into 

three equal-sized response-time bins (early, on time, late) and averaged for each electrode 
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and participant. We then conducted a PCA for each condition (short, medium, long) and 

participant. See Supplementary Table 5 for amount of variance explained by PC1 and PC2. 

To visualize the effect of PC2, we computed the mean PC2 across all participants. We then 

added more or less of the mean PC2 to the mean PC1 projection and applied a 25-point 

moving-mean window for visualization purposes (Supplementary Fig 4). In order to choose a 

reasonable range of PC2 scores, we examined the average minimum and maximum PC2 

score for each participant and condition (short, medium, long). The PC2 score ranges were -

21 to 15 (short), -41 to 38 (medium), and -40 to 55 (long). To assess the relationship between 

PC2 score and behaviour, we binned PC2 scores according to our response time bins (early, 

on time, late) and collapsed across conditions (short, medium, long). This gave us as single 

mean PC2 score for each participant and response time bin (early, on time, late), which we 

analyzed using a two-sided repeated-measures ANOVA (Fig 5d) after verifying the 

assumption of normality using the Shapiro-Wilk test. Two different effect sizes, ηp
2 and ηg

2, 

were computed, according to: 

η𝑝
2 =  

𝑆𝑆𝑄

𝑆𝑆𝑄+𝑆𝑆𝑠𝑄
   η𝑔

2 =  
𝑆𝑆𝑄

𝑆𝑆𝑄+𝑆𝑆𝑆+𝑆𝑆𝑠𝑄
 

where SSQ is the sum of squares of the quantile effect (early, on time, late), SSsQ is the error 

sum of squares of the quantile effect, and SSS is the sum of squares between subjects [63].  

  We then replicated the PCA procedure for the decision-making task using an epoch 

extending 800 ms from the cue at a central electrode cluster (FC3, FC1, FC2, FC4, C3, C1, 

Cz, C2, C4, CP3, CP1, CP2, CP4, P3, P1, Pz, P2, and P4). Note that the assumption of 

normality was violated for ‘early' responses in the decision-making task. However, as 

repeated-measures ANOVA is robust to violations of normality, no statistical correction was 

made.  
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Data Availability 

Raw data for the production and perception tasks is available at 

https://doi.org/10.18112/openneuro.ds004200.v1.0.0. Raw data for the prediction task is 

available at https://doi.org/10.5061/dryad.5vb8h. Raw data for the decision-making task is 

available at https://doi.org/10.18112/openneuro.ds002734.v1.0.2. 

Code Availability 

Simulation and analysis scripts are available at https://github.com/chassall/temporalscaling. 
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