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Loss of genome maintenance accelerates podocyte damage
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Abstract:

Background: DNA repair is essential for preserving genome integrity and ensuring cellular
functionality and survival. Podocytes have a very limited regenerative capacity, and their survival
is essential to maintain kidney function. While podocyte depletion is a hallmark of many glomerular
diseases, the mechanisms leading to severe podocyte injury and loss remain unclear.

Methods: We investigated DNA repair mechanisms in glomerular diseases by gene expression
analysis of human kidney biopsies. Using a constitutive and an inducible podocyte-specific Ercc1
knockout mouse model, we assessed the influence of disrupted NER in vivo, complemented by
mechanistical in vitro studies of induced DNA damage in cultured podocytes. Furthermore, we
characterized DNA damage-related alterations in aged mice and human renal tissue of different
age groups as well as in minimal change disease (MCD) and Focal segmental glomerulosclerosis
(FSGS) patient biopsies.

Results: We detected perturbed NER gene expression in nuclei of podocytes in FSGS as well as
aberrations of DNA repair genes in biopsies of patients with various podocyte-related glomerular
diseases. Genome maintenance through NER proved to be indispensable for podocyte
homeostasis. Podocyte-specific accumulation of DNA damage through the knockout of the NER
endonuclease co-factor Ercc1 resulted in proteinuria, podocyte loss, glomerulosclerosis, and renal
insufficiency. The response to this genomic stress was fundamentally different to the pattern
reported in other cell types, as podocytes activated mTORC1 signaling upon DNA damage in vitro
and in vivo. The induced mTORC1 activation was abrogated by inhibiting DNA damage response
through DNA-PK and ATM in vitro. Moreover, pharmacological inhibition of mTORC1 ameliorated
the development of glomerulosclerosis in NER-deficient mice.

Conclusion: Disruption of DNA damage response pathways seems to be a uniform response in
several glomerulopathies. Accumulation of DNA damage in podocytes results in

glomerulosclerosis and activates mTORC1 signaling.

Keywords:

Podocyte, DNA Damage, Ercc1, mTORC1, Glomerulosclerosis

Translational statement
Growing evidence suggests that perturbations in genome maintenance play a role in
glomerulopathies. The authors have identified several DNA repair genes to be differentially

expressed in glomerular diseases in human kidney biopsies and observed dramatic differences in
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nucleotide excision repair (NER) gene expression in focal segmental glomerulosclerosis (FSGS)
podocytes. In vivo and in vitro analyses in murine podocytes uncovered accumulation of DNA
damage through disruption of NER to result in podocyte loss with glomerulosclerosis and to
activate the mTORC1 pathway. Similar results were identified in FSGS patient biopsies as well as
in renal specimens of human and murine aging. These findings reveal that DNA damage and its
repair pathways are crucial for podocyte maintenance and for the development of

glomerulosclerosis, potentially serving as therapeutic targets in the future.
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99  Introduction:
100 Most cells of the body are constantly subjected to various endogenous and exogenous DNA
101  damaging agents '2. Therefore, cells depend on numerous DNA repair mechanisms to counteract
102 genomic stress 3. Mutations in DNA repair genes result in a variety of pathologies ranging from
103 cancer to progeroid syndromes #5. The specific importance of genome maintenance in cells with
104 limited regenerative capacity is demonstrated by the prevalence of neurodegeneration as a
105  hallmark of DNA repair deficiency syndromes 6.
106  Glomerular podocytes are terminally differentiated, post-mitotic cells with little to no replacement
107  post-development 7. As an integral part of the primary filtration unit of the kidney &, podocyte
108  depletion is a leading cause of chronic kidney disease due to diabetes, hypertension, and other
109  glomerulopathies, with ensuing loss of protein into the urine °. The precise pathomechanisms
110  leading to podocyte depletion, however, are incompletely understood. Protecting this finite number
111 of cells is, therefore, an important therapeutic goal °.
112 Lately, first studies have indicated the importance of genome maintenance for renal health .12,
113 Mutations in the kinase endopeptidase and other proteins of small size (KEOPS) complex genes
114  caused proteinuria and induced DNA damage response (DDR) in vitro '3. Likewise, glomerular
115 DNA damage was found to be associated with declining kidney function '* and cells isolated from
116  the urine of patients suffering from diabetes and hypertension showed increased levels of DNA
117  strand breaks 'S. First evidence of nucleotide excision repair (NER) being an essential pathway in
118  kidney health was recently provided through the identification of ERCC1 variants causing kidney
119  dysfunction in patients '6. However, this study mostly reported on a tubulopathy phenotype, hence,
120  the link between DNA damage and podocyte loss remains unclear.
121  Several studies have proposed an interplay between DNA damage signaling and the mechanistic
122 target of rapamycin (mTOR) pathway with factors induced by DNA damage exhibiting repressive
123 effects on mTOR-complex1 (mTORC1) '7-'° and increased mTORC1 activity leading to genomic
124 stress 2022, This is of particular interest for podocytes, as they are highly dependent on a rigorous
125  control of mTOR activity. While mTORC1-driven hypertrophy is a protective response upon
126  podocyte depletion 2325, mTORC1 overactivation drives pathologic hyperproliferation and
127  sclerosis 2627, In line with these findings, side effects of pharmacological mMTORC1 inhibition entail
128  proteinuria and glomerular scarring 28-34,
129 In this study, we identified perturbations in the expression of DNA repair genes in glomeruli from
130  various human glomerular diseases associated with podocyte depletion and a significant loss of

131  NER gene expression in podocytes of FSGS patients. Podocyte-specific DNA damage
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132 accumulation through NER disruption resulted in proteinuria, podocyte loss, glomerulosclerosis,
133 and renal insufficiency in mice. Ancillary, DNA damage accumulation was identified as a hallmark
134 of murine and human podocyte aging. Strikingly, both in vivo and in vitro analyses revealed
135 mTORCH1 activation upon DNA damage, indicating a cell-type specific response. Inhibiting parts
136  of the DNA damage response diminished mTORCH1 activation and, in turn, inhibiting mTORC1
137  activation ameliorated glomerulosclerotic phenotypes in two NER-deficient mouse models. These
138  results directly link genome maintenance to mTORC1 signaling and glomerular diseases.

139

140  Methods:

141  ERCB Human microarray analysis

142 167 genes involved in DNA repair and nucleotide excision repair were compiled from the hallmark
143 gene set “DNA-Repair” from the Molecular Signatures Database (MSigDB) Collections5 and upon
144 literature research. Human kidney biopsies and Affymetrix microarray expression data were
145  obtained within the framework of the European Renal cDNA Bank - Kréner-Fresenius Biopsy Bank
146  36. Diagnostic biopsies were obtained from patients after informed consent and with approval of
147  the local ethics committees. Following renal biopsy, the tissue was transferred to RNase inhibitor
148 and micro-dissected into glomeruli and tubulo-interstitium. Total RNA was isolated, reverse
149  transcribed, and amplified to a protocol previously reported 37. Fragmentation, hybridization,
150  staining, and imaging were performed according to the Affymetrix Expression Analysis Technical
151  Manual (Affymetrix, Santa Clara, CA, USA). Published datasets of glomerular samples were
152 analysed for mRNA expression levels. Analysis included datasets from patients with minimal
153  change disease (MCD; n=14), focal segmental glomerulosclerosis (FSGS; n=23), membranous
154  nephropathy (MGN; n=21), IgA nephropathy (Glom; n=27), and hypertensive nephropathy (HTN;
155 n=15) as well as controls (living donors (LD); n=42) (GSE99340, LD data from: GSE32591,
156  GSE37463). CEL file normalization was performed with the Robust Multichip Average method
157  using RMAExpress (Version 1.0.5) and the human Entrez-Gene custom CDF annotation from
158  Brain Array version 18 (http://brainarray.mbni.med.umich.edu/Brainarray/default.asp). To identify
159  differentially expressed genes, the SAM (Significance Analysis of Microarrays) method 38 was
160  applied using SAM function in Multiple Experiment Viewer (TiGR MeV, Version 4.9). A g-value
161  below 5% was considered to be statistically significant. The resulting gene expression list was
162  censored for genes, whose products were detected in a transcriptomic and proteomic analysis of
163  wild-type murine podocytes .

164  Single nucleus sequencing
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165  Nuclei were prepared from kidney biopsy cores stored in RNAlater from FSGS patients enrolled
166  inthe NEPTUNE study. The processing followed the protocol developed from the Kidney Precision
167  Medicine Project. Nuclei preparations were processed and sequenced using 10x Genomics single
168  cell sequencer. Analyses were performed on the output data files from CellRanger v6.0.0 using
169 the Seurat R package (version 3.2 and 4.0; https://cran.r-

170  project.org/web/packages/Seurat/index.html). To limit low quality nuclei and/or multiplets, we set

171  gene counts and cutoffs to between 500 and 5000 genes and examined nuclei with a mitochondrial
172 gene content of less than 10%. Nuclei were merged into a Seurat object using the CCA integrate
173  function and nuclear cluster annotation was determined by finding enriched genes in each cell
174  cluster. A comparison of these cluster selective gene profiles was compared against previously
175 identified cell marker gene sets from human kidney samples from KPMP and other sources 4°.
176  Mice

177  Mice were bred in a mixed FVB/CD1 (Ercc1 pko) or FVB/CD1/C57BL6 (Ercc1 ipko) background.
178  All offspring was born in normal mendelian ratios. Mice were housed in the animal facility of the
179  Center for Molecular Medicine Cologne or the Cluster of Excellence — Cellular Stress Responses
180  in Aging-Associated Diseases. Following federal regulations, the Animal Care Committee of the
181  University of Cologne reviewed and approved the experimental protocols. Animals were housed
182  at specific pathogen-free (SPF) conditions with three-monthly monitoring according to FELASA
183  suggestions. Housing was done in groups of less than six adult animals receiving CRM pelleted
184  breeder and maintenance diet irradiated with 25 kGy (Special Diet Services, Witham, UK) and
185  water ad libitum. Spot urine was collected once a week during cage changes or during sacrifice.
186  Tamoxifen was administered at 400 mg/kg Tamoxifen in dry chow.

187  For rapamycin injection studies male and female Ercc1" (ctrl) and Ercc1; pod-cre (pko) mice at
188  week 6 of age were injected intraperitoneally 3 times/week with 2 mg/kg bw of rapamycin diluted
189  in 5% ethanol, 5% tween 80 and 5% PEG 400 or with 5% ethanol, 5% tween 80 and 5% PEG 400
190  as vehicle. Urine collection was performed 2 times/week and mice were sacrificed at week 13 of
191  age for serum and kidney tissue isolation. All animals were maintained in grouped cages on a 12h
192 light/dark cycle. Mice were kept on a regular diet and had access to water ad libitum. Body weight
193  was measured weekly. Animals were housed in a temperature-controlled, pathogen-free animal
194 facility at the Institute of Molecular Biology and Biotechnology (IMBB), which operates in
195  compliance with the “Animal Welfare Act” of the Greek government, using the “Guide for the Care
196  and Use of Laboratory Animals” as its standard.

197  Mice were anaesthetized by intraperitoneal injection of 10 ul per g bodyweight of 0,01% xylocaine
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198  and 12,5 mg/ml ketamine — blood was drawn from the left ventricle into a syringe rinsed with
199  Heparin sulfate, and animals were perfused with cold phosphate buffered saline (PBS). Kidneys
200 were excised and embedded in OCT (Sakura, Torrance, CA) and frozen at -80°C or fixed in 4%
201  neutral buffered formalin and subsequently embedded in paraffin.

202 Podocyte isolation

203  To isolate primary podocytes, Ercc1" mice heterozygous for the R26mTmG and NPHS2.Cre
204  transgene were sacrificed and kidneys were used for glomerular preparation, as previously
205  described . The glomeruli were digested and the single-cell suspension was used for
206  fluorescence-activated cell sorting.

207  qPCR Analysis

208  Total ribonucleic acid (RNA) was extracted from podocytes of Ercc1/Pod:Cre/mTmG mice using
209  Direct-zol™ RNA MiniPrep Kit (cat. no. R2052, Zymo Research). Isolation of glomeruli,
210  preparation of a glomerular single-cell suspension, and fluorescence-activated cell sorting was
211  done as previously described 7. Podocytes were sorted into TriReagent (cat. no. 93289, Sigma-
212 Aldrich). The complementary deoxyribonucleic acid (cDNA) was synthesized with High Capacity
213 cDNA Reverse Transcription Kit (cat. no. 4368814, Applied Biosystems). PCR was performed
214  using TagMan™ Gene Expression Master Mix (cat. no. 4369016, Applied Biosystems) and the
215  Applied Biosystems Real-time PCR system. Real-time PCR was measured with triplicates in each
216 gene target. The sequence of the PCR primer used for Ercc1 was: 5'-
217 AGCCAGACCCTGAAAACAG-3'and 5’- CACCTCACCGAATTCCCA-3' in PrimeTime Mini gqPCR
218  Assay for Ercc1 (Assay-ID: Mm.PT.58.42152282, IDT). The gene expression was calculated using
219  comparative cycle threshold method and normalized to RNA polymerase Il subunit A (Polr2a).
220  The relative fold change of Ercc1 expression in knockout mice was compared with WT and
221  heterozygous mice.

222 Urinary Albumin ELISA & Creatinine measurement

223 Urinary albumin levels were measured with a mouse albumin ELISA kit (mouse albumin ELISA
224 kit; Bethyl Labs, Montgomery, TX, USA). Urinary creatinine kit (Cayman Chemical, Ann Arbor, MI,
225 USA) was used to determine corresponding urinary creatinine values. For Coomassie Blue
226  detection of albuminuria, spot urine of mice was diluted 1:20 in 1x Laemmli buffer and urinary
227  proteins separated using poly-acrylamide gel electrophoresis with subsequent Coomassie gel
228  stain.

229 Plasma Creatinine and Urea measurement


https://doi.org/10.1101/2020.09.13.295303
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.13.295303; this version posted July 25, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

230  Blood samples were centrifuged at 400 g 4°C for 20 minutes and plasma samples subsequently
231  stored at -20°C until further analysis. Creatinine and Urea were measured using standard clinical
232 protocols by the Department of Clinical Chemistry of the University of Cologne.

233 Histologic analysis

234 To assess morphological changes in light microscopy we performed Periodic Acid Schiff staining.
235  For specific antibody stainings sections were deparaffinized in Xylene (VWR, Darmstadt,
236  Germany), rehydrated in decreasing concentrations of ethanol, and subjected to heat-induced
237  antigen retrieval in 10 mM Citrate Buffer pH 6 for 15 minutes. Peroxidase blocking was performed
238 in methanol mixed with 3% hydrogen peroxidase (Roth, Karlsruhe, Germany) followed by
239  Avidin/Biotin Blocking (Vector, Burlingame, CA, USA) for 15 minutes each. After incubation in
240  primary antibody (anti-phospho-S6 Ribosomal Protein (Ser235/236) # 4858 — Cell Signaling
241  Technology) 1:200 in TBS 1% BSA at 4°C overnight, sections were washed in TBS and incubated
242 in biotinylated secondary antibody (Jackson Immunoresearch, West Grove, USA) 1h at room
243 temperature. For signal amplification the ABC Kit (Vector, Burlingame, CA, USA) was used before
244 applying 3,30-diaminobenzamidine (Sigma-Aldrich, St Louis, USA) as a chromogen. Hematoxylin
245  was used for counterstaining. After dehydration, slides were covered in Histomount (National
246  Diagnostics, Atlanta, USA).

247  Immunofluorescence Staining

248  Paraffin embedded tissue was cut into 3 ym thick sections and processed according to published
249  protocols 4'. Primary antibodies (anti-yH2A.X #2577s — Cell Signalling Technology, anti-nephrin
250  #GP-N2 —Progen, anti-synaptopodin #65294 — Progen, anti-Dach1 #HPA012672 — Sigma Aldrich
251 42, anti-phospho-S6 Ribosomal Protein (Ser235/236) # 4858 — Cell Signaling Technology), and
252  anti-p53 (anti-p53 #p53-protein-cm5 Leica Biosystems) were used at 1:200 dilution. Far-red
253  fluorescent DNA dye Draq 5 was used as a nuclear marker.

254 Cells were processed according to published protocols “3.

255  For yH2A.X foci quantification, a custom-built FIJI macro was used. In brief, podocyte nuclei were
256 identified through surrounding synaptopodin staining, segmented using the freehand tool and split
257  into single channels. Drag 5 channel was converted into binary image using auto threshold “otsu
258  dark” with subsequent particle measurement (range 5-Infinite) to determine nuclear area. yH2A.X
259  channel was converted into binary image using auto threshold “MaxEntropy dark” with subsequent
260  particle measurement (range 0.02-infinite) to determine foci number and area.

261  Electron Microscopy
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262  Mice were perfused with 4% paraformaldehyde and 2% glutaraldehyde in 0.1 M sodium
263  cacodylate, pH 7.4. Postfixation was performed in the same buffer for two additional weeks at 4°C.
264  Tissue was osmicated with 1% OsO4 in 0.1 M cacodylate and dehydrated in increasing ethanol
265  concentrations. Epon infiltration and flat embedding were performed following standard
266  procedures. Toluidine blue was used to stain semithin sections of 0.5 um. 30 nm-thick sections
267  were cut with an Ultracut UCT ultramicrotome (Reichert) and stained with 1% aqueous uranylic
268 acetate and lead citrate. Samples were studied with Zeiss EM 902 and Zeiss EM 109 electron
269  microscopes (Zeiss, Oberkochen, Germany).

270  In vitro Experiments

271  Conditional immortalized murine podocytes were a gift by Stuart Shankland. Cells were cultured
272  as previously described 44. Briefly, immortalized podocytes were cultured in RPMI media
273  supplemented with 10% FBS and IFNy (Sigma-Aldrich, Taufkirchen, Germany). Cells proliferated
274  at 33°C on Primaria plastic plates (BD Biosciences, San Jose, CA, USA) until they reached a
275  confluence of 60-70%. Differentiation of podocytes was induced by seeding the cells at 37°C in
276  the absence of IFNy. After 10 days of differentiation, cells were treated with 5 or10 pg/ml
277  Mitomycin C (#M0503 - Sigma-Aldrich, Taufkirchen, Germany) for 2h in serum-free medium,
278  followed by one washing step with Phosphate-Buffered Saline and further incubation for 6 h in
279  serum-free medium without Mitomycin C before further processing. The absence of mycoplasm
280 infection was tested regularly using the mycoplasm detection kit from Minerva biolabs (Minerva
281  Biolabs, Berlin, Germany). For experiments with DNA damage response inhibitors, differentiated
282  cells were pre-treated with 3 yM KU60019 (Selleckchem, Houston, TX, USA) or 1 M Nedisertib
283  (Selleckchem, Houston, TX, USA) for 1 h before inducing DNA damage by UV-C or Mitomycin C
284  treatment. Inhibitors were added again after medium change following DNA damage induction to
285  further incubate cells for 6 h before cell lysis.

286  Western Blot analysis

287  SDS-PAGE was used for protein size separation with subsequent blotting onto polyvinylidene
288  difluoride membranes and visualized with enhanced chemiluminescence after incubation of the
289  blots with corresponding antibodies (Phospho-Histone H2A.X (Ser139); Phospho-S6 Ribosomal
290  Protein (Ser235/236) (D57.2.2E); S6 Ribosomal Protein (5G10) — Cell Signaling Technology;
291  alpha Actin — Developmental Studies Hybridoma Bank; beta-Tubulin (E7) - Developmental Studies
292 Hybridoma Bank).

293 eQTL Analysis

10


https://doi.org/10.1101/2020.09.13.295303
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.13.295303; this version posted July 25, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

294 For the subgroup analysis of FSGS cohort, the procedure described in Gillies et al., 2018 was
295  used with the following exceptions: only FSGS patients were analysed (N=87) and only RNAseq
296  expression data for glomerular samples were utilized. Briefly cis-eQTLs were identified using
297  MatrixEQTL from among variants that were located either within the annotated boundaries of a
298  gene or its surrounding region (+/- 500 kb) 45. We then adjusted for age, sex, principal components
299  of genetic ancestry, and the first 5 PEER factors 46. The genetic ancestry was calculated using
300 LD-pruned WGS data from across all 87 patients using the EPACTS tool
301  (https://genome.sph.umich.edu/wiki/EPACTS). The gene-level FDR for the MatrixEQTL was
302  controlled using TORUS. Fine mapping of the eQTLs was performed using the DAP algorithm 47.
303  Study approval

304  All investigations involving human specimen have been conducted according to the Declaration
305 of Helsinki following approval of the local ethics committees. Written informed consent was
306 received from participants prior to inclusion in the study. All mouse experiments were conducted
307 according to institutional and federal guidelines and approved by the LANUV NRW VSG 84-
308 02.04.2013.A336.

309  Statistics

310  If not stated otherwise, unpaired two tailed Student’s t-test was used to compare two groups and
311  p values < 0.05 were considered significant. For multiple group comparisons, we applied 1-way
312  ANOVA followed by Tukey’s post hoc correction. Statistics were performed using GraphPad Prism
313 8.

314

315 Results:

316 DNA damage repair is essential for podocyte health and is impaired in focal segmental
317 glomerulosclerosis

318 To determine the involvement of the NER pathway in podocyte loss, we investigated the
319  expression of NER genes in podocytes of FSGS biopsies, Minimal change disease (MCD) patients
320  and controls using single nucleus sequencing. Indeed, we detected an upregulation in the Ercc1-
321 8 genes, all involved in damage recognition, DNA unwinding and damage excision, in FSGS
322  podocytes when compared to MCD and living donor kidney samples (Fig. 1A). Conversely the
323  expression of various polymerases involved in the synthesis of new repaired strands was virtually
324  lost in the podocytes of both MCD and FSGS samples indicative of a predominance of damage

325  recognition and strand excision in the FSGS biopsies (Fig. S1A). Targets of the mTORC1

11
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326  pathway, used as an internal control, increased in expression with little changes in the percentage
327  of podocytes expressing these genes (Fig. S1A).

328 Likewise, we detected a wide array of alterations in the expression of DNA repair and NER genes
329 in glomerular lysates of different nephropathies compared to controls (Fig. S1B; Tbl. S1)
330  Furthermore, we assessed whether genetic variants associated with glomerular mMRNA expression
331  of DNA repair genes could be detected in patients with sclerotic glomerular diseases (Table S2)
332 and we identified single nucleotide polymorphisms (SNPs) associated with alterations in the
333  expression of DNA repair genes (Table S2 - S4).

334  As the perturbation of NER genes in FSGS podocytes could indicate defective DNA repair
335 mechanisms, we investigated the accumulation of DNA damage in podocyte nuclei using YH2A.X
336  immunofluorescence staining in human biopsies of FSGS compared to MCD patients. Indeed, we
337 detected a marked increase in podocyte-specific nuclear yH2A.X foci in FSGS glomeruli (Fig. 1B
338 & S1C, D & E), corresponding to DNA double-strand breaks and thus suggestive of an involvement
339  of DNA damage accumulation in podocyte damage and loss.

340 A well-established model to induce DNA damage in vivo is to induce a functional impairment of
341 the NER cascade by deletion of the endonuclease Ercc4’s co-factor, the DNA excision repair
342 protein Ercc1 48-%0, Investigating glomeruli of the Ercc1 -/delta mouse 57, a mouse model with whole
343 body disruption of Ercc1 on one allele and a truncated form of Ercc1 on the second allele, leading
344  to a hypomorphic variant with minimal residual activity, already revealed the development of foot
345  process effacement at 14 weeks of age (Fig. S2A).

346  These findings pointed towards DNA damage repair as an essential mechanism for podocyte
347  health. Thus, we generated a constitutive podocyte-specific knockout of Ercc1 using the cre-loxP
348  system in mice of mixed FVB/CD1 background %2 (Fig. S2B & 1C.). Mice carrying the podocyte-
349  specific knockout (pko) had a decreased lifespan of 10-15 weeks, while cre negative animals (ctrl)
350 and cre positive animals heterozygous for the floxed Ercc1 allele (het) were investigated for up to
351 72 weeks without overt abnormalities (Fig. 1D & S2C & D). While weight gain after birth was
352 normal up to week 9, Ercc1 pko offspring displayed a pronounced decrease of weight thereafter
353  (Fig. 1E). This weight drop was accompanied by the development of significant albuminuria as
354  well as elevated serum creatinine and urea levels, starting at week 11 (Fig. 1F-H). At week 13,
355  Ercct1 pko mice had developed severe generalized renal damage, including glomerulosclerosis,
356 interstitial fibrosis, and tubular atrophy with protein casts (Fig. 11).

357  Similar results could be obtained in a tamoxifen-inducible podocyte specific knockout (ipko) of
358  Ercct (Fig. S3).
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359

360 DNA damage accumulation in podocytes triggers cellular stress and podocyte loss

361  Ultrastructural alterations in 9-week-old constitutive Ercc1 pko glomeruli were detectable in the
362  form of focally effaced podocyte foot processes. These changes were not yet present in 7-week-
363 old animals (Fig. 2A). Further evidence of podocyte stress was revealed by gradual reduction of
364  nephrin expression, an important slit diaphragm protein, from weeks 9 to 13 (Fig. 2B & S4A).
365 Podocyte number, glomerular hypertrophy, and podocyte density, investigated through staining of
366 the podocyte specific proteins synaptopodin (SNP) and Dachshund Family Transcription Factor 1
367 (Dach1) remained within normal ranges at week 9 (Fig. 2C & S4B). In contrast, glomeruli from 11-
368  week-old Ercc1 pko mice clearly showed severe injury and loss of podocytes, indicated by the
369 decrease and loss of both SNP and Dach1 (Fig. 2D). This loss of podocytes was further validated
370  through the analysis of WT1-positive cells in 9- and 11-week-old Ercc1 pko mice (Fig. S4C).

371  Foci of phosphorylated histone 2A.X (YH2A.X), a bona fide marker for DNA double-strand breaks,
372  were significantly increased in both number and area in podocyte nuclei of Ercc1 pko glomeruli at
373  week 9 (Fig. 2E & S4D-F) compared to control animals. Strikingly, we also observed a smaller
374  number of YyH2A.X foci in almost all wildtype podocyte nuclei indicative of constant DNA damage
375  occurrence and subsequent repair in healthy glomeruli. At later time points, single podocytes with
376  yH2A.X signals covering larger areas of the nuclei became apparent in Ercc1 pko glomeruli (Fig.
377  2F).

378

379 DNA damage accumulation in podocytes activates the mTORC1 pathway in vivo

380  Podocyte loss is tightly linked to mTORC1 activation and cellular hypertrophy of the remaining
381  podocytes. Therefore, we investigated the timepoint of mTORC1 activation in Ercc1 pko mice.
382  Strikingly, we detected a significant increase in pS6RP-positive cells in Ercc1 pko glomeruli at 9
383  weeks of age (Fig. 3A), a timepoint, when no evidence for podocyte loss was present yet (Fig. 2C
384 & S4C0). In-detail analysis revealed that more than 40% of podocytes showed mTORC1 activation
385 atweek 9 (Fig. 3A).

386  To investigate whether increased mTORCH1 signaling contributes to the development of podocyte
387 loss, we analysed the kidneys of Ercc1 -/delta mice treated with 14 mg/kg food of the mTORC1
388 inhibitor rapamycin from 8 weeks of age until termination of the experiment due to high moribund
389  scoring %3. Despite the fact that the treated cohort did not present with an extended lifespan,
390  moribund animals of the end-of-life cohort (aged 15-26 weeks) presented with a significant

391  reduction of sclerotic glomeruli, when treated with rapamycin (Fig. 3B). Additionally, we treated
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392 our podocyte-specific Ercc1 ko mouse model with 2 mg/kg bodyweight rapamycin via i.p. injections
393  three times a week, beginning at 6 weeks of age. Again, we detected a significant reduction in
394  globally sclerotic glomeruli and more healthy glomeruli upon rapamycin treatment at the end of
395  our observation period at week 13 (Fig. 3C).

396 The observed detection of increased mTORC1 signaling and DNA damage accumulation
397  suggests a potential interplay. It has been suggested that increased mTORC1 signaling decreases
398 the cellular ability to repair DNA damage 202'. Thus, we investigated the occurrence of yH2A.X
399  foci accumulation in a podocyte-specific Tsc1 knockout mouse model characterized by podocyte-
400  specific mMTORC1 hyperactivation 2554, Indeed, Tsc1 pko mice also depicted an increased number
401  of DNA damage foci as early as 4 weeks of age, when the phenotype is predominantly driven by
402  mTORCH1 hyperactivation (Fig. 3D).

403  This data indicates increased mTORC1 signaling through DNA damage accumulation and
404  decreased DNA damage repair upon mTORC1 activation potentially constituting a downward
405  spiral aggravating podocyte damage (Fig. 3E).

406

407 DNA damage activates the mTORC1 cascade through DNA damage signaling kinase DNA-
408 PKin podocytes

409  To further investigate the mechanism behind mTORC1 activation occurring in podocytes upon
410  genomic stress, we induced DNA damage through mitomycin C (MMC) treatment and UV-C
411  irradiation in vitro in immortalized mouse podocytes (Fig. 4A). These treatments led to significant
412  increases of YH2A.X (Fig. 4B) and accumulation of the DNA damage response protein p53 in the
413  nucleus (Fig. 4C). Again, DNA damage induced an increased phosphorylation of S6 ribosomal
414  protein (pS6RP), which is a downstream target of mTORC1, in podocytes (Fig. 4D). This
415  phosphorylation was completely abrogated by mTORC1 inhibitor rapamycin and reduced by
416  serum starvation, a well-known mTORC1 modulator5. In order to identify the link between DNA
417  damage accumulation and mTORC1 activation, we treated MMC- or UV-C-stimulated murine
418  podocytes with inhibitors of the DNA damage signaling cascade (Fig. 4E). In both conditions,
419 inhibition of DNA-dependent protein kinase (DNA-PK) by Nedisertib resulted in abrogation of
420  S6RP phosphorylation. Similar results could be achieved with the Ataxia Telangiectasia Mutated
421  serine/threonine kinase (ATM) inhibitor KU60019. No effects were detected upon treatment with
422  the ATR inhibitor VE822 or with the CHK1 inhibitor prexasertib (data not shown). These data

423  indicate a direct mechanistic link between genomic stress and mTORC1 signaling in podocytes.
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424  Since genomic stress represents a hallmark of cellular aging, we investigated both murine and
425  human glomeruli of young and aged subjects. Indeed, the well-documented increase in mTORC1
426  signaling in aged murine podocytes coincided with increased detection of DNA damage foci (Fig.
427  4F & S5A). Similar results were detected in a series of human tumor nephrectomy samples when
428  comparing a young group (21-49 years; n=4) with an old group (69-81 years; n=5) (Fig.4G & S5B).
429  These results validate the occurrence of DNA damage in both healthy murine and human
430  podocytes and indicate an association between DNA damage and aging in podocytes, possibly
431  contributing to age-related podocyte loss 25.

432

433  Discussion:

434 Our study allows two principal conclusions: (1) DNA repair mechanisms are involved in the
435  pathophysiology of glomerular disease, which are indispensable for podocyte homeostasis, and
436  (2) podocytes respond to DNA damage by upregulation of the mTORC1 pathway in a DNA-PK-
437  mediated manner before the onset of podocyte loss, not via a repression of the mTORC1 pathway.
438  Together, this is the first report drawing a connection between DNA repair mechanisms and
439  glomerular diseases via mTORC1 signaling.

440  Only recently the importance of DNA repair has sparked larger interest in the field of podocyte
441  biology. Due to their often deleterious clinical phenotypes in humans, the description of glomerular
442  abnormalities in syndromes caused by mutations in DNA repair genes is scarce %657, However,
443  there is evidence for podocyte involvement in syndromes caused by mutations of DNA repair
444  genes underlined by reports of patients exhibiting proteinuria and nephrotic syndrome 495859 The
445  same holds true for factors involved in other forms of DNA maintenance such as the KEOPS
446  complex 1380 or KAT5, a contributor to DNA methylation and non-homologous endjoining repair 8.
447  Itoh and co-workers linked proteinuric kidney diseases due to hypertension and diabetes to DNA
448  double-strand breaks and methylation in the promotor region of the slit diaphragm protein nephrin
449  and established an association to DNA double-strand breaks in glomeruli of patients suffering from
450  IgA nephropathy 415, Our analysis adds considerably to this body of evidence, as we identify
451  multiple factors of DNA maintenance, in particular of NER, to be transcriptionally altered in
452 glomeruli of different renal diseases involving pronounced podocyte damage and loss. This is in
453  line with decreased expression of NER endonuclease ERCC4 in IgA nephropathy'4. The precise
454  evaluation of perturbations in every single one of the identified genes goes beyond the scope of

455  this manuscript, but we delineated the striking decrease of NER gene expression in FSGS
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456  podocytes and investigated the podocyte-specific reaction to accumulating DNA damage in depth
457  invivo and in vitro.

458  To what extent glomerular epithelial cells are subjected to genomic stress is currently unclear. For
459  the first time, this study reveals the occurrence of individual DNA damage foci in podocytes under
460  healthy conditions indicating a need for constant DNA maintenance and repair in this specialized
461  cell type. This finding is in line with studies investigating glomerular expression profiles of a partial
462  Ercc1 knockout 62 and an adipose tissue-specific Ercc1 knockout that described a low amount of
463  DNA damage foci also occurring in adipocytes of control animals %0. A major factor contributing to
464  this stress may result from damaging agents in the serum, as serum components are constantly
465 filtered into the primary urine in which the podocytes are emerged in. Since podocytes entail very
466 little capacity for regeneration 7, they are in specific need for efficient repair of occurring DNA
467  damage and particularly vulnerable to abrogation of these repair pathways. Deficiency in the repair
468 of DNA damage seems to be compensable up to a certain threshold as podocyte loss, proteinuria,
469 and glomerular sclerosis only became apparent after week 9 in our mouse model. In line with
470  these findings, decreased Ercc1 gene expression in heterozygous mice appears to be sufficient
471  to maintain healthy glomeruli, as these animals depict no phenotype at one year of age. Yet, the
472  presence of foot process effacement and glomerulosclerosis in Ercc1 -/delta mice indicates that
473  minimal residual activity is not sufficient for podocyte health.

474  The interplay of DNA damage, its repair, and the mTOR pathway has been a subject of numerous
475  studies, specifically in the field of cancer biology. These studies indicated that mTORC1 signaling
476 s inhibited upon DNA damage in a TSC, Sestrin or AKT dependent manner 71819, Strikingly, we
477  observed that podocytes both in vitro and in vivo reacted to endogenous accumulation or
478  exogenous infliction of DNA damage with activation of the mTORC1 pathway. Herein lies a
479  fundamental difference to past reports and a potential disease mechanism as numerous studies
480  have depicted the importance of a tight regulation of mMTORC1 for podocyte health and the
481  deleterious effects of both overactivation and repression in disease 232526.43.6364 Since mTORCH1
482  activation occurs in Ercc1 pko podocytes at 9 weeks, a time point of no overt podocyte loss, mild
483  ultrastructural differences, and significant accumulation of DNA damage foci, our data indicate a
484  direct link between genomic stress and mTORC1 activation in podocytes via activation of DNA-
485  PK.

486 A growing body of evidence suggests that mTORC1 activity reduces the capacity of successful
487 DNA repair 2021 e.g. through ribosomal S6 kinase (S6K)-dependent phosphorylation of E3

488  ubiquitin-protein ligase RNF168 22. However, upon podocyte depletion, remaining podocytes on
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489  the glomerular tuft counteract the loss of neighbouring cells through mTORC1-mediated
490  hypertrophy 25 which impairs proper DNA repair. This fact is underlined by podocyte-specific Tsc1
491  knockout animals displaying mTORC1 hyperactivation, which accumulate a significantly increased
492  amount of DNA damage foci already at 4 weeks of age. We, therefore, hypothesize that this
493  reaction can lead to a downward spiral of insufficient DNA maintenance further aggravated
494  through mTORC1 activation and, despite of mMTORC1 mediated hypertrophy, trigger excessive
495  podocyte loss. This cascade could potentially be ameliorated through well-timed mTORCA1
496  inhibition as indicated by the reduction of glomerulosclerosis in rapamycin-treated Ercc1 -/delta
497 and Ercc1 pko animals or upregulation of DNA repair mechanisms to alleviate accumulated
498  genomic stress. Potential sites in the genome that could be used to alter glomerular damage repair
499  were already identified in our eQTL analysis in FSGS patients. This is of particular interest since
500 there seems to be a broad interplay between gene products exerting functions beyond their
501  canonical pathways in genome maintenance 5. Likewise, decreased expression of DNA repair
502  genes in a subset of patients or the accumulation of DNA damage through the aging process may
503 lead to increased mTORC1 activation in podocytes, thereby rendering a subgroup of patients
504  vulnerable to the development of glomerular disease and scarring.

505  The importance of DNA damage repair in podocyte homeostasis is consistent with the role in other
506  postmitotic cell types and particularly apparent in neurodegenerative pathologies typical for NER
507  deficiency syndromes 5. The role of NER in repairing transcription-blocking lesions might thus play
508  apivotal role in podocytes that need to maintain the integrity of transcribed genes during the entire
509 lifespan of the organism. Even hepatocytes of Ercc1 -/delta mice, usually characterized by high
510  self-renewing potential, showed a considerable block of transcription, indicative of transcription-
511  coupled mechanisms being stalled 8647

512 In conclusion, we identified nucleotide excision repair as an essential mechanism of DNA
513 maintenance in podocyte homeostasis. The presented study characterizes the activation of
514 mTORC1 signaling as a podocyte-specific response to DNA damage and identifies the
515 accumulation of DNA damage as one novel hallmark of podocyte loss and glomerular disease,
516  suitable for precision medicine approaches.
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803  Figure 1: Nucleotide excision repair (NER) gene expression is perturbed in human FSGS and this
804  perturbation causes glomerulosclerosis

805  A: Bubble plot indicating the differences in Ercc gene expression in podocytes between living donor (LD)
806  kidney samples, Minimal change disease (MCD) and FSGS biopsies obtained through single nucleus
807  sequencing.

808  B: Representative immunofluorescence staining of synaptopodin (SNP), yH2A.X and Drag5 in sections of
809  human MCD and FSGS biopsies with quantification of yH2A.X foci per podocyte nucleus, scalebar
810 indicating 2 um, yellow dotted line indicating nuclear border, n=4, 4 glomeruli per sample, 5 podocytes per
811  glomerulus.

812  C:gPCR analysis for Ercc1in FACS-sorted podocytes of Ercc? ctrl, wt/pko (het) or pko mice. Delta-Delta-
813  CT values expressed as scatterplots depicting mean plus 95% confidence interval.

814  D: Kaplan-Meyer curve depicting survival of Ercc1 ctrl, wt/pko (het) and pko mice (Mantel-Cox test).

815 E: Weight analysis; F: urinary albumin/creatinine analysis; G: serum creatinine analysis; H: serum urea
816  analysis of Ercc1 ctrl and pko mice.

817 I: Representative Periodic Acid Schiff (PAS) staining of 13-week-old Ercc? ctrl and pko mice and
818  quantification of sclerotic glomeruli, scalebars: 100 um, n = 5, 50 glomeruli per sample.

819  All violin plots indicate median (black) and upper and lower quartile (gray), scatterplots indicate mean plus
820  95% confidence interval, *p < 0,05, **p < 0,01, ***p < 0,001, ****p < 0,0001.
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823  Figure 2: The podocyte-specific constitutive ko of Ercc1 leads to foot process effacement and
824  podocyte loss accompanied by accumulation of DNA damage.

825 A: Representative electron microscopy image of 7- and 9-week-old Ercc1 ctrl and pko slit diaphragms,
826  scalebar indicating 2 um, B: blood side — intracapillary space, U: urinary side — Bowman'’s space, asterisk
827  indicating podocyte foot process (n=3).

828  B: Representative immunofluorescence staining of slit diaphragm protein nephrin (yellow) with nuclear
829  marker DAPI (grey) of Ercc1 ctrl at 13 weeks of age and pko kidneys at 7, 9, 11, and 13 weeks of age,
830  scalebar indicating 2 ym (n=5).

831 C: Representative immunofluorescence staining of podocyte proteins synaptopodin (SNP, gray),
832  Dachshund homolog 1 (Dach1, green) 42 and far-red fluorescent DNA dye Drag5 (red) as a nuclear marker
833  in sections of 9-week-old Ercc? ctrl and pko kidneys, with quantification of podocyte number and density of
834  Ercc1 ctrl and pko kidneys, scalebar indicating 10 ym (n=5).

835  D: Corresponding staining of podocyte proteins synaptopodin (gray), Dachshund homolog 1 (Dach1, green)
836 42 and far-red fluorescent DNA dye Drag5 (red) as a nuclear marker in paraffin-embedded sections of 11-
837  week-old Ercc1 ctrl and pko kidneys, scalebar indicating 10 ym (n=5).

838  E:Representative immunofluorescence staining of synaptopodin (SNP, gray), DNA damage marker yH2A.X
839  (green) and nuclear marker Drag5 (red) in sections of 9-week-old Ercc1 ctrl and pko kidneys, with
840  quantification of yH2A.X foci per podocyte nucleus and nuclear area of Ercc1 ctrl and pko kidneys, scalebar
841 indicating 2 um, yellow dotted line indicating nuclear border, n=5, 10 glomeruli per sample, 5 podocytes per
842  glomerulus.

843  F: Representative immunofluorescence staining of synaptopodin (SNP, gray), DNA damage marker yH2A.X
844  (green) and nuclear marker Drag5 (red) in sections of 11-week-old Ercc? ctrl and pko kidneys, with
845 quantification of yH2A.X foci per podocyte nucleus and nuclear area of Ercc1 ctrl and pko kidneys, scalebar
846  indicating 2 um, n=5, 10 glomeruli per sample, 5 podocytes per glomerulus.

847  All violin plots indicate median (black) and upper and lower quartile (gray), *p < 0,05, **p < 0,01, ***p <
848 0,001, ****p < 0,0001.
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851 Figure 3: DNA damage leads to an activation of the mTORC1 pathway in podocytes in vivo.

852  A: Representative immunofluorescence staining of SNP, pS6RP and DAPI in sections of 9-week-old Ercc1
853  ctrl and pko kidneys with quantification of SNP and pS6RP double positive cells per glomerulus and per
854  total SNP positive cells, scalebar indicating 10 ym (n=5, 10 glomeruli per sample).

855 B: Representative Periodic Acid Schiff (PAS) staining of end-of-life Ercc1 -/delta mice treated with 14 mg
856  rapamycin per kg food from 8 weeks of age and quantification of sclerotic glomeruli (n = 8, 50 glomeruli per
857  sample), scalebar indicating 50 ym.

858  C: Representative Periodic Acid Schiff (PAS) staining of Ercc1 pko mice treated with vehicle (Ercc1 pko) or
859  rapamycin (Ercc1 pko Rapa) from 6 weeks of age and quantification of sclerotic glomeruli, n =9, 50 glomeruli
860  per sample, scalebar indicating 50 pym.

861  D:Representative immunofluorescence staining of synaptopodin (SNP, gray), DNA damage marker yH2A.X
862  (green) and nuclear marker Drag5 (red) in sections of 4-week-old Tsc? ctrl and pko kidneys, with
863  quantification of yH2A.X foci per podocyte nucleus and nuclear area of Ercc1 ctrl and pko kidneys, yellow
864  dotted line indicating nuclear border (n=5, 10 glomeruli per sample, 5 podocytes per glomerulus), scalebar
865  indicating 2 ym.

866  E: Schematic overview depicting the potential interplay between defective DNA damage repair and
867  increased mTORC1 signaling. In Ercc1 pko mice, accumulation of DNA damage triggers mTORC1
868  signaling. In Tsc1 pko mice, hyperactive mTORC1 signaling also leads to increased DNA damage foci.
869 Al violin plots indicate median (black) and upper and lower quartile (gray), scatterplots indicate mean plus
870  95% confidence interval, *p < 0,05, **p < 0,01, ***p < 0,001, ****p < 0,0001.
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873 Figure 4: DNA damage leads to an activation of the mTORC1 pathway in podocytes in vitro through
874  a DNA-PK-dependent mechanism and podocytes accumulate DNA damage with aging.

875  A: Schematic of in vitro protocol for the induction of DNA damage.

876 B: Representative immunoblot images for DNA damage marker yH2A.X and loading control protein beta-
877  tubulin of immortalized murine podocyte lysates (n=3).

878  C: Representative immunofluorescence images for tumor suppressor p53 and nuclear marker DAPI in
879  immortalized murine podocytes (n=3).

880  D: Representative immunoblot images for mTORCH1 target phospho-S6 ribosomal protein (pS6RP), S6RP
881  and loading control protein alpha-actin of immortalized murine podocyte lysates (n=3).

882  All cells imaged or lysed after treatment with mitomycin C (MMC) or ultraviolet C (UV-C) irradiation +
883  rapamycin or serum starvation (SS), n = 4.

884  E: Representative immunoblot images for mTORC1 target phospho-S6 ribosomal protein (pS6RP), S6RP
885  and loading control protein alpha-actin of immortalized murine podocyte lysates (n=3 MMC; n=6 UV-C).
886  All cells imaged or lysed after treatment with mitomycin C (MMC) or ultraviolet C (UV-C) irradiation + ATM
887 inhibitor KU60019 or DNA-PK inhibitor nedisertib.

888  F: Representative immunofluorescence staining of SNP, yH2A.X and Drag5 in sections of murine young
889  and aged wildtype kidneys with quantification of yH2A.X foci per podocyte nucleus, scalebar indicating 2
890  um, n=4, 5 glomeruli per sample, 5 podocytes per glomerulus.

891  G: Representative immunofluorescence staining of SNP, yH2A.X and Drag5 in sections of human young
892  and old tumor nephrectomy kidneys with quantification of yH2A.X foci per podocyte nucleus, scalebar
893  indicating 5 um, n=4, 5 glomeruli per sample, 5 podocytes per glomerulus.

894 Al violin plots indicate median (black) and upper and lower quartile (gray), *p < 0,05, ***p < 0,001, ****p <
895 0,0001.
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899  Figure S1:

900  A: Bubble plot indicating the differences in NER (excluding Ercc genes) and mTORC1 target gene
901  expression in podocytes between living donor (LD) kidney samples, Minimal change disease (MCD) and
902  FSGS biopsies obtained through single nucleus sequencing. Grey line indicating the split between NER and
903 mTORCH target genes.

904  B: Expression profile of 118 hallmark DNA repair genes in MCD, FSGS, IgA nephropathy (IgA),
905 membranous nephropathy (MGN), diabetic nephropathy (DN), and hypertension (HT) glomeruli compared
906 to controls depicted as parts of whole and single genes in heatmaps. Genes ranked by their protein
907  abundance (Intensity-based absolute quantification - IBAQ) in murine podocyte proteome analysis.

908  C:Quantification of podocyte nuclear area of human MCD and FSGS biopsies (n=4, 4 glomeruli per sample,
909 5 podocytes per glomerulus).

910  D: Quantification of YyH2A.X foci area per podocyte nucleus of human MCD and FSGS biopsies (n=4, 4
911  glomeruli per sample, 5 podocytes per glomerulus).

912  E: Quantification of yH2A.X foci area per podocyte nuclear area of human MCD and FSGS biopsies (n=4,
913 4 glomeruli per sample, 5 podocytes per glomerulus).

914 Al violin plots indicate median (black) and upper and lower quartile (gray), ****p < 0,0001.
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916  Fig S2:

917  A: Representative electron microscopy image of 14-week-old wild-type (WT) and Ercc? -/delta (Ercc1-/d)
918  glomerular filtration barrier, scalebar indicating 2 ym, B: blood side — intracapillary space, U: urinary side —
919  bowman’s space, Asterisk indicating podocyte foot process (n=4).

920  B: Breeding scheme for homozygous and heterozygous podocyte-specific Ercc1 pko mice.

921  C: Representative Coomassie blue staining of Ercc1 ctrl and wt/pko (het) urine at 36 weeks of age; bovine
922  serum albumin (BSA) was loaded as reference.

923  D: Representative Periodic Acid Schiff (PAS) staining of Ercc1 wt/pko (het) kidney at 72 weeks of age,
924  scalebar: 100 pym.
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926  Figure S3:

927  A:Breeding and induction scheme for homozygous inducible podocyte-specific Ercc1 ko mice (ipko).

928  B: Kaplan-Meyer curve depicting survival of Ercc1 ctrl and ipko mice (Mantel-Cox test).

929  C: Representative Coomassie blue staining of Ercc? ctrl and ipko urine 18 weeks after induction with
930  tamoxifen; bovine serum albumin (BSA) was loaded as reference (n=6).

931  D: Representative Periodic Acid Schiff (PAS) staining of Ercc1 ctrl and ipko mice 25 weeks after induction
932  with tamoxifen (n=6).

933  *p =<0,05, scalebars: 100um.
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935  Figure S4:

936  A: Quantification of nephrin positive area in ym?2 of Ercc1 ctrl and pko kidneys at 7, 9, 11, and 13 weeks of
937  age, n=4, 10 glomeruli per sample.

938  B: Quantification of glomerular volume of 9-week-old Ercc? ctrl and pko kidneys, n = 5, 10 glomeruli per
939  sample.

940  C: Quantification of WT+ nuclei per glomerulus of Ercc1 ctrl and pko kidneys at 9 and 11 weeks of age, n =
941 4, =50 glomeruli per group

942  D: Quantification of podocyte nuclear are of 9-week-old Ercc1 ctrl and pko kidneys, n = 5, 10 glomeruli per
943  sample, 5 podocytes per glomerulus.

944  E: Quantification of yH2A.X foci area per podocyte nucleus of 9-week-old Ercc1 ctrl and pko kidneys, n =5,
945 10 glomeruli per sample, 5 podocytes per glomerulus.

946  F: Quantification of yH2A.X foci area per podocyte nuclear area of 9-week-old Ercc? ctrl and pko kidneys,
947  n =5, 10 glomeruli per sample, 5 podocytes per glomerulus.

948  All violin plots indicate median (black) and upper and lower quartile (gray), **p < 0,01, ***p < 0,001, ***p <
949 0,0001.
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Figure S5:

A: Representative immunohistochemistry staining of pS6RP in sections of murine young and aged wildtype
kidneys with quantification of pS6RP-positive cells per glomerulus, scalebar indicating 25 ym, n =11, 50
glomeruli per sample.

B: Representative immunofluorescence staining of SNP, pS6RP and DAPI in sections of young and old
human tumor nephrectomy kidneys with quantification of SNP and pS6RP double positive cells per
glomerulus and per total SNP positive cells, scalebar indicating 10 ym, n==4, 10 glomeruli per sample.
Scatterplot depicting mean and 95% confidence interval, all violin plots indicating median (black) and upper
and lower quartile (gray), ****p < 0,0001.

Table S1: Gene expression analysis of ERCB for Hallmark DNA Repair and Nucleotide Excision

Repair Genes

Table S2: Clinical characteristics of FSGS patients

Table S3: eQTL analysis of DNA repair genes in FSGS patients
Ensg: ensemble gene ID; FDR: false discovery rate, PIP: posterior inclusion probability, AF:

allele frequency, beta: expression difference to reference allele

Table S4: Full eQTL analysis of DNA repair genes in FSGS patients
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