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ABSTRACT

An accumulating amount of data suggests that Ca?*-dependent gliotransmitter release plays a
key role in the modulation of neuronal networks. Here, we tested the hypothesis that in response
to agonist exposure, astrocytes release lipid modulators through activation of Ca?*-independent
phospholipase A (iPLA?) activity. We found that cultured rat astrocytes treated with selective ATP
and glutamatergic agonists released arachidonic acid (AA) and/or its derivatives, including the
endogenous cannabinoid 2-arachidonoyl-sn-glycerol (2AG) and prostaglandin E2 (PGE->).
Surprisingly, the buffering of cytosolic Ca®* resulted in a sharp increase in agonist-induced lipid
release by astrocytes. In addition, the astrocytic release of PGE; increased miniature excitatory
postsynaptic potentials (MEPSPs) by inhibiting the opening of neuronal Kv channels in brain
slices. This study provides the first evidence showing that a Ca®*-independent pathway regulates
the release of PGE; from astrocytes and further demonstrates the functional role of astrocytic lipid

release in the modulation of synaptic activity.

SIGNIFICANCE

Until now, most studies that implicate astrocytes in the modulation of synaptic activity have
focused on Ca®'-dependent release of traditional gliotransmitters such as D-serine, ATP, and
glutamate. Mobilization of intracellular stores of Ca®* occurs within a matter of seconds, but this
novel Ca?*-independent lipid pathway in astrocytes could occur on a faster time scale and thus
play a role in the rapid signaling processes involved in synaptic potentiation, attention, and

neurovascular coupling.
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INTRODUCTION

In addition to being a major contributor to the dry weight of the adult brain, lipids are an essential
component of the phospholipid bilayer and are mainly composed of long-chain polyunsaturated
fatty acids (PUFAs), such as arachidonic acid (AA) and docosahexaenoic acid (DHA) (Sinclair,
1975). The liver is the major site of AA synthesis, but the brain can produce AA and DHA in situ
from their precursor fatty acids, linoleic and linolenic acids (Dhopeshwarkar and Subramanian,
1976). Astrocytes play a central role in the synthesis of AA and DHA in the brain. Through their
vascular endfeet, astrocytes have prime access to fatty acid precursors that arrive by crossing
the blood-brain barrier (BBB) and serve as the major site for processing essential fatty acids in
the central nervous system (CNS) (Moore, 1993). Astrocytes also play a key role in the
macroscopic distribution of lipids in the brain parenchyma via perivascular glymphatic flux
(Rangroo Thrane et al., 2013a; Plog and Nedergaard, 2018).

Lipids have gained much attention for their role as bioactive mediators in the CNS (Carta
et al., 2014; Ledo et al., 2019). Numerous studies have focused on lipids in relation to functional
hyperemia and synaptic activity. For instance, PGE: is a potent vasodilator and vasoconstrictor
that regulates CNS blood flow (Zonta et al., 2003; Takano et al., 2006; Gordon et al., 2007;
Dabertrand et al., 2013; MacVicar and Newman, 2015; Czigler et al., 2019) and modulates the
membrane excitability of CA1 pyramidal neurons during synaptic activity (Chen and Bazan, 2005).
Furthermore, AA and its derivatives are important intracellular secondary messengers that can
modulate the activities of various ion channels (Piomelli, 1993; Meves, 1994; Horimoto et al.,
1997; Boland and Drzewiecki, 2008; Cordero-Morales and Vasquez, 2018). In addition, PGE> can
suppress the outwardly rectifying Kv current in sensory neurons (Nicol et al., 1997; Evans et al.,
1999), whereas AA suppresses Kv channels in the soma or dendrites of pyramidal neurons and
consequently broadens their presynaptic action potentials (Carta et al., 2014) and enhances
EPSPs (Ramakers and Storm, 2002). However, those studies focused on the effects of neuronal

lipid release on synaptic activity and paid little attention to receptor-mediated pathways by which
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astrocytic lipids might influence synaptic activity. Given that the majority of AA, DHA, and other
lipids present in the extracellular fluid are produced by astrocytes (Moore et al., 1991), receptor-
mediated release could be a significant factor in the modulation of synaptic activity.

In culture, astrocytes can release AA via a cPLA, Ca*-dependent pathway upon the
activation of metabotropic glutamate (mGIuR) and P2Y purine (ATP) receptors (Bruner and
Murphy, 1990; Stella et al., 1994; Stella et al., 1997; Chen and Chen, 1998). In addition, astrocytes
also express the Ca?-independent PLA; (iPLAz) enzyme (Sun et al., 2005). Both of these
isoforms are activated by the G-protein By subunit (Jelsema and Axelrod, 1987; Murayama et al.,
1990; van Tol-Steye et al., 1999), but iPLA2 does not require Ca** or PKC phosphorylation for
activation (Winstead et al., 2000). Receptor-stimulated iPLA: activation can induce the release of
AA and DHA by numerous types of cells (Gross et al., 1993; Portilla et al., 1994; Akiba et al.,
1998; Seegers et al., 2002; Tay and Melendez, 2004), but this activation has not been fully
explored in the case of astrocytes.

Previous work in our laboratory and elsewhere has demonstrated that astrocytes are
capable of releasing gliotransmitters upon stimulation with mGIuR or ATP receptor agonists, but
the impact of this signaling pathway on synaptic activity remains controversial. Recent studies
with genetically encoded calcium indicators allowed for the identification of localized Ca?* signals
within astrocytic fine processes and confirmed Ca?*-dependent astrocytic effects on synaptic
activity (Yu et al., 2018). However, the existence of Ca**-independent lipid signaling in astrocytes
is still unclear. Therefore, in this study, we tested the hypothesis that astrocytes support Ca*'-
independent lipid signaling to modulate synaptic transmission. We used Ca?* chelation to show
that ATP and mGIuR agonists can release lipids through iPLA, activation, resulting in the
potentiation of synaptic activity. Because we currently lack tools to assess Ca®*-independent
signaling in astrocyte fine processes adjacent to synapses, we used Ca?* inhibition on a large

scale to evaluate this phenomenon (see discussion).
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MATERIALS AND METHODS

Culture

Cultured neocortical astrocytes were prepared from postnatal day 1 or 2 Wistar rat pups (Taconic
Farms, Inc.) of either sex, as previously described (Lin et al., 1998). In brief, cerebral cortices
were dissected on ice, and the meninges were removed. The tissue was washed three times in
Ca?*-free Hanks’ balanced salt solution, triturated, filtered through a 70 um nylon mesh, and
centrifuged. The pellet was resuspended in 10% fetal bovine serum in Dulbecco’s modified
Eagle’s medium (DMEM)/F12 containing penicillin (100 IU ml") and streptomycin (100 ug mi™)
and transferred to culture flasks. The cells were maintained at 37 °C in an incubator with
humidified air and 5% CO,. The medium was changed after 24 hours and twice a week thereafter.
More than 95% of the cells immunostained were GFAP positive. When the cells became confluent,
they were rinsed two times in Ca?-free Hanks’ balanced salt solution, suspended in 0.05%
trypsin-containing PBS for 1 minute, resuspended in DMEM/F12, centrifuged to remove the
trypsin-containing supernatant, and then plated in 24-well plates. The experiments were
performed when the cells were 95% confluent.

Viral vectors and viral transduction

Viral vectors driving GFAP cyto-GCaMP6f (Baljit S. Khakh) were obtained from the University of
Pennsylvania Vector Core (AAV 2/5 serotype). Secondary rat astrocytic cultures were transduced
with the AAV GFAP cyto-GCaMP6f. After transduction, the cultures were incubated at 37 °C for 5
days prior to Ca®" imaging experiments.

Ca® imaging

Cultured cells in 24-well plates were transduced with the AAV GFAP cyto-GCaMP6f and incubated
with various pharmacological agents for 30 minutes at 37 °C. Using confocal microscopy
(Olympus FV500), calcium wave activity was evaluated by adding an equal volume of medium

containing 100 uM ATP to each well. Relative increases in the fluorescence signal evoked by P2Y
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receptor agonist exposure were compared with baseline fluorescence (AF/F) as previously
described (Nedergaard, 1994; Smith et al., 2018).

Radiolabeling and assessment of AA release

Confluent rat astrocytic cultures were incubated with 100 nCi [5,6,8,9,11,12,14,15-*H]-AA
(PerkinElmer) overnight before experiments. The cells were washed three times with serum-free
medium and then allowed to recover for 20 minutes. Before stimulating P2YRs with 100 uM ATP,
the cells were incubated with the appropriate inhibitors for 10 to 12 minutes. Aliquots of medium
were taken 15 minutes after agonist stimulation, and the levels of *H-AA and/or metabolites were
measured by liquid scintillation counting.

HPLC/MS/MS analysis of lipids

Confluent rat astrocytes were washed with serum-free media and then allowed to recover for 1
hour in serum-free media. At this time, the cells were incubated with vehicle or 20 pM
cyclopiazonic acid (CPA) for 15 minutes and then challenged with 100 uM ATP or vehicle for 15
minutes, as described in the section on [°H]-AA experiments. The media were then removed and
put aside, and 2 ml of HPLC-grade methanol was added to the flask for 5 minutes. After removing
the methanol, an additional 2 ml of HPLC-grade methanol was added, the cells were scraped
from the sides of the flask, and the contents were added to the previous two retained fractions.
Deuterium standards were added to a final concentration of 200 pM, and the samples were
centrifuged at 19,000 x g and 24 °C. Lipids in the eluent were partially purified on 500 mg C18
Bond Elut solid phase extraction columns (Varian), concentrated into fractions of 40, 60, 85, and
100% methanol, and analyzed using HPLC/MS/MS (Shimadzu SCL10Avp-Wilmington, DE, USA;
API 3000 Applied Biosystems/MDS SCIEX, Foster City, CA, USA) as previously described
(Leishman et al., 2018). Over 50 lipids were targeted in these analyses, including 40 lipoamines,
3 acylglycerols, 2 free fatty acids, and 2 prostaglandins (namely, X and Y). The results of pilot

studies showed that the analyte concentrations were too low for reliable detection in the medium
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alone, but the extraction of medium and cells together provided sufficient lipid concentrations for
reliable assays.

PGE: release assessment via PGE; immunoassay

Confluent rat astrocytic cultures were washed 3 times with serum-free medium and then allowed
to recover for 20 minutes. Before stimulation with 100 uM ATP, the cells were incubated with the
appropriate P2Y inhibitors for 10 to 12 minutes. Aliquots of the medium were collected 15 minutes
after stimulation and PGE2 content was determined using an immunoassay kit (Cayman
Chemicals) according to the manufacturer’s instructions.

Western blotting

Protein in samples harvested from the 24-well plates was separated by SDS-PAGE and
transferred to a nitrocellulose membrane, which was then blocked with Tris-buffered saline
containing 0.05% (wt/vol) Tween 20 and 5% nonfat dry milk. The primary antibodies used were
anti-iPLA2 (Sigma, St. Louis, MO) and anti-B-actin (Cell Signaling, Danvers, MA) at 1:1000 to
1:2000 dilutions in blocking buffer. Chemiluminescence from horseradish peroxidase-linked
secondary antibodies was detected using the ChemiDoc™ XRS+ System and running Image
Lab™ software.

Isolation of human fetal astrocytes

Human fetal forebrain tissues were obtained from second-trimester aborted fetuses at 20 weeks
of gestational age. Tissues were obtained from aborted fetuses, with informed consent and tissue
donation approval from the mothers using protocols approved by the Research Subjects Review
Board of the University of Rochester Medical Center. No patient identifiers were made available
to or known by the investigators; no samples with known karyotypic abnormalities were included.
Forebrain tissue samples were collected and washed 2-3 times with sterile Hank’s balanced salt
solution containing Ca?*/Mg?* (HBSS*'*). The cortical plate region (CTX) of the fetal forebrain was
dissected and separated from the ventricular zone/subventricular zone (VZ/SVZ) portion. CTX

was then dissociated from papain as previously described (Keyoung et al., 2001). The cells were
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resuspended at a density of 2-4 x 10° cells/ml in DMEM/F12 supplemented with N2, 0.5% FBS,
and 10 ng/ml bFGF and plated in suspension culture dishes. The day after dissociation, the
cortical cells were recovered and subjected to magnetic activated cell sorting (MACS) to purify
the astrocyte progenitor population. The recovered cells were briefly incubated with CD44
microbeads according to the manufacturer's recommendations (Miltenyi Biotech). The cells
were then washed, resuspended in Miltenyi Washing buffer, and bound to a magnetic column
(Miltenyi Biotech). The bound CD44+ astrocyte progenitor cells were eluted, collected, and then
washed with DMEM/F12. The purified human fetal astrocyte progenitors were cultured in
DMEM/F12 supplemented with N2 and 5% FBS to further differentiate them. To prepare culture
dishes for PGE2 immunoassays or immunocytochemistry, fetal cortical astrocytes were
dissociated with TrypLE (Invitrogen) into single cells and then plated onto poly-L-ornithine/laminin-
coated 24-well plates (50,000 cells per well).

shRNA-mediated lentiviral knockdown of iPLA: in astrocytes

Rat astrocyte cultures were plated in a 24-well plate and grown to approximately 50% confluence.
The cultures were transduced overnight by adding either group VI iPLA2 shRNA (r) lentiviral
particles (sc-270117-V) or control shRNA lentiviral particles-A (sc-108080) directly to culture
medium containing polybrene (sc-134220) according to the manufacturer’s instructions with minor
modifications (all from Santa Cruz Biotechnology, Santa Cruz). At 24 hours after transfection, the
culture medium was removed, and fresh culture medium without polybrene was added.
Experiments and Western blot analysis were performed 7 days after transduction.

Acute hippocampal slice preparation and electrophysiology

Unless otherwise noted, 15-21-day-old C57BL/6 (Charles River, Wilmington, MA), MrgA1*"
transgenic, and littermate control MrgA1”- pups (courtesy of Dr. Ken McCarthy) (Fiacco et al.,
2007) of either sex were used to prepare hippocampal slices as previously described (Wang et

al., 2012). The pups were anesthetized in a closed chamber with isoflurane (1.5%) and
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decapitated. The brains were rapidly removed and immersed in an ice-cold cutting solution that
contained (in mM) 230 sucrose, 2.5 KCI, 0.5 CaClz, 10 MgCl,, 26 NaHCO3, 1.25 NaH2PO4, and
10 glucose, at a pH of 7.2-7.4. Coronal slices (400 um) were cut using a vibratome (Vibratome
Company, St. Louis) and transferred to oxygenated artificial cerebrospinal fluid (aCSF) that
contained (in mM) 126 NaCl, 4 KClI, 2 CaCl,, 1 MgCl,, 26 NaHCOs3, 1.25 NaH.PQO4, and 10 glucose
(pH = 7.2-7.4; osmolarity = 310 mOsm). The slices were then incubated in aCSF for 1-5 hours at
room temperature before electrophysiological measurement. The experiments were performed at
room temperature (21-23 °C). During the recordings, the slices were placed in a perfusion
chamber and superfused with aCSF gassed with 5% CO; and 95% O- at room temperature. The
cells were visualized with a 40x water-immersion objective and differential inference contrast
(DIC) optics (BX51 upright microscope, Olympus Optical, New York, NY). Patch electrodes were
fabricated from thin-wall glass filaments (World Precision Instruments) on a vertical puller; the
resistance of the pipette was approximately 6-9 MQ with the addition of intracellular pipette
solution. The pipette solution contained 140 mM K-gluconate, 5 mM Na-phosphocreatine, 2 mM
MgClz, 10 mM HEPES, 4 mM Mg-ATP, and 0.3 mM Na-GTP (pH adjusted to 7.2 with KOH). The
current—voltage (I-V) curves of the voltage—gated potassium currents were recorded under a
voltage clamp using an AxoPatch MultiClamp 700B amplifier (Axon Instruments, Forster City, CA).
When measuring outward currents, QX314 (0.5 mM) was added to the pipette solution to block
Na* currents. For recordings of miniature excitatory postsynaptic potentials (MEPSPs), 0.5 uM
TTX was added to the aCSF. The junction potential between the patch pipette and the bath
solution was zeroed before the giga seal was formed. Patches with seal resistances less than 1
GQ were rejected. The data were low-pass filtered at 2 kHz and digitized at 10 kHz with a Digidata
1440 interface controlled by pClamp Software (Molecular Devices, Union City, CA).
Pharmacological agents used in culture and slice experiments
Adenosine 5 -triphosphate (ATP, 100 uM); cyclopiazonic acid (CPA, 20 uM); trans- (1S, 3R)-1-
Amino-1,3-cyclopentanedicarboxylic acid (t-ACPD, 100 uM); (%)-a-amino-3-hydroxy-5-
9
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methylisoxazole-4-propionic acid hydrobromide ((x)-AMPA, 100 uM); Prostaglandin E, (PGE-, 50
MM, Tocris); Phe-Met-Arg-Phe amide (FMRF, 15 uM); Thr-Phe-Leu-Leu-Arg-NH, (TFLLR-NH2, 30
MM, Tocris); N-acetyl-Asp-Glu (NAAG, 100 pM); (1R, 4R, 5S, 6R)-4-amino-2-oxabicyclo [3.1.0]
hexane-4,6-dicarboxylic acid disodium salt (LY379268, 100 uM, Tocris); calmidazolium chloride
(CMZ, 2 uM, Tocris); methyl arachidonyl fluorophosphonate (MAFP, 10 uM); bromoenol lactone
(Bel, 10 yM); AA (50 uM); N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium chloride
(QX314, 1 mM, Tocris); 4-(4-,9-diethoxy-1,3-dihydro-1-oxo-2H-benz[f]lisoindol-2-yl)-N-
(phenylsulfonyl) benzeneacetamide (GW627368X 3 uM, Tocris); 6-Isopropoxy-9-xanthone-2-
carboxylic acid (AH6809, 10 pM, Tocris); N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-
dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251, 5 uM, Tocris); Tetrodotoxin (TTX,
0.5 uM, Tocris); 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA, 50 uM,
Tocris); and 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis
(acetoxymethylester) (BAPTA-AM, 20 uM) were utilized. All chemicals were obtained from Sigma
unless otherwise noted.
Statistical analysis
Statistical significance was evaluated by one-way ANOVA and post hoc tests (Tukey and Dunn)
using Prism software and deemed significant when P<0.05 for the [°H]-AA and PGE; assay. The
normality of the data was evaluated by the Shapiro—Wilk test with a = 0.05. For electrophysiology
experiments, significance was determined by paired or unpaired t tests or Tukey—Kramer post
hoc multiple comparison tests. HPLC/MS/MS lipidomic data were analyzed with ANOVA and
Fisher’s LSD post hoc test using SPSS when P<0.05 or P<0.10. All results are reported as the
mean + s.e.m.
RESULTS
Ca**-independent release of [°*H]-AA and its metabolites from cultured astrocytes

We first assessed the efficiency of preloading with an inhibitor of the endoplasmic reticulum
(ER) Ca?* pump, cyclopiazonic acid (CPA) (20 uM), or the cytosolic Ca®" chelator 1,2-bis(o-
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aminophenoxy) ethane-N,N,N’,N'-tetraacetic acid (acetoxymethyl ester) (BAPTA-AM) (20 uM),
which was able to block ATP (100 uM)-induced increases in cytosolic Ca?* in cultured rat
astrocytes. Images of cytosolic Ca*" (AAV GFAP cyto-GCaMPG6f) showed that the purine agonist
ATP (100 pM) induced a prompt increase in Ca®* that was completely blocked in CPA- and
BAPTA-loaded cultures, whereas 10 pM methylarachidonyl fluorophosphate (MAFP), a
nonspecific inhibitor of both cPLA2 and iPLA2, or 10 uM bromoenol lactone (Bel) (Cornell-Bell et
al.), a specific inhibitor of iPLA,, did not affect ATP-induced increases in Ca®" in astrocytic culture
(Figure 1A-C).

As a broad-based approach to AA-specific lipidomics, Ca?*-independent release of AA and/or
its metabolites was performed using a [°H]-AA assay (Figure 2A). Cultured rat astrocytes were
preincubated overnight with [*H]-AA with sufficient time to allow for its incorporation into multiple
biosynthetic and metabolic pathways. This process includes incorporation into membrane
phospholipids, which are precursors for endocannabinoids, and related lipids, which are
precursors for AA release (Chen and Chen, 1998; Strokin et al., 2003). Therefore, this assay was
used to determine whether any AA precursors or metabolites derived from the [*H]-AA
incorporated into the cell were being released; hereafter, we refer to the composite of [*H]-labeled
AA metabolites as [°H]-AA. ATP alone failed to induce a detectable release of [°H]-AA (Figure
2B); however, in cultures pretreated for 10 to 12 minutes with CPA or BAPTA-AM, ATP induced a
robust increase in the release of [°H]-AA, whereas CPA alone had no such effect (Figure 2B).
Similarly, upon stimulation with a combination of the nonselective mGIuR agonist tACPD (100 uM)
and the ionotropic glutamate receptor agonist AMPA (100 uM), we observed significant release of
[*H]-AA when cytosolic Ca?* was blocked with CPA but not in cultures without CPA pretreatment
(Figure 2C). These observations confirm that rat astrocytes can release AA derivatives, which
are key precursors of bioactive eicosanoids (Strokin et al., 2003; Rosenegger et al., 2015), but

that AA release is, surprisingly, inhibited by increases in cytosolic Ca®".
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To explore the mechanism of Ca?*-independent release of [°H]-AA, we next evaluated whether
inhibition of Ca?'-sensitive cPLA, or Ca®-insensitive iPLA; enzymes would reduce [*H]-AA
release. Pretreatment of astrocytes with 10 yM MAFP significantly decreased ATP-induced
release of [°H]-AA in cultures exposed to CPA (Figure 2D). Similarly, 10 uM BEL treatment
suppressed the release of [°H]-AA, thus confirming that iPLA; plays a role in Ca**-independent
lipid release (Figure 2D). [°H]-AA release was observed only when agonist-induced increases in
cytosolic Ca** were blocked (Figure 2B-C), suggesting that intracellular Ca®" inhibits Ca*'-
independent iPLA,.

Calmodulin is a potent Ca®*-dependent inhibitor of iPLA, (Wolf and Gross, 1996). To assess
the interaction between calmodulin and iPLA2, cells were treated with calmidazolium (CMZ), which
is an inhibitor of Ca?/calmodulin interactions that has been shown to eliminate calmodulin
blocking of iPLA: (Wolf and Gross, 1996). In the presence of CMZ (2 uM), ATP treatment led to
the release of a significant amount of [°H]-AA, which was comparable to the release induced by
blocking increases in cytosolic Ca®* by preloading astrocytes with either CPA or BAPTA (Figure
2D). This observation suggested that Ca*" acts primarily as a brake through calmodulin, which
effectively inhibits iPLA, activity (Wolf and Gross, 1996; Wolf et al., 1997). These findings are
consistent with previous studies showing that iPLA: is involved in receptor-mediated AA release
from pancreatic islet cells (Gross et al., 1993), smooth muscle cells (Lehman et al., 1993), and
endothelial cells (Seegers et al., 2002). Taken together, these data provide evidence of a new
signaling mechanism in astrocytes involving Ca®*-independent iPLAz, which is the major PLA;
isoform in the brain and accounts for 70% of total PLA activity (Yang et al., 1999)

Targeted lipidomics reveals Ca**-independent lipid production in cultured astrocytes

Using lipid extraction and partial purification methods coupled to HPLC/MS/MS, we performed
targeted lipidomic screening of cultured astrocytes that were preincubated with CPA and then
challenged with ATP and compared the results to that of vehicle control astrocytes. Of the 50 lipids

screened, 30 were present in each of the samples and were used for comparative analyses. The
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lower panel in Figure 3A lists all of the concentrations as the mean + SEM (Figure 3A). Figure
3A summarizes the lipids that showed significant concentration differences, as well as the
magnitudes of the differences. Among the 30 lipids detected, 16 (including AA and PGE>)
increased upon ATP challenge in the presence of CPA. Figure 3B-C shows representative
chromatograms of the HPLC/MS/MS methods used to detect PGE2. Notably, the levels of 5 of the
8 AA derivatives in the set, including docosahexaenoyl ethanolamine, were significantly increased
following ATP challenge with CPA preincubation, although the most dramatic increases were
observed for the prostaglandin PGE.. Figure 3D shows the representative differences in
concentration of PGE2, DEA, and AA.
Ca**-independent release of PGE; from cultured astrocytes

Given that Ca?*-dependent lipid release from astrocytes has been previously implicated in
vasoregulation (Zonta et al., 2003; Takano et al., 2006; Gordon et al., 2008), we were surprised
that PGE; was released via a Ca?*-independent mechanism. Our HPCL/MS/MS method requires
large quantities of cells to detect PGE>, whereas the PGE2 ELISA can be used to accurately detect
PGE:release in 24-well cultures. Therefore, we used ELISAs to explore the Ca?* dependence of
astrocytic PGEzrelease. Because iPLA; is essential for Ca?*-independent liberation of AA-derived
lipids, we first assessed whether knockdown of iPLA via viral transduction would inhibit astrocytic
release of PGE.. In the presence of CPA (20 uM), ATP (100 pM) failed to induce PGE; release in
shRNA-transduced astrocytic cultures, whereas there was a significant increase in the release of
PGE: by ATP in the presence of CPA in control shRNA cultures (Figure 4A). Knockdown of iPLA>
via shRNA-mediated viral transduction was confirmed by Western blot analysis (Figure 4B).

As cultured astrocytes express mGIuR5 (Balazs et al., 1997; Silva et al., 1999; Gebremedhin
et al., 2003), we next determined whether the agonists tACPD (100 uM) and AMPA (100 uM)
evoked PGE: release in the presence/absence of CPA. In the absence of CPA, these agents

evoked little to no release of PGE; (Figure 4C). However, when CPA was used to block the
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release of Ca®" from internal stores, tACPD and AMPA significantly increased PGE; release
(Figure 4C).

The most abundant mGIuRRs expressed by astrocytes are mGIuR5 and mGIuR3 (Petralia et
al., 1996; Aronica et al., 2000; Tamaru et al., 2001). However, mGIuR5 is developmentally
regulated and is not expressed by astrocytes in the adult brain, whereas mGIuR3 is persistently
expressed at high levels throughout adulthood (Sun et al., 2013). Determining whether the
activation of mGIuR3 can induce Ca*-independent PGE; release is important because the
activation of this receptor has recently been shown to induce Ca?* transients in adult hippocampal
astrocytes (Haustein et al., 2014; Tang et al., 2015). In the presence of CPA, the mGIuR3 agonists
NAAG and LY379268 (Wroblewska et al., 1997; Bond et al., 1999) significantly increased the
release of PGE,, whereas the same agonists failed to induce the release of PGE: in the absence
of CPA (Figure 4D). Notably, this result shows that activation of an astrocytic Gi-coupled receptor
can induce the release of gliotransmitters via a Ca**-independent mechanism.

To further investigate human astrocytes, we performed the same experiments in primary
cultured astrocytes harvested from human embryonic tissue (Windrem et al., 2004; Windrem et
al., 2008; Han et al., 2013). After pharmacologically assessing iPLA, activity in rat astrocytes
(Figure 2D), we evaluated iPLA; expression in all culture models. Western blot analysis revealed
that iPLA, expression was not limited to rat astrocytes but iPLA2 was also expressed in human
and mouse astrocytes (Figure 4E). In the presence of CPA, ATP evoked significant PGE; release
from cultured human astrocytes, whereas little to no PGE2 release was observed with ATP alone
(Figure 4F). Similarly, coapplication of tACPD and AMPA had the same effect (Figure 4F). Taken
together, these findings show that ATP or mGIuR3 activation leads to Ca**-independent PGE;

release and that iPLA: is expressed in mouse, rat, and human astrocyte cultures.

Ca**-independent astrocytic lipid release enhances mEPSPs via Kv channel blockade
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Thus far, our experiments demonstrated that in response to agonist exposure, cultured
astrocytes can indeed release lipids via a Ca2+-independent pathway.- In fact, the in vitro analysis
showed that agonist-induced Ca?" increases impeded PGE; release, whereas CPA, BAPTA, and
CMZ pretreatment potentiated PGE; release.

Earlier studies have shown that AA and its metabolite PGE: inhibit neuronal Kv currents
(Horimoto et al., 1997; Nicol et al., 1997; Evans et al., 1999) and thereby enhance excitability
(Sekiyama et al., 1995; Chen and Bazan, 2005; Sang et al., 2005). We therefore evaluated
whether astrocytic lipid release also inhibits neuronal Kv currents and enhances neuronal
excitability in acute hippocampal slices. We performed dual patch-clamp recordings of pairs of
CA1 pyramidal neurons and astrocytes in acute hippocampal brain slices prepared from 12—18-
day-old mice (Figure 5A). To isolate transiently active potassium currents, we used 100 ms
voltage ramps, which are sufficient to capture transient A-type currents (Phillips et al., 2018).
Notably, the |-V ramp enables one to discern what voltage deflection in the outward current a
drug affects (Jackson and Bean, 2007). Kv currents in CA1 neurons are used as an assay for
astrocytic lipid release as these currents are sensitive to AA and/or its metabolites (Villarroel and
Schwarz, 1996; Carta et al., 2014). We isolated the Kv currents by adding 1 mM QX314 to the
patch pipette to block sodium channels (Talbot and Sayer, 1996; Kim et al., 2010) and by imposing
a voltage ramp (from -100 mV to 50 mV) every 5 seconds to continuously monitor changes in the
Kv current (Ji et al., 2000; Rangroo Thrane et al., 2013b; Carta et al., 2014) to assess agonist-
induced astrocytic lipid release (Figure 4A). As expected, direct puffing of PGE, (50 uM) or AA
(50 uM) from a micropipette significantly reduced the Kv current, which is consistent with the
results of previous studies (Evans et al., 1999; Carta et al., 2014) (Figure 5B-C).

To assess the effects of astrocytic Ca?* signaling on neighboring neuronal Kv, we stimulated
astrocytes with ATP or TFLLR-NH2, an agonist of protease-activated receptor-1 (PAR1), which is
primarily expressed by astrocytes (Shigetomi et al., 2008). ATP (100 uM) induced a comparable
change in neuronal Kv when BAPTA (50 uM) was present in the astrocyte patch pipette but not
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in its absence (Figure 5B-C). A similar transient decrease in the Kv current was observed when
astrocytes were activated by TFLLR-NH. (30 uM). Again, a reduction in neuronal Kv currents was
detected only when TFLLR was applied and when BAPTA was added to the astrocytic solution
(Figure 5B-C). To selectively activate astrocytic Ca** signaling, we next generated acute
hippocampal slices from MrgA1 transgenic animals (MrgA1*"), which express the exogenous Gg-
coupled MRG receptor (MrgA1) under the control of the GFAP promoter. The MrgA1 agonist Phe-
Met-Arg-Phe amide (FMRF) mobilizes intracellular astrocytic Ca?* stores, thus allowing use to
assess the effects of astrocytic Ca?* signaling on neighboring neuronal Kv currents. Although
FMRF (15 uM) induces potent and selective increases in astrocytic cytosolic Ca®* in hippocampal
slices (Fiacco et al., 2007; Agulhon et al., 2010; Wang et al., 2012), we observed no detectable
changes in neuronal Kv current when the pipette used to patch astrocytes did not contain BAPTA
(Figure 5B-C). However, when BAPTA was present in the astrocyte patch pipette, there was a
marked decrease in the neuronal Kv current evoked by FMRF exposure (Figure 5B-C). Thus,
astrocytes can modulate neuronal Kv currents via a previously undocumented Ca**-independent

lipid release mechanism.

To assess whether a decrease in the neuronal Kv current is a consequence of Ca*-
independent astrocytic lipid release, we employed specific lipid receptor antagonists for PGE» and
endocannabinoids. As PGE; receptors 1, 2, 3, and 4 are expressed on hippocampal pyramidal
neurons (Andreasson, 2010; Maingret et al., 2017), we used AH6809, a PGE, EP1, 2, and 3
antagonist (Abramovitz et al., 2000; Ganesh, 2014), and GW627368, a PGE, EP4 antagonist
(Jones and Chan, 2005; Wilson et al., 2006). With AH6809 (10 uM) and GW627368X (3 uM) in
perfusion solution, the TFLLR-, FMRF-, and ATP-induced Ca?-independent decrease in the
neuronal Kv current caused by PGE2 was abolished (Figure 5C). In contrast, the CB1 antagonist

AM251 (5 uM) failed to abolish the decrease in Kv current (Figure 5C). Taken together, these
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data suggest that the observed decrease in the neuronal Kv current is a result of astrocytic Ca*'-

independent release of PGE..

Interestingly, the presence or absence of BAPTA in the astrocytic pipette solution affected
agonist-induced changes in neuronal membrane potential (Figure 6A). Without BAPTA in
astrocyte pipettes, TFLLR induced hyperpolarization (-2.4 + 0.26 mV) (Figure 6A), which has
been linked to a decrease in extracellular potassium (Wang et al., 2012). However, with BAPTA
present in astrocyte pipettes, TFLLR induced depolarization (2.1 £ 0.25 mV) (Figure 6A), an effect

that could be attributed to blockage of the potassium current.

PGE: has been shown to enhance neuronal mMEPSPs (Sekiyama et al., 1995) (Sang et al.,
2005). We found that TFLLR-induced activation of astrocytes triggered a decrease in mEPSP
amplitude and frequency in acute hippocampal slices from normal mice (Figure 6B). The opposite
effect, an increase in the amplitude and frequency of MEPSCs, was observable only when BAPTA
was added to the astrocytic pipette solution (Figure 6C). This observation supports the notion
that astrocytic Ca?*-independent lipid release may function as a signaling mechanism that can
modulate proximal synaptic activity by blocking Kv, which in turn may increase the frequency and
amplitude of MEPSCs. Interestingly, the opposing effects of TFLLR on mEPSP amplitude and
frequency were dependent upon astrocytic Ca®" levels (Figure 6D-E), suggesting that Ca®*

depletion provides a pathway that enhances neuronal excitability by astrocytic PGE2.

DISCUSSION

Lipidomics has the potential to open exciting new avenues within the field of gliotransmission.
In the present study, we utilized a series of lipidomic methodologies to show that Ca®* chelation
followed by metabotropic glutamate or purinergic receptor stimulation promoted the formation of
a variety of lipids (Figures 2, 3) in astrocytes and drove the release of PGE: in rat and human

embryonic astrocyte cultures (Figure 4). In addition, we demonstrated that receptor-mediated
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Ca?*-independent PGE; release modulates neuronal Ky, resulting in enhanced synaptic activity
in slices, as was determined by the increase in mMEPSP amplitude and frequency (Figures 5, 6).
Multiple findings presented herein also support our hypothesis that this agonist-induced and Ca*'-
independent lipid release from astrocytes depends on the activation of iPLA.. These observations
represent, to our knowledge, the first evidence of Ca?-independent release of lipid
gliotransmitters and thus add a novel dimension to our understanding of glial-neuronal
communication.
Importance of the iPLA; pathway in Ca**-independent astrocytic lipid production

Although astrocytes are known to constitutively release AA and other fatty acids (Moore, 2001;
Bouyakdan et al., 2015), the pathways involved in constitutive AA release are currently not known;
however, inverse agonists of purinergic receptors (Ding et al., 2006) and mGIuR (Carroll et al.,
2001) might serve as useful pharmacological tools for investigating constitutive PLA, activity in
relation to gliotransmission. To date, many studies have shown the multifaceted functions of PLA;
in the CNS, but iPLA, accounts for 70% of the PLA; activity in the rat brain (Yang et al., 1999).
Although the effects of cPLA, activation are well documented (Malaplate-Armand et al., 2006;
Schaeffer and Gattaz, 2007; Kim et al., 2008), iPLA2> has also been shown to participate in
phospholipid remodeling (Sun et al., 2004) and regulate hippocampal AMPA receptors involved
in learning and memory (Menard et al., 2005). Furthermore, iPLA; regulates store-operated Ca?*
entry in cerebellar astrocytes (Singaravelu et al., 2006) and provided neuroprotection in an
oxygen—glucose deprivation model (Strokin et al., 2006). Astrocytes express both isoforms of
PLA: (Sun et al., 2005), and numerous studies have reported that the release of AA and its
metabolites is under the regulation of Ca®*-dependent PLA; (cPLA;) signaling in astrocytes
(Bruner and Murphy, 1990; Stella et al., 1994; Stella et al., 1997; Chen and Chen, 1998). Previous
studies have demonstrated astrocytic release of DHA via iPLA2 (Strokin et al., 2003, 2007). Here,
we focused on determining whether the largely unexplored iPLA: lipid pathway mediates PGE2
release from astrocytes. Given the ubiquitous expression of iPLA; in astrocytes throughout the
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brain, we contend that various receptor-activated pathways rely on iPLA; for the regulation of lipid

release from astrocytes (Figure 7).

Ca**-independent astrocytic PGE: release rapidly modulates neuronal Kv

An important aspect of astrocytic gliotransmitter release is timing. Agonist-induced increases
in astrocytic Ca?* occur on a slow time scale of seconds (Cornell-Bell et al., 1990; Wang et al.,
2006; Srinivasan et al., 2015), which allows for the integration of many factors on that time scale.
Increased intracellular Ca* levels are key in the release of gliotransmitters (Parpura et al., 1994;
Bezzi et al., 1998; Kang et al., 1998), such as ATP (Coco et al., 2003; Parpura and Zorec, 2010;
llles et al., 2019) and D-serine (Mothet et al., 2000; Yang et al., 2003; Li et al., 2018; Neame et
al., 2019). We have recently shown that agonist-induced astrocytic Ca®* signaling can modulate
synaptic activity by promoting K* uptake, resulting in a transient decrease in extracellular K* and
a decrease in synaptic activity (Wang et al.,, 2012). More recently, we demonstrated that
astrocytes can modulate rapid synaptic activity (> 500 ms) via 2AG release upon agonism of
mGIuR3 receptors (Smith et al., 2019). Because receptor-mediated astrocytic Ca?* drives K*
uptake and the release of gliotransmitters, these processes must occur over a relatively prolonged
time course (>500 ms). However, agonist-induced Ca?*-independent iPLA; lipid release does not
require the mobilization of intracellular Ca** stores; thus, a much faster time scale for signaling,
within 10 seconds to milliseconds, is possible. We speculate that iPLA2>-mediated lipid release
may act as a feedback system that enhances fast synaptic transmission in the short term or under
conditions of minimal neuronal activity, whereas subsequent activity-mediated increases in Ca?*
serve as a brake in the form of calmodulin-dependent inhibition of iPLA,. The slower Ca*-
dependent release of gliotransmitters and stimulation of K* uptake seems more suited toward the
slow and widespread modulation of brain activity (typically inhibition) that occurs in the setting of,
for example, tonic activation of the locus coeruleus and consequent norepinephrine release

(Bekar et al., 2008; Ding et al., 2013).
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Voltage-gated potassium channels are located on the dendrites of hippocampal pyramidal
neurons (Johnston et al., 2000), where they play a major role in controlling dendritic excitability
by modulating the amplitude of EPSPs. A morphological study revealed that the density of Kv in
the dendrites of pyramidal neurons increased 5-fold from the soma to the most distal point in
apical dendrites (Hoffman et al., 1997). Inhibition of voltage-gated K* currents consequently
enhances EPSPs, possibly explaining why PGE, enhances synaptic transmission and increases

LTP in the hippocampus (Sang et al., 2005).

Lipidomics models as a guide for future gliotransmitter discoveries

Lipidomics is one of the fastest-growing branches in the field of metabolomics and offers the
possibility of describing the enormous diversity of lipid species throughout the body, especially in
the brain, which is largely composed of lipids (Sinclair, 1975). The complex and fine structure of
astrocytic processes gives astrocytes a larger surface area-to-volume ratio than most other types
of cells, which makes them uniquely responsive to changes in the extracellular milieu.
HPLC/MS/MS lipidomics techniques have provided a means to quantify specific lipid species with
an accuracy and sensitivity that is not possible with more traditional methods employing
radiolabeled fatty acids and ELISA. Here, we combined these classical techniques with lipidomics
to test the hypothesis that lipids are produced and released from astrocytes in a Ca?*-independent
manner. Although our present focus was on the release of PGE;, we found increases in the
release of 15 additional lipids. Notably, among the 30 lipids measured in the targeted
HPLC/MS/MS assay, the levels of 14 did not change upon the activation of glial receptors,
supporting of the idea that GPCR-stimulated, Ca?-independent lipid release is specific.
Interestingly, two of the lipids released in response to agonist exposure, namely, N-arachidonyl
taurine and N-palmitoyl tyrosine, were recently shown to activate TRPV4, a cation channel
involved in osmotic sensitivity and mechanosensitivity (Raboune et al., 2014). Emerging evidence

suggests that the TRPV4/AQP4 complex regulates the response to hypo-osmotic stress in
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astrocytes (Benfenati et al., 2011). The lipidomics data presented here thus elucidated

unpredicted signaling mechanisms that involve astrocytic-derived lipid modulators (Figure 3).

Potential physiological relevance of calcium-independent lipid release

Astrocytes are known to respond to single experimental stimulation events with small calcium
increases in their distal fine processes (Panatier et al., 2011). This effect results from the
synchronous firing of as many as 50-1000 synapses in the astrocyte microdomain, as may occur
when a large stimulation is applied as far as 500 ym away. However, the spontaneous activity of
asynchronous synaptic events does not need to elicit calcium events in astrocytes. Metabotropic
GluR- and AMPA-mediated activation of astrocytes may elicit iPLA, activation and the concerted
release of AA metabolites and PGE: to affect pre- and postsynaptic potassium channels on nearby
neurons. When the stimulation frequency and/or amplitude increase, increases in astrocytic
calcium then serve to suppress the overactivation of synapses. In this way, astrocytes may help
maintain the strength of relatively quiescent synapses in a calcium-independent fashion while
employing multiple calcium-dependent mechanisms to suppress overactivation. Substantiation of
this model will require rigorous testing of the spatial and temporal dynamics of astrocytic and
individual dendritic activation but is limited by current methodological capabilities that do not allow
for electrical recording of individual dendritic spines.

In conclusion, Ca?*-independent astrocytic lipid release constitutes a largely unexplored
factor in the regulation of complex neuro-glial signaling interactions. Our present analysis
contributes to the understanding of agonist-induced Ca** signaling by demonstrating that the
agonism of several Gq and Gi-linked astrocytic receptors can promote the release of lipid

modulators and that increases in cytosolic Ca?* act as a brake to prevent PGE; release.
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Figure legends

Figure 1: GPCR-evoked Ca* transients in astrocytic cultures.

A.) Cultured astrocytes were transduced with the AAV GFAP cyto-GCaMP6f, and the changes in
fluorescence associated with increases in intracellular Ca?* upon ATP stimulation were measured
using confocal microscopy. B.) Representative individual traces of changes in GCaMPG6f
fluorescence (AF/Fo) in response to ATP stimulation (upper panel) are shown. C.) BAPTA-AM (20
MM, n=5 wells) and CPA (20 pM, n=5 wells) eliminated the ATP (100 uM, n=5 wells)-induced
increase in Ca2+ concentration. MAFP (10 uM, n=5 wells) and Bel (10 uM, n=5 wells) did not
inhibit ATP (100 uM)-induced increases in Ca?* in astrocytes. ***P<0.0001, Tukey’s post hoc test.
All bar graphs show the mean *+ s.e.m.

Figure 2: GPCR-mediated Ca*"independent release of *H-AA and/or its metabolites from
astrocytic cultures.

A.) The schematic shows the *H-AA Radioactive Assay. B.) The effects of ATP (100 uM, n=45
wells), CPA (20 uM, n=9 wells), ATP/CPA (n=44 wells), and ATP/BAPTA-AM (n=24 wells) on Ca**-
independent release of [°H]-AA and its derivatives in astrocytic cultures were compared to those
of the control and each other. ***P<0.0001; **P<0.001; *P<0.05, Tukey’s post hoc test. C.) The
effects of the mGIuR agonists tACPD/AMPA (100 uM, n=7), tACPD/AMPA/CPA (n=7 wells), and
ATP/CPA (n=7 wells) on the Ca?*-independent release of [*H]-AA and its derivatives in astrocytic
cultures were compared to those of the control and individual effects. ***P<0.0001; **P<0.001;
*P<0.05, Tukey’s post hoc test. D.) The effects of the iPLA; inhibitor BEL (10 uM, n=12 wells), the
cPLA: inhibitor MAFP (10 uM, n=12 wells), or the calmodulin/Ca?* complex inhibitor CMZ (2 uM,
n=20 wells) with ATP on Ca?*-independent release of [°*H]-AA and its derivatives in astrocytic
cultures were compared to ATP alone. ***P<0.0001; **P<0.001, Tukey’s post hoc test. All bar

graphs show the mean + s.e.m.

Figure 3. Targeted lipidomics of rat astrocytic cultures using HPLC/MS/MS.
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A.) The significant differences and the magnitude of change between the vehicle controls and the
CPA/ATP-stimulated cells for the 30 lipids that were detected across samples are summarized.
Dark green denotes significant differences (p < 0.05); light green denotes increasing trends (0.10
> p < 0.05). No significant difference is indicated by “n.d.”. Arrows indicate the magnitude of
effects, as indicated in the legend. The raw data and statistical analyses for all lipids are shown
in the figure table. B.) An example chromatograph of a PGE2 standard (1 pmol) analyzed by the
HPLC/MS/MS method that was optimized for this standard in negative ion mode is shown. C.) An
example of an analysis of a partially purified astrocytic extract using the HPLC/MS/MS method
that was optimized for PGE2 is shown. D.) Differences in the astrocytic production of AA and two
of its derivatives, PGE2 and docosahexaenoyl ethanolamine (DEA), were expressed as the
average moles/sample; vehicle, n=3 flasks; CPA/ATP, n=4 flasks.

Figure 4: GPCR-mediated Ca**-independent release of PGE; from astrocytic cultures.

A.) The effects of ATP (100 uM, n=4 wells) and ATP/CPA (n=4 wells) on Ca**-independent PGE;
release in rat astrocytic cultures virally transduced with shRNA to knockdown iPLA, was
compared to that in control shRNA cultures. *P<0.05, Dunn posttest. B.) Western blot analysis of
iPLA2 knockdown via shRNA was performed. B-actin-specific antibodies were used for the
normalization of protein loading. C.) The effects of the GPCR agonists ATP (100 uM, n=12 wells),
tACPD/AMPA (100 uM, n=7 wells), tACPD/AMPA/CPA (n=7), and ATP/CPA (n=12 wells) on Ca?*-
independent PGE: release in rat astrocytic cultures was compared to that in control cultures.
****P<0.0001; ***P<0.001, Tukey’s post hoc test. D. The effects of ATP/CPA (100 uM, n=4) and
the mGIuR3 agonists NAAG (100 pM, n=4 wells), LY379268 (100 uM, n=4 wells), NAAG/CPA
(n=4), and LY379268/CPA (n=4 wells) on Ca?**-independent PGE; release in rat astrocytic cultures
were compared to that in control cultures. ***P<0.001, Tukey’s post hoc test. E.) Western blot
analysis of the iPLA; protein in human, rat, and mouse cultures was performed. B-actin-specific
antibodies were used for the normalization of protein loading. F. The effects of the GPCR agonists
ATP (100 pM, n=8 wells), ATP/CPA (n=8 wells), tACPD/AMPA (100 uM, n=8 wells), and
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tACPD/AMPA/CPA (n=8 wells) on Ca*-independent PGE; release in human astrocytic cultures
were compared to that in control cultures. ***P<0.0001; **P<0.001; *P<0.05, Tukey’s post hoc
test. All bar graphs show the mean + s.e.m.

Figure 5: Ca?*-independent astrocytic lipid release inhibits Kv blockade.

A.) of the image shows a patched astrocyte and a patched neuron filled with fluorescent dyes. B.)
Direct application of AA (50 uM) and PGE2 (50 pM) decreased the Kv current. ATP (100 uM) and
TFLLR (30 pM) together with BAPTA also decreased the Kv current, as indicated by the peak
currents. FMRF (15 uM) decreased the Kv current in MrgA1*" mice in the presence of BAPTA but
not in the absence of BAPTA. Traces to the left are representative recordings of changes in
membrane voltages in the presence of the previously described drugs. C.) The effects of different
drugs on the voltage ramp-induced voltage-gated K* currents was quantified (**P<0.01; *P<0.05;
n =5-7 mice). All bar graphs show the mean + s.e.m.

Figure 6: Ca**-independent astrocytic lipid release increases the amplitude and frequency
of mEPSP.

A.) The representative traces show changes in membrane potential (VM) upon TFLLR application
in the presence or absence of BAPTA, and quantitative values are shown in the inset (**P<0.01;
t test; n =5-6 mice). B.) The representative trace show hyperpolarization and the reduction in
mEPSP amplitude and frequency in excitatory hippocampal neurons upon TFLLR (30 uM)
application without BAPTA in neighboring astrocytes. C.) The representative trace shows
depolarization and an increase in mEPSP amplitude and frequency in excitatory hippocampal
neurons upon TFLLR (30 yM) application with BAPTA present in neighboring astrocytes. The
lower traces are extensions of parts of the recordings in the upper traces. D.) The cumulative
mEPSP amplitude and cumulative mEPSP frequency distribution recorded in B) were compared.

E.) Statistical analysis of the amplitude and interevent intervals before and after TFLLR treatment
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in the presence and absence of BAPTA was performed (**P<0.001; paired t test; n =5-7 mice).
All bar graphs show the mean * s.e.m.

Figure 7: Models of GPCR-mediated Ca**-independent and Ca®*-dependent lipid release in
astrocytes.

A.) The schematic depicts receptor-mediated Ca?*-independent lipid release across the astrocytic
membrane. B.) The schematic depicts receptor-mediated Ca?*-dependent lipid release across the

astrocytic membrane.
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