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Abstract

Inhibition of aberrant signaling with target inhibitors is an important treatment strategy in cancer, but
unfortunately responses are often short-lived. Multi-drug combinations have the potential to mitigate
this, but to avoid toxicity such combinations must be selective and the dosage of the individual drugs
should be as low as possible. Since the search space of multi-drug combinations is enormous, an
efficient approach to identify the most promising drug combinations and dosages is needed.

Here, we present a pipeline to prioritize promising multi-drug combinations. We performed a limited
set of drug perturbations in an isogenic cell line pair with and without an activating PI3K mutation, and
recorded their signaling states and cell viability. We used these data to reconstruct mutant specific
signaling networks and map the short term signaling response to longer term changes in cell viability.
The resulting models then allowed us to predict the effect of unseen multi-drug combinations, at arbitrary
drug-concentrations, on cell viability. Our initial aim was to find combinations that selectively reduce the
viability of the PI3K mutant cells, but our models indicated that such combinations do not exist for this
cell line pair. However, we were able to validate 25 of the 30 low-dose multi-drug combinations that we
predicted to be anti-selective. Our pipeline thus enables a powerful strategy to rapidly map the efficacy
and possible selectivity of drug combinations, hence significantly speeding up the pace at which we can

explore the vast space of combination therapies.
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Introduction

The dependency of tumors on activated signaling pathways results in therapeutic responses to inhibitors
that block pathway activity [1]. However, resistance to such targeted inhibitors inevitably develops [2, 3].
Combinations of two targeted inhibitors can give more lasting clinical benefit, but resistance nonetheless
emerges [4, 5]. Combining more than two drugs might further extend the duration of the response [6],
but toxicity becomes a major concern when multiple drugs are combined at their maximum tolerated
dose. Recently, we found that partial inhibition of three or four kinases by combining Multiple drugs at
Low Dose (MLD) is surprisingly effective in receptor tyrosine kinase (RTK) driven tumors in multiple
cancer types [7]. It prevents the development of resistance, and it is well tolerated by mice. Others have
also shown the potential of multi-drug (low dose) combinations in pre-clinical [8—11] and clinical [12, 13]
settings.

These findings warrant further exploration of multiple-drug combination strategies. This will require a
systematic way to explore promising drug combination treatments, including optimizing the dosing of
the different drugs. The combinatorial explosion of the search space — there are more than 2 million
possible 4-way combinations of the 89 (as of 2020 [14]) FDA approved targeted inhibitors, and 24 billion
if each drug is to be tested at 10 different concentrations — means that in-vitro testing of all combinations
is infeasible. Computational approaches are required to prioritize promising combinations.

Recently, Nowak-Sliwinska and collaborators presented a “Feedback Systems Control” approach
to explore the search-space of possible multi-drug combinations [10, 15, 16]. While this approach is
promising, the method does not optimize for selectivity and the obtained results lack a mechanistic
underpinning, making it hard to assess to what extent the results will generalize. Another promising
approach is building mathematical models of cellular signaling, based on a limited set of perturbation
experiments [17-24]. However, current approaches suffer from two major shortcomings. First, only a
very limited number of such modeling approaches focus on the difference between cells with different
mutation profiles [17, 25], which is critical for optimizing selectivity. Second, how inhibition of oncogenic
signaling affects cell viability, and specifically to what extend short-term signaling response is informative
for longer-term cell fate, remains underexplored [23, 24, 26].

We therefore set out to establish and validate a combined experimental and computational pipeline
to prioritize multi-drug combinations and their dosing based on mathematical models of drug response
(Figure 1). Importantly, we aimed to find combinations that are selective for cells with a particular
oncogenic driver mutation. To isolate the effect of the mutation, we used an isogenic cell line pair with and
without a mutation. Specifically, we used MCF10A, a cell line derived from epithelial breast tissue [27], and
an isogenic clone with the activating PI3KH1947R_mutation knocked in under its endogenous promoter [28].
We measured the response of the MAPK and AKT pathway and cell viability after drug perturbations,
and used the measurements to build mutant specific signaling networks models using Comparative
Network Reconstruction, a method we recently developed [17]. In addition, we found that non-linear
model combing the response of phospho-ERK and phospho-AKT is highly predictive for cell viability,

despite the fact that signaling response and cell viability are measured on completely different time-scales
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of hours and days, respectively. Combining the model of mutant signaling with the cell viability model
allowed us to simulate the effect of any multi-drug combination at any concentration and thus to prioritize
promising combinations. Our models indicated that no drug combination would likely be selective for
the PI3K-mutant cells. To nonetheless validate our computational approach, we proceeded to predict
which low-dose, multi-drug combinations were likely to be anti-selective, i.e. reduce the viability of the
parental cells more strongly than that of the PI3K-mutants. Experimental validation showed that 25 of the
30 combinations that we predicted to be anti-selective indeed had a significantly stronger effect in the

parental cell than in the PI3K-mutant cells.

Drug perturbation measurements Model parametrization

MCF10A Signaling response Comparative network
Parental (Luminex) Reconstruction
@ ’ N
© Viability response 0 0 T 0

+

Nodes

(CellTiter Biue) Map signaling
ellliter Blue to viability
6
&
Simulate drug combination response Prioritize selective combinations
Predict signaling response Predict viability Selective for mutant ~ Selective for parental
@0
'Y ‘) +0+ + & + 0
& i()»© ‘
1 '

&

Figure 1: Overview of pipeline to prioritize promising selective low-dose multi-drug combinations. Top:
MCF10A parental and PIBKH1047R cells are treated with inhibitors targeting the MAPK and AKT pathways. The
signaling and cell viability responses are measured and used to build mutant specific models of signal-transduction
networks and to parametrize the relationship between signaling response and cell viability. Bottom: These models
are used to simulate the response to unobserved multi-drug combinations, at arbitrary concentrations, of the signaling
networks and how this affects cell viability. In this way, low-dose multi-drug combinations that are likely selective for
a particular cell type can be prioritized.

Results

The signaling and viability response to drug perturbations in MCA10A parental
and PI3KM1947R mutated cells

To test how oncogenic mutations affect signal transduction networks and their downstream effects on
cellular phenotypes such as cell viability, we used the MCF10A cell line [27] and an isogenic clone with
the activating PI3KH1947R mutation knocked in under its endogenous promoter [28]. As expected, in
the PIBKH1047R cells the baseline signaling activity of AKT and PRAS40, both downstream of PI3K, is
elevated, but the other signaling nodes do not show significant differences in activity (Figure 2A). In the
absence of drug perturbations, PI3KH1947R_mytant MCF10A cells have a comparable growth rate as their
parental cells [28]. Dose response curves of selected PI3K and the MAPK pathway inhibitors showed

subtle differences in sensitivities between the parental and the mutant cells (Figure S1A).
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Figure 2: Profiling signaling and viability response of MCF10A parental en PI3KH1%47R cells to drug pertur-
bations. A. Node activity in the unperturbed cells. Most nodes have similar activity in the parental and PI3K™1047R
cells, except AKT and PRAS40 (highlighted) which are downstream of PI3K. B. Heatmap representing log,-fold
changes of the signaling nodes upon drug perturbation compared to DMSO controls. The response of the parental
and PI3KH1947R cells are highly correlated, with some exceptions such that of AKT1 upon growth-factor receptor
inhibition (highlighted). Signaling response is measured after 2 hours of drug treatment. The color scale is capped
between -4 and 4 for visualization purposes. C. Cell viability under the same drug treatments as reported in panel B.
Both cell lines show a similar response profile. The strong differences in AKT response to growth-factor receptor
inhibition translate into mild differences in cell viability (highlighted). Cell viability is measured after 3 days of drug
treatment. Error-bars represent standard deviations.

To study how the signaling of these cells respond to drug-perturbations and if the PI3KH1947R muytation
influences this, we perturbed both cell lines with inhibitors of the PI3K and MAPK pathways, and selected
2-drug combinations of these. Single drugs were tested at two different concentrations, corresponding
roughly to their ICsq and ICgqq values (except RAFi, which was only tested at ICqp) and drug-combinations
were tested with both drugs at their ICsq values, to obtain a total of 34 different perturbations. We
measured the response after two hours of drug treatment (log» fold change relative to DMSO control) of
nine main nodes in the PI3K and MAPK signaling pathway using a multiplexed luminex assay to obtain
more than 600 signaling drug-response measurements (Figure 2B, Table S1 and S2). We selected the

two hour time-point because this is the timescale for phospho-AKT (pAKT) to reach quasi steady state
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o7 after PIBK-pathway inhibition [29] (Figure S1B). Luminex quantification showed excellent concordance
e With Western Blots (Figure S1C). In addition we measured the effect on cell viability using CellTiter
9 Blue (Figure 2C, Table S3 and S4). Generally, the differences in both signaling response and cell
10 Viability between the parental and PI3K-mutant cells were subtle but consistent. For instance, while the
i responses of the signaling nodes of the parental and PI3KH1947R cells are strongly correlated (Figure 2B
12 and Figure S1D), pAKT shows a strong negative response to growth-factor receptor inhibition (EGFRI
s or IGF1Ri) that is nearly absent in the PI3KH1047R mutant cells (Figure 2B, highlighted). However, this

w4 results in only mild differences in cell viability between the cell lines (Figure 2C, highlighted).

s Network reconstructions identify relevant differences between parental and

s PI3K-mutant cells

7 To establish how the PI3KH1947R mutation affects the signal transduction network, we used the drug-
w08 response measurements to perform Comparative Network Reconstruction (CNR) [17] of the MAPK and
19 AKT pathways of both cell lines. CNR is a method that we have recently developed to reconstruct and
1o quantify signaling networks and identify the most important quantitative differences between two or more
w1 cell lines. Prior knowledge about the network topology can be included, but the algorithm can also
12 propose edges to be added to the network. The edge-weights are interpreted as the percent change in
13 the downstream node activity in response to a 1% change in activity of the upstream node. Importantly,
14 by penalizing differences between cell line models, CNR identifies which edges are quantitatively different
15 between the two cell lines.

116 We used the canonical MAPK and PI3K pathway interactions as prior information, and added 4
17 edges that were proposed by the CNR algorithm based on hyperparameter selected in a leave-one-out
18 cross validation loop (Figs 3A and S2A). The targets of some inhibitors were not measured in our panel.
19 These were modelled as affecting the first downstream target that was measured. For instance, since
120 both IGF1R and PI3K are not measured in our panel, IGF1R inhibition was modelled as targeting AKT1
21 directly. The model gave a good fit to the data (Pearson correlation = 0.91) (Figure 3B). To assess the
122 significance of this fit, we compared the residuals of the model to 1000 models with the same number of
12 randomly selected edges. Each of these 1000 random models had a worse fit than our model (p < 0.001,
12¢  Figure 3C).

125 CNR aims to identify the most relevant differences between cell lines by penalizing quantitative
126 differences. These differences can be either the edges in the network, or the strength of inhibition of
1z a drug to its direct target. This way, we identified 13 relevant differences between the parental and
s PIBKH1047R cells. These differences are highlighted in blue in Figure 3A. The numbers next to the edges
= indicate the edge-strengths of the parental (purple) and PI3KH1947R (green) cells. (For visualization
130 purposes, only the strength of edges that differ between the cell lines are indicated. For full model
131 visualization, see Figure S2B). The differences in target-inhibition strength between the cell lines are
12 shown in Figure 3D-G and Figure S2D. We assessed the significance of the identified differences by

133 comparing the residuals of our model to that of 1000 models with the same number of randomly selected
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Figure 3: Mutant specific network reconstructions show expected differences. A. Comparative Network
Reconstruction (CNR) of MCF10A parental and PI3KH1%47R cells. Edges and direct perturbation effects that differ
between the two cell lines are highlighted in blue. Gray edges do not differ between the cell lines. Edge strengths
of the differing edges are represented by the purple (parental) and green (PI3KH1°47R) numbers. Ovals indicate
nodes. For visualization purposes, only direct perturbations effects that differ between the cell are indicated. As
expected, the most and the strongest differences between the cell lines are located close to AKT in the network
(note that PI3K is not measured). B. Comparison of network model fit with measured signaling response shows
that the network model can explain the signaling response data well (Pearson correlation 0.91). C. Distribution of
the root mean square of residuals of models optimized using a random topology (gray), compared to that of the
actual model used (red). All 1000 random topology models had the same number of edges as the actual model, and
for all 1000 the fit was worse than for the actual model. D-G. The estimated direct effect of IGF1R (C), mTOR (D),
PI3K (E) and AKT (F) inhibition on AKT activity as a function of applied inhibitor concentration. Points indicate the
estimated effects of the concentrations used in the CNR reconstruction, the dashed lines indicate the interpolated
curves between these points (c.f. Materials and Methods, Equation 5). IGF1R, PI3K, and mTOR inhibition were
modelled as directly affecting AKT because their actual targets were not measured.

differences. None of the random models had a better fit to the data (Figure S2C), indicating that the
identified differences are, indeed, the most relevant differences.

As expected, most of the identified differences are located close to AKT in the network (Figure 3A,
note that PI3K is not measured). Specifically, in the PIBKH1047R cells, AKT is less sensitive to changes
in EGFR and unresponsive to IGF1R inhibition (Figure 3A and D), which is consistent with PI3K being
constitutively activated. Additionally, AKT is less responsive to PI3K and mTOR inhibition (Figure 3E,F).
At the ICsq, AKT is also less sensitive to AKT inhibition, but when AKTi is applied at its 1Cgqg, the
PI3KH1047R cells show a larger response (Figure 3G). This last observation might be explained by the
higher baseline AKT activity of PIBKH1047R cells, since if AKT activity is reduced to a similar absolute
level, the fold-change of AKT in the mutant is higher.

In order to predict the signaling-response to drugs combined at arbitrary concentrations, we param-
eterized the relation between target inhibition and drug concentration using the direct target-inhibition
estimates for drug k on node i for the IC5q and ICgg we obtained from the network reconstructions (c.f.
Materials and Methods, Equation 5). The dashed lines in Figs 3D-G and Figure S2C indicate the curves

we parametrized in this way.
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Short-term signaling response is informative for long-term cell viability

To prioritize multi-drug combinations, the short term response of the signaling network to a drug
perturbation needs to be related to its longer term effect on cell viability. Important open questions here
are: Is the short-term signaling response predictive to longer term cell viability? If so, which signaling
outputs are most predictive, and what is their relation? The association between the individual node-
responses and cell viability were moderate even for the most strongly associated nodes, phospho-AKT
(pAKT) and phospho-ERK (pERK), which had a Pearson correlation with cell viability of 0.36 and 0.42,
respectively (Figure 4A). The responses of all other nodes also correlated somewhat with cell viability

(Figure S3A), but clearly no single node alone is a good predictor for cell viability.
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Figure 4: Short term signaling response is predictive for longer term cell viability. A. Scatterplot of cell
viability against logo-fold changes in AKT (left panel) and ERK (right panel) activity in response to drug treatments.
The Pearson correlations are 0.36 and 0.42 respectively. B. Scatterplot of model fit against measured cell viability
based on a model where both ERK and AKT response are used to explain cell viability (c.f. Materials and Methods,
Equation 4). The Pearson correlation between fit and measurement is 0.71.

We therefore investigated whether a model combining the response of multiple nodes described
the cell viability data better. To this end, we first fitted a linear model using either all nodes or only the
response of pERK and pAKT. Both models gave a reasonable fit to the data, but there was a clear
structure in the relation between the residuals and the fitted values (Figure S4A and B), indicating that
a non-linear model might be more suitable. To test this, we fitted a number of biologically motivated
non-linear models relating the combined response of pAKT and pERK to cell viability. These non-linear
models that all have the property that cell viability goes to 0 if either pERK or pAKT are fully inhibited (c.f.
Materials and Methods, Equation 4). The biological assumption behind this is that both ERK and AKT
activation are required for cell survival and growth.

To select the best model, we compared the standardized residuals of the model fits and the L2-
norm of the residuals in a leave one-out cross-validation loop of the different models (Table 1). All
non-linear models had clearly better performance than the linear models, despite having equal or less
free parameters . While overall the predictions of the different non-linear models were fairly similar (with
Pearson correlations of their predictions between 0.92 and 0.99, Figure S4D), a Michaelis-Menten like

model of the following form

1
Vi = 1
k 1- RakT.k _ RERK.K (1)
Kmakt KM ERK

had the overall best performance on both metrics and shows no clear structure in the residuals (Fig-
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ure S4C). Here, v, is the cell viability and Rerk xk and RakT « are the logs-fold changes of pERK and
pAKT upon drug treatment k. The parameters Ky erx and Ky ax7 can be interpreted as the log,-fold
changes of pERK and pAKT that cause 50% inhibition of cell viability. They differ slightly between the
two cell lines, but the bootstrapped 95% confidence intervals strongly overlap (Figure S4E), so we do not
want to overinterpret these differences. Importantly, this model gave a good fit to the data (Figure 4B),

with a Pearson correlation between fitted and measured viability of 0.71.

Function Type o (Model fit)  Lg-norm (LOOCV)
Vi~ 1 / (1- fasre — femoc) Non-inear ~ 0.20 0.042
Vie ~ 1/ [(1 - %) : (1 - %)] Non-linear 0.20 0.045
_ RERK.K _ RakTk
Vi ~ 3/ (1 +2 KMERK 2 KMAKT) Non-linear 0.21 0.048
_ RERK.K. _ RakT.k
Vi ~ 4/ [(1 +2 KM.ERK) . (1 +2 KmakT )} Non-linear 0.21 0.048
1— vk ~ Y icnodes BiRik Linear 0.21 0.061
1— vk ~ BakT - RakT .k + BERKRERK K Linear 0.28 0.093

Table 1: Comparison of goodness of fit of functions relating signaling response to cell viability. o is the
mean residual standard error of the model fitted to the full data. The Lo-norm is calculated over predictions made in
a leave-one-out cross-validation loop. The non-linear models predict viability v from the logo-fold change of pERK
and pAKT (Rerk and Rak 1) Whereas the linear models fit the inhibition (1 — v). The table is ordered from best to
worst fit.

Together, these results indicate that short-term signaling response is informative for longer-term
drug response, that pAKT and pERK are the most informative readouts, and that the relation between

signaling response and viability is non-linear.

Prediction and validation of selective multi-drug-combinations

We then combined the network models (Figure 3A) with the parametrization of the signaling-viability
model (Equation 4) to simulate the effect on cell viability of unseen 3-drug combination at unseen
drug-concentrations. When applying this model to the training data, the Pearson correlation between
measured and fitted cell viability was 0.78 (Figure 5A). We used this model to prioritize multi-drug
combinations and their dosing that maximize the selectivity, defined as the difference in viability between
the parental and the PI3KH1047R cells,

To do this, for all possible 3-drug combinations we optimized the concentrations such that the
viability of the PI3KH1047R mutants is minimized, under the constraint that the viability of the parental
cells remains above 0.8 relative to DMSO control (c.f. Materials and Methods, Equation 7). To look
for low-dose drug combinations, we added the constraint that each drug can be used maximally at
its IC1. However, no drug-combination was predicted to be selective for the PIBKH1947R cells at any
combination of concentrations. Since none of the single drugs shows selectivity towards the PI3KH1047R
cells (Figure 2C), this is not very surprising. Moreover, our network reconstructions indicated that the
main effect of the PI3BKH1047R mutation is to render the MCF10A parental line independent of growth-

factor stimulation. Indeed, when we grew MCF10A parental and PI3KH1047R celis in the media without
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Figure 5: Experimental validation of anti-selective drug combination predictions. A. Scatterplot comparing
full model fit (network model combined with signaling response-viability mapping) to the training data. The Pearson
correlation between fit and measurement is 0.78. B-C. Overview of drug combinations that we predicted to be
anti-selective (B) and non-selective (C) based on this model. Drug concentrations are color-coded relative to their
IC10. Bottom row indicates predicted anti-selectivity (defined as the difference in viability between PI3K"1947R and
parental cells) of the combination. These combinations were subsequently tested in the validation experiments.
D. Box plot comparing the measured anti-selectivity of the drug combinations predicted to anti-selective (panel
B) or non-selective (panel C). Each point represents the mean anti-selectivity of one drug combination, which
were each tested in 8 replicates. The difference is highly significant (Wilcoxon signed-rank test p < 10~7). E.
Comparison of the measured anti-selectivity of IGFRi mono treatment, indicated by the horizontal gray line, with the
selected IGF1Ri-containing 3-drug combinations (red box plot). IGF1Ri containing combinations are significantly
more anti-selective than IGF1Ri mono treatment (one-sample t-test p < 10~7). F. Box plots comparing cell-viability
of parental and PI3KH1947R cells of the 11 (out of 17) IGF1Ri containing drug-combinations that are significantly
more anti-selective than IGF1Ri mono treatment.

growth-factor, this is what we observed (Figure S5).

To nonetheless validate our computational approach, we then looked for drug-combinations that we
predicted to be anti-selective, i.e. be more effective in the parental cells than in the PI3K-mutants. In our
optimizations, we found 30 such combinations with an anti-selectivity > 0.1 (Figure 4B). Interestingly,
IGF1R inhibition was part of all of the 17 combinations that we predict to be most anti-selective, while
its anti-selectivity in the training data was only modest (Figure 2C). However, the difference in signaling
response, and specifically pAKT, was much more pronounced (Figure 2B), and this latter aspect gets
picked up in the network reconstructions (Figure 3A). A particularly interesting example is the combination
IGF1Ri + PI3Ki + GSKS3i. Here, both PI3Ki and GSKSi at their lower dose (IC5q) show no anti-selectivity,
yet this combination is predicted to be one of the more anti-selective ones. (Figure 5B, highlighted). As
a control, we also selected 44 combinations that we predicted to be non-selective for either cell line
(Figure 5C). A conservative power analysis, based on the accuracy of the viability predictions and the
effect size of the anti-selectivity predictions, indicated a power of 90% to detect an overall difference in
selectivity between the anti-selective and control combinations.

We then treated the parental and PI3KH1047R cells with the 30 predicted to be anti-selective and
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44 control combinations and measured their viability (Table S5). Combinations that we predicted to be
anti-selective were indeed so, and this was highly significant when compared to the non-selective control
combinations (Wilcoxon signed-rank test p < 10~7, Figure 5D). Individually, 25 of the 30 combinations
predicted to be anti-selective were indeed significantly so (one-sided t-test p < 0.05, Table S6).

As mentioned above, of the 30 predicted-to-be-anti-selective combinations we tested, 17 contain the
IGF1R inhibitor, which is also mildly anti-selective as monotherapy. (None of the other inhibitors showed
anti-selectivity as a monotherapy at their IC4q, Figure S6). To rule out the possibility that our result is
mainly driven by the anti-selectivity of IGF1Ri mono-therapy, we compared the 17 IGF1Ri containing
drug combinations with IGF1Ri monotherapy. Figure 5E shows that each of the IGF1Ri containing
combinations we tested (red box plot) is more anti-selective than IGF1Ri treatment alone (indicated by
horizontal gray line). This effect is highly significant (one-sample t-test p < 10~7). When looking at the
individual drug combinations, we found that 11 of the 17 IGF1Ri containing combination treatments are
significantly more anti-selective than IGF1Ri monotherapy (one sided t-test p < 0.05, Figure 5E, Table
S7). This also includes the IGF1Ri + PI3Ki + GSK3i combination highlighted above, which is the second
most anti-selective combination when ranked by effect size.

These results indicate that our pipeline is capable of making an accurate prioritization of mutation-
specific low-dose multi-drug combinations. Importantly, these predictions are not always obvious, and
would not have been possible without the help of mathematical models of the signal transduction networks

and their relation to cell viability.

Discussion

In this study, we have shown that it is possible to predict which multiple low dose (MLD) 3-drug combina-
tions are likely to have a mutant specific impact based on a combination of single and 2-drug high dose
drug response measurements and mathematical modeling. We have used drug-perturbation experiments
to reconstruct, quantify and compare signal-transduction networks of an isogenic cell line pair, and linked
the responses of these networks to cell viability. No single signaling readout alone is highly predictive, but
a non-linear model combining the response of ERK and AKT gave a good fit. Importantly, this showed
that the short-term signaling response is predictive for cell viability, which is measured in longer-term
experiments. Based on the so-obtained models we were able to predict and validate drug combinations
that are were specifically effective in one cell line but not another, even though the differences between
the cell lines are subtle.

One of our aims was to identify selective drug combinations, i.e. combinations that inhibit cells
with an oncogenic PI3KH1%47R mutation more strongly then to their parental counterparts. However,
according to our model, no such drug combination exist for this particular model system. The absence
of oncogene-specific sensitivities is presumably due to an absence of “oncogene addiction” [1] to the
PI3K mutation (or any other) in the PI3KH1947R MCF10A cells. In the absence of drug-treatment the
mutation has no effect on proliferation under the growth conditions we used, and this mutation therefore

presumably does not induce any vulnerabilities in this cell line. Our network reconstruction suggests that
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the main effect of the PI3KH1947R mutation on MCF10A cells is to make them growth-factor independent,
consistent with previous observations [30]. Hence, the inability to identify selective drug combinations is
due to the particularities of the MCF10A isogenic cell line pair model, and not due to the computational
model.

While isogenic cell line pairs with a mutation knocked in are attractive models because they allow
study of the effect of the mutation in isolation, they may thus not always be the best model to study
oncogene-specific sensitivities. An interesting alternative approach might be to use cancer cell lines
of which one of the driver mutations is removed [31-33]. Alternatively, a larger, more heterogeneous
panel of cell lines with and without a particular biomarker could be used [19, 22, 34, 35]. In this scenario,
one would look at commonalities in the signaling network response of the cell lines with the biomarker
compared to the lines without it, and use this to propose combinations that are selective of the biomarker
carrying cell lines. Finally, the use of matched tumor and normal organoids from the same patient could
be used for truly personalized models.

Our aim more generally was to develop a combined experimental and computational pipeline to
prioritize drug combinations that have a biomarker specific effect, and in this we did succeed. The majority
of the combinations that we predicted to be anti-selective indeed were so in validation experiments. In
fact, we succeeded in validating our predictions despite the fact that the differences between the cell lines
in the training data were very subtle. It is to be expected that it will be easier to find mutation specific drug
combinations when the effect of a mutation on the signaling networks and on cell viability is stronger.

All of the most strongly anti-selective drug combinations we identified contained the IGF1R inhibitor,
but as monotherapy low-dose IGF1Ri is only mildly anti-selective. More generally, which multi-drug
combinations are most selective or anti-selective is often far from obvious. For instance, while in
the training data PI3Ki and GSKS3i at their lower dose (ICsg) individually show no selectivity towards
the parental cells at all, the combination IGF1Ri + PI3Ki + GSK3i is one of the most selective drug
combinations, both as predicted by our model and as measured validation experiments. This underscores
the need for mathematical modelling in prioritizing promising combinations.

In conclusion, here we have shown that it is feasible to make accurate, non-trivial predictions about
(anti-)selectivity of multi-drug combinations based on mathematical models of signaling transduction
networks. In combination with suitable model systems, this framework makes it possible to rationally

design biomarker-selective low-dose multidrug combinations.

Materials and Methods

Cells and cell culture

Human parental and PI3KH1047R/. MCF10A cell lines were obtained from Horizon discovery (HD PAR-
003 and HD 101-011). Cells were cultured in DMEM/F-12 including 2.5 mM L-glutamine and 15 mM
HEPES, supplemented with 5% horse serum, 10 ug/mL insulin, 0.5 ug/mL hydrocortisone and 0.1 ug/mL

cholera toxin. Mycoplasma tests were performed every 2 months.
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Reagents and compounds

The following inhibitors were used in this study: EGFRI (Gefitinib), IGF1Ri (OSI-906), RAFi (LY3009120),
MEKi (Trametinib), ERKi (SCH772984), GSK3i (3F8), PI3Ki (BKM120), AKTi (MK-2206), mTORIi
(AZD8055). All inhibitors were purchased from MedKoo Biosciences. The luminex antibodies against
CREB1S133 EGFRY1068 ERK1T202/Y204 (GSK3S21/89 MEK1S217/5221 h70RSKT389, PRAS40T246 and
RPS65235 were purchased from ProtATonce Ltd. The luminex antibody against AKT17473 was purchased

from BioRad.

Drug perturbation and validation experiments

All the cell-viability measurements were performed in biological triplicates, each with 2 technical replicates,
using black-walled 384-well plates (Greiner 781091). Cells were plated at the optimal seeding density
(200 cells per well) and incubated for approximately 24 hours to allow attachment to the plate. Drugs
were then added to the plates using the Tecan D300e digital dispenser. 10 uM phenylarsine oxide
was used as positive control (0% cell viability) and DMSO was used as negative control (100% cell
viability). Three days later, culture medium was removed and CellTiter-Blue (Promega G8081) was added
to the plates. After 2 hours incubation, measurements were performed according to manufacturer’s
instructions using the EnVision (PerkinElmer). Viabilities were normalized per cell line according to
(treatment — PAOmean )/ (DMSOmean — PAOmean). 1Cs0 and ICqq values were fitted using the R-package
MixedIC50 [36] (code available at https://github.com/NKI-CCB/MixedIC50).

The signaling response measurements were performed using 6-well plates (Greiner 657165). 300K
cells per well were plated and incubated for approximately 24 hours to allow attachment to the plate.
Drugs were then added to the plates and protein was harvested after 2 hours using the Bio-Plex Pro
Cell Signaling Reagent Kit (BioRad 171304006M) according to the manufacturer’s instructions. Protein
concentration of the samples was normalized after performing a Bicinchoninic Acid (BCA) assay (Pierce
BCA, Thermo Scientific), according to the manufacturer’s instructions. Cell lysates were analyzed
using the Bio-Plex Protein Array system (Bio-Rad, Hercules, CA) according to the suppliers protocol
as described previously [19]. Intensities were normalized by subtracting blanks for each epitope and

correcting for protein concentration.

Computational pipeline and data analysis
Comparative network reconstruction

MAPK and AKT signaling networks of the parental and PI3K"1947R mytant cell lines were reconstructed
based on the Luminex drug-response data using Comparative Network Reconstruction (CNR)[17]. Briefly,
CNR is a network reconstruction method based on Modular Response Analysis [37]. It links the matrix
of measured node responses to a set of perturbations, R* (where R, is defined as log, fold change
of node i in response to perturbation k in cell line x) to the matrix unobserved interaction strengths r*

(where r7; is the logarithmic partial derivative of node i with respect to node j in cell line x) and direct
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perturbation effects s* (with s7 the scaled direct effect of perturbation k on node i in cell line x). These
matrices are related through
r*-RX4 —s* =0, Vx. (2)

In principle, r* and the values of the elements in s* (the targets of the inhibitors is assumed to known)
can be obtained solving this set of equations, but in practice it is often under-determined. CNR solves
problem by reformulating it as optimization procedure to find a model that balances data-fit with a model
complexity by penalizing the number of edges (non-zero entries in r) and differences between cell lines

(entries in r that are quantitatively different between the cell lines). The optimization problem reads:

Minimize: ZZZe +n- Iedge+9.(1?jiff+jisgiff)
— =

Subjectto:» 7 - R¥, + sk, = €5, Vi, j, n,x
edge _ _ .
;7 =0=rj=0 Vi, j, x
"= 0= — A7 =0 i x
Isdlff =0= s —sMean — Vi, n, x (3)
mean = 1/ Ncell lines Z ru vinj
mean = 1/Ncell lines Z sm vi.n

Iedge’ Idlf’ Isdlff c {0v 1}

n € {perturbations}; i, j, k € {nodes}; x € {parental, PI3KH1047R}

where the es are the model residuals. Solving this optimization problem gives the matrices r and s from a
given R.

Additional constraints reflecting the experimental design were added to the CNR problem.
e s;i is negative and stronger for higher drug concentrations, i.e. 0 > sk ([ICso]) > sik([ICoo]).

e Each inhibitor-target pair has a single indicator for the difference in perturbations strengths for both
inhibitor concentrations, i.e. if IS0 — o = sPaeMa([7cyo1) — PIK([1C50]) and sP"®™@([1Cqq]) =

sEK([ICo0)).

e Most inhibitors are modelled as a perturbation to their direct target, i.e. EGFRI, MEKIi, ERKi, GSKS3i
and AKTi are modelled as perturbations to EGFR, MEK1, ERK1, GSK3 and AKT1 respectively.

e The MEK inhibitor interferes not only with MEK phosphorylation, but also its catalytic efficiency.
Hence, MEK inhibition was additionally modelled also modelled as perturbation to it's downstream

proteins (c.f. [17]).

e Some inhibitors target kinases that were not measured in our assay. The effect of these inhibitors

was modelled as a perturbation to the (canonical) downstream nodes of the kinases being inhibited.
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Specifically, IGF1R inhibition was modelled as a perturbation to MEK1 and AKT1, PI3K inhibition
as a perturbation to AKT1, RAF inhibition as a perturbation to MEK1, and mTOR inhibition as a
perturbation to AKT1 and p70S6K.

Prior information about network topology was provided setting the indicators of a set of canonical
MAPK and PI3K pathway interactions I,.ejdge = 1. These indicator constraints are added to the optimization
problem described in Equation 3. The corresponding edge-strengths, together with those of edges that
might be added to the network, are found by solving the optimization problem. Hyperparameter were
setton = 0.1 and # = 2.0 based on a leave one out cross validation loop. Single drug treatments were
not included in the leave one out cross validation because each drug concentration needs to be present
in at least one perturbation to estimate the corresponding parameter. The final model was obtained by
restricting the topology to the prior network information with addition of the 4 edges that were identified in
the leave one out cross-validation, and then performing the optimization with § = 2.0.

The full Comparative Network Analysis can be found in the Jupyter notebook under the following link:

https://github.com/evertbosdriesz/cnr-selective-combos/blob/master/python/cnr-mcf10a-pi3k.ipynb

Randomized models

To obtain the distribution of residuals for random network topologies shown in Figure 3C, 1000 models

with a random topology were generated by randomly selecting 16 (out of all possible 72) edges setting
edge
ij

focus on the effect of model topology only, we did not allow for any difference between the cell lines

the corresponding indicator to I = 1 and setting the indicators of all other edges were setto 0. To
by setting 6 to infinity using cplex.infinity. Subsequently, edge weights were obtained by solving
the CNR optimization problem described in Equation 3 and corresponding RMS of residuals, defined
as /2 i nx €2/ N, was calculated. To make a fair comparison, we also calculated the residual of our

actual model without any differences between the cell lines. To this end, we set the indicators of the
edge
ij

Similarly, to obtain the distribution of residuals for random differences between the cell lines shown in

edges of the actual model I = 1 and all others to 0, set § = cplex.infinity, and re-optimized 3.

Figure S2B, 1000 models with randomly selected 19 and 139 were generated. For all these models,
the topology was first fixed to the topology of the actual model by setting the indicators If.j.dge =1 for the
edges that are present in the actual model, and all others to 0. Subsequently, 13 randomly selected
indicator for differences between the cell lines I9 and 159 were set to 1, the others to 0, and the

optimization in Equation 7 was solved using these constraints.
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a3 The relation between signaling output and cell viability

The viability (relative to DMSO control) upon perturbation k, vi, were fitted to the following functions:

1-ve= > BiRik (4a)
i€nodes
1 — vk = BakT - RakT .k + BERKRERK k (4b)
1
Vk = 1— RakTk  RERK.k (40)
Kmakt  KmERK
1 1
ik = 1— RAKT & x _ Rerk.k (4d)
Km,AkT Km,ERK
3
Vk = _ RERK.K _ RakT.k (4e)
1+2 KmEerk 2 KmakT
2 2
Vk = RERK K X RAKT .k (4f)

142 KmEerk 142 KmakT

s Where RakT x and Rerk ik are the logo-fold changes of pAKT and pERK relative to DMSO control
a7s  upon perturbation k, respectively. Ky akT and Ky eri are the parameters to be fitted for the nonlinear
s equations and can be interpreted as the Rak T « and Rerk, « values for which the viability is reduced by
a7 50% (or 25% and 33% for equations 4e and 4f, respectively). Fitting was performed using the 1m and nls
ars  functions of R [38] for the linear and non-linear models, respectively. Mean residual standard errors (o)
a7s  were obtained using the sigma function. Leave one out cross-validation was performed on a per cell-line
s basis. Bootstraps were performed using the function bootstrap from the ‘rsample’ package [39].

a8t All code and details for this analysis can be found in the RMarkdown-file under the following
s2  link: https://github.com/evertbosdriesz/cnr-selective-combos/blob/master/R/02-perturbations/mapping-

a3 Signaling-drugresponse.Rmd

s« Multi-drug response simulations and prediction of selective 3-drug combinations

s CNR gives an estimate of the direct target inhibition of each drug only for the concentrations at which the
ss  drug was applied. To be able to simulate the effect of unseen drug concentrations, the relations between
w7 the applied concentration of drug k, [Ix], and target inhibition of node / in response to this, s;, were fitted

s 10 the following function for each inhibitor-target pair,

Trmax,ik * [1i]

sik([Ik]) = Krik+ [Id]

(5)

w0 The parameters I ik and Ky i were fitted to this function using the s;x-values for the [Ix] = ICso and
a0 ICgo obtained from the CNR optimizations with the curve_fit function from the python ‘scipy.optimize’
a1 package [40]. For convenience all drug concentrations were normalized to the highest concentration
w2 applied (the ICy), and in all analyses only interpolations and not extrapolations are used (0 < [I] < 1).

303 Ra+s+c, the vector of simulated log,-fold changes in response to a perturbation with 3 drugs A, B
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and C, at concentration [I4], [Ig] and [I¢] was calculated as

Rargrc = 17" (sa(lla]) +s5([I8]) +sc([Ic])). (6)

to obtain Rakt a+B+c and Rerk a+B+c- These were then used to calculate viability according to
Equation 4. Together, this allows for simulating the effect on cell viability of drug combinations and
concentrations that were not seen in the training data.

For each possible 3-drug combination, the selectivity for cell line x relative to y was optimized by

solving the following optimization problem:

Minimize: va. g ¢
Subjectto: v, g, > v (7)

0< [If] <ICip ke{AB,C}

where v'™i" is the cutoff used for the minimal viability that cell line y should have under the 3-drug
treatment, and that we (somewhat arbitrarily) set to 0.8.

Similarly, unselective control combinations were obtained by solving the optimization problem:

Minimize: (v}, g.c —08)° + (Vi g, c —08)°

Subjectto: 0 < [Ix] <ICio ke{AB,C}

for all possible 3-drug combinations.

A power analysis of the predictions was performed by performing 1000 simulations with addition
gaussian noise with a mean 0 and a standard deviation 0.25 (based on the residuals of our viability
predictions) to the results, and counting in what fraction their was an observable difference between the
two groups.

The optimizations were performed in Wolfram Mathematica [41] (version 12.0) using the NMinimize
function. The full optimization and power analysis can be found in the Mathematica notebook under the
following link: https://github.com/evertbosdriesz/cnr-selective-combos/blob/master/mathematica/optimize-

combinations.nb

Data and Code availability

All data and code required to reproduce the results and figures in this paper are available at

https://github.com/evertbosdriesz/cnr-selective-combos.
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Figure S1: A. Dose-response curves of the inhibitors used in this study. B. Dynamics of AKT activity after PI3K
pathway inhibition from Korkola et al. [29] C. Correlation between phospho-ERK quantification using Luminex (top)
and Western blot (bottom). D. Correlation between the response in parental (x-axis) and PI3KH1047R (y.axis) cells.
Response is defined as logo-fold change compared to DMSO controls.
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Figure S2: A. Network topology used for modeling. Edges used as prior information are indicated in gray. Edges
added in a leave one out cross validation loop are indicated in purple. B. Network models of the parental (left)
and PI3KH1047R celis. Edge labels indicate reconstructed interaction strenghts (r;; terms in Equation 2 and 3). C.
Significance of identified differences between the cell lines. Distribution of the residuals of 1000 model optimizations
in which random edges were selected to allow to differ between the two cell. The selected model has a better model
fit than all 1000 of these models. D. The estimated direct effect of different inhibitors on their target, as a function of
applied inhibitor concentration (s;; terms in Equation 2 and 3). Points indicate the estimated effects obtained from
the CNR reconstruction, at the concentrations used in the perturbation experiments. The dashed lines indicate the
interpolated curves between these points. (c.f. Materials and Methods, Equation 5)
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Figure S3: Correlation between node response and cell viability of all measured nodes.

22


https://doi.org/10.1101/2020.12.17.423240
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423240; this version posted January 27, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

A Linear model B Linear model C  Michaelis-Menten like
All epitopes ERK and AKT only 1
Viability ~
‘. 2 o0 [1 + ~AAKT/KMakT + —~AERK1/KMEgRK]
o
[ ] ® o
°
2 e e 04
[ °
210% @ o ¢
o °
1 0 3 °
.g 0.0 ®
© @ 2 ®
] E] 4
3 0 he) 'f’
[7] [7]
Q o} @ [ J
o o 15: -0.2
]
9 o0 °
1 -2 & PY
-0.4
-2
-0.6
0.0 0.3 0.6 0.9 0.0 0.5 1.0 0.5 § 1.0
Fitted Fitted Fitted
® pi3kH1%47R @ Parental ® pi3kH1%47R @ Parental ® pi3kH1%47R @ Parental
Q o
o c —_ —_ — —
= © © o) bl o
g x < ¥ ¥ < . o . .
D = i g g g g E Parameter estimates and 95% confidence intervals
£ € 2 2 2 2 Obtained using 1000 bootstraps
1
KM_BioAkt KM_ERK1
epitopes) 1.00  0.68 = 060 060 068 | 0.68 o8
06 ~ ~
Im (ERK and AKT) ~ 1.00 | 0.81 0.84 091 | 0.89 ~ ~
0.4
nls (Eq4a)  1.00 0.99 0.94 0.92 02
0 W/ -/
nis (Eq4b)  1.00 095 @ 092 o2
o4 25 5.0 7.5 10.0 125 050 0.75 1.00 125 1.50
nis (eq4d)  1.00 | 0.99 Parameter estimate
-0.6
O Parental () pI3kH147R
nls (Eq4c)  1.00 08

Figure S4: Evaluation of model fits relating signaling response to cell viability. A-C. Residuals as a function
of fitted values for the model fits. A. Linear model with all epitopes as predictor. B. Linear model with only R a7 and
Rerk as predictor. C. Non-linear model that gave the best fit ( Equation 4c). D. Pearson correlation between model
predictions of all models tested show that the predictions of all non-linear models are highly similar. Predictions are
obtained from the leave-one-out cross-validation. The selected model (Equation 4c) is highlighted in red. The plot is
generated using the corrplot-function of the corrplot R-package [42]. E. Bootstrapping intervals of the estimated
values for the parameters Ky axt and Ky erk in Equation 4c
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Figure S5: Growth of MCF10A parental and PI3KH1947R cells in different growth media. In contrast to the parental
cells the PI3K mutant cells grow well in the absence of serum if either Insulin or EGF is provided.
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Figure S6: Viability of the low-dose single-drug controls, all measured at their IC19. Except for IGF1Ri, none of the
drugs show selectivity towards the parental cells. Treatments were performed in 8 replicates.

24


https://doi.org/10.1101/2020.12.17.423240
http://creativecommons.org/licenses/by-nc/4.0/

