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Abstract14

Inhibition of aberrant signaling with target inhibitors is an important treatment strategy in cancer, but15

unfortunately responses are often short-lived. Multi-drug combinations have the potential to mitigate16

this, but to avoid toxicity such combinations must be selective and the dosage of the individual drugs17

should be as low as possible. Since the search space of multi-drug combinations is enormous, an18

efficient approach to identify the most promising drug combinations and dosages is needed.19

Here, we present a pipeline to prioritize promising multi-drug combinations. We performed a limited20

set of drug perturbations in an isogenic cell line pair with and without an activating PI3K mutation, and21

recorded their signaling states and cell viability. We used these data to reconstruct mutant specific22

signaling networks and map the short term signaling response to longer term changes in cell viability.23

The resulting models then allowed us to predict the effect of unseen multi-drug combinations, at arbitrary24

drug-concentrations, on cell viability. Our initial aim was to find combinations that selectively reduce the25

viability of the PI3K mutant cells, but our models indicated that such combinations do not exist for this26

cell line pair. However, we were able to validate 25 of the 30 low-dose multi-drug combinations that we27

predicted to be anti-selective. Our pipeline thus enables a powerful strategy to rapidly map the efficacy28

and possible selectivity of drug combinations, hence significantly speeding up the pace at which we can29

explore the vast space of combination therapies.30
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Introduction31

The dependency of tumors on activated signaling pathways results in therapeutic responses to inhibitors32

that block pathway activity [1]. However, resistance to such targeted inhibitors inevitably develops [2, 3].33

Combinations of two targeted inhibitors can give more lasting clinical benefit, but resistance nonetheless34

emerges [4, 5]. Combining more than two drugs might further extend the duration of the response [6],35

but toxicity becomes a major concern when multiple drugs are combined at their maximum tolerated36

dose. Recently, we found that partial inhibition of three or four kinases by combining Multiple drugs at37

Low Dose (MLD) is surprisingly effective in receptor tyrosine kinase (RTK) driven tumors in multiple38

cancer types [7]. It prevents the development of resistance, and it is well tolerated by mice. Others have39

also shown the potential of multi-drug (low dose) combinations in pre-clinical [8–11] and clinical [12, 13]40

settings.41

These findings warrant further exploration of multiple-drug combination strategies. This will require a42

systematic way to explore promising drug combination treatments, including optimizing the dosing of43

the different drugs. The combinatorial explosion of the search space — there are more than 2 million44

possible 4-way combinations of the 89 (as of 2020 [14]) FDA approved targeted inhibitors, and 24 billion45

if each drug is to be tested at 10 different concentrations — means that in-vitro testing of all combinations46

is infeasible. Computational approaches are required to prioritize promising combinations.47

Recently, Nowak-Sliwinska and collaborators presented a “Feedback Systems Control” approach48

to explore the search-space of possible multi-drug combinations [10, 15, 16]. While this approach is49

promising, the method does not optimize for selectivity and the obtained results lack a mechanistic50

underpinning, making it hard to assess to what extent the results will generalize. Another promising51

approach is building mathematical models of cellular signaling, based on a limited set of perturbation52

experiments [17–24]. However, current approaches suffer from two major shortcomings. First, only a53

very limited number of such modeling approaches focus on the difference between cells with different54

mutation profiles [17, 25], which is critical for optimizing selectivity. Second, how inhibition of oncogenic55

signaling affects cell viability, and specifically to what extend short-term signaling response is informative56

for longer-term cell fate, remains underexplored [23, 24, 26].57

We therefore set out to establish and validate a combined experimental and computational pipeline58

to prioritize multi-drug combinations and their dosing based on mathematical models of drug response59

(Figure 1). Importantly, we aimed to find combinations that are selective for cells with a particular60

oncogenic driver mutation. To isolate the effect of the mutation, we used an isogenic cell line pair with and61

without a mutation. Specifically, we used MCF10A, a cell line derived from epithelial breast tissue [27], and62

an isogenic clone with the activating PI3KH1047R-mutation knocked in under its endogenous promoter [28].63

We measured the response of the MAPK and AKT pathway and cell viability after drug perturbations,64

and used the measurements to build mutant specific signaling networks models using Comparative65

Network Reconstruction, a method we recently developed [17]. In addition, we found that non-linear66

model combing the response of phospho-ERK and phospho-AKT is highly predictive for cell viability,67

despite the fact that signaling response and cell viability are measured on completely different time-scales68
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of hours and days, respectively. Combining the model of mutant signaling with the cell viability model69

allowed us to simulate the effect of any multi-drug combination at any concentration and thus to prioritize70

promising combinations. Our models indicated that no drug combination would likely be selective for71

the PI3K-mutant cells. To nonetheless validate our computational approach, we proceeded to predict72

which low-dose, multi-drug combinations were likely to be anti-selective, i.e. reduce the viability of the73

parental cells more strongly than that of the PI3K-mutants. Experimental validation showed that 25 of the74

30 combinations that we predicted to be anti-selective indeed had a significantly stronger effect in the75

parental cell than in the PI3K-mutant cells.76
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Figure 1: Overview of pipeline to prioritize promising selective low-dose multi-drug combinations. Top:
MCF10A parental and PI3KH1047R cells are treated with inhibitors targeting the MAPK and AKT pathways. The
signaling and cell viability responses are measured and used to build mutant specific models of signal-transduction
networks and to parametrize the relationship between signaling response and cell viability. Bottom: These models
are used to simulate the response to unobserved multi-drug combinations, at arbitrary concentrations, of the signaling
networks and how this affects cell viability. In this way, low-dose multi-drug combinations that are likely selective for
a particular cell type can be prioritized.

Results77

The signaling and viability response to drug perturbations in MCA10A parental78

and PI3KH1047R mutated cells79

To test how oncogenic mutations affect signal transduction networks and their downstream effects on80

cellular phenotypes such as cell viability, we used the MCF10A cell line [27] and an isogenic clone with81

the activating PI3KH1047R mutation knocked in under its endogenous promoter [28]. As expected, in82

the PI3KH1047R cells the baseline signaling activity of AKT and PRAS40, both downstream of PI3K, is83

elevated, but the other signaling nodes do not show significant differences in activity (Figure 2A). In the84

absence of drug perturbations, PI3KH1047R-mutant MCF10A cells have a comparable growth rate as their85

parental cells [28]. Dose response curves of selected PI3K and the MAPK pathway inhibitors showed86

subtle differences in sensitivities between the parental and the mutant cells (Figure S1A).87
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Figure 2: Profiling signaling and viability response of MCF10A parental en PI3KH1047R cells to drug pertur-
bations. A. Node activity in the unperturbed cells. Most nodes have similar activity in the parental and PI3KH1047R

cells, except AKT and PRAS40 (highlighted) which are downstream of PI3K. B. Heatmap representing log2-fold
changes of the signaling nodes upon drug perturbation compared to DMSO controls. The response of the parental
and PI3KH1047R cells are highly correlated, with some exceptions such that of AKT1 upon growth-factor receptor
inhibition (highlighted). Signaling response is measured after 2 hours of drug treatment. The color scale is capped
between -4 and 4 for visualization purposes. C. Cell viability under the same drug treatments as reported in panel B.
Both cell lines show a similar response profile. The strong differences in AKT response to growth-factor receptor
inhibition translate into mild differences in cell viability (highlighted). Cell viability is measured after 3 days of drug
treatment. Error-bars represent standard deviations.

To study how the signaling of these cells respond to drug-perturbations and if the PI3KH1047R mutation88

influences this, we perturbed both cell lines with inhibitors of the PI3K and MAPK pathways, and selected89

2-drug combinations of these. Single drugs were tested at two different concentrations, corresponding90

roughly to their IC50 and IC90 values (except RAFi, which was only tested at IC90) and drug-combinations91

were tested with both drugs at their IC50 values, to obtain a total of 34 different perturbations. We92

measured the response after two hours of drug treatment (log2 fold change relative to DMSO control) of93

nine main nodes in the PI3K and MAPK signaling pathway using a multiplexed luminex assay to obtain94

more than 600 signaling drug-response measurements (Figure 2B, Table S1 and S2). We selected the95

two hour time-point because this is the timescale for phospho-AKT (pAKT) to reach quasi steady state96
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after PI3K-pathway inhibition [29] (Figure S1B). Luminex quantification showed excellent concordance97

with Western Blots (Figure S1C). In addition we measured the effect on cell viability using CellTiter98

Blue (Figure 2C, Table S3 and S4). Generally, the differences in both signaling response and cell99

viability between the parental and PI3K-mutant cells were subtle but consistent. For instance, while the100

responses of the signaling nodes of the parental and PI3KH1047R cells are strongly correlated (Figure 2B101

and Figure S1D), pAKT shows a strong negative response to growth-factor receptor inhibition (EGFRi102

or IGF1Ri) that is nearly absent in the PI3KH1047R mutant cells (Figure 2B, highlighted). However, this103

results in only mild differences in cell viability between the cell lines (Figure 2C, highlighted).104

Network reconstructions identify relevant differences between parental and105

PI3K-mutant cells106

To establish how the PI3KH1047R mutation affects the signal transduction network, we used the drug-107

response measurements to perform Comparative Network Reconstruction (CNR) [17] of the MAPK and108

AKT pathways of both cell lines. CNR is a method that we have recently developed to reconstruct and109

quantify signaling networks and identify the most important quantitative differences between two or more110

cell lines. Prior knowledge about the network topology can be included, but the algorithm can also111

propose edges to be added to the network. The edge-weights are interpreted as the percent change in112

the downstream node activity in response to a 1% change in activity of the upstream node. Importantly,113

by penalizing differences between cell line models, CNR identifies which edges are quantitatively different114

between the two cell lines.115

We used the canonical MAPK and PI3K pathway interactions as prior information, and added 4116

edges that were proposed by the CNR algorithm based on hyperparameter selected in a leave-one-out117

cross validation loop (Figs 3A and S2A). The targets of some inhibitors were not measured in our panel.118

These were modelled as affecting the first downstream target that was measured. For instance, since119

both IGF1R and PI3K are not measured in our panel, IGF1R inhibition was modelled as targeting AKT1120

directly. The model gave a good fit to the data (Pearson correlation = 0.91) (Figure 3B). To assess the121

significance of this fit, we compared the residuals of the model to 1000 models with the same number of122

randomly selected edges. Each of these 1000 random models had a worse fit than our model (p < 0.001,123

Figure 3C).124

CNR aims to identify the most relevant differences between cell lines by penalizing quantitative125

differences. These differences can be either the edges in the network, or the strength of inhibition of126

a drug to its direct target. This way, we identified 13 relevant differences between the parental and127

PI3KH1047R cells. These differences are highlighted in blue in Figure 3A. The numbers next to the edges128

indicate the edge-strengths of the parental (purple) and PI3KH1047R (green) cells. (For visualization129

purposes, only the strength of edges that differ between the cell lines are indicated. For full model130

visualization, see Figure S2B). The differences in target-inhibition strength between the cell lines are131

shown in Figure 3D-G and Figure S2D. We assessed the significance of the identified differences by132

comparing the residuals of our model to that of 1000 models with the same number of randomly selected133
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Figure 3: Mutant specific network reconstructions show expected differences. A. Comparative Network
Reconstruction (CNR) of MCF10A parental and PI3KH1047R cells. Edges and direct perturbation effects that differ
between the two cell lines are highlighted in blue. Gray edges do not differ between the cell lines. Edge strengths
of the differing edges are represented by the purple (parental) and green (PI3KH1047R) numbers. Ovals indicate
nodes. For visualization purposes, only direct perturbations effects that differ between the cell are indicated. As
expected, the most and the strongest differences between the cell lines are located close to AKT in the network
(note that PI3K is not measured). B. Comparison of network model fit with measured signaling response shows
that the network model can explain the signaling response data well (Pearson correlation 0.91). C. Distribution of
the root mean square of residuals of models optimized using a random topology (gray), compared to that of the
actual model used (red). All 1000 random topology models had the same number of edges as the actual model, and
for all 1000 the fit was worse than for the actual model. D-G. The estimated direct effect of IGF1R (C), mTOR (D),
PI3K (E) and AKT (F) inhibition on AKT activity as a function of applied inhibitor concentration. Points indicate the
estimated effects of the concentrations used in the CNR reconstruction, the dashed lines indicate the interpolated
curves between these points (c.f. Materials and Methods, Equation 5). IGF1R, PI3K, and mTOR inhibition were
modelled as directly affecting AKT because their actual targets were not measured.

differences. None of the random models had a better fit to the data (Figure S2C), indicating that the134

identified differences are, indeed, the most relevant differences.135

As expected, most of the identified differences are located close to AKT in the network (Figure 3A,136

note that PI3K is not measured). Specifically, in the PI3KH1047R cells, AKT is less sensitive to changes137

in EGFR and unresponsive to IGF1R inhibition (Figure 3A and D), which is consistent with PI3K being138

constitutively activated. Additionally, AKT is less responsive to PI3K and mTOR inhibition (Figure 3E,F).139

At the IC50, AKT is also less sensitive to AKT inhibition, but when AKTi is applied at its IC90, the140

PI3KH1047R cells show a larger response (Figure 3G). This last observation might be explained by the141

higher baseline AKT activity of PI3KH1047R cells, since if AKT activity is reduced to a similar absolute142

level, the fold-change of AKT in the mutant is higher.143

In order to predict the signaling-response to drugs combined at arbitrary concentrations, we param-144

eterized the relation between target inhibition and drug concentration using the direct target-inhibition145

estimates for drug k on node i for the IC50 and IC90 we obtained from the network reconstructions (c.f.146

Materials and Methods, Equation 5). The dashed lines in Figs 3D-G and Figure S2C indicate the curves147

we parametrized in this way.148
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Short-term signaling response is informative for long-term cell viability149

To prioritize multi-drug combinations, the short term response of the signaling network to a drug150

perturbation needs to be related to its longer term effect on cell viability. Important open questions here151

are: Is the short-term signaling response predictive to longer term cell viability? If so, which signaling152

outputs are most predictive, and what is their relation? The association between the individual node-153

responses and cell viability were moderate even for the most strongly associated nodes, phospho-AKT154

(pAKT) and phospho-ERK (pERK), which had a Pearson correlation with cell viability of 0.36 and 0.42,155

respectively (Figure 4A). The responses of all other nodes also correlated somewhat with cell viability156

(Figure S3A), but clearly no single node alone is a good predictor for cell viability.157
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Figure 4: Short term signaling response is predictive for longer term cell viability. A. Scatterplot of cell
viability against log2-fold changes in AKT (left panel) and ERK (right panel) activity in response to drug treatments.
The Pearson correlations are 0.36 and 0.42 respectively. B. Scatterplot of model fit against measured cell viability
based on a model where both ERK and AKT response are used to explain cell viability (c.f. Materials and Methods,
Equation 4). The Pearson correlation between fit and measurement is 0.71.

We therefore investigated whether a model combining the response of multiple nodes described158

the cell viability data better. To this end, we first fitted a linear model using either all nodes or only the159

response of pERK and pAKT. Both models gave a reasonable fit to the data, but there was a clear160

structure in the relation between the residuals and the fitted values (Figure S4A and B), indicating that161

a non-linear model might be more suitable. To test this, we fitted a number of biologically motivated162

non-linear models relating the combined response of pAKT and pERK to cell viability. These non-linear163

models that all have the property that cell viability goes to 0 if either pERK or pAKT are fully inhibited (c.f.164

Materials and Methods, Equation 4). The biological assumption behind this is that both ERK and AKT165

activation are required for cell survival and growth.166

To select the best model, we compared the standardized residuals of the model fits and the L2-167

norm of the residuals in a leave one-out cross-validation loop of the different models (Table 1). All168

non-linear models had clearly better performance than the linear models, despite having equal or less169

free parameters . While overall the predictions of the different non-linear models were fairly similar (with170

Pearson correlations of their predictions between 0.92 and 0.99, Figure S4D), a Michaelis-Menten like171

model of the following form172

vk =
1

1− RAKT ,k
KM,AKT

− RERK,k
KM,ERK

(1)

had the overall best performance on both metrics and shows no clear structure in the residuals (Fig-173
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ure S4C). Here, vk is the cell viability and RERK,k and RAKT ,k are the log2-fold changes of pERK and174

pAKT upon drug treatment k . The parameters KM,ERK and KM,AKT can be interpreted as the log2-fold175

changes of pERK and pAKT that cause 50% inhibition of cell viability. They differ slightly between the176

two cell lines, but the bootstrapped 95% confidence intervals strongly overlap (Figure S4E), so we do not177

want to overinterpret these differences. Importantly, this model gave a good fit to the data (Figure 4B),178

with a Pearson correlation between fitted and measured viability of 0.71.179

Function Type ff (Model fit) L2-norm (LOOCV)

vk ∼ 1

ffi“
1− RAKT ,k

KM,AKT
− RERK,k

KM,ERK

”
Non-linear 0.20 0.042

vk ∼ 1

ffih“
1− RAKT ,k

KM,AKT

”
·
“
1− RERK,k

KM,ERK

”i
Non-linear 0.20 0.045

vk ∼ 3

ffi„
1+ 2

− RERK,k
KM,ERK + 2

− RAKT ,k
KM,AKT

«
Non-linear 0.21 0.048

vk ∼ 4

ffi»„
1+ 2

− RERK,k
KM,ERK

«
·
„
1+ 2

− RAKT ,k
KM,AKT

«–
Non-linear 0.21 0.048

1− vk ∼
P

i∈nodes ˛iRik Linear 0.21 0.061
1− vk ∼ ˛AKT ·RAKT ,k + ˛ERKRERK,k Linear 0.28 0.093

Table 1: Comparison of goodness of fit of functions relating signaling response to cell viability. ff is the
mean residual standard error of the model fitted to the full data. The L2-norm is calculated over predictions made in
a leave-one-out cross-validation loop. The non-linear models predict viability v from the log2-fold change of pERK
and pAKT (RERK and RAKT ) whereas the linear models fit the inhibition (1− v ). The table is ordered from best to
worst fit.

Together, these results indicate that short-term signaling response is informative for longer-term180

drug response, that pAKT and pERK are the most informative readouts, and that the relation between181

signaling response and viability is non-linear.182

Prediction and validation of selective multi-drug-combinations183

We then combined the network models (Figure 3A) with the parametrization of the signaling-viability184

model (Equation 4) to simulate the effect on cell viability of unseen 3-drug combination at unseen185

drug-concentrations. When applying this model to the training data, the Pearson correlation between186

measured and fitted cell viability was 0.78 (Figure 5A). We used this model to prioritize multi-drug187

combinations and their dosing that maximize the selectivity, defined as the difference in viability between188

the parental and the PI3KH1047R cells.189

To do this, for all possible 3-drug combinations we optimized the concentrations such that the190

viability of the PI3KH1047R mutants is minimized, under the constraint that the viability of the parental191

cells remains above 0.8 relative to DMSO control (c.f. Materials and Methods, Equation 7). To look192

for low-dose drug combinations, we added the constraint that each drug can be used maximally at193

its IC10. However, no drug-combination was predicted to be selective for the PI3KH1047R cells at any194

combination of concentrations. Since none of the single drugs shows selectivity towards the PI3KH1047R
195

cells (Figure 2C), this is not very surprising. Moreover, our network reconstructions indicated that the196

main effect of the PI3KH1047R mutation is to render the MCF10A parental line independent of growth-197

factor stimulation. Indeed, when we grew MCF10A parental and PI3KH1047R cells in the media without198

8

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2022. ; https://doi.org/10.1101/2020.12.17.423240doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423240
http://creativecommons.org/licenses/by-nc/4.0/


0.0

0.2

0.4

0.6

0.8

1.0EGFRi
IGF1Ri

RAFi
MEKi
ERKi

GSK3i
PI3Ki
AKTi

mTORi

Drug concentration (relative to IC10)

Predicted anti-selectivity0.0 0.2 0.4 0.6 0.8 1.0
Measured viability

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tte

d 
via

bil
ity

f(AKT,ERK)

EGFRi
IGF1Ri

RAFi
MEKi
ERKi

GSK3i
PI3Ki
AKTi

mTORi

Drug concentration (relative to IC10)

Predicted anti-selectivity

B

D

IGF1R
monotreatment0.15

0.20

0.25

0.30

IGF1Ri +
2 other drugs

M
ea

su
re

d 
an

ti−
se

le
ct

iv
ity

E F

CA

0.4

0.6

0.8

1.0

IG
F1R

i

EGFRi+I
GF1R

i+P
I3K

i

ERKi+I
GF1R

i+P
I3K

i

GSK3i+
IG

F1R
i+P

I3K
i

ERKi+I
GF1R

i+m
TO

Ri

AKTi+E
RKi+I

GF1R
i

AKTi+I
GF1R

i+P
I3K

i

IG
F1R

i+M
EKi+P

I3K
i

IG
F1R

i+m
TO

Ri+R
AFi

GSK3i+
IG

F1R
i+M

EKi

IG
F1R

i+P
I3K

i+R
AFi

EGFRi+I
GF1R

i+m
TO

Ri

IG
F1R

i+M
EKi+m

TO
Ri

IG
F1R

i+m
TO

Ri+P
I3K

i

GSK3i+
IG

F1R
i+m

TO
Ri

AKTi+I
GF1R

i+m
TO

Ri

AKTi+E
GFRi+I

GF1R
i

IG
F1R

i+M
EKi+R

AFi

Vi
ab

ilit
y 

(R
el

at
ive

 to
 D

M
SO

)

Parental
PI3KH1047R

****

0.0

0.1

0.2

0.3

Control Predicted
anti−selective

M
ea

su
re

d 
an

ti−
se

le
ct

iv
ity

Predicted anti-selective combination Control combinations

Figure 5: Experimental validation of anti-selective drug combination predictions. A. Scatterplot comparing
full model fit (network model combined with signaling response-viability mapping) to the training data. The Pearson
correlation between fit and measurement is 0.78. B-C. Overview of drug combinations that we predicted to be
anti-selective (B) and non-selective (C) based on this model. Drug concentrations are color-coded relative to their
IC10. Bottom row indicates predicted anti-selectivity (defined as the difference in viability between PI3KH1047R and
parental cells) of the combination. These combinations were subsequently tested in the validation experiments.
D. Box plot comparing the measured anti-selectivity of the drug combinations predicted to anti-selective (panel
B) or non-selective (panel C). Each point represents the mean anti-selectivity of one drug combination, which
were each tested in 8 replicates. The difference is highly significant (Wilcoxon signed-rank test p < 10−7). E.
Comparison of the measured anti-selectivity of IGFRi mono treatment, indicated by the horizontal gray line, with the
selected IGF1Ri-containing 3-drug combinations (red box plot). IGF1Ri containing combinations are significantly
more anti-selective than IGF1Ri mono treatment (one-sample t-test p < 10−7). F. Box plots comparing cell-viability
of parental and PI3KH1047R cells of the 11 (out of 17) IGF1Ri containing drug-combinations that are significantly
more anti-selective than IGF1Ri mono treatment.

growth-factor, this is what we observed (Figure S5).199

To nonetheless validate our computational approach, we then looked for drug-combinations that we200

predicted to be anti-selective, i.e. be more effective in the parental cells than in the PI3K-mutants. In our201

optimizations, we found 30 such combinations with an anti-selectivity > 0.1 (Figure 4B). Interestingly,202

IGF1R inhibition was part of all of the 17 combinations that we predict to be most anti-selective, while203

its anti-selectivity in the training data was only modest (Figure 2C). However, the difference in signaling204

response, and specifically pAKT, was much more pronounced (Figure 2B), and this latter aspect gets205

picked up in the network reconstructions (Figure 3A). A particularly interesting example is the combination206

IGF1Ri + PI3Ki + GSK3i. Here, both PI3Ki and GSK3i at their lower dose (IC50) show no anti-selectivity,207

yet this combination is predicted to be one of the more anti-selective ones. (Figure 5B, highlighted). As208

a control, we also selected 44 combinations that we predicted to be non-selective for either cell line209

(Figure 5C). A conservative power analysis, based on the accuracy of the viability predictions and the210

effect size of the anti-selectivity predictions, indicated a power of 90% to detect an overall difference in211

selectivity between the anti-selective and control combinations.212

We then treated the parental and PI3KH1047R cells with the 30 predicted to be anti-selective and213
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44 control combinations and measured their viability (Table S5). Combinations that we predicted to be214

anti-selective were indeed so, and this was highly significant when compared to the non-selective control215

combinations (Wilcoxon signed-rank test p < 10−7, Figure 5D). Individually, 25 of the 30 combinations216

predicted to be anti-selective were indeed significantly so (one-sided t-test p < 0.05, Table S6).217

As mentioned above, of the 30 predicted-to-be-anti-selective combinations we tested, 17 contain the218

IGF1R inhibitor, which is also mildly anti-selective as monotherapy. (None of the other inhibitors showed219

anti-selectivity as a monotherapy at their IC10, Figure S6). To rule out the possibility that our result is220

mainly driven by the anti-selectivity of IGF1Ri mono-therapy, we compared the 17 IGF1Ri containing221

drug combinations with IGF1Ri monotherapy. Figure 5E shows that each of the IGF1Ri containing222

combinations we tested (red box plot) is more anti-selective than IGF1Ri treatment alone (indicated by223

horizontal gray line). This effect is highly significant (one-sample t-test p < 10−7). When looking at the224

individual drug combinations, we found that 11 of the 17 IGF1Ri containing combination treatments are225

significantly more anti-selective than IGF1Ri monotherapy (one sided t-test p < 0.05, Figure 5E, Table226

S7). This also includes the IGF1Ri + PI3Ki + GSK3i combination highlighted above, which is the second227

most anti-selective combination when ranked by effect size.228

These results indicate that our pipeline is capable of making an accurate prioritization of mutation-229

specific low-dose multi-drug combinations. Importantly, these predictions are not always obvious, and230

would not have been possible without the help of mathematical models of the signal transduction networks231

and their relation to cell viability.232

Discussion233

In this study, we have shown that it is possible to predict which multiple low dose (MLD) 3-drug combina-234

tions are likely to have a mutant specific impact based on a combination of single and 2-drug high dose235

drug response measurements and mathematical modeling. We have used drug-perturbation experiments236

to reconstruct, quantify and compare signal-transduction networks of an isogenic cell line pair, and linked237

the responses of these networks to cell viability. No single signaling readout alone is highly predictive, but238

a non-linear model combining the response of ERK and AKT gave a good fit. Importantly, this showed239

that the short-term signaling response is predictive for cell viability, which is measured in longer-term240

experiments. Based on the so-obtained models we were able to predict and validate drug combinations241

that are were specifically effective in one cell line but not another, even though the differences between242

the cell lines are subtle.243

One of our aims was to identify selective drug combinations, i.e. combinations that inhibit cells244

with an oncogenic PI3KH1047R mutation more strongly then to their parental counterparts. However,245

according to our model, no such drug combination exist for this particular model system. The absence246

of oncogene-specific sensitivities is presumably due to an absence of “oncogene addiction” [1] to the247

PI3K mutation (or any other) in the PI3KH1047R MCF10A cells. In the absence of drug-treatment the248

mutation has no effect on proliferation under the growth conditions we used, and this mutation therefore249

presumably does not induce any vulnerabilities in this cell line. Our network reconstruction suggests that250
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the main effect of the PI3KH1047R mutation on MCF10A cells is to make them growth-factor independent,251

consistent with previous observations [30]. Hence, the inability to identify selective drug combinations is252

due to the particularities of the MCF10A isogenic cell line pair model, and not due to the computational253

model.254

While isogenic cell line pairs with a mutation knocked in are attractive models because they allow255

study of the effect of the mutation in isolation, they may thus not always be the best model to study256

oncogene-specific sensitivities. An interesting alternative approach might be to use cancer cell lines257

of which one of the driver mutations is removed [31–33]. Alternatively, a larger, more heterogeneous258

panel of cell lines with and without a particular biomarker could be used [19, 22, 34, 35]. In this scenario,259

one would look at commonalities in the signaling network response of the cell lines with the biomarker260

compared to the lines without it, and use this to propose combinations that are selective of the biomarker261

carrying cell lines. Finally, the use of matched tumor and normal organoids from the same patient could262

be used for truly personalized models.263

Our aim more generally was to develop a combined experimental and computational pipeline to264

prioritize drug combinations that have a biomarker specific effect, and in this we did succeed. The majority265

of the combinations that we predicted to be anti-selective indeed were so in validation experiments. In266

fact, we succeeded in validating our predictions despite the fact that the differences between the cell lines267

in the training data were very subtle. It is to be expected that it will be easier to find mutation specific drug268

combinations when the effect of a mutation on the signaling networks and on cell viability is stronger.269

All of the most strongly anti-selective drug combinations we identified contained the IGF1R inhibitor,270

but as monotherapy low-dose IGF1Ri is only mildly anti-selective. More generally, which multi-drug271

combinations are most selective or anti-selective is often far from obvious. For instance, while in272

the training data PI3Ki and GSK3i at their lower dose (IC50) individually show no selectivity towards273

the parental cells at all, the combination IGF1Ri + PI3Ki + GSK3i is one of the most selective drug274

combinations, both as predicted by our model and as measured validation experiments. This underscores275

the need for mathematical modelling in prioritizing promising combinations.276

In conclusion, here we have shown that it is feasible to make accurate, non-trivial predictions about277

(anti-)selectivity of multi-drug combinations based on mathematical models of signaling transduction278

networks. In combination with suitable model systems, this framework makes it possible to rationally279

design biomarker-selective low-dose multidrug combinations.280

Materials and Methods281

Cells and cell culture282

Human parental and PI3KH1047R/+ MCF10A cell lines were obtained from Horizon discovery (HD PAR-283

003 and HD 101-011). Cells were cultured in DMEM/F-12 including 2.5 mM L-glutamine and 15 mM284

HEPES, supplemented with 5% horse serum, 10 µg/mL insulin, 0.5 µg/mL hydrocortisone and 0.1 µg/mL285

cholera toxin. Mycoplasma tests were performed every 2 months.286
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Reagents and compounds287

The following inhibitors were used in this study: EGFRi (Gefitinib), IGF1Ri (OSI-906), RAFi (LY3009120),288

MEKi (Trametinib), ERKi (SCH772984), GSK3i (3F8), PI3Ki (BKM120), AKTi (MK-2206), mTORi289

(AZD8055). All inhibitors were purchased from MedKoo Biosciences. The luminex antibodies against290

CREB1S133, EGFRY1068, ERK1T202/Y204, GSK3S21/S9, MEK1S217/S221, p70RSKT389, PRAS40T246 and291

RPS6S235 were purchased from ProtATonce Ltd. The luminex antibody against AKT1T473 was purchased292

from BioRad.293

Drug perturbation and validation experiments294

All the cell-viability measurements were performed in biological triplicates, each with 2 technical replicates,295

using black-walled 384-well plates (Greiner 781091). Cells were plated at the optimal seeding density296

(200 cells per well) and incubated for approximately 24 hours to allow attachment to the plate. Drugs297

were then added to the plates using the Tecan D300e digital dispenser. 10 µM phenylarsine oxide298

was used as positive control (0% cell viability) and DMSO was used as negative control (100% cell299

viability). Three days later, culture medium was removed and CellTiter-Blue (Promega G8081) was added300

to the plates. After 2 hours incubation, measurements were performed according to manufacturer’s301

instructions using the EnVision (PerkinElmer). Viabilities were normalized per cell line according to302

(treatment−PAOmean)/(DMSOmean −PAOmean). IC50 and IC90 values were fitted using the R-package303

MixedIC50 [36] (code available at https://github.com/NKI-CCB/MixedIC50).304

The signaling response measurements were performed using 6-well plates (Greiner 657165). 300K305

cells per well were plated and incubated for approximately 24 hours to allow attachment to the plate.306

Drugs were then added to the plates and protein was harvested after 2 hours using the Bio-Plex Pro307

Cell Signaling Reagent Kit (BioRad 171304006M) according to the manufacturer’s instructions. Protein308

concentration of the samples was normalized after performing a Bicinchoninic Acid (BCA) assay (Pierce309

BCA, Thermo Scientific), according to the manufacturer’s instructions. Cell lysates were analyzed310

using the Bio-Plex Protein Array system (Bio-Rad, Hercules, CA) according to the suppliers protocol311

as described previously [19]. Intensities were normalized by subtracting blanks for each epitope and312

correcting for protein concentration.313

Computational pipeline and data analysis314

Comparative network reconstruction315

MAPK and AKT signaling networks of the parental and PI3KH1047R mutant cell lines were reconstructed316

based on the Luminex drug-response data using Comparative Network Reconstruction (CNR)[17]. Briefly,317

CNR is a network reconstruction method based on Modular Response Analysis [37]. It links the matrix318

of measured node responses to a set of perturbations, Rx (where Rx
ik is defined as log2 fold change319

of node i in response to perturbation k in cell line x) to the matrix unobserved interaction strengths rx320

(where rxij is the logarithmic partial derivative of node i with respect to node j in cell line x) and direct321
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perturbation effects sx (with sxik the scaled direct effect of perturbation k on node i in cell line x). These322

matrices are related through323

rx ·Rx +−sx = 0, ∀x . (2)

In principle, rx and the values of the elements in sx (the targets of the inhibitors is assumed to known)324

can be obtained solving this set of equations, but in practice it is often under-determined. CNR solves325

problem by reformulating it as optimization procedure to find a model that balances data-fit with a model326

complexity by penalizing the number of edges (non-zero entries in r) and differences between cell lines327

(entries in r that are quantitatively different between the cell lines). The optimization problem reads:328

Minimize:
X
n

X
i ,j

X
x

›x 2
in + ” · Iedge

i j + „ · (Idiff
i j + Isdiff

in )

Subject to:
X
k

rxik ·Rx
kn + sxin = ›xin ∀i , j , n, x

I
edge
i j = 0⇒ rxij = 0 ∀i , j , x

Idiff
i j = 0⇒ rxij − rmean

i j = 0 ∀i , j , x

Isdiff
in = 0⇒ sxin − smean

in = 0 ∀i , n, x

rmean
i j = 1/Ncell lines

X
x

rxij ∀i , j

smean
in = 1/Ncell lines

X
x

sxin ∀i , n

Iedge, Idif, Isdiff ∈ {0, 1}

n ∈ {perturbations}; i , j , k ∈ {nodes}; x ∈ {parental,PI3KH1047R}

(3)

where the ›s are the model residuals. Solving this optimization problem gives the matrices r and s from a329

given R.330

Additional constraints reflecting the experimental design were added to the CNR problem.331

• sik is negative and stronger for higher drug concentrations, i.e. 0 > sik ([IC50]) > sik ([IC90]).332

• Each inhibitor-target pair has a single indicator for the difference in perturbations strengths for both333

inhibitor concentrations, i.e. if Isdiff
ik = 0⇒ s

parental
ik ([IC50]) = sPI3K

ik ([IC50]) and sparental
ik ([IC90]) =334

sPI3K
ik ([IC90]).335

• Most inhibitors are modelled as a perturbation to their direct target, i.e. EGFRi, MEKi, ERKi, GSK3i336

and AKTi are modelled as perturbations to EGFR, MEK1, ERK1, GSK3 and AKT1 respectively.337

• The MEK inhibitor interferes not only with MEK phosphorylation, but also its catalytic efficiency.338

Hence, MEK inhibition was additionally modelled also modelled as perturbation to it’s downstream339

proteins (c.f. [17]).340

• Some inhibitors target kinases that were not measured in our assay. The effect of these inhibitors341

was modelled as a perturbation to the (canonical) downstream nodes of the kinases being inhibited.342
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Specifically, IGF1R inhibition was modelled as a perturbation to MEK1 and AKT1, PI3K inhibition343

as a perturbation to AKT1, RAF inhibition as a perturbation to MEK1, and mTOR inhibition as a344

perturbation to AKT1 and p70S6K.345

Prior information about network topology was provided setting the indicators of a set of canonical346

MAPK and PI3K pathway interactions Iedge
i j = 1. These indicator constraints are added to the optimization347

problem described in Equation 3. The corresponding edge-strengths, together with those of edges that348

might be added to the network, are found by solving the optimization problem. Hyperparameter were349

set to ” = 0.1 and „ = 2.0 based on a leave one out cross validation loop. Single drug treatments were350

not included in the leave one out cross validation because each drug concentration needs to be present351

in at least one perturbation to estimate the corresponding parameter. The final model was obtained by352

restricting the topology to the prior network information with addition of the 4 edges that were identified in353

the leave one out cross-validation, and then performing the optimization with „ = 2.0.354

The full Comparative Network Analysis can be found in the Jupyter notebook under the following link:355

https://github.com/evertbosdriesz/cnr-selective-combos/blob/master/python/cnr-mcf10a-pi3k.ipynb356

Randomized models357

To obtain the distribution of residuals for random network topologies shown in Figure 3C, 1000 models358

with a random topology were generated by randomly selecting 16 (out of all possible 72) edges setting359

the corresponding indicator to Iedge
i j = 1 and setting the indicators of all other edges were set to 0. To360

focus on the effect of model topology only, we did not allow for any difference between the cell lines361

by setting „ to infinity using cplex.infinity. Subsequently, edge weights were obtained by solving362

the CNR optimization problem described in Equation 3 and corresponding RMS of residuals, defined363

as
qP

i ,n,x ›
x
in2/N, was calculated. To make a fair comparison, we also calculated the residual of our364

actual model without any differences between the cell lines. To this end, we set the indicators of the365

edges of the actual model Iedge
i j = 1 and all others to 0, set „ = cplex.infinity, and re-optimized 3.366

Similarly, to obtain the distribution of residuals for random differences between the cell lines shown in367

Figure S2B, 1000 models with randomly selected Idiff and Isdiff were generated. For all these models,368

the topology was first fixed to the topology of the actual model by setting the indicators Iedge
i j = 1 for the369

edges that are present in the actual model, and all others to 0. Subsequently, 13 randomly selected370

indicator for differences between the cell lines Idiff and Isdiff were set to 1, the others to 0, and the371

optimization in Equation 7 was solved using these constraints.372
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The relation between signaling output and cell viability373

The viability (relative to DMSO control) upon perturbation k, vk , were fitted to the following functions:

1− vk =
X

i∈nodes
˛iRik (4a)

1− vk = ˛AKT ·RAKT ,k + ˛ERKRERK,k (4b)

vk =
1

1− RAKT ,k
KM,AKT

− RERK,k
KM,ERK

(4c)

vk =
1

1− RAKT ,k
KM,AKT

× 1

1− RERK,k
KM,ERK

(4d)

vk =
3

1+ 2
− RERK,k

KM,ERK + 2
− RAKT ,k

KM,AKT

(4e)

vk =
2

1+ 2
− RERK,k

KM,ERK

× 2

1+ 2
− RAKT ,k

KM,AKT

(4f)

Where RAKT ,k and RERK,K are the log2-fold changes of pAKT and pERK relative to DMSO control374

upon perturbation k , respectively. KM,AKT and KM,ERK are the parameters to be fitted for the nonlinear375

equations and can be interpreted as the RAKT ,k and RERK,k values for which the viability is reduced by376

50% (or 25% and 33% for equations 4e and 4f, respectively). Fitting was performed using the lm and nls377

functions of R [38] for the linear and non-linear models, respectively. Mean residual standard errors (ff)378

were obtained using the sigma function. Leave one out cross-validation was performed on a per cell-line379

basis. Bootstraps were performed using the function bootstrap from the ‘rsample’ package [39].380

All code and details for this analysis can be found in the RMarkdown-file under the following381

link: https://github.com/evertbosdriesz/cnr-selective-combos/blob/master/R/02-perturbations/mapping-382

signaling-drugresponse.Rmd383

Multi-drug response simulations and prediction of selective 3-drug combinations384

CNR gives an estimate of the direct target inhibition of each drug only for the concentrations at which the385

drug was applied. To be able to simulate the effect of unseen drug concentrations, the relations between386

the applied concentration of drug k , [Ik ], and target inhibition of node i in response to this, sik were fitted387

to the following function for each inhibitor-target pair,388

sik ([Ik ]) =
Imax ,ik ∗ [Ik ]
KI,ik + [Ik ]

. (5)

The parameters Imax ,ik and KI,ik were fitted to this function using the sik -values for the [Ik ] = IC50 and389

IC90 obtained from the CNR optimizations with the curve_fit function from the python ‘scipy.optimize’390

package [40]. For convenience all drug concentrations were normalized to the highest concentration391

applied (the IC90), and in all analyses only interpolations and not extrapolations are used (0 ≤ [I] ≤ 1).392

RA+B+C , the vector of simulated log2-fold changes in response to a perturbation with 3 drugs A, B393

15

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2022. ; https://doi.org/10.1101/2020.12.17.423240doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423240
http://creativecommons.org/licenses/by-nc/4.0/


and C, at concentration [IA], [IB ] and [IC ] was calculated as394

RA+B+C = r−1 (sA([IA]) + sB([IB ]) + sC([IC ])) , (6)

to obtain RAKT ,A+B+C and RERK,A+B+C . These were then used to calculate viability according to395

Equation 4. Together, this allows for simulating the effect on cell viability of drug combinations and396

concentrations that were not seen in the training data.397

For each possible 3-drug combination, the selectivity for cell line x relative to y was optimized by

solving the following optimization problem:

Minimize: vxA+B+C

Subject to: v
y
A+B+C ≥ v

y ,min

0 < [Ik ] < IC10 k ∈ {A,B,C}

(7)

where vy ,min is the cutoff used for the minimal viability that cell line y should have under the 3-drug398

treatment, and that we (somewhat arbitrarily) set to 0.8.399

Similarly, unselective control combinations were obtained by solving the optimization problem:

Minimize:
`
vxA+B+C − 0.8

´2
+
`
v
y
A+B+C − 0.8

´2
Subject to: 0 < [Ik ] < IC10 k ∈ {A,B,C}

(8)

for all possible 3-drug combinations.400

A power analysis of the predictions was performed by performing 1000 simulations with addition401

gaussian noise with a mean 0 and a standard deviation 0.25 (based on the residuals of our viability402

predictions) to the results, and counting in what fraction their was an observable difference between the403

two groups.404

The optimizations were performed in Wolfram Mathematica [41] (version 12.0) using the NMinimize405

function. The full optimization and power analysis can be found in the Mathematica notebook under the406

following link: https://github.com/evertbosdriesz/cnr-selective-combos/blob/master/mathematica/optimize-407

combinations.nb408

Data and Code availability409

All data and code required to reproduce the results and figures in this paper are available at410

https://github.com/evertbosdriesz/cnr-selective-combos.411
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of fitted values for the model fits. A. Linear model with all epitopes as predictor. B. Linear model with only RAKT and
RERK as predictor. C. Non-linear model that gave the best fit ( Equation 4c). D. Pearson correlation between model
predictions of all models tested show that the predictions of all non-linear models are highly similar. Predictions are
obtained from the leave-one-out cross-validation. The selected model (Equation 4c) is highlighted in red. The plot is
generated using the corrplot-function of the corrplot R-package [42]. E. Bootstrapping intervals of the estimated
values for the parameters KM,AKT and KM,ERK in Equation 4c
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Figure S5: Growth of MCF10A parental and PI3KH1047R cells in different growth media. In contrast to the parental
cells the PI3K mutant cells grow well in the absence of serum if either Insulin or EGF is provided.
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Figure S6: Viability of the low-dose single-drug controls, all measured at their IC10. Except for IGF1Ri, none of the
drugs show selectivity towards the parental cells. Treatments were performed in 8 replicates.
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