

RUNNING HEAD: Expectation violation dynamically modulates memory states

1 Experiencing surprise: the temporal dynamics of its impact on memory

2

3

4 Darya Frank^{1,2}, Alex Kafkas¹, Daniela Montaldi¹

5

6 ¹Division of Neuroscience and Experimental Psychology, School of Biological Sciences,
7 The University of Manchester, UK

8 ²Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad
9 Politécnica de Madrid, Spain

10

11

12

13

RUNNING HEAD: Expectation violation dynamically modulates memory states

14 Abstract

15 To efficiently process information, the brain shifts between encoding and retrieval
16 states, prioritising bottom-up or top-down processing accordingly. Expectation
17 violation before or during learning has been shown to trigger an adaptive encoding
18 mechanism, resulting in better memory for unexpected events. Using fMRI we explored
19 (1) whether this encoding mechanism is also triggered during retrieval, and if so, (2)
20 what the temporal dynamics of its mnemonic consequences are. Male and female
21 participants studied object images, then, with new objects, they learned a contingency
22 between a cue and a semantic category. Rule-abiding (expected) and violating
23 (unexpected) targets and similar foils were used at test. We found interactions between
24 previous and current similar events' expectation, such that when an expected event
25 followed a similar but unexpected event, its performance was boosted, underpinned by
26 activation in the hippocampus, midbrain, and occipital cortex. In contrast, a sequence of
27 two unexpected similar events also triggered occipital engagement, however, this did
28 not enhance memory performance. Taken together, our findings suggest that when the
29 goal is to retrieve, encountering surprising events engages an encoding mechanism,
30 supported by bottom-up processing, that may enhance memory for future related
31 events.

32

33 Significance statement

34 Optimising the balance between new learning and the retrieval of existing knowledge is
35 an ongoing process, at the core of human cognition. Previous research into memory
36 encoding suggests experiencing surprise leads to the prioritisation of the leaning of new
37 memories, forming an adaptive encoding mechanism. We examined whether this
38 mechanism is also engaged when the current goal is to retrieve information. Our results
39 demonstrate that an expectation-driven shift towards an encoding state, supported by
40 enhanced perceptual processing, is beneficial for the correct identification of
41 subsequent expected similar events. These findings have important implications for our
42 understanding of the temporal dynamics of the adaptive encoding of information into
43 memory.

44

45

46

RUNNING HEAD: Expectation violation dynamically modulates memory states

47 Introduction

48 To efficiently process inputs, the brain shifts between top-down and bottom-up
49 streams, balancing processing of sensory inputs versus utilisation of stored
50 representations. This is reflected by the existence of distinct encoding and retrieval
51 states (Buzsáki, 2002). Bottom-up processing supports the hippocampal encoding state,
52 prioritising transformation of perceptual inputs into memories, while top-down
53 processing supports a retrieval state by facilitating access to stored information. The
54 specific mechanisms that govern encoding-retrieval shifts, which may or may not
55 function competitively, are not well understood, but will be driven, at least in part, by
56 the factors that induce each memory state. Whilst there is ample evidence that an
57 adaptive encoding state is triggered upon experiencing discrepancies between expected
58 and encountered events, it remains unclear whether such an implicit learning
59 mechanism might also be engaged when the dominant goal is to retrieve, rather than
60 encode. Using behavioural (Experiment 1) and fMRI (Experiment 2) data, we examine
61 whether surprise produced by expectation violation at retrieval, results in a shift
62 towards an encoding state, accompanied by increased perceptual processing; and
63 whether this occurs at the expense of retrieval. We also investigate the extended
64 consequences of this expectation violation, and the potential encoding-retrieval
65 iterative shifts it might generate, by examining trial-by-trial recognition of subsequent
66 similar events.

67

68 Surprise, produced by expectation violation, has been shown to engage hippocampal
69 encoding (Axmacher et al., 2010; Kafkas and Montaldi, 2015; Long et al., 2016; Frank et
70 al., 2020), which together with the midbrain dopaminergic system (Lisman and Grace,
71 2005; Shohamy and Wagner, 2008; Kafkas and Montaldi, 2018a) and enhanced
72 perceptual processing (Stoppel et al., 2009; Hawco and Lepage, 2014; Kafkas and
73 Montaldi, 2014, 2015), supports adaptive memory formation. Evidence for this adaptive
74 mechanism comes mostly from paradigms in which expectation violation takes place
75 before or during learning (Li et al., 2003; Garrido et al., 2015; Long et al., 2016; Greve et
76 al., 2017; Kafkas, 2021). Therefore, any additional resources diverted towards encoding
77 in these scenarios is likely to boost later memory performance (e.g. attention effects see
78 Aly and Turk-Browne, 2017). However, to demonstrate the ubiquity of an adaptive
79 encoding mechanism, it is critical to provide evidence of a shift towards encoding also

RUNNING HEAD: Expectation violation dynamically modulates memory states

80 during retrieval. This is likely to shed light on the effects of the rapid and implicit real-
81 life interplay between these states. Under these circumstances, engaging encoding still
82 serves an adaptive purpose, but it might not be 'beneficial' in real-time.

83

84 Given the malleability of memories triggered by surprise (Kim et al., 2014), it becomes
85 important to consider what the mnemonic consequences of a shift towards encoding
86 may be. Should expectation violation trigger an encoding state, at the expense of a
87 memory search, it might modulate processing of the unexpected event. This is
88 consistent with the view that the hippocampus continuously shifts between encoding
89 and retrieval states (Buzsáki, 2002; Hasselmo et al., 2002). This system can be likened
90 to a pendulum swinging rhythmically between the two memory states, optimising
91 information processing. Should situational factors disrupt the on-going swing between
92 states, favouring one over another, the result can be a change in memory efficiency.
93 Previous research has shown that an explicit strategy cue fosters a hippocampal trade-
94 off between encoding and retrieval of information (Richter et al., 2016).

95

96 We examined whether expectation violation at retrieval spontaneously engages an
97 encoding state, and if so, whether this response is dependent on the perceptual
98 similarity between inputs. We also considered the sustained mnemonic consequences of
99 such iterative shifts on current and subsequent recognition decisions. Expectation was
100 manipulated implicitly and independently of the requirements of the retrieval task,
101 allowing us to address two important questions; first whether expectation violation
102 engages a bottom-up encoding mechanism, even when it is not goal-relevant. Second,
103 what are the temporal dynamics of the mnemonic consequences of expectation status,
104 for an event and subsequent similar events. We reasoned that heightened expectation-
105 driven encoding might modulate current retrieval processes, but aid accuracy of
106 recognition of subsequent similar events.

107

108 **Methods**

109 **Experiment 1**

110 *Participants.* 30 participants (4 males) between the ages 18-22 ($M = 19$, $SD = 1.04$) gave
111 informed consent and took part in the experiment. The sample size was selected based
112 on previous studies utilising a similar design and analysis approach (Kafkas and

RUNNING HEAD: Expectation violation dynamically modulates memory states

113 Montaldi, 2018b; Frank et al., 2020). Participants had normal or corrected-to-normal
114 vision and no history of neurological or psychiatric disorders. All procedures were
115 approved by the University of Manchester Research Ethics Committee. Four
116 participants were excluded from any further analysis due to failure to learn the cue-
117 outcome association (3) or recognition performance below chance (1). Data from 26
118 participants are reported.

119 *Materials.* 78 images of natural (39) and man-made (39) objects were selected from the
120 Similar Objects-Lures Image Database (SOLID; Frank et al., 2019). These images were
121 used as the target objects, presented during encoding. Using the dissimilarity index
122 from SOLID, three foils of decreasing levels of similarity (F1 – most similar, F2 – mid-
123 level F3 - lowest similarity) were selected for each target image. Additionally, similarity
124 was parametrically manipulated by keeping the average distance between the levels
125 constant (average dissimilarity 2100 DI; see Figure 1 for examples and Frank et al.,
126 2019 for further explanation on DI values). These levels of similarity were chosen based
127 on our previous results (Frank et al., 2020), where we observed a quadratic pattern of
128 expectation effects on inputs similarity, when expectation was manipulated at encoding,
129 with respect to memory performance. Therefore, 78 object sets (one target and three
130 foils; total 312 stimuli) were utilised.

131 *Experimental design.* The experiment was controlled using PsychoPy version 1.82
132 (Peirce, 2007) and consisted of four parts (similar to design used in Kafkas and
133 Montaldi, 2018b). First, at encoding, participants were presented with the target objects
134 twice to ensure sufficient exposure. During the first presentation, the object was shown
135 on the screen for 3 seconds, and participants were asked to decide whether the object
136 was man-made or natural; pressing the left arrow key for natural, and the right arrow
137 key for man-made. In the second presentation participants were asked to pay close
138 attention to the images (shown for 5s each) and were informed that they would be
139 asked to distinguish between the presented ('old') object and similar ('new') objects
140 later; they did not have to make any response during the second encoding presentation.
141 The order of image presentation was randomised across participants. The next phase
142 involved a 5-minute filled delay task, during which participants solved arithmetic
143 problems.

RUNNING HEAD: Expectation violation dynamically modulates memory states

144 In the third phase, a rule-learning task was used to allow manipulation of expectation
145 later at retrieval. Participants were asked to learn the contingency between a symbol
146 (acting as a cue) and an object's category, man-made or natural. Four symbols were
147 used in total, two for each category, and these were counterbalanced between
148 participants. Each cue was presented 14 times. Trials began with a 500ms fixation point,
149 followed by the cue, presented for 1 second. During this time participants were
150 instructed to guess the following object's category by using the same keys as in the
151 encoding phase. Feedback and a new object (not tested) were then presented together
152 for 2 seconds. This task established participants' expectation regarding the cue-object
153 sequences, and critically this was manipulated at retrieval. To ensure expectations were
154 set, only data from participants who reached criterion (above 50% accuracy in the first
155 half, and 75% accuracy in the second half of the task) were analysed (See
156 Supplementary Figure S.1 for accuracy and RT in the rule-learning task).

157 The final phase was an old/new recognition task, during which all set events (targets,
158 F1, F2 and F3) were presented. The experimenter informed participants that they will
159 be presented with old (target) objects, and similar new ones (foils). Each retrieval trial
160 began with a fixation point (500ms), followed by a cue (1 second) and an object (up to 5
161 seconds). Participants were told to focus on the object and press 'old' if they thought it
162 was exactly the same as the target they had previously seen. Participants were
163 instructed to press 'new' if they noticed anything different in the object. Following 12
164 practice trials, the main task began. The key manipulation at retrieval was the validity of
165 the cue. One-third of the cues were misleading, making the object to-be-recognised
166 unexpected. Valid trials (e.g. cue natural followed by a natural object) were marked as
167 expected. As an old/new recognition task was used, the four old/new decisions per
168 object set were independent of each other, critically meaning that an 'old' response
169 could be given for multiple set events (i.e. for target and one or more foils). After
170 completing the experiment participants were debriefed regarding the expectation
171 manipulation at retrieval. Only two participants in Experiment 1 and five participants in
172 Experiment 2 reported noticing the mismatch between cue and object during the task.

173 *Statistical analysis.* To assess expectation-modulated dynamic encoding, we collated
174 object sets (apples, scissors etc.). In each set, there were four set events (target, F1 -
175 most similar, F2 - mid similarity, and F3 - least similar), each with a randomly assigned

RUNNING HEAD: Expectation violation dynamically modulates memory states

176 (a) expectation condition, (b) presentation position within the set, and (c) order of
177 presentation at retrieval (1-312 trials). We ran a mixed-effects binary logistic
178 regression model on these ungrouped data, using expectation status of the current and
179 previous set events, and the presentation position at retrieval as a covariate. Models
180 were computed using the lme4 package (Bates et al., 2015) in the R environment (R
181 Development Core Team, 2008). The parameters of such models can be used to assess
182 the probability of giving a correct response ('old' for targets, 'new' for foils) and also
183 account for each participant's unique intercept (response bias). To assess the slope of
184 each predictor in the model ($H_0: \beta = 0$), we used an omnibus χ^2 Wald test (West et al.,
185 2014), as implemented in the car package (Fox and Weisberg, 2018). Extraction and
186 plotting of the effects reported below was conducted using the effects (Fox, 2003),
187 emmeans (Searle et al., 1980) and ggplot2 (Wickham, 2009) packages. To examine the
188 dynamic interaction between perceptual similarity and expectation status, for each set
189 event we devised three models of interest, modelling each event separately as a
190 function of the preceding event sequence. For example, targets preceded by F1 were
191 modelled separately from targets preceded by F2. To eliminate any effects driven by
192 memory strength differences, we only included in this model events for which the
193 previous response was correct (i.e. for targets following F1 events, we only included
194 targets that followed CR1). Similar results were observed when including all trials in the
195 model (see GitHub repository for code to run analyses and generate figures). Each
196 model thus included the current and previous set events' expectation status, as well as
197 the order of presentation at retrieval as a covariate. Code and data are available here:
198 <https://github.com/frdarya/DynamicExpectation>.

199 **Experiment 2**

200 *Participants.* 25 participants (8 males, ages 18-33, $M = 25$, $SD = 4.2$) gave informed
201 consent and took part in the study. Participants had normal or corrected-to-normal
202 vision and no history of neurological or psychiatric disorders. All procedures were
203 approved by the University of Manchester Research Ethics Committee. One participant
204 was excluded from all analyses due to failure to learn the cue-outcome contingency
205 during the rule-learning task.

206 *Experimental design.* A similar paradigm and expectation manipulation was used in
207 Experiment 2, with the following exceptions: in the encoding phase, each object was

RUNNING HEAD: Expectation violation dynamically modulates memory states

208 presented three times consecutively. Each object was on the screen for 2000ms, with a
209 jittered fixation cross (250-750ms) between each presentation. During the first and
210 second presentations participants were asked to make a semantic decision about the
211 object, whether it is man-made or natural, and whether it is more likely to be found
212 indoors or outdoors. The order of these questions was random. During the third
213 presentation participants were always asked to study the object carefully focusing on
214 the details. Following the third presentation there was another jittered fixation cross,
215 for a longer period of time (800-1200ms), to create mini-blocks separating each object.

216 The rule-learning task was identical to that used in Experiment 1, except for a longer
217 response presentation time of the cue (3s instead of 1s) and a jittered fixation cross
218 (250-750ms) between each trial (see Supplementary Figure S.1 for behavioural and
219 Figure S.2 for fMRI results from the rule learning task). Before the retrieval task,
220 participants solved arithmetic problems for two minutes (not scanned). At retrieval, we
221 used two levels of foil similarity (F1 and F2) in each set, instead of three. In the interest
222 of optimising time-in-scanner, F3 objects were not used, as they did not yield any effects
223 of interest in Experiment 1. Each retrieval trial started with a jittered fixation cross
224 (250-750ms), followed by a presentation of the cue for 1000ms and then the set event
225 (target, F1 or F2) for 3000ms. In all scanned tasks, we used implicit baselines (fixation
226 crosses for 3500ms in encoding and rule-learning tasks, 4500ms in retrieval) in 30% of
227 trials.

228 *Behavioural statistical analysis.* Following the analysis and results from Experiment 1,
229 we collapsed targets and F1 events and modelled the probability of making a correct
230 decision (hits and correct rejections) based on the current set event's expectation status
231 and the previous set event's expectation status. As in Experiment 1, to eliminate the
232 memory strength confound, only correct responses were included (see GitHub
233 repository for similar results when including all trials, and for separate analyses of
234 targets and F1). Correct rejections of F2 foils were also modelled as a function of
235 previous set events, as was done for Experiment 1.

236 *fMRI acquisition and statistical analysis.* MR scanning was carried out on a 3T MRI
237 scanner (Philips, Achieva). To minimise movement during the scan, foam wedges and
238 soft pads were used to stabilise the participant's head. First, T1-weighted images
239 (matrix size: 256x256, 160 slices, voxel size 1mm isotropic) were collected while

RUNNING HEAD: Expectation violation dynamically modulates memory states

240 participants rested in the scanner. A gradient echo-planar imaging (EPI) sequence was
241 used to collect T2* images for the BOLD signal. 40 slices parallel to the AC-PC line,
242 covering the whole brain (matrix size 80 x 80, voxel size 3 x 3 x 3.5mm³), were obtained
243 for each volume (TR = 2.5s, TE = 35ms). Participants performed three tasks in the
244 scanner (encoding 313 volumes; rule-learning 143 volumes; retrieval 534 volumes) and
245 a distractor task, which was not scanned.

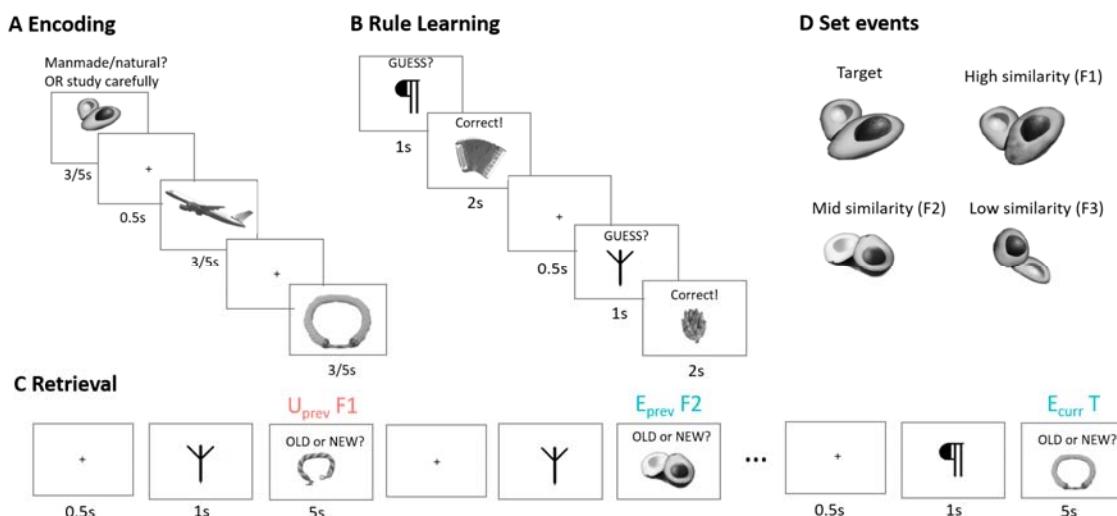
246 fMRI data were pre-processed and analysed using SPM12 (Statistical Parameter
247 Mapping, Wellcome Centre for Human Neuroimaging, University College London
248 <https://www.fil.ion.ucl.ac.uk/spm/software/spm12/>). Images were realigned to the
249 mean image using a six-parameter rigid body transformation, resliced using sinc
250 interpolation and slice-time corrected to the middle slice. T1 anatomical images were
251 co-registered to the corresponding mean EPI image. Spatial normalisation to the
252 Montreal Neurological Institute (MNI) template was carried out using the DARTEL
253 toolbox implemented in SPM12 (Ashburner, 2007). An isotropic 8mm FWHM Gaussian
254 kernel was used for smoothing the normalised EPI data for univariate analyses. To
255 remove low-frequency noise the data was high-pass filtered using a cut-off of 128s. Two
256 a-priori regions of interest (ROIs), the bilateral hippocampus, and a midbrain ROI
257 including only the substantia nigra (SN) and ventral tegmentum area (VTA) were used.
258 The hippocampus mask was taken from the Harvard-Oxford anatomical atlas (threshold
259 at 25% probability; Desikan et al., 2006). The midbrain mask was taken from the
260 probabilistic atlas of the midbrain (Murty et al., 2014).

261 Each participant's functional data from the retrieval session was analysed using the
262 general linear model (GLM) framework within an event-related design modelling the
263 canonical hemodynamic response function. The six motion parameters produced at
264 realignment for each session were used as nuisance regressors. To minimise residual
265 motion artefacts the ArtRepair toolbox (<http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html>) was used to produce additional nuisance regressors
266 for each participant. The time series were high-pass filtered to remove low frequency
267 noise (128s cut-off). Given our a priori hypothesis for the ROIs introduced above
268 (bilateral hippocampus and SN/VTA), a small volume correction (SVC) approach was
269 adopted for these regions, corrected for family-wise error (FWE) for the ROI volume
270 (initial cluster-forming threshold of p < 0.001). For more exploratory whole-brain

RUNNING HEAD: Expectation violation dynamically modulates memory states

272 analyses, a non-parametric permutation-based ($n = 5000$) approach was used to
273 identify significant clusters using the SnPM toolbox
274 (<https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/software/snpm/>). An initial cluster-forming threshold of $p < 0.005$
275 was used, and clusters significant at a non-parametric $p < 0.05$ are reported.
276 Unthresholded group-level T-maps from SPM and SnPM are available here:
277 <https://neurovault.org/collections/TTDMPHLE/>.

279 To test the behavioural effect of an interaction between a previous event's contextual
280 expectation and the current event's contextual expectation, we collapsed targets and F1
281 and classified them based on presentation order (which came first) and their
282 expectation status. F2 events were modelled as a separate condition. In this analysis, we
283 compare the current item between current and previous expectation status (e.g.
284 $E_{\text{prev}}U_{\text{curr}} > E_{\text{prev}}E_{\text{curr}}$). Given our experimental design, there are four parameters whose
285 interactions could be further explored: set event (target, F1, F2), contextual expectation
286 (expected or unexpected), memory response given (correct or incorrect) and
287 presentation order within the set (first, second or last). This results in 36 conditions,
288 however, these could not be modelled together due to insufficient number of trials per
289 bin ($n < 7$) for the majority of participants. Therefore, we devised three separate
290 models; in the first model, we examined the main effect of expectation, irrespective of
291 set event or recognition decision. In the second model, we examined expectation x set
292 event x successful memory interactions by collapsing trials across presentation order,
293 and modelling only correct responses for each event (all incorrect responses were
294 modelled as a separate regressor). In the third model, we explored the interaction of
295 expectation, set event and presentation order, irrespective of recognition responses.


296

297 **Results**

298 We conducted two experiments, Experiment 1 examined behavioural responses, and
299 Experiment 2 employed a similar paradigm whilst fMRI data was collected. In both
300 Experiments, our behavioural task included three stages (see Figure 1 for experimental
301 design): following the encoding of object images, participants performed a rule-learning
302 task in which they learned a contingency between a cue and the object's category (man-
303 made or natural). Then, at retrieval, the same cues were presented, followed by an old

RUNNING HEAD: Expectation violation dynamically modulates memory states

304 (target) or new (foil) object. Foils were parametrically manipulated similar objects, F1,
305 F2, F3 in a decreasing order of similarity to the target. Participants were asked to make
306 an old/new recognition decision. In one-third of the retrieval trials, the pre-established
307 cue and object category contingency was violated. To assess expectation-modulated
308 encoding, and its sensitivity to perceptual similarity, we used mixed-effects logistic
309 regression to model the response (correct/incorrect recognition) to each set event
310 (targets and similar foils) as a function of the preceding event from that set (e.g. if first
311 an F1 is presented, and later on a target, these would be noted $F1_{\text{prev}} \text{Target}_{\text{curr}}$).
312 Furthermore, each set event was associated with an expectation status determined by
313 the preceding cue (rule-abiding events were marked as expected rule-violating as
314 unexpected). Each model also included an interaction between current and previous set
315 events' expectation status to examine dynamic changes (e.g. how a previous unexpected
316 foil affects recognition of a current expected target; see Figure 1c, and Methods for full
317 details).

318
319 **Figure 1 | Experimental design.** **A)** During the first round of **encoding**, participants responded whether
320 the object was man-made or natural. In the second encoding round, participants are asked to study the
321 object carefully. In Experiment 2, each object appeared three times consecutively; in addition to the two
322 presentations from Experiment 1, participants were asked to respond whether the object was more likely
323 to be found indoors or outdoors. The order of man-made/natural and in/outdoor questions was
324 randomised, the third presentation was always 'study carefully'. **B)** In the **rule-learning** task participants
325 learned a contingency between a cue and an object's category, man-made or natural. Participants had 1
326 second to make a decision in Experiment 1, and 3 seconds in Experiment 2. See Extended Data Figure 1-1
327 and 1-2 for rule-learning performance. **C)** In the **retrieval task**, the same cues were presented before
328 each set event, old objects (targets) and new similar foils (F1, F2, F3 in Experiment 1; F1 and F2 in
329 Experiment 2). On 30% of these trials there was a mismatch between the cue and the object's category,
330 these are unexpected trials (e.g., a cue for a natural object is followed by a man-made object, marked in
331 red). Participants were instructed to indicate whether the object is old or new. $U_{\text{prev}} \text{F1}$, $E_{\text{curr}} \text{T}$ =
332 Unexpected F1 presented before an expected target, from the same set. **D)** **Example of range of**
333 **perceptual similarity** within set events.

RUNNING HEAD: Expectation violation dynamically modulates memory states

334

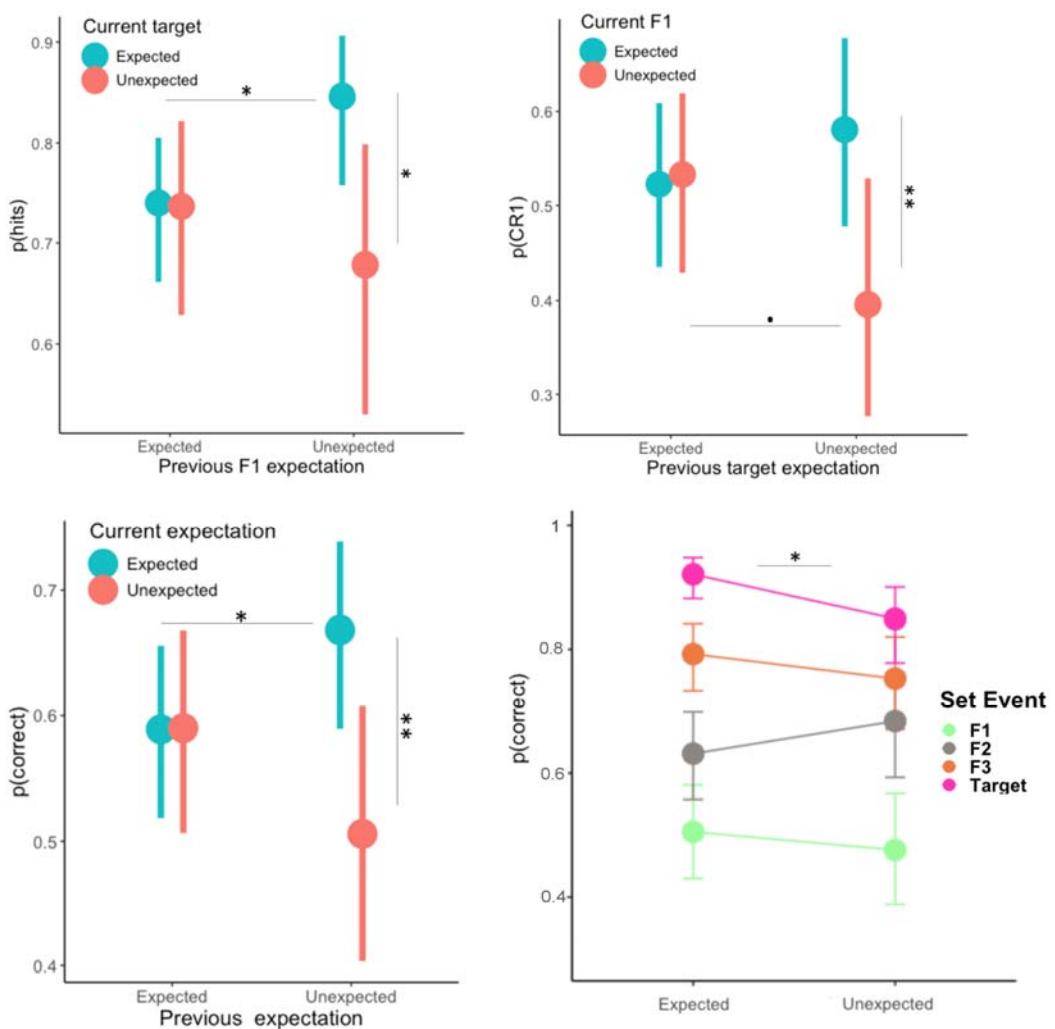
335 **Experiment 1**

336 *Memory for targets is modulated by preceding unexpected similar set events*

337 For targets following F1 set events, we found significant main effects of the F1
338 expectation ($\beta = 0.659$, $X^2(1) = 4.63$, $p = 0.031$), as well as a marginal interaction
339 between the target's expectation and the previous F1's expectation status ($\beta = -0.939$,
340 $X^2(1) = 3.65$, $p = 0.056$; Figure 2a). Subsequent contrast tests revealed that expected
341 targets were more likely to be remembered following an unexpected F1, compared to
342 an expected F1 set event ($z = 2.15$, $p = 0.031$). Furthermore, when the previous F1 set
343 event was unexpected, the subsequent expected targets were more likely to be correctly
344 remembered, compared to unexpected targets ($z = 2.37$, $p = 0.017$). When examining
345 targets that followed F2 and F3 set events, we did not observe any significant predictors
346 (all p 's > 0.127).

347

348 *Correct rejection of similar foils is modulated by the expectation status of preceding
349 targets*


350 For F1 events following targets, we found an interaction between the two events'
351 expectation status ($\beta = -0.79$, $X^2(1) = 5.29$, $p = 0.021$; Figure 2B), with contrasts showing
352 more correct rejections of F1 events (CR1), for expected F1 than unexpected F1 events
353 following unexpected targets ($z = 2.65$, $p = 0.008$) and marginally less correct rejections
354 for unexpected F1 when the previous target was unexpected, compared to when it was
355 expected ($z = 1.95$, $p = 0.0507$; Figure 2 middle panel). All other effects were not
356 significant (all p 's > 0.255). When examining F1 events that followed F2 and F3 set
357 events, we did not observe any significant predictors (all p 's > 0.274).

358

359 *Expectation sequence modulation decreases as perceptual similarity decreases*

360 F2 events were not affected by previous targets (all p 's > 0.171), F1s (all p 's > 0.197), or
361 F3s (all p 's > 0.174) from the same set. Similarly, responses to F3 events were not
362 modulated by any preceding set events (targets: all p 's > 0.484 , F1s: all p 's > 0.148 , F2s:
363 all p 's > 0.321).

RUNNING HEAD: Expectation violation dynamically modulates memory states

364

365 **Figure 2 | Experiment 1 Results. A) Predicting hits.** More hits were observed for expected targets
 366 following unexpected F1 foils, compared to unexpected targets following unexpected F1, and compared to
 367 expected targets following expected F1. **B) Predicting CR1.** More CR1 for expected F1 following
 368 unexpected targets, compared to unexpected F1 following unexpected targets, and a marginal effect of
 369 poorer memory (less CR1) for a sequence of unexpected events. **C) Collapsed hits and CR1.** Similar
 370 results showing an interaction between the previous and current set events' expectation status, with
 371 $U_{\text{prev}}E_{\text{curr}}$ events showing the best memory performance, compared to $U_{\text{prev}}U_{\text{curr}}$ and $E_{\text{prev}}E_{\text{curr}}$. **D) First set
 372 events.** More hits for expected compared to unexpected targets presented first in the event sequence. No
 373 other significant effects, although F1 events follow a similar direction. Unless otherwise stated, all error
 374 bars represent 95% confidence intervals. • $p = 0.0507$, * $p < 0.05$, ** $p < 0.01$.

375

376 *Targets and their most similar foils show analogous expectation sequence effects*

377 Given the similar effects observed for targets and F1 events independently, we
 378 collapsed the two, to examine whether these effects are complementary (i.e., whether
 379 there is an interaction between current and previous expectation status; Figure 2C).
 380 Although hits and correct rejections are not necessarily products of the same mnemonic
 381 process, in this paradigm they provide an opportunity to examine how perceptual load

RUNNING HEAD: Expectation violation dynamically modulates memory states

382 (in the form of similarity) interacts with dynamic expectation modulations. The
383 mnemonic comparison between the current set event (target or F1) and its previous set
384 event (F1 or target, respectively), forms the highest load, or interference, in relation to
385 the encoded object, as the participant makes a recognition decision. Therefore, if
386 perceptual processes are engaged, upon encountering an unexpected event, the effects
387 observed for each set event individually should replicate. We found a significant main
388 effect of previous event's expectation status ($\beta = 0.341$, $X^2(1) = 4.9$, $p = 0.027$), as well as
389 a significant interaction between expectation status of the current and previous events
390 ($\beta = -0.682$, $X^2(1) = 6.5$, $p = 0.01$). Subsequent contrast tests revealed that when the
391 previous set event was unexpected, more correct responses were observed for expected
392 compared to unexpected events ($U_{\text{prev}}E_{\text{curr}} > U_{\text{prev}}U_{\text{curr}}$; $z = 3.1$, $p = 0.002$). $U_{\text{prev}}U_{\text{curr}}$ was
393 numerically smaller than $E_{\text{prev}}U_{\text{curr}}$, but this effect did not reach statistical significance (p
394 = 0.116). Additionally, there were more correct responses for current expected events
395 following unexpected than expected events ($E_{\text{prev}}E_{\text{curr}} < U_{\text{prev}}E_{\text{curr}}$; $z = -2.22$, $p = 0.027$).

396
397 Taken together, these results suggest expectation violation shifts processing away from
398 retrieval and towards encoding, and that the temporal dynamics of the mnemonic
399 consequences of this shift are reflected in the memory for the subsequent set event
400 (effects of first set events depicted in Figure 2D), as a function of perceptual similarity.
401 When subsequent events are unexpected ($U_{\text{prev}}U_{\text{curr}}$), we observed poor accuracy for F1
402 foils, and to a lesser extent for targets. On the other hand, when an unexpected event is
403 followed by an expected event ($U_{\text{prev}}E_{\text{curr}}$) a boost in performance was observed for the
404 current event, driven mainly by responses to targets. To examine whether these effects
405 engage the circuit involved in adaptive memory formation (including the hippocampus
406 and midbrain (Shohamy and Adcock, 2010; Kafkas and Montaldi, 2018a), as well as to
407 test the hypothesis that expectation violation engages an encoding mechanism,
408 supported by the bottom-up information stream (ventral visual pathway), in
409 Experiment 2 a new set of participants performed a similar task while fMRI data was
410 acquired (see Methods for minor task adjustments).

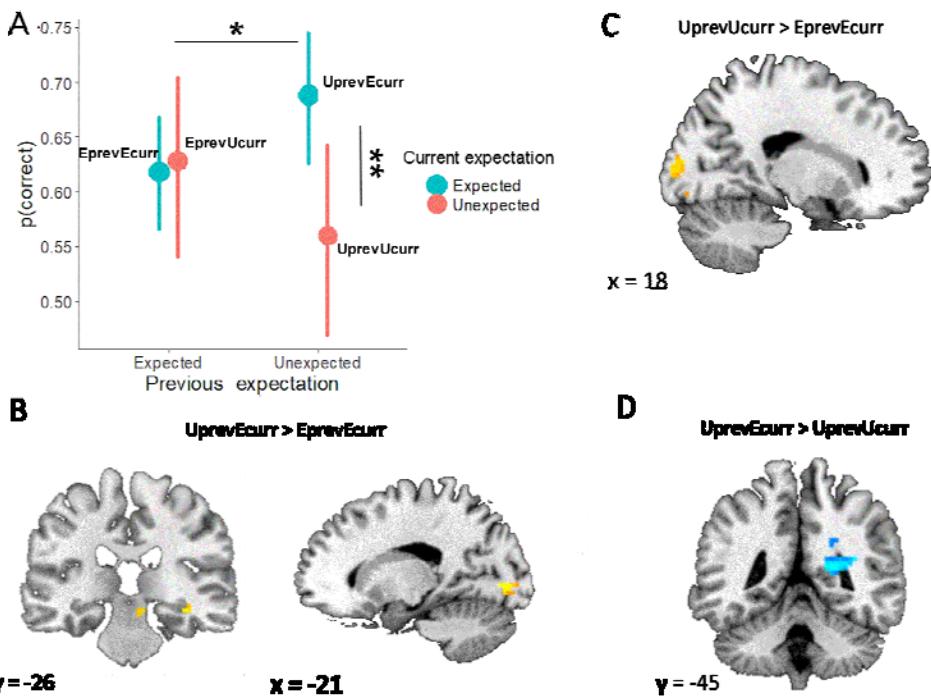
411

412 **Experiment 2**

413 Behavioural Results

RUNNING HEAD: Expectation violation dynamically modulates memory states

414 Replicating the effects observed in Experiment 1, we found a main effect of the previous
415 set event's expectation status ($\beta = 0.309$, $X^2(1) = 4.13$, $p = 0.042$), as well as an
416 interaction between the current and previous events' expectation status ($\beta = -0.59$,
417 $X^2(1) = 4.47$, $p = 0.034$; Figure 3A). Subsequent contrast tests revealed better memory
418 performance for expected events following unexpected ones, compared to those
419 following expected events ($U_{\text{prev}E_{\text{curr}}} > E_{\text{prev}E_{\text{curr}}}$; $z = 2.55$, $p = 0.011$). For set events
420 following unexpected ones, better memory was also found for expected compared to
421 unexpected events ($U_{\text{prev}E_{\text{curr}}} > U_{\text{prev}U_{\text{curr}}}$; $z = 2.68$ $p = 0.007$). Next, we examined CR2 as
422 a function of the previously seen targets and F1 events, and their expectation status. For
423 F2 following targets, a main effect of the target's expectation status was observed ($\beta =$
424 0.473 , $X^2(1) = 4.4$, $p = 0.036$), with more CR2 following unexpected targets. All other
425 effects were not significant (all p 's > 0.169). Correct responses to F2 events were not
426 affected by preceding F1 events (all p 's > 0.263).


427

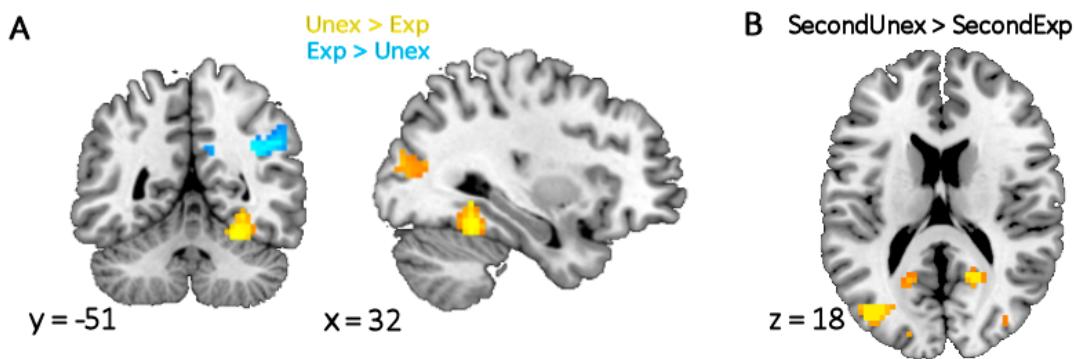
428 fMRI results

429 *Expectation sequence interactions engage hippocampal, midbrain, and occipital*
430 *regions to support subsequent mnemonic processing.*

431 We first examined the neural correlates of the behavioural contextual expectation
432 interaction reported above. For current expected events that followed unexpected
433 events, compared to those following an expected event ($U_{\text{prev}E_{\text{curr}}} > E_{\text{prev}E_{\text{curr}}}$; see Figure
434 3B), we found increased activation in the right hippocampus ($x = 36$, $y = -33$, $z = -12$, $k =$
435 12, SVC $p_{\text{FWE}} = 0.04$), SN/VTA ($x = 9$, $y = -24$, $z = -12$, $k = 11$, SVC $p_{\text{FWE}} = 0.039$), and left
436 inferior occipital gyrus (BA 18; $x = -21$, $y = -81$, $z = -18$, non-parametric $p_{\text{cluster}} = 0.018$).
437 For current unexpected events following previous expected ones, compared to those
438 which followed an unexpected event ($E_{\text{prev}U_{\text{curr}}} > U_{\text{prev}U_{\text{curr}}}$), reflecting poorer
439 performance, we also found increased activation in the right hippocampus ($x = 24$, $y = -$
440 33, $z = -6$, $k = 10$, SVC $p_{\text{FWE}} = .045$) and left parahippocampus ($x = -33$, $y = -45$, $z = -6$,
441 non-parametric $p_{\text{cluster}} = 0.049$). Critically, in both contrasts the current set events had
442 the same expectation status and differed only on the expectation status of the previous
443 event.

RUNNING HEAD: Expectation violation dynamically modulates memory states

444


445 **Figure 3 | Behavioural and neural expectation interactions for targets and F1 foils. A) Behavioural**
446 **results.** Replicating the results from Experiment 1, a current by previous expectation status interaction
447 was observed, with $U_{prevEcurr}$ showing a boost in memory performance. **B) $U_{prevEcurr} > E_{prevEcurr}$**
448 **contrast.** Increased activation in the right hippocampus, SN/VTA and left inferior occipital cortex. **C)**
449 **Unexpected > Expected interactions.** Increased activation in right occipital cortex (BA 18) was
450 observed for $U_{prevUcurr} > E_{prevEcurr}$, despite poor memory performance for $U_{prevUcurr}$ events. **D) Expected >**
451 **Unexpected interactions.** Increased activation in right retrosplenial cortex/precuneus for $U_{prevEcurr} >$
452 $U_{prevUcurr}$.

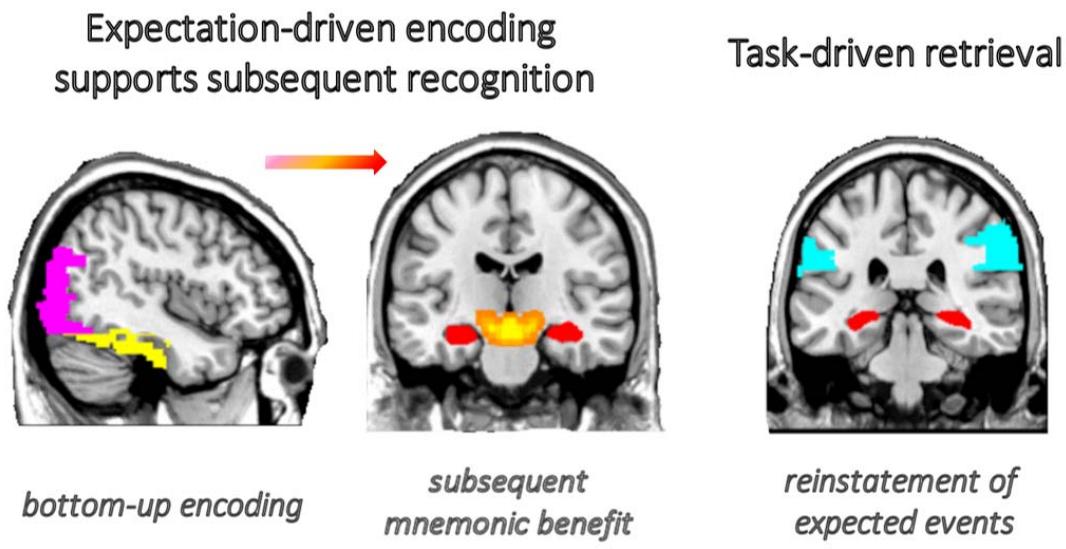
453 Comparing current expected vs. unexpected events, following previously unexpected
454 events ($U_{prevEcurr} > U_{prevUcurr}$; Figure 3d) revealed activation in the right retrosplenial
455 cortex/precuneus ($x = 24$, $y = -45$, $z = 12$, non-parametric $p_{cluster} = 0.0213$). The
456 complementary contrast, following expected events, $E_{prevEcurr} > E_{prevUcurr}$ did not reveal
457 significant effects. For the $U_{prevUcurr} > E_{prevEcurr}$ contrast in which unexpected events
458 elicited more activations than expected ones, despite showing reduced memory
459 performance (Figure 3C), we found increased activation in right occipital cortex (BA 18,
460 $x = 18$, $y = -93$, $z = 12$, non-parametric $p_{cluster} = 0.0318$). The complementary contrast
461 $U_{prevUcurr} > E_{prevUcurr}$ did not reveal significant effects. Comparing the first (previous)
462 event between conditions (first expected vs. first unexpected) did not reveal any
463 significant effects.

464 *Expectation status differentially engages encoding and retrieval-related regions.*

RUNNING HEAD: Expectation violation dynamically modulates memory states

465 To explore whether expected and unexpected events, across event types, responses, and
466 temporal positions elicited differential activations in a bottom-up (ventral visual
467 stream) or reinstatement (retrieval network) manner, we also compared the two
468 conditions (see Figure 4A). We found increased activity for unexpected > expected
469 events in right occipital cortex (BA 19, $x = 39$, $y = -75$ $z = 12$ and BA 18, $x = 39$, $y = -75$, z
470 = 12, non-parametric $p_{\text{cluster}} = 0.015$) and right fusiform gyrus ($x = 27$, $y = -48$, $z = -18$,
471 non-parametric $p_{\text{cluster}} = 0.0173$). For expected > unexpected, we observed increased
472 activation in the right inferior parietal lobe (angular gyrus; BA 39 $x = 48$, $y = -48$, $z = 33$,
473 non-parametric $p_{\text{cluster}} = 0.0206$) and bilateral primary motor cortex (right: $x = 60$, $y =$
474 03, $z = 18$, non-parametric p_{cluster} FWE = 0.045; left: $x = -57$, $y = -6$, $z = 24$, non-
475 parametric $p_{\text{cluster}} = 0.0339$).

476
477 **Figure 4 | Overall fMRI expectation effects.** **A) Main effect of expectation.** Unexpected events,
478 compared to expected ones, engaged more activation in right middle occipital cortex and fusiform.
479 Conversely, expected events, compared to unexpected ones, engaged activation in right angular and
480 supramarginal gyri. **B) Expectation by presentation order interaction.** Unexpected events presented
481 second in the set engaged regions along the ventral visual stream. No effects were observed for first or
482 third set events.


483 *Occipital activation supports the interaction between expectation and memory
484 performance for similar events.*

485 To unpack the overall unexpected > expected effect, we tested how contextual
486 expectation interacted with successful recognition decisions (hits and CR), across
487 presentation order. Whilst no differential neural responses were found for expected and
488 unexpected hits or correct rejections of F2 events, we observed increased activation in
489 the right inferior occipital gyrus (BA 19, $x = 24$, $y = -81$, $z = -6$, non-parametric $p_{\text{cluster}} =$
490 0.0345) for unexpected CR1 > expected CR1.

491 *Increased perceptual load interacts with expectation status to engage ventral visual
492 stream regions.*

RUNNING HEAD: Expectation violation dynamically modulates memory states

493 Finally, we examined interactions between expectation status and presentation order
494 (across set events; see Figure 4B). We observed again increased activity in bilateral
495 occipital cortex (BA 19, $x = -39$, $y = -78$, $z = 18$, non-parametric $p_{\text{cluster}} = 0.008$, and BA
496 18, $x = 18$, $y = -57$, $z = 21$, non-parametric $p_{\text{cluster}} = 0.009$; $x = 15$, $y = -87$, $z = -3$, non-
497 parametric $p_{\text{cluster}} = 0.0129$) for unexpected > expected events presented second in the
498 set (no unexpected > expected effects were found for first or third set events).

499
500 **Figure 5 | Illustration of the brain networks involved in processing unexpected and expected**
501 **events. Left and middle: Expectation-driven, goal-irrelevant encoding.** Expectation violation engages
502 bottom-up processing along the ventral visual stream (inferior occipital in pink, fusiform in yellow),
503 regardless of memory performance. The subsequent mnemonic consequences of this shift towards
504 encoding involve the hippocampus (red) and midbrain (orange) dopaminergic regions, underlying
505 subsequent beneficial memory performance. **Right: Task-driven retrieval.** In the absence of expectation
506 violation (expected events), engagement of retrieval-driven network regions to support reinstatement
507 and memory performance, in accordance with goal to retrieve.

508

509 Discussion

510 The experience of surprise, or expectation violation, has a beneficial effect on learning,
511 but whether surprise also triggers an encoding response even when the dominant goal
512 is to retrieve, has remained unclear. In two experiments, we used a contextual
513 expectation manipulation to better understand the dynamic nature of the adaptive
514 memory mechanism triggered by expectation violation during retrieval, and its
515 potential mnemonic consequences on hippocampal-dependent memory. We found that
516 encountering unexpected events at retrieval, elicited increased involvement of regions
517 along the ventral visual stream, even when memory performance was poor ($U_{\text{prev}}U_{\text{curr}}$).
518 Interestingly, we also found a later beneficial effect of contextual surprise, such that the
519 presentation of an unexpected event did not support its own recognition, but it did

RUNNING HEAD: Expectation violation dynamically modulates memory states

520 boost the correct recognition of the following, expected, and similar set events
521 ($U_{\text{prev}}E_{\text{curr}}$). This behavioural effect was associated with increased activity in the
522 hippocampus, midbrain dopaminergic regions (SN/VTA), and occipital cortex. Expected
523 events, conversely, were associated with activity in retrieval-driven network regions.
524 Given our replicated finding of the modulation of memory by previous unexpected
525 events, the increased involvement of ventral visual stream regions, and previous
526 research on expectation-modulated encoding, we postulate that engaging with
527 unexpected information at retrieval engages an implicit bottom-up encoding
528 mechanism (Figure 5). The consequences of this engagement become clear in the
529 subsequent recognition trial, with a divergence in performance, and differential pattern
530 of fMRI activation depending on whether the subsequent event was expected or
531 unexpected.

532

533 Expectation violation is associated with improved memory performance, attributed to
534 adaptive memory formation (Lisman and Grace, 2005; Kumaran and Maguire, 2007;
535 Shohamy and Wagner, 2008), and impaired encoding of predictive information
536 (Sherman and Turk-Browne, 2020). Our results support this view, but critically, extend
537 it to account for retrieval effects. In line with the idea that increased weight is given to
538 bottom-up inputs upon encountering a prediction error (Stoppel et al., 2009; Kafkas and
539 Montaldi, 2018a), we found increased involvement of visual processing regions in
540 occipital cortex and fusiform gyrus for unexpected events. These regions have been
541 found to increase their activity with stronger levels of unexpected novelty (Kafkas and
542 Montaldi, 2014), reflecting the increased perceptual processing of unexpected events.
543 Although memory formation relies on bottom-up processing, evidence of an encoding
544 mechanism requires that the mnemonic consequences of increased dependence on
545 sensory inputs are demonstrated. Without subsequent mnemonic consequences, it
546 could be argued that encountering an unexpected event only modulates online attention
547 (Poort et al., 2022). Indeed, we observed an interaction whereby current memory
548 performance was modulated by the previous unexpected occurrence of a similar event;
549 when the previous event was expected, current expectation did not modulate
550 performance ($E_{\text{prev}}E_{\text{curr}} \approx E_{\text{prev}}U_{\text{curr}}$), whereas when the previous event was unexpected,
551 we found a divergence in performance ($U_{\text{prev}}E_{\text{curr}} > U_{\text{prev}}U_{\text{curr}}$).

552

RUNNING HEAD: Expectation violation dynamically modulates memory states

553 Taken together, these findings suggest that a surprise-driven increased weight on
554 bottom-up inputs is goal-independent, but its mnemonic consequences appear to
555 depend on the task at hand. During learning or exploration, further encoding supports
556 later memory for the unexpected event (Li et al., 2003; Garrido et al., 2015; Long et al.,
557 2016; Greve et al., 2017; Frank and Kafkas, 2021). When retrieval is the goal (as in the
558 current paradigm), the implicit shift towards encoding, despite increased perceptual
559 processing, results in numerically worse memory performance for the current to-be-
560 retrieved information (Duncan et al., 2012; Kim et al., 2014). This is at odds with the
561 notion that expectation violation always supports improved memory. Further support
562 for the role played by perceptual load in engaging an encoding state, can be seen in the
563 occipital and fusiform effects for those unexpected events presented second within the
564 set sequence, compared to their expected counterparts. Recognition decisions for these
565 events must overcome interference from the first set event, likely requiring increased
566 perceptual processing to better compare the current sensory input with the stored
567 representations.

568

569 Upon encountering the first unexpected event (U_{prev}), a shift towards encoding, and
570 away from retrieval, can explain why we do not observe a retrieval boost for these
571 events. It is less obvious why this shift towards encoding produces better memory
572 performance only for subsequent expected events. One possibility is that the initial
573 expectation-violation driven shift towards encoding results in a sharper representation
574 of the initial unexpected event (Gilboa and Moscovitch, 2021), optimising pattern
575 completion of the second similar event (even when expected), as the delta similarity
576 between the encoding and retrieval representations now stands out. Support for this
577 account can be found in our fMRI findings; whilst occipital involvement was observed
578 for both $U_{\text{prev}}E_{\text{curr}}$ and $U_{\text{prev}}U_{\text{curr}}$ events (i.e. independent of mnemonic consequence),
579 only $U_{\text{prev}}E_{\text{curr}}$ events were associated with hippocampal and SN/VTA activation. This
580 finding, together with the memory boost for $U_{\text{prev}}E_{\text{curr}}$ events, highlights the temporal
581 contingency driven by U_{prev} , as indexed by co-activation of SN/VTA and hippocampus
582 (Kafkas and Montaldi, 2015). This co-activation is likely indicative of the expectation-
583 driven (re)encoding of U_{prev} which then boosts memory for E_{curr} .

584

RUNNING HEAD: Expectation violation dynamically modulates memory states

585 Critically, interactions between current and previous events' expectation were observed
586 only for targets and F1 (i.e. the foil with most similarity to the encoded target).
587 Moreover, these effects were unchanged by interfering events from the same set (F2,
588 F3) or events from different sets presented during the task. That the expectation
589 interactions are selective to high perceptual similarity, and are robust with respect to
590 interference from other stimuli, suggests that a high perceptual and memorial load is
591 required to trigger this encoding mechanism, consistent with, and extending, previous
592 findings (Bein et al., 2020; Frank et al., 2020). In such situations, the ability to process
593 and compare the fine details of current inputs and recently stored representations
594 underpins correct recognition decisions (Yassa and Stark, 2011). Therefore, the
595 triggering of enhanced perceptual processing by expectation violation serves an
596 adaptive purpose (Stoppel et al., 2009; Hawco and Lepage, 2014). For less similar
597 events, which are more readily recognised as new, a sharper representation, elicited by
598 expectation violation, has little effect (Frank et al., 2020).

599

600 It is also important to consider how the shift towards encoding is manifested in the first
601 event presentation; only first targets demonstrated a benefit for expected compared to
602 unexpected previous events (and when examining only first set events). Whilst the
603 increased hit rate for first expected targets is in line with our interpretation of the data,
604 we did not observe a significant effect for F1 events. We suggest that this could be due
605 to the intrinsic small differences in perceptual overlap between encountering a target
606 and a very similar foil. It is possible that the increased difficulty associated with a first
607 F1 event, driven by high but not full overlap with the encoded object, outweighs any
608 potential effect of the implicit engagement of encoding. For targets, on the other hand
609 there is a full perceptual overlap with the encoded object, that may facilitate recognition
610 of expected targets, whereas expectation violation would deter it. Support for this
611 interpretation can be found in the subsequent contrasts of the interaction in
612 Experiment 1, where targets dominate the boost in $U_{\text{prev}}E_{\text{curr}}$, whereas F1 seem to drive
613 the poor memory for $U_{\text{prev}}U_{\text{curr}}$. Furthermore, as discussed above, the lack of effects for
614 lower-similarity foils suggests that perceptual load plays an important role in how
615 expectation modulates memory processes. Given the robust behavioural interaction
616 between subsequent events, and the complementary fMRI findings, we believe that an
617 expectation-modulated shift towards encoding account best explains our data.

RUNNING HEAD: Expectation violation dynamically modulates memory states

618

619 As the expectation manipulation took place at retrieval, it remains unclear whether
620 encountering expected events resulted in task-relevant retrieval, or the active
621 engagement of a retrieval state, irrespective of task demand. Although the engagement
622 of temporo-parietal regions of a retrieval-driven network (Hayama et al., 2012) is
623 indicative of reinstatement, this does not differentiate between the two alternatives.
624 Future studies could orthogonalise expectation and memorial state, therefore allowing
625 a factorial design of goal (encoding/retrieval) and expectation status. Examinations of
626 shifts towards a retrieval state, perhaps coupled with designs optimised for functional
627 and effective connectivity, will contribute to on-going efforts to explain how the
628 hippocampus shifts between memory states (Colgin, 2016; Kafkas and Montaldi, 2018a;
629 Bein et al., 2020). Whilst unexpected events during which you experience a high level of
630 surprise are particularly memorable, it remains to be determined to what extent explicit
631 awareness of surprise modulates this mechanism, and how memory demands might
632 direct activity in the visual system.

633

634 In conclusion, we report novel evidence for the ubiquity of the adaptive encoding
635 mechanism, here triggered at retrieval by expectation violation, resulting in differential
636 effects on recognition performance. We propose that the increased demand on bottom-
637 up occipital inputs, together with hippocampal-midbrain activations, are markers of an
638 encoding state triggered by expectation violation, even in the absence of explicit reward
639 or instruction. The complex temporal dynamics of the effects of this mechanism on
640 memory demonstrate that the expectation-driven shift towards an encoding state
641 engages increased perceptual processing, exerting a beneficial effect on correct
642 recognition of subsequent similar events. These findings have important implications
643 for our understanding of how our processing of sequential events, expected or
644 unexpected, is modulated by the temporal dynamics of the event sequence.

645

RUNNING HEAD: Expectation violation dynamically modulates memory states

- 646 References
- 647 Aberg KC, Kramer EE, Schwartz S (2020) Interplay between midbrain and dorsal
648 anterior cingulate regions arbitrates lingering reward effects on memory encoding.
649 Nat Commun 11:1829 Available at: <http://www.nature.com/articles/s41467-020-15542-z>.
- 650 Aly M, Turk-Browne NB (2017) How Hippocampal Memory Shapes, and Is Shaped by,
651 Attention. In: The Hippocampus from Cells to Systems, pp 369–403. Cham:
652 Springer International Publishing. Available at:
653 http://link.springer.com/10.1007/978-3-319-50406-3_12.
- 654 Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage
655 38:95–113 Available at:
656 <https://linkinghub.elsevier.com/retrieve/pii/S1053811907005848>.
- 657 Axmacher N, Cohen MX, Fell J, Haupt S, Dümpelmann M, Elger CE, Schlaepfer TE, Lenartz
658 D, Sturm V, Ranganath C (2010) Intracranial EEG Correlates of Expectancy and
659 Memory Formation in the Human Hippocampus and Nucleus Accumbens. Neuron
660 65:541–549.
- 661 Bates D, Mächler M, Bolker B, Walker S (2015) Fitting Linear Mixed-Effects Models
662 Using lme4. J Stat Softw 67 Available at: <http://arxiv.org/abs/1406.5823>.
- 663 Bein O, Duncan K, Davachi L (2020) Mnemonic prediction errors bias hippocampal
664 states. Nat Commun 11:3451 Available at:
665 <http://www.nature.com/articles/s41467-020-17287-1>.
- 666 Buzsáki G (2002) Theta Oscillations in the Hippocampus. Neuron 33:325–340 Available
667 at: <https://linkinghub.elsevier.com/retrieve/pii/S089662730200586X>.
- 668 Colgin LL (2016) Rhythms of the hippocampal network. Nat Rev Neurosci 17:239–249
669 Available at: <http://www.nature.com/articles/nrn.2016.21>.
- 670 Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale
671 AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling
672 system for subdividing the human cerebral cortex on MRI scans into gyral based
673 regions of interest. Neuroimage 31:968–980 Available at:
674 <https://linkinghub.elsevier.com/retrieve/pii/S1053811906000437>.
- 675 Dimsdale-Zucker HR, Ranganath C (2019) Representational Similarity Analyses: A
676 Practical Guide for Functional MRI Applications. Handb Behav Neurosci 28:509–
677 525.
- 678

RUNNING HEAD: Expectation violation dynamically modulates memory states

- 679 Duncan K, Sadanand A, Davachi L (2012) Memory's Penumbra: Episodic Memory
680 Decisions Induce Lingering Mnemonic Biases. *Science* (80-) 337:485–487.
- 681 Dunsmoor JE, Murty VP, Davachi L, Phelps EA (2015) Emotional learning selectively and
682 retroactively strengthens memories for related events. *Nature* 520:345–348
683 Available at: <http://www.nature.com/articles/nature14106>.
- 684 Elston TW, Bilkey DK (2017) Anterior Cingulate Cortex Modulation of the Ventral
685 Tegmental Area in an Effort Task. *Cell Rep* 19:2220–2230 Available at:
686 <https://linkinghub.elsevier.com/retrieve/pii/S2211124717307192>.
- 687 Fox J (2003) Effect Displays in R for Generalised Linear Models. *J Stat Softw* 8 Available
688 at: <http://www.jstatsoft.org/v08/i15/>.
- 689 Fox J, Weisberg S (2018) An R Companion to Applied Regression. Sage.
- 690 Frank D, Gray O, Montaldi D (2019) SOLID-Similar object and lure image database.
691 Behav Res Methods Available at: <http://link.springer.com/10.3758/s13428-019-01211-7>.
- 693 Frank D, Kafkas A (2021) Expectation-driven novelty effects in episodic memory.
694 *Neurobiol Learn Mem* 183:107466 Available at:
695 <https://linkinghub.elsevier.com/retrieve/pii/S1074742721000885>.
- 696 Frank D, Montemurro MA, Montaldi D (2020) Pattern Separation Underpins
697 Expectation-Modulated Memory. *J Neurosci* 40:3455–3464 Available at:
698 <http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.2047-19.2020>.
- 699 Garrido MI, Barnes GR, Kumaran D, Maguire EA, Dolan RJ (2015) NeuroImage
700 Ventromedial prefrontal cortex drives hippocampal theta oscillations induced by
701 mismatch computations. *Neuroimage* 120:362–370 Available at:
702 <http://dx.doi.org/10.1016/j.neuroimage.2015.07.016>.
- 703 Gilboa A, Moscovitch M (2021) No consolidation without representation:
704 Correspondence between neural and psychological representations in recent and
705 remote memory. *Neuron* 109:2239–2255 Available at:
706 <https://linkinghub.elsevier.com/retrieve/pii/S0896627321002919>.
- 707 Greve A, Cooper E, Kaula A, Anderson MC, Henson RN (2017) Does prediction error
708 drive one-shot declarative learning? *J Mem Lang* 94:149–165 Available at:
709 <http://dx.doi.org/10.1016/j.jml.2016.11.001>.
- 710 Hasselmo ME, Bodelon C, Wyble BP (2002) A Proposed Function for Hippocampal Theta
711 Rhythm: Separate Phases of Encoding and Retrieval Enhance Reversal of Prior

RUNNING HEAD: Expectation violation dynamically modulates memory states

- 712 Learning. *Neural Comput* 14:793–817.
- 713 Hawco C, Lepage M (2014) Overlapping patterns of neural activity for different forms of
714 novelty in fMRI. *Front Hum Neurosci* 8 Available at:
715 <http://journal.frontiersin.org/article/10.3389/fnhum.2014.00699/abstract>
- 716 Hayama HR, Vilberg KL, Rugg MD (2012) Overlap between the Neural Correlates of
717 Cued Recall and Source Memory: Evidence for a Generic Recollection Network? *J
718 Cogn Neurosci* 24:1127–1137 Available at:
719 http://www.mitpressjournals.org/doi/10.1162/jocn_a_00202.
- 720 Kafkas A (2021) Encoding-linked pupil response is modulated by expected and
721 unexpected novelty: Implications for memory formation and neurotransmission.
722 *Neurobiol Learn Mem*.
- 723 Kafkas A, Montaldi D (2014) Two separate, but interacting, neural systems for
724 familiarity and novelty detection: A dual-route mechanism. *Hippocampus* 24:516–
725 527 Available at: <http://doi.wiley.com/10.1002/hipo.22241>.
- 726 Kafkas A, Montaldi D (2015) Striatal and midbrain connectivity with the hippocampus
727 selectively boosts memory for contextual novelty. *Hippocampus* 25:1262–1273
728 Available at: <http://www.ncbi.nlm.nih.gov/pubmed/25708843>.
- 729 Kafkas A, Montaldi D (2018a) How do memory systems detect and respond to novelty?
730 *Neurosci Lett* 680:60–68 Available at:
731 <http://dx.doi.org/10.1016/j.neulet.2018.01.053>.
- 732 Kafkas A, Montaldi D (2018b) Expectation affects learning and modulates memory
733 experience at retrieval. *Cognition* 180:123–134 Available at:
734 <https://linkinghub.elsevier.com/retrieve/pii/S0010027718301938>.
- 735 Kim G, Lewis-Peacock J a, Norman KA, Turk-Browne NB (2014) Pruning of memories by
736 context-based prediction error. *Proc Natl Acad Sci* 111:8997–9002 Available at:
737 <http://www.pnas.org/cgi/doi/10.1073/pnas.1319438111>.
- 738 Kumaran D, Maguire EA (2007) Which computational mechanisms operate in the
739 hippocampus during novelty detection? *Hippocampus* 17:735–748 Available at:
740 <http://onlinelibrary.wiley.com/doi/10.1002/hipo.20207/abstract%5Cnpapers3:/>
741 /publication/doi/10.1002/hipo.20207.
- 742 Li S, Cullen WK, Anwyl R, Rowan MJ (2003) Dopamine-dependent facilitation of LTP
743 induction in hippocampal CA1 by exposure to spatial novelty. *Nat Neurosci* 6:526–
744 531.

RUNNING HEAD: Expectation violation dynamically modulates memory states

- 745 Lisman JE, Grace A a. (2005) The Hippocampal-VTA Loop: Controlling the Entry of
746 Information into Long-Term Memory. *Neuron* 46:703–713 Available at:
747 <http://linkinghub.elsevier.com/retrieve/pii/S0896627305003971>.
- 748 Long NM, Lee H, Kuhl B a. (2016) Hippocampal Mismatch Signals Are Modulated by the
749 Strength of Neural Predictions and Their Similarity to Outcomes. *J Neurosci*
750 36:12677–12687 Available at:
751 <http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1850-16.2016>.
- 752 Misaki M, Kim Y, Bandettini PA, Kriegeskorte N (2010) Comparison of multivariate
753 classifiers and response normalizations for pattern-information fMRI. *Neuroimage*
754 53:103–118 Available at:
755 <https://linkinghub.elsevier.com/retrieve/pii/S1053811910007834>.
- 756 Murty VP, Shermohammed M, Smith D V., Carter RM, Huettel SA, Adcock RA (2014)
757 Resting state networks distinguish human ventral tegmental area from substantia
758 nigra. *Neuroimage* 100:580–589 Available at:
759 <https://linkinghub.elsevier.com/retrieve/pii/S1053811914005242>.
- 760 Oosterhof NN, Connolly AC, Haxby J V. (2016) CoSMoMVPA: Multi-Modal Multivariate
761 Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave. *Front Neuroinform*
762 10:1–27 Available at:
763 <http://journal.frontiersin.org/Article/10.3389/fninf.2016.00027/abstract>.
- 764 Oyarzún JP, Packard PA, de Diego-Balaguer R, Fuentemilla L (2016) Motivated encoding
765 selectively promotes memory for future inconsequential semantically-related
766 events. *Neurobiol Learn Mem* 133:1–6.
- 767 Peirce JW (2007) PsychoPy-Psychophysics software in Python. *J Neurosci Methods*
768 162:8–13.
- 769 R Development Core Team (2008) R: A language and environment for statistical
770 computing. Available at: <http://www.r-project.org>.
- 771 Richter FR, Chanales AJH, Kuhl BA (2016) Predicting the integration of overlapping
772 memories by decoding mnemonic processing states during learning. *Neuroimage*
773 124:323–335 Available at:
774 <http://linkinghub.elsevier.com/retrieve/pii/S1053811915007703>.
- 775 Searle SR, Speed FM, Milliken GA (1980) Population Marginal Means in the Linear
776 Model: An Alternative to Least Squares Means. *Am Stat* 34:216–221 Available at:
777 <http://www.tandfonline.com/doi/abs/10.1080/00031305.1980.10483031>.

RUNNING HEAD: Expectation violation dynamically modulates memory states

- 778 Sherman BE, Turk-Browne NB (2020) Statistical prediction of the future impairs
779 episodic encoding of the present. *Proc Natl Acad Sci* 117:22760–22770 Available
780 at: <http://www.pnas.org/lookup/doi/10.1073/pnas.2013291117>.
- 781 Shohamy D, Adcock RA (2010) Dopamine and adaptive memory. *Trends Cogn Sci*
782 14:464–472.
- 783 Shohamy D, Wagner AD (2008) Integrating Memories in the Human Brain:
784 Hippocampal-Midbrain Encoding of Overlapping Events. *Neuron* 60:378–389
785 Available at: <http://dx.doi.org/10.1016/j.neuron.2008.09.023>.
- 786 Stoppel CM, Boehler CN, Strumpf H, Heinze H-J, Hopf JM, Düzel E, Schoenfeld MA (2009)
787 Neural correlates of exemplar novelty processing under different spatial attention
788 conditions. *Hum Brain Mapp* 30:3759–3771 Available at:
789 <http://doi.wiley.com/10.1002/hbm.20804>.
- 790 West BT, Welch KB, Galecki AT (2014) Linear Mixed Models. Chapman and Hall/CRC.
791 Available at: <https://www.taylorfrancis.com/books/9781466561021>.
- 792 Wickham H (2009) ggplot2. New York, NY: Springer New York. Available at:
793 <http://link.springer.com/10.1007/978-0-387-98141-3>.
- 794 Yassa MA, Stark CEL (2011) Pattern separation in the hippocampus. *Trends Neurosci*
795 34:515–525 Available at:
796 <http://linkinghub.elsevier.com/retrieve/pii/S0166223611001020>.
- 797
- 798
- 799
- 800
- 801