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One Sentence Summary: Neoantigen prediction accuracy is significantly influenced by the 
mutation position within the neoantigen and its relative position to the patient’s allele-specific 
MHC anchor locations. 
 
Abstract 
Neoantigens are novel peptide sequences resulting from sources such as somatic mutations in 
tumors. Upon loading onto major histocompatibility complex (MHC) molecules, they can trigger 
recognition by T cells. Accurate neoantigen identification is thus critical for both designing 
cancer vaccines and predicting response to immunotherapies. Neoantigen identification and 
prioritization relies on correctly predicting whether the presenting peptide sequence can 
successfully induce an immune response. As the majority of somatic mutations are single 
nucleotide variants, changes between wildtype and mutated peptides are typically subtle and 
require cautious interpretation. A potentially underappreciated variable in neoantigen-prediction 
pipelines is the mutation position within the peptide relative to its anchor positions for the 
patient’s specific MHC molecules. While a subset of peptide positions are presented to the T-
cell receptor for recognition, others are responsible for anchoring to the MHC, making these 
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positional considerations critical for predicting T-cell responses. We computationally predicted 
high probability anchor positions for different peptide lengths for 328 common HLA alleles and 
identified unique anchoring patterns among them. Analysis of 923 tumor samples shows that 6-
38% of neoantigen candidates are potentially misclassified and can be rescued using allele-
specific knowledge of anchor positions. A subset of anchor results were orthogonally validated 
using protein crystallography structures. Representative anchor trends were experimentally 
validated using peptide-MHC stability assays and competition binding assays. By incorporating 
our anchor prediction results into neoantigen prediction pipelines, we hope to formalize, 
streamline and improve the identification process for relevant clinical studies. 
 
Introduction 

Neoantigens arise from short peptide sequences specifically found in tumor cell 
populations resulting from sources such as somatic mutations, RNA editing(1), alternative 
splicing(2), etc. They can be loaded onto major histocompatibility complex (MHC) class I or II 
molecules to allow recognition by cytotoxic or helper T cells. Upon recognition, T cells are then 
able to signal cell death for an anti-tumor response. Multiple studies have shown the potential of 
neoantigen based immunotherapy treatments for cancer(3–5) and numerous clinical trials are 
underway. Accurate neoantigen prediction and prioritization is critical to understanding tumor 
immunology, response to checkpoint blockade therapy, and for the design of personalized 
vaccines(6) and T cell therapies. Several bioinformatic tools and pipelines have been developed 
to facilitate neoantigen identification(7–10).  
  The effectiveness of a neoantigen-based vaccine relies in part on whether the 
neoantigen sequences presented to T cells have previously been exposed to the immune 
system and would be subject to central tolerance (where immune response to antigens is limited 
as a result of clonal deletion of autoreactive B cells and T cells). While a variety of mutation 
types are being explored as neoantigen sources(11–15), the vast majority of somatic mutations 
currently identified as sources of neoantigens are single nucleotide variants (SNVs)(4, 16), 
though emerging research suggests that we are underestimating the potential for neoantigen 
generation from more complex forms of variation (17–20). Amino acid sequence changes 
between the wildtype (WT) and mutant (MT) peptides are subtle (often a single amino acid 
substitution) and mutant peptides remain similar to native sequences of the host. Additionally, 
only a subset of positions on the loaded peptide sequence are primarily presented to the T-cell 
receptor for recognition, and another subset of positions are primarily responsible for anchoring 
to the MHC, making these positional considerations critical for predicting T-cell responses (Fig. 
1). Thus, subtle amino acid changes must be interpreted cautiously. Multiple factors should be 
considered when prioritizing neoantigens, including mutation location, anchor position, predicted 
MT and WT binding affinities, and WT/MT fold change, also known as agretopicity(21). 
Examples of the four distinct possible scenarios for a predicted strong MHC binding peptide 
involving these factors are illustrated in Fig. 1. There are other possible scenarios where the MT 
is a poor binder, however those are not listed as they would not pertain to our goal of 
neoantigen identification. The first scenario shows the cases where the WT is a poor binder and 
the MT peptide, a strong binder, contains a mutation at an anchor location. Here, the mutation 
results in a tighter binding of the MHC and allows for better presentation and potential for 
recognition by the TCR. As the WT does not bind (or is a poor binder), this neoantigen remains 
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a good candidate since the sequence presented to the TCR is novel. The second and third 
scenarios both have strong binding WT and MT peptides. In the second scenario, the mutation 
of the peptide is located at a non-anchor location, creating a difference in the sequence 
participating in TCR recognition compared to the WT sequence. In this case, although the WT is 
a strong binder, the neoantigen remains a good candidate that should not be subject to central 
tolerance. However, as shown in the third scenario, there are neoantigen candidates where the 
mutation is located at the anchor position and both peptides are strong binders. Although 
anchor positions can themselves influence TCR recognition(22), a mutation at a strong anchor 
location generally implies that both WT and MT peptides will present the same residues for TCR 
recognition. As the WT peptide is a strong binder, the MT neoantigen, while also a strong 
binder, will likely be subject to central tolerance and should not be considered for prioritization. 
The last scenario is similar to the first scenario where the WT is a poor binder. However, in this 
case, the mutation is located at a non-anchor position, likely resulting in a different set of 
residues presented to the TCR and thus making the neoantigen a good candidate. Recent 
studies on neoantigens for both mouse and human models have confirmed the importance of 
anchor location when predicting the overall immunogenicity of a given peptide(23, 24). 
However, it is important to note that these scenarios are not absolute. While a position that acts 
as a strong anchor is less likely to be TCR facing (and vice versa), certain positions of the 
peptide may interact to varying degrees with both the MHC and TCR.  
  The mutation’s position within the peptide relative to its anchor positions for the patient’s 
human leukocyte antigen (HLA) alleles, is currently overlooked by neoantigen prediction 
pipelines. However, failing to account for these positional considerations may result in 
susceptibility to central tolerance and potentially induce auto-immunity. Many recently published 
neoantigen studies have used simple filtering strategies with either only binding affinity filters(5, 
25) (e.g. MT peptide IC50 < 500 nM) or with an additional agretopicity filter(26–28), all without 
specifying whether they account for anchor and mutation locations during their selection 
process. Researchers have previously discussed how anchor locations can affect our 
interpretation of other factors considered in neoantigen prioritization (e.g. MT, WT binding 
affinities)(29). However, a systematic method for determining anchor locations for the wide 
range of HLA alleles present in the population and application of these to evaluate MT/WT 
peptide pairs arising in tumors has not been reported. As a result, many neoantigen studies 
have either failed to adequately consider this crucial factor or have used simplified and arbitrary 
assumptions to guide their neoantigen identification process. 
  Here, we provide a computational workflow for predicting anchor locations for a wide 
range of HLA alleles using a seed dataset generated from a collection of patient samples from 
local tumor sequences studies(30) combined with samples from The Cancer Genome Atlas 
(TCGA). Analysis of results showed clusters of different anchor trends among the HLA alleles 
analyzed and a subset of these HLA anchor results were orthogonally validated using protein 
crystallography structures. Representative anchor trends were experimentally validated using 
cell-based stability assays and IC50 binding assays. Using additional TCGA samples, we further 
evaluated how prioritization results may change when provided with additional anchor 
information, emulating a subset of steps in the neoantigen selection process by an 
immunotherapy tumor board, tasked with prioritizing vaccine candidates. By sharing our results 
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for incorporation into neoantigen prediction pipelines, we hope to improve neoantigen 
prioritization for relevant experimental and clinical studies. 
 
Results 

Computational and quantitative prediction of HLA-specific anchor positions 
In order to predict anchor locations for a wide range of HLA alleles, we assembled a seed HLA-
peptide dataset of strong binding peptides with a median predicted IC50 of less than 500 nM 
across (up to) 8 MHC class I algorithms (NetMHC(31), NetMHCpan(32), MHCnuggets(33), 
MHCflurry(34), SMM(35), Pickpocket(36), SMMPMBEC(37), NetMHCcons(38)). These peptides 
were obtained from TCGA and supplemented with additional patient datasets from our own 
neoantigen study cohorts including lymphoma, glioblastoma(30), breast cancer, and melanoma 
(Methods; Data file S1). A total of 609,807 peptides were identified with the majority being 9-
mers and 10-mers (Fig. S1). In total, these peptides corresponded to 328 HLA alleles across 
1,443 tumor samples.  

For each individual HLA allele of which data was obtained, peptides were sorted and 
separated by their respective lengths, ranging from 8 to 11 (Fig. 2). These peptides were then 
mutated in silico at all possible positions to all possible amino acids. Predicted binding affinities 
for each individual peptide were then obtained using the same set of algorithms as previously 
described. These binding affinities were compared to the median binding affinity of the original 
strong binding peptide sequence. This comparison enables us to evaluate how mutations 
occurring at each individual position change the predicted binding interaction between the 
strong binding peptide and the MHC molecule. A significant change observed at a particular 
location indicates a higher probability of the amino acid at the position acting as an anchor. On 
the other hand, little to no change in binding affinities when a position is mutated would indicate 
a lower probability of the position acting as an anchor. An overall score per position was 
obtained by summing across all peptides analyzed for an individual HLA allele (Fig. 2; Fig. S2; 
Methods). 

Prediction results show distinct patterns of HLA anchor locations 
We generated anchor prediction scores for the 328 HLA alleles with strong binding peptides in 
our seed dataset (Data file S2). These HLA alleles include 95 HLA-A alleles (representing 
99.2% of the HLA-A alleles observed in the population according to the Allele Frequency Net 
Database), 175 HLA-B alleles (representing 97.9% of HLA-B alleles) and 58 HLA-C alleles 
(representing 98.5% of the HLA-C alleles)(39)(Methods). Results were separated based on 
peptide lengths (8-11) and the anchor prediction scores across all HLA alleles were visualized 
using hierarchical clustering with average linkage (Fig. 3; Fig. S3). We observed different 
anchor patterns across HLA alleles, varying in both the number of anchor positions as well as 
the location. These anchor position patterns could be roughly clustered into 6 distinct groups. 
Additionally, while we utilized peptides generated from cancer patient data, we wanted to see if 
changing the source of the peptides would affect our predicted anchor patterns (Fig. S4; 
Methods). After averaging calculations over 1,000 peptides from each source, we observed 
high convergence of the anchor pattern for HLA-A*02:01 across all four different sources 
(random, reference proteome, viral proteome, and cancer mutations). This demonstrated the 
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possibility of expanding results to a wider span of HLA alleles in the future by utilizing different 
sources of peptides.  
 Previously, anchor locations have generally been assumed to be at the second and 
terminal position of the peptide with equal weighting (with the notable exception of HLA-
B*08:01)(40). Our 9-mer clustering results confirm that the majority of HLA alleles predicted 
show positions 2 and 9 as likely anchor locations (95% fall into the 2S-9W, 2W-9S, 2M-9M 
clusters combined). However, three distinct cluster groups can be further identified within the 
larger group. The 2S-9W cluster represents HLA alleles with a strong anchor predicted at 
position 2 and a weak anchor predicted at position 9 (2S-9W; Fig. 3). The 2W-9S cluster shows 
those with a strong anchor predicted at position 9 and a weak anchor predicted at position 2 
(2W-9S; Fig. 3). Additionally, we observe a smaller cluster of HLA alleles with moderate anchor 
predictions for both positions (2M-9M; Fig. 3) and another cluster with strong anchor predictions 
for only position 9 (9S; Fig. 3). We also discovered other patterns differing from the previous 
anchor assumptions of 2 and 9. In particular, we observed a clustered group of HLA-C alleles 
that have a moderate anchor at 3 and 9 accompanied by a weaker signal at 2 (2W-3M-9M; Fig. 
3). A smaller group of HLA-B alleles also show an additional anchor at position 5 (2W-3W-5W-
9M; Fig. 3). Our results indicate that a conventional anchor assumption putting equal weights on 
positions 2 and 9 does not capture the significant heterogeneity in anchor usage between 
different HLA alleles. These anchor considerations can affect neoantigen prioritization decisions 
and we hypothesized that HLA allele-specific anchor predictions would allow ranking of 
neoantigens with greater accuracy. 
 To analyze the possibility of our clusters arising due to bias from prediction algorithms 
and their training datasets, we examined the training dataset used by NetMHCpan4.0 for the 
328 HLA alleles that we have included (Data file S3). Additionally, for alleles with limited data 
(hence predicted through a pan allele strategy), the ability to effectively utilize information from 
other alleles (for those lacking training data) also depends on how similar the allele of interest is 
to other alleles that do have robust amounts of data. Thus we also looked at the neighboring 
HLA alleles that are used in cases where training data was not available and the distance 
(calculated by NetMHCpan4.0) between each HLA allele and its nearest neighbor. Overall, the 
majority of HLA alleles (99.7%) had binding predictions from at least 4 different algorithms with 
54 HLA alleles being supported by all 8 (Fig. S5a). The amount of training data for each HLA 
allele also correlated with how consistent binding predictions were across algorithms (Fig. S5b). 
This analysis confirms our expectation that more training data leads to more consistent 
predictions across algorithms. For the smaller clusters such as 2W-3W-5W-9M (blue), 2W-3W-
9M (green) and 9S (gray), we can see that in general they fall along the same level as other 
clusters when comparing their nearest neighbor distances and how much variation is seen 
across prediction algorithms (Fig. S5c,d). Additionally, 2 out of the 3 alleles in the 2W-3W-5W-
9M cluster, 4 out of 7 alleles in the 2W-3W-9M cluster and 6 out of 6 alleles in the 9S cluster all 
have some amount of training data available (Fig. S5e, Data file S3). When looking at network 
graphs showing HLA alleles and their neighbors, those with 2W-3W-5W-9M (blue) and 2W-3W-
9M (green) patterns are scattered among different clusters with some alleles even acting as the 
center node (indicating non-zero amount of training data and thus no need to estimate binding 
based on similar alleles) (Fig. S5f,g). Thus, we concluded that the less common anchor clusters 
do not correlate with lack of training data nor similarity to a limited set of nearest neighbors. 
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Hence, we excluded the possibility of clusters arising due to bias in algorithms and their training 
data and believe that allele-specific differences are the true underlying reason for our 
observations. 

Protein structural analysis confirms predicted anchor results 
To validate our anchor predictions, we collected X-ray crystallography structures for MHC 
molecules with bound peptides (Data file S4). The 166 protein structures collected 
corresponded to 33 HLA alleles with the majority of them containing 9-mer peptides (8-mers: 6, 
9-mers: 110, 10-mers: 39, 11-mers: 11). These structures were analyzed using two methods: 1) 
measuring the physical distance between the peptide and the MHC binding groove and 2) 
calculating the solvent-accessible surface area (SASA) of the peptide residues (Fig. 4a,b; 
Methods). These methods were selected to validate predicted anchor positions based on the 
assumptions that if a certain peptide position is designated as an anchor then it is 1) more likely 
to be closer to the HLA molecule and 2) more secluded from solvent surrounding the peptide-
MHC complex compared to non-anchor positions. This is because non-anchor peptide residues 
should be accessible to the TCR for recognition, thus in the peptide-MHC structures collected 
where a TCR is not present, peptide surface area available to the surrounding solvent roughly 
mimics the area that would be accessible by the TCR. Thus we expect an inverse correlation 
between our anchor prediction scores and the distance/SASA metrics. HLA-A*02:01, shown as 
an example, was found to have the greatest number of qualifying structures, with 47 of them 
containing a 9-mer peptide (Fig. 4c). These x-ray crystallography structures each capture a 
snapshot of a dynamic protein structure in constant movement. By overlaying the distance and 
SASA scores across all 47 complexes respectively, we observe that positions 2 and 9 are the 
ones most consistently close to the HLA molecule while also being secluded from the solvent. 
This observation corresponds well with our prediction of strong anchors at both positions 2 and 
9 for HLA-A*02:01 and a 9-mer peptide. We also performed a targeted analysis on HLA-B*08:01 
(2W-3W-5W-9M; blue cluster) with the limited data available and observed that positions 6 and 
7 consistently bulged out whereas other positions tend to be closer to the HLA molecule while 
also being secluded from solvent (Fig. S6). 

To evaluate how the distance and SASA metric correlates with our prediction results 
across different HLA alleles, we calculated Spearman correlations between our prediction 
scores and distance/SASA results for each peptide position across 87 PDB structures. These 
structures were determined by randomly selecting at most 5 structures per HLA-length 
combination. The distribution of these correlations was compared to that of a randomized 
dataset where positions of the peptide were randomly shuffled (Fig. 4d; Data file S5; 
Methods). Two sample t-tests showed the distributions were significantly different from the 
randomized dataset with statistical values of -9.9795 (p value = 1.3757e-18) and -14.7322 (p 
value = 8.7472e-30) for distance and SASA metrics respectively. Results show that 91.95% of 
our prediction scores are inversely correlated with the distance metric and 100% of them are 
inversely correlated with the SASA scores. Furthermore, we analyzed 61 protein structures that 
contained both the peptide-MHC complex and an additional binding TCR molecule. The 
distance between the TCR and the peptide showed high correlation with our prediction scores 
(Fig. S7). Two-sample t-tests showed significant differences between the randomized dataset 
and both the HLA-peptide distance (p = 8.8023e-08) and the TCR-peptide distance (p=2.4915e-
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13). These results together strongly suggest that our anchor prediction workflow is accurately 
predicting allele specific anchor sites. 
 

Experimental validation shows similar anchor trends as our prediction across distinct 
HLA alleles 
In order to further validate the predicted anchor patterns we observed, we selected a range of 
HLA alleles representing these patterns for experimental validation. We used two different 
experimental validation methods across our peptide-HLA combinations: in vitro IC50 binding 
assays and cell-based stabilization assays (Methods). Validations were performed on a total of 
136 peptide-HLA combinations across 8 different HLA alleles selected to represent varying 
anchor patterns. For each HLA allele selected, we first validated peptides that were predicted to 
be strong binders. These peptides were originally MT peptides from either clinical datasets or 
TCGA samples paired with matching HLA alleles from the patient. For a validated strong binding 
peptide-HLA combination, we then synthesized peptides mutated in multiple ways at different 
positions, which each had a varying predicted probability of acting as an anchor. These mutated 
peptides were then evaluated experimentally for MHC binding and/or stability and compared to 
the original strong-binding peptide (Data file S6). For example, we performed an in-depth 
analysis for HLA-B*07:02 with a strong binding 9-mer peptide RPDVKHSKM. Overall for 9-mer 
peptides, HLA-B*07:02 was predicted to have a high probability anchor at position 2 and a lower 
probability anchor at position 9 (2S-9W) (Fig. 5a). Following our computational prediction 
workflow, we also calculated the specific anchor trend for peptide RPDVKHSKM, which agrees 
with the overall 9-mer trend with positions 2, 9 and 1 as anchors in descending probability (Fig. 
5b). We mutated positions 1, 2, 5 and 9 to four different amino acids, each with varying 
predicted influence on the binding affinity, and measured their stability with regards to HLA-
B*07:02 (Methods; Fig. 5c). For non-anchor position P5, all mutated peptides remained strong 
binders. For the two weak anchor positions P1 and P9, certain amino acid changes disturbed 
the binding while others had little influence. For the strong anchor position P2, all amino acid 
changes led to a non-binder. We further performed IC50 binding assays and observed a similar 
trend to that of the stability experiments (Fig. 5d). Similar mutation experiments on HLA-
B*08:01, HLA-A*68:01 and HLA-A*23:01 were conducted (Fig. S8 and S9). These additional 
experiments confirmed the varying strengths of individual positions acting as anchors for MHC 
alleles comprising anchor patterns 2W-3W-5W-9M, 2W-9S and 9S.  

Overall, across 136 peptide-HLA combinations, experimental validation results were 
consistent with the average predicted binding affinities calculated from 8 prediction algorithms. 
For peptides validated using IC50 binding assays, reasonable correlations were observed 
between the predicted and measured IC50 values, with respect to individual HLA alleles (Fig. 
6a). When comparing the measured binding category (determined by the measured IC50) with 
predicted binding affinities, we saw a clear trend with high affinity binders having the lowest 
predicted IC50 values (Fig. 6b). A few outliers were observed where peptides were predicted as 
strong binders but when validating, these peptides were categorized as non-binding. This may 
be explained by difficulties in manufacturing and/or solubilizing these peptides, preventing 
detection in our validation experiments. As expected, an inverse correlation was observed 
between the MFI average values and the predicted binding affinities (Fig. 6c). Similarly, 
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peptides with measured high affinities showed the highest MFI values. Peptides with measured 
binding affinities among the “medium”, “low”, “very low” and “no binder” categories were similar 
in their range of MFI values, indicating a difference in the sensitivity between the IC50 binding 
assays and cell stabilization experiments (Fig. 6d; Methods). 

We further examined how each prediction algorithm performed when compared to the 
measured IC50 binding values (Data file S7; Fig. S10). Out of the eight algorithms used, HLA-
A*02:01 had the highest correlation scores for 6 out of the 8 algorithms, consistent with our 
observation that it has the largest training dataset (Data file S3) and thus was expected to yield 
the best accuracy. Overall, NetMHCpan came out on top, showing the highest correlation 
values in all 4 HLA alleles where sufficient data was available (Fig. S11). These experimental 
validation results combined help show the distinct anchor trends that exist among HLA alleles. 

Neoantigen prioritization results are influenced by accounting for anchor locations 
Current pipelines fail to take into account HLA allele-dependent effects on anchor locations and 
researchers lack specific tools and databases to make use of such information. While the 
decision of whether a neoantigen should be prioritized over others involves many aspects not 
discussed in detail here (including variant allele frequencies, gene expression, and 
manufacturability considerations to name a few), we used a straightforward approach to 
evaluate the effects of introducing improved anchor information on neoantigen prioritization. 
Interpretation of a strong binding MT peptide candidate may depend on other factors such as 
WT binding affinity, agretopicity, mutation position, and anchor location(s), leading to different 
choices when prioritizing neoantigens (Fig. 7a). If the mutation is not at an anchor location, 
regardless of the WT peptide binding affinity, the MT peptide should be prioritized. In this case, 
the sequence for TCR recognition contains a mutation and will not be subject to central 
tolerance (Fig. 7a; scenario 1,2). Additionally, if the WT peptide is a weak binder, the MT 
peptide should be accepted regardless of whether the mutation is at an anchor location since 
both the MT and WT sequences have not previously been exposed to the immune system and 
therefore not subject to tolerance (Fig. 7a; scenario 4). However, if the WT binds strongly, 
regardless of agretopicity, and the mutation is at an anchor location, then this neoantigen will 
likely be subject to central tolerance and should be rejected from prioritization (Fig. 7a; scenario 
3). These scenarios are considered when performing the following anchor position impact 
analysis. 

Our cohort impact analysis involved an additional set of TCGA patient samples where 
neoantigens were predicted for 923 selected patient-HLA allele pairings. When selecting 
patient-HLA paired samples we chose from a balanced HLA allele distribution (Methods). Our 
intent was to give a more balanced view of the impact across all HLA alleles without overt bias 
for the most common alleles. We first examined the proportion of SNV-induced neoantigens that 
went into each of the 4 scenarios described in Fig. 7a and found that 17%, 57%, 8% and 18% 
of all peptide candidates fell into scenarios 1, 2, 3 and 4 respectively (Fig. S12). All potential 
neoantigens were filtered according to three different criteria: A) mutant IC50 < 500 nM and 
agretopicity > 1 (‘no anchor filter’), B) supplementing this with a conventional anchor assumption 
(‘conventional filter’), or C) using our computationally predicted anchor locations (‘allele-specific 
filter’) (Methods). Peptide results showed that under the no anchor filter 57.9% of neoantigens 
are accepted compared to 93.2% under the conventional filter and 94.8% under the allele-
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specific filter, showing an overall net gain in the number of peptides when taking anchor 
considerations into account. When comparing filtered data sets under different criteria, 38.3% of 
neoantigens are potentially misclassified using the no anchor filter, and approximately 5.7% of 
candidates are potentially misclassified between the conventional filter and the allele-specific 
filter (Fig. 7b). These misclassifications involve the inclusion of peptides that are likely to be 
subject to tolerance (and could lead to false positives) and exclusion of peptides that could be 
strong candidates (false negatives). We repeated this analysis to see if our observations are 
consistent when 1) using different binding affinity cutoffs for strong-binding peptides (< 100 nM 
and < 50 nM) and 2) looking exclusively at peptide-MHC pairings that have a non-conventional 
anchor pattern (Fig. 7c; Methods). Our results showed that when comparing results between 
the no anchor (A) and any anchor considerations (B or C), differences of accepted candidates 
are similar across the four criteria (< 500 nM, < 100 nM, < 50 nM, and HLA filter). When 
comparing results between the allele-specific considerations (C) and the more naive 
approaches (A or B), we see an increase in percentage of difference with our HLA allele filtered 
dataset indicating a greater impact on neoantigen prioritization when using our allele-specific 
anchor method. This was expected since peptides analyzed in this dataset corresponded to 
HLA alleles with non-conventional anchor patterns. We also see a decrease in percentage when 
applying a binding affinity cutoff of 50 nM which we believe is in part due to less HLA alleles 
passing the stricter binding cutoffs (81 versus 98 unique HLA alleles found in datasets with 
cutoffs 50 nM and 500 nM respectively). By comparing peptides prioritized using the allele-
specific anchor filter and those from the no anchor/conventional anchor filters, we highlighted 
the potential sources for false positives and false negatives (Fig. 7b). Examples of each 
scenario were pulled from our dataset to show how peptides passed or failed individual filters 
(Fig. 7d). 

We additionally performed a patient-level impact analysis using 100 randomly selected 
TCGA samples, and predicted neoantigens each with their full set of class I HLA alleles (up to 
6) (Methods; Data file S8; Fig. S13a,b). The neoantigen candidates were prioritized using the 
same set of criteria applied in the previous cohort analysis. We observed a significant impact on 
neoantigen prioritization results depending on the chosen filtering criteria. Specifically between 
the no anchor filter and the allele-specific filter, 99% of the patients analyzed had at least one 
neoantigen decision changed, with a median of 11 peptides with altered decisions, per patient. 
Similarly, between the no anchor filter and the conventional filter, 98% of the patients analyzed 
had at least one decision changed (median: 11 peptides) and between the conventional filter 
and the allele-specific filter, 65% of the patients had at least one decision changed (median: 1 
peptide) (Fig. S13c,d,e). These results show the potential widespread effect of anchor 
considerations on patient-level prioritization results.  
 
Discussion 
We developed a computational workflow for predicting probabilities of anchor positions for a 
wide range of the most common HLA alleles. Our results show that anchor positions vary 
substantially between different HLAs. A subset of our prediction results were confirmed by 
analyzing available crystallography structures of peptide-MHC complexes. We further 
experimentally validated HLA allele anchor patterns using binding assays and cell-based 
stabilization assays. The underlying quantitative scores from our anchor prediction workflow are 
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available for incorporation into neoantigen prediction workflows and we believe this will improve 
their performance in predicting immunogenic tumor specific peptides. For simplicity, our 
illustrations have depicted peptide residues as either anchoring or potentially participating in 
TCR recognition, although previous research has shown that heteroclitic peptides can alter both 
simultaneously(22). Hence, anchor residues and TCR recognition sites should not be 
considered mutually exclusive and should ideally be interpreted quantitatively where the anchor 
scores (provided in Data file S2.) reflect the probability of a peptide position participating in 
binding.  

Using an independent pool of TCGA samples, previously excluded from the 
computational prediction process, we show that consideration of anchor prediction results can 
have a significant impact on neoantigen prioritization. In this study, the choices of whether to 
accept or reject a prioritization decision were based on hard cutoffs determined using an 
objective strategy across all HLA alleles. However, when making clinical decisions, we 
recommend using the actual anchor probabilities as guidance when prioritizing candidates. In 
most neoantigen characterization workflows, numerous other factors are taken into account to 
arrive at an overall prioritization decision, which may further increase differences between 
filtering strategies. Additionally, while our anchor results represent overall averaged scores 
across multiple neoantigens, slight variations of patterns do exist among different peptides for 
the same HLA allele. It would generally be computationally prohibitive to perform our workflow 
on a large scale for all possible neoantigen candidates. However, as a compromise, one could 
repeat our detailed process to generate peptide specific anchor predictions after performing 
other filtering strategies (e.g. genomic information including VAF and expression) and arriving at 
a shortlist of candidates.  

Anchor results not only impact the selection process of neoantigens for personalized 
cancer vaccines, but also change the way neoantigen load estimation is currently defined. 
Neoantigen load estimation is commonly defined as the number of peptides whose binding 
affinity passes a certain threshold. However, this threshold, meant to limit to the approximate 
number of strong binding neoantigens, should also take into account the mutation position, HLA 
specific anchor locations, and agretopicity for more precise estimation. Our anchor impact 
analysis demonstrates the effect of this alteration on estimation results. Moreover, our analysis 
results show that there is a net gain of neoantigen candidates when taking anchor 
considerations into account compared to the commonly used agretopicity filters. This becomes 
important in the context of neoantigen prioritization, particularly when the minimum number of 
peptide vaccine candidates cannot be met for patients due to low tumor mutational burden. 
However, we also acknowledge that while our approach improves sensitivity it could come at 
the cost of slightly decreased specificity for patients with high neoantigen burden.  
         The neoantigen selection process requires careful consideration of numerous aspects, 
which have been discussed extensively(6). In general, neoantigen-based vaccines act by 
stimulating the patient’s immune system for the production of activated cytotoxic T cells. 
However, compared to viral antigens where the protein sequence is entirely foreign, 
neoantigens, particularly those developed from SNVs, have merely subtle differences from the 
individual’s wildtype proteome. Thus, the need for a WT versus MT peptide comparison, while 
considering anchor locations, is an aspect specific to tumor neoantigens that other vaccine 
development pipelines could generally ignore. Though neoantigens derived from in-frame or 
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frameshift indels diverge more from the WT sequence and are generally less influenced by our 
findings, cases where such mutations are located towards the beginning or end of a neoantigen 
may still cause anchor disruption in an allele-specific manner. Additionally, more work should be 
done to characterize the similarity of neoantigen candidates and the patient’s wildtype proteome 
for an overall accurate prioritization process. 
 Recent work, such as that from the Tumor Neoantigen Selection Alliance (TESLA)(24), 
have hinted at the potential importance of anchor locations. In that study, researchers made the 
unexpected observation that among the 37 positively validated neoantigen candidates, none of 
the peptides had a mutation at position 2, a common anchor position for a range of HLA alleles, 
despite a high number of prioritized neoantigens with a position 2 mutation. Possible 
explanations could include the fact that neoantigens with the mutant residue at a strong anchor 
position have a disadvantage over those present at TCR sites as they require their WT 
counterpart to be a poor binder and the threshold for determining sufficiently weak binding of the 
WT peptide is unclear. However further investigation is required to address questions raised by 
such observations. 
         In addition to the limitations of being applicable to a subset of neoantigens derived from 
SNVs and certain indels, our work could be expanded to a wider range of HLA alleles. A larger 
HLA-peptide seed dataset could be achieved through a wide-scale prediction of strong binders 
for rare HLA alleles by mutating the wildtype proteome. There have also been publications 
noting the sequence motifs in HLA Class II binding peptides (41), as well as others using 
molecular docking approaches (42) in an attempt to estimate anchor positions for HLA Class II 
alleles. However, class II alleles differ substantially from class I due to the difference in length of 
binding peptides and the binding pocket being more open and composed of a protein dimer. 
Additional data generation and further research will be required for the expansion of our 
workflow to address class II, though we hypothesize that the same principles should be 
applicable. Furthermore, while x-ray crystallography structures show support for our anchor 
location predictions, experimental validation with neoantigens designed to induce T-cell 
activation is needed to explicitly showcase the importance of our results in clinical settings. 
Although numerous clinical trials using neoantigen-based vaccines are underway, results 
published show a low accuracy for current neoantigen prediction pipelines(43). By accounting 
for additional positional information, we hope to significantly reduce the number of false positive 
candidates and rescue false negative neoantigens to increase prediction accuracy. A 
prioritization strategy utilizing anchor results has been incorporated into the visual reporting of 
our neoantigen identification pipeline pVACseq(7).  

Machine learning algorithms have been widely applied in the context of neoantigen 
binding predictions. However, machine learning models trained on experimentally validated data 
with T-cell activation results are lacking and identifying features for these models is an active 
area of research. Anchor location probabilities may serve as an additional feature in machine 
learning model training on clinical data. This will allow for a more nuanced approach where 
anchor probabilities may be weighted for each allele-peptide pairing accordingly. These results 
and tools will help streamline the prioritization of candidates for neoantigen vaccines and may 
aid in the design of more effective cancer vaccines. 
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Materials and Methods 

Study Design 
The objective of this study was to predict allele-specific MHC anchor locations and investigate 
whether use of this information can significantly influence neoantigen identification and 
prioritization. We established a computational approach based on an ensemble of MHC binding 
prediction algorithms and exhaustive in silico mutation of peptides. By application of this 
approach to 609,807 distinct peptide sequences we were able to predict anchor location 
probabilities for 328 common HLA alleles with peptides of varying lengths (8-11 mers). Anchor 
location probabilities were clustered using hierarchical clustering and representative trends were 
identified and experimentally validated using various methods, including: x-ray crystallography 
structures, IC50 competition binding assays, and cell-based stabilization assays. All stabilization 
assays were completed 2-3 times in duplicate (N=4-6). Use of allele-specific anchor predictions 
was compared against conventional prioritization methods to demonstrate the potential 
influence on neoantigen prioritization results. 

Input data for identifying strong binding seed peptides for anchor site prediction 
We assembled peptide data from various sources where binding prediction data were available 
through clinical collaborations and supplemented these with TCGA datasets where necessary to 
achieve better representation of less common HLA alleles. Datasets from clinical collaborations 
that were incorporated include 7 triple-negative breast cancer samples, 54 lymphoma samples, 
20 glioblastoma samples, and 6 melanoma samples. Additionally, we mined data from 9,216 
TCGA samples to optimize the number of strong binding peptides matched to each HLA allele 
by adding 10 samples for insufficient (<10 strong binding peptides) and 15 samples for 
previously unseen HLA alleles. Of these, 1,356 TCGA samples were used to generate seed 
HLA-peptide combinations to be used for downstream simulations. High quality variants 
included from TCGA samples were obtained from the Genomic Data Commons and selected 
according to their filter status (pass only) and required to be called by at least 2 out of 4 variant 
callers as previously described(44). Peptide lengths considered ranged from 8- to 11-mers. In 
total, these datasets corresponded to 1,443 tumor samples, representing 328 matching HLA 
alleles, with 737 of these having more than 10 strong binding peptides, and a grand total of 
609,807 strong binding peptides for use in the following analyses (Fig. S1; Data file S1). 

Computational prediction of anchor site positions for 328 HLA alleles 
Peptides collected from input datasets were first filtered for strong binders using a binding 
affinity cutoff of 500 nM. These were used to build a seed dataset consisting of peptides 
predicted to be strong binders to individual HLA alleles. We first performed a saturation analysis 
to determine the appropriate number of random peptides needed to obtain a robust estimate of 
the likely anchor site locations of each HLA allele. This was done using peptides collected for 
HLA-A*02:01, where over 1,500 peptides were obtained for each peptide length. Random 
sampling with a subset size of 10 peptides showed consistently high correlation (> 0.95) with 
the largest subset size used where all 1000 peptides were incorporated (Fig. S4). Thus in 
downstream analysis, for each unique HLA and peptide length combination, 10 peptides were 
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randomly selected from the database. For each of the 10 starting peptides at each position n, 
we obtained a score that reflects how much a mutation at this position (by mutation to all 19 
other amino acid identities) will affect the overall binding affinity:  

(abs(Y(n,1)-X)+..+ abs(Y(n,20)-X)) 
where X is the binding affinity of the unmutated peptide, and Y(i,j) is the binding affinity of the 
peptide mutated at position i to amino acid number j (total of 20 possible amino acids to mutate 
to). All binding affinities were calculated using pVACbind from pVACtools (version 1.5.0)(7) in 
which the following algorithms were selected: NetMHC(31), NetMHCpan(32), MHCnuggets(33), 
MHCflurry(34), SMM(35), Pickpocket(36), SMMPMBEC(37), NetMHCcons(38). The median 
binding affinity across all 8 of these algorithms was used both to nominate strong binder 
peptides for the seed dataset, and to assess the impact of in silico mutation at each position of 
these peptides. For each strong binding peptide in the seed dataset, this systematic in silico 
mutation led to [length x amino acid identity x algorithm] binding predictions (e.g. 1,368 binding 
predictions for a single 9-mer peptide).  
 
Each position was assigned a score based on how much binding affinity values were influenced 
by mutations at that position. These scores were then used to calculate the relative contribution 
of each position to the overall binding affinity of the peptide. Positions that together account for 
80% of the relative overall binding affinity change were assigned as anchor locations for further 
impact analysis.  

Evaluating different seed peptide sources and their impact on the anchor patterns 
predicted 
Three additional sources were explored and compared to peptides from our seed dataset to 
investigate whether the source of these strong binding peptides would influence our results. For 
comparison, we selected 1,000 strong binding peptides (median predicted binding affinity < 
500nM) from the following four sources: randomly generated peptides, peptides randomly 
selected from the WT proteome, peptides randomly selected from a viral genome, and peptides 
from our seed dataset. To obtain randomly generated peptides, we first generated a random list 
of amino acids (100,000,000 aa in length) using a random choice function and tested 50,000 9-
mer peptides to reach 1000 predicted strong binders. For peptides generated from the WT 
human proteome (ensembl) and the viral proteome (variola virus), we randomly selected 30,000 
9-mer peptides from proteins with valid sequences longer than 9 amino acids.  
 
For each strong binding peptide, we followed our computational workflow for anchor predictions 
and mutated each position of the peptide to all possible amino acids and accessed the change 
to binding respectively. Normalized scores across all peptide positions for 1,000 peptides were 
plotted in Fig S4.  

Bias analysis for HLA allele-specific anchor patterns  
To evaluate whether our anchor patterns are influenced by the training data available for each 
HLA allele, we downloaded the training dataset of NetMHCpan4.0. Additionally, for HLA alleles 
with no training data available, we determined which HLA allele was its closest neighbor defined 
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by NetMHCpan4.0 and what the distance measurements were between the neighboring alleles. 
With these data obtained, we used CytoScape to visualize the relationships between all alleles 
using network graphs. Each center node represents an HLA allele with training data (size of 
dataset correlates with the size of each node) and each connected node represents a 
neighboring HLA allele that uses the center node allele for its binding estimations. Distances are 
marked on the edges of each graph. Colors of each node reflect the anchor cluster assigned as 
shown in Fig 3. 

Input data for orthogonal evaluation of predicted anchor sites 
To evaluate our anchor predictions, we collected 166 protein structures (pdb format) of peptide-
MHC complexes and 61 peptide-MHC-TCR complexes from the Protein Data Bank(45) by 
querying for structures containing macromolecules matching class I HLAs. Structures were 
additionally reviewed to ensure valid peptide length (8-11) and those with TCRs attached were 
separated into a different list for downstream analysis to allow accurate solvent-accessible 
surface area (SASA) calculations. The HLA-peptide structures corresponded to 33 HLA alleles 
with peptides of varying lengths (8 to 11mer), while the HLA-peptide-TCR structures 
corresponded to 12 HLA alleles. A complete list of PDB ids selected for this analysis can be 
found in Data file S4.  

Orthogonal validation of predicted anchor sites by analysis of pMHC structures  
The structures of peptide-MHC molecules were analyzed to infer potential anchor 
locations/residues. All PDB structures were analyzed in python using the MDTraj package(46).   
For each position of a peptide bound to an HLA, we utilized two different metrics: 1) minimum 
distance of non-backbone atoms to all HLA associated atoms and 2) estimated solvent-
accessible surface area (SASA) of the residue. In method 1, we calculated the distances 
between each atom of each residue and all HLA associated atoms. Non-backbone atoms were 
ordered by their distance to the closest HLA-associated atom and the top 50% were used to 
calculate an average distance representing an entire residue (with the exception of glycine 
where all atoms were considered). In method 2, we directly calculated the SASA of each 
residue (shrake_rupley function in MDTraj), which was used to infer the likelihood of being able 
to be recognized by the T-cell receptor. After calculating these values for each position of the 
peptide, they were directly compared to the anchor prediction scores by calculating a Spearman 
correlation. In the case of the distance metric, we expect positions of the peptide closer to the 
MHC to be more likely an anchor and those further (“bulging out”) to more likely interact with the 
TCR. Similarly, for the SASA metric, if a peptide position is more solvently accessible (higher 
SASA value) we expect it to be more accessible to the TCR as well and those that are less 
accessible would be more likely interacting with the MHC as an anchor. 
 
For an overall evaluation of how well our anchor predictions correlated with these metrics 
(distance and SASA), Spearman correlations were determined across all structural data 
collected. For example, for a 9-mer peptide, a Spearman correlation was calculated for the 9 
anchor prediction scores from the in silico mutation exercise compared to the 9 distance or 
SASA estimates obtained from the structure analysis. Out of 166 peptide-MHC structures 
collected, correlation values for 87 were plotted by randomly selecting at most 5 structures per 
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HLA-length combination (Data file S5). For comparison, we also randomly shuffled distance 
and SASA scores across all positions of individual peptides and calculated correlation scores 
against this randomized dataset. The different sets of correlation values were then fit to 
Gaussian distributions (Fig. 4d). Non-paired two sample t-tests assuming unequal variance 
were performed to evaluate the differences among distributions (using python SciPy 
scipy.stats.ttest_ind). 
 
Additional analysis was performed on the 61 peptide-MHC-TCR structures collected. After 
randomly selecting at most 5 structures per HLA-length combination, Spearman correlations 
derived from 31 structures were plotted. Correlations were calculated for 1) distance from 
peptide to HLA versus anchor prediction scores and 2) distance from peptide to TCR versus 
anchor prediction scores. Once again, the HLA-peptide distances were randomly shuffled and 
used as comparison and two sample t-tests were performed to evaluate the differences among 
distributions. 

Input data for evaluating the impact of anchor site considerations 
To evaluate how anchor site considerations might influence neoantigen prioritization decisions, 
we considered a balanced HLA allele distribution when selecting input data. We randomly 
sampled up to 10 corresponding TCGA samples for each HLA allele with sufficient data (at least 
3 out of 4 lengths have 10 or more matching peptides). 923 TCGA-HLA combinations were 
chosen from a total of 9,216 TCGA samples excluding the 1,356 used for the seed anchor site 
prediction data set described above. The 923 TCGA-HLA combinations corresponded to   
TCGA patients (Data file S8). To further evaluate impact of anchor considerations on a patient-
specific level, an additional 100 TCGA patients were selected from the original 1,356 TCGA 
patient samples where we had neoantigen predictions for the patient’s full set of HLA alleles 
(Data file S8).  

Evaluating the impact of anchor site consideration on neoantigen prioritization  
To analyze the importance of positional information on prioritization of neoantigens, TCGA 
patient samples were used as input and run through pVACtools (version 1.5.2) using the 
following options: -e 8,9,10,11, --iedb-retries 50, --downstream-sequence-length 500, --
minimum-fold-change 0, --trna-cov 0, --tdna-vaf 0, --trna-vaf 0, --pass-only. The neoantigen 
candidates were then filtered and prioritized according to different criteria: A) Basic Filter: 
mutant peptide IC50 < 500 nM and agretopicity > 1, B) Decision based on a conventional 
anchor assumption that anchors are located at position 2 and the C-terminal position, C) 
Decision based on computationally predicted anchor locations. Specifically, under filter A) the 
position of a mutation with respect to MHC anchor positions is not considered. An accepted 
peptide means: MT peptide IC50 < 500 nM and WT IC50 / MT IC50 > 1, otherwise the peptide 
is rejected. Under filter B), anchor positions are defined to be 2 and n for all n-mer peptides. 
Under filter C), anchor positions are defined by our computational predictions, which are allele-
specific. For both filters B and C, peptides are accepted if 1) the MT IC50 < 500 and WT IC50 > 
500, or 2) the MT IC50 < 500, WT IC50 < 500 and the mutation is at a non-anchor location, as 
defined by the anchor definition of filters B and C respectively. 
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For filter C, anchor positions were defined individually for each peptide using the following 
strategy: Per anchor probability results from our computational workflow, each position of the n-
mer peptide was assigned a score based on how binding to a certain HLA allele was influenced 
by mutations. These scores were then used to calculate the relative contribution of each 
position to the overall binding affinity of the peptide. Positions that together account for 80% of 
the overall binding affinity change were assigned as anchor locations for impact analysis. 
Assuming Pn represents the normalized probability of position n within the peptide, for each HLA 
allele, the anchor(s) is determined as following: 

 
∑ "!!" 	≥ 0.8	(ℎ*+*	"" 	> "# . . . > "!	  

 
Filtered lists were then compared for overlap and differences. We also followed the same 
evaluation process for different starting candidate lists of varying stringency, including: 
candidates filtered with a strong-binding cutoff of 100 nM, candidates filtered with a strong-
binding cutoff of 50 nM and candidates filtered by their binding HLA allele’s anchor patterns. For 
our HLA allele filtered dataset, all HLA alleles with an exact [2, n] anchor pattern (for n-mer 
peptides) were considered canonical and excluded from further evaluation.   
 
For our cohort analysis, all neoantigen candidates were considered with no additional filtering. 
For our patient-level analysis, neoantigen candidates were processed additionally using the 
top_score_filter (“pVACseq top_score_filter” command of pVACtools) to generate top 
neoantigen candidates for individual variants. These top candidates were compiled and the 
same filters A, B, and C were used to determine prioritization decisions. The percentage 
differences between filters were calculated based on decisions for all top candidates for each 
individual patient.  

HLA coverage and population frequency 
Global HLA allele frequencies were generated using data from the Allele Frequency Net 
Database(39). The database contains HLA genotype data for Class I alleles across 197 distinct 
populations. Two populations in the database (“Chile Santiago” and “Russia Karelia”) did not 
have ambiguity-resolved HLA genotype data and were excluded from this analysis. Global HLA 
allele frequencies were calculated by (1) aggregating all 195 sample populations, (2) summing 
HLA allele counts over all sample populations, and (3) dividing HLA allele counts over total 
counts of the HLA gene across all populations. It should be noted that the HLA frequencies 
calculated do not reflect true global HLA frequencies since true population/region sizes were not 
considered. To calculate the percentage of population that our 328 HLA alleles affect, Class I 
alleles were split into respective subclasses of HLA-A, HLA-B and HLA-C. Global frequencies 
were summed in each subclass to obtain the percentage of population potentially affected by 
our HLA allele anchor results. 

Selection of validation peptides 
In order to select a group of peptide-HLA combinations for validation experiments, we first 
examined our seed database of predicted strong binding combinations of peptides and HLA 
alleles. The database was then filtered for preselected HLA alleles with varying anchor patterns. 
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For each HLA allele within an anchor subgroup, we then selected 3-5 peptides and performed 
validation experiments to measure their binding affinity. Validated peptides were then mutated 
at various positions (including those predicted to be anchors and non-anchors) to evaluate 
amino acid changes and their effect on binding affinity. Due to the limited resources and high 
cost of synthesizing peptides and performing validation experiments, we strategically chose 4 
different amino acid mutations for each position evaluated. Both positions and amino acid 
mutations were chosen to optimize informativeness. The amino acid mutations were selected 
based on their predicted influence on binding affinities by two methods. For our first batch of 
peptides and their in-depth analysis, we selected two of the most/least disturbing mutations 
each according to our predictions. For our second batch of peptides, this strategy was further 
optimized to select 1 mutation from each quartile based on predictions of how much they disturb 
the binding interaction. These mutated peptides were then synthesized by GenScript 
(Piscataway, NJ, USA) for further validation. The peptides were ordered with the following 
specifications: quantity: 4 mg, weight: gross, purity: ≥75%, delivery format: lyophilized, 
aliquoting to vials: 4. 

Peptide:MHC IC50 binding assays  
As previously described(47), peptide binding validation assays to determine IC50 values were 
carried out by Pure Protein LLC, utilizing the method of fluorescence polarization (FP). The 
technique is unique among methods used to analyze molecular binding events because it 
allows the instantaneous measurement of the ratio between free and bound labeled ligands in 
solution without any separation steps. FP is based on the principle that if a fluorescent-labeled 
peptide binds to the soluble HLA molecule of higher molecular weight, polarization values will 
increase due to the slower molecular rotation of the bound probe. In this competition assay, a 
reference fluorescent-labeled peptide is incubated with activated sHLA in the presence of the 
neoantigen-derived peptide competitor and peptide/HLA interaction is monitored over time. A 
positive response occurs when the peptide of interest outcompetes the labeled peptide tracer. A 
negative response will take place when the peptide of interest has no binding characteristics 
and only the tracer is assembling with the sHLA. Competition experiments were analyzed by 
plotting FP values as a function of the logarithms of competitor concentrations. The binding 
affinity of each competitor peptide was expressed as the concentration that inhibits 50% binding 
of the FITC-labeled reference peptide. Observed half-maximal inhibitory concentrations (IC50) 
were determined by nonlinear curve fitting to a dose-response model with a variable slope using 
the specific software Prism (Graph Pad Software, Inc., San Diego, CA). In order to prioritize 
epitopes with greatest potential, ranked peptide IC50 values were classified as log-dependent 
values (x) based on preset affinity categories as described in Buchli et al. 2005(47), into high 
(x< 3.7), medium (3.7 < x < 4.7), low (4.7 < x < 5.5), very low (5.5 < x < 6.0) and no binder (x > 
6.0). Binding assays were performed for all (or part of) the peptides with the following matching 
HLA alleles: HLA-B*07:02, HLA-B*08:01, HLA-A*02:01, HLA-A*24:02, and HLA-A*68:01.  

Cell-based peptide:MHC stabilization assays  
The recipient of all HLAs of interest in this study was a TAP deficient, class I negative cell line, 
that was created by introduction of HSV-ICP-47 (gift from Ted Hansen) using the pMIP (puror) 
retrovirus and selection of puromycin resistant cells into the Class I negative, lymphoblastoid 
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cell line, 721.221 (gift from M. Colonna, Washington University Saint Louis) cultured in Iscoves 
MEM, 10% (v/v) FBS with 0.6 ug/mL puromycin. HLA cDNA (IDP-IMGT/HLA) was prepared 
synthetically (Blue Heron, Bothell, WA) and shuttled into pMIG (GFP) retroviral vector. All HLA 
expressing cells were enriched by sorting GFP positive cells to greater than 95% using a Sony 
Synergy Flow Cell Sorter. For peptide stabilization assays, the cell line expressing the HLA, was 
washed twice in PBS and then serum starved for 1 hour in RPMI1640, 10 mM HEPES, 1x non-
essential amino acids, 1 mM sodium pyruvate, 2 mM glutamine, prior to plating, washed twice 
and incubated with 100 ug/mL peptide of interest previously solubilized in 10% DMSO and 
sterile filtered through a 0.2 µm centrex filter. The cell suspensions were maintained at ambient 
temperature for 1.5-3 hours and then shifted to 37°C overnight at 5% CO2. To quantitate peptide 
stabilized complexes, the cell suspensions were then washed twice to remove unbound peptide 
and then incubated with APC conjugated W6/32 Mab (Biolegend, 311410) for 30 minutes at 
ambient temperature. Cells were washed twice and complexes were detected in the presence of 
7-AAD to remove dead cells from the analysis.  The median fluorescence intensity of 7-AAD 
negative, GFP/APC positive cells were quantitated by FlowJo v.10.6.1 after collection on a 
Beckman Coulter Navios three laser flow cytometer.  Each HLA tested utilized a Flu viral 
positive control peptide known to stabilize the HLA of interest (Data file S6) and a negative 
control peptide that stabilized a different class I molecule. Each assay was completed 2-3 times 
in duplicate (N=4-6) and graphed in GraphPad Prism v.9.2.0 after subtraction of the MedFI of 
the no peptide control. The corrected mean fluorescence intensity (MFI) values are included in 
Data file S6. Stabilization assays were performed for all of the peptides with the following 
matching HLA alleles: HLA-A*02:01, HLA-A*23:01, HLA-A*24:02, HLA-A*31:01, HLA-A*68:01, 
HLA-B*07:02, and HLA-B*18:01. 

Statistical Analysis 

Statistical analysis was performed using the python SciPy package. Non-paired two sample t-
tests assuming unequal variance were performed to evaluate the differences among 
distributions for Fig. 4d. T-tests were performed using the scipy.stats.ttest_ind function. The 
normal distribution of variables was calculated using the Shapiro-Wilk test. 
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Main Figures 
Fig. 1. Anchor and mutation position scenarios at the MHC-peptide-TCR interface 
Illustration of MHC-peptide-TCR interface using an example structure with anchors at position 2, 

5 and 9. At the contact interface between the 
peptide-loaded MHC and the recognizing T-
cell receptor, certain positions are responsible 
for anchoring the peptide to the MHC molecule 
and/or potentially being recognized by the 
TCR. The position of tumor specific (“mutant”) 
amino acids relative to anchor positions and 
predicted binding affinity of mutant and wild 
type peptides produce four distinct scenarios 
for interpreting candidate neoantigens. 
Example TCR recognition sites are shown in 
blue while MHC anchor locations are shown in 
green. The peptide residues are shown in 
orange while the mutant residue is marked 
with red. A yellow force field with varying 
density is used to illustrate binding strength 
between peptide and the MHC molecule. 
Three different cases of TCR recognition level 
are depicted including: self-recognizing TCR 
absent due to negative selection, weak-
recognizing TCR due to weak MHC binding of 
presented peptide, and strong-recognition of 
TCR triggering downstream activation of 
cytotoxic T-cells.  
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Fig. 2. Overview of computational workflow for anchor position prediction 
Schematic of our computational workflow to simulate the effect of mutation position on MHC 
binding affinities of peptides for individual HLA alleles. HLA and peptide pairings are selected 
from a reference dataset of putative strong binders. All possible amino acid changes are applied 
to all possible positions and the impact on binding affinity is assessed. An overall peptide 
anchor score is calculated for each position for all HLA-peptide length combinations. Higher 
scores indicate greater likelihood that a particular position in the peptide acts as an anchor 
residue for a given HLA.  
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Fig. 3. Hierarchical clustering of anchor prediction scores across all 9-mer peptides  
Anchor prediction scores clustered using hierarchical clustering with average linkage for all 318 
HLA alleles for which 9-mer peptide data were collected (out of the 328 HLA alleles, 10 did not 
have corresponding 9-mer data). For the heatmap, the x-axis represents the 9 peptide positions 
and the y-axis represents 318 HLA alleles. Example HLA clusters have been highlighted with 
various color bands and the score trends for individual HLA alleles are plotted. In the cluster line 
plots on the left, the x-axis shows the peptide positions while the y-axis corresponds to the 
anchor score, normalized across all peptide positions. Different annotations have been given to 
help summarize the trends observed in individual clusters, where numbers represent positions 
and letters represent its strength as a potential anchor in comparison to other anchors (S: 

strong, M: 
moderate, W: 
weak). The median 
scores for each 
cluster are 
presented with a 
dashed line. 
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Fig. 4. Orthogonal validation using protein crystallography structures 
Orthogonal validation of predicted anchor scores utilizing X-ray crystallography structures. a, 
Schematic of analysis workflow for each HLA-peptide structure collected. For the distance 
metric, backbone atoms were excluded with the exception of glycine. b, Structural example of 
HLA-B*08:01 bound to peptide FLRGRAYGL (PDB ID: 3X13). c, Example results of 47 
structures collected for HLA-A*02:01 with 9-mer peptides. Top panel corresponds to distance 
measurements for each position while the bottom panel corresponds to SASA measurements. 
d, Distribution of Spearman correlations calculated between distance and prediction scores 
(top) and SASA and prediction scores (bottom). Blue line represents each respective correlation 
distribution while the green line shows the distribution of Spearman correlation values obtained 
from randomly shuffled peptide positions.  
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Fig. 5. Experimental Validation of anchor pattern for HLA-B*07:02 
Validation results for HLA-B*07:02 with a predicted 2S-9W anchor pattern using peptide 
sequence RPDVKHSKM. a, Overall anchor prediction scores for each position of 9-mer 
peptides when binding to HLA-B*07:02. Higher scores indicate a higher probability of acting as 
an anchor. b, Binding affinity changes (y-axis) plotted for each position of the specific 9-mer 
peptide RPDVKHSKM. Each peptide position was mutated to 19 other amino acids to evaluate 
influence on binding affinity. c, MFI values measured from cell stabilization assays are plotted 
for both unmutated and mutated peptides. Peptides are marked by their mutation positions (P1, 
P2, P5 and P9), predicted binding affinity values, amino acid changes (color coordinated with 
figure 5b), and mutation category (shape coordinated with figure 5d). d, Predicted binding 
affinity scores (log10[nM]) plotted against measured binding affinity values (log10[nM]) from 
IC50 binding assays. Binding categories based on measured binding affinity values are marked 
using horizontal lines. MFI values are overlaid using heatmap coloring for all data points. 
Peptide categories are marked using different shapes (coordinated with figure 5c). All non-
binders were plotted with a measured binding affinity value of 7.  
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Fig. 6. Summary of experimental validation results across all HLA allele-peptide 
combinations 
We performed two types of experimental validations including cell-based stabilization assays 
(MFI values) and IC50 binding assays (log[nM]) for a total of 136 peptide-HLA combinations. 
The results from these assays are compared between each other and against the predicted 
binding affinity (averaged across 8 different algorithms). Measured binding categories are 
determined based on the measured IC50 values. a, Predicted binding affinity values plotted 
against the measured binding affinity (log[nM]). HLA-A*68:01, HLA-B*07:02, HLA-B*08:01 and 
HLA-A*02:01 were subject to linear fitting with R2 values shown. HLA-A*24:02 was excluded 
due to the limited range of data available. Non-binding peptide-HLA combinations that have no 
exact measured binding affinity value available were plotted at y=7. These data points were not 
included when performing linear regression. b, Measured binding categories plotted against 
predicted binding affinity values. c, Predicted binding affinity values plotted against average MFI 
values (measured at 100 nM concentration). d, Measured binding categories plotted against 
MFI average value (measured at 100 nM concentration).  
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Fig. 7. Impact of anchor position information on neoantigen prioritization decisions 
a, Illustration of different scenarios that could be encountered when prioritizing neoantigens. 
Each circle represents a peptide residue with mutated residues marked in red. Anchor locations 
of the MHC are marked in green while TCR recognition sites are in blue. Predicted binding 
affinities of the MT/WT peptides are indicated using a yellow density field where higher density 
represents strong binding, and lower density represents weak binding. Three different scenarios 
of T-cell recognition are depicted. b, Upset plot showing the number of intersecting peptides 
based on those prioritized with no anchor filter (binding affinity < 500 nM and aggretopicity > 1), 
conventional filter (filtering based on conventional anchor assumptions) or allele-specific filter 
(filtering based on our computationally predicted anchor locations). Samples included for 
analysis were chosen such that HLA alleles were balanced appropriately. Peptides 
characterized differently between no anchor/conventional filter and allele-specific filter were 
categorized into false negatives (green circle) and false positives (red circle) with the 
assumption that the allele-specific filter produced more accurate results. c, Bar plot showing the 
percentage difference among accepted neoantigen candidates based on filters discussed in 
panel b. The filters in the legend represent how each starting dataset was filtered: 1) filtered by 
a strong binding cutoff of either 500 nM, 100 nM or 50 nM and 2) filtered based on the anchor 
patterns of the corresponding HLA allele. Our HLA allele filter excluded all peptides binding to 
HLA alleles with a canonical anchor pattern (e.g. [2,9] for 9-mer peptides). d, Examples of false 
positive and false negative peptides from each of the four subsets as marked in panel b. 
Matching HLA allele, peptide sequence, mutation position (red), median WT/MT IC50 values 
and fold changes are shown accordingly. Two sets of anchor locations are depicted for each 
scenario using semi-circles: conventional anchors are marked with light blue and allele-specific 
anchors are marked with dark blue. Positions where the two sets of anchors overlap are marked 
with split coloring of the semi-circle.  
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