

1 Spatiotemporal analysis of glioma heterogeneity reveals *Col1A1* as an actionable 2 target to disrupt tumor mesenchymal differentiation, invasion and malignancy

3
4 Andrea Comba^{1,2,3}, Syed M. Faisal^{1,2,3}, Patrick J. Dunn^{1,2,3}, Anna E. Argento^{1,2}, Todd C. Hollon¹, Wajd
5 N. Al-Holou¹, Maria Luisa Varela^{1,2,3}, Daniel B. Zamler^{1,2,3}, Gunnar L Quass⁷, Pierre F. Apostolidis^{7,8},
6 Clifford Abel II^{1,2,3}, Christine E. Brown⁹, Phillip E. Kish^{1,5}, Alon Kahana⁵, Celina G. Kleer^{3,6}, Sebastien
7 Motsch⁴, Maria G Castro^{1,2,3}, Pedro R. Lowenstein^{1,2,3,10}, *

8 ¹Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, 48109, MI, USA

9 ²Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, 48109 MI, USA

10 ³Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, 48109, MI, USA

11 ⁴School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA

12 ⁵Ophthalmology & Visual Science, University of Michigan Medical School, Ann Arbor, 48109 MI, USA

13 ⁶Dept. of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA

14 ⁷Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of
15 Michigan Medical School, Ann Arbor, MI 48109, USA

16 ⁸Dept. of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109,
17 USA.

18 ⁹Departments of Hematology & Hematopoietic Cell Transplantation and Immuno-Oncology, City of Hope,
19 Duarte, CA, USA.

20 ¹⁰ Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109,

21 *Correspondence to: pedrol@umich.edu

22 23 ABSTRACT

24 Intra-tumoral heterogeneity and diffuse infiltration are hallmarks of glioblastoma that challenge
25 treatment efficacy. However, the mechanisms that set up both tumor heterogeneity and invasion
26 remain poorly understood. Herein, we present a comprehensive spatiotemporal study that aligns
27 distinctive intra-tumoral histopathological structures, oncostreams, with dynamic properties and a
28 unique, actionable, spatial transcriptomic signature. Oncostreams are dynamic multicellular
29 fascicles of spindle-like and aligned cells with mesenchymal properties, detected using *ex vivo*
30 explants and *in vivo* intravital imaging. Their density correlates with tumor aggressiveness in
31 genetically engineered mouse glioma models, and high-grade human gliomas. Oncostreams
32 facilitate the intra-tumoral distribution of tumoral and non-tumoral cells, and the invasion of the
33 normal brain. These fascicles are defined by a specific molecular signature that regulates their
34 organization and function. Oncostreams structure and function depend on overexpression of
35 *COL1A1*. *COL1A1* is a central gene in the dynamic organization of glioma mesenchymal
36 transformation, and a powerful regulator of glioma malignant behavior. Inhibition of *COL1A1*
37 eliminated oncostreams, reprogramed the malignant histopathological phenotype, reduced
38 expression of the mesenchymal associated genes, induced changes in the tumor microenvironment
39 and prolonged animal survival. Oncostreams represent a novel pathological marker of potential
40 value for diagnosis, prognosis, and treatment.

42 INTRODUCTION

43 High grade gliomas (HGG) are the most prevalent and malignant brain tumors. They grow rapidly,
44 invade surrounding normal brain, and recur within 12 months. Median survival is 18-20 months, in
45 spite of current standard of care^{1,2}. Despite some notable successful outcomes from the large cancer
46 sequencing programs, which identified driver genes in a number of cancers, effective
47 therapeutically actionable breakthroughs have not yet been identified in HGG³⁻⁷.

48 HGG are highly heterogeneous at the histological, cellular, and molecular level. Heterogeneity of
49 HGG is illustrated in addition by characteristic pathological structures such as pseudopalisades,
50 microvascular proliferation, and areas of hypoxia and necrosis^{2,8}. The molecular characterization of
51 glioma heterogeneity identified three main molecular signatures: proneural, mesenchymal, and
52 classical^{4,9} . However, later studies demonstrated that all three transcriptomic signatures are
53 expressed within individual tumors^{5,10,11}. Rather than outright glioma subtypes, the consensus
54 proposes that individual tumors are enriched in particular molecular subtypes. Thus, studies have
55 correlated histological features with genetic alterations and transcriptional expression patterns. For
56 example, highly aggressive histological features such as hypoxic, perinecrotic and microvascular
57 proliferative zones have been associated with the mesenchymal molecular signature and worse
58 prognosis⁸. However, the molecular classification has only minor clinical impact. Thus, alternative
59 classification schemes using a pathway-based classification are currently being considered¹². How
60 these new classifications will deal with tumor heterogeneity remains to be explored. Moreover,
61 different microenvironmental, metabolic, and therapeutic factors drive transitions of the GBM
62 transcriptomic signature, particularly transitions to mesenchymal states. It is important to note that
63 glioblastoma plasticity explains the high degree of tumor heterogeneity and prompts the selection
64 of new clones at recurrence or therapy resistance¹³⁻¹⁶. It has been established that intra-tumoral
65 heterogeneity is represented by four main cellular states, the progenitor, astrocyte,
66 oligodendrocyte, and mesenchymal like-state, which represent tumor plasticity and are affected by
67 the tumor microenvironment¹⁵.

68 Tumoral mesenchymal transformation is a hallmark of gliomas^{13,17,18}. A mesenchymal phenotype is
69 defined by cells with spindle-like, fibroblast-like morphology associated with alterations in their
70 dynamic cellular organization leading to an increase in cell migration and invasion^{19,20}. The
71 mesenchymal phenotype is controlled by particular transcription factors and downstream genes
72 related to the extracellular matrix (ECM), cell adhesion, migration, and tumor angiogenesis^{18,21,22}.

73 However, the cellular and molecular mechanisms that regulate mesenchymal transformation in
74 gliomas, especially concerning the mesenchymal features of invasive cells, has remained elusive.
75 Integrating morphological features, spatially resolved transcriptomics, and cellular dynamics
76 resulting from mesenchymal transformation, growth, and invasion are thus of great relevance to
77 our understanding of glioma progression^{13,20}.

78 Cell migration is essential to continued cancer growth and invasion. Morphological and biochemical
79 changes that occur during mesenchymal transformation allow glioma cells to move throughout the
80 tumor microenvironment and invade the adjacent normal brain. Tumor cells also migrate along
81 blood vessels, white matter tracks, and the subpial surface. Within the tumor microenvironment,
82 aligned extracellular matrix fibers help guide the movement of highly motile mesenchymal-like
83 cancer cells²³⁻²⁵.

84 Our study reveals that malignant gliomas, both high grade human gliomas and mouse glioma
85 models, display regular distinctive anatomical multicellular fascicles of aligned and elongated,
86 spindle-like cell. We suggest they are areas of mesenchymal transformation. For the sake of
87 simplicity in their description throughout the manuscript, we have named these areas
88 'oncostreams'.

89 Using time lapse laser scanning confocal imaging *ex vivo*, and multiphoton microscopy *in vivo* of high
90 grade glioma explants we demonstrated that oncostreams are organized collective dynamic
91 structures; they are present at the tumor core and at areas of tumor invasion of the normal brain.
92 Collective motion is a form of collective behavior where individual units' (cells) movement is
93 regulated by local intercellular interactions (i.e., attraction/repulsion) resulting in large scale
94 coordinated cellular migration²⁶⁻³⁰. Collective motion plays an essential role in embryogenesis and
95 wound healing^{27,31-33}. Emergent organized collective motion patterns could help explain so far
96 poorly understood tumoral behaviors such as invasion, metastasis, and especially recurrence^{27,31}.

97 Studies of tumor motility have concentrated on the behavior of glioma cells at the tumor invasive
98 border^{27,34,35}. Potential motility at the glioma core has not been studied in much detail so far. This
99 study challenges the conventional belief that cells in the central core are non-motile and indicate
100 that the glioma core displays collective migratory patterns. This would suggest that the capacity of
101 gliomas to invade and grow, results from phenomena occurring at the tumor invasive border, and
102 from the overall capacity of gliomas to organize collective motion throughout the tumor mass, from
103 the tumor core to the tumor invasive border.

104 To study the molecular mechanisms underlying oncostream organization and function we used laser
105 capture microdissection (LCM) followed by RNA-sequencing and bioinformatics analysis. We
106 discovered that oncostreams are defined by a mesenchymal transformation signature enriched in
107 extracellular matrix related proteins, and which suggest that Collagen1A1 (COL1A1) is a key
108 determinant of oncostream organization. Inhibition of COL1A1 within glioma cells lead to
109 oncostream loss and reshaping of the highly aggressive phenotype of HGG. These data indicate that
110 COL1A1 is likely to constitute the tumor microenvironment scaffold, and to serve to organize areas
111 of collective motion in gliomas.

112 COL1A1 has been shown previously to be a major component of the extracellular matrix in different
113 cancers, including glioma, and has been reported to promote tumor growth and invasion^{36,37}.
114 Alternatively, some data suggest that collagen fibers could be passive barriers to resist tumor cell
115 infiltration or provide biophysical and biochemical support for cell migration. Some studies reported
116 that density of COL1A1 inversely correlates with glioma patient's prognosis. However, other studies
117 showed that either increased or decreased deposition of collagen could be associated with
118 increased tumor malignancy³⁸⁻⁴⁰. Therefore, it is important to further determine the role of COL1A1
119 in glioma invasion and continued growth.

120 This study provides a comprehensive study of the histological, morphological, and dynamic
121 properties of glioma tumors. In addition, we uncover a novel characterization of the molecular
122 mechanisms that define intra-tumoral mesenchymal transformation in gliomas and discuss their
123 therapeutic implications. Oncostreams are anatomically and molecularly distinctive, regulate glioma
124 growth and invasion, display collective motion, and are regulated by the extracellular matrix,
125 specially by COL1A1. Inhibiting COL1A1 within glioma cells is a potential therapeutic strategy to
126 mitigate glioma mesenchymal transformation, intra-tumoral heterogeneity, and thus, reduce
127 deadly glioma invasion and continued growth.

128

129

130

131

132

133

134

135 **RESULTS**

136 **Intra-tumoral multicellular fascicles of elongated and aligned cells in gliomas: oncostreams**

137 High grade gliomas (HGG) are characterized by anatomical, cellular and molecular heterogeneity
138 which determines, in part, tumor aggressiveness and reduces treatment efficacy^{5,7,11}.
139 Histopathological analysis of mouse and human gliomas revealed the presence of frequent distinct
140 multicellular fascicles of elongated (spindle-like) and aligned cells (\approx 5-30 cells wide) distributed
141 throughout the tumors. These structures resemble areas of mesenchymal transformation which we
142 describe as “oncostreams” (**Fig. 1A-B**).

143 To study the presence and morphological characterization of oncostreams, we examined
144 histological sections from various mouse glioma models as well as human glioma specimens (**Fig. 1**
145 **A-B**). We determined the existence of oncostreams in genetically engineered mouse models
146 (GEMM) of glioma including NPA (Nras, shP53, shATRx) and NPD (Nras, shP53, PDGF β) and other
147 implantable models (GL26) (**Fig. 1A and Supplementary Fig. 1A-B**). Moreover, human glioma
148 samples from primary resections and a xenograft glioma model, SJGBM2, established the presence
149 of these multicellular structures in human tissue (**Fig. 1B and Supplementary Fig. 1C**).
150 Morphological analysis determined that cells within histological areas corresponding to
151 oncostreams have an aspect ratio of 2.63 ± 0.19 (elongated or spindle-like cells) compared to the
152 surrounding tissue where cells have an aspect ratio of 1.37 ± 0.12 (round cells), both in mouse and
153 human gliomas as shown in **Fig. 1C and Supplementary Fig. 1D**. We also determined that elongated
154 cells within oncostreams are nentially aligned with each other, whereas outside of oncostreams,
155 cell orientations are not aligned (**Fig. 1D and Supplementary Fig. 1E**).

156 To gain insight into the cellular features of oncostreams we asked if they are homogeneous or
157 heterogeneous multicellular structures. We observed that in GEMM of gliomas, oncostreams are
158 formed by GFP+ tumor cells, and are enriched in other tumor microenvironment cells such as
159 ACTA2+ mesenchymal cells, Iba1+ and CD68+ tumor associated microglia/macrophages cells,
160 Nestin+ cells and GFAP+ glial derived cells (**Fig. 1, E-G, and Supplementary Fig. 2 A-D**). The
161 quantification of mesenchymal cells (ACTA2+), and tumor associated microglia/macrophages (TAM)
162 cells (CD68+ and Iba1+) showed a significant enrichment of these populations within oncostreams
163 compared to the surrounding areas (**Fig. 1E-G**). Moreover, non-tumoral cells within oncostreams
164 were positively aligned along the main axes of oncostreams, and with tumor cells in mouse gliomas

165 **(Fig. 1H).** This suggests that oncostreams are mesenchymal-like structures which interact with TAM
166 and mesenchymal cells.

167 To test if oncostreams form along existing brain structures, we evaluated their co-localization with
168 white matter tracts. Although, occasional positive immune-reactivity (Neurofilament-L) was present
169 within some areas of the tumors, oncostream fascicles were not preferentially organized along brain
170 axonal pathways **(Supplementary Fig. 1F).** These data indicate that oncostreams are fascicles of
171 spindle-like aligned cells within glioma tumors, which contain tumor and non-tumor cells.

172

173 **Oncostream density positively correlates with tumor aggressiveness and poor prognosis in mouse**
174 **and human gliomas**

175 Oncostreams are unique histological features that contribute to intra-tumoral heterogeneity
176 suggesting a potential role in glioma progression and malignancy. To understand whether the
177 presence of oncostreams correlates with tumor aggressiveness and clinical outcomes, we generated
178 genetically engineered tumors of different malignant behaviors using the Sleeping Beauty
179 Transposon system. These models reproduce the malignant histopathological features of gliomas
180 as demonstrated in previous studies⁴¹⁻⁴⁴. We induced tumors harboring two different genotypes:
181 (1) Activation of RTK/RAS/PI3K pathway, in combination with p53 and ATRX downregulation (**NPA**),
182 and, (2) RTK/RAS/PI3K activation, p53 downregulation, ATRX downregulation, and mutant IDH1-
183 R132 expression (**NPAI**) **(Fig. 2A)**. IDH1-wild-type tumors (**NPA**) display a highly malignant
184 phenotype and worse survival prognosis (Median survival (MS): 70 days), compared with tumors
185 harboring the IDH1-R132R mutation, **NPAI**, (MS: 213 days) **(Fig. 2B)**. This outcome reproduces
186 human disease, as patients with IDH1-mutant tumors also have prolonged median survival^{1,44,45}.
187 Tumor histopathological analysis showed a positive correlation between the density of oncostreams
188 and tumor malignancy **(Fig. 2C- D)**. NPA (IDH1-WT) tumors exhibited larger areas of oncostreams
189 within a highly infiltrative and heterogeneous glioma characterized by abundant necrosis,
190 microvascular proliferation, pseudopalisades and cellular heterogeneity as described before^{43,44}.
191 Conversely, NPAI (IDH1-Mut) tumors display a very low density of oncostreams and a homogenous
192 histology mainly comprised of round cells, low amounts of necrosis, no microvascular proliferation,
193 absence of pseudopalisades and less invasive borders **(Fig. 2C and Supplementary Fig. 5)**.

194 Further, to objectively identify and quantify tumor areas covered by oncostreams, we trained a fully
195 convolutional neural network (fCNN) **(Supplementary Fig. 3 and 4A)**. Our deep learning analysis

196 found that oncostreams occupied $15.28 \pm 6.10\%$ of the area in NPA tumors compared with only $1.18 \pm 0.81\%$ in NPAI tumors (**Fig. 2C and D, and Fig. Supplementary 5A and B**). Cellular alignment analysis validated the presence or absence of oncostreams (**Fig. 2E**).

197 To determine whether oncostreams are linked to glioma aggressiveness in human patients, we
198 evaluated a large cohort of TCGA glioma diagnostic tissue slides from the Genomic Data Commons
199 Portal of the National Cancer Institute. We visually examined 100 TCGA-glioblastoma multiforme
200 tissue sections (WHO Grade IV) and 120 TCGA-low grade glioma tissues (WHO Grade II and III) using
201 the portal's slide image viewer (**Supplementary Table 1**). Oncostreams were present in 47% of
202 TCGA-GBM grade IV tumors tissue, in 8.6 % of TCGA-LGG grade III, and were absent from TCGA-LGG
203 grade II (**Fig. 3A-C and Supplementary Table 2**), consistent with tumor aggressiveness
204 (<http://gliovis.bioinfo.cnic.es>)⁴⁶. We then determined the presence of oncostreams across known
205 molecular subtypes of HGG (Grade IV)⁴. We found oncostream fascicles in 59.4% of Mesenchymal
206 (MES), 53.6% of Classical (CL) subtypes and only 26.7% of Proneural (PN) (**Fig. Supplementary 6A**).
207 Finally, we evaluated oncostreams presence related to IDH status and 1p 19q co-deletion in LGG
208 (Grade III). Oncostreams were present in 16.6% of IDH-WT subtype, 5% of IDHmut-non-codel and
209 absent from IDHmut-codel subtype (**Fig. Supplementary 6B**). These analyses suggest that
210 oncostream presence is higher in Mesenchymal and Classical subtypes and correlates with IDH-WT
211 status, and thus with a poor prognosis.

212 To validate the histological identification, we examined H&E images using our deep learning
213 algorithm (**Fig. Supplementary 4B**). We observed a strong concordance (>84%) between machine
214 learning and the manual histological identification of oncostreams (**Table Supplementary 3**).
215 Oncostream presence and their segmentation by deep learning is illustrated in **Fig. 3C and**
216 **Supplementary Fig. 7 and 8**. Additionally, alignment analysis of glioma cells confirmed the existence
217 of fascicles of elongated, mesenchymal-like cells in human gliomas (**Fig. 3D**). Thus, our deep learning
218 algorithm validates our histological identification of oncostreams and confirms that the density of
219 oncostream fascicles positively correlates with glioma aggressiveness.

220 The analysis of cellular heterogeneity showed that non-tumoral cells such as Iba1+
221 macrophages/microglia and GFAP+ glial derived cells were positively aligned within oncostreams
222 tumoral cells (SOX+) in human HGG (**Fig. 3E**). Conversely, we detected that low grade gliomas (LGG)
223 exhibited homogenous round cells, GFAP+ and Iba1+ cells throughout the tumor with no defined
224 orientation or alignment (**Fig. 3F**).

227

228 **Oncostreams are defined by a distinctive spatial transcriptome signature**

229 To determine whether oncostreams fascicles are characterized by a specific gene expression profile,
230 we performed a spatially-resolved transcriptomic analysis using laser capture microdissection (LCM)
231 coupled to RNA sequencing (RNA-Seq). Oncostreams were dissected according to their
232 morphological characteristics defined above. Surrounding areas of homogenous rounded cells were
233 selected as non-oncostreams areas (control) (**Fig. 4A**). RNA-Seq analysis detected a set of 43
234 differentially expressed (DE) genes; 16 genes were upregulated and 27 downregulated within
235 oncostreams (**Fig. 4 B-C and Table Supplementary 4**).

236 Functional enrichment analysis of DE genes, performed using the I-PathwayGuide platform (Advaita
237 Corporation, MI, USA), showed that False Discovery Rate (FDR) corrected gene ontology (GOs)
238 terms were associated with migration and extracellular matrix biological process. GOs such as
239 “positive regulation of motility” “positive regulation of cell migration”, “collagen catabolic
240 processes” and “extracellular matrix organization” were the most over-represented biological
241 processes (**Fig. 4D and Table Supplementary 5**). The upregulated DE genes within the relevant GOs
242 include: COL1A1, MMP9, MMP10, ACTA2, ADAMTS2, CDH5, CYR61, PLP1 and those downregulated
243 were ENPP2, AKAP12, BDKRB1 (**Fig. 4E and Fig. Supplementary 9**). Significant DE genes shared by
244 related GOs are shown in **Supplementary Fig. 9**. These data indicate that oncostreams can be
245 identified by a specific gene expression set and suggest a distinct role for oncostreams as intra-
246 tumoral mesenchymal-like migratory assemblies within glioma tumors.

247

248 **COL1A1 contributes to oncostream organization in high-grade gliomas**

249 Histopathologically, oncostreams are spindle-like multicellular fascicles with a defined DE gene
250 expression signature enriched in mesenchymal genes. The GO ontology analyses suggests a central
251 role of collagen catabolic process and extracellular matrix organization in oncostreams function. To
252 understand the molecular mechanisms that regulate oncostream organization and function, we
253 identified critical genes using network analysis. Network interactions revealed that COL1A1 is a hub
254 gene, one of the most highly connected nodes, representing a potential regulator of the network’s
255 signaling pathways and biological functions (**Fig 5A and Fig. Supplementary 10A**). We found that
256 the most relevant COL1A1 related pathways include: Focal Adhesion, Extracellular Matrix

257 Organization and Integrin Signaling pathways (**Fig. Supplementary 10B-C and Table Supplementary**
258 **7 and 8**).

259 To analyze the role of COL1A1 in oncostream organization, we analyzed COL1A1 expression by
260 immunofluorescence analysis. The COL1A1 gene encodes for the alpha-1 chain of type I collagen
261 fibers. We observed that collagen fibers were aligned within oncostreams and overexpressed in
262 more aggressive NPA (IDH1-WT) gliomas compared with NPAI (IDH1-Mut) tumors. COL1A1
263 expression was significantly lower and only found surrounding blood vessels in NPAI (IDH-Mut)
264 tumors (**Fig. 5B-C**). Correspondingly, human GBM glioma tumors (IDH1-WT) with high oncostream
265 densities showed prominent alignment of collagen fibers along these fascicles and higher COL1A1
266 expression compared to LGG (IDH1-Mut) (**Fig. 5D and E**).

267 Moreover, TCGA-glioma data indicate that COL1A1 has differentially higher expression in GBM
268 histological Grade IV. LGG IDH-WT tumors display higher expression of COL1A1 than IDH1-Mutant.
269 Within the GBM molecular subtype classification^{4,9}, the Mesenchymal group shows higher
270 expression of COL1A1 than the Proneural and Classical groups (**Fig. Supplementary 11A**); the
271 COL1A1 gene is clearly associated with the mesenchymal subtype. Analysis of patient survival
272 related to COL1A1 expression showed that mesenchymal GBM subtype displayed a significantly
273 shorter survival (MS: 10.4 months) for COL1A1 high tumors, compared to COL1A1 low (MS: 17.9
274 months) tumors. Classical and Proneural subtypes did not show survival differences associated to
275 COL1A1 expression (**Fig. Supplementary 11B**). Thus, oncostreams represent intra-tumoral
276 mesenchymal-like structures organized along collagen fibers.

277

278 **COL1A1 depletion leads to oncostream loss, tumor microenvironment (TME) remodeling and**
279 **increases in median survival**

280 To evaluate the functional role of COL1A1 in oncostream formation we generated a COL1A1-
281 deficient genetically engineered mouse glioma model. We generated COL1A1 wildtype, and COL1A1
282 knock-down tumors with different genetic backgrounds (**Fig Supplementary 12A-C**). COL1A1
283 downregulation increased median survival (MS) (**Fig. 5F and G**). The knockdown of COL1A1 in NPA
284 tumors (NPAshCOL1A1) increased survival to MS: 123 days, compared to NPA control tumors (MS:
285 68 days) (**Fig. 5F**). Similarly, COL1A1 knockdown in NPD tumors harboring PDGF β ligand upregulation
286 (NPDshCOL1A1), also exhibited an increased median survival (MS: 98 days) compared to the NPD
287 controls (MS: 74 days) (**Fig. 5G**).

288 To further analyze the effects of COL1A1 downregulation, we evaluated the histopathological
289 features of glioma tumors, quantified oncostream density using deep learning analysis and
290 evaluated COL1A1 expression within glioma tissues (**Fig. 5 H-I**). We observed that NPA tumors with
291 COL1A1 downregulation showed a significant reduction of COL1A1 immunoreactivity within tumors;
292 it was only maintained in small areas surrounding blood vessels (**Fig. 5J-K**). COL1A1 inhibition led to
293 oncostream loss and reprogramming of the histopathological tumoral characteristics as evidenced
294 by homogenous round cell morphology, resembling low grade tumors (**Fig. 5J-K**). Downregulation
295 of COL1A1 in NPD tumors appeared less effective, with large areas of remaining COL1A1 (**Fig. %H-**
296 **I**). Nonetheless, COL1A1 was downregulated within tumor cells and oncostream dismantling was
297 significant compared to NPD control. Some oncostream areas remained associated with blood
298 vessels which displayed significant amounts of COL1A1 (**Fig. 5J-K**).

299 We analyzed the effect of COL1A1 depletion on the intrinsic properties of tumoral cells. In vitro
300 studies showed that COL1A1-knockdown cells exhibited a significantly decreased cell proliferation
301 and cell migration compared to controls (**Supplementary Fig. 13 A-D**). Also, we observed that
302 intracranial implantation of COL1A1-knockdown cells resulted in decreased tumor growth and
303 progression when compared to controls (**Fig. Supplementary 13E**). *In vivo*, genetically engineered
304 COL1A1 knockdown tumors displayed decreased cell proliferation (PCNA+ cells) (**Fig. 6A-B**),
305 increased apoptosis via activation of Cleaved-Caspase 3, and downregulation of the anti-apoptotic
306 protein Survivin (**Supplementary Fig. 14A-C**).

307 Furthermore, to determine whether COL1A1 downregulation within glioma cells modifies the
308 glioma TME we analyzed changes in tumor associated macrophages (TAM), endothelial cells and
309 mesenchymal cells. We found that COL1A1 knockdown tumors exhibited a decreased recruitment
310 of CD68+ TAM (**Fig. 6C-D**), impaired CD31+ endothelial vascular proliferation (**Fig. 6E-F**) and
311 diminished ACTA2+ perivascular mesenchymal cells (**Fig. 6G-H**). Moreover, inhibition of COL1A1
312 within glioma cells led to downregulation of fibronectin expression, a mesenchymal associated
313 extracellular matrix protein (**Fig. Supplementary 14E-F**) that is associated with a more aggressive
314 phenotype.

315 These preclinical animal models knocked down the expression of COL1A1 from the earliest stages
316 of tumor development. Further, to evaluate the effects of the pharmacological degradation of
317 deposited collagen fibers in highly malignant tumors we analyzed explants of brain tumor sections
318 treated with collagenase. We observed that collagenase treatment decreased reticular fibers

319 (general collagen staining), reduced COL1A1 expression and disassemble fibers' alignment along
320 tumoral cells and caused oncostreams depletion in a dose dependent manner (**Fig. Supplementary**
321 **15A-D**). These data indicate that oncostream organization and functions are regulated by COL1A1.
322 COL1A1 knockdown within glioma cells decreased oncostream formation, reprogramed glioma
323 mesenchymal transformation and remodeled the glioma TME, thus increasing animal survival.
324 COL1A1 inhibition represents a novel approach for future translational development.
325

326 **Oncostreams' mesenchymal patterns reveal intra-tumoral collective motion in gliomas**

327 GO analysis indicates that biological processes such as positive regulation of motility/migration are
328 enriched within oncostream fascicles. Overexpression of extracellular matrix (ECM)-associated
329 proteins suggest a potential role of COL1A1 fibers in regulating oncostreams' motility. To study if
330 oncostreams represent migratory structures within glioma tumors, we established a physiologically
331 viable explant brain tumor slice model containing a high density of oncostreams (**Fig. 7A**). The
332 movement of glioma cells expressing green fluorescent protein (GFP), within the thickness of each
333 explant, was visualized using time-lapse confocal imaging and tracked using Fiji's plug-in Track-
334 Mate (**Fig. 7A-C**).

335 Migration analyses show complex glioma cell dynamics throughout the tumor core. The glioma
336 tumor core displays groups of cells (within particular zones) with similar nematic orientation and
337 displaying complex movement patterns (**Fig. 7D and Fig. Supplementary 16A**) and, which represent
338 collective motion^{27,29-31}. Angle velocity distribution indicated the existence of three patterns of
339 collective motility shown schematically in **Fig. 7D and F**: in 'Zone A' cells don't have a preferred
340 direction, in 'Zone B' cells move in opposite directions (~ 135° and 315°), and in 'Zone C' all cells
341 move with a predominant preferred direction (~ 45°) (**Fig. 7D and F**). We named these patterns
342 'swarm' (Zone A), 'stream' (Zone B), or 'flock' (Zone C) (**Fig. 7G**). They were classified by likelihood
343 analysis: the distribution of the angle velocity is constant in a *swarm* (all angle velocity are equally
344 probable), bi-modal in a *stream* (cells are moving in equal but opposite directions), and uni-modal
345 in a *flock* (cells move in one direction) (**Fig. 7H**). These patterns were observed in all tumor slices
346 examined (**Fig. Supplementary 18, 19 and 20**). Average cell speeds differed among the three
347 patterns (**Fig. 7E, and Supplementary 18, 19 and 20**). In the tumor core, swarms moved faster and
348 without orientation, followed by directionally moving flocks and streams (**Fig. Supplementary 27**).
349 To determine which of these collective motion patterns match oncostream histological features, we

350 analyzed H&E sections corresponding to imaged organotypic slices (**Fig. Supplementary 16B**). Cells
351 within histological areas corresponding to *streams* and *flocks* have an aspect ratio of 2.2 and 2.7,
352 respectively, (spindle-like cells), while those within areas corresponding to *swarms* have an aspect
353 ratio of 1.2 (round cells) (**Fig. Supplementary 16C-D**). Moreover, elongated cells within *streams* and
354 *flocks* are nentially aligned with each other, whereas round cells within *swarms* are not (**Fig.**
355 **Supplementary 16E**). As predicted by our *in silico* model,⁴⁷ these results suggest that cell shape, or
356 eccentricity, is driving feature in the organization of collective motion patterns (**Fig. Supplementary**
357 **16F**). Therefore, taking into account cell shape and alignment, we define oncostreams as the
358 histological expression of collective motion patterns (*streams* and *flocks*). Notice that only the
359 dynamic analysis of collective motion can differentiate between *streams* and *flocks*. At the
360 histological level both appear as oncostreams.

361 In collective motion of flocks, interactions among individual cells are sufficient to propagate order
362 throughout a large population of starlings⁴⁸. To define if oncostream migration patterns recall
363 organized collective motion behavior, we analyzed the organization of the cells by performing local
364 pair-wise correlation analysis (relative position and pair directional correlation) by tumor zones (**Fig.**
365 **Supplementary 17A-C**). These analyses indicate the spatial correlation of location and alignment
366 between individual cells. We observed that within *swarms* cells are more separated, as neighbors
367 are located at 20-40 μm . *Streams* and *flocks* have higher cell density, and the nearest neighbors are
368 closer, at 20-30 μm (**Fig. Supplementary 17E and S18, S19, S20**). Pair-wise directional correlation
369 with nearby neighbors showed that cell movement is positively correlated in all patterns at
370 distances between 10-50 μm , with higher correlation left-to-right for *streams* (≈ 0.2), left-to-
371 right/front-to-back for *flocks* ($\approx 0.2-0.4$), and a lower correlation for *swarms* (≈ 0.1) (**Fig.**
372 **Supplementary 17F and S18, S19, S20**). We ascertained that tumor cells within oncostreams
373 migrate in a directional manner (“streams ($\uparrow\downarrow$)” and “flocks ($\uparrow\uparrow$)”), while non-oncostream cells
374 move randomly without directional alignment as “swarms”. Thus, our analyses strongly indicate
375 that within the tumor core of high-grade glioma cells are dynamically heterogeneous and display
376 organized collective migratory behavior associated with tumor histological and genetic features.

377

378 **Oncostreams increase the intratumoral spread of tumoral and non-tumoral cells**

379 Pair-wise correlation analysis showed that oncostream glioma cells are collectively organized. To
380 test the underlying nature of collective oncostream motility, we analyzed adherent junction

381 markers. Tumors with oncostreams were negative for E-cadherin, whereas N-cadherin was strongly
382 expressed (**Fig. Supplementary 21A**), suggesting that these fascicles move in a manner akin to
383 collective migration of mesenchymal cells of the neural crest^{33,49}. Although, no difference in N-
384 cadherin were found within oncostreams and the surrounding areas, N-cadherin was elevated in
385 TCGA-GBM (Grade IV) tumors compared to TCGA-LGG (Grade III and II). High levels of N-cadherin
386 correlate with lower survival in HGG patients and mesenchymal transformation (**Fig.**
387 **Supplementary 21B-C**).

388 On the other hand, oncostream growth and motility is unlikely to be due to glioma proliferation.
389 BrdU staining showed no differences between oncostream and non-oncostream regions, and in the
390 oncostreams, the mitotic plane was always perpendicular to the main axis as expected (**Fig.**
391 **Supplementary 21D-E**). These results are also supported by the RNA-Seq data of dissected
392 oncostreams, where proliferation genes were not differentially expressed (**Fig. 4 A-C**).

393 Collective motion could affect the distribution of other cells within the tumor. Since oncostreams
394 are heterogeneous, we inquired about their pro-tumoral role by potentially spreading cells
395 throughout the tumor. We designed co-implantation experiments using human glioma stem cells
396 (MSP-12), and highly aggressive and oncostream-forming glioma cells (GL26) co-implanted into
397 immunosuppressed mice. Implantation of MSP-12 cells alone generated slow-growing tumors
398 (median survival of 6-8 months). At 21 days post-implantation, MSP-12 cells remained restricted to
399 the injection area with an average distance of 28.9 ± 7.73 μ m from the actual injection site.
400 Surprisingly, when MSP-12 cells were co-implanted with GL26-citrine cells, MSP-12 cells spread
401 throughout the tumor, moving along oncostreams to much longer distances (83.7 ± 23.74 μ m) from
402 the injection site (**Fig. 7I-K**). Cellular cytoplasmic processes from MSP-12 cells implanted alone
403 displayed a random distribution. However, in co-implanted tumors, such processes from MSP-12
404 cells are completely aligned with glioma GL26 cells within oncostreams (**Fig. 7K-L and Fig.**
405 **Supplementary 21F**). These results strongly suggest that oncostreams function as intra-tumoral
406 highways facilitating the rapid distribution of slow-moving glioma cells and/or non-tumor cells
407 throughout the tumor mass. These findings could help explain the dispersal and intratumoral
408 mixing of diverse clonal populations as demonstrated in previous studies, supporting an important
409 potential role of oncostreams in determining spatial cellular heterogeneity.

410

411 **Dynamic interactions at the tumor border: oncostreams foster glioma aggressiveness through**
412 **collective invasion of the normal brain parenchyma**

413 Furthermore, we asked whether oncostreams participate in glioma invasion. The analysis of
414 histological sections showed that multicellular fascicles of elongated and aligned cells are found
415 invading from the tumor border into the normal brain parenchyma (**Supplementary Fig. 22A**).

416 Formation of streams around blood vessels was also observed (**Supplementary Fig. 22A**). These
417 patterns of invasion are also detected using our deep learning methods (**Fig. Supplementary 22B**).

418 We then used our glioma explant model to analyze the invasion dynamics by time-lapse confocal
419 imaging at the tumor border (**Fig. 8A and S23**). We implanted glioma NPA GFP+ cells into *tdTomato*
420 (*mT/mG*) mice so tumor borders could be delineated. We observed that glioma cells that extended
421 from the tumor border to the normal brain parenchyma used different dynamic patterns, moving
422 as isolated random cells and/or as collective migratory structures moving directionally, and
423 resembled oncostream structures similar to those in the tumor core (**Fig. 8B-G and Fig.**
424 **Supplementary 23-26**).

425 To objectively distinguish between different dynamic patterns, we determined the angle velocity
426 distribution, and the likelihood that distributions corresponded to either a *stream*, a *flock*, or a
427 *swarm*. We found *streams* along the perivascular niche or invading brain parenchyma without
428 following any pre-existing brain structures, as well as cells invading as *flocks*, and *swarms* (**Fig. 8E-F**,
429 **and Fig. Supplementary 23 D, G, H and S24-S26 A, C, D**). Glioma cells moving along blood vessels
430 or directly into the brain as single cells is consistent with previous studies¹⁰. The correlation of
431 position and pairwise correlation supports the existence of invading collective motion structures in
432 NPA tumors with high expression of COL1A1 (**Fig. S22D-E and Fig. Supplementary S23J-K and-S24-**
433 **S26 F-G**). We also determined the participation of collagen fibers in oncostreams invasion.
434 Immunofluorescence analysis on explant slices showed that collagen fibers are aligned along
435 multicellular fascicles of glioma cells invading the normal brain. These data show how collagen fibers
436 serve as scaffolds for collective tumoral cell invasion (**Fig. Supplementary S27**).

437 Our data indicate the existence of a complex framework of collective motion patterns at the glioma
438 border, that is consistent with previous descriptions³⁴. Although the patterns observed at the NPA
439 tumor border are similar to those of the tumor core, cell speed differed between the areas. Cells in
440 the tumor core displayed significantly lower average speeds (*stream*: 4.26; *flock*: 5.95, *swarm*: 6.27

441 $\mu\text{m}/\text{hr}$) compared to cells at the tumor border or those invading the normal parenchyma (*stream*:
442 7.95; *flock*: 7.55, *swarm*: 8.01 $\mu\text{m}/\text{hr}$) (**Fig. Supplementary 28A-B**).
443 Then, we asked whether the knockdown of COL1A1 in NPA gliomas affects changes in the patterns
444 of migration and invasion. Analysis of tumor cells (GFP+) at the tumor borders of GEMM of gliomas
445 comparing NPA and NPA-shCOL1A1 showed a difference in the apparent invasion patterns. The
446 analysis of tumor borders revealed an increase in the sinuosity of NPA tumors, a finding compatible
447 with NPA tumors exhibiting a higher proportion of collective invasion into the normal brain when
448 compared to NPA-shCOL1A1 tumors (**Fig. 8G-I and Supplementary Fig. S29**).
449 Moreover, the time lapse-confocal imaging and migration analysis of NPA-shCOL1A1 explants
450 showed that tumor cells invade the normal brain parenchyma as isolated cells (**Supplementary Fig.**
451 **30-33**). Velocity angle, velocity vector and the likelihood analysis indicated that the overall
452 distribution corresponded predominantly to *swarm* random patterns (**Supplementary Fig. 30-33 D,**
453 **E, F**). Further analysis of Relative Position Correlation and Pairwise correlation supports the
454 presence of low density of cells compatible with single cell invasion patterns in NPAshCOL1A1
455 tumors with low expression of collagen (**Supplementary Fig. S30-33 G, H**).
456 We conclude that oncostreams (*streams* and *flocks*) are organized collective migratory structures
457 enriched in COL1A1 that participate in the dynamic organization of the tumor microenvironment
458 within the tumor core and at the tumor invasive border of high-grade gliomas, and facilitate invasion
459 into the normal brain, impacting the malignant behavior of gliomas. Depletion of collagen1A1
460 eliminates oncostreams and their associated functions.

461
462 **Intravital imaging of glioma reveals the existence of oncostreams' collective motion patterns *in*
463 *vivo* and their contribution to invasion**

464 To determine whether our previously described collective migration patterns of glioma cells *ex vivo*
465 occur also *in vivo* we performed high resolution time lapse intravital imaging using two photon
466 microscopy. To do so NPA glioma cells were intracranially implanted in the brains of tdTomato
467 (mT/mG) mice at a depth of 0.8 mm (**Fig 9A**). To visualize cell migration we established a cranial
468 window above the injection site (**Fig 9B**). After 7-15 days of tumor growth we acquired z-stack
469 images to obtain a 3D orthogonal view of the tumor growing within the cortex. This allowed us to
470 establish intravital imaging below the brain surface. Next, we selected a position at a depth of >100
471 μm and proceeded to acquire time lapse images of the tumor growing in the normal parenchyma

472 at an interval of 5 minutes, for 8-12 hours (**Fig 9C-D, Supplementary Fig. S35A, S36A-B and S37A-B**).
473

474 In some cases, to determine the exact anatomical location of the tumor, following intravital imaging,
475 we perfused-fixed the brain and performed fluorescence immuno-histochemistry analysis on
476 paraffin embedded coronal sections which were imaged by confocal microscopy (**Supplementary**
477 **Fig. S35B-C**). The location of the area imaged by intravital microscopy ($>100 \mu\text{m}$) is shown. In this
478 figure we can identify the location of the tumor (GFP+ cells) containing parenchymal blood vessels
479 (TdTomato+), and astrocytic processes (GFAP+) (**Supplementary Fig. S35B-C**). Thus, together with
480 **Supplementary Fig. S35A**, we demonstrate imaging below the brain surface and within the normal
481 parenchyma of the brain.

482 To analyze the movement of GFP+ glioma cells we used Fiji's plug-in Track-Mate. In **Fig. 9** the
483 imaged area was divided into subregions to determine the existence of migration patterns (**Fig.**
484 **9E,F**). The analysis of cell migration *in vivo* showed that the glioma cells exhibit organized,
485 nentially aligned cells moving collectively at a depth of 120 μm . Angle velocity distribution
486 analysis determined the existence of 'stream' collective motion patterns in the three delimited
487 subregions (for example in **Fig. 9H**), illustrating that aligned cells are moving in opposite directions.
488 To corroborate the existence of 'stream' patterns we applied our likelihood analysis. For 'streams'
489 the distribution of the angle velocity and velocity vectors displayed a bi-modal distribution (cells
490 were moving in equal but opposite directions) (**Fig. 9I**), similar to that observed in the explant
491 models. Mean speed varied from 5.50 to 9.95 $\mu\text{m}/\text{hour}$ (**Fig. 9 G**). A different tumor imaged at a
492 depth of 145 μm also showed the presence of 'streams' (**Supplementary Fig. S36**).

493 To analyze the invasion of glioma cells, we imaged tumor movement at the border with normal
494 brain (**Supplementary Fig. S35**). At an imaging depth of 140 μm , cells at the tumor border displayed
495 'stream' collective dynamics (**Supplementary Fig. S35D, Zone A and B**). These motion patterns were
496 determined using the angle velocity distribution analysis, and likelihood distribution analysis
497 (**Supplementary Fig. S35 G-H**). Further analysis of Relative Position and Pairwise correlation
498 supports the presence of high density of cells compatible with collective migration and invasion
499 patterns (**Supplementary Fig. S34B-C, S35I-J and S36I-J**).

500 Further, to determine whether the knockdown of COL1A1 in NPA gliomas alters the migration
501 patterns observed for NPA gliomas we analyzed a NPAshCOL1A1 tumor by two-photon microscopy
502 at a depth of 110 μm (**Supplementary Fig. S37 A-B**).

503

504 The intravital migration analysis of NPashCOL1A1 gliomas showed that glioma cells migrate without
505 a preferred direction, and invade the normal brain parenchyma as 'swarms' (**Supplementary Fig.**
506 **S37 C-G**). The alignment analysis, Relative Position, and Pairwise correlation confirm the presence
507 of not-aligned low-density cells compatible with single cell invasion patterns in gliomas with COL1A1
508 downregulation (**Supplementary Fig. S37 E, J, K**).

509 The collective motion patterns found *in vivo* resemble the collective motion patterns described in
510 the *ex vivo* explant model. Our results show that glioma cells expressing collagen are organized in
511 collective dynamic patterns at the tumor core and the tumor invasive border, in tumor explants and
512 in *in vivo* intravital models of gliomas analyzed by two photon microscopy.

513

514 **DISCUSSION**

515 Mesenchymal transformation is a hallmark of tumor heterogeneity that is associated with a more
516 aggressive phenotype and therapeutic resistance^{13,18,21}. Mesenchymal transformation involves
517 fibroblast-like morphological changes associated with active migration and gain of expression of
518 mesenchymal genes as previously described^{21,22}.

519 Herein we present a comprehensive study that defines the morphological, cellular, dynamic, and
520 molecular properties of multicellular mesenchymal-like structures within gliomas. These structures
521 are fascicles of aligned spindle-like cells found throughout the tumors and represent areas of
522 mesenchymal transformation. We interpret these structures to be the histological expression of
523 areas of collective motion of glioma cells. For the sake of simplicity, we have referred to these areas
524 of mesenchymal transformation as oncostreams.

525 Oncostreams are areas of mesenchymal transformation and are identified histologically as fascicles
526 of aligned and elongated cells. When examined dynamically, we found that tumor cells move by
527 collective motion within the tumor core and at the invading border. The capacity to identify areas
528 of collective motion in histological sections has allowed us to characterize the molecular
529 organization of such dynamic structures. We thus describe the overall molecular mechanisms that
530 govern the organization and function of these structures and demonstrate the causal role of
531 individual mediators. Surprisingly, we discovered that COL1A1 is central to the structural and
532 dynamic characteristics of oncostreams. Indeed, the loss of COL1A1 expression from tumor cells

533 disrupts the structural and functional characteristics of oncostreams, resulting in a complete loss of
534 mesenchymal areas within gliomas and a reduction in glioma malignant behavior (**Fig. 10**).
535 The analysis of the gene ontologies over-represented within oncostreams indicates that
536 oncostreams denote areas enriched for “positive regulation of cell migration”, and in mesenchymal
537 related genes. Interestingly, COL1A1 appeared as a central hub of oncostream organization and
538 mesenchymal transformation. We postulate that oncostreams are the histopathological expression
539 of patterns of collective motion (i.e., streams and flocks) in high grade glioma tumors. Different
540 strategies of cell migration encountered in our gliomas are reminiscent of migratory characteristics
541 observed during embryonic development^{31,32,49}. In developmental biology, collective motion is
542 represented by cells moving together in clusters, sheets, streams, or other multicellular
543 arrangements^{28,31,32}.
544 Our studies of oncostream dynamics at the tumor core are compatible with the results of Ralitsa et
545 al⁵⁰. This group studied *ex-vivo* explant slices of spontaneous intestinal carcinoma, and showed that
546 cells within the tumor core were highly dynamic and display directionally correlated cell motion⁵⁰,
547 similar to our results described herein. Recent *in silico* based mathematical modelling of glioma cell
548 dynamics by our group, showed that only elongated cells, but not spherical cells, are able to form
549 organized aligned cellular structures in a cell-density dependent manner⁴⁷. Our modeling studies
550 strongly support our *in-vivo* and *ex-vivo* data described in this manuscript.
551 Moreover, it has been described that increased matrix cross-linking, enzymatic remodeling and
552 parallel orientation of matrix collagen fibers stiffens tissue, modifies cell morphology and promotes
553 cell migration and invasion^{36,38,39,51,52}. Our results support the proposal that oncostreams serve as
554 highways to spread tumor, and non-tumor cells, throughout the tumor. Indeed, oncostream
555 fascicles contain higher amounts of macrophages/microglia and mesenchymal cells. Dispersal of
556 tumor and non-tumoral cells throughout the tumors could help explain the mixing of different clonal
557 populations seen in molecular studies of high-grade gliomas¹⁰.
558 This study contributes to explaining how a particular feature of intratumoral heterogeneity, namely
559 mesenchymal transformation, affects HGG progression. Our data indicate that the density of
560 oncostreams plays a potential role in overall glioma malignant behavior in mouse and human
561 gliomas.
562 Spatially resolved transcriptional analysis using laser capture microdissection provided novel
563 insights into the molecular mechanisms that regulate oncostream functions. Oncostreams were

564 defined by a unique transcriptomic signature that matched our immunohistochemical studies.
565 COL1A1 overexpression within oncostreams was complemented with the overexpression of
566 extracellular matrix proteins such as MMP9, MMP10, ADAMTS2, which are known to remodel and
567 participate in the reorganization of collagen fibers. Oncostream fascicles were correspondingly
568 enriched in COL1A1 when assessed by immunohistochemistry.

569 Within the extracellular matrix, collagen fibers constitute a scaffold for the organization of the
570 tumor microenvironment and thus promote tumor infiltration and invasion. While collagen was
571 previously thought to be a passive barrier that could reduce tumor invasion, it has now been shown
572 that collagen fibers can serve as mechanical and biochemical tracks that facilitate cellular migration
573 and tumor progression^{36-38,53}. Previously, multi-cancer computational analysis found that within a
574 mesenchymal transformation signature in different cancers including gliomas, COL1A1 was one of
575 the top differentially expressed genes^{18,22,54}. COL1A1 is overexpressed in high grade malignant
576 gliomas and its expression levels are inversely correlated with patient survival⁵⁵ as indicated in
577 <https://www.cancer.gov/tcga>. In our mouse glioma models and in human gliomas, tumors with
578 higher density of oncostreams also express higher levels of COL1A1. COL1A1 is a consistently
579 differentially expressed gene in the glioma mesenchymal signature identified in malignant gliomas
580 and in glioma stem cells as described in previous studies^{4,9,56}. Overall, our data are in agreement
581 with a recent study by Puchalski *et al.*, which assigned genetic and transcriptional information to
582 the most common morphological hallmarks of a glioma, emphasizing the importance of integrative
583 histo-molecular studies⁸.

584 Surprisingly, our data indicate a remarkable plasticity of the mesenchymal phenotype in gliomas,
585 similar to other studies^{13,15}. Genetic inhibition of COL1A1 within glioma cells depleted COL1A1 from
586 tumors, eliminated oncostream structures, reduced the glioma malignant phenotype, and
587 prolonged animal survival. Our findings are comparable with results from various studies that
588 investigated the *in-vitro* and *in-vivo* consequences of collagen depletion, inhibition of collagen cross-
589 linking or collagen synthesis inhibition on normalizing tumor ECM. In these studies, inhibition of
590 collagen led to changes in the ECM which improved drug penetration, efficacy, as well as tumor
591 access of therapeutic nano-particles or gene based therapies⁵⁷⁻⁶¹. In addition, COL1A1 inhibition
592 within glioma cells induced cell intrinsic and extrinsic changes in the TME. COL1A1 inhibition not
593 only inhibits tumor cell proliferation and migration but also decreased the infiltration of
594 microglia/macrophages, endothelial cells proliferation, and perivascular mesenchymal-like cells. As

595 previously shown by other studies, glioblastomas exhibit complex interactions between tumoral and
596 non-tumoral cells, (including macrophages, immune cells, and endothelial cells), which influence
597 tumor growth, transformation, invasion, and response to treatment^{9,13,62}. However, a major
598 remodeling of the tumor mesenchymal phenotype in response to inhibition of COL1A1 has not been
599 described earlier.

600 Moreover, we found that multicellular oncostream fascicles are detected in both *ex vivo* and *in*
601 *vivo* glioma models, and that oncostreams facilitate tumor cell invasion, thereby increasing glioma
602 aggressiveness. Our findings strongly support the importance of collective motility of glioma cells in
603 the progression of tumor growth and invasion of normal brain parenchyma, and is supported by
604 earlier studies of normal and pathological conditions^{27,34,35,63-67}.

605 In summary, our observations suggest that oncostreams are morphologically and molecularly
606 distinct structures that represent areas of collective motion that contribute to tumor growth and
607 invasion. These malignant dynamic structures overexpress COL1A1. COL1A1 knockdown eliminates
608 oncostreams, reduces the mesenchymal phenotype, modifies the TME and slows tumor
609 progression. Our findings open new vistas to understanding tumor mesenchymal transformation
610 and its therapeutic treatment. We propose that depletion of COL1A1 within glioma cells is a
611 promising approach to reprogram mesenchymal transformation in glioma tumors, and could be
612 harnessed as a novel therapeutic approach, and reduce the glioma malignant phenotype.

613

614 **METHODS**

615 **Glioma cell lines and culture conditions:**

616 Mouse glioma cells (NPA, NPD, NPAshCol1A1, NPDshCol1A1 and GL26) and human glioma cells
617 (MSP-12, SJGBM2) were maintained at 37 °C with 5% CO₂ and their respective media as described
618 before⁴¹⁻⁴⁴. Mouse NPA, NPD, NPAshCol1A1, NPDshCol1A1 neurospheres were derived from
619 genetically engineered tumor using the Sleeping Beauty (SB) transposase system as previously
620 described⁴¹⁻⁴⁴. Mouse GL26 glioma cells were generated by Sugiura K and obtained from the frozen
621 stock maintained by the National Cancer Institute (Bethesda, MD)²⁵. MSP-12 human glioma cell lines
622 were provided by Christine Brown, City of Hope, and SJGBM2 human glioma cells were provided by
623 Children's Oncology Group (COG) Repository, Health Science Center, Texas Tech University.

624 **Intracranial implantable syngeneic mouse gliomas:**

625 Glioma tumors were generated by stereotactic intracranial implantation into the mouse striatum of
626 3.0×10^4 mouse glioma cells (either, NPA, NPD or, GL26) in C57BL/6 mice, or human glioma cells in
627 immune-deficient NSG mice (SJGBM2) as described before^{42-44,68}. To test whether oncostream
628 tumor cells help move other cells throughout the tumor we generated a co-implantation glioma
629 model by intracranial implantation of highly malignant GL26-citrine cells with low aggressive human
630 MSP12 glioma cells at a ratio of 1:30 (1,000 GL26-citrine cells and 30,000 MSP12 cells) in immune-
631 deficient NSG mice. As controls, NSG mice were implanted with 30,000 MSP12 cells alone or 1,000
632 GL26-citrine cells alone as controls. Experiments were conducted according to the guidelines
633 approved by the Institutional Animal Care (IACUC) and Use Committee at the University of Michigan.
634 Stereotactic implantation was performed as previously described⁴².

635 **Genetically engineered mouse glioma models (GEMM)**

636 We used genetically engineered mouse glioma models for survival analysis and histopathological
637 analysis. Murine glioma tumors harboring different genetic drivers were generated using the
638 Sleeping Beauty (SB) transposon system as described before⁴¹⁻⁴⁴. Genetic modifications were
639 induced in postnatal day 1 (P01) male and female wild-type C57BL/6 mice (Jackson Laboratory),
640 according to IACUC regulations. shRNA targeting the COL1A1 gene was cloned as describe in detail
641 in Supplementary Methods.

642 **Analysis of oncostreams in human glioma tissue**

643 Oncostream presence was analyzed in unidentified H&E sections of paraformaldehyde-fixed
644 paraffin-embedded (PFPE) human glioma samples obtained from primary surgery from the
645 University of Michigan Medical School Hospital. To determine the presence of oncostreams in a
646 large cohort of human glioma tissues we used the biospecimens from “The Cancer Genome Atlas
647 Research Network” (TCGA) from the Genomic Data Commons Data Portal, National Cancer Institute,
648 NIH (<https://portal.gdc.cancer.gov>). We analyzed primary Glioblastoma multiforme (TCGA-GBM)
649 and Low-Grade Glioma (TCGA-LGG) databases. We selected cases that have available the Slide
650 Image and diagnostic Slides. The diagnostic slides are available for TCGA-GBM: 389 patients and
651 TCGA-LGG: 491 patients. The presence of oncostreams was scored on 100 TCGA-GBM Grade IV
652 tissue samples and 120 TCGA-LGG samples.

653 **Cell aspect ratio and alignment analysis in H&E tumor sections**

654 Images were obtained using bright-field microscopy of H&E stained paraffin sections (Olympus BX53
655 Upright Microscope). Tumors were imaged using 40X and 20X objectives. Images were processed
656 using the program ImageJ as indicated in detail in supplementary methods.

657 **Deep learning analysis for oncostreams detection on H&E staining of glioma tissue**

658 A fully convolutional neural network (fCNN) was trained in order to identify and segment
659 oncostreams in histologic images⁶⁹. We implemented a U-Net architecture to provide semantic
660 segmentation of glioma specimens using deep learning⁷⁰⁻⁷². Our oncostream dataset consisted of
661 images from mouse tissues and open-source images from The Cancer Genome Atlas (TCGA). A total
662 of 109 hematoxylin and eosin (H&E) stained histologic mouse images and 64 from TCGA were
663 reviewed and oncostreams were manually segmented by the study authors (AC, A.E.A and P.R.L.).
664 Images from both datasets were then augmented by randomly sampling regions within each image
665 to generate unique patches (~ 300 patches/image). The location and scale of each patch was
666 randomly chosen to allow for oncostream segmentation to be scale invariant. The analysis is
667 explained in further detail in Supplementary Methods.

668 **Immunohistochemistry on paraffin embedded brain tumors**

669 This protocol was performed as described before⁴² and as is detailed in Supplementary Methods.
670 Primary antibodies were diluted at the concentration indicated in Supplementary Table 8. Images
671 were obtained using bright-field microscopy from five independent biological replicates (Olympus
672 BX53 Upright Microscope). Ten different fields of each section were selected at random for study
673 to include heterogeneous tumor areas. For immunofluorescence on paraffin embedded sections
674 from brain tumors images were acquired with a laser scanning confocal microscope (LSM 880, Axio
675 Observer, Zeiss, Germany). Integrated density was determined for the analysis of Col1a1 expression
676 using Image J. For immunohistochemistry on vibratome brain tumor sections were left in 4%
677 paraformaldehyde fixation for 48 hours and then transferred to PBS 0.1% sodium azide for an
678 additional 24 hours at 4°C. A Leica VT100S vibratome was used to obtain 50 µm coronal brain
679 sections. The immunohistochemistry protocol was performed as previously described^{73,74}.

680 **Laser capture microdissection (LCM) of brain tumors**

681 Malignant glioma tumors were induced by intracranial implantation of dissociated NPA
682 neurospheres in C57BL/6 mice as described above. LCM approach to analyze differential mRNA
683 expression of intra-tumoral glioma heterogeneity was performed as described elsewhere⁷⁵.

684 **RNA-Sequencing and bioinformatics analysis**

685 RNA was isolated for laser microdissected tissues using the RNeasy Plus Micro Kit following the
686 manufacturer recommendations (Qiagen). Before library preparation, RNA was assessed for quality
687 using the TapeStation System (Agilent, Santa Clara, CA) using manufacturer's recommended
688 protocols. We obtained a RIN between 6 to 7 after laser microdissection of glioma tissue. A RIN of
689 6 was determined to be suitable for cDNA library preparation. 0.25 ng to 10 ng of total RNA was
690 used for cDNA library preparation using a kit suitable for RNA isolation at pico-molar concentrations
691 (MARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian) following manufacturer
692 recommended protocol (Clontech/Takara Bio #635005). Sequencing was performed by the UM DNA
693 Sequencing Core, using the Illumina Hi-Seq platform and Bioinformatic analysis were executed by
694 the UM Bioinformatics Core. Differentially expressed genes of all tumors were used for gene
695 ontology (GO), Pathways analysis and genes analysis using iPathwayGuide (Advaita Corporation
696 2021). Network analysis of the DE genes were achieved using Cytoscape and Reactome App.
697 Network was clustered by Reactome Functional Interaction (FI). Analysis of the expression of
698 COL1A1 in normal tissue and in human gliomas were performed using the dataset of TCGA-GBM
699 and TCGA-LGG from GlioVis (<http://glioVis.bioinfo.cnic.es>)⁴⁶.

700 **Tumor explant glioma model and time-lapse confocal imaging**

701 For the analysis of glioma dynamics, we generated tumors by intracranial implantation of 3×10^4
702 NPA neurospheres which were used to carry out a 3D explant slice culture glioma model. C57BL6
703 mice were used for the dynamic analyses of the tumor core and B6.129(Cg)-
704 Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J- transgenic mice (Jackson laboratory, STOCK
705 007676) were used for invasion analysis. The red color correspond to a cell membrane-localized
706 tdTomato (mT) fluorescence expression which is widespread in all cells and tissues. Mice
707 were euthanized at 19 days' post-implantation for NPA tumors and 31 days' post-implantation for
708 NPashCOL1A1 tumors. Brains were removed, dissected, and embedded in a 4% agarose solution
709 and kept on ice for 5 minutes. Then, brains were submerged in ice-cold and oxygenated media
710 (DMEM High-Glucose without phenol red, GibcoTM, USA) and sectioned in a Leica VT100S
711 vibratome (Leica, Buffalo Grove, IL) set to 300 μm in the z-direction. All steps were performed under
712 sterile conditions in a BSL2 laminar flow hood. Brain tumor sections were transferred to laminin-
713 coated Millicel Cell Culture Insert (PICM0RG50, Millipore Sigma, USA) (**Supplementary Fig. S23A**).
714 Tumor slices were maintained in D-MEM F-12 media supplemented with 25% FBS, Penicillin-

715 Streptomycin 10.000 U/ML at 37 °C with a 5% CO₂ atmosphere. After 4-18 hours' media were
716 replaced with DMEM-F12 media supplemented with B27 2%, N2 1%, Normocin 0.2 %, Penicillin-
717 Streptomycin 10.000 U/ML and growth factors EGF and FGF 40 ng/ml. For time-lapse imaging, slices
718 were placed in an incubator chamber of a single photon microscope. We utilized an inverted Zeiss
719 LSM880 laser scanning confocal microscope with AiryScan (Carl Zeiss, Jena, Germany), equipped
720 with an incubation chamber kept at 37 °C with a 5% CO₂. To validate the depth of imaging, in some
721 experiments (see **Supplementary Fig. S23A-C**), before time lapse imaging, we obtained high
722 resolution z-stacks with approximate dimensions of z=143.81, x=850.19, y=850.19. Time-lapse
723 images were then obtained every ten minutes for 100-300 cycles, selecting the imaging plane to fall
724 at the middle of the z-stack to avoid imaging at the bottom of the explant. Following movie
725 acquisition, sections were fixed in 4% paraformaldehyde (PFA) for 2 days. Fixed sections were
726 embedded in 2% agarose for H&E and immunohistochemistry analysis. Sections were processed and
727 embedded in paraffin at the University of Michigan Microscopy & Image Analysis Core Facility using
728 a Leica ASP 300 paraffin tissue processor/Tissue-Tek paraffin tissue embedding station (Leica,
729 Buffalo Grove IL). Tumor explants were used for collagenase treatment. Sections were then treated
730 for 48 hours with collagenase (C2399, MilliporeSigma, USA) at a concentration of 5, 10, or 15
731 units/ml or vehicle control. Following treatment, sections were fixed in 4% paraformaldehyde (PFA)
732 for 2 days.

733
734 **Cranial window implantation and two photon intravital live imaging *in vivo*:**

735 Craniotomy and cranial window implantations were performed following previously described
736 protocols by us and others^{25,76,77}. The protocol was conducted according to the guidelines approved
737 by the Institutional Animal Care and Use Committee (IACUC) at the University of Michigan. Briefly,
738 mice were anesthetized and placed in a stereotactic frame. A craniotomy of 3x3 mm size was made
739 over the right hemisphere between bregma and lambda. 5x10⁴ GFP⁺ NPA glioma cells were
740 intracranially implanted at a depth of 0.8mm ventral, near the center of the craniotomy overlying
741 the brain cortex of B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato-EGFP)Luo/J mice. These mice
742 were utilized to identify (in red) normal brain tissue, and thus establish tumor borders. The cranial
743 window was covered with two round microscope cover glasses, and a metal head bar was
744 positioned on the skull posterior to the cranial window. One week post NPA tumor cells' injection
745 and cranial window implantation, and two-weeks post NPAsCOL1A1 implantation, intravital live
746 imaging was performed using a two-photon microscope (Bruker Technology) with a 20X water

747 immersion objective (Olympus, NA 1.0) for 8-12 hours. To avoid imaging at the brain surface, first
748 we acquired high-resolution 3D z-stacks spanning 0-330 μm depth from the surface of the brain. Z-
749 stacks were then imported to Imaris viewer version 9.8 (Bitplane, Imaris, Oxford Instruments, MA,
750 USA) to obtain 3D images. We then used Orthoslicer3D to reveal the depth of the imaging position
751 in relation to the surface of the brain for time-lapse data acquisition. The detailed methodology is
752 available in Supplementary Methods.

753

754 **Mathematical analysis of tumor cell movement**

755 To determine the movement of cells in different areas of the tumor we performed localized
756 statistical analysis in different zones of the tumor. We selected localized areas based on the
757 organization of cells in clusters, group of cells moving together with similar distribution. Raw data
758 of 4 movies from the tumor core and 4 movies from the tumor border were analyzed for 293 cycles
759 (core) and 186 cycles (border) for a frame rate of $\Delta t = 10$ min between image acquisition. To track
760 cell motion, we used the software Fiji with the plugin TrackMate⁷⁸. Analysis was performed as
761 indicated in detail in Supplementary Methods.

762

763 **Classification of glioma migration patterns**

764 To classify the collective cellular motion behavior of the three types of patterns called flock, stream,
765 and swarm illustrated in Supplementary Figure S10F we used as criteria the orientation of each cell
766 described by its unique angle velocity denoted θ_i . More precisely, we transformed the Angle
767 Velocity Distribution graph into a histogram where we examined the distribution of all the values
768 θ_i . A schematic representation of these distributions is depicted in Figure 4G. Considering a data-
769 set θ_n $n=1\dots N$ of orientations where N is the total number of cells, $\theta_n \in [0, 2\pi]$ is the direction of the
770 cell n . We tested three types of distributions ρ to describe the dataset and gave a likelihood in each
771 case as described in Supplementary Methods. The Akaike Weight (AW) indicates which pattern has
772 the highest likelihood in each experimental situation⁷⁹.

773

774

775

776 **Statistical Analysis**

777 All *in vivo* experiments were performed using independent biological replicates, as indicated in the
778 text and figures for each experiment. Data are shown as the mean \pm SEM. Any difference was
779 considered statistically significant when $p < 0.05$. In experiments that included one variable, the
780 one-way ANOVA test was used. In experiments with two independent variables, the two-way
781 ANOVA test was employed. A posterior Tukey's multiple comparisons test was used for mean
782 comparisons. Student's t-test was used to compare unpaired data from two samples. Survival data
783 were entered into Kaplan-Meier survival curves plots, and statistical analysis was performed using
784 the Mantel log-rank test. Median survival is expressed as MS. Significance was determined if $p < 0.05$.
785 All analyses were conducted using GraphPad Prism (version 8.0.0) or SAS (2021 SAS Institute, Cary,
786 NC). Each statistical test used is indicated within the figure legends.

787

788 **Data availability:** All data associated with this study are in the paper and/or the Supplementary
789 Information. RNA-Seq data was deposited at the NCBI's Gene Expression Omnibus (GEO) with
790 identifier GSE188970. Source data are provided with this paper. Further information and requests
791 for resources and reagents should be directed to and will be fulfilled by the corresponding author
792 P.R. Lowenstein.

793

794 **Code Availability:** The analysis of oncostreams in mouse and human glioma tissue was performed
795 using U-Net architecture to provide semantic segmentation of specimens using deep learning.
796 Public GitHub repository for the project code can be found at
797 <https://github.com/MLNeurosurg/DeepStreams>.

798 Analysis of glioma cells dynamics was performed using the Julia Programming Language. Link for this
799 project Script and their dependencies can be found at public GitHub repository
800 https://github.com/smotsch/analysis_glioma.

801

802 **REFERENCES**

- 803 1 Parsons, D. W. *et al.* An integrated genomic analysis of human glioblastoma multiforme. *Science*
804 (*New York, N.Y.*) **321**, 1807-1812, doi:10.1126/science.1164382 (2008).
- 805 2 Louis, D. N. *et al.* The 2007 WHO Classification of Tumours of the Central Nervous System. *Acta*
806 *Neuropathologica* **114**, 97-109, doi:10.1007/s00401-007-0243-4 (2007).
- 807 3 Ceccarelli, M. *et al.* Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of
808 Progression in Diffuse Glioma. *Cell* **164**, 550-563, doi:10.1016/j.cell.2015.12.028 (2016).
- 809 4 Verhaak, R. G. *et al.* Integrated genomic analysis identifies clinically relevant subtypes of
810 glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. *Cancer Cell* **17**, 98-
811 110, doi:10.1016/j.ccr.2009.12.020 (2010).
- 812 5 Sottoriva, A. *et al.* Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary
813 dynamics. *Proceedings of the National Academy of Sciences of the United States of America* **110**,
814 4009-4014, doi:10.1073/pnas.1219747110 (2013).
- 815

816 6 Brennan, C. W. *et al.* The somatic genomic landscape of glioblastoma. *Cell* **155**, 462-477,
817 doi:10.1016/j.cell.2013.09.034 (2013).

818 7 Nicholson, J. G. & Fine, H. A. Diffuse Glioma Heterogeneity and Its Therapeutic Implications. *Cancer*
819 *discovery* **11**, 575-590, doi:10.1158/2159-8290.Cd-20-1474 (2021).

820 8 Puchalski, R. B. *et al.* An anatomic transcriptional atlas of human glioblastoma. *Science (New York,*
821 *N.Y.)* **360**, 660-663, doi:10.1126/science.aaf2666 (2018).

822 9 Wang, Q. *et al.* Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with
823 Immunological Changes in the Microenvironment. *Cancer Cell* **32**, 42-56.e46,
824 doi:10.1016/j.ccr.2017.06.003 (2017).

825 10 Patel, A. P. *et al.* Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.
826 *Science (New York, N.Y.)* **344**, 1396-1401, doi:10.1126/science.1254257 (2014).

827 11 Bergmann, N. *et al.* The Intratumoral Heterogeneity Reflects the Intertumoral Subtypes of
828 Glioblastoma Multiforme: A Regional Immunohistochemistry Analysis. *Front Oncol* **10**, 494,
829 doi:10.3389/fonc.2020.00494 (2020).

830 12 Garofano, L. *et al.* Pathway-based classification of glioblastoma uncovers a mitochondrial subtype
831 with therapeutic vulnerabilities. *Nat Cancer* **2**, 141-156, doi:10.1038/s43018-020-00159-4 (2021).

832 13 Kim, Y. *et al.* Perspective of mesenchymal transformation in glioblastoma. *Acta Neuropathol*
833 *Commun* **9**, 50, doi:10.1186/s40478-021-01151-4 (2021).

834 14 Hara, T. *et al.* Interactions between cancer cells and immune cells drive transitions to
835 mesenchymal-like states in glioblastoma. *Cancer Cell* **39**, 779-792.e711,
836 doi:10.1016/j.ccr.2021.05.002 (2021).

837 15 Neftel, C. *et al.* An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma.
838 *Cell* **178**, 835-849.e821, doi:10.1016/j.cell.2019.06.024 (2019).

839 16 Majc, B. *et al.* Epithelial-to-mesenchymal transition as the driver of changing carcinoma and
840 glioblastoma microenvironment. *Biochim Biophys Acta Mol Cell Res* **1867**, 118782,
841 doi:10.1016/j.bbamcr.2020.118782 (2020).

842 17 Azam, Z., To, S. T. & Tannous, B. A. Mesenchymal Transformation: The Rosetta Stone of
843 Glioblastoma Pathogenesis and Therapy Resistance. *Adv Sci (Weinh)* **7**, 2002015,
844 doi:10.1002/advs.202002015 (2020).

845 18 Behnan, J., Finocchiaro, G. & Hanna, G. The landscape of the mesenchymal signature in brain
846 tumours. *Brain* **142**, 847-866, doi:10.1093/brain/awz044 (2019).

847 19 Yang, J. *et al.* Guidelines and definitions for research on epithelial-mesenchymal transition. *Nat Rev*
848 *Mol Cell Biol* **21**, 341-352, doi:10.1038/s41580-020-0237-9 (2020).

849 20 Williams, E. D., Gao, D., Redfern, A. & Thompson, E. W. Controversies around epithelial-
850 mesenchymal plasticity in cancer metastasis. *Nat Rev Cancer* **19**, 716-732, doi:10.1038/s41568-019-
851 0213-x (2019).

852 21 Carro, M. S. *et al.* The transcriptional network for mesenchymal transformation of brain tumours.
853 *Nature* **463**, 318-325, doi:10.1038/nature08712 (2010).

854 22 Cheng, W. Y., Kandel, J. J., Yamashiro, D. J., Canoll, P. & Anastassiou, D. A multi-cancer
855 mesenchymal transition gene expression signature is associated with prolonged time to recurrence
856 in glioblastoma. *PLoS One* **7**, e34705, doi:10.1371/journal.pone.0034705 (2012).

857 23 Ray, A., Morford, R. K., Ghaderi, N., Odde, D. J. & Provenzano, P. P. Dynamics of 3D carcinoma cell
858 invasion into aligned collagen. *Integr Biol (Camb)* **10**, 100-112, doi:10.1039/c7ib00152e (2018).

859 24 Pickup, M. W., Mouw, J. K. & Weaver, V. M. The extracellular matrix modulates the hallmarks of
860 cancer. *EMBO Rep* **15**, 1243-1253, doi:10.15252/embr.201439246 (2014).

861 25 Baker, G. J. *et al.* Mechanisms of glioma formation: iterative perivascular glioma growth and
862 invasion leads to tumor progression, VEGF-independent vascularization, and resistance to
863 antiangiogenic therapy. *Neoplasia* **16**, 543-561, doi:10.1016/j.neo.2014.06.003 (2014).

864 26 Deisboeck, T. S. & Couzin, I. D. Collective behavior in cancer cell populations. *Bioessays* **31**, 190-197,
865 doi:10.1002/bies.200800084 (2009).

866 27 Friedl, P., Locker, J., Sahai, E. & Segall, J. E. Classifying collective cancer cell invasion. *Nat Cell Biol* **14**, 777-783, doi:10.1038/ncb2548 (2012).

867 28 Friedl, P. & Mayor, R. Tuning Collective Cell Migration by Cell-Cell Junction Regulation. *Cold Spring Harb Perspect Biol* **9**, doi:10.1101/cshperspect.a029199 (2017).

868 29 Méhes, E. & Vicsek, T. Collective motion of cells: from experiments to models. *Integr Biol (Camb)* **6**, 831-854, doi:10.1039/c4ib00115j (2014).

869 30 Rørth, P. Fellow travellers: emergent properties of collective cell migration. *EMBO Rep* **13**, 984-991, doi:10.1038/embor.2012.149 (2012).

870 31 Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. *Nat Rev Mol Cell Biol* **10**, 445-457, doi:10.1038/nrm2720 (2009).

871 32 Scarpa, E. & Mayor, R. Collective cell migration in development. *J Cell Biol* **212**, 143-155, doi:10.1083/jcb.201508047 (2016).

872 33 Theveneau, E. & Mayor, R. Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. *Dev Biol* **366**, 34-54, doi:10.1016/j.ydbio.2011.12.041 (2012).

873 34 Alieva, M. et al. Intravital imaging of glioma border morphology reveals distinctive cellular dynamics and contribution to tumor cell invasion. *Scientific reports* **9**, 2054, doi:10.1038/s41598-019-38625-4 (2019).

874 35 Haeger, A., Krause, M., Wolf, K. & Friedl, P. Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. *Biochim Biophys Acta* **1840**, 2386-2395, doi:10.1016/j.bbagen.2014.03.020 (2014).

875 36 Brett, E. A., Sauter, M. A., Machens, H. G. & Duscher, D. Tumor-associated collagen signatures: pushing tumor boundaries. *Cancer Metab* **8**, 14, doi:10.1186/s40170-020-00221-w (2020).

876 37 Mammo, T. et al. Role of collagen matrix in tumor angiogenesis and glioblastoma multiforme progression. *Am J Pathol* **183**, 1293-1305, doi:10.1016/j.ajpath.2013.06.026 (2013).

877 38 Fang, M., Yuan, J., Peng, C. & Li, Y. Collagen as a double-edged sword in tumor progression. *Tumour Biol* **35**, 2871-2882, doi:10.1007/s13277-013-1511-7 (2014).

878 39 Payne, L. S. & Huang, P. H. The pathobiology of collagens in glioma. *Mol Cancer Res* **11**, 1129-1140, doi:10.1158/1541-7786.MCR-13-0236 (2013).

879 40 Pointer, K. B. et al. Association of collagen architecture with glioblastoma patient survival. *J Neurosurg* **126**, 1812-1821, doi:10.3171/2016.6.JNS152797 (2017).

880 41 Calinescu, A. A. et al. Transposon mediated integration of plasmid DNA into the subventricular zone of neonatal mice to generate novel models of glioblastoma. *Journal of visualized experiments : JoVE*, doi:10.3791/52443 (2015).

881 42 Comba, A. et al. Fyn tyrosine kinase, a downstream target of receptor tyrosine kinases, modulates antglioma immune responses. *Neuro-oncology* **22**, 806-818 (2020).

882 43 Koschmann, C. et al. ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma. *Sci Transl Med* **8**, 328ra328, doi:10.1126/scitranslmed.aac8228 (2016).

883 44 Núñez, F. J. et al. IDH1-R132H acts as a tumor suppressor in glioma via epigenetic up-regulation of the DNA damage response. *Science Translational Medicine* **11**, eaaq1427, doi:10.1126/scitranslmed.aaq1427 %J Science Translational Medicine (2019).

884 45 Brat, D. J. et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. *N Engl J Med* **372**, 2481-2498, doi:10.1056/NEJMoa1402121 (2015).

885 46 Bowman, R. L., Wang, Q., Carro, A., Verhaak, R. G. & Squatrito, M. GlioVis data portal for visualization and analysis of brain tumor expression datasets. *Neuro-oncology* **19**, 139-141, doi:10.1093/neuonc/now247 (2017).

886 47 Jamous, S., Comba, A., Lowenstein, P. R. & Motsch, S. Self-organization in brain tumors: How cell morphology and cell density influence glioma pattern formation. *PLoS computational biology* **16**, e1007611 (2020).

915 48 Bialek, W. *et al.* Statistical mechanics for natural flocks of birds. *Proceedings of the National
916 Academy of Sciences of the United States of America* **109**, 4786-4791,
917 doi:10.1073/pnas.1118633109 (2012).

918 49 Szabó, A. & Mayor, R. Mechanisms of Neural Crest Migration. *Annu Rev Genet* **52**, 43-63,
919 doi:10.1146/annurev-genet-120417-031559 (2018).

920 50 Staneva, R. *et al.* Cancer cells in the tumor core exhibit spatially coordinated migration patterns.
921 *Journal of cell science* **132**, doi:10.1242/jcs.220277 (2019).

922 51 Egeblad, M., Rasch, M. G. & Weaver, V. M. Dynamic interplay between the collagen scaffold and
923 tumor evolution. *Curr Opin Cell Biol* **22**, 697-706, doi:10.1016/j.ceb.2010.08.015 (2010).

924 52 Provenzano, P. P. *et al.* Collagen reorganization at the tumor-stromal interface facilitates local
925 invasion. *BMC Med* **4**, 38, doi:10.1186/1741-7015-4-38 (2006).

926 53 Shintani, Y., Hollingsworth, M. A., Wheelock, M. J. & Johnson, K. R. Collagen I promotes metastasis
927 in pancreatic cancer by activating c-Jun NH(2)-terminal kinase 1 and up-regulating N-cadherin
928 expression. *Cancer research* **66**, 11745-11753, doi:10.1158/0008-5472.CAN-06-2322 (2006).

929 54 Kim, H., Watkinson, J., Varadan, V. & Anastassiou, D. Multi-cancer computational analysis reveals
930 invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1. *BMC
931 Med Genomics* **3**, 51, doi:10.1186/1755-8794-3-51 (2010).

932 55 Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma
933 Longitudinal Analysis Consortium. *Neuro-oncology* **20**, 873-884, doi:10.1093/neuonc/noy020
934 (2018).

935 56 Behnan, J. *et al.* Differential propagation of stroma and cancer stem cells dictates tumorigenesis
936 and multipotency. *Oncogene* **36**, 570-584, doi:10.1038/onc.2016.230 (2017).

937 57 Dolor, A. & Szoka, F. C., Jr. Digesting a Path Forward: The Utility of Collagenase Tumor Treatment
938 for Improved Drug Delivery. *Mol Pharm* **15**, 2069-2083, doi:10.1021/acs.molpharmaceut.8b00319
939 (2018).

940 58 Diop-Frimpong, B., Chauhan, V. P., Krane, S., Boucher, Y. & Jain, R. K. Losartan inhibits collagen I
941 synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. *Proceedings of
942 the National Academy of Sciences of the United States of America* **108**, 2909-2914,
943 doi:10.1073/pnas.1018892108 (2011).

944 59 Kumar, S., Henning-Knechtel, A., Magzoub, M. & Hamilton, A. D. Peptidomimetic-Based
945 Multidomain Targeting Offers Critical Evaluation of A β Structure and Toxic Function. *J Am Chem Soc*
946 **140**, 6562-6574, doi:10.1021/jacs.7b13401 (2018).

947 60 Kato, M., Hattori, Y., Kubo, M. & Maitani, Y. Collagenase-1 injection improved tumor distribution
948 and gene expression of cationic lipoplex. *Int J Pharm* **423**, 428-434,
949 doi:10.1016/j.ijpharm.2011.12.015 (2012).

950 61 Lee, S. *et al.* Extracellular matrix remodeling in vivo for enhancing tumor-targeting efficiency of
951 nanoparticle drug carriers using the pulsed high intensity focused ultrasound. *J Control Release* **263**,
952 68-78, doi:10.1016/j.jconrel.2017.02.035 (2017).

953 62 Hambardzumyan, D., Gutmann, D. H. & Kettenmann, H. The role of microglia and macrophages in
954 glioma maintenance and progression. *Nat Neurosci* **19**, 20-27, doi:10.1038/nn.4185 (2016).

955 63 Gritsenko, P. G. & Friedl, P. Adaptive adhesion systems mediate glioma cell invasion in complex
956 environments. *Journal of cell science* **131**, doi:10.1242/jcs.216382 (2018).

957 64 Gritsenko, P. G. *et al.* p120-catenin-dependent collective brain infiltration by glioma cell networks.
958 *Nat Cell Biol* **22**, 97-107, doi:10.1038/s41556-019-0443-x (2020).

959 65 Peglion, F., Llense, F. & Etienne-Manneville, S. Adherens junction treadmilling during collective
960 migration. *Nat Cell Biol* **16**, 639-651, doi:10.1038/ncb2985 (2014).

961 66 Lim, D. A. & Alvarez-Buylla, A. The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb
962 (OB) Neurogenesis. *Cold Spring Harb Perspect Biol* **8**, doi:10.1101/cshperspect.a018820 (2016).

963 67 Waclaw, B. *et al.* A spatial model predicts that dispersal and cell turnover limit intratumour
964 heterogeneity. *Nature* **525**, 261-264, doi:10.1038/nature14971 (2015).

965 68 Kamran, N. *et al.* Current state and future prospects of immunotherapy for glioma. *Immunotherapy* 10, 317-339, doi:10.2217/imt-2017-0122 (2018).

966 69 Shelhamer, E., Long, J. & Darrell, T. Fully Convolutional Networks for Semantic Segmentation. *IEEE Trans Pattern Anal Mach Intell* 39, 640-651, doi:10.1109/tpami.2016.2572683 (2017).

967 70 Sharma, M., Pachori, R. & Acharya, U. R. Adam: a method for stochastic optimization. *Pattern Recognit. Lett* 94, 172-179 (2017).

968 71 Hollon, T. C. *et al.* Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. *Nat Med* 26, 52-58, doi:10.1038/s41591-019-0715-9 (2020).

969 72 Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. *Springer International Publishing* 234-241 (2015).

970 73 Wilson, T. J., Zamler, D. B., Doherty, R., Castro, M. G. & Lowenstein, P. R. Reversibility of glioma stem cells' phenotypes explains their complex in vitro and in vivo behavior: Discovery of a novel neurosphere-specific enzyme, cGMP-dependent protein kinase 1, using the genomic landscape of human glioma stem cells as a discovery tool. *Oncotarget* 7, 63020-63041, doi:10.18632/oncotarget.11589 (2016).

971 74 Yadav, V. N. *et al.* CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study. *Oncotarget* 7, 83701-83719, doi:10.18632/oncotarget.13295 (2016).

972 75 Comba, A. *et al.* Laser Capture Microdissection of Glioma Subregions for Spatial and Molecular Characterization of Intratumoral Heterogeneity, Oncostreams, and Invasion. *JoVE (Journal of Visualized Experiments)*, e60939 (2020).

973 76 Huber, D. *et al.* Multiple dynamic representations in the motor cortex during sensorimotor learning. *Nature* 484, 473-478, doi:10.1038/nature11039 (2012).

974 77 Chen, Z., Ross, J. L. & Hambardzumyan, D. Intravital 2-photon imaging reveals distinct morphology and infiltrative properties of glioblastoma-associated macrophages. *Proceedings of the National Academy of Sciences of the United States of America* 116, 14254-14259, doi:10.1073/pnas.1902366116 (2019).

975 78 Tinevez, J. Y. *et al.* TrackMate: An open and extensible platform for single-particle tracking. *Methods* 115, 80-90, doi:10.1016/j.ymeth.2016.09.016 (2017).

976 79 Kenneth P. Burnham, D. R. A. *Model selection and multimodel inference: A practical information-theoretic approach*. 2 edn, (Springer, 2002).

977

978

979 **ACKNOWLEDGMENTS**

980 We thank all members of our laboratory for advice and comments on this work. This work was
981 supported by National Institutes of Health, National Institute of Neurological Disorders and Stroke
982 (NIH/NINDS) grants: R37-NS094804, R01-NS105556, R21-NS107894, R21-NS091555; R01-NS074387
983 to M.G.C.; National Institute of Neurological Disorders and Stroke (NIH/NINDS) grants: R01-
984 NS076991, R01-NS096756, R01-NS082311, R01-NS122234, R01-NS127378 to P.R.L.; National
985 Institute of Biomedical Imaging and Bioengineering (NIH/NIBI): R01-EB022563; National Cancer
986 Institute (NIH/NCI) U01CA224160; Rogel Cancer Center at The University of Michigan G023089 to
987 M.G.C. Ian's Friends Foundation grant G024230, Leah's Happy Hearts Foundation grant G013908,
988 Pediatric Brain Tumor Foundation grant G023387 and ChadTough Foundation grant G023419 to
989 P.R.L. RNA Biomedicine grant: F046166 to M.G.C. Health and Human Services, National Institutes of
990 Health, UL1 TR002240 to Michigan Institute for Clinical and Health Research (MICHR), Postdoctoral
991 Translational Scholars Program (PTSP), Project F049768 to A.C.

992

993

1012 **AUTHORS INFORMATION**

1013 **Affiliations:**

1014

1015 **Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, 48109, MI, USA**

1016 Andrea Comba, Syed M. Faisal, Patrick J. Dunn, Todd C. Hollon, Wajd N. Al-Holou, Maria Luisa Varela,
1017 Daniel B. Zamler, Anna E. Argento, Phillip E. Kish, Clifford Abel II, Maria G Castro, Pedro R.
1018 Lowenstein

1019

1020 **Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor,
1021 48109 MI, USA**

1022 Andrea Comba, Syed M. Faisal, Patrick J. Dunn, Maria Luisa Varela, Daniel B. Zamler, Anna E.
1023 Argento, Clifford Abel II, Maria G Castro, Pedro R. Lowenstein

1024

1025 **Rogel Cancer Center, University of Michigan medical School, Ann Arbor, 48109, MI, USA**

1026 Andrea Comba, Syed M. Faisal, Patrick J. Dunn, Maria Luisa Varela, Daniel B. Zamler, Clifford Abel II,
1027 Maria G Castro, Pedro R. Lowenstein

1028

1029 **School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA**

1030 Sebastien Motsch

1031

1032 **Ophthalmology & Visual Science, University of Michigan Medical School, Ann Arbor, 48109 MI,
1033 USA**

1034 Phillip E. Kish, Alon Kahana

1035

1036 **Dept. of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA**

1037 Celina G. Kleer

1038

1039 **Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery,
1040 University of Michigan medical School, Ann Arbor, MI 48109, USA**

1041 Gunnar L Quass, Pierre F. Apostolides

1042

1043 **Dept. of Molecular & Integrative Physiology, University of Michigan medical School, Ann Arbor,
1044 MI 48109, USA**

1045 Pierre F. Apostolides

1046

1047 **Departments of Hematology & Hematopoietic Cell Transplantation and Immuno-Oncology, City
1048 of Hope, Duarte, CA, USA**

1049 Christine E. Brown

1050

1051 **Contributions:** Conception and design: A. Comba, M.G. Castro, P. R. Lowenstein. Development of
1052 methodology: A. Comba, M.S. Faisal, P. J. Dunn, A. E. Argento, T. Hollon, W.N. Al-Holou, M.L. Varela,
1053 D.B. Zamler, S. Motsch, P. R. Lowenstein. Acquisition of data, analysis, and interpretation: A. Comba,
1054 M.S. Faisal, P. J. Dunn, A. E. Argento, T. Hollon, M.L. Varela, D.B. Zamler, Clifford Abel II, M.G. Castro,
1055 S. Motsch, P. R. Lowenstein. Human histopathology analysis and identification of oncostreams: A.
1056 Comba, C. Kleer, A. E. Argento, P. R Lowenstein. Laser microdissection protocol: A. Comba, P. R.
1057 Lowenstein, P. E. Kish, Alon Kahana. Development and establishment of intravital imaging using

1058 multiphoton microscopy: Comba, M.S. Faisal, P. R. Lowenstein, G. L. Quass, P. F. Apostolides.
1059 Development and experimental assistance with human glioma cell lines. development and
1060 assistance: C.E. Brown. Manuscript writing: A. Comba, S. Motsch, P. R. Lowenstein. Administrative,
1061 technical, or material support (i.e., reporting or organizing data, constructing databases): A. Comba,
1062 P. R. Lowenstein. Study supervision: M. G. Castro and P. R. Lowenstein. All authors reviewed the
1063 final version of the manuscript.

1064

1065

1066 **Corresponding author:**

1067 Correspondence to Pedro R. Lowenstein

1068

1069 **ETHICS DECLARATIONS**

1070 **Competing interests:** All authors of this paper declare no potential conflicts of interest.

1071

1072 **Figure Legends**

1073

1074 **Fig. 1. Oncostreams are multicellular fascicles present in mouse and human gliomas**

1075 **A)** Representative 5 μ m H&E microtome sections from gliomas showing that fascicles of spindle-like
1076 glioma cells (oncostreams, outlined by the dotted line) are present in a GEMM of gliomas NPA
1077 (NRAS/shATRx/shp53) and the GL26 intracranial implantable model of glioma. Scale bars: 50 μ m. **B)**
1078 Representative H&E microtome sections of human glioma and human xenografts showing the
1079 presence of oncostreams. Scale bar: 20 μ m. **C-D)** Histograms showing the cellular shape analysis
1080 (aspect ratio) (**C**) and angle orientation (alignment) for the corresponding images (**D**) show areas of
1081 oncostreams (OS) formed by elongated and aligned cells and areas with no oncostreams (No-OS) as
1082 rounded and not-aligned cells. **E-G)** Immunostaining shows that tumor cells, mesenchymal cells
1083 (ACTA2+), microglia/macrophages (IBA1+ and CD68+), are aligned within, the main orientation axis
1084 of oncostreams. Bar graphs show the quantification of ACTA+, n=3 (**E**), IBA1+, n=5 (**F**) and CD68+,
1085 n=5 (**G**) cells within oncostreams areas in NPA tumors. 6-13 areas of oncostreams per tumor section
1086 per animal were imaged. Scale bar: 20 μ m. Error bars represent \pm SEM; unpaired t-test analysis,
1087 *p<0.05, **p<0.001. **H)** Angle orientation shows the alignment of ACTA+, IBA1+ and CD68+ cells
1088 within oncostreams for the corresponding images.

1089

1090

1091 **Fig. 2. Oncostreams density positively correlates with tumor aggressiveness in GEMM of gliomas.**

1092 **A)** Genetic makeup of NPA and NPAI tumors. **B)** Kaplan–Meier survival curves of NPA and NPAI mouse
1093 gliomas show that animals bearing IDH1-R132H mutant tumors (NPAI) have prolonged median
1094 survival (MS): **NPA** (MS: 86 days; n: 18) versus **NPAI** (MS: 213 days; n:12). Log-rank (Mantel-Cox) test;
1095 ***p<0.0001. **C-D)** Deep learning method for oncostream detection in H&E stained mouse glioma
1096 sections: **C)** Representative images of oncostreams manually segmented on H&E stained sections of
1097 NPA gliomas and NPAI tumors. The output of our trained model for each image is shown below
1098 (probability heat maps), for tissues containing oncostreams (NPA), and without oncostreams (NPAI),
1099 scale bar = 50 μ m. **D)** 10-14 random fields per tumor section per animal were imaged, n=9 NPA and
1100 n=12 NPAI, and quantified using deep learning analysis. Error bars represent \pm SEM; unpaired t-test

1101 analysis, *p<0.05. **E)** Angle histogram plots show aligned cells in NPA tumors vs non-aligned cells in
1102 NPAI tumors for the representative images showed in figure.

1103
1104 **Fig. 3. The density of oncostreams positively correlates with tumor aggressiveness in human**
1105 **gliomas. A)** TCGA tumors were analyzed from different grade: GBM-Grade IV (100 tumors). LGG-
1106 Grade III (70 tumors) and LGG-Grade II (50 tumors). Pie charts show percentage of tumors displaying
1107 oncostreams in relation to tumor grade. Oncostreams are present in 47% of GBM grade IV tumors,
1108 8.6 % of LGG grade III, and are absent from LGG grade II. **B)** Manual identification of oncostreams in
1109 H&E images are shown for human gliomas with WHO grades IV, III, II from TCGA. **C)** Deep learning
1110 analysis for human gliomas. Our algorithm was able to detect oncostreams in grade IV and III gliomas
1111 but not in grade II gliomas. **D)** Angle histogram plots show the alignment of cells in H&E histology
1112 sections of Grade IV and Grade III gliomas' oncostreams and random alignment in grade II glioma
1113 sections lacking oncostreams. Angle histogram correspond to the representative images. **E-F)**
1114 Immuno-fluorescence staining of SOX2+ tumor cells (green), glial fibrillary acidic protein (GFAP+)
1115 cells (red), and microglia/macrophage (IBA1+) cells (red) in high-grade human glioblastoma (GBM)
1116 (WHO Grade IV), IDH-WT (**E**) and in low-grade glioma (LGG) (WHO Grade III), IDH-mutant (**F**),
1117 showing oncostreams heterogeneity and cellular alignment of these cells in human high-grade
1118 gliomas but not in low grade gliomas (arrows). Scale bars: 50 μ m.
1119

1120 **Fig. 4. Oncostreams are defined by a unique gene expression signature related to mesenchymal**
1121 **transformation and migration. A)** (a) Schematic representation of spatial transcriptomic analysis of
1122 glioma oncostreams using Laser Capture Microdissection (LCM). Glioma tumors were generated by
1123 intracranial implantation of NPA tumor cells in C57BL6 mice. (b-c) Oncostream areas (red outline)
1124 were identified and dissected from surrounding glioma tissue (black outline) in mouse glioma
1125 samples using a LCM microscope. **B)** A volcano plot displays differentially expressed (DE) genes from
1126 oncostream vs no-oncostream areas. DE genes were selected based on a fold change of ≥ 1.5 and a
1127 q-value (false discovery rate (FDR) corrected p-value) of ≤ 0.05 . Upregulated genes (red dots) and
1128 downregulated genes (green dots) are shown. Relevant genes related to mesenchymal migration are
1129 labeled on the graph. **C)** Heat map illustrates gene expression patterns for oncostream vs no-
1130 oncostream areas in NPA glioma tumors (n=3 biological replicates/group). Differentially upregulated
1131 genes (16) are represented in red and downregulated genes (n=27) are represented in green (q-
1132 value ≤ 0.05 and fold change $\geq \pm 1.5$). **D)** Functional enrichment analysis of overrepresented GO
1133 terms (biological processes) obtained when comparing oncostream vs no-oncostream DE genes. p-
1134 value corrected for multiple comparisons using the FDR method. Cutoff FDR<0.05. Blue:
1135 Downregulated GOs. Red: upregulated GOs. **E)** Bar graphs show DE genes annotated to the most
1136 relevant enriched GOs biological process: "Positive regulation of cell motility", "Regulation of cell
1137 migration" and "Collagen metabolic process."
1138

1139 **Fig. 5. COL1A1 is a central hub in oncostream organization and glioma malignancy. A)** Network
1140 analysis of the DE genes comparing oncostreams versus no-oncostreams DE genes. Genes with a
1141 higher degree of connectivity are highlighted with larger nodes. Clusters of nodes with the same
1142 color illustrate modules of highly interacting of genes in the network. **B)** Immunofluorescence
1143 analysis of COL1A1 expression in GEMM of glioma tissues comparing NPA (IDH1-WT) vs NPAI
1144 (IDH1mut). Representative confocal images display COL1A1 expression in green (Alexa 488) and
1145 nuclei in blue (DAPI). Scale bar: 50 μ m. **C)** Bar graphs represent COL1A1 quantification in terms of
1146 fluorescence integrated density. NPA n=5 and NPAI n=6 animals for each experimental condition

1147 were used for the analysis. Ten fields of each tumor section were selected at random. Error bars
1148 represent \pm SEM. t-test, **p<0.01. **D**) Immunofluorescence analysis of COL1A1 expression in human
1149 GBM and LGG tumors. COL1A1 expression in green (Alexa 488) and nuclei in blue (DAPI). Scale bar:
1150 50 μ m. **E**) Bar graphs represent COL1A1 quantification as fluorescence integrated density. 5 (LGG)
1151 and 8 (GBM) tumor samples were used for the analysis. Ten fields of each tumor section were
1152 selected at random. Error bars represent \pm SEM. t-test, **p<0.01. **F-G**) GEMM of glioma with COL1A1
1153 inhibition. **F**) Kaplan–Meier survival curve comparing NPA (MS: 68 days; n: 14) vs NPAshCOL1A1 (MS:
1154 123 days; n: 28) **G**) Kaplan–Meier survival curve comparing NPD (MS: 74 days; n=15) versus
1155 NPDshCOL1A1 (MS: 98 days; n=17). Log-rank (Mantel-Cox) test. **** p<0.0001, **p<0.0126. **H**)
1156 Immunofluorescence analysis of COL1A1 expression in GEMM of glioma controls (NPA and NPD) and
1157 Col1A1 downregulation (NPAshCOL1A1 and NPDshCOL1A1). Representative confocal images of
1158 COL1A1 expression in green (Alexa 488) and nuclei in blue (DAPI). Arrows indicate COL1A1 enriched
1159 perivascular cells. Scale bar: 50 μ m. **I**) Bar graphs represent COL1A1 quantification in terms of
1160 fluorescence integrated density. 5-7 tumor samples for each experimental condition were used for
1161 the analysis. Ten fields of each tumor section were selected at random. Error bars represent \pm SEM.
1162 t-test, **p<0.01. **J**) Representative images of the histopathological identification of oncostreams in
1163 H&E tissue sections comparing the COL1A1 knockdown tumors with their respective controls. Scale
1164 bars: 50 μ m. **K**) Quantitative analysis of oncostream areas using deep learning analysis. 4-12 tumor
1165 samples for each experimental condition were used for the analysis. Error bars represent \pm SEM;
1166 unpaired t-test analysis, *p<0.05.

1167

1168

1169 **Fig. 6. Knockdown of COL1A1 within glioma cells modifies the tumor microenvironment**

1170 Immunohistochemical analysis (**A, C and E**) of GEMM of glioma controls (**NPA** and **NPD**) and COL1A1
1171 downregulation (**NPAshCOL1A1** and **NPDshCOL1A1**). **A**) Representative images of PCNA expression.
1172 Scale bar: 20 μ m. **B**) Bar graphs represent the quantification of PCNA+ cells numbers (cells/mm²)
1173 using QuPath positive cell detection. Error bars represent \pm SEM, (NPA: n=8, NPAshCOL1A1: n=5,
1174 NPD: n=8, NPDshCOL1A1: n=4), t-test, *p<0.05. **C**) Representative images of CD68 expression. Scale
1175 bar: 20 μ m. **D**) Bar graphs represent CD68+ cell quantification (cells/mm²) using QuPath positive cell
1176 detection. Error bars represent \pm SEM, (NPA: n=8, NPAshCOL1A1: n=5, NPD: n=6, NPDshCOL1A1:
1177 n=4), t-test, *p<0.05, ns: no significant. **E**) Representative images of CD31 expression. Scale bar: 20
1178 μ m. **F**) Bar graphs represent CD31+ cells quantification (cells/mm²) using QuPath positive cells
1179 detection. Error bars represent \pm SEM, (NPA: n=8, NPAshCOL1A1: n=5, NPD: n=6, NPDshCOL1A1:
1180 n=4), t-test, **p<0.01, *p<0.05. **G**) Immunofluorescence analysis of GEMM of glioma controls (**NPA**
1181 and **NPD**) and COL1A1 downregulation (**NPAshCOL1A1** and **NPDshCOL1A1**). Representative images
1182 of ACTA2 expression in red (Alexa 555) and nuclei in blue (DAPI). Scale bar: 50 μ m. **H**) Bar graphs
1183 represent ACTA2 quantification in terms of fluorescence integrated density. Error bars represent
1184 \pm SEM, (NPA: n=6, NPAshCOL1A1: n=5, NPD: n=4, NPDshCOL1A1: n=3), t-test, **p<0.01, ns: no
1185 significant.

1186

1187 **Fig. 7. Collective dynamics of oncostreams increase cell spreading within the tumor core. A**

1188 Experimental setup: NPA-GFP glioma cells were intracranially implanted in C57BL6 mice. Explant
1189 slice cultures of growing tumors were used for confocal time-lapse imaging of the tumor core. **B**)
1190 Single representative time-lapse confocal image of glioma cells within the tumor core (Movie #1). **C**)
1191 Tracking analysis of individual cell paths performed using the Track-Mate plugin from Image-J. **D**)
1192 Preferred directions of cells within three zones (A-C) superimposed onto a representative time lapse-

1193 image. **E**) Speed distribution and mean speed ($\mu\text{m}/\text{hr}$) in Zones A, B and C. **F**) Distribution of angle
1194 velocity for each zone. The Angle Velocity of each cell is denoted ϑ . The plot shows the proportion
1195 of cells moving in angle direction ϑ for each zone. **G-H**) Classification of collective motion patterns:
1196 *stream*, *flock* or *swarm*. The distribution is *uni-modal* for a *flock* (only one peak) and *bi-modal* for a
1197 *stream* (two peaks = 2 preferred angle velocity). For a *swarm*, the distribution is *flat* (no preferred
1198 angle velocity). In **(G)** Angle Velocity was transformed to a histogram; these data were then used to
1199 calculate the likelihood that a particular distribution of velocity angles corresponds to either a
1200 *stream*, *flock*, or *swarm*. The results are given in **(H)** for each zone. The frequency distribution of the
1201 data (shown in black) uses a *non-parametric* estimation (kernel density estimator). We tested three
1202 types of distributions, ρ , to describe the data-sets and give a likelihood for each case. The best fit
1203 was then determined by the Akaike weight (AW). **I**) Co-implantation of highly malignant GL26-citrine
1204 cells (green) and human MSP-12 glioma stem cells (ratio 1:30), and MSP-12 cells alone (control – left
1205 image). Immunohistochemistry of human nuclei (black) denote MSP-12 cells. Arrows show the
1206 distribution of MSP-12 cells within the brain or the tumor. Scale bar: 100 μm . **J**) Quantification of the
1207 distance of MSP-12 from the site of implantation. $n=3$ for control and $n=5$ for co-implantation (MSP-
1208 12+GL26). Error bars \pm SEM; t-test, $^*p<0.05$. **K**) Immunofluorescence images of human-nestin (red)
1209 labeling MSP-12 cells, and GL26-citrine cells. Note that MSP-12 cells have a multipolar morphological
1210 structure when alone, but a bipolar, elongated structure when aligned to GL26-citrine cells. Scale
1211 bar: 47.62 μm . **L**) Angle histogram plots quantify the alignment of MSP-12 within oncostreams, and
1212 the random alignment of MSP-12 cells when implanted alone (with dashed overlays of the other
1213 condition's alignment).

1214
1215 **Fig. 8. Collective invasion of COL1A1 enriched oncostreams contributes to malignant glioma**
1216 **behavior.** **A**) Schematic representation of the experimental setup and location of imaging and
1217 quantification of tumor borders using td/mtTomato mice (Movie #5). **B**) Representative time-lapse
1218 scanning confocal image of glioma cells at the tumor border. This image was taken from border
1219 movie #1 and shows the subdivision into different zones. **C**) Preferred direction of cells within
1220 different zones superimposed onto a representative time lapse-image. **D**) Histogram of speed
1221 distribution and mean speed ($\mu\text{m}/\text{h}$) of Zones A, B, C and D. **E**) Angle Velocity distribution analysis
1222 (ϑ) performed by zones. Plot shows overall direction and magnitude of cell movement. **F**) Likelihood
1223 analysis of the dynamic patterns at the tumor border. Graph of density estimation ρ *flock* (red), ρ
1224 *stream* (yellow) and ρ *swarm* (blue). The estimation of the black line (data) uses a *non-parametric*
1225 estimation. AW: 0 or AW:1. **G**) Immunofluorescence analysis of GFP expression in GEMM of glioma
1226 controls (NPA), and NPASHCOL1A1. Representative confocal images of the tumor borders. GFP
1227 expression is shown in green (Alexa 488) and nuclei in blue (DAPI). Dotted lines show tumor borders.
1228 Stars show tumor cell invasion patterns. Notice the absence of collective invasion patterns in
1229 NPASHCOL1A1. Scale bar: 50 μm . **H**) The analysis of tumor borders was determined using the Allen-
1230 Cahn equation. Images were split into two values (-1 and +1) representing the inside and outside of
1231 the tumor to analyze the sinuosity of the borders. Illustration of the sinuosity of a curve: it is defined
1232 as the ratio between the length of the curve L and the distance between the two extreme points.
1233 The sinuosity is close to 1 for a straight line. **I**) Sinuosity of the border for all experiments. 4-10
1234 images of each tumor border were obtained. NPA: $n=6$ and NPASHCOL1A1: $n=5$ tumors for each
1235 experimental condition were used for the analysis. We detected a decrease of the sinuosity in
1236 COL1A1 knockdown tumors. t-test unequal variance, $^*p=0.0297$.

1237

1238 **Fig. 9. Intravital two-photon imaging reveals the collective patterns of glioma oncostream**
1239 **dynamics *in vivo*.**

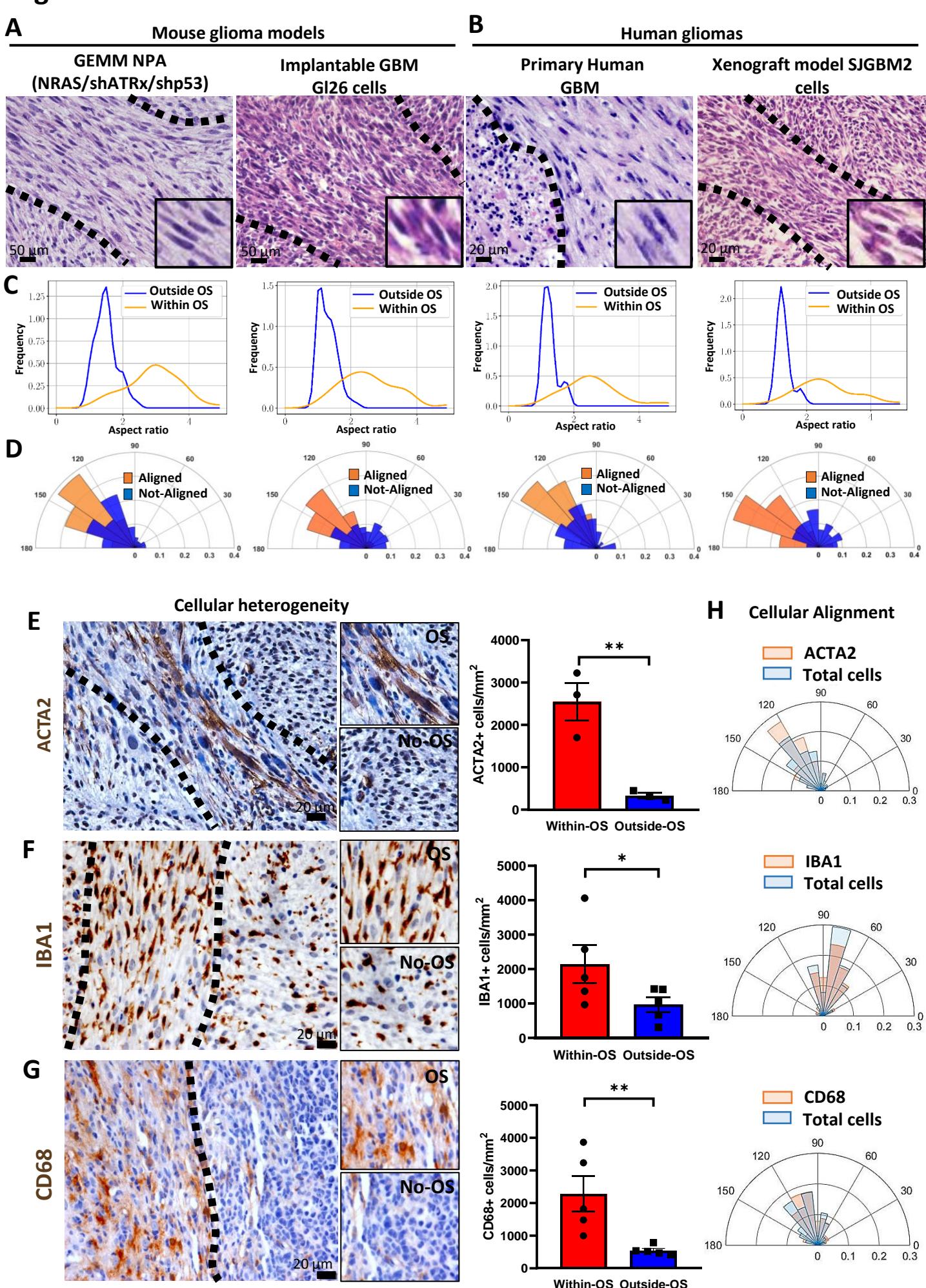
1240 **A)** Schematic representation of the cortical site of glioma cell implantation for intravital two-photon
1241 imaging. The inset shows a coronal section of the brain illustrating that glioma cells were implanted
1242 at 0.8 mm depth, with the glass cranial window (CW) positioned on top of the implantation site. **B)**
1243 Representative photograph of the head of an animal implanted with a cranial window showing the
1244 metallic head-bar (HB) positioned on the skull posterior to the cranial window. It affixed using dental
1245 cement to stabilize the imaging plane and minimize motion artifacts during time-lapse imaging. a:
1246 anterior; p: posterior. **C)** A high-resolution 3D z-stack spanning up to 300 μm depth (starting at the
1247 brain's surface) was acquired on the multiphoton microscope, imported into the Imaris viewer and
1248 used to reconstruct this 3D image. 300 x-y frames from the brain's surface were taken at a depth
1249 increment of 1 μm (voxel size=1) at a resolution of 1024x1024 pixels. XYZ axes of the 3D image are
1250 shown in white (596x596x300 μm), and the yellow line shows the exact imaging plane for time-lapse
1251 data acquisition *in vivo* (at 120 μm depth). Red fluorescent protein: normal brain parenchyma. Green
1252 fluorescent protein: tumor cells. **D)** This panel represents the X-Y and the Y-Z plane of the
1253 reconstructed 3D image (shown in **C**) using the Orthoslicer 3D function of the Imaris viewer software
1254 to illustrate the depth of the imaging plane. The X-Y plane shown at 120 μm depth illustrates the
1255 actual imaging position for movie #14 shown in **E**. **E)** Single representative time-lapse two-photon
1256 image of glioma cells within the tumor core *in vivo* (Movie #14) and imaged at a depth of 120 μm ,
1257 showing Zones A, B, and C. **F)** Individual cell trajectories of the *in vivo* time-lapse experiment. **G)** Speed
1258 distribution and mean speed ($\mu\text{m}/\text{hr}$) for Zones A, B, and C, as indicated in **(E)**. **H)** Angle
1259 Velocity distribution for each zone's in the *in vivo* time-lapse movie #14. The Angle Velocity of each
1260 cell is denoted θ . The plot shows the proportion of cells moving in the angle direction θ for each
1261 zone. **I)** Likelihood analysis of the dynamic patterns determined for each zone of Movie #14 obtained
1262 by intravital imaging. The frequency distribution ρ *flock* (red), ρ *stream* (yellow) and ρ *swarm* (blue)
1263 are shown. The estimation of the black line (data) uses a *non-parametric* assessment (kernel density
1264 estimator) to determine the structure of each zone. AW: 0 or AW:1.

1265
1266 **Fig. 10. Oncostreams are COL1A1-rich multicellular dynamic mesenchymal structures that regulate**
1267 **glioma invasion and malignancy.** Summary representation of mesenchymal dynamic fascicles
1268 (oncostreams) present in high grade gliomas. Our study reveals that oncostreams display directional
1269 collective motility patterns including streams and flocks. Non-directional collective motion (swarms)
1270 are represented by round cells that move do not have a preferred direction of motion. Directional
1271 dynamic patterns function as tumoral highways to facilitate the intra-tumoral spread of cells and
1272 participate in local invasion of normal brain. Oncostreams are areas of mesenchymal transformation
1273 defined by a molecular signature enriched in COL1A1. COL1A1 knockdown disrupts oncostream
1274 organization, decreases intratumoral heterogeneity and significantly increases animal survival. Our
1275 study reveals that oncostreams are anatomically and molecularly distinctive, are areas of
1276 mesenchymal transformation organized through interactions with the COL1A1 matrix, move by
1277 collective motion, and regulate glioma growth and invasion.

1278

1279

1280 **SUPPLEMENTARY INFORMATION**


1281 **Supplementary Material and Methods**

1282 **Supplementary Figures**

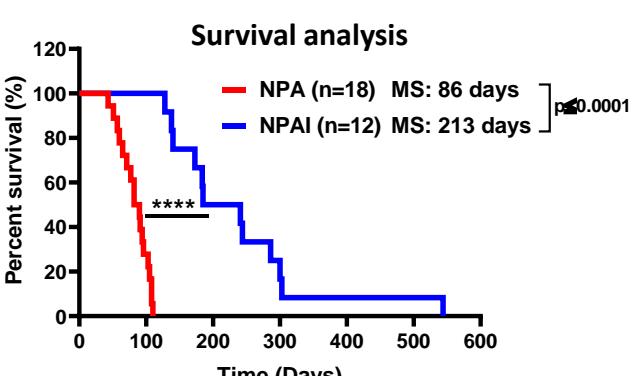
1283 **Supplementary Tables**

1284 **Supplementary Videos**

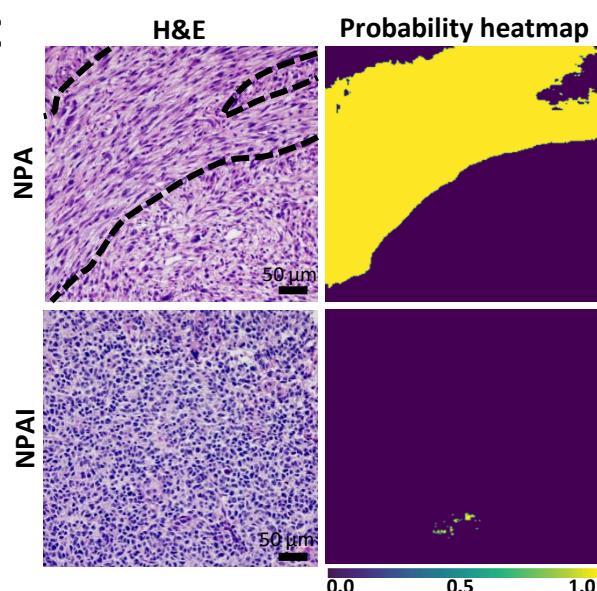
Fig. 1

Fig. 1. Oncostreams are multicellular fascicles present in mouse and human gliomas

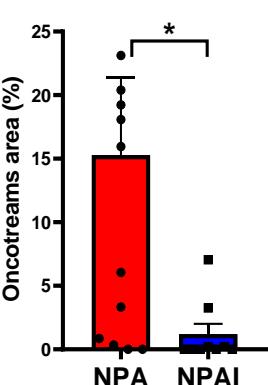
A) Representative 5 μ m H&E microtome sections from gliomas showing that fascicles of spindle-like glioma cells (oncostreams, outlined by the dotted line) are present in a GEMM of gliomas NPA (NRAS/shATRx/shp53) and the GL26 intracranial implantable model of glioma. Scale bars: 50 μ m. **B)** Representative H&E microtome sections of human glioma and human xenografts showing the presence of oncostreams. Scale bar: 20 μ m. **C-D)** Histograms showing the cellular shape analysis (aspect ratio) (**C**) and angle orientation (alignment) for the corresponding images (**D**) show areas of oncostreams (OS) formed by elongated and aligned cells and areas with no oncostreams (No-OS) as rounded and not-aligned cells. **E-G)** Immunostaining shows that tumor cells, mesenchymal cells (ACTA2+), microglia/macrophages (IBA1+ and CD68+), are aligned within, the main orientation axis of oncostreams. Bar graphs show the quantification of ACTA+, n=3 (**E**), IBA1+, n=5 (**F**) and CD68+, n=5 (**G**) cells within oncostreams areas in NPA tumors. 6-13 areas of oncostreams per tumor section per animal were imaged. Scale bar: 20 μ m. Error bars represent \pm SEM; unpaired t-test analysis, *p<0.05, **p<0.001. **H)** Angle orientation shows the alignment of ACTA+, IBA1+ and CD68+ cells within oncostreams for the corresponding images.

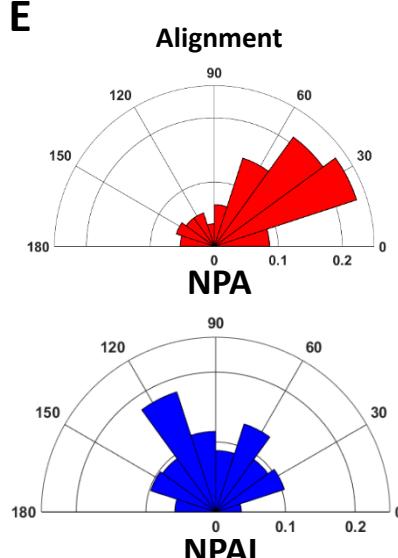

Fig. 2

A


GEMM of gliomas

Tumor	Genetic modifications
NPA	NRAS-GV12/shP53-GFP/shATRX-GFP
NPAI	NRAS-GV12/shP53-GFP/shATRX-GFP/IDH1-R132H


B


C

D

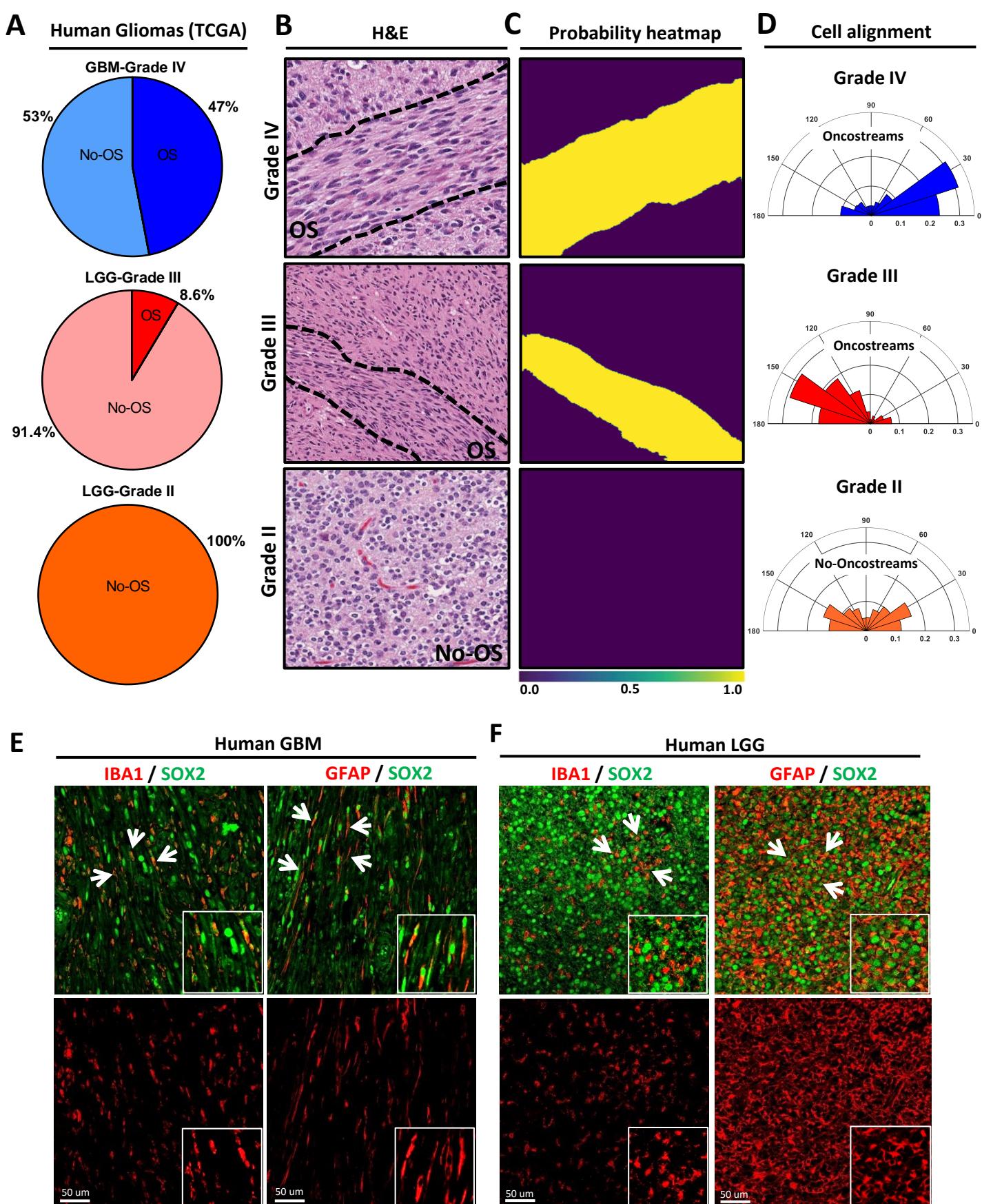
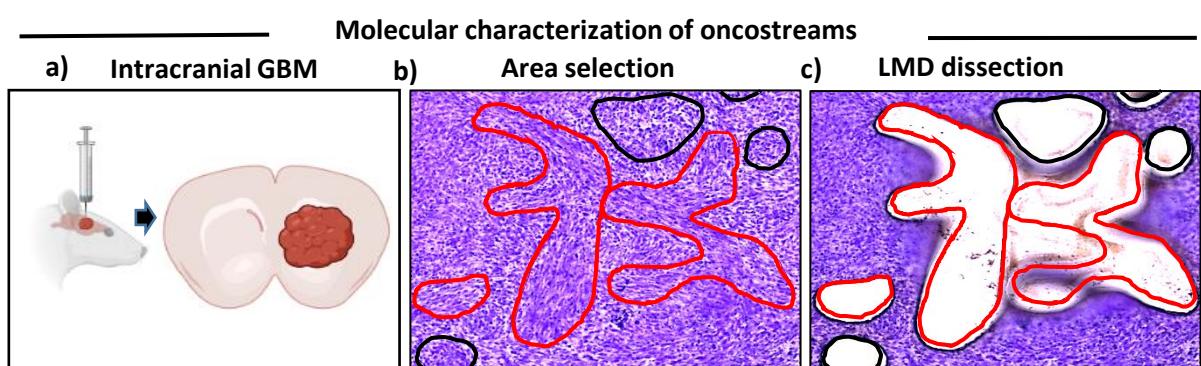

E

Fig. 2. Oncostreams density positively correlates with tumor aggressiveness in GEMM of gliomas.

A) Genetic makeup of NPA and NPAI tumors. **B)** Kaplan–Meier survival curves of NPA and NPAI mouse gliomas show that animals bearing IDH1-R132H mutant tumors (NPAI) have prolonged median survival (MS): **NPA** (MS: 86 days; n: 18) versus **NPAI** (MS: 213 days; n:12). Log-rank (Mantel-Cox) test; ***p<0.0001. **C-D)** Deep learning method for oncostream detection in H&E stained mouse glioma sections: **C)** Representative images of oncostreams manually segmented on H&E stained sections of NPA gliomas and NPAI tumors. The output of our trained model for each image is shown below (probability heat maps), for tissues containing oncostreams (NPA), and without oncostreams (NPAI), scale bar = 50 μ m. **D)** 10-14 random fields per tumor section per animal were imaged, n=9 NPA and n=12 NPAI, and quantified using deep learning analysis. Error bars represent \pm SEM; unpaired t-test analysis, *p<0.05. **E)** Angle histogram plots show aligned cells in NPA tumors vs non-aligned cells in NPAI tumors for the representative images showed in figure.


Fig. 3

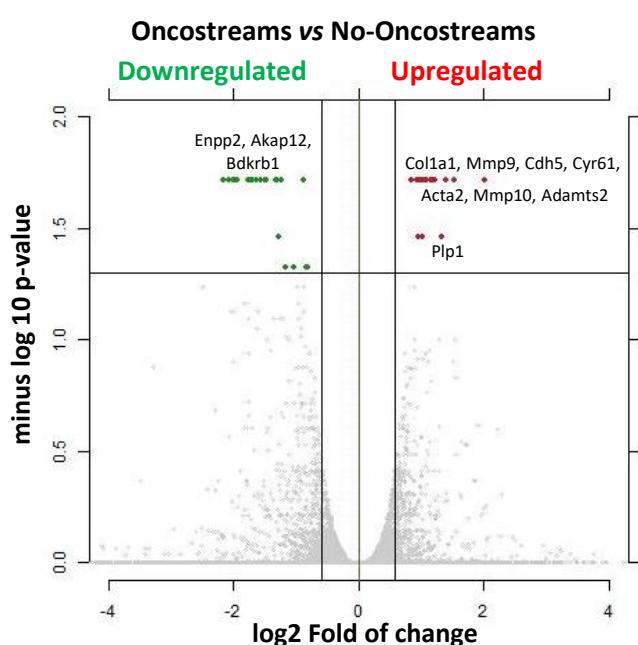
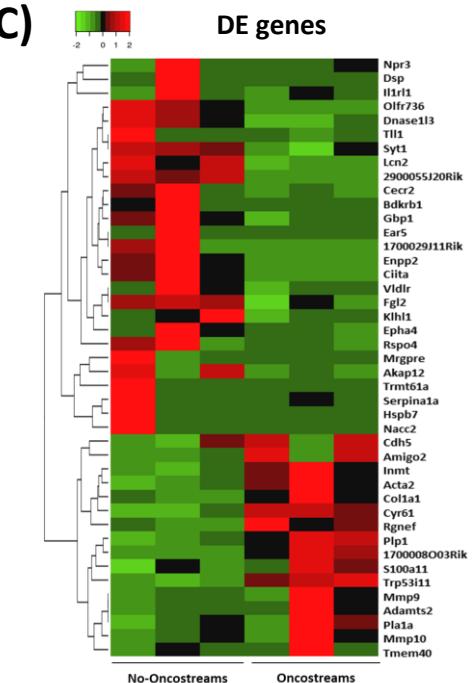
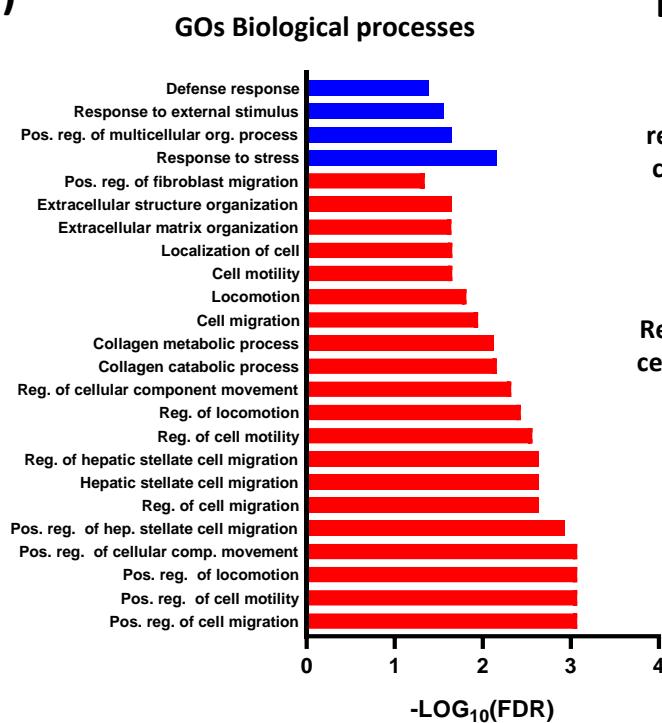
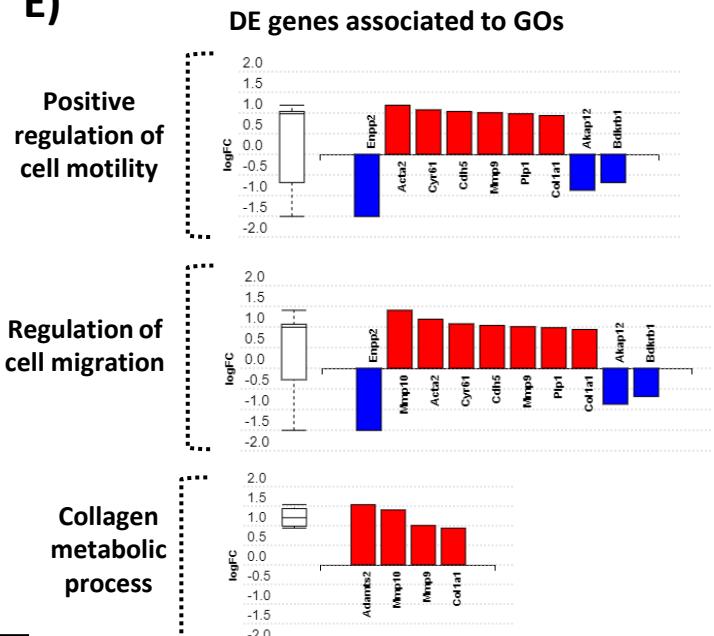

Fig. 3. The density of oncostreams positively correlates with tumor aggressiveness in human gliomas. A) TCGA tumors were analyzed from different grade: GBM-Grade IV (100 tumors). LGG-Grade III (70 tumors) and LGG-Grade II (50 tumors). Pie charts show percentage of tumors displaying oncostreams in relation to tumor grade. Oncostreams are present in 47% of GBM grade IV tumors, 8.6 % of LGG grade III, and are absent from LGG grade II. **B)** Manual identification of oncostreams in H&E images are shown for human gliomas with WHO grades IV, III, II from TCGA. **C)** Deep learning analysis for human gliomas. Our algorithm was able to detect oncostreams in grade IV and III gliomas but not in grade II gliomas. **D)** Angle histogram plots show the alignment of cells in H&E histology sections of Grade IV and Grade III gliomas' oncostreams and random alignment in grade II glioma sections lacking oncostreams. Angle histogram correspond to the representative images. **E-F)** Immuno-fluorescence staining of SOX2+ tumor cells (green), glial fibrillary acidic protein (GFAP+) cells (red), and microglia/macrophage (IBA1+) cells (red) in high-grade human glioblastoma (GBM) (WHO Grade IV), IDH-WT (**E**) and in low-grade glioma (LGG) (WHO Grade III), IDH-mutant (**F**), showing oncostreams heterogeneity and cellular alignment of these cells in human high-grade gliomas but not in low grade gliomas (arrows). Scale bars: 50 μ m.

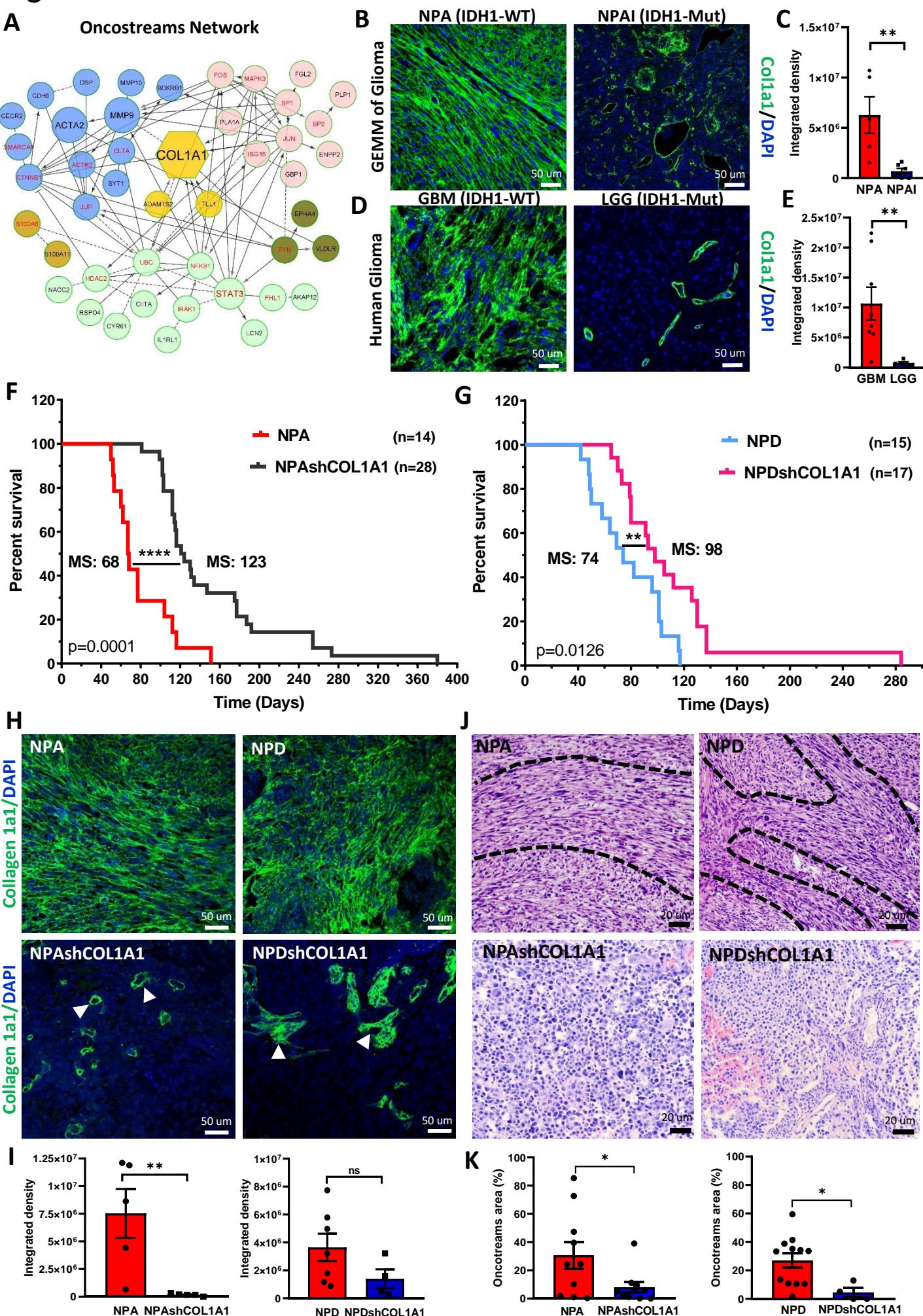
Fig. 4


A)


B)


C)

D)



E)

Fig. 4. Oncostreams are defined by a unique gene expression signature related to mesenchymal transformation and migration. **A)** (a) Schematic representation of spatial transcriptomic analysis of glioma oncostreams using Laser Capture Microdissection (LCM). Glioma tumors were generated by intracranial implantation of NPA tumor cells in C57BL6 mice. (b-c) Oncostream areas (red outline) were identified and dissected from surrounding glioma tissue (black outline) in mouse glioma samples using a LCM microscope. **B)** A volcano plot displays differentially expressed (DE) genes from oncostream vs no-oncostream areas. DE genes were selected based on a fold change of ≥ 1.5 and a q-value (false discovery rate (FDR) corrected p-value) of ≤ 0.05 . Upregulated genes (red dots) and downregulated genes (green dots) are shown. Relevant genes related to mesenchymal migration are labeled on the graph. **C)** Heat map illustrates gene expression patterns for oncostream vs no-oncostream areas in NPA glioma tumors ($n=3$ biological replicates/group). Differentially upregulated genes (16) are represented in red and downregulated genes ($n=27$) are represented in green (q-value ≤ 0.05 and fold change $\geq \pm 1.5$). **D)** Functional enrichment analysis of overrepresented GO terms (biological processes) obtained when comparing oncostream vs no-oncostream DE genes. p-value corrected for multiple comparisons using the FDR method. Cutoff FDR <0.05 . Blue: Downregulated GOs. Red: upregulated GOs. **E)** Bar graphs show DE genes annotated to the most relevant enriched GOs biological process: “Positive regulation of cell motility”, “Regulation of cell migration” and “Collagen metabolic process.”

Fig. 5

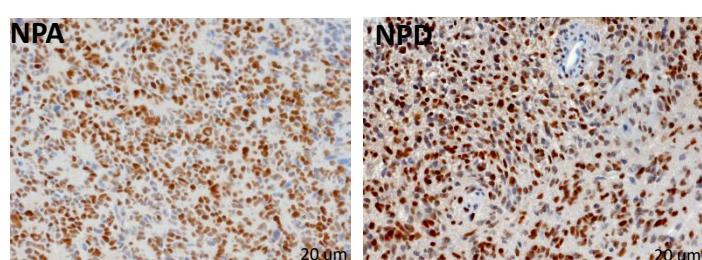
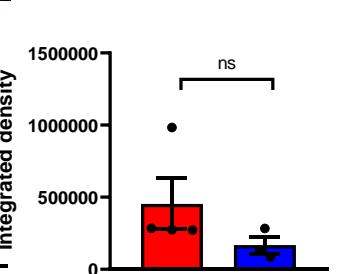
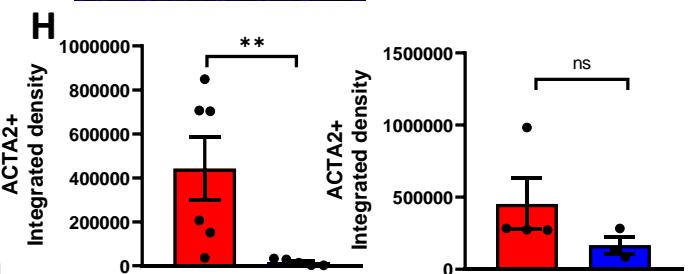
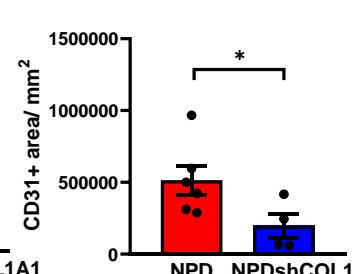
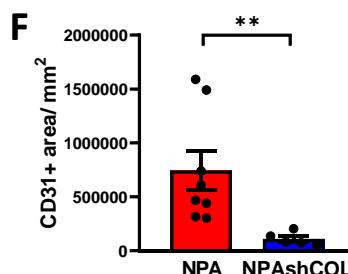
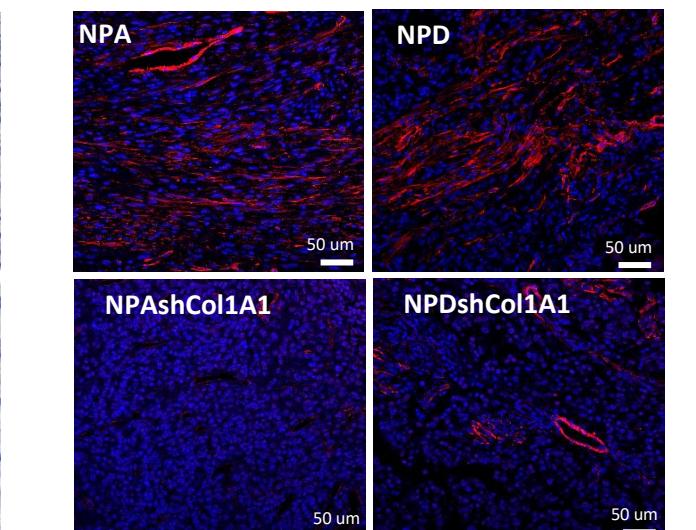
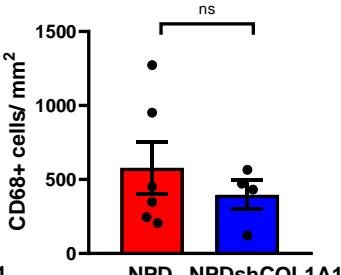
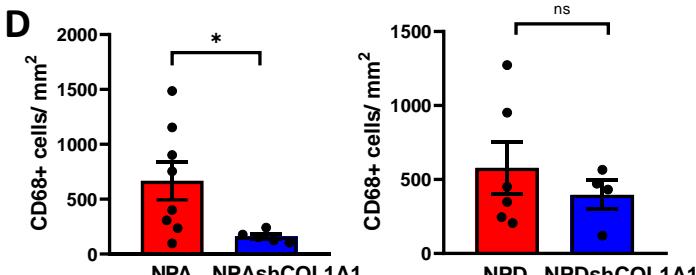
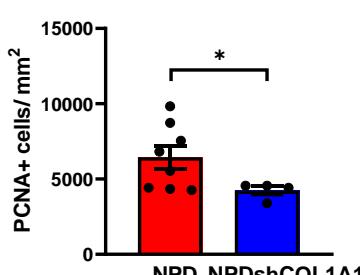
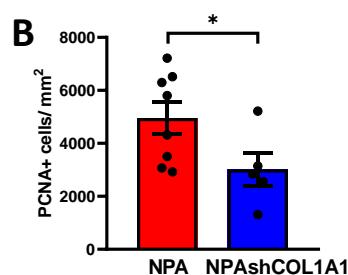
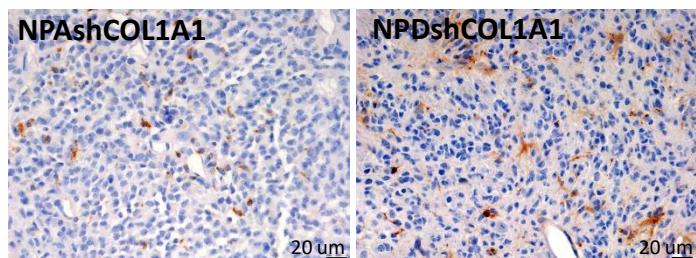
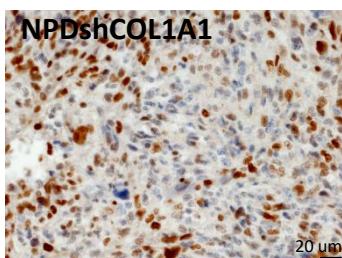
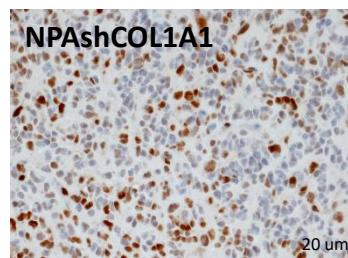
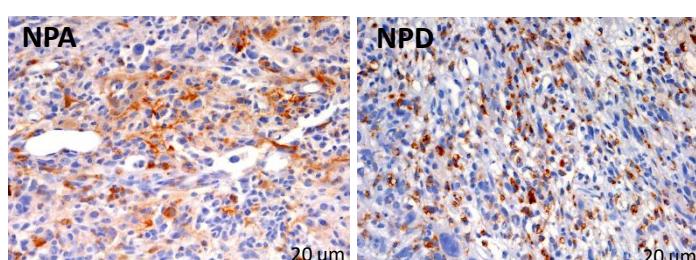


Fig. 5. COL1A1 is a central hub in oncostream organization and glioma malignancy. A) Network analysis of the DE genes comparing oncostreams versus no-oncostreams DE genes. Genes with a higher degree of connectivity are highlighted with larger nodes. Clusters of nodes with the same color illustrate modules of highly interacting genes in the network. **B)** Immunofluorescence analysis of COL1A1 expression in GEMM of glioma tissues comparing NPA (IDH1-WT) vs NPAI (IDH1mut). Representative confocal images display COL1A1 expression in green (Alexa 488) and nuclei in blue (DAPI). Scale bar: 50 μ m. **C)** Bar graphs represent COL1A1 quantification in terms of fluorescence integrated density. NPA n=5 and NPAI n=6 animals for each experimental condition were used for the analysis. Ten fields of each tumor section were selected at random. Error bars represent \pm SEM. t-test, **p<0.01. **D)** Immunofluorescence analysis of COL1A1 expression in human GBM and LGG tumors. COL1A1 expression in green (Alexa 488) and nuclei in blue (DAPI). Scale bar: 50 μ m. **E)** Bar graphs represent COL1A1 quantification as fluorescence integrated density. 5 (LGG) and 8 (GBM) tumor samples were used for the analysis. Ten fields of each tumor section were selected at random. Error bars represent \pm SEM. t-test, **p<0.01. **F-G)** GEMM of glioma with COL1A1 inhibition. **F)** Kaplan-Meier survival curve comparing NPA (MS: 68 days; n: 14) vs NPAshCOL1A1 (MS: 123 days; n: 28) **G)** Kaplan-Meier survival curve comparing NPD (MS: 74 days; n=15) versus NPDshCOL1A1 (MS: 98 days; n=17). Log-rank (Mantel-Cox) test. ****p<0.0001, **p<0.0126. **H)** Immunofluorescence analysis of COL1A1 expression in GEMM of glioma controls (NPA and NPD) and Col1A1 downregulation (NPAshCOL1A1 and NPDshCOL1A1). Representative confocal images of COL1A1 expression in green (Alexa 488) and nuclei in blue (DAPI). Arrows indicate COL1A1 enriched perivascular cells. Scale bar: 50 μ m. **I)** Bar graphs represent COL1A1 quantification in terms of fluorescence integrated density. 5-7 tumor samples for each experimental condition were used for the analysis. Ten fields of each tumor section were selected at random. Error bars represent \pm SEM. t-test, **p<0.01. **J)** Representative images of the histopathological identification of oncostreams in H&E tissue sections comparing the COL1A1 knockdown tumors with their respective controls. Scale bars: 50 μ m. **K)** Quantitative analysis of oncostream areas using deep learning analysis. 4-12 tumor samples for each experimental condition were used for the analysis. Error bars represent \pm SEM; unpaired t-test analysis, *p<0.05.

Fig. 6









A

Proliferation
PCNA

C

Tumor associated macrophages
CD68

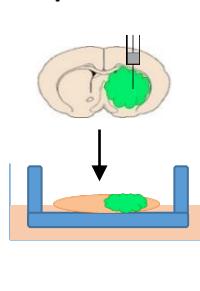


Fig. 6. Knockdown of COL1A1 within glioma cells modifies the tumor microenvironment

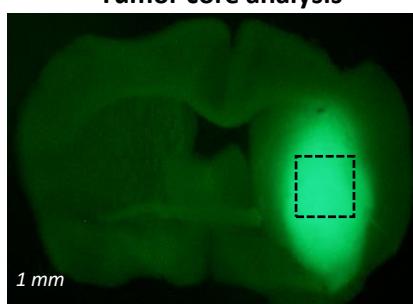
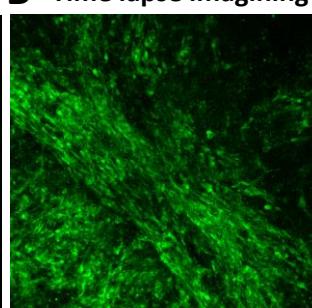
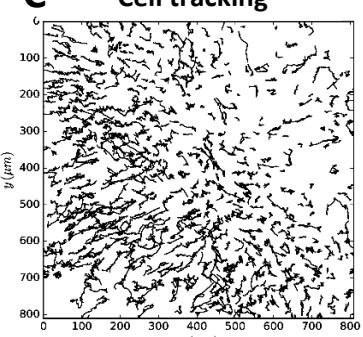
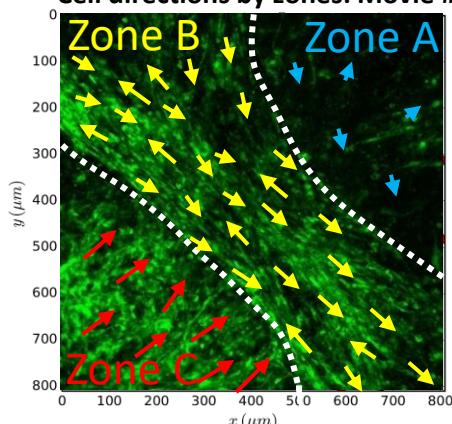
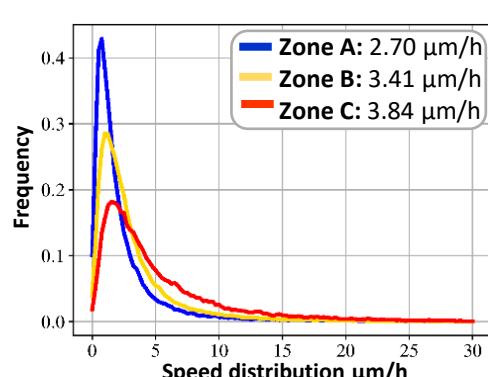

Immunohistochemical analysis (**A, C and E**) of GEMM of glioma controls (**NPA** and **NPD**) and COL1A1 downregulation (**NPAshCOL1A1** and **NPDshCOL1A1**). **A)** Representative images of PCNA expression. Scale bar: 20 μ m. **B)** Bar graphs represent the quantification of PCNA+ cells numbers (cells/mm²) using QuPath positive cell detection. Error bars represent \pm SEM, (NPA: n=8, NPAshCOL1A1: n=5, NPD: n=8, NPDshCOL1A1: n=4), t-test, *p<0.05. **C)** Representative images of CD68 expression. Scale bar: 20 μ m. **D)** Bar graphs represent CD68+ cell quantification (cells/mm²) using QuPath positive cell detection. Error bars represent \pm SEM, (NPA: n=8, NPAshCOL1A1: n=5, NPD: n=6, NPDshCOL1A1: n=4), t-test, *p<0.05, ns: no significant. **E)** Representative images of CD31 expression. Scale bar: 20 μ m. **F)** Bar graphs represent CD31+ cells quantification (cells/mm²) using QuPath positive cells detection. Error bars represent \pm SEM, (NPA: n=8, NPAshCOL1A1: n=5, NPD: n=6, NPDshCOL1A1: n=4), t-test, **p<0.01, *p<0.05. **G)** Immunofluorescence analysis of GEMM of glioma controls (**NPA** and **NPD**) and COL1A1 downregulation (**NPAshCOL1A1** and **NPDshCOL1A1**). Representative images of ACTA2 expression in red (Alexa 555) and nuclei in blue (DAPI). Scale bar: 50 μ m. **H)** Bar graphs represent ACTA2 quantification in terms of fluorescence integrated density. Error bars represent \pm SEM, (NPA: n=6, NPAshCOL1A1: n=5, NPD: n=4, NPDshCOL1A1: n=3), t-test, **p<0.01, ns: no significant.

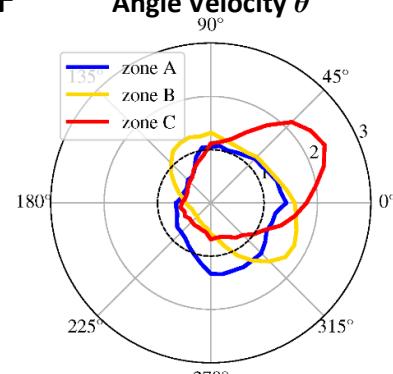
Fig. 7

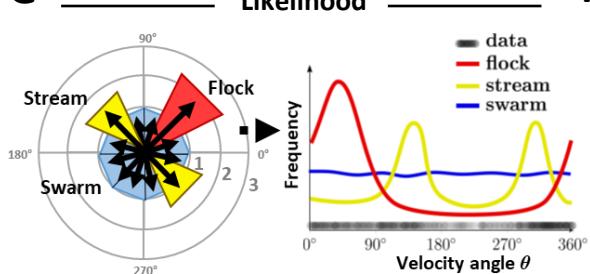

A Explant model

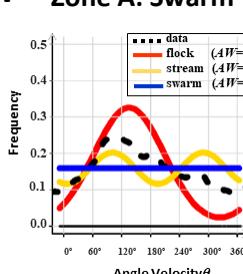

Tumor core analysis

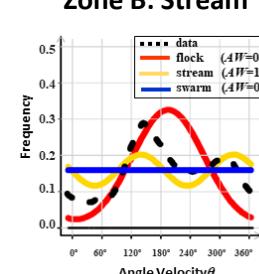

B Time lapse imaging

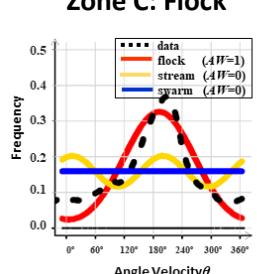

C Cell tracking


D Cell directions by zones: Movie #1

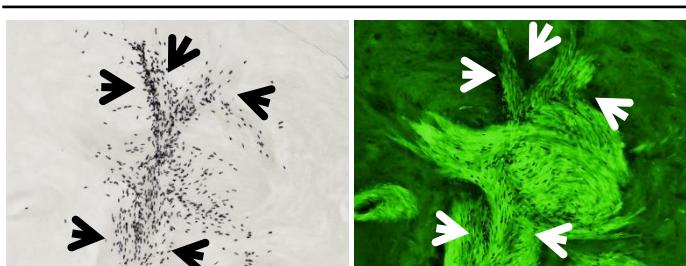

E Speed distribution and mean speed

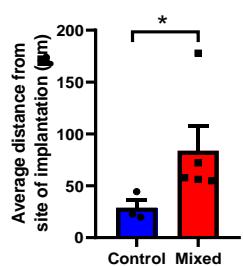

F Angle Velocity θ

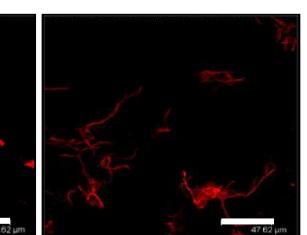
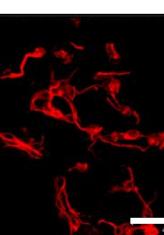
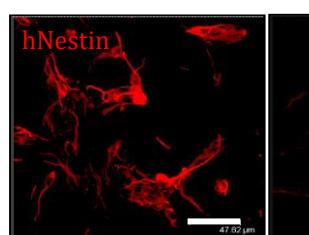

G Likelihood

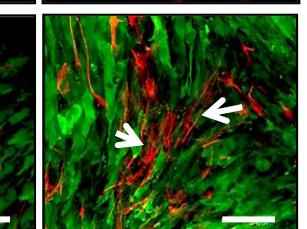
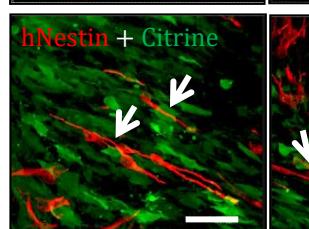

H Zone A: Swarm

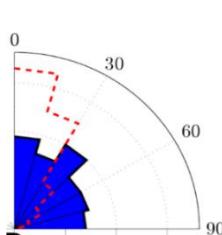

Zone B: Stream

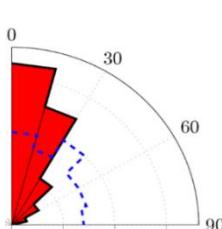

Zone C: Flock


I MSP-12 alone

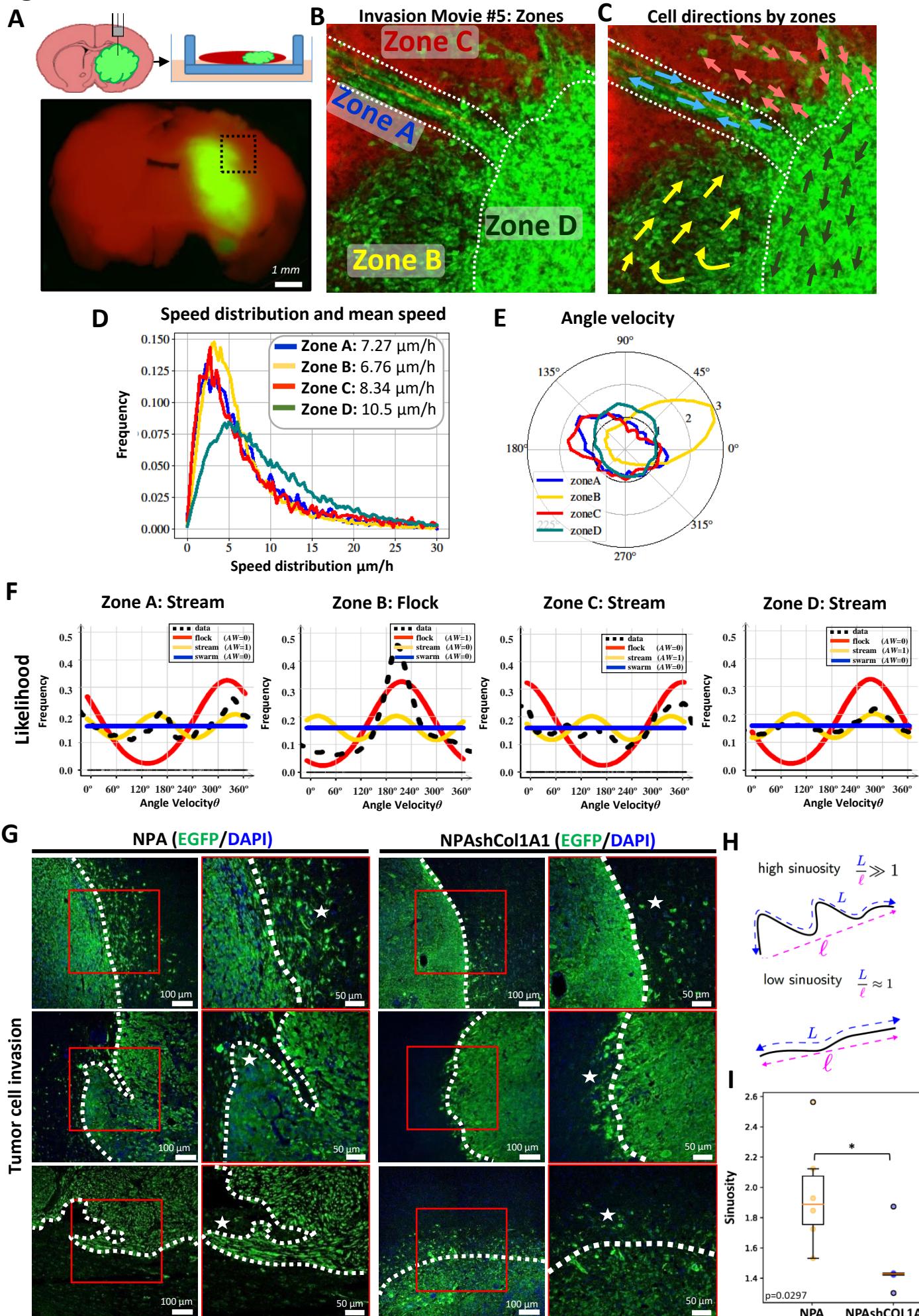



MSP-12 + GL26-Cit



J


MSP12


MSP12 + GL26-NT

Not-Aligned



Aligned

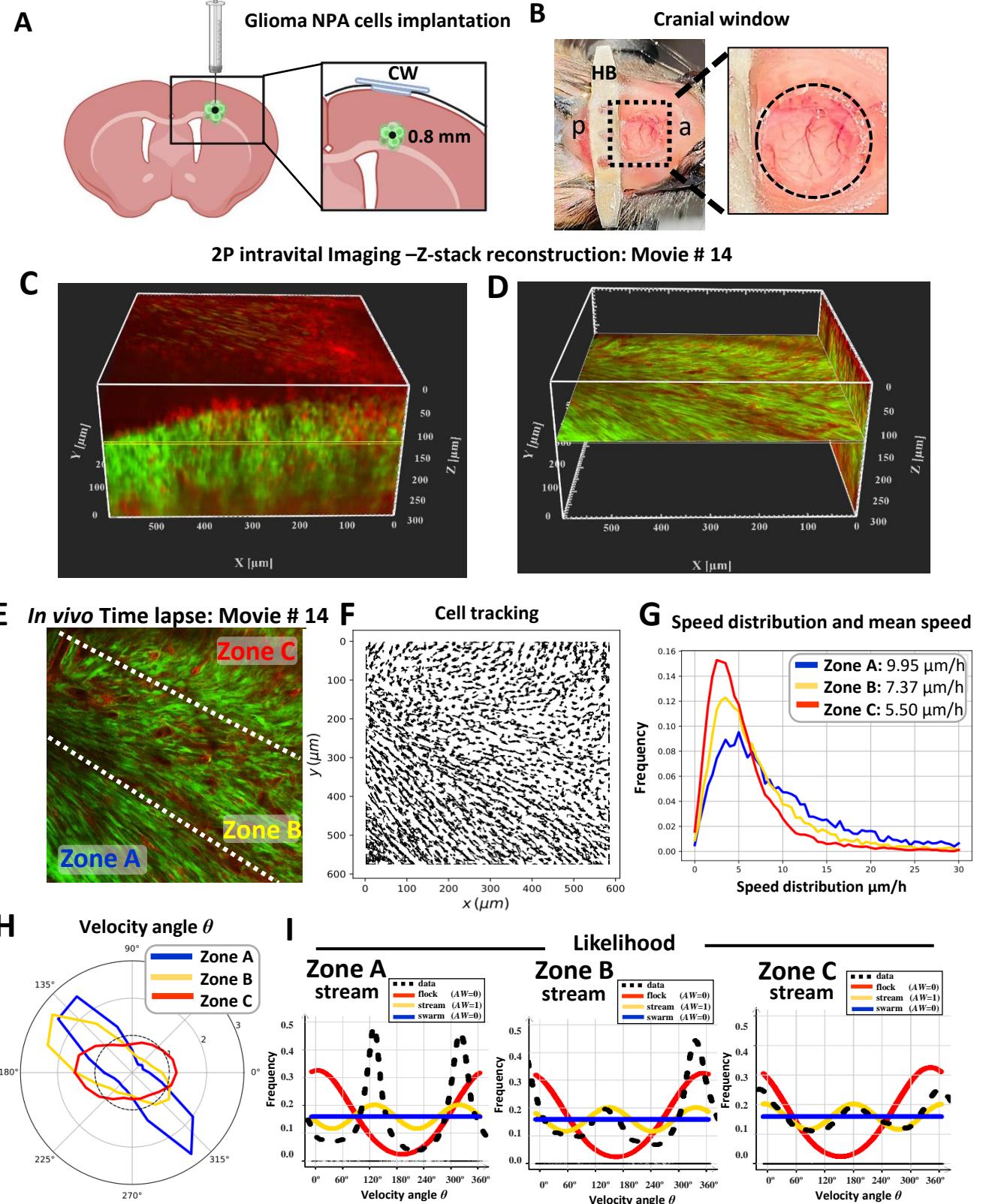

Fig. 7. Collective dynamics of oncostreams increase cell spreading within the tumor core. A) Experimental setup: NPA-GFP glioma cells were intracranially implanted in C57BL6 mice. Explant slice cultures of growing tumors were used for confocal time-lapse imaging of the tumor core. **B)** Single representative time-lapse confocal image of glioma cells within the tumor core (Movie #1). **C)** Tracking analysis of individual cell paths performed using the Track-Mate plugin from Image-J. **D)** Preferred directions of cells within three zones (A-C) superimposed onto a representative time lapse-image. **E)** Speed distribution and mean speed ($\mu\text{m}/\text{hr}$) in Zones A, B and C. **F)** Distribution of angle velocity for each zone. The Angle Velocity of each cell is denoted ϑ . The plot shows the proportion of cells moving in angle direction ϑ for each zone. **G-H)** Classification of collective motion patterns: *stream*, *flock* or *swarm*. The distribution is *uni-modal* for a *flock* (only one peak) and *bi-modal* for a *stream* (two peaks = 2 preferred angle velocity). For a *swarm*, the distribution is *flat* (no preferred angle velocity). In **(G)** Angle Velocity was transformed to a histogram; these data were then used to calculate the likelihood that a particular distribution of velocity angles corresponds to either a *stream*, *flock*, or *swarm*. The results are given in **(H)** for each zone. The frequency distribution of the data (shown in black) uses a *non-parametric* estimation (kernel density estimator). We tested three types of distributions, ρ , to describe the data-sets and give a likelihood for each case. The best fit was then determined by the Akaike weight (AW). **I)** Co-implantation of highly malignant GL26-citrine cells (green) and human MSP-12 glioma stem cells (ratio 1:30), and MSP-12 cells alone (control – left image). Immunohistochemistry of human nuclei (black) denote MSP-12 cells. Arrows show the distribution of MSP-12 cells within the brain or the tumor. Scale bar: 100 μm . **J)** Quantification of the distance of MSP-12 from the site of implantation. $n=3$ for control and $n=5$ for co-implantation (MSP-12+GL26). Error bars \pm SEM; t-test, $*p<0.05$. **K)** Immunofluorescence images of human-nestin (red) labeling MSP-12 cells, and GL26-citrine cells. Note that MSP-12 cells have a multipolar morphological structure when alone, but a bipolar, elongated structure when aligned to GL26-citrine cells. Scale bar: 47.62 μm . **L)** Angle histogram plots quantify the alignment of MSP-12 within oncostreams, and the random alignment of MSP-12 cells when implanted alone (with dashed overlays of the other condition's alignment).

Fig. 8

Fig. 8. Collective invasion of COL1A1 enriched oncostreams contributes to malignant glioma behavior. **A)** Schematic representation of the experimental setup and location of imaging and quantification of tumor borders using td/mtTomato mice (Movie #5). **B)** Representative time-lapse scanning confocal image of glioma cells at the tumor border. This image was taken from border movie #1 and shows the subdivision into different zones. **C)** Preferred direction of cells within different zones superimposed onto a representative time lapse-image. **D)** Histogram of speed distribution and mean speed ($\mu\text{m}/\text{h}$) of Zones A, B, C and D. **E)** Angle Velocity distribution analysis (ϑ) performed by zones. Plot shows overall direction and magnitude of cell movement. **F)** Likelihood analysis of the dynamic patterns at the tumor border. Graph of density estimation ρ flock (red), ρ stream (yellow) and ρ swarm (blue). The estimation of the black line (data) uses a *non-parametric* estimation. AW: 0 or AW:1. **G)** Immunofluorescence analysis of GFP expression in GEMM of glioma controls (NPA), and NPAshCOL1A1. Representative confocal images of the tumor borders. GFP expression is shown in green (Alexa 488) and nuclei in blue (DAPI). Dotted lines show tumor borders. Stars show tumor cell invasion patterns. Notice the absence of collective invasion patterns in NPAshCOL1A1. Scale bar: 50 μm . **H)** The analysis of tumor borders was determined using the Allen-Cahn equation. Images were split into two values (-1 and +1) representing the inside and outside of the tumor to analyze the sinuosity of the borders. Illustration of the sinuosity of a curve: it is defined as the ratio between the length of the curve L and the distance between the two extreme points. The sinuosity is close to 1 for a straight line. **I)** Sinuosity of the border for all experiments. 4-10 images of each tumor border were obtained. NPA: n=6 and NPAshCOL1A1: n=5 tumors for each experimental condition were used for the analysis. We detected a decrease of the sinuosity in COL1A1 knockdown tumors. t-test unequal variance, *p=0.0297.

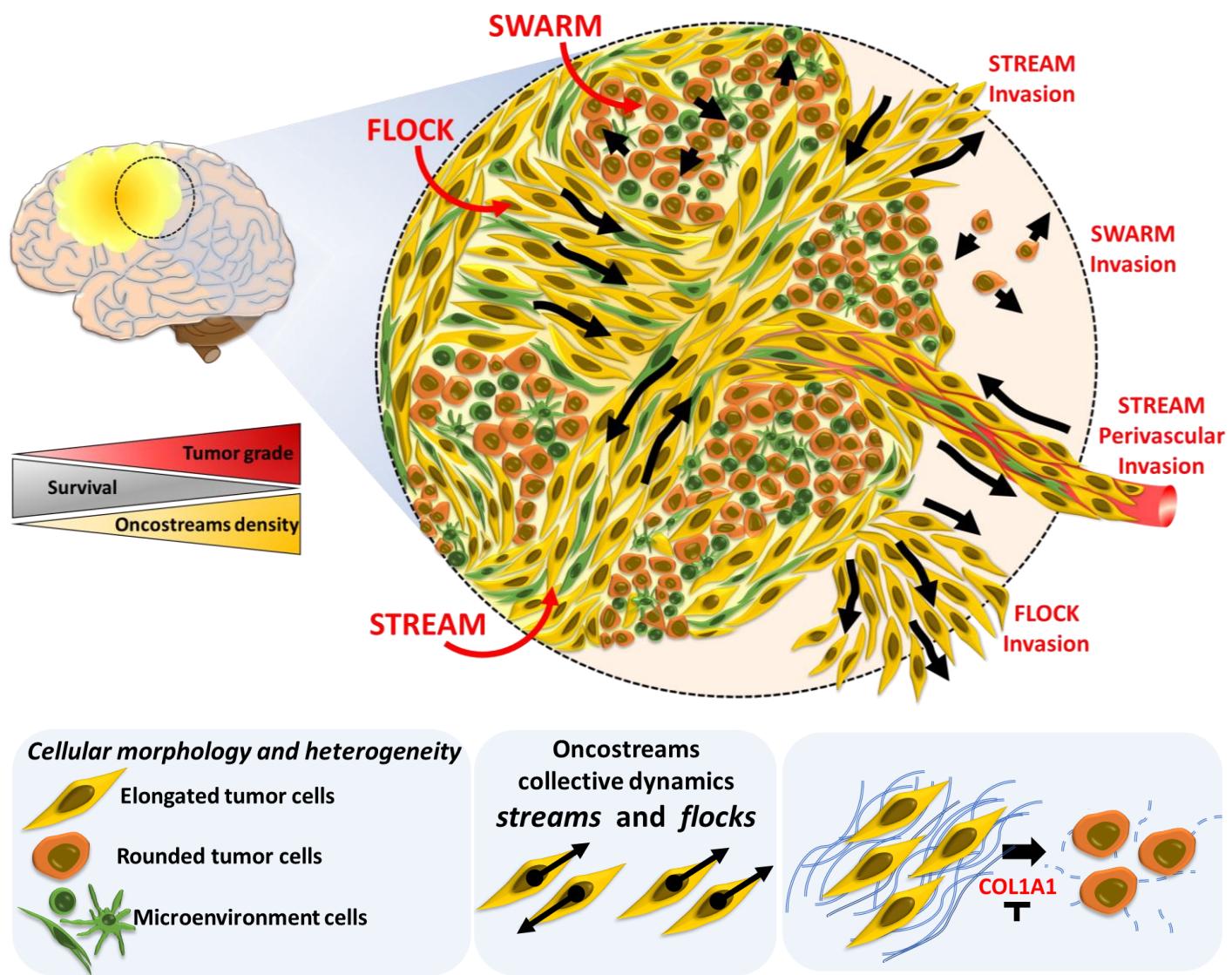

Fig. 9

Fig. 9. Intravital two-photon imaging reveals the collective patterns of glioma oncostream dynamics *in vivo*.

A) Schematic representation of the cortical site of glioma cell implantation for intravital two-photon imaging. The inset shows a coronal section of the brain illustrating that glioma cells were implanted at 0.8 mm depth, with the glass cranial window (CW) positioned on top of the implantation site. **B)** Representative photograph of the head of an animal implanted with a cranial window showing the metallic head-bar (HB) positioned on the skull posterior to the cranial window. It affixed using dental cement to stabilize the imaging plane and minimize motion artifacts during time-lapse imaging. a: anterior; p: posterior. **C)** A high-resolution 3D z-stack spanning up to 300 μm depth (starting at the brain's surface) was acquired on the multiphoton microscope, imported into the Imaris viewer and used to reconstruct this 3D image. 300 x-y frames from the brain's surface were taken at a depth increment of 1 μm (voxel size=1) at a resolution of 1024x1024 pixels. XYZ axes of the 3D image are shown in white (596x596x300 μm), and the yellow line shows the exact imaging plane for time-lapse data acquisition *in vivo* (at 120 μm depth). Red fluorescent protein: normal brain parenchyma. Green fluorescent protein: tumor cells. **D)** This panel represents the X-Y and the Y-Z plane of the reconstructed 3D image (shown in **C**) using the Orthoslicer 3D function of the Imaris viewer software to illustrate the depth of the imaging plane. The X-Y plane shown at 120 μm depth illustrates the actual imaging position for movie #14 shown in **E**. **E)** Single representative time-lapse two-photon image of glioma cells within the tumor core *in vivo* (Movie #14) and imaged at a depth of 120 μm , showing Zones A, B, and C. **F)** Individual cell trajectories of the *in vivo* time-lapse experiment. **G)** Speed distribution and mean speed ($\mu\text{m}/\text{hr}$) for Zones A, B, and C, as indicated in **(E)**. **H)** Angle Velocity distribution for each zone's in the *in vivo* time-lapse movie #14. The Angle Velocity of each cell is denoted θ . The plot shows the proportion of cells moving in the angle direction θ for each zone. **I)** Likelihood analysis of the dynamic patterns determined for each zone of Movie #14 obtained by intravital imaging. The frequency distribution ρ *flock* (red), ρ *stream* (yellow) and ρ *swarm* (blue) are shown. The estimation of the black line (data) uses a *non-parametric* assessment (kernel density estimator) to determine the structure of each zone. AW: 0 or AW:1.

Fig. 10

Fig. 10. Oncostreams are COL1A1-rich multicellular dynamic mesenchymal structures that regulate glioma invasion and malignancy. Summary representation of mesenchymal dynamic fascicles (oncostreams) present in high grade gliomas. Our study reveals that oncostreams display directional collective motility patterns including streams and flocks. Non-directional collective motion (swarms) are represented by round cells that move do not have a preferred direction of motion. Directional dynamic patterns function as tumoral highways to facilitate the intra-tumoral spread of cells and participate in local invasion of normal brain. Oncostreams are areas of mesenchymal transformation defined by a molecular signature enriched in COL1A1. COL1A1 knockdown disrupts oncostream organization, decreases intratumoral heterogeneity and significantly increases animal survival. Our study reveals that oncostreams are anatomically and molecularly distinctive, are areas of mesenchymal transformation organized through interactions with the COL1A1 matrix, move by collective motion, and regulate glioma growth and invasion.