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Abstract

Spatial transcriptomics technologies promise to reveal spatial relationships of cell-type composition
in complex tissues. However, the development of computational methods that can utilize the unique
properties of spatial transcriptome data to unveil cell identities remains a challenge. Here, we in-
troduce SPICEMIX, a new interpretable method based on probabilistic, latent variable modeling for
effective joint analysis of spatial information and gene expression from spatial transcriptome data.
Both simulation and real data evaluations demonstrate that SPICEMIX markedly improves upon the
inference of cell types and their spatial patterns compared with existing approaches. By applying to
spatial transcriptome data of brain regions in human and mouse acquired by seqFISH+, STARmap,
and Visium, we show that SPICEMIX can enhance the inference of complex cell identities, reveal
interpretable spatial metagenes, and uncover differentiation trajectories. SPICEMIX is a generaliz-
able framework for analyzing spatial transcriptome data to provide critical insights into the cell type
composition and spatial organization of cells in complex tissues.
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Introduction

The compositions of different cell types in mammalian tissues, such as brain, remain poorly understood
due to the complex interplay among intrinsic, spatial, and temporal factors that collectively contribute to
the identify of a cell [1-3]. Single-cell RNA-seq (scRNA-seq) has greatly advanced our understanding
of complex cell types in different tissues [4—6], but its utility in disentangling spatial factors in particular
is inherently limited by the dissociation of cells from their spatial context. The emerging spatial tran-
scriptomics technologies based on multiplexed imaging and sequencing [7—18] are able to reveal spatial
information of gene expression of dozens to tens of thousands of genes in individual cells in situ within
the tissue context. However, the development of computational methods that can incorporate the unique
properties of spatially resolved transcriptome data to unveil cell identities and spatially variable features
remains a challenge [19, 20].

Several methods have been developed for the analysis of spatial transcriptome data to reveal spatial
domains and programs of cell types in tissues [21-25], to explore the spatial variance of genes [26-29],
and to align scRNA-seq with spatial transcriptome data [30-33]. Both probabilistic graphical models,
such as methods using hidden Markov random field (HMRF), and graph-based neural network archi-
tectures have been proposed [20]. The conventional HMRF, which is commonly used to model spatial
dependencies and is the underlying approach of Zhu et al. [22] as well as the more recent BayesSpace [25]
have two major limitations for modeling cell identity: (1) it assumes that cell types or spatial domains are
discrete, and therefore it cannot model the interplay of intrinsic and extrinsic factors that give rise to cell
identity; and (2) it assumes that cell types or domains exhibit smooth spatial patterns, which is often not
true for many cell types, such as the spatial pattern of inhibitory neurons that sparsely populate tissue.
More recently, graph convolution neural networks have also been used for learning spatial domains, such
as SpaGCN [23]. The drawbacks of such methods for modeling cell identity are that their learned latent
representations are not easily interpretable and they are more susceptible to overfitting, in comparison
to effective linear latent variable models for scRNA-seq data, such as non-negative matrix factorization
(NMF). In addition, the existing methods typically do not integrate the modeling of the spatial variability
of genes with their contribution to cell identity [23, 26, 29]. Therefore, there is an urgent need for robust,
interpretable methods that can jointly model both the spatial and intrinsic factors of cell identity, which
is of vital importance to fully utilize spatial transcriptome data.

Here, we introduce SPICEMIX (Spatial Identification of Cells using Matrix Factorization), a new
interpretable and integrative framework to model spatial transcriptome data. SPICEMIX uses latent vari-
able modeling to express the interplay of spatial and intrinsic factors that collectively contribute to cell
identity. Crucially, SPICEMIX enhances the NMF [34] model of gene expression with a novel integra-
tion of a graphical representation of the spatial relationship of cells. Thus, the spatial patterns learned
by SPICEMIX can elucidate the relationship between intrinsic and spatial factors, leading to more mean-
ingful representations of cell identity. Applications to the spatial transcriptome datasets of brain regions
in human and mouse acquired by seqFISH+ [12], STARmap [13], and Visium [18] demonstrate that
SPICEMIX can enhance the inference of complex cell identities, uncover spatially variable features, and
reveal important biological processes. Notably, the interpretable metagenes from SPICEMIX uniquely
unveil spatially variable gene expression patterns of important cell types. SPICEMIX has the potential to
provide critical new insights into the spatial composition of cells based on spatial transcriptome data.



Results

Overview of SPICEMIX

SPICEMIX is an integrative solution for spatial transciptomic analysis to provide key insights into the
spatially variable features of cell composition in complex tissues. Specifically, SPICEMIX models spatial
transcriptome data by a new probabilistic graphical model NMF-HMREF (Fig. 1). Our model has a natural
interpretation for single-cell spatial transcriptome data, where each node in the graph represents a cell and
edges capture cell-to-cell relationships of nearby cells, but it can also be applied to in situ sequencing-
based methods (e.g., Visium [10]), where each node represents a spatially barcoded spot.

For each node 7 in the graphical model NMF-HMREF, a latent state vector x; represents the mixture
of weights for K different intrinsic or extrinsic factors (Fig. 1), which collectively constitute the identity
of the cell. In order to capture the continuous nature of cell state, our model extends the standard HMRF
model by allowing these latent states to be continuous. Importantly, different types of correlations of
latent states in nearby cells are captured by the matrix X! (Fig. 1), which, unlike a conventional HMRF
and many other spatial models, does not assume smooth spatial patterns only, but has the flexibility to
represent both the smooth and sparse spatial patterns that compose real tissue. Each element of the K x K
matrix X! represents the pair-wise affinity between two factors, providing an intuitive interpretation of
the spatial patterns of cells in tissue. For each factor, a “metagene” in the G x K matrix M captures the
expression of its associated genes (Fig. 1), where G denotes the number of total genes. The observed
expression from spatial transcriptome data, y; = M x; for node ¢, follows a robust linear mixing model
that affords a natural interpretation of its relationship to the various factors of cell identity from the
associated genes. Thus, the novel NMF-HMRF model in SPICEMIX is able to uniquely integrate the
spatial modeling of the HMRF with the NMF formulation for gene expression into a single model for
spatial transcriptome data.

Given an input spatial transcriptome dataset, SPICEMIX simultaneously learns the intuitive meta-
genes M of latent factors, the latent states X for all nodes, and their spatial affinity ¥ *. This is achieved
by a novel alternating maximum-a-posteriori optimization algorithm. Importantly, in SPICEMIX, meta-
genes are an integral part of the model outcome, which presents a methodological advance in comparison
to the calculation of spatially variable genes as a post-processing step in other recent methods (such as
SpaGCN [23]). A regularizing parameter allows users to control the weight given to the spatial infor-
mation during optimization to suit the input data. The detailed description of the NMF-HMRF model is
provided in the Methods section with additional steps of optimization in Supplementary Methods.

Performance evaluation using simulated spatial transcriptome data

We first evaluated SPICEMIX using simulation designed to model the mouse cortex, a region which has
served as a prominent case study for many spatial transcriptomic methods (Fig. 2a-b; see Methods for
the simulation method details). We devised two methods of generating expression based on the position
and type of each cell: Approach I: We followed a metagene-based simulation; Approach II: We used
scDesign2 [35] trained on real scRNA-seq data [36]. For Approach II, we introduced two forms of
spatial influence over expression: leakage, which randomly swaps some reads of neighboring cells, to
mimic challenges of processing real spatial transcriptomics data; and additive noise that follows random,
spatially-smooth patterns. We compared the results from SPICEMIX to that of NMF, HMREF, Seurat [37],
and the very recent SpaGCN [23]. We evaluate the performance of different methods by comparing the



inferred cell types with the true cell types using the adjusted Rand index (ARI) metric. For SPICEMIX
and NMF, we further applied Louvain clustering to the learned latent representations. The approaches
for preprocessing the data and for choosing other hyperparameters for each method are provided in
Supplementary Methods A.2.3.

For both simulation approaches, we found that SPICEMIX consistently outperformed other methods.
For Approach I, SPICEMIX achieved the highest average ARI scores (0.65-0.82) across all scenarios.
For lower noise scenarios (o, = 0.2), the ARI of SPICEMIX was 9-18% higher than that of SpaGCN or
NME, which performed comparably (Fig. 2d). SPICEMIX, SpaGCN, and NMF all outperformed Seurat
and HMREF. For the higher noise setting (o, = 0.3), SPICEMIX significantly outperformed all methods
(Fig. 2d). We found that SPICEMIX was able to recover both the layer-specific and sparse metagenes
that underlie the identity of cells. For example, SPICEMIX successfully recovered metagene 7, which
is specific to layer L1 (Fig. 2c) and is enriched in eL1 excitatory neurons (blue in Fig. 2a). Notably,
SPICEMIX was able to reveal nearly all excitatory neurons (Fig. 2e). SPICEMIX also recovered metagene
6 (Fig. 2c), which captures intrinsic factors of the sparse inhibitory neuron subtype il (red in Fig. 2a).
In contrast, the equivalent of metagene 7 for NMF is strongly expressed across layers L1-L3 (Fig. 2c¢),
and NMF confused some eL3 excitatory neurons (light green) with eL.1 excitatory neurons (Fig. 2e).
The equivalent of metagene 6 for NMF shows a more diffuse pattern (Fig. 2c). Additional evaluation by
varying the parameter )\, or zero-thresholding to reflect different sparsity of the latent variables of NMF
further demonstrated the robust advantage of SPICEMIX (Fig. S1). In addition, SpaGCN, Seurat, and
HMREF all incorrectly assigned the spatial patterns for many more excitatory neurons (Fig. 2e).

For simulation Approach II (using scDesign2), SPICEMIX performed the best for all but one scenario,
for which it tied with NMF, and the advantage of SPICEMIX became more significant as the influence
of noise and leakage on spatial expression patterns became more prevalent (see Supplementary Re-
sults B.1 and Fig. S2a). We found that the spatial metagenes from SPICEMIX reliably reflect both cell
type composition and spatial noise (Fig. S2b). Overall, SPICEMIX achieved much more accurate spatial
assignments of cells than all other methods (Fig. S2c¢).

Taken together, we showed that the novel integration of matrix factorization and spatial modeling
in SPICEMIX yields better inference of the underlying spatially variable features and cell identities as
compared to existing methods. This improvement was found for cell types with either sparse or layer-
specific spatial patterns, both of which are prevalent in real data from complex tissues (e.g., the brain
region data used in this work). Our evaluation also confirmed the effectiveness and robustness of our
new optimization scheme for applying the SPICEMIX model to spatial transcriptome data.

SpPICEMIX refines cell identity modeling of seqFISH+ data

We applied SPICEMIX to a recent single-cell spatial transcriptomic dataset from mouse brain acquired
by seqFISH+ [12]. Here, we used the data of five separate samples of the mouse primary visual cortex,
all from the same mouse but from contiguous layers, each from a distinct image or field-of-view (FOV),
with single-cell expression of 2,470 genes in 523 cells [12]. We compared the spatial patterns revealed
by SPICEMIX to those produced by NMF (given its relatively strong performance based on our simula-
tion evaluation) with various levels of sparsity via A, and zero-thresholding. We also compared to the
results from Louvain clustering (Supplementary Methods A.3.3) and the HMRF-based method of Zhu
et al. [22] as originally reported in Eng et al. [12]. In addition, SPICEMIX revealed spatially-informed
metagenes capturing biological processes in the cortex (see Supplementary Table).

To interpret the learned latent representation from SPICEMIX, we first clustered the cells based on
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the latent representation using hierarchical clustering, which led to five excitatory neural subtypes, two
inhibitory neural subtypes, and eight glial types (Fig. 3a). These cell type assignments were supported by
known marker genes from a scRNA-seq study [36] (Fig. 3c (left) and Supplementary Method A.3.4).
The assignment of major types is generally consistent among SPICEMI1X, NMF, and the Louvain cluster-
ing result from Eng et al. [12] (Fig. 3c (middle), Fig. S3a, and Fig. S4a (middle)). However, SPICEMIX
uncovered more refined cell states compared to any other method. Specifically, SPICEMIX identified
three distinct stages of oligodendrocyte maturation, from oligodendrocyte precurser cells (OPCs) to ma-
ture oligodendrocytes, throughout the five FOVs, as reflected by the expression of spatially-informed
metagenes. Oligodendrocytes follow a maturation process starting with OPCs and progressing to myelin-
sheath forming cells [38]. As annotated in Fig. 3c (right), metagene 7 is expressed at a high proportion
among oligodendrocytes, distinguishing them from OPCs, while the expression of metagene 8, which
is also present in OPCs, separates a cluster of early-stage oligodendrocytes (Oligo-E) from intermediate
or late-stage oligodendrocytes (Oligo-L). The separation of these types is supported by the expression
patterns of the OPC marker gene Cspg4, the differentiating oligodendrocyte marker gene Tcf712 [39],
and the mature oligodendrocyte marker gene Mog [40] (Fig. 3c (left)), as well as the analysis of 40
marker genes for oligodendrocyte stages from [38] (Fig. S6). This result suggests that metagenes 7 and
8 collectively capture the progression of oligodendrocytes along their maturation trajectory. In addition,
metagene 7 has a strong spatial affinity with metagenes 3 and 4 (highlighted by black arrows in Fig. 3b;
different from metagene 8), which are expressed primarily by the excitatory neurons of deeper tissue
layers (eL5, eLL6a, and eL.6b) (Fig. 3c (right)). None of the other methods, including NMF, the Louvain
clustering reported by [12], and the HMRF-based method of Zhu et al. [22] as reported in [12], could
clearly distinguish these spatially-distinct cells (Fig. S4a,c, Fig. 3c (middle), Fig. S3b). Note that dif-
ferent sparsity constraints on NMF did not yield these oligodendrocyte stages either (Supplementary
Results B.2 and Fig. S7).

SPICEMIX also discovered spatially variable features that matched those reported from scRNA-seq
studies [36, 41] (Fig. 3d). The assignment of excitatory neurons by SPICEMIX showed strong layer-
enrichment patterns (Fig. 3d (top)), and the expression of known marker genes within these cell types
matched that of a prior scRNA-seq study [36] (Fig. S5). SPICEMIX also revealed a separation of VIP
and SST neurons, with VIP neuron subtypes residing primarily in layers 1-4 and SST neurons diffusely
populating all layers (Fig. 3d (bottom); VIP in yellow and SST in red-brown. This spatial pattern follows
the proportion of VIP and SST neurons in brain layers as observed in a large-scale scRNA-seq study (see
Fig. 1 in [41]), whereas the results of Louvain clustering did not exhibit such a pattern as reported
in [12] (Fig. 3h in [12]). In addition, the expression of marker genes such as Nosl and Cxcli4 [36]
(Fig. 3c (left)) further supports this VIP/SST separation made by SPICEMI1X. NMF could not distinguish
these inhibitory subtypes (Fig. S3a). Furthermore, the split of eL.6 neurons by SPICEMIX, which was
not revealed by [12], is also supported by marker gene expression (Supplementary Results B.2 and
Fig. S5).

Together, our analysis of seqFISH+ data of the mouse cortex with SPICEMIX revealed spatially
variable features and more refined cell states. Our results strongly demonstrate the advantages and unique
capabilities of SPICEMIX.

SPICEMIX reveals spatially variable metagenes and cell types from STARmap data

Next, we applied SPICEMIX to a single-cell spatial transcriptome dataset of the mouse cortex acquired
by STARmap [13]. We analyzed a sample of the mouse V1 neocortex consisting of 930 cells passing
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quality control, all from a single image or FOV, with expression measurements for 1020 genes. We
mainly compared the results of SPICEMIX, NMF, and Wang et al. [13]. To distinguish cell-type labels
between methods, we append an asterisk to the end of the cell labels of Wang et al. [13] when referenced.
In addition, SPICEMIX generated spatially variable metagenes (see Supplementary Table).

We found that SPICEMI1X produced more accurate cell labels than [13] and revealed cell types missed
by other methods (Fig. 4a, Fig. S8). Specifically, SPICEMIX revealed two eL6 excitatory neuron sub-
types, clearer layer-wise patterns of excitatory neurons, two spatially-distinct astrocyte types (Astro-1
and Astro-2), a maturation process of oligodendrocytes from OPCs to the mature Oligo-1 type, and a
separate Oligo-2 type (Fig. 4a, c; supported by known marker genes [13, 36]).

SPICEMIX achieved a refined, spatially-informed separation of eL.6 subtypes. SPICEMIX identified
metagenes 5 and 7 that collectively separate the excitatory subtypes eL6b and eL6c (Fig. 4c (right)).
Metagenes 5 and 7 exhibit strong pairwise affinity (highlighted by a black arrow in Fig. 4b). Importantly,
the patterns of SPICEMIX excitatory neurons delineated clear layer boundaries (Fig. 4d), which matched
enrichment analysis from scRNA-seq studies (see Fig. 4b in [41]). In contrast, the assignments reported
in Fig. 5d in [13] showed significant mixing of excitatory types across layer boundaries. Comparison
of marker genes from [36] for eL2/3 and eL.4 showed that, among eL.2/3 and eL.4 neurons that were
differently assigned between SPICEMIX and [13], their expression levels in SPICEMIX assignments
more closely followed that of [36] (Supplementary Results B.3 and Fig. S9). SPICEMIX also refined
the assignment of a large set of cells from the Astro-1* type of [13] to eL5 (Fig. 4c (middle), d), which
was confirmed by the expression of known excitatory marker genes (Supplementary Results B.3 and
Fig. S10). Note that NMF corrected some assignments of excitatory neurons and also changed the
assignment of this group labeled astrocytes to eL5; however, the resulting layers were not as clear as
those of SPICEM1X (Fig. S8). We also found that HMRF missed sparse cell types and smoothed across
layers, missing even the layer-wise structure of excitatory neurons (Fig. S11).

SPICEMIX further refined the Astro-2* and Oligo* clusters of [13] into an astrocyte cluster (Astro-
1), two oligodendrocyte clusters (Oligo-1 and Oligo-2), and a cluster that is a mixture of astrocytes
and OPCs (Astro-2/OPC), all of which were supported by expression of known marker genes (Fig. 4c,e
and Fig. S12). The oligodendrocyte and OPC types were distinguished by their relative expression
of metagenes 12, 13, and 14 from SPICEMIX (Fig. 4c (right)), which had distinct spatially variable
patterns (Fig. 4d (bottom)). Metagenes 12 and 13 were highly enriched in layer L6 and exhibited a
strong affinity toward each other (Fig. 4b,d). Their proportional expression by oligodendrocytes within
L6 captured a maturation trajectory from OPCs to Oligo-1 cells that could not be revealed by other
methods (see later section). SPICEMIX identified metagene 14 that has distinct oligodendrocyte markers
(Fig. 4c) and scatters from layers 1.2/3 to L6 (Fig. 4d), leading to a spatially distinct Oligo-2 type, clearly
separated in the SPICEMIX latent space from neighboring excitatory neurons (Fig. S13). The expression
of oligodendrocyte marker genes from [38] showed that the Oligo-2 cells are late-stage oligodendrocytes,
either myelin-forming or fully mature (Fig. S12b). In addition, SPICEMIX distinguished astrocytes into
two types (Astro-1 and Astro-2) based on metagenes 11 and 12. Although the Astro-2 cells shared
metagene 12 with OPCs, both their spatial location in the superficial layer and the expression of astrocyte
marker genes defined them as astrocytes (Fig. S14a). In contrast, the Astro-1 cells expressed metagene
11 with a scattered spatial pattern throughout all layers (Fig. 4d). This Astro-1/Astro-2 separation was
supported by the expression of known marker genes [42], including Gfap (P=0.024), a marker gene for
astrocytes in the glia limitans, and Mfge8 (P=0.0013), a marker gene for a separate, diffuse astrocyte type
(Fig. 4e). We found that NMF did not reveal these refined subtypes (Fig. S15) and the NMF metagenes



typically exhibited unspecific spatial patterns and pairwise affinity (Fig. S16, Fig. S8d).
These results suggest that SPICEMIX is able to refine cell identity and metagene inference with
distinct spatial patterns from STARmap data, further demonstrating its unique advantage.

SpicEMiX identifies continuous myelination stages in oligodendrocytes

The expression of metagenes learned by SPICEMIX from seqFISH+ and STARmap suggested the ex-
istence of continuous factors of cell identity, in this case pertaining to oligodendrocytes, that cannot
be described merely by discrete clusters. Since the STARmap dataset included a significant number of
oligodendrocyte cells, we performed a more extensive analysis. Applying Monocle2 [43] to the raw
expression of cells labelled by SPICEMIX as oligodendrocytes showed a clear trajectory from the OPCs
of the Astro-2/OPC class to the mature Oligo-1 class (Fig. 4f and Supplementary Methods A .4.3). The
Oligo-2 class is also a mature type of oligodendrocyte (Fig. S12), but is likely a distinct type compared to
Oligo-1. Importantly, the expression of metagenes 12 and 13, which were highly expressed in OPC and
Oligo-1 cells, respectively, strongly correlated with the inferred trajectory (Fig. 4f). Along the trajectory,
these oligodendrocyte cells exhibited a gradual transition of expression between metagene 12 and 13.
Note that Astro-2/OPC (colored magenta in Fig. 4) included a distinct group of astrocytes as well, which
we removed from consideration (see Supplementary Results B.3.1 for details).

To further assess that the differential expression of metagenes 12 and 13 captures the gradually acti-
vated myelination process of oligodendrocytes, we used linear regression models to describe the relation-
ship between the expression levels of myelin sheath-related genes and the differences in the proportions
of metagenes 12 and 13 in individual cells of the OPC or Oligo-1 cluster. The eleven genes that we tested
were those from the STARmap panel attributing to myelin sheath formation, according to Gene Ontol-
ogy (GO) (Supplementary Methods A.4.4 and Supplementary Results B.3.1), and were expressed in
at least 30% of the cells. We found that the correlations of seven of the eleven genes are significant
(P< 0.05, after a two-step FDR correction for multiple testing) (Fig. 4g and Fig. S14b), supporting our
hypothesis. One of these genes is Afpla2, recently confirmed by scRNA-seq studies to be suppressed as
myelination progresses [44, 45], further demonstrating the robustness of our analysis. Furthermore, we
found that the more recent latent variable model scHPF [46], a hierarchical Poisson factorization model
for scRNA-seq data, cannot reveal this continuous process of oligodendrocytes, further confirming the
importance of spatial information to reveal such processes (Fig. S17 and Supplementary Results B.3).

This result further demonstrates that the latent representation of SPICEMIX is uniquely able to eluci-
date important biological processes underlying cell states.

SpPicEMIX identifies spatial patterns of the human brain from Visium data

We next sought to demonstrate the effectiveness and interpretability of SPICEMIX on a dataset of the
human dorsolateral prefrontal cortex (DLPFC) acquired by the 10x Genomics Visium platform [18]. We
made a direct comparison of SPICEMIX to two very recent methods on this dataset: SpaGCN [23] and
BayesSpace [25], which was designed for Visium data. We also analyzed the learned spatial metagenes
from SPICEMIX to demonstrate its unique capability.

SPICEMIX achieved consistent advantages over SpaGCN and BayesSpace in identifying the layer
structures of DLPFC, which consisted of six cortical layers (layer L1 to layer L6) and white matter. We
used the manual annotations provided by the original study [18] as the ground truth and evaluated the per-
formance of different methods using the ARI scores (Fig. 5a). For SPICEMIX, here the continuous latent



states of spots were clustered by Louvain clustering for subsequent analysis (Supplementary Meth-
ods A.5.3). Since the FOVs in samples Br5595 and Br5292 either contain ambiguous spots or additional
anatomic structures (Supplementary Methods A.5.2), we focused on the 4 FOVs from sample Br8100
for this analysis. The clusters from SPICEMIX produced an ARI score between 0.54 and 0.61 (average
0.575) with consistent advantage over SpaGCN and BayesSpace for each FOV (Fig. 5a). We found that
SPICEMIX was able to learn spatially variable metagenes that clearly manifest the layer structure of
DLPFC (Fig. S20) (see Supplementary Table). We observed that although SpaGCN and BayesSpace
were able to produce a layer-like patterns, they typically did not closely match the boundaries of the
ground truth annotations (Fig. S18 and S19). In contrast, SPICEMIX produced contiguous layers for all
FOVs and identified clearer boundaries. Across all FOVs, layer L4 could not be reliably identified by any
method. However, the combinatorial expression of the metagenes learned by SPICEMIX, in particular
metagenes a3 and a6, showed differential expression among L3, L4, and L5 (P< 1073%, highlighted in
Fig. 5c). Using all four FOVs as input did not significantly affect the ARI score from SpaGCN (Fig. 5a),
and we were unable to run BayesSpace effectively on all four FOVs simultaneously. Overall, SPICEMIX
showed clear advantage for the identification of tissue layer structures of DLPFC based on Visium data.
The interpretability of metagenes from SPICEMIX helped unveil spatially variable expression and
spatial patterns of important cell types of DLPFC. Here, we used differentially expressed genes (DEGs)
identified from [47] (Supplementary Methods A.5.4). We found that the marker genes of astrocytes had
higher ranks in metagene al than any other metagene (Fig. 5d), and metagene al was spatially present
in all 7 layers at similar levels (Fig. 5c), consistent with the spatial distribution of astrocytes observed
in a very recent work [48]. The marker genes of oligodendrocytes were enriched in metagenes a6 and
a7 (Fig. 5d), and both metagenes were enriched in deep layers or the white matter (Fig. 5c), consistent
with the spatial distributions of oligodendrocytes [49]. Notably, metagene a7 was nearly restricted to the
white matter, whereas metagene a6 was enriched in deep cortical layers (Fig. 5c), suggesting the potential
separation of cortical oligodendrocytes and white matter oligodendrocytes. Moreover, the marker genes
of excitatory neurons located in superficial layers and deep layers were enriched with metagenes a3 and
a6, respectively, and metagenes a3 and a6 were present mostly in layers L.1-L.3 and layer L6, accord-
ingly, consistent with the layer-like spatial patterns of excitatory neural types (Fig. 5c-d). These findings
confirm the unique ability of SPICEMIX to unveil spatially variable features and cell type composition.

SpPICEMiX delineates finer anatomic structures of the human brain from Visium data

We then aimed to further demonstrate the ability of SPICEMIX for identifying detailed spatial variable
metagenes and cell composition using the DLPFC Visium data [18] by comparing to finer anatomic
structures of the brain. Specifically, on the four FOV's from sample Br8100, the metagenes produced by
SPICEMIX captured the gyro-sulcal variability (Fig. Se-f and Fig. S21). We found that more than 50%
of the genes used for SPICEMIX were differentially expressed across the two regions (Supplementary
Methods A.5.4), strongly supporting this separation. Metagenes a4 and a5 captured the gradual tran-
sition between these two regions (Fig. 5e), and the relative ranking of DEGs within each metagene,
according to the gene’s weight in the metagene, was significantly associated with the respective region
(P < 10~2%) (Fig. 5f). This demonstrates the distinct ability of SPICEMIX to represent gradual changes
in spatial expression by metagenes.

Next, we sought to show that SPICEMIX can identify subtle anatomical structures from spatial tran-
scriptome data alone. As a proof-of-principle, we applied SPICEMIX on FOV 151507 from sample
Br5292 (Fig. 5g) and discovered spatially variable metagenes (see Supplementary Table for the list).
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We found that metagenes b1-b3 defined 3 finer anatomical structures within layer L1 annotated in [18]
(Fig. 5h-i). According to the brightness of the staining in the histology image, we classified each spot
into one of four types (Supplementary Methods A.5.5 and Fig. 5h (top left)): the dark stripe (yellow),
the bright gap (green), the flanking cortex (blue), and ambiguous mixtures of these three regions (grey).
All 7 marker genes of mural cells, which constitute the wall of blood vessels, from [42] that passed
quality control (Supplementary Methods A.5.5) were expressed at higher levels in the dark stripe, and
the enrichment of 5 out of the 7 genes was significant (P< 0.002), suggesting that the dark stripe is po-
tentially a blood vessel. Aside from the brightness, spots had other varying phenotypes across the three
regions, such as cell density, UMI count, and mitochondrial RNA ratio (Fig. S22a), indicating that these
three regions are biologically different. We found that metagenes b1, b2, and b3 were enriched in the
flanking cortex, the white gap, and the blood vessel, respectively (P< 10~1%) (Fig. 5h-i), supporting the
delineation of the three anatomical structures by SPICEMIX.

Another example of interpretable delineation of finer structures was that metagenes b4 and b5 de-
fined two finer anatomical structures in the white matter region (Fig. 5j). Specifically, metagene b4 was
mainly present in a 400m-wide superficial layer (Fig. 5j (S)), whereas metagene b5 was nearly restricted
to the deep part (Fig. 5j (D)). Spots also exhibited different phenotypes, such as cell density and UMI
count, across the two finer structures (Fig. S22b). We identified 751 DEGs between the two structures
(Supplementary Methods A.5.5) and found that 62% of marker genes of oligodendrocytes were en-
riched in the deep part, whereas only one marker gene was enriched in the superficial layer (Fig. S22¢),
supporting that the two structures are two biologically meaningful anatomical structures rather than arti-
facts. Consistent with this finding, marker genes of oligodendrocytes had a higher rank in metagene b2,
which was enriched in the deep part (Fig. 5k).

Together, these results further demonstrated the ability of SPICEMIX to capture subtle but biologi-
cally important anatomical structures from spatial transcriptome data alone.

Discussion

In this work, we developed SPICEMIX, an unsupervised method for modeling the diverse factors that
collectively contribute to cell identity in complex tissues based on various types of spatial transcriptome
data. The novel integration of NMF and HMREF in the underlying model of SPICEMIX combines the ex-
pressive power of NMF for modeling gene expression with the HMRF for modeling spatial relationships,
advancing current state-of-the-art modeling for spatial transcriptomics. We evaluated the performance of
SPICEMIX on simulated data that approximates the mouse cortex spatial transcriptome, showing a clear
advantage over existing approaches. The application of SPICEMIX to single-cell spatial transcriptome
data of the mouse primary visual cortex from seqFISH+ and STARmap demonstrated its effectiveness in
producing reliable spatially variable metagenes and and informative latent representations of cell iden-
tity, which yielded more accurate and finer cell type identification than prior approaches and uncovered
important biological processes underlying cell states. When applied to the human DLPFC data acquired
by Visium, SPICEMIX improved the identification of annotated layers compared to existing methods and
revealed finer anatomical structures.

As future work, SPICEMIX could be further enhanced by incorporating additional modalities such as
scRNA-seq data. Other recent computational methods have been used to study scRNA-seq and spatial
transcriptomic data jointly [30, 31, 33, 50], but unlike SPICEMIX, they do not attempt to comprehen-
sively model spatial cell-to-cell relationships. With proper normalization and preprocessing, data from



scRNA-seq could easily be integrated into the SPICEMIX framework. This additional data may improve
the inference of the latent variables and parameters of the model, which could further improve the model-
ing of cellular heterogeneity. In addition, further enhancements could be made to the probabilistic model
of SPICEMIX, such as including additional priors, to tailor toward particular application contexts.

A significant feature of SPICEMIX for cellular identity discovery is the spatially variable metagene
formulation. These metagenes are able to model the interplay of spatial and intrinsic composition of the
transcriptome and not merely the spatial patterns of individual genes [26, 29]. Crucially, as part of the
model formulation, SPICEMIX considers how these spatially variable metagenes are integrally related to
continuous states of cell identity, which represents a major distinction compared to other approaches [22,
23]. We have shown in several contexts how metagenes can reveal spatially important patterns, such
as continuous maturation stages of oligodendrocytes and genes associated with anatomical structures
like the gyrus and sulcus regions. The precision with which SPICEMIX can identify metagenes and
separate the interplay of different factors is tied to the scale of the dataset. Increasing the scale of
spatial transcriptomic studies will potentially enable SPICEMIX to discover even finer resolution patterns.
In particular, adding the new ability to explicitly account for temporal variation of spatially variable
metagenes over time will further enhance the applicability of SPICEMIX.

As the area of spatial transcriptomics continues to thrive and data become more widely available,
SPICEMIX will be a uniquely useful tool to facilitate new discoveries. In particular, refined cell identity
with SPICEMIX has the potential to improve future studies of cell-cell interactions [51]. Additionally,
SPICEMIX is not limited to transcriptomic data, and its methodology may also be well-suited for other
recent multi-omic spatial data, e.g., DBiT-seq [52]. As more datasets become available, SPICEMIX
could be integrated with pipeines for managing spatial transcriptomic data, such as Squidpy [53], to
streamline analysis. Overall, SPICEMIX is a powerful framework that can serve as an essential tool for
the analysis of diverse types of spatial transcriptome and multi-omic data, with the distinct advantage that
it can unravel the complex mixing of latent intrinsic and spatial factors of heterogeneous cell identity in
complex tissues.
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Methods

The new probabilistic graphical model NMF-HMRF in SPICEMIX

Gene expression as matrix factorization

We consider the expression of individual cells Y = [y1,...,yn| € RfXN , where constants ' and
N denote the number of genes and cells, respectively, to be the product of K underlying factors (i.e.,
metagenes), M = [my,...,mg| € R¥E my € Sg_1, and weights, X = [z1,...,2n] € REXN, ie.,

Y =MX+E. oY)

This follows the non-negative matrix factorization (NMF) formulation of expression of prior work [54].
The term E = [ey, ..., ex] € RN captures unexplained variation or noise, which we model as i.i.d.
Gaussian, i.e., ¢; ~ N(0, ai[ ). To resolve the scaling ambiguity between M and X, we constrain the
columns of M to sum to one, so as to lie in the (G — 1)-dimensional simplex, Sg_;. For notational
consistency, we use capital letters to denote matrices and use lowercase letters denote their column
vectors.

Graphical model formulation

Our formulation for the new probabilistic graphical model NMF-HMRF in SPICEMIX enhances stan-
dard NMF by modeling the spatial correlations among samples (i.e., cells or spots in this context) via
the HMREF [55]. This novel integration aids inference of the latent A/ and X by enforcing spatial con-
sistency. The spatial relationship between cells in tissue is represented as a graph G = (V, £) of nodes
VY and edges £, where each cell is a node and edges are determined from the spatial locations. Any
graph construction algorithm, such as distance thresholding or Delaunay triangulation, can be used for
determining edges. For each node i in the graph, the measured gene expression vector, y;, is the set of
observed variables and the weights, z;, describing the mixture of metagenes are the hidden states. The
observations are related to the hidden variables via the potential function ¢, which captures the NMF
formulation. The spatial affinity between the metagene proportions of neighboring cells is captured by
the potential function ¢. Together, these elements constitute the HMRF.

More specifically, the potential function ¢ measures the squared reconstruction error of the observed
expression of cell 7 according to the estimated z; and M,

(y; — Mx;)?
205 ’

Oy, 2i) = exp (=Uy(yi, 1)),  Uy(ys, x:) = ()

where o*j represents the variation of expression, or noise, of the NMF. The spatial potential function ¢
measures the inner-product between the metagene proportions of neighboring cells 7 and j, weighted by
the learned, pairwise correlation matrix 3!, which captures the spatial affinity of metagenes, i.e.,

T
7

xI; .I’j

= »o! .
Nlzallr ™ [zl

¢ (i, x5) = exp (=Us(ws, @), Ualws, ;) 3)
This form for ¢ has several motivations. The weighted inner-product allows the affinity between two cells
to be decomposed simply as the weighted sum of affinities between metagenes and for the metagenes
to have different and learnable affinities between each other. It also allows the model to capture both
positive and negative affinities between metagenes. By normalizing the weights z; of each cell, any
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scaling effects, such as cell size, are removed. In this way, the similarity that is measured is purely a
function of the relative proportions of metagenes. This form also affords a straightforward interpretation
for the affinity matrix ¥ 1. Lastly, it is more convenient for optimization.

Given an observed dataset, the model can be learned by maximizing the likelihood of the data. By the
Hammersley-Clifford theorem [56], the likelihood of the data for the pairwise HMRF can be formulated
as the product of pairwise dependencies between nodes,

P(Y, X|0) = H (i, ) [ o(ui, i)m(zs) e

( i,j)€E ey

where © = {A, M} is the set of model parameters and metagenes and Z(©) is the normalizing partition
function that ensures P is a proper probability distribution. The potential function 7 is added to capture
an exponential prior on the hidden states X,

Ao =1, w(x;) = exp (= Azllzil1) (%)
with scale parameter 1. We normalize the average of the total normalized expression levels in individual
cells to K correspondingly.

Parameter priors

We introduce a regularization hyperparameter Ay, on the spatial affinities, which allows the users to
control the importance of the spatial relationships during inference to suit the sample of interest. As
the parameter decreases, the influence of spatial affinities during inference diminishes and the model
becomes more similar to standard NMF. If we represent )y, in the form Ay = 1/(20%), we can treat it as
a Gaussian prior, with zero mean and cr% variance, on the elements of the spatial affinity matrix Z;l,

Pt = (Vais) e (s 5, (©)

where F' denotes the Frobenius norm. Note that the matrix X! is forced to be transpose symmetric.

Alternating estimation of hidden states and model parameters

To infer the hidden states and model parameters of the NMF-HMRF model in SPICEMIX, we optimize
the data likelihood via coordinate ascent, alternating between optimizing hidden states and model param-
eters. This new optimization scheme is summarized in Algorithm 1. First, to make inference tractable,
we approximate the joint probability of the hidden states by the pseudo-likelihood [56], which is the
product of conditional probabilities of the hidden state of individual nodes given that of their neighbors,

P(X10) ~ [ [ P(xilzyq), ©), (7)
i€V

where 7)(i) is the set of neighbors to node .
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Algorithm 1 NMF-HMRF model-fitting and hidden state estimation.

1: Derive an initial estimate M () using K-means clustering assuming no spatial relationships.

2: forl <t <Tydo

3. Derive an estimate X ¥ by minimizing R(X) = ||Y — MYV X[,
4 Derive an estimate M) by minimizing R(M) = |[|Y — MX®|]3.
5: end for

6: Set M© = M), x(©O) = X( 2

7: Derive an initial estimate 0 = /R(X©)/(G x N).

8: Initialize (X )( ) to a zero matrix.

9: forl <t <7Tdo

10:  Derive an estimate X ® given ©¢~Y) by maximizing P(X|Y, 0 = 0¢~1),
11:  Derive an estimate ©®) given X by maximizing P(O|Y, X = X®).
12: end for

Estimation of hidden states

Given parameters O of the model, we estimate the factorizations X by maximizing their posterior distri-
bution. The maximum a posteriori (MAP) estimate of X is given by:

X = argmax P(X|Y,0) = argmax P(Y, X|0) = argmax {log P(Y, X|©)} (8)
XerfxN XeREXN XeREXN
= argmax Z[ Uy (yi, z;) + log m(x;)] Z Up(i,5) ¢ - 9)
XGREXN i€V (i,5)€€

This is a quadratic program and can be solved efficiently via the iterated conditional model (ICM) [57]
using the software package Gurobi [58] (see Supplementary Methods A.1.1 for more details of the
optimization for hidden states).

Estimation of model parameters

Given an estimate of the hidden states X, we can likewise solve for the unknown model parameters O
by maximizing their posterior distribution. The MAP estimate of the parameters © is given by:

6 = argmax P(O|Y, X) = argmax P(Y, X|©)P(0) = argmax {log P(Y, X|0) + log P(©)} (10)
o e O

= argmax Z [(—Uy(yi, @) + log m(x;)] — Z Uy(z,2;) — log Z(O) + log P(O) (11)
© iV (i.j)€E

A argmax Z [—Uy(yi, ;) + log m(x;) — log Z;(O)] — Z Up(zi,zj) +log P(©) . (12)
© iV (i.4)€E

Eqn. 12 is an approximation by the mean-field assumption [56], which is used, in addition to the pseudo-
likelihood assumption, to make the inference of model parameters tractable. We note that we can estimate
metagenes, spatial affinity, and the noise level independently. The MAP estimate of the metagenes M is
a quadratic program, which is efficient to solve. The MAP estimate of 3! is convex and is solved by
the optimizer Adam [59]. Due to the complexity of the partition function Z;(0) of the likelihood, which
includes integration over X, it is approximated by Taylor’s expansion. Since it is a function of O, this
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computation must be performed at each optimization iteration. See Supplementary Methods A.1.2 for
details of the optimization method for model parameters.

Initialization

To produce the initial estimates of the model parameters and hidden states, we do the following. First,
we use a common strategy for initializing NMF, which is to cluster the data using K'-means clustering,
with K equal to the number of metagenes, and use the means of the clusters as an estimate of the
metagenes. We then alternate for 7 iterations between solving the NMF objective for X and M. This
produces, in only a few quick iterations, an appropriate initial estimate for the algorithm, which will be
subsequently refined. We observed that if 7 is too large, it can cause the algorithm to prematurely reach
a local minimum before spatial relationships are considered. However, this value can be easily tuned by
experimentation, and in our analysis, we found that just 5 iterations were necessary.

Empirical running time

On a machine with eight 3.6 GHz CPUs and one GeForce 1080 Ti GPU, SPICEMIX takes 0.5-2 hours
to run on a typical spatial transcriptome dataset with 2,000 genes and 1,000 cells. The GPU is used
for the first 5 iterations, or around that number, only, when the spatial affinity matrix 3! is changed
significantly. Later on, most time is spent solving quadratic programs. Since the algorithm uses a few
iterations of NMF to provide an initial estimate, which is a reasonable starting point, it is expected to
find a good initial estimate of metagenes and latent states efficiently.

Generation and analysis of simulated data

We generated simulated spatial transcriptomic data following expression and spatial patterns of cells of
the mouse primary visual cortex. Cells in the mouse cortex are classified into three primary categories:
inhibitory neurons, excitatory neurons, and non-neurons or glial cells [36, 60]. Excitatory neurons in the
cortex exhibit dense, concentrated, layer-wise specificity, whereas inhibitory neurons are sparse and can
be spread across several layers. Non-neuronal cells can be either layer-specific or dispersed across lay-
ers. We simulated data from an imaging-based method applied to a slice of tissue, which consists of four
distinct vertical layers and eight cell types: four excitatory, two inhibitory, and two glial (Fig. 2a). Each
layer was densely populated by one layer-specific excitatory neuron type. The two inhibitory neuron
types were scattered sparsely throughout several layers. One non-neuronal type was restricted to the first
layer and the other was scattered sparsely throughout several layers. For each simulated image, or tissue
sample, 500 cells were created with locations generated randomly in such a way so as to maintain a mini-
mum distance between any two cells, so that the density of cells across the sample was roughly constant.
With this spatial layout of cells, we devised two methodologies for generating gene expression data for
individual cells. The first uses a metagene-based formulation (see Supplementary Methods A.2.1) and
the second uses a recent method, scDesign2 [35], which we fit to real scRNA-seq data of the mouse
cortex [36] (see Supplementary Methods A.2.2). See Supplementary Methods A.2.3 for details of
the methodology of the analysis of the two simulation datasets.

Data processing for the spatial transcriptome data used in this work

We applied SPICEMIX on a seqFISH+ dataset that profiled the mouse primary visual cortex [12]. For
details of the methodology of our analysis, see Supplementary Methods A.3. Specifically, for details of
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data preprocessing, see Supplementary Methods A.3.1. For details of the selection of hyperparameters
for each algorithm, see Supplementary Methods A.3.2. For details of our selection of Louvain clusters
from [12] used in our comparative analysis with SPICEMIX, see Supplementary Methods A.3.3. For
additional details of the method to justify the excitatory neuron clusters of SPICEMIX, see Supplemen-
tary Methods A.3.4.

We also applied SPICEMIX on a STARmap dataset that profiled the mouse primary visual cortex [13].
For details of the methodology of our analysis, see Supplementary Methods A.4. Specifically, for
details of data preprocessing, see Supplementary Methods A.4.1. For details of the selection of hy-
perparameters for each algorithm, see Supplementary Methods A.4.2. For details of our trajectory
analysis of oligodendrocytes using Monocle2, see Supplementary Methods A.4.3. For additional de-
tails of GO enrichment analysis of myelin sheath formation in oligodendrocytes, see Supplementary
Methods A.4.4.

Lastly, we applied SPICEMIX to a dataset acquired from the 10x Genomics Visium platform that
profiled spatial transcriptome of the human DLPFC [18]. Similar to our procedure for other platforms,
we applied a preprocessing pipeline; see Supplementary Methods A.5.1 for details. For details on the
selection of the four FOVs from the Br8100 sample to use for the ARI score comparison, see Supple-
mentary Methods A.5.2. For details on the ARI score comparison between SPICEMIX, SpaGCN, and
BayesSpace on these FOVs, see Supplementary Methods A.5.3. For details of the subsequent analysis
of SPICEMIX metagenes on these FOVs, see Supplementary Methods A.5.4. For details of the analysis
of SPICEMIX metagenes on sample Br5292, see Supplementary Methods A.5.5.

Doublet detection [61] was performed on the seqFISH+ and STARmap datasets to confirm that none
of the cells in either dataset were doublets; see Supplementary Methods A.6.1 for details. For the
explanation of our method for constructing the cell-type affinity matrix for the seqFISH+ and STARmap
datasets, see Supplementary Methods A.6.2.
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Code Availability

The source code of SPICEMIX can be accessed at: https://github.com/ma-compbio/SpiceMix.
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Spatial transcriptomics data
(e.g. seqFISH+, STARmap, Visium)
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Figure 1: Overview of SPICEMIX. Gene expression measurements and a neighbor graph are extracted from
spatial trancriptome data and fed into the SPICEMIX framework. SPICEMIX decomposes the expression y;
in cell (or spot) ¢ into a mixture of metagenes weighted by the hidden state z;. Spatial interaction between
neighboring cells (or spots) i and j is modeled by an inner product of their hidden states, weighted by > 1,
the inferred spatial affinities between metagenes. The hidden mixture weights X, the metagene spatial affinity
1, and K metagenes M, all inferred by SPICEMIX, provide unique insight into the spatially variable features
that collectively constitute the identity of each cell.
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Figure 2 (preceding page): Performance evaluation based on simulated spatial transcriptome data. a. lllus-
tration of the simulated spatial transcriptome data of the mouse cortex, including 3 major cell types distributed
in 4 layers. Excitatory and inhibitory neurons are star-shaped and glial cells are ovals. Subtypes are distin-
guished by their colors. b. Dendrogram showing the similarity of the expression profiles of the 8 subtypes
(top), their metagene profiles (middle), and their colors and shapes (bottom) used in panel (a). The top 4 rows
correspond to metagenes that determine major type, the next 6 rows correspond to metagenes that determine
subtypes or are layer-specific, and the bottom 3 rows correspond to noise metagenes. ¢. Simulated expression
of metagenes 6 and 7, from a single sample generated with o, = 0.2 and o, = 0.15, in their spatial context
(top) and the inferred expression of those metagenes by SPICEMIX and NMF. Visualizations in panel (e) are
of the same simulated sample. d. Performance comparison of SPICEMIX, NMF, HMRF, Seurat, and SpaGCN.
Bar plots of the adjusted Rand index (ARI) score, that measures the matching between the identified cell types
and the true cell types, are shown. Results are reported across four simulation scenarios with varying degrees
of randomness. Error bars show +/- one standard deviation. e. Imputed cell-type labels of each method for
the excitatory neurons, shown in their spatial context. Neurons that were correctly identified are colored faintly.
Neurons that were incorrectly identified are colored dark gray. The upper left panel is the ground truth cell type
of all cells in the simulated sample. The colors match those of panels (a) and (b).
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Figure 3 (preceding page): Application of SPICEMIX to the seqFISH+ data from the mouse primary visual
cortex [12]. Note that colors throughout the figure of cells and labels correspond to the cell-type assignments of
SPICEMIX. a. UMAP plot of the latent states of SPICEMIX (left) and the dendrogram of the arithmetic average
of the expression for each cell type of SPICEMIX (right). It is highlighted in (a) (left) that SPICEMIX further
delineated inhibitory neurons into VIPs (yellow) and SSTs (red-brown) enclosed by the orange dashed cycle
and refined oligodendrocytes and OPCs into separate subtypes: Astro/Oligo (magenta), Oligo-1 (beige), Oligo-
2 (blue), and OPC (coral), enclosed within the red dashed cycle. b. (Top) The inferred pairwise spatial affinity
of metagenes, or X, 1. (Bottom) The inferred pairwise spatial affinity of SPICEMIX cell types. c. (Left) Average
expression of known marker genes within SPICEMIX cell types, along with the number of cells belonging to
each type (colored bar plot). The colored boxes on the top following the name of each marker gene correspond
to their known associated cell type. (Middle) Agreement of SPICEMIX cell-type assignments with those of the
original analysis in [12]. (Right) Average expression of inferred metagenes within SPICEMIX cell types. d. In
situ SPICEMIX cell-type assignments for all cells in each of the five FOVs (upper panel). In situ maps showing
spatial enrichment of SPICEMIX inhibitory neuron types (lower panel). Samples from superficial layers are on
the left and samples from deep tissue layers are on the right. Colors of cell types are the same as in above
panels.
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Figure 4 (preceding page): Application of SPICEMIX to the STARmap data from mouse primary visual cor-
tex [13]. Note that colors throughout the figure of cells and labels correspond to the cell-type assignments of
SPICEMIX. a. UMAP plots of the latent states of SPICEMIX and the dendrogram of the arithmetic average of
the expression for each cell type of SPICEMIX (right). It is highlighted in a (left) that SPICEMIX delineated eL6
neurons into three subtypes enclosed in the dark green cycle and delineated oligodendrocytes and OPCs into
three separate subtypes: Oligo-1 (light yellow), Oligo-2 (silver), and Astro-2/OPC (magenta), enclosed within
the red dashed cycle. b. (Top) The inferred pairwise spatial affinity of metagenes, or £, . (Bottom) The inferred
pairwise spatial affinity of cell types. ¢. (Left) Average expression of known marker genes within SPICEMIX cell
types, along with the number of cells belonging to each type (colored bar plot). The colored boxes on the top
following the name of each marker gene correspond to their known associated cell types. (Middle) Agreement
of SPICEMIX cell-type assignments with those of the original analysis in [13]. (Right) Average expression of
inferred metagenes within SPICEMIX cell types. d. (Top) /n situ map of SPICEMIX cell-type assignments for
all cells (upper) and astrocyte and oligodendrocyte cells (lower) in the sample. (Bottom) /n situ maps of ex-
pression of both layer-specific and ubiquitous metagenes learned by SPICEMIX that are relevant to astrocytes
and oligodendrocytes. e. The expression of astrocyte subtype marker genes in Astro-1 and Astro-2 types of
SPICEMIX. *: P<0.05. f. Trajectory analysis of SPICEMIX oligodendrocyte types using Monocle2, showing
the expression of metagenes 12 and 13 along the trajectory from OPC to Oligo-1. g. (Left) The expression of
metagene 13 plotted against the expression of metagene 12 for oligodendrocytes of the SPICEMIX Oligo-1 and
OPC types. (Right) The expression of important marker genes for myelin-sheath formation in oligodendrocytes
plotted against the relative expression of metagenes 12 and 13 of the same cells. The title of each plot consists
of the gene symbol and the corrected P-value of having a nonzero slope, respectively. *: P<0.05.
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Figure 5 (preceding page): Application of SPICEMIX to the Visium dataset on human dorsolateral prefrontal
cortex [18]. SPICEMIX was trained on the 4 FOVs 151673-151676 from sample Br8100 at the same time (a-f),
and on FOV 151507 from sample Br5292 (g-k). Metagenes from the two runs are labeled with prefix ‘a’ and ‘b’,
respectively. a. Comparison of the performance of SPICEMIX, BayesSpace, and SpaGCN, on the 4 FOVs from
sample Br8100 (against the manual annotation ground truth [18]). SPICEMIX and SpaGCN(4) were trained
on 4 FOVs at the same time, and were evaluated both on single FOVs separately and on 4 FOVs altogether.
BayesSpace and SpaGCN(1) were trained on each FOV separately, and were evaluated only on single FOVs.
For SpaGCN and BayesSpace, each gray dot represents the score of one of 10 runs with a different random
seed and error bars of +/- s.d. across random seeds are shown. b. The in situ layer assignments of SPICEMIX
for FOV 151673. The boundaries between ground-truth layers (from [18]) are illustrated by dashed black lines.
c. The normalized expression of 8 metagenes (from SPICEMIX) across the 7 ground-truth layers. Note that
metagenes a3 and a6 collectively distinguish layer 4 from layers 3 and 5 (P< 10~3%; red rectangles). For better
visualization, the raw expression levels were divided by the maximum expression level across all spots in the 4
FOVs per metagene. d. The rank distribution of known marker genes [47] of 4 cell types in the 8 metagenes.
‘Exc (S)’: markers of excitatory neurons of superficial layers; ‘Exc (D)’: markers of excitatory neurons of deep
layers. Metagenes with greater ranks are highlighted by red rectangles for each row (the pairwise P of Wilcoxon
and paired t-test P are < 107 for Astro (n=53 genes), < 1073° for Exc (S) (n=406 genes), < 10~ for Exc (D)
(n=188 genes), and < 10~* for Oligo (n=67 genes)). e. The kernel-smoothed in situ expressions of metagenes
a4 and a5, demonstrating their differential expressions between the gyric side (the right side, highlighted by
arrows in the right panel) and the sulcal side (the upper side, highlighted by arrows in the left panel). f. The
distribution of the rank difference of gyro-sulcal DEGs between metagenes a4 and a5. DEGs were divided
into two groups according to the sign of the logarithm of the fold change. DEGs enriched in the gyric side
have greater ranks in metagene a5 than in metagene a4 (Wilcoxon P and paired t-test P< 10~24), and DEGs
enriched in the sulcal side exhibit the opposite trend (Wilcoxon P and paired t-test P< 10-24). g. The in situ
layer annotations of the ground truth on FOV 151507. h. The finer structure annotations of spots (top left) and
the in situ expressions of metagenes b1-b3 on FOV 151507 (the other three panels). The color legend of the
top left panel is in panel (i). Based on the intensity on the histological image, a spot was assigned to a dark
stripe (green), a bright gap (blue), or the peripheral region (orange). Spots close to the dark stripe and the
bright gap were considered to be a mixture of both structures (grey). As highlighted by black arrows, metagene
b1 is enriched in the peripheral region, whereas metagenes b2 and b3 are enriched in the bright gap and the
dark stripe, respectively. i. The differential expressions of the metagenes b1-b3 across the finer structures. The
normalization is the same as in (¢). j. The in situ expression of metagenes b4 and b5 on FOV 151507, implying
the delineation of the superficial part (denoted by S) and the deep region (denoted by D) in white matter. k.
The distribution of the rank difference of the marker genes of Oligo between metagenes b4 and b5.
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