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Abstract
Joint analyses of genomic datasets obtained in multiple di�erent conditions are essential for

understanding the biological mechanism that drives tissue-specificity and cell di�erentiation,

but they still remain computationally challenging. To address this we introduce CLIMB

(Composite LIkelihood eMpirical Bayes), a statistical methodology that learns patterns of

condition-specificity present in genomic data. CLIMB provides a generic framework facilitating

a host of analyses, such as clustering genomic features sharing similar condition-specific

patterns and identifying which of these features are involved in cell fate commitment. We

apply CLIMB to three sets of hematopoietic data, which examine CTCF ChIP-seq measured
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in 17 di�erent cell populations, RNA-seq measured across constituent cell populations in three

committed lineages, and DNase-seq in 38 cell populations. Our results show that CLIMB

improves upon existing alternatives in statistical precision, while capturing interpretable and

biologically relevant clusters in the data.

Uncovering changes across multiple biological conditions is a lasting theme in large-scale genomic1

data analyses across many types of studies. Examples include the analysis of tissue-specificity2

of gene expression patterns1,2, di�erential protein binding across cell types3,4,5, or causal single3

nucleotide polymorphisms (SNPs)6,7,8,9 and pleiotropic genetic variants10 across many genome-wide4

association (GWA) studies. We are specifically motivated by two contexts:5

Motivating context 1 Classification by association patterns: if a set of subjects has been6

observed in many conditions, one may seek to assign subjects to classes based on the patterns of7

association they exhibit across biological conditions. For example, when studying plasticity of gene8

expression across multiple human tissues, joint analysis of these data might ask which sets of genes9

are collectively up-regulated together in some tissues, but down-regulated in others.10

Motivating context 2 Testing for consistent findings across many experiments: one may desire11

to determine which signals are consistent across studies. For example, if one collects several12

ChIP-seq datasets under di�erent experimental conditions, one may ask which loci are consistently13

bound in a fixed number of those conditions.14

Both motivating contexts concern determining observations that have either null or significant15

associations across a collection of conditions. One standard approach to jointly analyzing a16

collection of conditions applies general clustering algorithms such as K-means or hierarchical17

clustering. Though these techniques can group signal profiles with similar association patterns18

together, their results do not directly provide information on condition specificity, such as which19

signals are consistent or di�erential across conditions. Somewhat similarly, time series-inspired20

methods such as the short time-series expression miner11 may be applied to genomic data collected21

at multiple time points. However, this approach assumes a temporal relationship across conditions22

and groups observations according to changes relative to a temporal baseline. This temporal23

assumption may not be applicable for studying genetic pleiotropy or plasticity in gene regulation,24

and again cannot be used to identify patterns of condition specificity. Alternatively, one may25

identify observations significantly associated with each condition separately, and use these individual26

outcomes to determine which relationships are significantly shared or di�erential across conditions.27

This technique, which is commonly used in expression quantitative trait locus (eQTL) analyses1,28

does not leverage any information-sharing among conditions, and is thus underpowered to identify29

shared or di�erential associations12,13. Urbut et al.14 improved upon single-condition analyses30

with a statistical model for joint eQTL analysis. This approach shows increased power; however,31

it makes some restrictive modeling assumptions, such as data symmetry, that are not always32

appropriate, especially when seeking consistent signals across conditions, as we will illustrate later.33

Pairwise analyses, commonly employed for di�erential expression analysis, also improve upon34

analyses of individual conditions, but still do not o�er the power of a joint analysis when more35

than two conditions are present. Moreover, when more than two conditions are examined, it is36

unclear how to properly aggregate findings from a series of pairwise comparisons.37
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To provide interpretable joint analysis of multiple conditions, several others have introduced38

“association vectors” to describe an observation’s specific pattern of association across conditions;39

these approaches leverage mixture models to cluster observations into groups with di�erent40

association vectors. For example, Andreassen et al.10 apply association vectors to the study of41

pairs of GWA studies. In this two-condition setting, they assume the presence of four association42

vectors {(0, 0), (0, 1), (1, 0), (1, 1)}, where a SNP described by the (0, 0) assocation vector is null43

in both studies, a SNP from (1, 1) is non-null in both studies, and a SNP from (0, 1) or (1, 0) is44

null in one of the studies, but non-null in the other. Some15,16 similarly use association vectors to45

find reproducible observations across replicated experiments, while others17,18 leverage them to46

determine which SNPs are eQTLs across various tissues.47

These association vectors can be appreciated as an alternative to binarization or ternarization48

of genomic signals, since they assign binary or ternary labels to the data. A label directly reflects49

the pattern of condition specificity of the observations in its associated cluster. Further, as a50

mixture modeling approach, these labels naturally allow for heterogeneity in signals, resulting in51

greater model flexibility.52

Yet, a remaining challenge is that models that leverage these association vectors su�er from53

computational intractability for even a modest number of conditions15,17. To understand this54

issue, consider D conditions: Let H =
Ó
H = (h[1], . . . , h[D]) : h[i] œ {≠1, 0, 1}

Ô
be the set of55

all 3D possible configurations of association vector H, such that an observation described by an56

association vector with h[i] = 1 (h[i] = ≠1) has a positive (negative) association in condition i.57

It is clear that this model formulation becomes computationally prohibitive even for single-digit58

D because the total number of possible association vectors grows exponentially with D, possibly59

resulting in the number of model parameters exceeding the number of observations. In response to60

this, several restrictive assumptions are imposed. For example, Amar et al.16 somewhat alleviate61

computational burden by assuming all associations must be positive, and estimate partial latent62

associations for subgroups of conditions with a heuristic approach. This heuristic reduces statistical63

power and resolution to test for consistent findings and cannot provide a single unified clustering64

of observations since it is not a true joint analysis. Moreover, this approach does not distinguish65

an observation that is significant in opposite directions in two conditions from an observation that66

exhibits consistent direction of association across conditions. Alternatively, Urbut et al.14 make67

computational gains by assuming all observations come from a uni-modal distribution centered68

over zero, but this restriction does not always hold in practice.69

We present a methodology we refer to as CLIMB (Composite LIkelihood eMpirical Bayes) that70

allows us to tractably estimate which latent association vectors are likely to be present in the71

data. Our method is motivated by the observation that the true number of latent classes, each72

described by a di�erent association vector, cannot be greater than the sample size. Thus, in higher73

dimensions, the number of true classes is very small relative to 3D, and many candidate classes have74

no members. By identifying these classes through a computationally e�cient pairwise composite75

likelihood (CL) model and rigorously filtering out unsupported latent classes, we elucidate sparsity76

in class membership. In doing so, the aforementioned computational intractability issue falls77

away, and a joint Bayesian analysis, informed by the initial CL modeling, can be performed.78

Using ChIP-seq, RNA-seq, and DNase-seq data collected from hematopoietic cell lineages, we79

demonstrate that CLIMB compares favorably against existing alternatives based on improved80

statistical power, precision, and model interpretability for investigating cell type-specific protein81
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binding and chromatin accessibility, and lineage-specific gene expression patterns.82

Results83

Overview of CLIMB84
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Step 3: Pruning classes 
via estimated cluster 

weights

�
�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�
� �

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�
�

�

�
�

�
�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�� �
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

� �
�

�

�

�

�

� �

�

�

�

�

�� �

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�� �

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

��
�

�

�
�

�

�

�

�

�

�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

��

�

�

�
�

�
�

� �

�

�

�

�

�

��

�

�

�

�

�

� �

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

� �

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

� � �

�

�

�
�

�

�

�

�

�
�

�

�
� �

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�
�

�

�

�

�

�
�

��
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

� �

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�

�

�
��

�

�

�

�

�

�

�

�

�

�

�

�

� �

�
�

�

�

�

�

�

�

�

�

� �

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�
��

�

�

�

�
� �

�

�

�

� �

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

��

�

�

�

�
�

�

� �

�

�

�

�

�

�
�

�

�

�

��
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�
�

�

�

�

�
��

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

� �
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�
� �

�

�

�

�

�

�

�

��

�

�

�
� �

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�
�

�

�

� �

�

�

�

� �

�

�

��

�

�

�

�

�
�

�

��

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

��

�

�
�

� �� �

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �
�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�
�

�

� �

��

�

�

� �

�

�

�

�

�

� ��

��

�

�

�
�

� �

�

�

�

��
�

��

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�
�

�

�

�

� �

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

� �
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�
�

�

�

�
�

�

��

�

�

�

��

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

� �

�
�

�
�

�

�
�

�

� �

�

�

�

�

�

�

�

�

�
�

�

�

�
� �

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

� � �

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�
���

�

�

�

�
�

��

�

�

�

�

�

�

�

�

�

�

�

�
�

�

� ��

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�
�

��

�

�

�

��

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�
�

� �

�

�

�

�

�

�

�

�
�

�
�

�

��

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�
�

�

�

�
�

�
�

�

�
�

�

�

�
�

�
�

�
�

�
�

�

�

�

�

�
�

�

�

�

� �

�

�

�

�

�
�

�

�

�

��

�

��

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�

�

�

�

�

��

�

� �

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(-1, 0)

(-1, 1) (1, 1)(0, 1)

(0, -1)(-1, -1) (1, -1)

(1, 0)

a b
0 -1
-1 0
0 1

0 0

1 -1

0 0
-1 0
0 1

0 1

1 -1

-1 0
0 0
1 1

0 1

-1 -1

(-1,0,0)

(0,-1,0)
(0,0,1) (0,1,1)

(1,-1,-1)

-1 -1 -1

0 0 0

1 1 1

h(12) h(23)

h(13)

Figure 1: Toy examples of CLIMB. a, Illustration of the considered model using a simulated
dataset with two dimensions. The 9 classes are annotated by their corresponding latent association
vectors. The null class (0, 0) lies in the center over the origin. Classes that are non-null in at
least one dimension exhibit a location shift. Only observations from classes that are non-null in
both dimensions are correlated. b, Flowchart of CLIMB with a 3-dimensional example, with true
classes whose association vectors are denoted h1, h2, h3, h4, and hn. Step 1 fits 3 pairwise models.
Pairwise association vectors are estimated for each observation in each pairwise fit. In Step 2,
we enumerate candidate 3-dimensional association vectors using a graph-based algorithm based
on the estimated pairwise association vectors (shown as edges) between dimensions 1 and 2, and
the estimated pairwise association vectors between dimensions 2 and 3. 9 candidate association
vectors are found on the graph, but those that are colored in red are not truly present in the data.
Association vectors that are not concordant with estimated association vectors from the pairwise
fit between dimensions 1 and 3 are pruned. With 6 remaining candidates, one computes their prior
weights (Step 3), then in Step 4 fits a Bayesian mixture model to the original, 3-dimensional data
using the number of classes remaining after Step 3.
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We model the multi-conditional data using a constrained mixture model that encodes condition-85

specificity through latent association labels -1, 0, and 1 (Fig. 1a). The parameter constraints86

in the model enforce some general patterns commonly observed under condition-specificity: (1)87

observations that are associated with a condition (i.e., association label ±1) have a stronger88

average signal than those that are not (i.e., association label 0), and (2) observations that are89

associated with multiple conditions correlate with one another within a given cluster. Specifically,90

we assume the data are summarized as some score, and transformed to a Z-score, with larger91

values corresponding to stronger signals.92

Then, letting n be the sample size, D be the dimension of the data, and H = (h[1], . . . , h[D])93

be a ternary latent association vector, the observed data x across D conditions follow the normal94

mixture model95

x | H = hm ≥ „c
D(µm, �m, hm)

H ≥ Mult(fi1, . . . , fiM),
Mÿ

m=1
fim = 1

(1)

where hm is the mth latent class, m œ 1, . . . , M , and „c
D is a D-dimensional constrained normal96

distribution. The constrained normal distribution, defined presently, is used to impose association97

label-driven constraints:98

„c
D(x; µ, �, h) = „D(x; µ, �), subject to

sgn(µd) = h[d] ’d œ {1, . . . , D} and
sgn(�rt) = h[r] · h[t] ’r ”= t

(2)

where µd is the dth element of µ and �rt is the (r, t)th element of �.99

Though the possible number of latent classes M explodes combinatorially, many latent classes100

likely have no members. In order to estimate the actual number of classes, we leverage information101

about association patterns between pairs of conditions through a pairwise composite likelihood102

model to eliminate classes that are unlikely to be present in the data, making the final model103

computationally tractable. This filtering works as depicted through a toy example in Fig. 1b, and104

is briefly described in four major steps:105

1. Pairwise fitting. Fit a bi-dimensional model for each of the
1

D
2

2
pairwise combinations106

of dimensions through a pairwise composite likelihood framework. The total number of107

possible latent classes in each bi-dimensional case is 9, and therefore tractable for typical108

genomic datasets. For each pair of dimensions, we estimate which subset of the 9 possible109

configurations of the latent association vector are supported by the data across those 2110

dimensions by utilizing a penalized mixture model19. This mixture model penalizes the class111

mixing weights, such that classes that are likely without members are removed from the112

pairwise model. Unlike many composite likelihood approaches that assume independence113

across dimensions15,20, the pairwise model takes account of dependence between each pair of114

conditions.115

2. Assembling D-dimensional association labels from pairwise labels. Use the estimated pairwise116

association vectors to assemble a preliminary list of feasible D-dimensional association vectors.117
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D-dimensional association vectors that are inconsistent with inferred pairwise labels will be118

deemed infeasible and pruned.119

3. Pruning association labels with insu�cient cluster weights. Estimate the mixing weights for120

the remaining latent classes using the estimates obtained from the pairwise fits, pruning121

classes with insu�cient weight and ensuring that M Æ n.122

4. Empirical Bayesian estimation of the full D-dimensional model. Reestimate parameters for123

the D-dimensional mixture model based on the final list of classes using a Bayesian approach.124

Inform prior hyperparameters with parameter estimates obtained from the pairwise fits. This125

final step ensures information across all dimensions is considered.126

CLIMB’s model output is useful for a host of analyses, including: (1) using association labels127

and class membership to elucidate condition-specificity, (2) using class membership probabilities to128

test for consistency in signals across conditions, (3) using estimated cluster covariances to infer129

similarity between conditions, and (4) using estimated cluster means to obtain a parsimonious130

characterization of dominant patterns of condition-specificy. See Methods and supplement for131

details on these downstream analyses.132

Simulations133

We used simulations to compare CLIMB to the available methods for multiconditional analysis,134

Urbut et al.’s mash14 and Amar et al.’s SCREEN16. We selected these two methods to compare135

against because they are also designed to analyze many conditions for obtaining information on136

condition specificity. In a separate simulation, we also compare CLIMB to DESeq221, a widely used137

tool for pairwise di�erential expression analysis. Although DESeq2 focuses on pairwise comparisons,138

its wide adoption makes it a worthy comparison in the context of RNA-seq analysis.139

We consider three data types commonly encountered in genomic analyses: ChIP-seq data,140

di�erential analysis output from RNA-seq data collected from treatment/control tissue pairs, and141

RNA-seq data. The first simulation aims to study cell type-specificity of patterns of protein142

binding across di�erent cell types (motivating context 1), the second aims to identify which genes143

are dysregulated in a consistent manner across di�erent diseased tissues when compared against144

normal tissues, and the final simulation aims to identify genes whose expression levels change145

across cell di�erentiation (motivating context 2). These datasets exhibit di�erent distributional146

structures. For example, signals in simulation 1 have a positive sign (Supplementary Fig. S1a), but147

signals in simulations 2 and 3 can be positive or negative. The strictly positive nature of signals in148

simulation 1 arises from the fact that identified protein binding sites from ChIP-seq data are output149

from a peak-calling routine, where each signal indicates evidence for the presence of a ChIP-seq150

peak at a given genomic location. In contrast, the data in simulation 2 are derived from P -values151

that indicate whether genes are relatively over- or under-expressed in a diseased tissue relative152

to a normal counterpart tissue. This translates to Z-scores exhibiting both positive and negative153

signals, and data that are more symmetrically distributed about the origin (e.g., see Supplementary154

Fig. S1b). A unifying goal of all simulations is to evaluate the capacity of all methods to adapt155

to data types with di�erent distributions. See Testing consistency of e�ects for description of156
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a b

Figure 2: CLIMB uncovers interrelationships among hematopoietic cell populations
based on CTCF binding patterns. a, Expected relationship among cell populations. b,
Heatmaps displaying bi-clusterings of all ChIP-seq data for chromosome 11 based on CLIMB, mash,
and Pearson correlation. The columns, corresponding to di�erent cell populations, are ordered
according to the dendrogram for each clustering method. The rows, corresponding to each loci, are
ordered based on class membership (for CLIMB and mash) and Pearson correlation (for Pearson),
respectively. (CH12 and MEL are murine lymphoma and erythroleukemia cell lines, respectively,
and thus do not clearly occupy one space in the lineage, though CH12 is most related to B cells,
and MEL is a mature erythroid cell type.)

statistical test used; see Simulations and comparisons and supplement for further details on the157

simulation procedure. A computational cost analysis is also conducted (Supplementary Fig. S2).158

CLIMB uniformly performed better than SCREEN and mash in simulations 1 and 2 across159

several quantitative metrics (Supplementary Fig. S3–S9), including sensitivity and precision.160

CLIMB, mash, and SCREEN respectively had average F1-scores of 0.97, 0.77, and 0.74 for161

simulation 1, and 0.46, 0.45, and 0.12, for simulation 2, at an –-level of 0.05. CLIMB also162

outperformed DESeq2 in simulation 3, for identifying di�erentially expressed genes in a multi-163

condition setting (Supplementary Fig. S5). For this simulation, CLIMB and DESeq2 had F1-scores164

of 0.65 and 0.48, respectively, at a confidence threshold of 0.05. If e�ects are not shared in more165

than 2 conditions, as they were in our simulations, then CLIMB gains no power over DESeq2 or166

other pairwise methods. These results indicate that CLIMB is well-suited for identifying patterns167

of association in the data as well as consistent and di�erential signals.168

Case studies169

We showcase CLIMB’s utility by analyzing multiple datasets collected as part of the VISION170

(ValIdated Systematic IntegratiON of hematopoietic epigenomes)22,23,24 and ENCODE25 projects.171

These VISION and ENCODE data were collected from, respectively, 17 murine and 38 human172

hematopoietic cell populations across di�erentiation. The primary goal of the VISION project is173

to understand the interplay between transcriptomic variation and mechanisms of gene regulation174

during hematopoiesis, while the ENCODE project aims to describe functional elements in the175

human genome more broadly.176
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First, we study VISION CTCF ChIP-seq data in 17 hematopoietic cell populations26. While177

CTCF binding sites that are invariant across cell types are known to maintain chromatin structures27,178

the function of more cell type-specific CTCF binding sites remains largely unknown5,28,29. We show179

how CLIMB can be used to aid in tackling this question. Next, we examine VISION RNA-seq data180

collected from a subset of these cell populations to probe the transcriptomic changes that commit181

multipotent cells to di�erent fates. Results from these analyses demonstrate CLIMB’s ability182

to elucidate interrelationships between cell populations in di�erent genomic data types, produce183

interpretable classes, and conduct lineage-specific di�erential analyses. Finally, with ENCODE’s184

DNase-seq data, we illustrate CLIMB’s ability to identify novel classes of tissue-specific regulatory185

elements.186

VISION CTCF ChIP-seq187

We applied CLIMB to CTCF ChIP-seq of chromosome 11 from 17 murine cell populations. This188

analysis yielded a final model that included 15 non-empty classes. Among these, 2 classes described189

constitutive binding behavior, while the remaining were more cell type-specific (see Supplementary190

Fig. S10 for an illustration of all classes). Similar results are obtained for chromosome 7 (see191

Supplementary Section Analysis of CTCF ChIP-seq on chromosome 7 ).192

Constitutively bound CTCF is the dominant class. Previous work has noted that CTCF binding193

is largely consistent across cell types5,27,30. We identified two such classes of conserved loci from194

CLIMB’s model fit. The first is the class of all ones, corresponding to the collection of loci bound195

by CTCF across all cell types. The second is the class of all ones except for the CFUE population,196

corresponding to the collection of loci bound by CTCF in all but the CFUE cell population, likely197

reflecting lower signal-to-noise ratio in the CFUE dataset. Indeed, the CFUE experiment had the198

lowest quality as measured by Fraction of Reads in Peaks (FRiP) score31 (0.031, compared against199

next lowest iMK with FRiP score 0.054 and CMP with FRiP score 0.097). In agreement with200

previous studies, these two classes make up ≥ 36% of all loci in the analysis. Moreover, consistent201

with others30,32, the average signal strength (based on the estimated class means) for bound loci202

within the two constitutive classes is significantly larger than the average signal strength for bound203

loci that are not widely shared across cell populations (one-sided t-test, P = 5.02 ◊ 10≠12).204

Di�erential CTCF binding is predictive of cell population relationships. Although CTCF binding205

is largely consistent across cell types, previous studies suggested that changes in its binding patterns206

modify gene expression programs, a�ecting developmental cues or cell function5,32,33. We asked207

whether the classes discovered by CLIMB support the idea that changes in CTCF binding relate to208

hematopoietic development. To address this question, we clustered the cell populations based on209

the estimated class covariance matrices34 (see supplementary Implementation details). CLIMB’s210

clustering, shown in Fig. 2b, closely reflects the expected lineage relationship in Fig. 2a. This211

result supports the claim that changes in CTCF binding occur in a lineage-specific manner, and212

that CLIMB is well-suited to tease out this information from the data. In contrast, the clusterings213

based on mash and the standard hierarchical clustering using Pearson correlation depart further214

from the expected lineage relationship (Baker’s Gamma35 correlation coe�cients, which measures215

the similarity between two hierarchical tree structures, of 0.251, 0.096, and 0.209 for CLIMB,216
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Figure 3: CTCF binding patterns uncovered by CLIMB capture di�erent patterns of
epigenetic modifications. a, Data from the loci on chromosome 11 that belong to classes of
CTCF binding patterns (numbered 1, 4, and 14) identified by CLIMB are shown. The original
CTCF ChIP-seq, alongside ATAC-seq and histone modification ChIP-seq data in 4 hematopoietic
cell populations reveal di�ering patterns of epigenetic modifications across cell populations. b,
Log class means based on CLIMB’s model of CTCF binding patterns for the 3 classes in a. c,
Significantly enriched mouse phenotypes (FDR < 0.05 for all) associated with the plotted classes.
Class 1, containing loci with CTCF bound in every cell type, is not significantly enriched in any
mouse phenotypes. Class 4 is enriched with terms related to T and B cells and the thymus, while
class 14 contains terms related to red blood cells and kidney function.9
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mash, and Pearson, respectively, when compared against the ground truth tree in Supplementary217

Fig. S11). This suggests that mash does not su�ciently capture CTCF binding patterns across218

cell types, and that simple correlation measures cannot e�ectively distinguish between di�erent219

classes of signals in the data. The low signal in the CFUE experiment likely caused the hierarchical220

clusterings by both CLIMB and Pearson correlation to isolate the CFUE cell from the remaining221

cell populations on the hierarchical tree. CLIMB exhibits robustness to this challenge, identifying222

this cell as an outlier among all experiments, while still achieving a hierarchical clustering that223

reflects the expected relationship among the remaining cell populations.224

CLIMB identifies succinct groupings of CTCF binding patterns. Visualization of binding sites225

assigned to di�erent classes is important for identifying biologically meaningful patterns. To226

facilitate visual examination, CLIMB provides a means to merge similar classes based on model227

output (see supplementary Implementation details, Obtaining parsimonious characterization for228

details on the class merging procedure). From the VISION CTCF dataset, CLIMB clusters the229

binding sites into 15 non-empty classes. To simplify the visualization, we aggregated these classes230

into 5 parent groups, with sizes ranging from 254 to 5,462 binding sites. Supplementary Fig. S12a231

displays the average signal strength (Equation 30) associated with each of these groups. For232

example, group 1 includes constitutive binding sites, while group 4 contains progenitor-specific233

binding sites, and group 5 contains binding sites constituent to mature erythroid and T cells.234

Supplementary Fig. S12b displays the locations of the binding groups within the genomic region235

around murine gene Bcl11a, whose gene product is involved in gene regulation of multiple cell236

types.237

CTCF binding patterns relate to epigenetic states during di�erentiation We next examined how238

CLIMB’s classes of CTCF binding patterns relate to chromatin accessibility and various histone239

modifications. Interestingly, though we only supplied CTCF ChIP-seq data to each method, the240

classes estimated by CLIMB also displayed cell type-specific behavior of chromatin accessibility as241

measured using ATAC-seq and epigenetic histone modifications H3K4me1 and H3K4me3 (Fig. 3a–242

b). Further, using GREAT36 (Genomic Regions Enrichment of Annotations Tool), we identified243

that classes that exhibit erythroid- and immune cell-specific binding patterns are indeed enriched244

in erythroid- and T cell-specific functions (Fig. 3c). In contrast, the classes identified by mash do245

not appear to relate to epigenetic modifications (Supplementary Fig. S13–S16). In fact, there is246

not a large amount of overlap between CLIMB’s and mash’s estimated classes (Supplementary247

Fig. S17), altogether suggesting that CLIMB e�ectively captures biologically meaningful protein248

binding patterns.249

The classes learned by CLIMB also provide hypothesis-generating discoveries. For instance,250

though class 14 exhibits consistent but low signal for CTCF binding only in erythroid cells, these251

same sites are in open chromatin in all four cell populations, as assayed by ATAC-seq. Since252

transcription factor binding is often regulated by di�erentially open chromatin, this raises a question253

of what is driving the erythroid-specificity of this class. One possibility is that the sites could254

be bound by other transcription factors, occluding CTCF. The pattern of H3K4me1 as high255

surrounding peaks of H3K4me3 in these class 14 sites suggests that they may be promoters. Indeed,256

≥6% of the CTCF-bound sites in class 14 (as well as the constitutively bound classes 1 and 2)257

overlap with transcription start sites from GENCODE.v35, while this occurred on average ≥2%258
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Lineage Gene ontology term FDR
erythroid heme biosynthetic process 4.71 ◊ 10≠3

heme metabolic process 4.08 ◊ 10≠4

erythrocyte di�erentiation 3.19 ◊ 10≠3

response to oxygen-containing compound 1.57 ◊ 10≠4

megakaryocytic platelet activation 4.30 ◊ 10≠3

regulation of blood coagulation 1.25 ◊ 10≠3

response to wounding 2.58 ◊ 10≠5

regulation of homotypic cell-cell adhesion 4.16 ◊ 10≠2

myeloid pos. regulation of monocyte chemotaxis 6.91 ◊ 10≠3

leukocyte di�erentiation 1.15 ◊ 10≠9

neutrophil migration 6.11 ◊ 10≠6

regulation of macrophage activation 1.46 ◊ 10≠3

Table 1: Lineage-specific di�erentially expressed genes identified by CLIMB are enriched in gene
ontology terms related to terminal cell function.

for the remaining classes, which fits with the patterns of histone modifications and ATAC-seq data.259

This hypothesis is testable in further studies.260

VISION RNA-seq261

We next used CLIMB to perform lineage-specific di�erential expression analysis. In the hematopoi-262

etic cell system, LSK, CMP and MEP are multipotent cells that di�erentiate into di�erent terminal263

cells, such as ERY, MONO, NEU, and iMK cells (Fig. 2a). We considered three paths: the erythroid264

lineage (LSK æ CMP æ MEP æ CFUE æ ERY), the megakaryocytic lineage (LSK æ CMP æ265

MEP æ CFUMK æ iMK), and the myeloid lineage (LSK æ CMP æ GMP æ MONO/NEU). The266

di�erentially expressed genes identified in each linage are expected to be related to the biological267

function of the specific di�erentiation path and cell fate commitment. The datasets for these268

lineages respectively contained 21,303, 20,995, and 22,940 expressed genes.269

CLIMB identifies lineage-specific genes related to cell development and di�erentiation. We sought270

to identify genes that show varying gene expression levels across each di�erentiation path. We first fit271

a model with CLIMB to each lineage. We then pinpointed the genes that exhibit di�erential signals272

across each lineage based on model fit. To proceed, we first identified genes with consistent signals273

by performing a statistical test (see Methods). Briefly, a gene was considered “consistently expressed”274

across the lineage if its probability of belonging to a class that is interpreted as describing consistent275

expression behavior is su�ciently large. These classes are: (≠1, ≠1, ≠1, ≠1, ≠1), (0, 0, 0, 0, 0), or276

(1, 1, 1, 1, 1), where h[d] = ≠1 implies a gene is lowly expressed or o�, h[d] = 0 implies a gene277

is moderately expressed, and h[d] = 1 implies a gene is highly expressed in cell population d.278

Otherwise, a gene was considered di�erentially expressed (DE) along the lineage.279

As illustrated by the diagrams in Supplementary Fig. S18, one class of consistently expressed280

11

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2022. ; https://doi.org/10.1101/2020.11.18.388504doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.388504
http://creativecommons.org/licenses/by-nd/4.0/


ba
5415773 1468

erythroid

5859472 1599

megakaryocytic

57681281 1095

myeloid

CLIMB DESeq2

regulation of T cell activation
humoral imm. resp. mediated by circ. immunoglobulin

phagocytosis, engulfment
phagocytosis, recognition

defense response to bacterium
positive regulation of calcium−mediated signaling

regulation of granulocyte chemotaxis
regulation of interleukin−1 beta production

regulation of leukocyte differentiation
regulation of mononuclear cell migration

regulation of neutrophil degranulation
regulation of phagocytosis

regulation of platelet activation
regulation of wound healing

blood coagulation
regulation of cell−matrix adhesion

hemostasis
iron ion homeostasis

heme biosynthetic process
hemopoiesis

sister chromatid segregation
RNA transport

RNA splicing
RNA metabolic process

regulation of viral process
regulation of organelle assembly

regulation of nucleic acid−templated transcription
regulation of establishment of protein localization

regulation of cell cycle phase transition
protein folding

establishment of organelle localization
DNA strand elongation

DNA replication
cytoskeleton organization
chromosome organization

chromatin remodeling
chromatin organization

cellular response to DNA damage stimulus

C
LI

M
B 

on
ly

in
te

rs
ec

t

D
ES

eq
2 

on
ly

erythroid
GO analysis

C
LI

M
B 

on
ly

in
te

rs
ec

t

D
ES

eq
2 

on
ly

megakaryocytic
GO analysis

C
LI

M
B 

on
ly

in
te

rs
ec

t

D
ES

eq
2 

on
ly

myeloid
GO analysis

0.25
0.50
0.75
1.00

FDR

er
y.

m
eg

.

m
ye

.

ge
ne

ra
l c

el
lu

la
r f

un
ct

io
n

Figure 4: Comparison of di�erentially expressed genes identified by CLIMB and DESeq2.
a, Venn diagrams displaying overlap of di�erentially expressed genes identified by both methods
across all analyses. b, Significance of enrichment of GO terms in gene sets specific to CLIMB,
specific to DESeq2, and in the intersection of both methods, for each studied lineage. Presented
GO terms are organized according to knowledge-driven labels. Non-hematopoietic terms related to
general cell function are above the black line. Hematopoietic-related terms, grouped according to
lineage-specific function, are below the black line.

genes (1, 1, 1, 1, 1) contains about 10,000 genes that are highly expressed in all the cell types along281

each lineage. This observation is consistent with previous results showing that about half of282

human or mouse genes are expressed at similar levels in all cell types37; this set of constrained283

genes includes those encoding common cellular (“housekeeping”) functions. Another equally large284

class of consistently expressed genes (≠1, ≠1, ≠1, ≠1, ≠1) was found on each lineage; these classes285

contain genes that are not expressed in blood cells. A rich set of distinct classes of di�erentially286

expressed genes were observed on each lineage. One class showed a dramatic increase in expression287

during erythroid maturation, which included erythroid marker genes Alas2, Hba-a1, Hba-a2, and288

Gata1. Similarly, three classes showed substantial induction during one or both of monocyte and289

neutrophil di�erentiation; these classes include myeloid marker genes Cxcr2, C5ar1, Mpo, S100a8,290

and S100a9. In contrast, no class of genes showed a dramatic induction to high expression levels291

during megakaryocyte di�erentiation, which is consistent with previous analyses showing similar292

gene expression patterns between multilineage progenitor cells and megakaryocytes38. In total,293

our results identified 2,242 DE genes along the erythroid lineage, 2,073 along the megakaryocytic294

lineage, and 2,376 along the myeloid lineage. Overlap of DE genes across lineages is diagrammed295

in Supplementary Fig. S19.296
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A common, alternative approach to this sort of analysis task is to apply a series of pairwise297

di�erential expression analyses along each lineage with standard software such as DESeq221, then298

take the union of all DE genes across the analyses. We implemented this strategy using DESeq2299

with FDR Æ 0.01 and obtained 6,883 DE genes across the erythroid lineage, 7,458 across the300

megakaryocytic lineage, and 6,863 across the myeloid lineage. The number of DE genes called by301

DESeq2 was about one third of all input genes for each analysis, and about 3 times more than302

the number of DE genes identified by CLIMB. We also applied SCREEN to identify DE genes303

along each lineage, and found that SCREEN systematically reported lower precision in identifying304

lineage-related GO terms than both CLIMB and DESeq2 (Supplementary Fig. S20). All di�erential305

genes identified by CLIMB and DESeq2 are provided in Supplementary File 2.306

The large number of DE genes returned by DESeq2 raises questions about the specificity of this307

approach in pinpointing genes relevant to di�erentiation. To probe whether DESeq2 is exhibiting308

low precision or CLIMB exhibiting low power, we first ran gene ontology (GO) enrichment analyses309

for each lineage39,40. Some enriched GO terms from the CLIMB analysis of each lineage are in310

Table 1. Meanwhile, with the exception of the myeloid analysis, the DESeq2 gene sets were not311

enriched in lineage-specific GO terms (Supplementary Files 3-8). The abundance of CLIMB’s312

enriched hematopoiesis-specific GO terms further suggests that, though CLIMB identifies far fewer313

DE genes than DESeq2, CLIMB is more precise in identifying key genes relevant to cell development314

and di�erentiation. See Simulations and comparisons to see further investigation of this claim.315

To more directly compare CLIMB and DESeq2, we partitioned DE genes into three categories,316

namely, di�erentially expressed genes specific to CLIMB, DE genes specific to DESeq2, and DE317

genes in the intersection of both methods for each lineage (Fig. 4a), and ran GO analyses on these318

sets. We noticed that genes identified as DE by both CLIMB and DESeq2 are enriched in many319

hematopoietic-related terms, while DESeq2-specific genes are enriched for many terms related to320

general cell function. In each lineage, DESeq2-specific genes are highly enriched for functions that321

are not specific to hematopoietic cells; CLIMB-specific genes in general are not highly enriched for322

these same terms. Genes identified by both CLIMB and DESeq2 and CLIMB-specific genes are323

more frequently enriched for hematopoietic-specific functions (Fig. 4b). The result that DESeq2’s324

significant gene sets are only enriched in hematopoiesis-related GO terms after intersection with325

CLIMB’s significant gene sets demonstrates that CLIMB is a powerful and more precise approach326

to multi-condition di�erential gene expression analysis when compared to DESeq2 applied in a327

series across multiple conditions. CLIMB is also a sensitive tool for finding di�erentially expressed328

genes, even detecting low-level but di�erential expression during erythroid di�erentiation of some329

genes associated with functions in myeloid cells, in which they are expressed at substantially higher330

levels (Fig. 4b, Supplementary Fig. S21).331

CLIMB latent association labels describe patterns of expression across cell di�erentiation. Next332

we used CLIMB to further probe specific gene expression patterns of interest. For example, in333

the erythroid analysis, 559 genes fell into the (≠1, ≠1, ≠1, 1, 1) class. This class describes genes334

with little to no expression in the LSK, CMP, and MEP cell populations, but high expression in335

the CFUE and ERY cell populations. This gene set is enriched for GO terms such as erythrocyte336

development (FDR= 5.11◊10≠7), iron ion homeostasis (FDR= 9.46◊10≠3), and hydrogen peroxide337

metabolic process (FDR= 1.96 ◊ 10≠2). Cases of enrichment for terms related to other cell types338

may result from a process initially discovered in the other cell type being present also in the cell339
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type of interest.340

As another example, the 298 members of the (0, 0, 0, ≠1, ≠1) class from the myeloid lineage,341

corresponding to genes that are moderately expressed in LSK, CMP, and GMP cell populations,342

but lowly or not expressed in monocyte and neutrophil cell populations, are enriched for several GO343

terms concerning cell fate determination, such as microtubule cytoskeleton organization (FDR=344

1.36 ◊ 10≠5) and mitotic cell cycle process (FDR= 4.42 ◊ 10≠12). Meanwhile, the 467 members of345

the (≠1, ≠1, ≠1, ≠1, 0) class, corresponding to moderate gene expression specific to neutrophils, are346

enriched for GO terms immunoglobulin mediated immune response (FDR= 2.47 ◊ 10≠20), defense347

response to bacterium (FDR= 2.59 ◊ 10≠20), and immune response-activating signal transduction348

(FDR= 4.92 ◊ 10≠25). Moreover, the 777 members of the (≠1, ≠1, ≠1, 0, ≠1) class, corresponding349

to genes exhibiting moderate expression specific to monocytes, are enriched for the GO terms for350

the production of tumor necrosis factor and interleukins 1, 6, and 12, as well as the regulation of351

mast cell activation (FDR= 1.24 ◊ 10≠2). Taken together, these results demonstrate that CLIMB’s352

utility goes beyond lineage-specific di�erential gene expression analysis; the individual latent classes353

also describe interpretable gene expression patterns.354

ENCODE DNase-seq355

As part of the ENCODE project, Meuleman et al.41 studied DNase-seq in 733 human cell populations,356

partitioning accessible sites into 16 major groups of cellular accessibility patterns via non-negative357

matrix factorization (NMF). NMF extracts additive factors across all samples that, when combined,358

approximate primary signal patterns in the data. With a 38-sample subset of these data, we sought359

to examine how classes of chromatin accessibility patterns identified by CLIMB relate to di�erential360

transcription factor (TF) binding across cell populations, and how these results di�er from those361

extracted via NMF. We applied NMF as before41 to a binarized version of this 38-sample subset,362

and selected an optimal number of 10 factors with NMF (Supplementary Fig. S22a). We merged363

classes identified with CLIMB into 10 parent groups to match NMF.364

CLIMB extracts factors of cell type-specific accessibility patterns. We used the class mean and365

first two principal components (PCs) of the class covariance matrix to extract information from366

each CLIMB class. These quantities can be interpreted similarly to factors identified with NMF,367

capturing di�erent cell type-specific accessibility patterns (Fig. 5a). For example, class 4 captures368

signals specific to K562 cells, while class 5 captures signals specific to T2 helper cells, GM12865,369

dendritic cells and classical monocytes. Class 7 contains accessible sites absent in di�erentiated370

erythroid, K562, HAP1, and fetal liver hepatic cells, yet present in all others. Classes 1 and 3371

both correspond to loci broadly accessible across cell populations, although interestingly they bear372

striking di�erences in their PCs. Class 1 shares much with class 7, indicating sample-invariant373

trends in the first PC. The second PC splits CD34+ hematopoietic progenitors, classical monocytes,374

T helper cells, and regulatory T cells from CD4+ and CD8+ T cells and B cells. Meanwhile,375

the first PC of class 2 indicates nearly half of the variance in this class is explained by signals in376

lymphoid cells, while the second PC splits undi�erentiated from di�erentiated CD34+ cells. Such377

di�erences suggest the possibility for functional di�erences inherent in these two di�erent classes of378

accessible loci.379

Because class 3 appeared distinct from classes 1 and 7 based on the PCs, we investigated these380
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Figure 5: CLIMB identifies patterns of chromatin accessibility across hematopoietic
cells relating to di�erent transcription factor binding signatures. a, CLIMB’s estimated
class means across all 38 cell populations are shown alongside the first two sets of eigenvector
coe�cients of the estimated class covariance matrices. Cell samples are ordered based on their
similarity according to model output. b, Footprint signatures for the 5 shown classes in a subset of
examined cell populations. c-f, Top 4 enriched motifs in class 1. g, Most enriched motif in class 4
h, Enriched motif specific to class 5.

loci further. We classified each locus into a PC1 or PC2 group using the PC scores based on the381
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first two PCs, which assess how well each PC describes the signal patterns across all samples382

for each locus. These subgroups of class 3 contain 37,746 and 29,759 loci for PC1 and PC2,383

respectively. We used GREAT to identify significant biological processes associated with each384

set of loci. Interestingly, we found that all top terms in the PC1 group relate to either brain385

stem morphogenesis or male gamete function. Many of the top terms from the PC2 group relate386

to lymphoid cells, such as B cell adhesion (FDR=8.06 ◊ 10≠7), negative regulation of eosinophil387

migration (FDR=1.79 ◊ 10≠5) and T cell antigen processing and presentation (FDR=1.44 ◊ 10≠4).388

Additionally, the median signal among lymphoid cells in the PC2 group (1.06) is significantly389

higher than that in the PC1 group (0.286, two-sided Wilcoxon signed rank test, P < 2.2 ◊ 10≠16).390

The di�erence in median signal between these two groups is much less for the non-lymphoid cells391

(0.659 and 0.935 for PCs 1 and 2). This suggests that PC1 describes signals that are more variable392

in lymphoid cells, while PC2 captures signals that are stronger and more consistent in those same393

cells.394

Classes of chromatin accessibility di�erentiate modes of TF occupancy. Vierstra et al.42 studied395

functional changes in regulation by TFs using TF footprinting data. They showed that footprint396

widths track closely with both the length of the contained canonical TF binding sequence(s)397

as well as the number of bound TFs, identifying sources of cell type-specific regulation. We398

interrogated whether classes of accessibility patterns identified by CLIMB and NMF relate to399

functional di�erences as captured by TF footprinting.400

CLIMB classes bear striking TF footprinting patterns across di�erent cell populations (Fig. 5b).401

For example, K562 shows a dramatic change in signal for class 4, aligning with the signal enrichment402

in Fig. 5a. As another example, class 5 has a relatively weak TF footprint signal in all shown cell403

types except the CD14+ cell; though the mean signal is dominated by a single T2 helper cell for this404

class, it is also specific to the myeloid CD14+ and dendritic cell populations. In contrast, though405

NMF identified 10 biologically interpretable classes, several of which have a counterpart class406

identified by CLIMB, di�erences between classes are not evident based on footprints (Supplementary407

Fig. S22). This suggests a greater sensitivity by CLIMB to separate weak patterns from strong,408

covarying ones.409

We used STREME43 to interrogate enrichment for canonical TF recognition sequences in each410

of these classes (Fig. 5c–e). Given that classes 1, 3, and 7 each contain broadly accessible sites,411

we expected to find enrichment for sequences associated with TFs important for general cellular412

maintenance. As an example, the top 4 sequences from class 1 (Fig. 5c) include the recognition413

sequences for Sp1 and KLF families, CTCF, and the ETS and AP1 families (Fig. 5c-f, respectively),414

though these motifs are enriched in all 3 classes. Further, the most significantly enriched motif415

in class 4 is the recognition sequence for the GATA proteins (Fig. 5g), while class 5 is uniquely416

enriched in the non-canonical recognition sequence for the octamer TFs (Fig. 5h). The presence of417

class-specific motifs further suggests that classes of chromatin accessibility patterns identified by418

CLIMB relate to di�erentially regulated genomic regions.419
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Discussion420

We present a new method, CLIMB, for joint analysis of genomic data collected from multiple421

experimental conditions. CLIMB gains statistical power to uncover biologically relevant signals422

by providing a means to extend typical pairwise analyses to higher dimensions. Moreover, when423

compared against methods designed for a higher-dimensional setting, we demonstrated that CLIMB424

remains powerful, flexible, and interpretable in many contexts.425

A major benefit of CLIMB is its ability to describe various patterns of condition-specificty in426

a mixture with corresponding association vectors that are estimated from the data. The model,427

aided by these association vectors, is scientifically interpretable. Estimated model parameters428

can elucidate similarity and interrelationships, and parsimoniously characterize representative429

association patterns present across experimental conditions. Importantly, the association vectors430

also serve as the basis for a novel and e�ective means of testing consistency of signals across several431

conditions or biological experiments.432

Since CLIMB’s mixture modeling framework is quite flexible, it is e�ective on a wide range433

of input data, as long as the data can be reported as numerical scores that reflect strengths of434

association. Though we have focused on specific molecular traits, CLIMB has the potential to435

be e�ective in other applications, such as multi-omics molecular QTLs analysis44. The current436

implementation of CLIMB supports no more than a hundred conditions for genome-wide analyses437

of the size similar to our DNase-seq analysis. Algorithmically faster implementations, such as438

variational Bayes fitting for the final Bayesian mixture model, will be explored in future studies for439

supporting larger numbers of conditions.440

Methods441

Constrained mixture model for estimating association vectors442

To estimate the association vectors, we consider the following mixture model. Define443

n := number of observations,
D := dimension of data,

H = (h[1], . . . , h[D]) := latent association vector
h[d] œ {≠1, 0, 1}, d œ {1, . . . , D},

such that the observed data follow the constrained normal mixture model444

x | H = hm ≥ „c
D(µm, �m, hm)

H ≥ Mult(fi1, . . . , fiM),
Mÿ

m=1
fim = 1

(3)

where hm is the mth latent class, m œ 1, . . . , M , and „c
D is a D-dimensional constrained normal445

distribution. Note that the number of candidate latent classes M changes as our methodology446
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prunes unsupported classes (see Pairwise fitting and subsequent methodological steps).447

If an observation has association label h[d] = 1 (h[d] = ≠1), this implies that it exhibits a448

significant positive (negative) association with condition d. Otherwise, if an observations has449

association label h[d] = 0, this implied that it exhibits a null association with condition d. To450

capture this relationship described by the association vectors, we set the following constrains on451

„c
D:452

1. Null associations in dimension d are assumed to follow the standard normal distribution453

(µd = 0, ‡d = 1).454

2. Non-nulls that have a positive (negative) association in dimension d have a strictly positive455

(negative) mean in dimension d.456

3. Nulls in one dimension do not correlate with non-null associations in any other dimension457

(�rt = 0 ’t ”= r if either h[r] = 0 or h[t] = 0).458

4. Non-nulls that show concordant (discordant) associations across dimensions—i.e., h[r] = h[t]459

(h[r] = ≠h[t]) where h[r] œ {≠1, 1}—are positively (negatively) correlated, that is, �rt > 0460

(�rt < 0).461

A 2-dimensional visualization of these constraints is in Fig. 1a. Though these constraints are de-462

sirable for interpretability, imposing them through latent association vectors leads to computational463

di�culties as the number of dimensions grows because there are 3D possible configurations of the464

latent association vectors. We thus developed CLIMB, a modeling strategy designed to circumvent465

the computational intractability that arises under these circumstances. We now describe the steps466

of CLIMB in greater detail.467

Detailed CLIMB procedure468

Pairwise fitting469

Composite likelihood (CL) methods45, which have been reviewed extensively46, are computationally470

e�cient modeling approaches that approximate the joint data model by making certain conditional471

independence assumptions. CL methods are frequently utilized in statistical literature. For instance,472

they can simplify a genetic model of recombination rates by assuming conditional independence473

given nearest neighbors along the genome47, or sidestep specifying a complex joint likelihood in474

favor of a product of bivariate models48. CL estimators are consistent, though they exhibit some475

loss in e�ciency.476

We are seeking to reduce model complexity in the number of latent classes by limiting the477

dimension of the data through pairwise CL. Let � = {(X·1, X·2), . . . , (X·D≠1, X·D)} be the set of478
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all pairs of dimensions of Xn◊D, giving |�| =
1

D
2

2
. The pairwise CL is479

LC(◊) : = LC(X·1, . . . , X·D | ◊)

=
D≠1Ÿ

r=1

DŸ

t=r+1
frt(· | ◊)

=
D≠1Ÿ

r=1

DŸ

t=r+1

nŸ

i=1

Mÿ

m=1
fim„c

2(Xi, rt | ◊rt, h(rt)
m )

(4)

where X·rt is the n ◊ 2 matrix of observations from dimensions r and t, h(rt)
m is the mth class in the480

set of all possible 2-dimensional latent association vectors hrt between dimensions r and t, and481

◊rt := {µrt, �rt} is the parameter vector describing the normal mixture between dimensions r and482

t. The signs of all elements of ◊rt are governed by hrt, as in Equation 2. Note that for each pair483

in �, each pairwise model, frt, is computationally tractable. This style of pairwise CL, termed484

“pairwise fitting”, has been utilized most frequently to alleviate computational di�culty when485

analyzing survey data with multivariate responses49,50,51,52,53. Because each dimension appears in486

D ≠ 1 di�erent pairwise fits, the mean and variance of each class are estimated D ≠ 1 times, leading487

to D ≠ 1 not necessarily equal estimates for the same mean and variance. It has been shown that,488

though these pairwise estimates are redundant and not necessarily concordant, they carry useful489

information about the true parameters53. Thus we will recycle these estimates to inform the priors490

in the final step of our procedure (see An empirical Bayesian model).491

Fitting each pairwise model frt amounts to fitting a finite normal mixture model arising from 9492

classes described by latent association vectors h œ Hrt where493

Hrt = {(≠1, ≠1), (≠1, 0), (≠1, 1), (0, ≠1), (0, 0), (0, 1), (1, ≠1), (1, 0), (1, 1)} ’r < t.

However, since the total number of latent classes in the full model is less than 3D, we expect that494

the true number of latent classes in some, if not all of the pairwise fits, is less than 9. Accordingly,495

for each pairwise fit, we perform model selection to filter out unsupported classes at the pairwise496

level using a previously described penalized maximum likelihood approach19. This method provides497

an automated model selection procedure for normal mixture models with theoretical guarantees of498

consistency in selecting the correct number of clusters (see Model selection details).499

Construction of D-dimensional association labels500

Next, we assemble the list of candidate D-dimensional latent association vectors by concatenating501

all the pairwise association vectors of adjacent dimensions estimated in the previous step. Only502

association vectors that are on this candidate list are retained for downstream analyses. Example 1503

shows a simple example for a 3-dimensional dataset.504

Example 1: Let Hrt ™ Hrt be the set of 2-dimensional latent association vectors present in a model505

of dimensions r and t. Now, consider a three-dimensional dataset, where latent association vectors506

(≠1, 0) œ H12 and (0, 1) œ H23. These two association vectors suggest that some observations507

belong to the null class in dimension 2, and that some of these observations exhibit negative signals508
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in dimension 1 [since (≠1, 0) œ H12], and positive signals in dimension 3 [because (0, 1) œ H23].509

Thus, the data support that (≠1, 0, 1) remains a candidate D-dimensional latent association vector.510

511

To perform this task computationally e�ciently, we construct a directed acyclic graphical512

representation of the pairwise classification results, designed in the spirit of a de Bruijn graph54,55.513

This novel representation allows one to e�ciently enumerate all plausible candidate D≠dimensional514

latent association vectors in the concatenation by applying a standard graph search algorithm.515

Specifically, we denote a vertex in the graph as (d, a), representing a possible association, a,516

at a given dimension, d. For a model with D dimensions, the graph has D layers and 3 possible517

associations at each layer: -1, 0, and 1. A pictorial view is in Supplementary Fig. S23. We write518

the vertex set as the collection of all ordered pairs519

V Õ =
Ó
(d, a) : d œ {1, . . . , D}, a œ {≠1, 0, 1}

Ô
.

The edge set is defined as520

E Õ =
IË

(d, a1), (d + 1, a2)
È

: d œ {1, . . . , D ≠ 1}, a1, a2 œ {≠1, 0, 1}, (a1, a2) œ Hd,d+1

J

.

The final graph also contains dummy source and target nodes S and T , such that the final521

vertex set V = V Õ
fi {S, T}. The source node has edges pointing to all nodes in layer 1, while each522

node in layer D has an edge pointing to the target node. The final edge set is then defined as523

E = E Õ
fi

IË
S, (1, ≠1)

È
,

Ë
S, (1, 0)

È
,

Ë
S, (1, 1)

È
,

Ë
(D, ≠1), T

È
,

Ë
(D, 0), T

È
,

Ë
(D, 1), T

ÈJ

.

Once the graph is constructed, depth-first search with backtracking56, a graph search algorithm524

that enumerates all paths in a graph from a given source node to a given target node, is used to525

enumerate all paths from S to T . Each path contains one node from each of the D layers plus the526

source and target nodes, and has D + 1 edges of the form527

IË
S, (1, a1)

È
,

Ë
(1, a1), (2, a2)

È
,

Ë
(2, a2), (3, a3)

È
, . . . ,

Ë
(D ≠ 1, aD≠1), (D, aD)

È
,

Ë
(D, aD), T

ÈJ

.

(5)
This path corresponds to the latent association vector (a1, . . . , aD).528

Pairwise fit-based pruning529

The initial construction of the graph in Construction of D-dimensional association labels only uses530

output from the D ≠ 1 pairwise fits between dimensions d and d + 1 for d œ {1, . . . , D ≠ 1}. Certain531

paths may be incompatible with the remaining
1

D
2

2
≠ (D ≠ 1) fits. We next remove these paths532

from the candidate list by checking for incompatabilities, in a manner similar to the continuation533

of Example 1 below.534
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Example 1 (continued): As shown previously, (≠1, 0, 1) was identified as a candidate D-dimensional535

latent association vector. If (≠1, 1) /œ H13, then the latent class (≠1, 0, 1) is discarded from down-536

stream analysis. This is because H13 shows that (≠1, 0, 1) is incompatible with the pairwise findings.537

538

The graph-based enumeration and pruning algorithm is a deterministic procedure that is539

guaranteed to produce a list of candidate latent classes that includes all true underlying classes with540

the possibility of additional empty classes, assuming the correct pairwise classes were estimated541

(Proposition 1). Further, the results are not a�ected by reordering of the dimensions (Proposition 2,542

see Supplementary Section 1 for formal proofs).543

Mixing weight-based class pruning544

Since the pairwise fit-based class pruning procedure is conservative, some remaining candidate545

classes still may not be present in the data (e.g, the (0, 0, 0) latent association label in the toy546

example in Fig. 1). To prune these classes, we estimate the weights of the remaining classes based547

on the pairwise fitting, and remove those whose weights are near zero. To elucidate which classes548

are unsupported, we devise an estimator that measures the concordance between the candidate list549

of D-dimensional association labels against the pairwise labels for each observation. Intuitively,550

our estimator is motivated by the assertion that if observation x belongs to a given class h, then551

x’s pairwise latent class assignment h(rt) should equal (h[r], h[t]) for most pairs r and t, r < t. Then,552

the weight for a D-dimensional class can be estimated by computing the proportion of observations553

that follow the pairwise labels of the D-dimensional association vector closely.554

To construct such an estimator, let x(rt)
i be the sub-vector of the ith observation vector555

corresponding to the pairwise fit between dimensions r and t. Then, let H(rt)
i be the pairwise556

association vector assigned to observation x(rt)
i . Assuming there are M remaining candidate557

D≠dimensional latent classes hm, m œ {1, . . . , M}, let h(rt)
m be the sub-vector of hm corresponding558

to dimensions r and t. Then, for a given D≠dimensional latent class hm, define559

–̂m =

qn
i=1

IC
q

r<t

1
H(rt)

i = h(rt)
m

2D

Ø

1
D
2

2
≠ ”

J

qM
mÕ=1

qn
i=1

IC
q

r<t

1
H(rt)

i = h(rt)
mÕ

2D

Ø

1
D
2

2
≠ ”

J (6)

as the normalized proportion of observations whose pairwise class labels are concordant, up to560

tolerance ”, with hm, where ” œ {0, 1, . . . ,
1

D
2

2
}, which controls the permitted level of discordance561

between an observation’s pairwise class labels and its D≠dimensional latent class. We show that562

–̂ is a reasonable estimator of the proportion of observations belonging to each class hm given the563

data (see Proofs, Proposition 3).564

When the list of remaining candidate latent classes is still large, even after the pruning steps in565

previous section, –̂m may be very close or exactly equal to 0 for many m resulting in a degenerated566

distribution for these classes in the mixture. This step will remove these classes, guaranteeing that567

the number of remaining classes M is bounded above by the sample size n. In practice, we find568

that this procedure often can reduce M to be less than 0.01n.569

To estimate –̂m, we first obtain each H(rt)
i by sampling the pairwise labels of the xi’s according570

to their posterior probabilities of belonging to each class estimated from the pairwise fits:571
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H(rt)
i ≥ Categorical(p̂1, . . . , p̂M(rt)) (7)

where p̂m = Pr[x(rt)
i œ h(rt)

m ], the estimated posterior probability that observation x(rt)
i belongs572

to class h(rt)
m for m œ {1, . . . M (rt)

}, and M (rt) is the number of pairwise latent classes estimated573

to be present in pairwise fit between dimensions r and t. Because –̂ := {–̂1, . . . , –̂M} estimates574

the proportion of observations belonging to each class hm, m = 1, . . . , M , we treat –̂ as the prior575

probabilities for the class mixing weights in the D≠dimensional model in the next and final step of576

CLIMB (see next section).577

The number of observations needed to obtain a good estimate –̂ is a�ected both by the578

dimension of the data and the accuracy of estimates made during pairwise fitting. For datasets579

with well-separated clusters, a more stringent ” (i.e. ” < .15 ◊

1
D
2

2
) is recommended, whereas a580

relaxed ” (i.e. ” œ [.15 ◊

1
D
2

2
, .30 ◊

1
D
2

2
]) is more suited for datasets with less separated clusters to581

avoid removing true classes that are small in size. This heuristic guide may be refined by then582

selecting ” within this range where M remains constant for ”Õ
œ {”, ” + 1, . . . , ” + c} for some c Ø 1.583

While this step of our methodology requires user input, it requires similar levels of user input as in584

existing methods.585

An empirical Bayesian model586

With the steps described thus far, we are able to pare down the number of latent classes to a587

more computationally manageable size for regular mixture modeling. Next we reestimate the588

parameters in the D-dimensional model (1) using an empirical Bayesian approach, recycling the589

pairwise estimates as prior hyperparameters. We employ the following hierarchical structure to590

represent the constrained mixture model:591

xi | µh, �h, Hi = h ≥ „c
D(µh, �h, h) (8a)

µh | �h, Hi = h ≥ „D(µ0
h, �h/Ÿh) (8b)

�h | Hi = h ≥ IWD(�0
h, ‹h) (8c)

Hi | fi ≥ Mult(fi) (8d)
fi ≥ Dir(–) (8e)

Quantities µh, �h’h and fi are estimated using MCMC. The remaining terms Ÿh, �0
h, and592

‹h’h and – are hyperparameters.593

This sort of representation incorporates typical prior distributions and a constrained likelihood594

model, and has been exploited frequently57,58,59 for its desirable posterior structure which is suitable595

for Gibbs sampling. Similarly here, by applying the necessary parameter constraints, defined596

by the latent association vectors, into the data model (Equation 8a), the parameters (µh, �h)597

possess the correct constraints in the posterior. That is, µh follows a multivariate truncated normal598

distribution with truncation points dictated by the constraints defined in (8a), while �h follows599

the constrained inverse-Wishart distribution defined presently.600

Let � be distributed according to a D≠dimensional constrained inverse-Wishart IW
c
D with601

constraints imposed by latent class h, and let IWD be an unconstrained D≠dimensional inverse-602

22

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2022. ; https://doi.org/10.1101/2020.11.18.388504doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.18.388504
http://creativecommons.org/licenses/by-nd/4.0/


Wishart density. Then603

f(�; �, ‹, h) = IW
c
D(�; �, ‹, h)

= CIW · IWD(�; �, ‹) ◊
Ÿ

r<t

Ë
sgn(�rt) = h[r] · h[t]

È (9)

where CIW is a normalizing constant.604

We do inference on this model using a Metropolis Hastings within Gibbs algorithm, the details605

of which are in Supplementary File 1. With this procedure, we estimate fi and µh and �h ’h.606

An important feature of the mixture model used by CLIMB is that, since the labels h explicitly607

define constraints on the parameters for each class, label switching is not a concern during the608

inference process. Output from the pairwise fits are used to calculate hyperparameters –, µ0
h, and609

�0
h: computation of – was described in Equation 6, while µ0

h, and �0
h are aggregations of pairwise610

parameter estimates constructed using a tactic described in MCMC details. Parameters Ÿh and611

‹h ¥ n–h, where –h is the prior mixing weight for class h. We remove classes that satisfy n–h Æ D,612

since such classes are unlikely to have members, and an inverse-Wishart distribution is singular for613

these classes.614

Testing consistency of e�ects615

The model fit output from CLIMB can be used to conduct hypothesis tests; in particular, we616

are interested in identifying consistency of signals across conditions. We propose a new test617

that generalizes the partial conjunction hypothesis test60, a standard hypothesis used for testing618

consistency, defined as619

H
u/D
0 := less than u out of D instances of the observed e�ect are non-null, versus

H
u/D
1 := at least u out of D instances of the observed e�ect are non-null

. (10)

When seeking consistent signals, one may care not only about the significance of the signals,620

but also the sign of the e�ect. That is, if an observation is significantly positive in one experiment621

but significantly negative in another, then the observation should not be considered as consistent.622

Therefore, we propose a simple statistic for assessing the consistency of the sign of the e�ect across623

dimensions that generalizes the partial conjunction hypothesis to consider sign:624

H
u/D
0 := less than u out of D instances of the observed e�ect are concordant

with a specified association pattern, versus
H

u/D
1 := at least u out of D instances of the observed e�ect are concordant

with a specified association pattern

. (11)

To describe the rejection region (RR) for this hypothesis, first define hm
[d] as the dth element of625

latent association vector hm. Then,626
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P u/D+ :=
Mÿ

m=1
Pr(xi œ hm | x) ·

Ë Dÿ

d=1
(hm

[d] = 1) Ø u
È

P u/D0 :=
Mÿ

m=1
Pr(xi œ hm | x) ·

Ë Dÿ

d=1
(hm

[d] = 0) Ø u
È

P u/D≠ :=
Mÿ

m=1
Pr(xi œ hm | x) ·

Ë Dÿ

d=1
(hm

[d] = ≠1) Ø u
È

(12)

where Pr(xi œ hm | x) is the posterior probability of belonging to the class described by627

association vector hm. We define P u/D = max
Ó
P u/D+, P u/D0, P u/D≠

Ô
, and RR :=

Ó
x : P u/D > b

Ô
,628

where b is the confidence threshold of at least 0.5. For each observation, this calculation sums629

over its posterior probabilities of belonging to classes with association vectors indicating su�cient630

consistency.631

Letting T be the number of MCMC iterations retained after burn-in, the quantities in (12) are632

estimated as633

P̂ u/D+
i = 1

T

Tÿ

t=1

I
Mÿ

m=1
(H(t)

i = hm) ·

Ë Dÿ

d=1
(hm

[d] = 1) Ø u
ÈJ

P̂ u/D0
i = 1

T

Tÿ

t=1

I
Mÿ

m=1
(H(t)

i = hm) ·

Ë Dÿ

d=1
(hm

[d] ”= 0) Ø u
ÈJ

P̂ u/D≠
i = 1

T

Tÿ

t=1

I
Mÿ

m=1
(H(t)

i = hm) ·

Ë Dÿ

d=1
(hm

[d] = ≠1) Ø u
ÈJ

(13)

for each observation i, leading to P̂ u/D
i = max

Ó
P̂ u/D+

i , P̂ u/D0
i , P̂ u/D≠

i

Ô
, and we reject those xi634

with P̂ u/D
i > b. Large values of P̂ u/D

i correspond to consistent e�ects.635

This test is flexible, and can be adapted to several purposes. For example, to test the typical636

partial conjunction hypothesis, one could modify the quantities in Equation 13 to637

P̂ u/D
i := 1

T

Tÿ

t=1

I
Mÿ

m=1
(H(t)

i = hm) ·

Ë Dÿ

d=1
(hm

[d] ”= 0) Ø u
ÈJ

. (14)

In the analysis of VISION RNA-seq data, we tested for consistency in all -1, 0, and 1 groups.638

Thus, we applied our statistical test using all quantities in Equation 12 and letting u = 5, such639

that P 5/5 = max
Ó
P 5/5+, P 5/50, P 5/5≠

Ô
. Then, a consistently expressed gene is one that falls within640

the RR :=
Ó
x : P 5/5 > 0.5

Ô
, and all others were called di�erentially expressed.641

Simulations and comparisons642

We used simulations to compare CLIMB to SCREEN16 and mash14, two methods designed for643

a similar purpose as CLIMB, as well as DESeq221, a popular method for pairwise di�erential644

expression analysis. SCREEN was designed specifically to test for consistent signals across many645

experiments. Like CLIMB, SCREEN employs a mixture model with classes governed by latent646
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association vectors. SCREEN tackles the issue of computational intractability associated with647

these classes in two ways. First, it assumes the association vectors to be binary, rather than ternary.648

This reduces the growth rate of candidate latent classes to 2D, but comes at the cost of eliminating649

the method’s ability to detect inverse associations and signs of e�ects. Second, SCREEN partitions650

the data’s original conditions into clusters using a network community detection algorithm as an651

initial step, fitting separate models to each cluster. SCREEN next uses a heuristic to test for652

consistent signals across all conditions.653

Mash, on the other hand, captures the relationship between observations across conditions654

through the covariances of each cluster in the mixture. Mash assumes the data come from a655

multivariate normal mixture, restricting each cluster to have zero mean. It sidesteps computational656

issues by not explicitly specifying the latent association vectors; instead, it models di�erent clusters657

by specifying a list of candidate covariances which are generated a priori. Since the assumed658

distribution is symmetric and unimodal, model fitting is simplified to a convex optimization problem659

that can be computed e�ciently. Unlike CLIMB, SCREEN, and mash, DESeq2 was not designed660

for joint testing of conditions, but for testing di�erential expression pairwise between conditions.661

In order to simulate data that mimic empirical data, we first fit CLIMB to real datasets662

(ChIP-seq, di�erential analysis of RNA-seq, and erythroid lineage RNA-seq data described in663

VISION CTCF ChIP-seq, Shukla et al.61, and VISION RNA-seq, respectively). Parameter estimates664

similar to those obtained from these model fits were used to simulate n = 15, 000, 15, 000, and665

21, 303 observations with 18, 11, and 5 dimensions, respectively, according to the constrained666

normal mixture model in Equation 2 (see Supplementary Tables S4 – S12 and Supplementary667

Figs. S24 – S26 for specific parameter settings for all simulations). Since DESeq2 requires replicates668

for each experimental condition, for Simulation 3 we simulated 2 replicates per condition under the669

same model, but with a correlation of 0.96 between replicates. Since CLIMB is more appropriate670

for log-transformed RNA-seq data, while DESeq2 is used on counts, i.e. untransformed data, we671

inputted a rounded 2X , where X is the simulated data, to DESeq2 for analysis. The simulated672

replicates were averaged before passing to CLIMB.673

Like the real datasets, all simulated data contain shared e�ects that are positively or negatively674

correlated across dimensions and e�ects that are unique to one dimension. We applied CLIMB,675

SCREEN, and mash to Simulations 1 and 2, since these analyses focus on identifying signal patterns676

across all conditions. We applied CLIMB and DESeq2 to Simulation 3, since the goal of this677

analysis is specifically to detect di�erential expression.678

Though a usual goal of analyzing these types of data is to uncover the true association patterns679

of observations across conditions, of all methods, only CLIMB can report the full latent association680

vectors. To provide a fair comparison among CLIMB, mash, and SCREEN, we test the partial681

conjunction hypothesis across a series of levels u. We do this as SCREEN’s sole functionality is682

to test this hypothesis, while CLIMB and mash can be utilized for this purpose. By evaluating683

a range of u, we can obtain a comprehensive assessment of each method’s ability to identify684

consistent signals at di�erent levels of condition-specificity. To compare against DESeq2 in the685

case of multi-condition di�erential expression, we identified genes that were di�erentially expressed686

along the lineage using the same procedure as in the section VISION RNA-seq.687

We assessed the performance of each method by comparing the identified consistent signals with688

the truth and computing the precision and recall at these thresholds (Supplementary Fig. S3 – S5).689

Precision and recall were computed as690
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precision = |significant e�ects fl true e�ects fl correctly signed|

|significant e�ects|

recall = |significant e�ects fl true e�ects fl correctly signed|

|true e�ects|
where significant e�ects are observations that have been estimated to be consistent, true e�ects691

are observations that truly are consistent, and correctly signed e�ects are observations whose true692

and estimated associations have the same sign. This computation is designed such that an e�ect693

correctly identified by an algorithm as significant, but whose e�ect was missigned, is considered a694

false positive. The sign requirement was omitted for DESeq2. Analogous precision-recall curves for695

simulations 1 and 2 that do not incorporate sign information are in Supplementary Fig. S6 and S7.696

Separately, we sought to evaluate how accurate CLIMB is at the pairwise fitting step. While697

the pairwise modeling need not be perfect, it should retain true classes at the pairwise level and698

have reasonable classification accuracy, such that true classes are likely to be retained in the final699

model. We assessed CLIMB’s performance during pairwise fitting by calculating classification700

accuracy and counting the number of missed classes and superfluous classes for each pairwise fit701

and each simulation (Supplementary Fig. S8). Indeed, CLIMB’s pairwise fitting was more likely to702

retain extra classes than it was to remove true classes from the model.703

Data availability704

The data are available at NCBI’s Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/)62705

under accession code GSE156074.706

Code availability707

CLIMB is implemented in an R package, freely available on GitHub under an Artistic-2.0 license708
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