

High-dimensional association detection in large scale genomic data

Hillary Koch

Dept. of Statistics, Pennsylvania State University

Cheryl A. Keller

Dept. of Biochemistry and Molecular Biology, Pennsylvania State University

Guanjue Xiang

Center for Computational Biology and Bioinformatics, Pennsylvania State University

Belinda Giardine

Dept. of Biochemistry and Molecular Biology, Pennsylvania State University

Feipeng Zhang

School of Economics and Finance, Xi'an Jiaotong University

Yicheng Wang

School of Mathematics and Statistics, Lanzhou University

Ross C. Hardison*

Dept. of Biochemistry and Molecular Biology, Pennsylvania State University

Qunhua Li†

Dept. of Statistics, Pennsylvania State University

August 29, 2022

Abstract

Joint analyses of genomic datasets obtained in multiple different conditions are essential for understanding the biological mechanism that drives tissue-specificity and cell differentiation, but they still remain computationally challenging. To address this we introduce CLIMB (Composite LIkelihood eMpirical Bayes), a statistical methodology that learns patterns of condition-specificity present in genomic data. CLIMB provides a generic framework facilitating a host of analyses, such as clustering genomic features sharing similar condition-specific patterns and identifying which of these features are involved in cell fate commitment. We apply CLIMB to three sets of hematopoietic data, which examine CTCF ChIP-seq measured

*email: rch8@psu.edu

†email: qunhua.li@psu.edu

in 17 different cell populations, RNA-seq measured across constituent cell populations in three committed lineages, and DNase-seq in 38 cell populations. Our results show that CLIMB improves upon existing alternatives in statistical precision, while capturing interpretable and biologically relevant clusters in the data.

1 Uncovering changes across multiple biological conditions is a lasting theme in large-scale genomic
2 data analyses across many types of studies. Examples include the analysis of tissue-specificity
3 of gene expression patterns^{1,2}, differential protein binding across cell types^{3,4,5}, or causal single
4 nucleotide polymorphisms (SNPs)^{6,7,8,9} and pleiotropic genetic variants¹⁰ across many genome-wide
5 association (GWA) studies. We are specifically motivated by two contexts:

6 **Motivating context 1** *Classification by association patterns*: if a set of subjects has been
7 observed in many conditions, one may seek to assign subjects to classes based on the patterns of
8 association they exhibit across biological conditions. For example, when studying plasticity of gene
9 expression across multiple human tissues, joint analysis of these data might ask which sets of genes
10 are collectively up-regulated together in some tissues, but down-regulated in others.

11 **Motivating context 2** *Testing for consistent findings across many experiments*: one may desire
12 to determine which signals are consistent across studies. For example, if one collects several
13 ChIP-seq datasets under different experimental conditions, one may ask which loci are consistently
14 bound in a fixed number of those conditions.

15 Both motivating contexts concern determining observations that have either null or significant
16 associations across a collection of conditions. One standard approach to jointly analyzing a
17 collection of conditions applies general clustering algorithms such as K -means or hierarchical
18 clustering. Though these techniques can group signal profiles with similar association patterns
19 together, their results do not directly provide information on condition specificity, such as which
20 signals are consistent or differential across conditions. Somewhat similarly, time series-inspired
21 methods such as the short time-series expression miner¹¹ may be applied to genomic data collected
22 at multiple time points. However, this approach assumes a temporal relationship across conditions
23 and groups observations according to changes relative to a temporal baseline. This temporal
24 assumption may not be applicable for studying genetic pleiotropy or plasticity in gene regulation,
25 and again cannot be used to identify patterns of condition specificity. Alternatively, one may
26 identify observations significantly associated with each condition separately, and use these individual
27 outcomes to determine which relationships are significantly shared or differential across conditions.
28 This technique, which is commonly used in expression quantitative trait locus (eQTL) analyses¹,
29 does not leverage any information-sharing among conditions, and is thus underpowered to identify
30 shared or differential associations^{12,13}. Urbut et al.¹⁴ improved upon single-condition analyses
31 with a statistical model for joint eQTL analysis. This approach shows increased power; however,
32 it makes some restrictive modeling assumptions, such as data symmetry, that are not always
33 appropriate, especially when seeking consistent signals across conditions, as we will illustrate later.
34 Pairwise analyses, commonly employed for differential expression analysis, also improve upon
35 analyses of individual conditions, but still do not offer the power of a joint analysis when more
36 than two conditions are present. Moreover, when more than two conditions are examined, it is
37 unclear how to properly aggregate findings from a series of pairwise comparisons.

38 To provide interpretable joint analysis of multiple conditions, several others have introduced
39 “association vectors” to describe an observation’s specific pattern of association across conditions;
40 these approaches leverage mixture models to cluster observations into groups with different
41 association vectors. For example, Andreassen et al.¹⁰ apply association vectors to the study of
42 pairs of GWA studies. In this two-condition setting, they assume the presence of four association
43 vectors $\{(0, 0), (0, 1), (1, 0), (1, 1)\}$, where a SNP described by the $(0, 0)$ association vector is null
44 in both studies, a SNP from $(1, 1)$ is non-null in both studies, and a SNP from $(0, 1)$ or $(1, 0)$ is
45 null in one of the studies, but non-null in the other. Some^{15,16} similarly use association vectors to
46 find reproducible observations across replicated experiments, while others^{17,18} leverage them to
47 determine which SNPs are eQTLs across various tissues.

48 These association vectors can be appreciated as an alternative to binarization or ternarization
49 of genomic signals, since they assign binary or ternary *labels* to the data. A label directly reflects
50 the pattern of condition specificity of the observations in its associated cluster. Further, as a
51 mixture modeling approach, these labels naturally allow for heterogeneity in signals, resulting in
52 greater model flexibility.

53 Yet, a remaining challenge is that models that leverage these association vectors suffer from
54 computational intractability for even a modest number of conditions^{15,17}. To understand this
55 issue, consider D conditions: Let $\mathcal{H} = \{H = (h_{[1]}, \dots, h_{[D]}): h_{[i]} \in \{-1, 0, 1\}\}$ be the set of
56 all 3^D possible configurations of association vector H , such that an observation described by an
57 association vector with $h_{[i]} = 1$ ($h_{[i]} = -1$) has a positive (negative) association in condition i .
58 It is clear that this model formulation becomes computationally prohibitive even for single-digit
59 D because the total number of possible association vectors grows exponentially with D , possibly
60 resulting in the number of model parameters exceeding the number of observations. In response to
61 this, several restrictive assumptions are imposed. For example, Amar et al.¹⁶ somewhat alleviate
62 computational burden by assuming all associations must be positive, and estimate partial latent
63 associations for subgroups of conditions with a heuristic approach. This heuristic reduces statistical
64 power and resolution to test for consistent findings and cannot provide a single unified clustering
65 of observations since it is not a true joint analysis. Moreover, this approach does not distinguish
66 an observation that is significant in opposite directions in two conditions from an observation that
67 exhibits consistent direction of association across conditions. Alternatively, Urbut et al.¹⁴ make
68 computational gains by assuming all observations come from a uni-modal distribution centered
69 over zero, but this restriction does not always hold in practice.

70 We present a methodology we refer to as CLIMB (Composite Likelihood eMpirical Bayes) that
71 allows us to tractably estimate which latent association vectors are likely to be present in the
72 data. Our method is motivated by the observation that the true number of latent classes, each
73 described by a different association vector, cannot be greater than the sample size. Thus, in higher
74 dimensions, the number of true classes is very small relative to 3^D , and many candidate classes have
75 no members. By identifying these classes through a computationally efficient pairwise composite
76 likelihood (CL) model and rigorously filtering out unsupported latent classes, we elucidate sparsity
77 in class membership. In doing so, the aforementioned computational intractability issue falls
78 away, and a joint Bayesian analysis, informed by the initial CL modeling, can be performed.
79 Using ChIP-seq, RNA-seq, and DNase-seq data collected from hematopoietic cell lineages, we
80 demonstrate that CLIMB compares favorably against existing alternatives based on improved
81 statistical power, precision, and model interpretability for investigating cell type-specific protein

82 binding and chromatin accessibility, and lineage-specific gene expression patterns.

83 Results

84 Overview of CLIMB

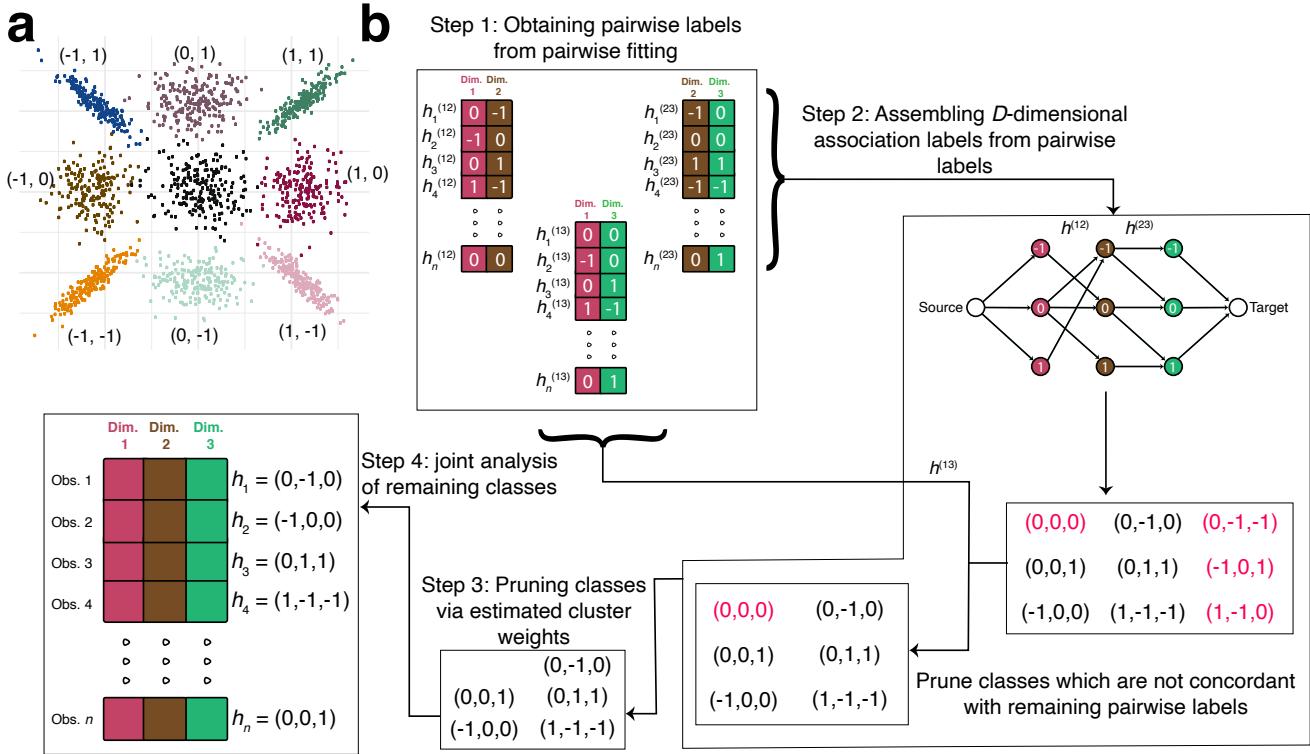


Figure 1: **Toy examples of CLIMB.** **a**, Illustration of the considered model using a simulated dataset with two dimensions. The 9 classes are annotated by their corresponding latent association vectors. The null class $(0, 0)$ lies in the center over the origin. Classes that are non-null in at least one dimension exhibit a location shift. Only observations from classes that are non-null in both dimensions are correlated. **b**, Flowchart of CLIMB with a 3-dimensional example, with true classes whose association vectors are denoted h_1, h_2, h_3, h_4 , and h_n . Step 1 fits 3 pairwise models. Pairwise association vectors are estimated for each observation in each pairwise fit. In Step 2, we enumerate candidate 3-dimensional association vectors using a graph-based algorithm based on the estimated pairwise association vectors (shown as edges) between dimensions 1 and 2, and the estimated pairwise association vectors between dimensions 2 and 3. 9 candidate association vectors are found on the graph, but those that are colored in red are not truly present in the data. Association vectors that are not concordant with estimated association vectors from the pairwise fit between dimensions 1 and 3 are pruned. With 6 remaining candidates, one computes their prior weights (Step 3), then in Step 4 fits a Bayesian mixture model to the original, 3-dimensional data using the number of classes remaining after Step 3.

85 We model the multi-conditional data using a constrained mixture model that encodes condition-
 86 specificity through latent association labels -1, 0, and 1 (Fig. 1a). The parameter constraints
 87 in the model enforce some general patterns commonly observed under condition-specificity: (1)
 88 observations that are associated with a condition (i.e., association label ± 1) have a stronger
 89 average signal than those that are not (i.e., association label 0), and (2) observations that are
 90 associated with multiple conditions correlate with one another within a given cluster. Specifically,
 91 we assume the data are summarized as some score, and transformed to a Z -score, with larger
 92 values corresponding to stronger signals.

93 Then, letting n be the sample size, D be the dimension of the data, and $H = (h_{[1]}, \dots, h_{[D]})$
 94 be a ternary latent association vector, the observed data \mathbf{x} across D conditions follow the normal
 95 mixture model

$$\mathbf{x} | H = h_m \sim \phi_D^c(\boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m, h_m) \\ H \sim \text{Mult}(\pi_1, \dots, \pi_M), \quad \sum_{m=1}^M \pi_m = 1 \quad (1)$$

96 where h_m is the m^{th} latent class, $m \in 1, \dots, M$, and ϕ_D^c is a D -dimensional constrained normal
 97 distribution. The constrained normal distribution, defined presently, is used to impose association
 98 label-driven constraints:

$$\phi_D^c(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}, h) = \phi_D(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}), \text{ subject to} \\ \text{sgn}(\mu_d) = h_{[d]} \quad \forall d \in \{1, \dots, D\} \text{ and} \\ \text{sgn}(\Sigma_{rt}) = h_{[r]} \cdot h_{[t]} \quad \forall r \neq t \quad (2)$$

99 where μ_d is the d^{th} element of $\boldsymbol{\mu}$ and Σ_{rt} is the $(r, t)^{th}$ element of $\boldsymbol{\Sigma}$.

100 Though the possible number of latent classes M explodes combinatorially, many latent classes
 101 likely have no members. In order to estimate the actual number of classes, we leverage information
 102 about association patterns between pairs of conditions through a pairwise composite likelihood
 103 model to eliminate classes that are unlikely to be present in the data, making the final model
 104 computationally tractable. This filtering works as depicted through a toy example in Fig. 1b, and
 105 is briefly described in four major steps:

- 106 1. *Pairwise fitting.* Fit a bi-dimensional model for each of the $\binom{D}{2}$ pairwise combinations
 107 of dimensions through a pairwise composite likelihood framework. The total number of
 108 possible latent classes in each bi-dimensional case is 9, and therefore tractable for typical
 109 genomic datasets. For each pair of dimensions, we estimate which subset of the 9 possible
 110 configurations of the latent association vector are supported by the data across those 2
 111 dimensions by utilizing a penalized mixture model¹⁹. This mixture model penalizes the class
 112 mixing weights, such that classes that are likely without members are removed from the
 113 pairwise model. Unlike many composite likelihood approaches that assume independence
 114 across dimensions^{15,20}, the pairwise model takes account of dependence between each pair of
 115 conditions.
- 116 2. *Assembling D -dimensional association labels from pairwise labels.* Use the estimated pairwise
 117 association vectors to assemble a preliminary list of feasible D -dimensional association vectors.

118 D -dimensional association vectors that are inconsistent with inferred pairwise labels will be
119 deemed infeasible and pruned.

120 3. *Pruning association labels with insufficient cluster weights.* Estimate the mixing weights for
121 the remaining latent classes using the estimates obtained from the pairwise fits, pruning
122 classes with insufficient weight and ensuring that $M \leq n$.

123 4. *Empirical Bayesian estimation of the full D -dimensional model.* Reestimate parameters for
124 the D -dimensional mixture model based on the final list of classes using a Bayesian approach.
125 Inform prior hyperparameters with parameter estimates obtained from the pairwise fits. This
126 final step ensures information across all dimensions is considered.

127 CLIMB's model output is useful for a host of analyses, including: (1) using association labels
128 and class membership to elucidate condition-specificity, (2) using class membership probabilities to
129 test for consistency in signals across conditions, (3) using estimated cluster covariances to infer
130 similarity between conditions, and (4) using estimated cluster means to obtain a parsimonious
131 characterization of dominant patterns of condition-specificity. See *Methods* and supplement for
132 details on these downstream analyses.

133 Simulations

134 We used simulations to compare CLIMB to the available methods for multiconditional analysis,
135 Urbut et al.'s mash¹⁴ and Amar et al.'s SCREEN¹⁶. We selected these two methods to compare
136 against because they are also designed to analyze many conditions for obtaining information on
137 condition specificity. In a separate simulation, we also compare CLIMB to DESeq2²¹, a widely used
138 tool for pairwise differential expression analysis. Although DESeq2 focuses on pairwise comparisons,
139 its wide adoption makes it a worthy comparison in the context of RNA-seq analysis.

140 We consider three data types commonly encountered in genomic analyses: ChIP-seq data,
141 differential analysis output from RNA-seq data collected from treatment/control tissue pairs, and
142 RNA-seq data. The first simulation aims to study cell type-specificity of patterns of protein
143 binding across different cell types (motivating context 1), the second aims to identify which genes
144 are dysregulated in a consistent manner across different diseased tissues when compared against
145 normal tissues, and the final simulation aims to identify genes whose expression levels change
146 across cell differentiation (motivating context 2). These datasets exhibit different distributional
147 structures. For example, signals in simulation 1 have a positive sign (Supplementary Fig. S1a), but
148 signals in simulations 2 and 3 can be positive or negative. The strictly positive nature of signals in
149 simulation 1 arises from the fact that identified protein binding sites from ChIP-seq data are output
150 from a peak-calling routine, where each signal indicates evidence for the presence of a ChIP-seq
151 peak at a given genomic location. In contrast, the data in simulation 2 are derived from P -values
152 that indicate whether genes are relatively over- or under-expressed in a diseased tissue relative
153 to a normal counterpart tissue. This translates to Z -scores exhibiting both positive and negative
154 signals, and data that are more symmetrically distributed about the origin (e.g., see Supplementary
155 Fig. S1b). A unifying goal of all simulations is to evaluate the capacity of all methods to adapt
156 to data types with different distributions. See *Testing consistency of effects* for description of

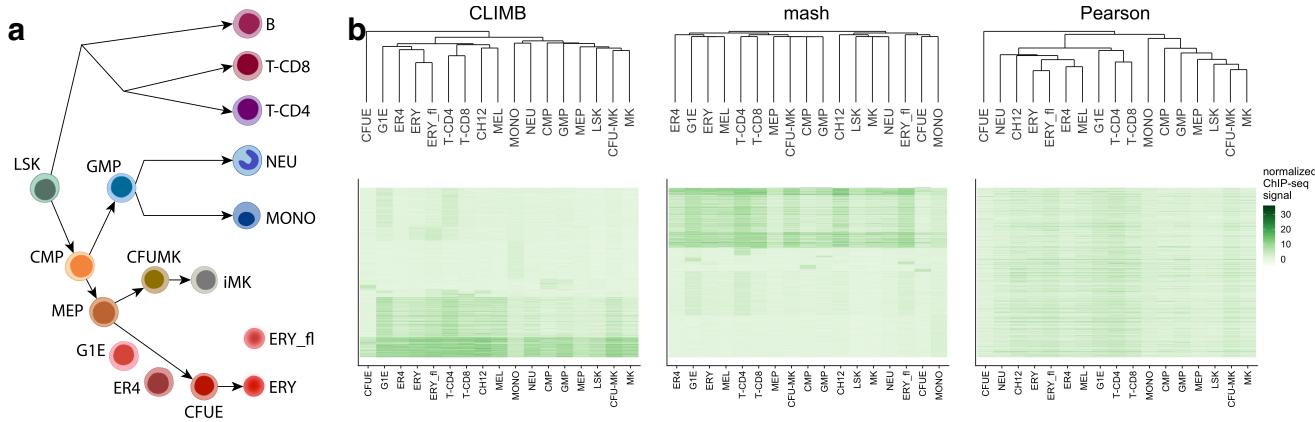


Figure 2: CLIMB uncovers interrelationships among hematopoietic cell populations based on CTCF binding patterns. **a**, Expected relationship among cell populations. **b**, Heatmaps displaying bi-clusterings of all ChIP-seq data for chromosome 11 based on CLIMB, mash, and Pearson correlation. The columns, corresponding to different cell populations, are ordered according to the dendrogram for each clustering method. The rows, corresponding to each loci, are ordered based on class membership (for CLIMB and mash) and Pearson correlation (for Pearson), respectively. (CH12 and MEL are murine lymphoma and erythroleukemia cell lines, respectively, and thus do not clearly occupy one space in the lineage, though CH12 is most related to B cells, and MEL is a mature erythroid cell type.)

157 statistical test used; see *Simulations and comparisons* and supplement for further details on the
 158 simulation procedure. A computational cost analysis is also conducted (Supplementary Fig. S2).

159 CLIMB uniformly performed better than SCREEN and mash in simulations 1 and 2 across
 160 several quantitative metrics (Supplementary Fig. S3–S9), including sensitivity and precision.
 161 CLIMB, mash, and SCREEN respectively had average F1-scores of 0.97, 0.77, and 0.74 for
 162 simulation 1, and 0.46, 0.45, and 0.12, for simulation 2, at an α -level of 0.05. CLIMB also
 163 outperformed DESeq2 in simulation 3, for identifying differentially expressed genes in a multi-
 164 condition setting (Supplementary Fig. S5). For this simulation, CLIMB and DESeq2 had F1-scores
 165 of 0.65 and 0.48, respectively, at a confidence threshold of 0.05. If effects are not shared in more
 166 than 2 conditions, as they were in our simulations, then CLIMB gains no power over DESeq2 or
 167 other pairwise methods. These results indicate that CLIMB is well-suited for identifying patterns
 168 of association in the data as well as consistent and differential signals.

169 Case studies

170 We showcase CLIMB’s utility by analyzing multiple datasets collected as part of the VISION
 171 (ValIdated Systematic IntegratiON of hematopoietic epigenomes)^{22,23,24} and ENCODE²⁵ projects.
 172 These VISION and ENCODE data were collected from, respectively, 17 murine and 38 human
 173 hematopoietic cell populations across differentiation. The primary goal of the VISION project is
 174 to understand the interplay between transcriptomic variation and mechanisms of gene regulation
 175 during hematopoiesis, while the ENCODE project aims to describe functional elements in the
 176 human genome more broadly.

177 First, we study VISION CTCF ChIP-seq data in 17 hematopoietic cell populations²⁶. While
178 CTCF binding sites that are invariant across cell types are known to maintain chromatin structures²⁷,
179 the function of more cell type-specific CTCF binding sites remains largely unknown^{5,28,29}. We show
180 how CLIMB can be used to aid in tackling this question. Next, we examine VISION RNA-seq data
181 collected from a subset of these cell populations to probe the transcriptomic changes that commit
182 multipotent cells to different fates. Results from these analyses demonstrate CLIMB's ability
183 to elucidate interrelationships between cell populations in different genomic data types, produce
184 interpretable classes, and conduct lineage-specific differential analyses. Finally, with ENCODE's
185 DNase-seq data, we illustrate CLIMB's ability to identify novel classes of tissue-specific regulatory
186 elements.

187 VISION CTCF ChIP-seq

188 We applied CLIMB to CTCF ChIP-seq of chromosome 11 from 17 murine cell populations. This
189 analysis yielded a final model that included 15 non-empty classes. Among these, 2 classes described
190 constitutive binding behavior, while the remaining were more cell type-specific (see Supplementary
191 Fig. S10 for an illustration of all classes). Similar results are obtained for chromosome 7 (see
192 Supplementary Section *Analysis of CTCF ChIP-seq on chromosome 7*).

193 *Constitutively bound CTCF is the dominant class.* Previous work has noted that CTCF binding
194 is largely consistent across cell types^{5,27,30}. We identified two such classes of conserved loci from
195 CLIMB's model fit. The first is the class of all ones, corresponding to the collection of loci bound
196 by CTCF across all cell types. The second is the class of all ones except for the CFUE population,
197 corresponding to the collection of loci bound by CTCF in all but the CFUE cell population, likely
198 reflecting lower signal-to-noise ratio in the CFUE dataset. Indeed, the CFUE experiment had the
199 lowest quality as measured by Fraction of Reads in Peaks (FRiP) score³¹ (0.031, compared against
200 next lowest iMK with FRiP score 0.054 and CMP with FRiP score 0.097). In agreement with
201 previous studies, these two classes make up $\sim 36\%$ of all loci in the analysis. Moreover, consistent
202 with others^{30,32}, the average signal strength (based on the estimated class means) for bound loci
203 within the two constitutive classes is significantly larger than the average signal strength for bound
204 loci that are not widely shared across cell populations (one-sided *t*-test, $P = 5.02 \times 10^{-12}$).

205 *Differential CTCF binding is predictive of cell population relationships.* Although CTCF binding
206 is largely consistent across cell types, previous studies suggested that changes in its binding patterns
207 modify gene expression programs, affecting developmental cues or cell function^{5,32,33}. We asked
208 whether the classes discovered by CLIMB support the idea that changes in CTCF binding relate to
209 hematopoietic development. To address this question, we clustered the cell populations based on
210 the estimated class covariance matrices³⁴ (see supplementary *Implementation details*). CLIMB's
211 clustering, shown in Fig. 2b, closely reflects the expected lineage relationship in Fig. 2a. This
212 result supports the claim that changes in CTCF binding occur in a lineage-specific manner, and
213 that CLIMB is well-suited to tease out this information from the data. In contrast, the clusterings
214 based on mash and the standard hierarchical clustering using Pearson correlation depart further
215 from the expected lineage relationship (Baker's Gamma³⁵ correlation coefficients, which measures
216 the similarity between two hierarchical tree structures, of 0.251, 0.096, and 0.209 for CLIMB,

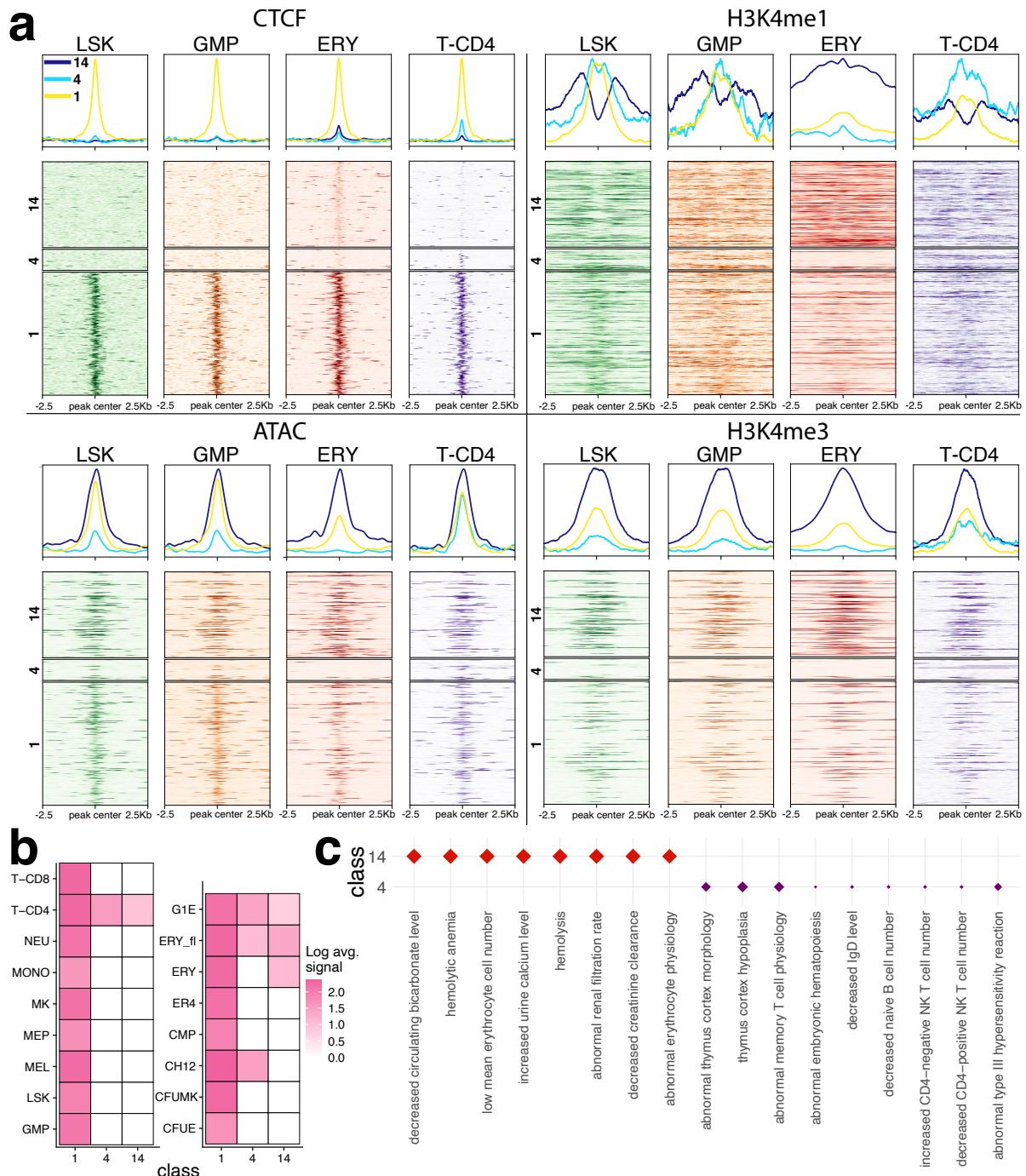


Figure 3: CTCF binding patterns uncovered by CLIMB capture different patterns of epigenetic modifications. a, Data from the loci on chromosome 11 that belong to classes of CTCF binding patterns (numbered 1, 4, and 14) identified by CLIMB are shown. The original CTCF ChIP-seq, alongside ATAC-seq and histone modification ChIP-seq data in 4 hematopoietic cell populations reveal differing patterns of epigenetic modifications across cell populations. **b**, Log class means based on CLIMB's model of CTCF binding patterns for the 3 classes in **a**. **c**, Significantly enriched mouse phenotypes (FDR < 0.05 for all) associated with the plotted classes. Class 1, containing loci with CTCF bound in every cell type, is not significantly enriched in any mouse phenotypes. Class 4 is enriched with terms related to T and B cells and the thymus, while class 14 contains terms related to red blood cells and kidney function.

217 mash, and Pearson, respectively, when compared against the ground truth tree in Supplementary
218 Fig. S11). This suggests that mash does not sufficiently capture CTCF binding patterns across
219 cell types, and that simple correlation measures cannot effectively distinguish between different
220 classes of signals in the data. The low signal in the CFUE experiment likely caused the hierarchical
221 clusterings by both CLIMB and Pearson correlation to isolate the CFUE cell from the remaining
222 cell populations on the hierarchical tree. CLIMB exhibits robustness to this challenge, identifying
223 this cell as an outlier among all experiments, while still achieving a hierarchical clustering that
224 reflects the expected relationship among the remaining cell populations.

225 *CLIMB identifies succinct groupings of CTCF binding patterns.* Visualization of binding sites
226 assigned to different classes is important for identifying biologically meaningful patterns. To
227 facilitate visual examination, CLIMB provides a means to merge similar classes based on model
228 output (see supplementary *Implementation details, Obtaining parsimonious characterization* for
229 details on the class merging procedure). From the VISION CTCF dataset, CLIMB clusters the
230 binding sites into 15 non-empty classes. To simplify the visualization, we aggregated these classes
231 into 5 parent groups, with sizes ranging from 254 to 5,462 binding sites. Supplementary Fig. S12a
232 displays the average signal strength (Equation 30) associated with each of these groups. For
233 example, group 1 includes constitutive binding sites, while group 4 contains progenitor-specific
234 binding sites, and group 5 contains binding sites constituent to mature erythroid and T cells.
235 Supplementary Fig. S12b displays the locations of the binding groups within the genomic region
236 around murine gene *Bcl11a*, whose gene product is involved in gene regulation of multiple cell
237 types.

238 *CTCF binding patterns relate to epigenetic states during differentiation* We next examined how
239 CLIMB's classes of CTCF binding patterns relate to chromatin accessibility and various histone
240 modifications. Interestingly, though we only supplied CTCF ChIP-seq data to each method, the
241 classes estimated by CLIMB also displayed cell type-specific behavior of chromatin accessibility as
242 measured using ATAC-seq and epigenetic histone modifications H3K4me1 and H3K4me3 (Fig. 3a–
243 b). Further, using GREAT³⁶ (Genomic Regions Enrichment of Annotations Tool), we identified
244 that classes that exhibit erythroid- and immune cell-specific binding patterns are indeed enriched
245 in erythroid- and T cell-specific functions (Fig. 3c). In contrast, the classes identified by mash do
246 not appear to relate to epigenetic modifications (Supplementary Fig. S13–S16). In fact, there is
247 not a large amount of overlap between CLIMB's and mash's estimated classes (Supplementary
248 Fig. S17), altogether suggesting that CLIMB effectively captures biologically meaningful protein
249 binding patterns.

250 The classes learned by CLIMB also provide hypothesis-generating discoveries. For instance,
251 though class 14 exhibits consistent but low signal for CTCF binding only in erythroid cells, these
252 same sites are in open chromatin in all four cell populations, as assayed by ATAC-seq. Since
253 transcription factor binding is often regulated by differentially open chromatin, this raises a question
254 of what is driving the erythroid-specificity of this class. One possibility is that the sites could
255 be bound by other transcription factors, occluding CTCF. The pattern of H3K4me1 as high
256 surrounding peaks of H3K4me3 in these class 14 sites suggests that they may be promoters. Indeed,
257 ~6% of the CTCF-bound sites in class 14 (as well as the constitutively bound classes 1 and 2)
258 overlap with transcription start sites from GENCODE.v35, while this occurred on average ~2%

Lineage	Gene ontology term	FDR
erythroid	heme biosynthetic process	4.71×10^{-3}
	heme metabolic process	4.08×10^{-4}
	erythrocyte differentiation	3.19×10^{-3}
	response to oxygen-containing compound	1.57×10^{-4}
megakaryocytic	platelet activation	4.30×10^{-3}
	regulation of blood coagulation	1.25×10^{-3}
	response to wounding	2.58×10^{-5}
	regulation of homotypic cell-cell adhesion	4.16×10^{-2}
myeloid	pos. regulation of monocyte chemotaxis	6.91×10^{-3}
	leukocyte differentiation	1.15×10^{-9}
	neutrophil migration	6.11×10^{-6}
	regulation of macrophage activation	1.46×10^{-3}

Table 1: Lineage-specific differentially expressed genes identified by CLIMB are enriched in gene ontology terms related to terminal cell function.

259 for the remaining classes, which fits with the patterns of histone modifications and ATAC-seq data.
 260 This hypothesis is testable in further studies.

261 VISION RNA-seq

262 We next used CLIMB to perform lineage-specific differential expression analysis. In the hematopoietic
 263 cell system, LSK, CMP and MEP are multipotent cells that differentiate into different terminal
 264 cells, such as ERY, MONO, NEU, and iMK cells (Fig. 2a). We considered three paths: the erythroid
 265 lineage (LSK → CMP → MEP → CFUE → ERY), the megakaryocytic lineage (LSK → CMP →
 266 MEP → CFUMK → iMK), and the myeloid lineage (LSK → CMP → GMP → MONO/NEU). The
 267 differentially expressed genes identified in each lineage are expected to be related to the biological
 268 function of the specific differentiation path and cell fate commitment. The datasets for these
 269 lineages respectively contained 21,303, 20,995, and 22,940 expressed genes.

270 *CLIMB identifies lineage-specific genes related to cell development and differentiation.* We sought
 271 to identify genes that show varying gene expression levels across each differentiation path. We first fit
 272 a model with CLIMB to each lineage. We then pinpointed the genes that exhibit differential signals
 273 across each lineage based on model fit. To proceed, we first identified genes with consistent signals
 274 by performing a statistical test (see *Methods*). Briefly, a gene was considered “consistently expressed”
 275 across the lineage if its probability of belonging to a class that is interpreted as describing consistent
 276 expression behavior is sufficiently large. These classes are: $(-1, -1, -1, -1, -1)$, $(0, 0, 0, 0, 0)$, or
 277 $(1, 1, 1, 1, 1)$, where $h_{[d]} = -1$ implies a gene is lowly expressed or off, $h_{[d]} = 0$ implies a gene
 278 is moderately expressed, and $h_{[d]} = 1$ implies a gene is highly expressed in cell population d .
 279 Otherwise, a gene was considered differentially expressed (DE) along the lineage.

280 As illustrated by the diagrams in Supplementary Fig. S18, one class of consistently expressed

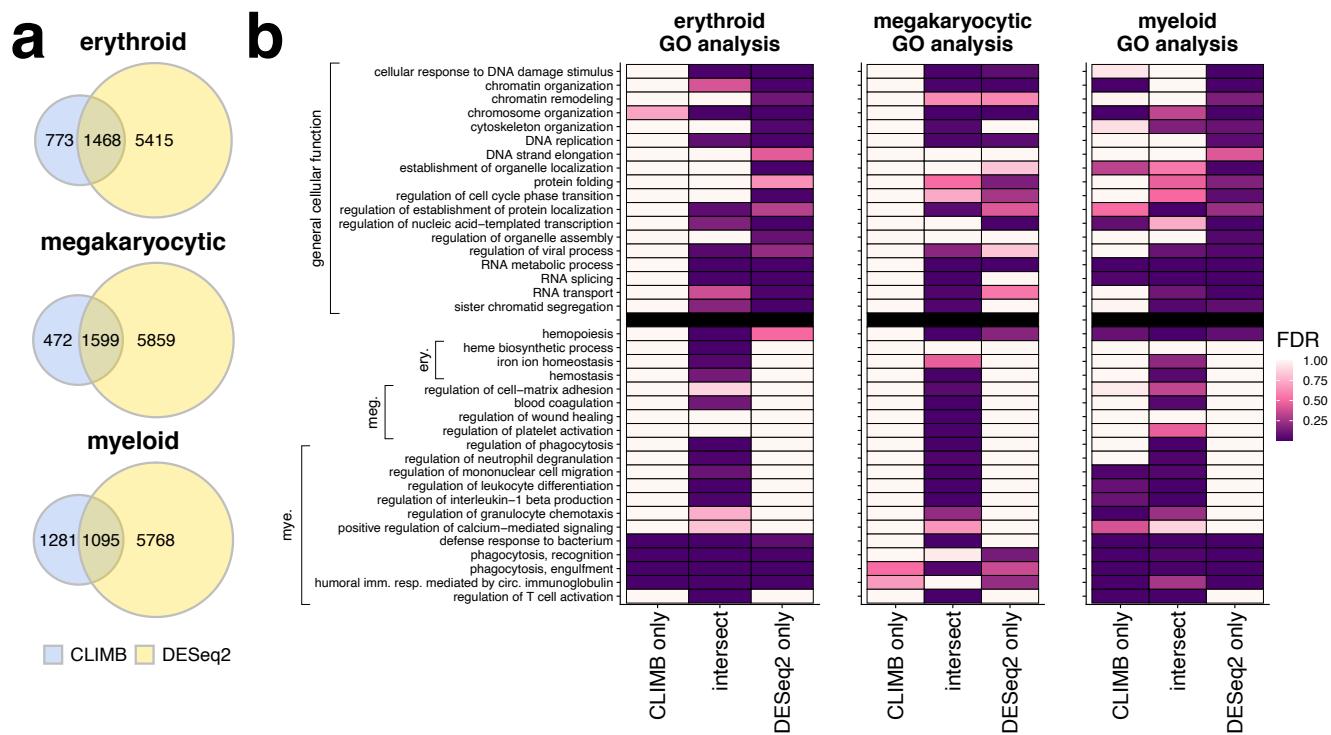


Figure 4: Comparison of differentially expressed genes identified by CLIMB and DESeq2.

a, Venn diagrams displaying overlap of differentially expressed genes identified by both methods across all analyses. **b**, Significance of enrichment of GO terms in gene sets specific to CLIMB, specific to DESeq2, and in the intersection of both methods, for each studied lineage. Presented GO terms are organized according to knowledge-driven labels. Non-hematopoietic terms related to general cell function are above the black line. Hematopoietic-related terms, grouped according to lineage-specific function, are below the black line.

genes (1, 1, 1, 1, 1) contains about 10,000 genes that are highly expressed in all the cell types along each lineage. This observation is consistent with previous results showing that about half of human or mouse genes are expressed at similar levels in all cell types³⁷; this set of constrained genes includes those encoding common cellular (“housekeeping”) functions. Another equally large class of consistently expressed genes (−1, −1, −1, −1, −1) was found on each lineage; these classes contain genes that are not expressed in blood cells. A rich set of distinct classes of differentially expressed genes were observed on each lineage. One class showed a dramatic increase in expression during erythroid maturation, which included erythroid marker genes *Alas2*, *Hba-a1*, *Hba-a2*, and *Gata1*. Similarly, three classes showed substantial induction during one or both of monocyte and neutrophil differentiation; these classes include myeloid marker genes *Cxcr2*, *C5ar1*, *Mpo*, *S100a8*, and *S100a9*. In contrast, no class of genes showed a dramatic induction to high expression levels during megakaryocyte differentiation, which is consistent with previous analyses showing similar gene expression patterns between multilineage progenitor cells and megakaryocytes³⁸. In total, our results identified 2,242 DE genes along the erythroid lineage, 2,073 along the megakaryocytic lineage, and 2,376 along the myeloid lineage. Overlap of DE genes across lineages is diagrammed in Supplementary Fig. S19.

297 A common, alternative approach to this sort of analysis task is to apply a series of pairwise
298 differential expression analyses along each lineage with standard software such as DESeq2²¹, then
299 take the union of all DE genes across the analyses. We implemented this strategy using DESeq2
300 with FDR ≤ 0.01 and obtained 6,883 DE genes across the erythroid lineage, 7,458 across the
301 megakaryocytic lineage, and 6,863 across the myeloid lineage. The number of DE genes called by
302 DESeq2 was about one third of all input genes for each analysis, and about 3 times more than
303 the number of DE genes identified by CLIMB. We also applied SCREEN to identify DE genes
304 along each lineage, and found that SCREEN systematically reported lower precision in identifying
305 lineage-related GO terms than both CLIMB and DESeq2 (Supplementary Fig. S20). All differential
306 genes identified by CLIMB and DESeq2 are provided in Supplementary File 2.

307 The large number of DE genes returned by DESeq2 raises questions about the specificity of this
308 approach in pinpointing genes relevant to differentiation. To probe whether DESeq2 is exhibiting
309 low precision or CLIMB exhibiting low power, we first ran gene ontology (GO) enrichment analyses
310 for each lineage^{39,40}. Some enriched GO terms from the CLIMB analysis of each lineage are in
311 Table 1. Meanwhile, with the exception of the myeloid analysis, the DESeq2 gene sets were not
312 enriched in lineage-specific GO terms (Supplementary Files 3-8). The abundance of CLIMB's
313 enriched hematopoiesis-specific GO terms further suggests that, though CLIMB identifies far fewer
314 DE genes than DESeq2, CLIMB is more precise in identifying key genes relevant to cell development
315 and differentiation. See *Simulations and comparisons* to see further investigation of this claim.

316 To more directly compare CLIMB and DESeq2, we partitioned DE genes into three categories,
317 namely, differentially expressed genes specific to CLIMB, DE genes specific to DESeq2, and DE
318 genes in the intersection of both methods for each lineage (Fig. 4a), and ran GO analyses on these
319 sets. We noticed that genes identified as DE by both CLIMB and DESeq2 are enriched in many
320 hematopoietic-related terms, while DESeq2-specific genes are enriched for many terms related to
321 general cell function. In each lineage, DESeq2-specific genes are highly enriched for functions that
322 are not specific to hematopoietic cells; CLIMB-specific genes in general are not highly enriched for
323 these same terms. Genes identified by both CLIMB and DESeq2 and CLIMB-specific genes are
324 more frequently enriched for hematopoietic-specific functions (Fig. 4b). The result that DESeq2's
325 significant gene sets are only enriched in hematopoiesis-related GO terms after intersection with
326 CLIMB's significant gene sets demonstrates that CLIMB is a powerful and more precise approach
327 to multi-condition differential gene expression analysis when compared to DESeq2 applied in a
328 series across multiple conditions. CLIMB is also a sensitive tool for finding differentially expressed
329 genes, even detecting low-level but differential expression during erythroid differentiation of some
330 genes associated with functions in myeloid cells, in which they are expressed at substantially higher
331 levels (Fig. 4b, Supplementary Fig. S21).

332 *CLIMB latent association labels describe patterns of expression across cell differentiation.* Next
333 we used CLIMB to further probe specific gene expression patterns of interest. For example, in
334 the erythroid analysis, 559 genes fell into the $(-1, -1, -1, 1, 1)$ class. This class describes genes
335 with little to no expression in the LSK, CMP, and MEP cell populations, but high expression in
336 the CFUE and ERY cell populations. This gene set is enriched for GO terms such as erythrocyte
337 development (FDR= 5.11×10^{-7}), iron ion homeostasis (FDR= 9.46×10^{-3}), and hydrogen peroxide
338 metabolic process (FDR= 1.96×10^{-2}). Cases of enrichment for terms related to other cell types
339 may result from a process initially discovered in the other cell type being present also in the cell

340 type of interest.

341 As another example, the 298 members of the $(0, 0, 0, -1, -1)$ class from the myeloid lineage,
342 corresponding to genes that are moderately expressed in LSK, CMP, and GMP cell populations,
343 but lowly or not expressed in monocyte and neutrophil cell populations, are enriched for several GO
344 terms concerning cell fate determination, such as microtubule cytoskeleton organization (FDR=
345 1.36×10^{-5}) and mitotic cell cycle process (FDR= 4.42×10^{-12}). Meanwhile, the 467 members of
346 the $(-1, -1, -1, -1, 0)$ class, corresponding to moderate gene expression specific to neutrophils, are
347 enriched for GO terms immunoglobulin mediated immune response (FDR= 2.47×10^{-20}), defense
348 response to bacterium (FDR= 2.59×10^{-20}), and immune response-activating signal transduction
349 (FDR= 4.92×10^{-25}). Moreover, the 777 members of the $(-1, -1, -1, 0, -1)$ class, corresponding
350 to genes exhibiting moderate expression specific to monocytes, are enriched for the GO terms for
351 the production of tumor necrosis factor and interleukins 1, 6, and 12, as well as the regulation of
352 mast cell activation (FDR= 1.24×10^{-2}). Taken together, these results demonstrate that CLIMB's
353 utility goes beyond lineage-specific differential gene expression analysis; the individual latent classes
354 also describe interpretable gene expression patterns.

355 ENCODE DNase-seq

356 As part of the ENCODE project, Meuleman *et al.*⁴¹ studied DNase-seq in 733 human cell populations,
357 partitioning accessible sites into 16 major groups of cellular accessibility patterns via non-negative
358 matrix factorization (NMF). NMF extracts additive factors across all samples that, when combined,
359 approximate primary signal patterns in the data. With a 38-sample subset of these data, we sought
360 to examine how classes of chromatin accessibility patterns identified by CLIMB relate to differential
361 transcription factor (TF) binding across cell populations, and how these results differ from those
362 extracted via NMF. We applied NMF as before⁴¹ to a binarized version of this 38-sample subset,
363 and selected an optimal number of 10 factors with NMF (Supplementary Fig. S22a). We merged
364 classes identified with CLIMB into 10 parent groups to match NMF.

365 *CLIMB extracts factors of cell type-specific accessibility patterns.* We used the class mean and
366 first two principal components (PCs) of the class covariance matrix to extract information from
367 each CLIMB class. These quantities can be interpreted similarly to factors identified with NMF,
368 capturing different cell type-specific accessibility patterns (Fig. 5a). For example, class 4 captures
369 signals specific to K562 cells, while class 5 captures signals specific to T2 helper cells, GM12865,
370 dendritic cells and classical monocytes. Class 7 contains accessible sites absent in differentiated
371 erythroid, K562, HAP1, and fetal liver hepatic cells, yet present in all others. Classes 1 and 3
372 both correspond to loci broadly accessible across cell populations, although interestingly they bear
373 striking differences in their PCs. Class 1 shares much with class 7, indicating sample-invariant
374 trends in the first PC. The second PC splits CD34+ hematopoietic progenitors, classical monocytes,
375 T helper cells, and regulatory T cells from CD4+ and CD8+ T cells and B cells. Meanwhile,
376 the first PC of class 2 indicates nearly half of the variance in this class is explained by signals in
377 lymphoid cells, while the second PC splits undifferentiated from differentiated CD34+ cells. Such
378 differences suggest the possibility for functional differences inherent in these two different classes of
379 accessible loci.

380 Because class 3 appeared distinct from classes 1 and 7 based on the PCs, we investigated these

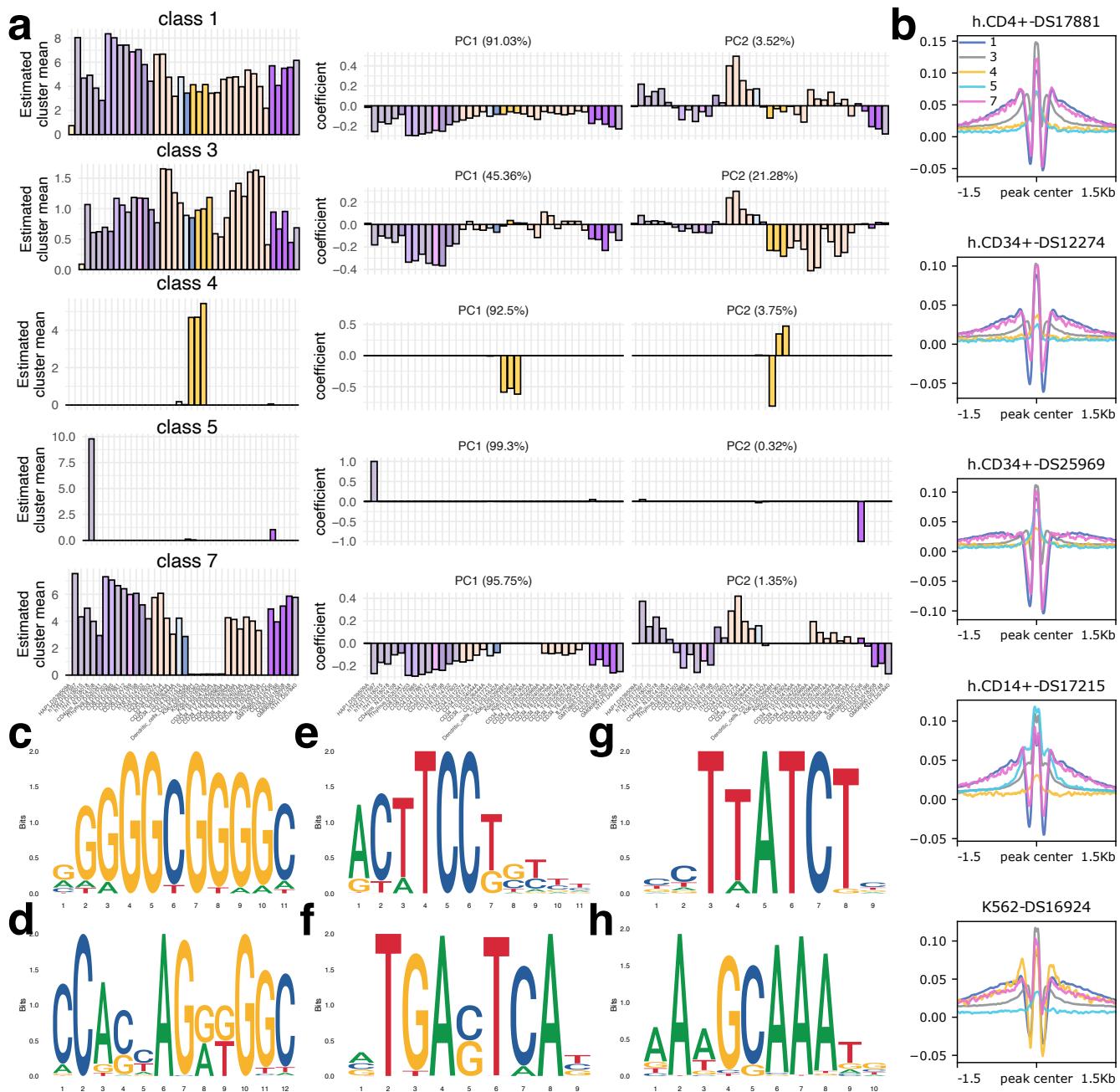


Figure 5: CLIMB identifies patterns of chromatin accessibility across hematopoietic cells relating to different transcription factor binding signatures. **a**, CLIMB’s estimated class means across all 38 cell populations are shown alongside the first two sets of eigenvector coefficients of the estimated class covariance matrices. Cell samples are ordered based on their similarity according to model output. **b**, Footprint signatures for the 5 shown classes in a subset of examined cell populations. **c-f**, Top 4 enriched motifs in class 1. **g**, Most enriched motif in class 4 **h**, Enriched motif specific to class 5.

381 loci further. We classified each locus into a PC1 or PC2 group using the PC scores based on the

382 first two PCs, which assess how well each PC describes the signal patterns across all samples
383 for each locus. These subgroups of class 3 contain 37,746 and 29,759 loci for PC1 and PC2,
384 respectively. We used GREAT to identify significant biological processes associated with each
385 set of loci. Interestingly, we found that all top terms in the PC1 group relate to either brain
386 stem morphogenesis or male gamete function. Many of the top terms from the PC2 group relate
387 to lymphoid cells, such as B cell adhesion ($FDR=8.06 \times 10^{-7}$), negative regulation of eosinophil
388 migration ($FDR=1.79 \times 10^{-5}$) and T cell antigen processing and presentation ($FDR=1.44 \times 10^{-4}$).
389 Additionally, the median signal among lymphoid cells in the PC2 group (1.06) is significantly
390 higher than that in the PC1 group (0.286, two-sided Wilcoxon signed rank test, $P < 2.2 \times 10^{-16}$).
391 The difference in median signal between these two groups is much less for the non-lymphoid cells
392 (0.659 and 0.935 for PCs 1 and 2). This suggests that PC1 describes signals that are more variable
393 in lymphoid cells, while PC2 captures signals that are stronger and more consistent in those same
394 cells.

395 *Classes of chromatin accessibility differentiate modes of TF occupancy.* Vierstra *et al.*⁴² studied
396 functional changes in regulation by TFs using TF footprinting data. They showed that footprint
397 widths track closely with both the length of the contained canonical TF binding sequence(s)
398 as well as the number of bound TFs, identifying sources of cell type-specific regulation. We
399 interrogated whether classes of accessibility patterns identified by CLIMB and NMF relate to
400 functional differences as captured by TF footprinting.

401 CLIMB classes bear striking TF footprinting patterns across different cell populations (Fig. 5b).
402 For example, K562 shows a dramatic change in signal for class 4, aligning with the signal enrichment
403 in Fig. 5a. As another example, class 5 has a relatively weak TF footprint signal in all shown cell
404 types except the CD14+ cell; though the mean signal is dominated by a single T2 helper cell for this
405 class, it is also specific to the myeloid CD14+ and dendritic cell populations. In contrast, though
406 NMF identified 10 biologically interpretable classes, several of which have a counterpart class
407 identified by CLIMB, differences between classes are not evident based on footprints (Supplementary
408 Fig. S22). This suggests a greater sensitivity by CLIMB to separate weak patterns from strong,
409 covarying ones.

410 We used STREME⁴³ to interrogate enrichment for canonical TF recognition sequences in each
411 of these classes (Fig. 5c–e). Given that classes 1, 3, and 7 each contain broadly accessible sites,
412 we expected to find enrichment for sequences associated with TFs important for general cellular
413 maintenance. As an example, the top 4 sequences from class 1 (Fig. 5c) include the recognition
414 sequences for Sp1 and KLF families, CTCF, and the ETS and AP1 families (Fig. 5c-f, respectively),
415 though these motifs are enriched in all 3 classes. Further, the most significantly enriched motif
416 in class 4 is the recognition sequence for the GATA proteins (Fig. 5g), while class 5 is uniquely
417 enriched in the non-canonical recognition sequence for the octamer TFs (Fig. 5h). The presence of
418 class-specific motifs further suggests that classes of chromatin accessibility patterns identified by
419 CLIMB relate to differentially regulated genomic regions.

420 Discussion

421 We present a new method, CLIMB, for joint analysis of genomic data collected from multiple
422 experimental conditions. CLIMB gains statistical power to uncover biologically relevant signals
423 by providing a means to extend typical pairwise analyses to higher dimensions. Moreover, when
424 compared against methods designed for a higher-dimensional setting, we demonstrated that CLIMB
425 remains powerful, flexible, and interpretable in many contexts.

426 A major benefit of CLIMB is its ability to describe various patterns of condition-specificity in
427 a mixture with corresponding association vectors that are estimated from the data. The model,
428 aided by these association vectors, is scientifically interpretable. Estimated model parameters
429 can elucidate similarity and interrelationships, and parsimoniously characterize representative
430 association patterns present across experimental conditions. Importantly, the association vectors
431 also serve as the basis for a novel and effective means of testing consistency of signals across several
432 conditions or biological experiments.

433 Since CLIMB's mixture modeling framework is quite flexible, it is effective on a wide range
434 of input data, as long as the data can be reported as numerical scores that reflect strengths of
435 association. Though we have focused on specific molecular traits, CLIMB has the potential to
436 be effective in other applications, such as multi-omics molecular QTLs analysis⁴⁴. The current
437 implementation of CLIMB supports no more than a hundred conditions for genome-wide analyses
438 of the size similar to our DNase-seq analysis. Algorithmically faster implementations, such as
439 variational Bayes fitting for the final Bayesian mixture model, will be explored in future studies for
440 supporting larger numbers of conditions.

441 Methods

442 Constrained mixture model for estimating association vectors

443 To estimate the association vectors, we consider the following mixture model. Define

$$\begin{aligned} n &:= \text{number of observations,} \\ D &:= \text{dimension of data,} \\ H = (h_{[1]}, \dots, h_{[D]}) &:= \text{latent association vector} \\ h_{[d]} &\in \{-1, 0, 1\}, d \in \{1, \dots, D\}, \end{aligned}$$

444 such that the observed data follow the constrained normal mixture model

$$\begin{aligned} \mathbf{x} \mid H = h_m &\sim \phi_D^c(\boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m, h_m) \\ H &\sim \text{Mult}(\pi_1, \dots, \pi_M), \quad \sum_{m=1}^M \pi_m = 1 \end{aligned} \tag{3}$$

445 where h_m is the m^{th} latent class, $m \in 1, \dots, M$, and ϕ_D^c is a D -dimensional constrained normal
446 distribution. Note that the number of candidate latent classes M changes as our methodology

447 prunes unsupported classes (see *Pairwise fitting* and subsequent methodological steps).

448 If an observation has association label $h_{[d]} = 1$ ($h_{[d]} = -1$), this implies that it exhibits a
449 significant positive (negative) association with condition d . Otherwise, if an observations has
450 association label $h_{[d]} = 0$, this implied that it exhibits a null association with condition d . To
451 capture this relationship described by the association vectors, we set the following constrains on
452 ϕ_D^c :

- 453 1. Null associations in dimension d are assumed to follow the standard normal distribution
454 ($\mu_d = 0, \sigma_d = 1$).
- 455 2. Non-nulls that have a positive (negative) association in dimension d have a strictly positive
456 (negative) mean in dimension d .
- 457 3. Nulls in one dimension do not correlate with non-null associations in any other dimension
458 ($\Sigma_{rt} = 0 \forall t \neq r$ if either $h_{[r]} = 0$ or $h_{[t]} = 0$).
- 459 4. Non-nulls that show concordant (discordant) associations across dimensions—i.e., $h_{[r]} = h_{[t]}$
460 ($h_{[r]} = -h_{[t]}$) where $h_{[r]} \in \{-1, 1\}$ —are positively (negatively) correlated, that is, $\Sigma_{rt} > 0$
461 ($\Sigma_{rt} < 0$).

462 A 2-dimensional visualization of these constraints is in Fig. 1a. Though these constraints are de-
463 sirable for interpretability, imposing them through latent association vectors leads to computational
464 difficulties as the number of dimensions grows because there are 3^D possible configurations of the
465 latent association vectors. We thus developed CLIMB, a modeling strategy designed to circumvent
466 the computational intractability that arises under these circumstances. We now describe the steps
467 of CLIMB in greater detail.

468 Detailed CLIMB procedure

469 Pairwise fitting

470 Composite likelihood (CL) methods⁴⁵, which have been reviewed extensively⁴⁶, are computationally
471 efficient modeling approaches that approximate the joint data model by making certain conditional
472 independence assumptions. CL methods are frequently utilized in statistical literature. For instance,
473 they can simplify a genetic model of recombination rates by assuming conditional independence
474 given nearest neighbors along the genome⁴⁷, or sidestep specifying a complex joint likelihood in
475 favor of a product of bivariate models⁴⁸. CL estimators are consistent, though they exhibit some
476 loss in efficiency.

477 We are seeking to reduce model complexity in the number of latent classes by limiting the
478 dimension of the data through pairwise CL. Let $\Omega = \{(\mathbf{X}_{\cdot 1}, \mathbf{X}_{\cdot 2}), \dots, (\mathbf{X}_{\cdot D-1}, \mathbf{X}_{\cdot D})\}$ be the set of

479 all pairs of dimensions of $\mathbf{X}_{n \times D}$, giving $|\Omega| = \binom{D}{2}$. The pairwise CL is

$$\begin{aligned}
 \mathcal{L}_C(\boldsymbol{\theta}) &:= \mathcal{L}_C(\mathbf{X}_{\cdot 1}, \dots, \mathbf{X}_{\cdot D} \mid \boldsymbol{\theta}) \\
 &= \prod_{r=1}^{D-1} \prod_{t=r+1}^D f_{rt}(\cdot \mid \boldsymbol{\theta}) \\
 &= \prod_{r=1}^{D-1} \prod_{t=r+1}^D \prod_{i=1}^n \sum_{m=1}^M \pi_m \phi_2^c(\mathbf{X}_{i, rt} \mid \boldsymbol{\theta}_{rt}, h_m^{(rt)})
 \end{aligned} \tag{4}$$

480 where $\mathbf{X}_{\cdot rt}$ is the $n \times 2$ matrix of observations from dimensions r and t , $h_m^{(rt)}$ is the m^{th} class in the
 481 set of all possible 2-dimensional latent association vectors h_{rt} between dimensions r and t , and
 482 $\boldsymbol{\theta}_{rt} := \{\boldsymbol{\mu}_{rt}, \Sigma_{rt}\}$ is the parameter vector describing the normal mixture between dimensions r and
 483 t . The signs of all elements of $\boldsymbol{\theta}_{rt}$ are governed by h_{rt} , as in Equation 2. Note that for each pair
 484 in Ω , each pairwise model, f_{rt} , is computationally tractable. This style of pairwise CL, termed
 485 “pairwise fitting”, has been utilized most frequently to alleviate computational difficulty when
 486 analyzing survey data with multivariate responses^{49,50,51,52,53}. Because each dimension appears in
 487 $D - 1$ different pairwise fits, the mean and variance of each class are estimated $D - 1$ times, leading
 488 to $D - 1$ not necessarily equal estimates for the same mean and variance. It has been shown that,
 489 though these pairwise estimates are redundant and not necessarily concordant, they carry useful
 490 information about the true parameters⁵³. Thus we will recycle these estimates to inform the priors
 491 in the final step of our procedure (see *An empirical Bayesian model*).

492 Fitting each pairwise model f_{rt} amounts to fitting a finite normal mixture model arising from 9
 493 classes described by latent association vectors $h \in \mathcal{H}_{rt}$ where

$$\mathcal{H}_{rt} = \{(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 0), (0, 1), (1, -1), (1, 0), (1, 1)\} \quad \forall r < t.$$

494 However, since the total number of latent classes in the full model is less than 3^D , we expect that
 495 the true number of latent classes in some, if not all of the pairwise fits, is less than 9. Accordingly,
 496 for each pairwise fit, we perform model selection to filter out unsupported classes at the pairwise
 497 level using a previously described penalized maximum likelihood approach¹⁹. This method provides
 498 an automated model selection procedure for normal mixture models with theoretical guarantees of
 499 consistency in selecting the correct number of clusters (see *Model selection details*).

500 Construction of D -dimensional association labels

501 Next, we assemble the list of candidate D -dimensional latent association vectors by concatenating
 502 all the pairwise association vectors of adjacent dimensions estimated in the previous step. Only
 503 association vectors that are on this candidate list are retained for downstream analyses. Example 1
 504 shows a simple example for a 3-dimensional dataset.

505 *Example 1:* Let $\mathcal{H}_{rt} \subseteq \mathcal{H}_{rt}$ be the set of 2-dimensional latent association vectors present in a model
 506 of dimensions r and t . Now, consider a three-dimensional dataset, where latent association vectors
 507 $(-1, 0) \in \mathcal{H}_{12}$ and $(0, 1) \in \mathcal{H}_{23}$. These two association vectors suggest that some observations
 508 belong to the null class in dimension 2, and that some of these observations exhibit negative signals

509 in dimension 1 [since $(-1, 0) \in \mathcal{H}_{12}$], and positive signals in dimension 3 [because $(0, 1) \in \mathcal{H}_{23}$].
 510 Thus, the data support that $(-1, 0, 1)$ remains a candidate D -dimensional latent association vector.
 511

512 To perform this task computationally efficiently, we construct a directed acyclic graphical
 513 representation of the pairwise classification results, designed in the spirit of a de Bruijn graph^{54,55}.
 514 This novel representation allows one to efficiently enumerate all plausible candidate D -dimensional
 515 latent association vectors in the concatenation by applying a standard graph search algorithm.

516 Specifically, we denote a vertex in the graph as (d, a) , representing a possible association, a ,
 517 at a given dimension, d . For a model with D dimensions, the graph has D layers and 3 possible
 518 associations at each layer: -1, 0, and 1. A pictorial view is in Supplementary Fig. S23. We write
 519 the vertex set as the collection of all ordered pairs

$$V' = \{(d, a) : d \in \{1, \dots, D\}, a \in \{-1, 0, 1\}\}.$$

520 The edge set is defined as

$$E' = \left\{ [(d, a_1), (d+1, a_2)] : d \in \{1, \dots, D-1\}, a_1, a_2 \in \{-1, 0, 1\}, (a_1, a_2) \in \mathcal{H}_{d, d+1} \right\}.$$

521 The final graph also contains dummy source and target nodes S and T , such that the final
 522 vertex set $V = V' \cup \{S, T\}$. The source node has edges pointing to all nodes in layer 1, while each
 523 node in layer D has an edge pointing to the target node. The final edge set is then defined as

$$E = E' \cup \left\{ [S, (1, -1)], [S, (1, 0)], [S, (1, 1)], [(D, -1), T], [(D, 0), T], [(D, 1), T] \right\}.$$

524 Once the graph is constructed, depth-first search with backtracking⁵⁶, a graph search algorithm
 525 that enumerates all paths in a graph from a given source node to a given target node, is used to
 526 enumerate all paths from S to T . Each path contains one node from each of the D layers plus the
 527 source and target nodes, and has $D + 1$ edges of the form

$$\left\{ [S, (1, a_1)], [(1, a_1), (2, a_2)], [(2, a_2), (3, a_3)], \dots, [(D-1, a_{D-1}), (D, a_D)], [(D, a_D), T] \right\}. \quad (5)$$

528 This path corresponds to the latent association vector (a_1, \dots, a_D) .

529 Pairwise fit-based pruning

530 The initial construction of the graph in *Construction of D -dimensional association labels* only uses
 531 output from the $D - 1$ pairwise fits between dimensions d and $d + 1$ for $d \in \{1, \dots, D - 1\}$. Certain
 532 paths may be incompatible with the remaining $\binom{D}{2} - (D - 1)$ fits. We next remove these paths
 533 from the candidate list by checking for incompatibilities, in a manner similar to the continuation
 534 of Example 1 below.

535 *Example 1 (continued):* As shown previously, $(-1, 0, 1)$ was identified as a candidate D -dimensional
 536 latent association vector. If $(-1, 1) \notin \mathcal{H}_{13}$, then the latent class $(-1, 0, 1)$ is discarded from down-
 537 stream analysis. This is because \mathcal{H}_{13} shows that $(-1, 0, 1)$ is incompatible with the pairwise findings.
 538

539 The graph-based enumeration and pruning algorithm is a deterministic procedure that is
 540 guaranteed to produce a list of candidate latent classes that includes all true underlying classes with
 541 the possibility of additional empty classes, assuming the correct pairwise classes were estimated
 542 (Proposition 1). Further, the results are not affected by reordering of the dimensions (Proposition 2,
 543 see Supplementary Section 1 for formal proofs).

544 **Mixing weight-based class pruning**

545 Since the pairwise fit-based class pruning procedure is *conservative*, some remaining candidate
 546 classes still may not be present in the data (e.g, the $(0, 0, 0)$ latent association label in the toy
 547 example in Fig. 1). To prune these classes, we estimate the weights of the remaining classes based
 548 on the pairwise fitting, and remove those whose weights are near zero. To elucidate which classes
 549 are unsupported, we devise an estimator that measures the concordance between the candidate list
 550 of D -dimensional association labels against the pairwise labels for each observation. Intuitively,
 551 our estimator is motivated by the assertion that if observation \mathbf{x} belongs to a given class h , then
 552 \mathbf{x} 's pairwise latent class assignment $h^{(rt)}$ should equal $(h_{[r]}, h_{[t]})$ for most pairs r and t , $r < t$. Then,
 553 the weight for a D -dimensional class can be estimated by computing the proportion of observations
 554 that follow the pairwise labels of the D -dimensional association vector closely.

555 To construct such an estimator, let $\mathbf{x}_i^{(rt)}$ be the sub-vector of the i^{th} observation vector
 556 corresponding to the pairwise fit between dimensions r and t . Then, let $H_i^{(rt)}$ be the pairwise
 557 association vector assigned to observation $\mathbf{x}_i^{(rt)}$. Assuming there are M remaining candidate
 558 D -dimensional latent classes h_m , $m \in \{1, \dots, M\}$, let $h_m^{(rt)}$ be the sub-vector of h_m corresponding
 559 to dimensions r and t . Then, for a given D -dimensional latent class h_m , define

$$\hat{\alpha}_m = \frac{\sum_{i=1}^n \mathbb{1} \left\{ \left[\sum_{r < t} \mathbb{1} (H_i^{(rt)} = h_m^{(rt)}) \right] \geq \binom{D}{2} - \delta \right\}}{\sum_{m'=1}^M \sum_{i=1}^n \mathbb{1} \left\{ \left[\sum_{r < t} \mathbb{1} (H_i^{(rt)} = h_{m'}^{(rt)}) \right] \geq \binom{D}{2} - \delta \right\}} \quad (6)$$

560 as the normalized proportion of observations whose pairwise class labels are concordant, up to
 561 tolerance δ , with h_m , where $\delta \in \{0, 1, \dots, \binom{D}{2}\}$, which controls the permitted level of discordance
 562 between an observation's pairwise class labels and its D -dimensional latent class. We show that
 563 $\hat{\alpha}$ is a reasonable estimator of the proportion of observations belonging to each class h_m given the
 564 data (see *Proofs*, Proposition 3).

565 When the list of remaining candidate latent classes is still large, even after the pruning steps in
 566 previous section, $\hat{\alpha}_m$ may be very close or exactly equal to 0 for many m resulting in a degenerated
 567 distribution for these classes in the mixture. This step will remove these classes, guaranteeing that
 568 the number of remaining classes M is bounded above by the sample size n . In practice, we find
 569 that this procedure often can reduce M to be less than $0.01n$.

570 To estimate $\hat{\alpha}_m$, we first obtain each $H_i^{(rt)}$ by sampling the pairwise labels of the \mathbf{x}_i 's according
 571 to their posterior probabilities of belonging to each class estimated from the pairwise fits:

$$H_i^{(rt)} \sim \text{Categorical}(\hat{p}_1, \dots, \hat{p}_{M^{(rt)}}) \quad (7)$$

572 where $\hat{p}_m = \Pr[\mathbf{x}_i^{(rt)} \in h_m^{(rt)}]$, the estimated posterior probability that observation $\mathbf{x}_i^{(rt)}$ belongs
 573 to class $h_m^{(rt)}$ for $m \in \{1, \dots, M^{(rt)}\}$, and $M^{(rt)}$ is the number of pairwise latent classes estimated
 574 to be present in pairwise fit between dimensions r and t . Because $\hat{\boldsymbol{\alpha}} := \{\hat{\alpha}_1, \dots, \hat{\alpha}_M\}$ estimates
 575 the proportion of observations belonging to each class $h_m, m = 1, \dots, M$, we treat $\hat{\boldsymbol{\alpha}}$ as the prior
 576 probabilities for the class mixing weights in the D -dimensional model in the next and final step of
 577 CLIMB (see next section).

578 The number of observations needed to obtain a good estimate $\hat{\boldsymbol{\alpha}}$ is affected both by the
 579 dimension of the data and the accuracy of estimates made during pairwise fitting. For datasets
 580 with well-separated clusters, a more stringent δ (i.e. $\delta < .15 \times \binom{D}{2}$) is recommended, whereas a
 581 relaxed δ (i.e. $\delta \in [.15 \times \binom{D}{2}, .30 \times \binom{D}{2}]$) is more suited for datasets with less separated clusters to
 582 avoid removing true classes that are small in size. This heuristic guide may be refined by then
 583 selecting δ within this range where M remains constant for $\delta' \in \{\delta, \delta + 1, \dots, \delta + c\}$ for some $c \geq 1$.
 584 While this step of our methodology requires user input, it requires similar levels of user input as in
 585 existing methods.

586 An empirical Bayesian model

587 With the steps described thus far, we are able to pare down the number of latent classes to a
 588 more computationally manageable size for regular mixture modeling. Next we reestimate the
 589 parameters in the D -dimensional model (1) using an empirical Bayesian approach, recycling the
 590 pairwise estimates as prior hyperparameters. We employ the following hierarchical structure to
 591 represent the constrained mixture model:

$$\mathbf{x}_i \mid \boldsymbol{\mu}_h, \Sigma_h, H_i = h \sim \phi_D^c(\boldsymbol{\mu}_h, \Sigma_h, h) \quad (8a)$$

$$\boldsymbol{\mu}_h \mid \Sigma_h, H_i = h \sim \phi_D(\boldsymbol{\mu}_h^0, \Sigma_h/\kappa_h) \quad (8b)$$

$$\Sigma_h \mid H_i = h \sim \mathcal{IW}_D(\Psi_h^0, \nu_h) \quad (8c)$$

$$H_i \mid \boldsymbol{\pi} \sim \text{Mult}(\boldsymbol{\pi}) \quad (8d)$$

$$\boldsymbol{\pi} \sim \text{Dir}(\boldsymbol{\alpha}) \quad (8e)$$

592 Quantities $\boldsymbol{\mu}_h$, $\Sigma_h \forall h$ and $\boldsymbol{\pi}$ are estimated using MCMC. The remaining terms κ_h , Ψ_h^0 , and
 593 $\nu_h \forall h$ and $\boldsymbol{\alpha}$ are hyperparameters.

594 This sort of representation incorporates typical prior distributions and a constrained likelihood
 595 model, and has been exploited frequently^{57,58,59} for its desirable posterior structure which is suitable
 596 for Gibbs sampling. Similarly here, by applying the necessary parameter constraints, defined
 597 by the latent association vectors, into the data model (Equation 8a), the parameters $(\boldsymbol{\mu}_h, \Sigma_h)$
 598 possess the correct constraints in the posterior. That is, $\boldsymbol{\mu}_h$ follows a multivariate truncated normal
 599 distribution with truncation points dictated by the constraints defined in (8a), while Σ_h follows
 600 the constrained inverse-Wishart distribution defined presently.

601 Let Σ be distributed according to a D -dimensional constrained inverse-Wishart \mathcal{IW}_D^c with
 602 constraints imposed by latent class h , and let \mathcal{IW}_D be an unconstrained D -dimensional inverse-

603 Wishart density. Then

$$\begin{aligned} f(\Sigma; \Psi, \nu, h) &= \mathcal{IW}_D^c(\Sigma; \Psi, \nu, h) \\ &= C_{\mathcal{IW}} \cdot \mathcal{IW}_D(\Sigma; \Psi, \nu) \times \prod_{r < t} \mathbb{1}[\text{sgn}(\Sigma_{rt}) = h_{[r]} \cdot h_{[t]}] \end{aligned} \quad (9)$$

604 where $C_{\mathcal{IW}}$ is a normalizing constant.

605 We do inference on this model using a Metropolis Hastings within Gibbs algorithm, the details
606 of which are in Supplementary File 1. With this procedure, we estimate π and μ_h and $\Sigma_h \forall h$.
607 An important feature of the mixture model used by CLIMB is that, since the labels h explicitly
608 define constraints on the parameters for each class, label switching is not a concern during the
609 inference process. Output from the pairwise fits are used to calculate hyperparameters α , μ_h^0 , and
610 Ψ_h^0 : computation of α was described in Equation 6, while μ_h^0 , and Ψ_h^0 are aggregations of pairwise
611 parameter estimates constructed using a tactic described in *MCMC details*. Parameters κ_h and
612 $\nu_h \approx n\alpha_h$, where α_h is the prior mixing weight for class h . We remove classes that satisfy $n\alpha_h \leq D$,
613 since such classes are unlikely to have members, and an inverse-Wishart distribution is singular for
614 these classes.

615 Testing consistency of effects

616 The model fit output from CLIMB can be used to conduct hypothesis tests; in particular, we
617 are interested in identifying consistency of signals across conditions. We propose a new test
618 that generalizes the partial conjunction hypothesis test⁶⁰, a standard hypothesis used for testing
619 consistency, defined as

$$\begin{aligned} \mathcal{H}_0^{u/D} &:= \text{less than } u \text{ out of } D \text{ instances of the observed effect are non-null, versus} \\ \mathcal{H}_1^{u/D} &:= \text{at least } u \text{ out of } D \text{ instances of the observed effect are non-null} \end{aligned} \quad (10)$$

620 When seeking consistent signals, one may care not only about the significance of the signals,
621 but also the *sign* of the effect. That is, if an observation is significantly positive in one experiment
622 but significantly negative in another, then the observation should not be considered as consistent.
623 Therefore, we propose a simple statistic for assessing the consistency of the sign of the effect across
624 dimensions that generalizes the partial conjunction hypothesis to consider sign:

$$\begin{aligned} \mathcal{H}_0^{u/D} &:= \text{less than } u \text{ out of } D \text{ instances of the observed effect are concordant} \\ &\quad \text{with a specified association pattern, versus} \\ \mathcal{H}_1^{u/D} &:= \text{at least } u \text{ out of } D \text{ instances of the observed effect are concordant} \\ &\quad \text{with a specified association pattern} \end{aligned} \quad (11)$$

625 To describe the rejection region (*RR*) for this hypothesis, first define $h_{[d]}^m$ as the d^{th} element of
626 latent association vector h_m . Then,

$$\begin{aligned}
 P^{u/D+} &:= \sum_{m=1}^M \Pr(\mathbf{x}_i \in h_m \mid \mathbf{x}) \cdot \mathbb{1} \left[\sum_{d=1}^D \mathbb{1}(h_{[d]}^m = 1) \geq u \right] \\
 P^{u/D0} &:= \sum_{m=1}^M \Pr(\mathbf{x}_i \in h_m \mid \mathbf{x}) \cdot \mathbb{1} \left[\sum_{d=1}^D \mathbb{1}(h_{[d]}^m = 0) \geq u \right] \\
 P^{u/D-} &:= \sum_{m=1}^M \Pr(\mathbf{x}_i \in h_m \mid \mathbf{x}) \cdot \mathbb{1} \left[\sum_{d=1}^D \mathbb{1}(h_{[d]}^m = -1) \geq u \right]
 \end{aligned} \tag{12}$$

627 where $\Pr(\mathbf{x}_i \in h_m \mid \mathbf{x})$ is the posterior probability of belonging to the class described by
 628 association vector h_m . We define $P^{u/D} = \max \{P^{u/D+}, P^{u/D0}, P^{u/D-}\}$, and $RR := \{\mathbf{x} : P^{u/D} > b\}$,
 629 where b is the confidence threshold of at least 0.5. For each observation, this calculation sums
 630 over its posterior probabilities of belonging to classes with association vectors indicating sufficient
 631 consistency.

632 Letting T be the number of MCMC iterations retained after burn-in, the quantities in (12) are
 633 estimated as

$$\begin{aligned}
 \hat{P}_i^{u/D+} &= \frac{1}{T} \sum_{t=1}^T \left\{ \sum_{m=1}^M \mathbb{1}(H_i^{(t)} = h_m) \cdot \mathbb{1} \left[\sum_{d=1}^D \mathbb{1}(h_{[d]}^m = 1) \geq u \right] \right\} \\
 \hat{P}_i^{u/D0} &= \frac{1}{T} \sum_{t=1}^T \left\{ \sum_{m=1}^M \mathbb{1}(H_i^{(t)} = h_m) \cdot \mathbb{1} \left[\sum_{d=1}^D \mathbb{1}(h_{[d]}^m \neq 0) \geq u \right] \right\} \\
 \hat{P}_i^{u/D-} &= \frac{1}{T} \sum_{t=1}^T \left\{ \sum_{m=1}^M \mathbb{1}(H_i^{(t)} = h_m) \cdot \mathbb{1} \left[\sum_{d=1}^D \mathbb{1}(h_{[d]}^m = -1) \geq u \right] \right\}
 \end{aligned} \tag{13}$$

634 for each observation i , leading to $\hat{P}_i^{u/D} = \max \{\hat{P}_i^{u/D+}, \hat{P}_i^{u/D0}, \hat{P}_i^{u/D-}\}$, and we reject those \mathbf{x}_i
 635 with $\hat{P}_i^{u/D} > b$. Large values of $\hat{P}_i^{u/D}$ correspond to consistent effects.

636 This test is flexible, and can be adapted to several purposes. For example, to test the typical
 637 partial conjunction hypothesis, one could modify the quantities in Equation 13 to

$$\hat{P}_i^{u/D} := \frac{1}{T} \sum_{t=1}^T \left\{ \sum_{m=1}^M \mathbb{1}(H_i^{(t)} = h_m) \cdot \mathbb{1} \left[\sum_{d=1}^D \mathbb{1}(h_{[d]}^m \neq 0) \geq u \right] \right\}. \tag{14}$$

638 In the analysis of VISION RNA-seq data, we tested for consistency in all -1, 0, and 1 groups.
 639 Thus, we applied our statistical test using all quantities in Equation 12 and letting $u = 5$, such
 640 that $P^{5/5} = \max \{P^{5/5+}, P^{5/50}, P^{5/5-}\}$. Then, a consistently expressed gene is one that falls within
 641 the $RR := \{\mathbf{x} : P^{5/5} > 0.5\}$, and all others were called differentially expressed.

642 Simulations and comparisons

643 We used simulations to compare CLIMB to SCREEN¹⁶ and mash¹⁴, two methods designed for
 644 a similar purpose as CLIMB, as well as DESeq2²¹, a popular method for pairwise differential
 645 expression analysis. SCREEN was designed specifically to test for consistent signals across many
 646 experiments. Like CLIMB, SCREEN employs a mixture model with classes governed by latent

647 association vectors. SCREEN tackles the issue of computational intractability associated with
648 these classes in two ways. First, it assumes the association vectors to be binary, rather than ternary.
649 This reduces the growth rate of candidate latent classes to 2^D , but comes at the cost of eliminating
650 the method's ability to detect inverse associations and signs of effects. Second, SCREEN partitions
651 the data's original conditions into clusters using a network community detection algorithm as an
652 initial step, fitting separate models to each cluster. SCREEN next uses a heuristic to test for
653 consistent signals across all conditions.

654 Mash, on the other hand, captures the relationship between observations across conditions
655 through the covariances of each cluster in the mixture. Mash assumes the data come from a
656 multivariate normal mixture, restricting each cluster to have zero mean. It sidesteps computational
657 issues by not explicitly specifying the latent association vectors; instead, it models different clusters
658 by specifying a list of candidate covariances which are generated *a priori*. Since the assumed
659 distribution is symmetric and unimodal, model fitting is simplified to a convex optimization problem
660 that can be computed efficiently. Unlike CLIMB, SCREEN, and mash, DESeq2 was not designed
661 for joint testing of conditions, but for testing differential expression pairwise between conditions.

662 In order to simulate data that mimic empirical data, we first fit CLIMB to real datasets
663 (ChIP-seq, differential analysis of RNA-seq, and erythroid lineage RNA-seq data described in
664 *VISION CTCF ChIP-seq*, Shukla *et al.*⁶¹, and *VISION RNA-seq*, respectively). Parameter estimates
665 similar to those obtained from these model fits were used to simulate $n = 15,000, 15,000$, and
666 21,303 observations with 18, 11, and 5 dimensions, respectively, according to the constrained
667 normal mixture model in Equation 2 (see Supplementary Tables S4 – S12 and Supplementary
668 Figs. S24 – S26 for specific parameter settings for all simulations). Since DESeq2 requires replicates
669 for each experimental condition, for Simulation 3 we simulated 2 replicates per condition under the
670 same model, but with a correlation of 0.96 between replicates. Since CLIMB is more appropriate
671 for log-transformed RNA-seq data, while DESeq2 is used on counts, i.e. untransformed data, we
672 inputted a rounded 2^X , where X is the simulated data, to DESeq2 for analysis. The simulated
673 replicates were averaged before passing to CLIMB.

674 Like the real datasets, all simulated data contain shared effects that are positively or negatively
675 correlated across dimensions and effects that are unique to one dimension. We applied CLIMB,
676 SCREEN, and mash to Simulations 1 and 2, since these analyses focus on identifying signal patterns
677 across all conditions. We applied CLIMB and DESeq2 to Simulation 3, since the goal of this
678 analysis is specifically to detect differential expression.

679 Though a usual goal of analyzing these types of data is to uncover the true association patterns
680 of observations across conditions, of all methods, only CLIMB can report the full latent association
681 vectors. To provide a fair comparison among CLIMB, mash, and SCREEN, we test the partial
682 conjunction hypothesis across a series of levels u . We do this as SCREEN's sole functionality is
683 to test this hypothesis, while CLIMB and mash can be utilized for this purpose. By evaluating
684 a range of u , we can obtain a comprehensive assessment of each method's ability to identify
685 consistent signals at different levels of condition-specificity. To compare against DESeq2 in the
686 case of multi-condition differential expression, we identified genes that were differentially expressed
687 along the lineage using the same procedure as in the section *VISION RNA-seq*.

688 We assessed the performance of each method by comparing the identified consistent signals with
689 the truth and computing the precision and recall at these thresholds (Supplementary Fig. S3 – S5).
690 Precision and recall were computed as

$$\text{precision} = \frac{|\text{significant effects} \cap \text{true effects} \cap \text{correctly signed}|}{|\text{significant effects}|}$$

$$\text{recall} = \frac{|\text{significant effects} \cap \text{true effects} \cap \text{correctly signed}|}{|\text{true effects}|}$$

691 where significant effects are observations that have been estimated to be consistent, true effects
692 are observations that truly are consistent, and correctly signed effects are observations whose true
693 and estimated associations have the same sign. This computation is designed such that an effect
694 correctly identified by an algorithm as significant, but whose effect was missigned, is considered a
695 false positive. The sign requirement was omitted for DESeq2. Analogous precision-recall curves for
696 simulations 1 and 2 that do not incorporate sign information are in Supplementary Fig. S6 and S7.

697 Separately, we sought to evaluate how accurate CLIMB is at the pairwise fitting step. While
698 the pairwise modeling need not be perfect, it should retain true classes at the pairwise level and
699 have reasonable classification accuracy, such that true classes are likely to be retained in the final
700 model. We assessed CLIMB's performance during pairwise fitting by calculating classification
701 accuracy and counting the number of missed classes and superfluous classes for each pairwise fit
702 and each simulation (Supplementary Fig. S8). Indeed, CLIMB's pairwise fitting was more likely to
703 retain extra classes than it was to remove true classes from the model.

704 Data availability

705 The data are available at NCBI's Gene Expression Omnibus (<https://www.ncbi.nlm.nih.gov/geo/>)⁶²
706 under accession code GSE156074.

707 Code availability

708 CLIMB is implemented in an R package, freely available on GitHub under an Artistic-2.0 license
709 (<https://github.com/hillarykoch/CLIMB>).

710 Contributions

711 R.C.H. and Q.L. supervised the project. H.K., G.X., F.Z., Y.W., R.C.H., and Q.L. designed
712 analytical strategies. H.K., C.A.K., G.X., B.G., and R.C.H. analyzed data. H.K. developed
713 analytical tools. C.A.K. performed experiments. G.X. and B.G. administered infrastructure for
714 data storage, quality control, and normalization. H.K., R.C.H., and Q.L. wrote the paper with
715 input from all authors.

716 References

717 1. Dimas, A. S. *et al.* Common regulatory variation impacts gene expression in a cell type–
718 dependent manner. *Science* **325**, 1246–1250 (2009).

719 2. GTEx Consortium. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene
720 regulation in humans. *Science* **348**, 648–660 (2015).

721 3. Morikawa, M. *et al.* ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads
722 and a novel binding motif. *Nucleic Acids Res* **39**, 8712–8727 (2011).

723 4. Arvey, A., Agius, P., Noble, W. S. & Leslie, C. Sequence and chromatin determinants of
724 cell-type-specific transcription factor binding. *Genome Res* **22**, 1723–1734 (2012).

725 5. Wang, H. *et al.* Widespread plasticity in CTCF occupancy linked to DNA methylation. *Genome*
726 *Res* **22**, 1680–1688 (2012).

727 6. Neale, B. M. *et al.* Meta-analysis of genome-wide association studies of attention-
728 deficit/hyperactivity disorder. *J Am Acad Child Psy* **49**, 884–897 (2010).

729 7. Yang, J. *et al.* Conditional and joint multiple-SNP analysis of GWAS summary statistics
730 identifies additional variants influencing complex traits. *Nat Genet* **44**, 369 (2012).

731 8. Voight, B. F. *et al.* Twelve type 2 diabetes susceptibility loci identified through large-scale
732 association analysis. *Nat Genet* **42**, 579 (2010).

733 9. Pharoah, P. D. *et al.* GWAS meta-analysis and replication identifies three new susceptibility
734 loci for ovarian cancer. *Nat Genet* **45**, 362 (2013).

735 10. Andreassen, O. A. *et al.* Improved detection of common variants associated with schizophrenia
736 by leveraging pleiotropy with cardiovascular-disease risk factors. *Am J Hum Genet* **92**, 197–209
737 (2013).

738 11. Ernst, J., Nau, G. J. & Bar-Joseph, Z. Clustering short time series gene expression data.
739 *Bioinformatics* **21**, i159–i168 (2005).

740 12. Gerrits, A. *et al.* Expression quantitative trait loci are highly sensitive to cellular differentiation
741 state. *PLoS Genet* **5**, e1000692 (2009).

742 13. Fu, J. *et al.* Unraveling the regulatory mechanisms underlying tissue-dependent genetic
743 variation of gene expression. *PLoS Genet* **8**, e1002431 (2012).

744 14. Urbut, S. M., Wang, G., Carbonetto, P. & Stephens, M. Flexible statistical methods for
745 estimating and testing effects in genomic studies with multiple conditions. *Nature Genet* **51**,
746 187–195 (2019).

747 15. Heller, R., Yekutieli, D. *et al.* Replicability analysis for genome-wide association studies. *Ann*
748 *Appl Stat* **8**, 481–498 (2014).

749 16. Amar, D., Shamir, R. & Yekutieli, D. Extracting replicable associations across multiple studies:
750 Empirical Bayes algorithms for controlling the false discovery rate. *PLoS Comput Biol* **13**,
751 e1005700 (2017).

752 17. Flutre, T., Wen, X., Pritchard, J. & Stephens, M. A statistical framework for joint eQTL
753 analysis in multiple tissues. *PLoS genetics* **9**, e1003486 (2013).

754 18. Wen, X. & Stephens, M. Bayesian methods for genetic association analysis with heterogeneous
755 subgroups: from meta-analyses to gene-environment interactions. *Ann Appl Stat* **8**, 176 (2014).

756 19. Huang, T., Peng, H. & Zhang, K. Model selection for Gaussian mixture models. *Stat Sinica*
757 **27**, 147–169 (2017).

758 20. Ferguson, J. P., Cho, J. H. & Zhao, H. A new approach for the joint analysis of multiple
759 ChIP-seq libraries with application to histone modification. *Stat Appl Genet Mol* **11** (2012).

760 21. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for
761 RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).

762 22. Oudelaar, A. M. *et al.* Between form and function: the complexity of genome folding. *Hum
763 Mol Genet* **26**, R208–R215 (2017).

764 23. Philipsen, S. & Hardison, R. C. Evolution of hemoglobin loci and their regulatory elements.
765 *Blood Cell Mol Dis* **70**, 2–12 (2018).

766 24. Xiang, G. *et al.* An integrative view of the regulatory and transcriptional landscapes in mouse
767 hematopoiesis. *Genome Res* **30**, 472–484 (2020).

768 25. Thurman, R. E. *et al.* The accessible chromatin landscape of the human genome. *Nature* **489**,
769 75–82 (2012).

770 26. Keller, C. A. *et al.* Effects of sheared chromatin length on ChIP-seq quality and sensitivity.
771 *bioRxiv preprint doi:10.1101/2020.09.30.320697* (2020).

772 27. Kim, T. H. *et al.* Analysis of the vertebrate insulator protein CTCF-binding sites in the human
773 genome. *Cell* **128**, 1231–1245 (2007).

774 28. Splinter, E. *et al.* CTCF mediates long-range chromatin looping and local histone modification
775 in the β -globin locus. *Gene Dev* **20**, 2349–2354 (2006).

776 29. Behera, V. *et al.* Exploiting genetic variation to uncover rules of transcription factor binding
777 and chromatin accessibility. *Nature Commun* **9**, 1–15 (2018).

778 30. Essien, K. *et al.* CTCF binding site classes exhibit distinct evolutionary, genomic, epigenomic
779 and transcriptomic features. *Genome Biol* **10**, R131 (2009).

780 31. Landt, S. G. *et al.* ChIP-seq guidelines and practices of the ENCODE and modENCODE
781 consortia. *Genome Res* **22**, 1813–1831 (2012).

782 32. Plasschaert, R. N. *et al.* CTCF binding site sequence differences are associated with unique
783 regulatory and functional trends during embryonic stem cell differentiation. *Nucleic Acids Res*
784 **42**, 774–789 (2013).

785 33. Villar, D., Flicek, P. & Odom, D. T. Dynamics, mechanisms, and functional implications of
786 transcription factor binding evolution in metazoans. *Nat Rev Genet* **15**, 221 (2014).

787 34. Van Dongen, S. & Enright, A. J. Metric distances derived from cosine similarity and Pearson
788 and Spearman correlations. *arXiv preprint doi:1208.3145* (2012).

789 35. Baker, F. B. Stability of two hierarchical grouping techniques case i: sensitivity to data errors.
790 *J Am Stat Assoc* **69**, 440–445 (1974).

791 36. McLean, C. Y. *et al.* GREAT improves functional interpretation of cis-regulatory regions. *Nat*
792 *Biotechnol* **28**, 495 (2010).

793 37. Pervouchine, D. D. *et al.* Enhanced transcriptome maps from multiple mouse tissues reveal
794 evolutionary constraint in gene expression. *Nat Commun* **6**, 1–11 (2015).

795 38. Heuston, E. F. *et al.* Establishment of regulatory elements during erythro-megakaryopoiesis
796 identifies hematopoietic lineage-commitment points. *Epigenet Chromatin* **11**, 1–18 (2018).

797 39. Thomas, P. D. *et al.* PANTHER: a library of protein families and subfamilies indexed by
798 function. *Genome Res* **13**, 2129–2141 (2003).

799 40. Thomas, P. D. *et al.* Applications for protein sequence–function evolution data: mRNA/protein
800 expression analysis and coding SNP scoring tools. *Nucleic Acids Res* **34**, W645–W650 (2006).

801 41. Meuleman, W. *et al.* Index and biological spectrum of human dnase i hypersensitive sites.
802 *Nature* **584**, 244–251 (2020).

803 42. Vierstra, J. *et al.* Global reference mapping of human transcription factor footprints. *Nature*
804 **583**, 729–736 (2020).

805 43. Bailey, T. L. Streme: Accurate and versatile sequence motif discovery. *bioRxiv preprint*
806 *doi:10.1101/2020.11.23.394619* (2020).

807 44. Olayinka, O. A., O'Neill, N. K., Farrer, L. A., Wang, G. & Zhang, X. Molecular quantitative
808 trait locus mapping in human complex diseases. *Current Protocols* **2**, e426 (2022).

809 45. Lindsay, B. G. Composite likelihood methods. *Contem Math* **80**, 221–239 (1988).

810 46. Varin, C., Reid, N. & Firth, D. An overview of composite likelihood methods. *Stat Sinica* 5–42
811 (2011).

812 47. Larriba, F. & Fearnhead, P. On composite likelihoods in statistical genetics. *Stat Sinica* 43–69
813 (2011).

814 48. Cox, D. R. & Reid, N. A note on pseudolikelihood constructed from marginal densities.
815 *Biometrika* **91**, 729–737 (2004).

816 49. Geys, H., Molenberghs, G. & Ryan, L. M. Pseudolikelihood modeling of multivariate outcomes
817 in developmental toxicology. *J Am Stat Assoc* **94**, 734–745 (1999).

818 50. Fieuws, S., Verbeke, G., Boen, F. & Delecluse, C. High dimensional multivariate mixed models
819 for binary questionnaire data. *J R Stat Soc C* **55**, 449–460 (2006).

820 51. Fieuws, S. & Verbeke, G. Pairwise fitting of mixed models for the joint modeling of multivariate
821 longitudinal profiles. *Biometrics* **62**, 424–431 (2006).

822 52. Molenberghs, G., Verbeke, G. & Iddi, S. Pseudo-likelihood methodology for partitioned large
823 and complex samples. *Stat Probabil Lett* **81**, 892–901 (2011).

824 53. Vasdekis, V. G., Rizopoulos, D. & Moustaki, I. Weighted pairwise likelihood estimation for a
825 general class of random effects models. *Biostatistics* **15**, 677–689 (2014).

826 54. de Bruijn, N. G. A combinatorial problem. *Knaw Verhan* **49**, 758–764 (1946).

827 55. Good, I. J. Normal recurring decimals. *J London Math Soc* **1**, 167–169 (1946).

828 56. Tarjan, R. Depth-first search and linear graph algorithms. *SIAM J Comput* **1**, 146–160 (1972).

829 57. Wei, G. C. & Tanner, M. A. Posterior computations for censored regression data. *J Am Stat
830 Assoc* **85**, 829–839 (1990).

831 58. Chib, S. Bayes inference in the Tobit censored regression model. *J Econometrics* **51**, 79–99
832 (1992).

833 59. Albert, J. H. & Chib, S. Bayesian analysis of binary and polychotomous response data. *J Am
834 Stat Assoc* **88**, 669–679 (1993).

835 60. Benjamini, Y. & Heller, R. Screening for partial conjunction hypotheses. *Biometrics* **64**,
836 1215–1222 (2008).

837 61. Shukla, S. A. *et al.* Comprehensive analysis of cancer-associated somatic mutations in class I
838 HLA genes. *Nat Biotechnol* **33**, 1152 (2015).

839 62. Barrett, T. *et al.* Ncbi geo: archive for functional genomics data sets—update. *Nucleic acids
840 research* **41**, D991–D995 (2012).

841 63. McLachlan, G. & Peel, D. *Finite mixture models* (John Wiley & Sons, New York, 2004).

842 64. Fan, J. & Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties.
843 *J Am Stat Assoc* **96**, 1348–1360 (2001).

844 65. Geweke, J. Efficient simulation from the multivariate normal and student-t distributions
845 subject to linear constraints and the evaluation of constraint probabilities. In *Comp Sci Stat*,
846 571–578 (American Statistical Association, 1991).

847 66. Li, Y. & Ghosh, S. K. Efficient sampling methods for truncated multivariate normal and
848 student-t distributions subject to linear inequality constraints. *J Stat Theory Pract* **9**, 712–732
849 (2015).

850 67. Wijsman, R. A. Random orthogonal transformations and their use in some classical distribution
851 problems in multivariate analysis. *Ann Math Stat* **41**: 415–423 (1957).

852 68. Shaby, B. & Wells, M. T. Exploring an adaptive Metropolis algorithm. Tech. Rep., Dept.
853 Statistical Science, Duke Univ., Durham, NC. (2011).

854 69. McLachlan, G. J., Bean, R. & Jones, L. B.-T. A simple implementation of a normal mixture
855 approach to differential gene expression in multiclass microarrays. *Bioinformatics* **22**, 1608–1615
856 (2006).

857 70. Bovy, J., Hogg, D. W., Roweis, S. T. *et al.* Extreme deconvolution: Inferring complete
858 distribution functions from noisy, heterogeneous and incomplete observations. *Ann Appl Stat*
859 **5**, 1657–1677 (2011).

860 71. Zhang, Y. *et al.* Model-based analysis of ChIP-Seq (MACS). *Genome Biol* **9**, R137 (2008).

861 72. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human
862 genome. *Nature* **489**, 57–74 (2012).

863 73. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic
864 features. *Bioinformatics* **26**, 841–842 (2010).

865 74. Xiang, G. *et al.* S3norm: simultaneous normalization of sequencing depth and signal-to-noise
866 ratio in epigenomic data. *Nucleic Acids Res* **48**, e43–e43 (2020).

867 75. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or
868 without a reference genome. *BMC Bioinformatics* **12**, 323 (2011).

869 **Acknowledgments**

870 The authors are grateful for the support from their funding agencies: NIGMS training grant
871 T32GM102057 (CBIOS training program to The Pennsylvania State University, to H.K.); NHGRI
872 pre-doctoral fellowship 1F31HG010574 (to H.K.); NIGMS grant R01GM109453 (to Q.L.); NIDDK
873 grant R24DK106766 (to R.C.H.). The authors thank Marit Vermunt and Gerd Blobel for generating
874 and sharing the G1E CTCF ChIP-seq data used in this work.

875 **Competing interests**

876 The authors declare no competing interests.