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Abstract

Joint analyses of genomic datasets obtained in multiple different conditions are essential for
understanding the biological mechanism that drives tissue-specificity and cell differentiation,
but they still remain computationally challenging. To address this we introduce CLIMB
(Composite Llkelihood eMpirical Bayes), a statistical methodology that learns patterns of
condition-specificity present in genomic data. CLIMB provides a generic framework facilitating
a host of analyses, such as clustering genomic features sharing similar condition-specific
patterns and identifying which of these features are involved in cell fate commitment. We
apply CLIMB to three sets of hematopoietic data, which examine CTCF ChIP-seq measured
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in 17 different cell populations, RNA-seq measured across constituent cell populations in three
committed lineages, and DNase-seq in 38 cell populations. Our results show that CLIMB
improves upon existing alternatives in statistical precision, while capturing interpretable and
biologically relevant clusters in the data.

Uncovering changes across multiple biological conditions is a lasting theme in large-scale genomic
data analyses across many types of studies. Examples include the analysis of tissue-specificity
of gene expression patterns®?, differential protein binding across cell types®*°, or causal single
nucleotide polymorphisms (SNPs)%"%? and pleiotropic genetic variants'® across many genome-wide
association (GWA) studies. We are specifically motivated by two contexts:

Motivating context 1 Classification by association patterns: if a set of subjects has been
observed in many conditions, one may seek to assign subjects to classes based on the patterns of
association they exhibit across biological conditions. For example, when studying plasticity of gene
expression across multiple human tissues, joint analysis of these data might ask which sets of genes
are collectively up-regulated together in some tissues, but down-regulated in others.

Motivating context 2 Testing for consistent findings across many experiments: one may desire
to determine which signals are consistent across studies. For example, if one collects several
ChIP-seq datasets under different experimental conditions, one may ask which loci are consistently
bound in a fixed number of those conditions.

Both motivating contexts concern determining observations that have either null or significant
associations across a collection of conditions. One standard approach to jointly analyzing a
collection of conditions applies general clustering algorithms such as K-means or hierarchical
clustering. Though these techniques can group signal profiles with similar association patterns
together, their results do not directly provide information on condition specificity, such as which
signals are consistent or differential across conditions. Somewhat similarly, time series-inspired
methods such as the short time-series expression miner!! may be applied to genomic data collected
at multiple time points. However, this approach assumes a temporal relationship across conditions
and groups observations according to changes relative to a temporal baseline. This temporal
assumption may not be applicable for studying genetic pleiotropy or plasticity in gene regulation,
and again cannot be used to identify patterns of condition specificity. Alternatively, one may
identify observations significantly associated with each condition separately, and use these individual
outcomes to determine which relationships are significantly shared or differential across conditions.
This technique, which is commonly used in expression quantitative trait locus (eQTL) analyses®,
does not leverage any information-sharing among conditions, and is thus underpowered to identify
shared or differential associations!?!3. Urbut et al.'* improved upon single-condition analyses
with a statistical model for joint eQTL analysis. This approach shows increased power; however,
it makes some restrictive modeling assumptions, such as data symmetry, that are not always
appropriate, especially when seeking consistent signals across conditions, as we will illustrate later.
Pairwise analyses, commonly employed for differential expression analysis, also improve upon
analyses of individual conditions, but still do not offer the power of a joint analysis when more
than two conditions are present. Moreover, when more than two conditions are examined, it is
unclear how to properly aggregate findings from a series of pairwise comparisons.
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To provide interpretable joint analysis of multiple conditions, several others have introduced
“association vectors” to describe an observation’s specific pattern of association across conditions;
these approaches leverage mixture models to cluster observations into groups with different
association vectors. For example, Andreassen et al.'? apply association vectors to the study of
pairs of GWA studies. In this two-condition setting, they assume the presence of four association
vectors {(0,0), (0,1), (1,0), (1,1)}, where a SNP described by the (0,0) assocation vector is null
in both studies, a SNP from (1,1) is non-null in both studies, and a SNP from (0, 1) or (1,0) is
null in one of the studies, but non-null in the other. Some!%!¢ similarly use association vectors to
find reproducible observations across replicated experiments, while others!™!® leverage them to
determine which SNPs are eQTLs across various tissues.

These association vectors can be appreciated as an alternative to binarization or ternarization
of genomic signals, since they assign binary or ternary labels to the data. A label directly reflects
the pattern of condition specificity of the observations in its associated cluster. Further, as a
mixture modeling approach, these labels naturally allow for heterogeneity in signals, resulting in
greater model flexibility.

Yet, a remaining challenge is that models that leverage these association vectors suffer from
computational intractability for even a modest number of conditions!®!7. To understand this
issue, consider D conditions: Let H = {H = (hpys .- hypy) @ by € {—1,0,1}} be the set of
all 37 possible configurations of association vector H, such that an observation described by an
association vector with hj; = 1 (h;; = —1) has a positive (negative) association in condition 4.
It is clear that this model formulation becomes computationally prohibitive even for single-digit
D because the total number of possible association vectors grows exponentially with D, possibly
resulting in the number of model parameters exceeding the number of observations. In response to
this, several restrictive assumptions are imposed. For example, Amar et al.'® somewhat alleviate
computational burden by assuming all associations must be positive, and estimate partial latent
associations for subgroups of conditions with a heuristic approach. This heuristic reduces statistical
power and resolution to test for consistent findings and cannot provide a single unified clustering
of observations since it is not a true joint analysis. Moreover, this approach does not distinguish
an observation that is significant in opposite directions in two conditions from an observation that
exhibits consistent direction of association across conditions. Alternatively, Urbut et al.!* make
computational gains by assuming all observations come from a uni-modal distribution centered
over zero, but this restriction does not always hold in practice.

We present a methodology we refer to as CLIMB (Composite Llkelihood eMpirical Bayes) that
allows us to tractably estimate which latent association vectors are likely to be present in the
data. Our method is motivated by the observation that the true number of latent classes, each
described by a different association vector, cannot be greater than the sample size. Thus, in higher
dimensions, the number of true classes is very small relative to 37, and many candidate classes have
no members. By identifying these classes through a computationally efficient pairwise composite
likelihood (CL) model and rigorously filtering out unsupported latent classes, we elucidate sparsity
in class membership. In doing so, the aforementioned computational intractability issue falls
away, and a joint Bayesian analysis, informed by the initial CL modeling, can be performed.
Using ChIP-seq, RNA-seq, and DNase-seq data collected from hematopoietic cell lineages, we
demonstrate that CLIMB compares favorably against existing alternatives based on improved
statistical power, precision, and model interpretability for investigating cell type-specific protein
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&2 binding and chromatin accessibility, and lineage-specific gene expression patterns.

» Results

s Overview of CLIMB
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Figure 1: Toy examples of CLIMB. a, Illustration of the considered model using a simulated
dataset with two dimensions. The 9 classes are annotated by their corresponding latent association
vectors. The null class (0,0) lies in the center over the origin. Classes that are non-null in at
least one dimension exhibit a location shift. Only observations from classes that are non-null in
both dimensions are correlated. b, Flowchart of CLIMB with a 3-dimensional example, with true
classes whose association vectors are denoted hq, hs, h3, hg, and h,,. Step 1 fits 3 pairwise models.
Pairwise association vectors are estimated for each observation in each pairwise fit. In Step 2,
we enumerate candidate 3-dimensional association vectors using a graph-based algorithm based
on the estimated pairwise association vectors (shown as edges) between dimensions 1 and 2, and
the estimated pairwise association vectors between dimensions 2 and 3. 9 candidate association
vectors are found on the graph, but those that are colored in red are not truly present in the data.
Association vectors that are not concordant with estimated association vectors from the pairwise
fit between dimensions 1 and 3 are pruned. With 6 remaining candidates, one computes their prior
weights (Step 3), then in Step 4 fits a Bayesian mixture model to the original, 3-dimensional data
using the number of classes remaining after Step 3.
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We model the multi-conditional data using a constrained mixture model that encodes condition-
specificity through latent association labels -1, 0, and 1 (Fig. 1la). The parameter constraints
in the model enforce some general patterns commonly observed under condition-specificity: (1)
observations that are associated with a condition (i.e., association label £1) have a stronger
average signal than those that are not (i.e., association label 0), and (2) observations that are
associated with multiple conditions correlate with one another within a given cluster. Specifically,
we assume the data are summarized as some score, and transformed to a Z-score, with larger
values corresponding to stronger signals.

Then, letting n be the sample size, D be the dimension of the data, and H = (hqy, ..., hip))
be a ternary latent association vector, the observed data x across D conditions follow the normal
mixture model

o (1)
H ~ Mult(my, ..., mym), Zwm: 1
m=1

where h,, is the m" latent class, m € 1,..., M, and ¢% is a D-dimensional constrained normal
distribution. The constrained normal distribution, defined presently, is used to impose association
label-driven constraints:

65 (x; 1 T, h) = dp(x: , B), subject to

sgn(pa) = hig Vd € {1,...,D} and (2)

sgn(Xy¢) = hpyp - by Vr #t
where 4 is the d** element of pu and X,; is the (r, )" element of X.
Though the possible number of latent classes M explodes combinatorially, many latent classes
likely have no members. In order to estimate the actual number of classes, we leverage information
about association patterns between pairs of conditions through a pairwise composite likelihood
model to eliminate classes that are unlikely to be present in the data, making the final model
computationally tractable. This filtering works as depicted through a toy example in Fig. 1b, and

is briefly described in four major steps:

1. Pairwise fitting. Fit a bi-dimensional model for each of the (l;) pairwise combinations

of dimensions through a pairwise composite likelihood framework. The total number of
possible latent classes in each bi-dimensional case is 9, and therefore tractable for typical
genomic datasets. For each pair of dimensions, we estimate which subset of the 9 possible
configurations of the latent association vector are supported by the data across those 2
dimensions by utilizing a penalized mixture model'®. This mixture model penalizes the class
mixing weights, such that classes that are likely without members are removed from the
pairwise model. Unlike many composite likelihood approaches that assume independence
across dimensions'®?°, the pairwise model takes account of dependence between each pair of
conditions.

2. Assembling D-dimensional association labels from pairwise labels. Use the estimated pairwise
association vectors to assemble a preliminary list of feasible D-dimensional association vectors.
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D-dimensional association vectors that are inconsistent with inferred pairwise labels will be
deemed infeasible and pruned.

3. Pruning association labels with insufficient cluster weights. Estimate the mixing weights for
the remaining latent classes using the estimates obtained from the pairwise fits, pruning
classes with insufficient weight and ensuring that M < n.

4. Empirical Bayesian estimation of the full D-dimensional model. Reestimate parameters for
the D-dimensional mixture model based on the final list of classes using a Bayesian approach.
Inform prior hyperparameters with parameter estimates obtained from the pairwise fits. This
final step ensures information across all dimensions is considered.

CLIMB’s model output is useful for a host of analyses, including: (1) using association labels
and class membership to elucidate condition-specificity, (2) using class membership probabilities to
test for consistency in signals across conditions, (3) using estimated cluster covariances to infer
similarity between conditions, and (4) using estimated cluster means to obtain a parsimonious
characterization of dominant patterns of condition-specificy. See Methods and supplement for
details on these downstream analyses.

Simulations

We used simulations to compare CLIMB to the available methods for multiconditional analysis,
Urbut et al’s mash!* and Amar et al’s SCREEN 6. We selected these two methods to compare
against because they are also designed to analyze many conditions for obtaining information on
condition specificity. In a separate simulation, we also compare CLIMB to DESeq2?!, a widely used
tool for pairwise differential expression analysis. Although DESeq2 focuses on pairwise comparisons,
its wide adoption makes it a worthy comparison in the context of RNA-seq analysis.

We consider three data types commonly encountered in genomic analyses: ChIP-seq data,
differential analysis output from RNA-seq data collected from treatment/control tissue pairs, and
RNA-seq data. The first simulation aims to study cell type-specificity of patterns of protein
binding across different cell types (motivating context 1), the second aims to identify which genes
are dysregulated in a consistent manner across different diseased tissues when compared against
normal tissues, and the final simulation aims to identify genes whose expression levels change
across cell differentiation (motivating context 2). These datasets exhibit different distributional
structures. For example, signals in simulation 1 have a positive sign (Supplementary Fig. Sla), but
signals in simulations 2 and 3 can be positive or negative. The strictly positive nature of signals in
simulation 1 arises from the fact that identified protein binding sites from ChIP-seq data are output
from a peak-calling routine, where each signal indicates evidence for the presence of a ChIP-seq
peak at a given genomic location. In contrast, the data in simulation 2 are derived from P-values
that indicate whether genes are relatively over- or under-expressed in a diseased tissue relative
to a normal counterpart tissue. This translates to Z-scores exhibiting both positive and negative
signals, and data that are more symmetrically distributed about the origin (e.g., see Supplementary
Fig. S1b). A unifying goal of all simulations is to evaluate the capacity of all methods to adapt
to data types with different distributions. See Testing consistency of effects for description of
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Figure 2: CLIMB uncovers interrelationships among hematopoietic cell populations
based on CTCF binding patterns. a, Expected relationship among cell populations. b,
Heatmaps displaying bi-clusterings of all ChIP-seq data for chromosome 11 based on CLIMB, mash,
and Pearson correlation. The columns, corresponding to different cell populations, are ordered
according to the dendrogram for each clustering method. The rows, corresponding to each loci, are
ordered based on class membership (for CLIMB and mash) and Pearson correlation (for Pearson),
respectively. (CH12 and MEL are murine lymphoma and erythroleukemia cell lines, respectively,
and thus do not clearly occupy one space in the lineage, though CH12 is most related to B cells,
and MEL is a mature erythroid cell type.)

statistical test used; see Simulations and comparisons and supplement for further details on the
simulation procedure. A computational cost analysis is also conducted (Supplementary Fig. S2).

CLIMB uniformly performed better than SCREEN and mash in simulations 1 and 2 across
several quantitative metrics (Supplementary Fig. S3-S9), including sensitivity and precision.
CLIMB, mash, and SCREEN respectively had average Fl-scores of 0.97, 0.77, and 0.74 for
simulation 1, and 0.46, 0.45, and 0.12, for simulation 2, at an a-level of 0.05. CLIMB also
outperformed DESeq2 in simulation 3, for identifying differentially expressed genes in a multi-
condition setting (Supplementary Fig. S5). For this simulation, CLIMB and DESeq2 had F1-scores
of 0.65 and 0.48, respectively, at a confidence threshold of 0.05. If effects are not shared in more
than 2 conditions, as they were in our simulations, then CLIMB gains no power over DESeq2 or
other pairwise methods. These results indicate that CLIMB is well-suited for identifying patterns
of association in the data as well as consistent and differential signals.

Case studies

We showcase CLIMB’s utility by analyzing multiple datasets collected as part of the VISION
(Valldated Systematic IntegratiON of hematopoietic epigenomes)?*?32* and ENCODE? projects.
These VISION and ENCODE data were collected from, respectively, 17 murine and 38 human
hematopoietic cell populations across differentiation. The primary goal of the VISION project is
to understand the interplay between transcriptomic variation and mechanisms of gene regulation
during hematopoiesis, while the ENCODE project aims to describe functional elements in the
human genome more broadly.
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First, we study VISION CTCF ChIP-seq data in 17 hematopoietic cell populations?®. While
CTCF binding sites that are invariant across cell types are known to maintain chromatin structures?”,
the function of more cell type-specific CTCF binding sites remains largely unknown?2%2°, We show
how CLIMB can be used to aid in tackling this question. Next, we examine VISION RNA-seq data
collected from a subset of these cell populations to probe the transcriptomic changes that commit
multipotent cells to different fates. Results from these analyses demonstrate CLIMB’s ability
to elucidate interrelationships between cell populations in different genomic data types, produce
interpretable classes, and conduct lineage-specific differential analyses. Finally, with ENCODE’s
DNase-seq data, we illustrate CLIMB’s ability to identify novel classes of tissue-specific regulatory

elements.

VISION CTCF ChIP-seq

We applied CLIMB to CTCF ChlIP-seq of chromosome 11 from 17 murine cell populations. This
analysis yielded a final model that included 15 non-empty classes. Among these, 2 classes described
constitutive binding behavior, while the remaining were more cell type-specific (see Supplementary
Fig. S10 for an illustration of all classes). Similar results are obtained for chromosome 7 (see
Supplementary Section Analysis of CTCF ChIP-seq on chromosome 7).

Constitutively bound CTCF is the dominant class. Previous work has noted that CTCF binding
is largely consistent across cell types®273°, We identified two such classes of conserved loci from
CLIMB'’s model fit. The first is the class of all ones, corresponding to the collection of loci bound
by CTCEF across all cell types. The second is the class of all ones except for the CFUE population,
corresponding to the collection of loci bound by CTCF in all but the CFUE cell population, likely
reflecting lower signal-to-noise ratio in the CFUE dataset. Indeed, the CFUE experiment had the
lowest quality as measured by Fraction of Reads in Peaks (FRiP) score®' (0.031, compared against
next lowest iMK with FRiP score 0.054 and CMP with FRiP score 0.097). In agreement with
previous studies, these two classes make up ~ 36% of all loci in the analysis. Moreover, consistent
with others3%32 the average signal strength (based on the estimated class means) for bound loci
within the two constitutive classes is significantly larger than the average signal strength for bound
loci that are not widely shared across cell populations (one-sided t-test, P = 5.02 x 10712).

Differential CTCF binding is predictive of cell population relationships. Although CTCF binding
is largely consistent across cell types, previous studies suggested that changes in its binding patterns
modify gene expression programs, affecting developmental cues or cell function®3233, We asked
whether the classes discovered by CLIMB support the idea that changes in CTCF binding relate to
hematopoietic development. To address this question, we clustered the cell populations based on
the estimated class covariance matrices3? (see supplementary Implementation details). CLIMB’s
clustering, shown in Fig. 2b, closely reflects the expected lineage relationship in Fig. 2a. This
result supports the claim that changes in CTCF binding occur in a lineage-specific manner, and
that CLIMB is well-suited to tease out this information from the data. In contrast, the clusterings
based on mash and the standard hierarchical clustering using Pearson correlation depart further
from the expected lineage relationship (Baker’s Gamma?® correlation coefficients, which measures
the similarity between two hierarchical tree structures, of 0.251, 0.096, and 0.209 for CLIMB,
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Figure 3: CTCF binding patterns uncovered by CLIMB capture different patterns of
epigenetic modifications. a, Data from the loci on chromosome 11 that belong to classes of
CTCF binding patterns (numbered 1, 4, and 14) identified by CLIMB are shown. The original
CTCF ChIP-seq, alongside ATAC-seq and histone modification ChIP-seq data in 4 hematopoietic
cell populations reveal differing patterns of epigenetic modifications across cell populations. b,
Log class means based on CLIMB’s model of CTCF binding patterns for the 3 classes in a. c,
Significantly enriched mouse phenotypes (FDR < 0.05 for all) associated with the plotted classes.
Class 1, containing loci with CTCF bound in every cell type, is not significantly enriched in any
mouse phenotypes. Class 4 is enriched with terms related to T and B cells and the thymus, while
class 14 contains terms related to red blood cellgyand kidney function.
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mash, and Pearson, respectively, when compared against the ground truth tree in Supplementary
Fig. S11). This suggests that mash does not sufficiently capture CTCF binding patterns across
cell types, and that simple correlation measures cannot effectively distinguish between different
classes of signals in the data. The low signal in the CFUE experiment likely caused the hierarchical
clusterings by both CLIMB and Pearson correlation to isolate the CFUE cell from the remaining
cell populations on the hierarchical tree. CLIMB exhibits robustness to this challenge, identifying
this cell as an outlier among all experiments, while still achieving a hierarchical clustering that
reflects the expected relationship among the remaining cell populations.

CLIMB identifies succinct groupings of C'TCF binding patterns. Visualization of binding sites
assigned to different classes is important for identifying biologically meaningful patterns. To
facilitate visual examination, CLIMB provides a means to merge similar classes based on model
output (see supplementary Implementation details, Obtaining parsimonious characterization for
details on the class merging procedure). From the VISION CTCF dataset, CLIMB clusters the
binding sites into 15 non-empty classes. To simplify the visualization, we aggregated these classes
into 5 parent groups, with sizes ranging from 254 to 5,462 binding sites. Supplementary Fig. S12a
displays the average signal strength (Equation 30) associated with each of these groups. For
example, group 1 includes constitutive binding sites, while group 4 contains progenitor-specific
binding sites, and group 5 contains binding sites constituent to mature erythroid and T cells.
Supplementary Fig. S12b displays the locations of the binding groups within the genomic region
around murine gene Bcll1a, whose gene product is involved in gene regulation of multiple cell

types.

CTCF binding patterns relate to epigenetic states during differentiation We next examined how
CLIMB’s classes of CTCF binding patterns relate to chromatin accessibility and various histone
modifications. Interestingly, though we only supplied CTCF ChIP-seq data to each method, the
classes estimated by CLIMB also displayed cell type-specific behavior of chromatin accessibility as
measured using ATAC-seq and epigenetic histone modifications H3K4mel and H3K4me3 (Fig. 3a—
b). Further, using GREAT?® (Genomic Regions Enrichment of Annotations Tool), we identified
that classes that exhibit erythroid- and immune cell-specific binding patterns are indeed enriched
in erythroid- and T cell-specific functions (Fig. 3c). In contrast, the classes identified by mash do
not appear to relate to epigenetic modifications (Supplementary Fig. S13-S16). In fact, there is
not a large amount of overlap between CLIMB’s and mash’s estimated classes (Supplementary
Fig. S17), altogether suggesting that CLIMB effectively captures biologically meaningful protein
binding patterns.

The classes learned by CLIMB also provide hypothesis-generating discoveries. For instance,
though class 14 exhibits consistent but low signal for CTCF binding only in erythroid cells, these
same sites are in open chromatin in all four cell populations, as assayed by ATAC-seq. Since
transcription factor binding is often regulated by differentially open chromatin, this raises a question
of what is driving the erythroid-specificity of this class. One possibility is that the sites could
be bound by other transcription factors, occluding CTCF. The pattern of H3K4mel as high
surrounding peaks of H3K4me3 in these class 14 sites suggests that they may be promoters. Indeed,
~6% of the CTCF-bound sites in class 14 (as well as the constitutively bound classes 1 and 2)
overlap with transcription start sites from GENCODE.v35, while this occurred on average ~2%
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Lineage Gene ontology term FDR
erythroid heme biosynthetic process 4.71 x 1073
heme metabolic process 4.08 x 1074
erythrocyte differentiation 3.19 x 1073
response to oxygen-containing compound 1.57 x 107*
megakaryocytic platelet activation 4.30 x 1073
regulation of blood coagulation 1.25 x 1073
response to wounding 2.58 x 107°
regulation of homotypic cell-cell adhesion 4.16 x 1072
myeloid pos. regulation of monocyte chemotaxis ~ 6.91 x 1073
leukocyte differentiation 1.15 x 107°
neutrophil migration 6.11 x 1076
regulation of macrophage activation 1.46 x 1073

Table 1: Lineage-specific differentially expressed genes identified by CLIMB are enriched in gene
ontology terms related to terminal cell function.

for the remaining classes, which fits with the patterns of histone modifications and ATAC-seq data.
This hypothesis is testable in further studies.

VISION RNA-seq

We next used CLIMB to perform lineage-specific differential expression analysis. In the hematopoi-
etic cell system, LSK, CMP and MEP are multipotent cells that differentiate into different terminal
cells, such as ERY, MONO, NEU, and iMK cells (Fig. 2a). We considered three paths: the erythroid
lineage (LSK — CMP — MEP — CFUE — ERY), the megakaryocytic lineage (LSK — CMP —
MEP — CFUMK — iMK), and the myeloid lineage (LSK — CMP — GMP — MONO/NEU). The
differentially expressed genes identified in each linage are expected to be related to the biological
function of the specific differentiation path and cell fate commitment. The datasets for these
lineages respectively contained 21,303, 20,995, and 22,940 expressed genes.

CLIMB identifies lineage-specific genes related to cell development and differentiation. We sought
to identify genes that show varying gene expression levels across each differentiation path. We first fit
a model with CLIMB to each lineage. We then pinpointed the genes that exhibit differential signals
across each lineage based on model fit. To proceed, we first identified genes with consistent signals
by performing a statistical test (see Methods). Briefly, a gene was considered “consistently expressed”
across the lineage if its probability of belonging to a class that is interpreted as describing consistent
expression behavior is sufficiently large. These classes are: (—1,—1,—1,—1,—1), (0,0,0,0,0), or
(1,1,1,1,1), where hyg = —1 implies a gene is lowly expressed or off, hjg = 0 implies a gene
is moderately expressed, and hjq = 1 implies a gene is highly expressed in cell population d.
Otherwise, a gene was considered differentially expressed (DE) along the lineage.

As illustrated by the diagrams in Supplementary Fig. S18, one class of consistently expressed

11


https://doi.org/10.1101/2020.11.18.388504
http://creativecommons.org/licenses/by-nd/4.0/

281

282

283

284

285

288

289

290

291

292

293

294

295

296

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.18.388504; this version posted September 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

b erythroid megakaryocytic myeloid

a erythroid GO analysis GO analysis GO analysis
cellular response to DNA damage stimulus
chromatin organization
chromatin remodeling
chromosome organization

s zalt

or
DNA replication
DNA strand elongation
1t of organelle locali:

protein folding
regulation of cell cycle phase transition

regulation of i 1t of protein localizati
regulation of nucleic acid: transcription
regulation of organelle assembly
regulation of viral process
RNA metabolic process
RNA splicing

773 1468 5415

general cellular function

megakaryocytic

RNA transport
sister chromatid segregation

FDR
1.00
075

. 050
I 0.25

472 1599 5859 hemopoiesis

= heme biosynthetic process
S iron ion homeostasis

hemostasis
[ regulation of cell-matrix adhesion

blood coagulation
regulation of wound healing

meg.

. regulation of platelet activation
mye|0Id regulation of phagocytosis
regulation of neutrophil degranulation

regulation of mononuclear cell migration

regulation of leukocyte differentiation

regulation of interleukin—1 beta production

@ regulation of granulocyte chemotaxis

2 positive regulation of calcium-mediated signaling

1281 1095 5768 E defense response to bacterium
phagocytosis, recognition

phagocytosis, engulfment

humoral imm. resp. mediated by circ. immunoglobulin

regulation of T cell activation

CLIMB DESeq2

intersect
intersect
intersect

CLIMB only
DESeq2 only
CLIMB only
DESeq2 only
CLIMB only
DESeqg2 only

Figure 4: Comparison of differentially expressed genes identified by CLIMB and DESeq2.
a, Venn diagrams displaying overlap of differentially expressed genes identified by both methods
across all analyses. b, Significance of enrichment of GO terms in gene sets specific to CLIMB,
specific to DESeq2, and in the intersection of both methods, for each studied lineage. Presented
GO terms are organized according to knowledge-driven labels. Non-hematopoietic terms related to
general cell function are above the black line. Hematopoietic-related terms, grouped according to
lineage-specific function, are below the black line.

genes (1,1,1,1,1) contains about 10,000 genes that are highly expressed in all the cell types along
each lineage. This observation is consistent with previous results showing that about half of
human or mouse genes are expressed at similar levels in all cell types3”; this set of constrained
genes includes those encoding common cellular (“housekeeping”) functions. Another equally large
class of consistently expressed genes (—1,—1,—1,—1,—1) was found on each lineage; these classes
contain genes that are not expressed in blood cells. A rich set of distinct classes of differentially
expressed genes were observed on each lineage. One class showed a dramatic increase in expression
during erythroid maturation, which included erythroid marker genes Alas2, Hba-al, Hba-a2, and
Gatal. Similarly, three classes showed substantial induction during one or both of monocyte and
neutrophil differentiation; these classes include myeloid marker genes Cxzcr2, Charl, Mpo, S100a8,
and S100a9. In contrast, no class of genes showed a dramatic induction to high expression levels
during megakaryocyte differentiation, which is consistent with previous analyses showing similar
gene expression patterns between multilineage progenitor cells and megakaryocytes®. In total,
our results identified 2,242 DE genes along the erythroid lineage, 2,073 along the megakaryocytic
lineage, and 2,376 along the myeloid lineage. Overlap of DE genes across lineages is diagrammed
in Supplementary Fig. S19.
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A common, alternative approach to this sort of analysis task is to apply a series of pairwise
differential expression analyses along each lineage with standard software such as DESeq22!, then
take the union of all DE genes across the analyses. We implemented this strategy using DESeq?2
with FDR < 0.01 and obtained 6,883 DE genes across the erythroid lineage, 7,458 across the
megakaryocytic lineage, and 6,863 across the myeloid lineage. The number of DE genes called by
DESeq2 was about one third of all input genes for each analysis, and about 3 times more than
the number of DE genes identified by CLIMB. We also applied SCREEN to identify DE genes
along each lineage, and found that SCREEN systematically reported lower precision in identifying
lineage-related GO terms than both CLIMB and DESeq2 (Supplementary Fig. S20). All differential
genes identified by CLIMB and DESeq2 are provided in Supplementary File 2.

The large number of DE genes returned by DESeq2 raises questions about the specificity of this
approach in pinpointing genes relevant to differentiation. To probe whether DESeq2 is exhibiting
low precision or CLIMB exhibiting low power, we first ran gene ontology (GO) enrichment analyses
for each lineage3®%°. Some enriched GO terms from the CLIMB analysis of each lineage are in
Table 1. Meanwhile, with the exception of the myeloid analysis, the DESeq2 gene sets were not
enriched in lineage-specific GO terms (Supplementary Files 3-8). The abundance of CLIMB’s
enriched hematopoiesis-specific GO terms further suggests that, though CLIMB identifies far fewer
DE genes than DESeq2, CLIMB is more precise in identifying key genes relevant to cell development
and differentiation. See Simulations and comparisons to see further investigation of this claim.

To more directly compare CLIMB and DESeq2, we partitioned DE genes into three categories,
namely, differentially expressed genes specific to CLIMB, DE genes specific to DESeq2, and DE
genes in the intersection of both methods for each lineage (Fig. 4a), and ran GO analyses on these
sets. We noticed that genes identified as DE by both CLIMB and DESeq2 are enriched in many
hematopoietic-related terms, while DESeq2-specific genes are enriched for many terms related to
general cell function. In each lineage, DESeq2-specific genes are highly enriched for functions that
are not specific to hematopoietic cells; CLIMB-specific genes in general are not highly enriched for
these same terms. Genes identified by both CLIMB and DESeq2 and CLIMB-specific genes are
more frequently enriched for hematopoietic-specific functions (Fig. 4b). The result that DESeq2’s
significant gene sets are only enriched in hematopoiesis-related GO terms after intersection with
CLIMB’s significant gene sets demonstrates that CLIMB is a powerful and more precise approach
to multi-condition differential gene expression analysis when compared to DESeq2 applied in a
series across multiple conditions. CLIMB is also a sensitive tool for finding differentially expressed
genes, even detecting low-level but differential expression during erythroid differentiation of some
genes associated with functions in myeloid cells, in which they are expressed at substantially higher
levels (Fig. 4b, Supplementary Fig. S21).

CLIMB latent association labels describe patterns of expression across cell differentiation. Next
we used CLIMB to further probe specific gene expression patterns of interest. For example, in
the erythroid analysis, 559 genes fell into the (—1,—1,—1,1,1) class. This class describes genes
with little to no expression in the LSK, CMP, and MEP cell populations, but high expression in
the CFUE and ERY cell populations. This gene set is enriched for GO terms such as erythrocyte
development (FDR= 5.11 x 1077), iron ion homeostasis (FDR= 9.46 x 10~3), and hydrogen peroxide
metabolic process (FDR= 1.96 x 1072). Cases of enrichment for terms related to other cell types
may result from a process initially discovered in the other cell type being present also in the cell
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type of interest.

As another example, the 298 members of the (0,0,0, —1, —1) class from the myeloid lineage,
corresponding to genes that are moderately expressed in LSK, CMP, and GMP cell populations,
but lowly or not expressed in monocyte and neutrophil cell populations, are enriched for several GO
terms concerning cell fate determination, such as microtubule cytoskeleton organization (FDR=
1.36 x 107°) and mitotic cell cycle process (FDR= 4.42 x 10~'?). Meanwhile, the 467 members of
the (=1, —1,—1,—1,0) class, corresponding to moderate gene expression specific to neutrophils, are
enriched for GO terms immunoglobulin mediated immune response (FDR= 2.47 x 1072°), defense
response to bacterium (FDR= 2.59 x 107?°), and immune response-activating signal transduction
(FDR= 4.92 x 1072%). Moreover, the 777 members of the (=1, —1,—1,0, —1) class, corresponding
to genes exhibiting moderate expression specific to monocytes, are enriched for the GO terms for
the production of tumor necrosis factor and interleukins 1, 6, and 12, as well as the regulation of
mast cell activation (FDR= 1.24 x 1072). Taken together, these results demonstrate that CLIMB’s
utility goes beyond lineage-specific differential gene expression analysis; the individual latent classes
also describe interpretable gene expression patterns.

ENCODE DNase-seq

As part of the ENCODE project, Meuleman et al.*! studied DNase-seq in 733 human cell populations,
partitioning accessible sites into 16 major groups of cellular accessibility patterns via non-negative
matrix factorization (NMF). NMF extracts additive factors across all samples that, when combined,
approximate primary signal patterns in the data. With a 38-sample subset of these data, we sought
to examine how classes of chromatin accessibility patterns identified by CLIMB relate to differential
transcription factor (TF) binding across cell populations, and how these results differ from those
extracted via NMF. We applied NMF as before?! to a binarized version of this 38-sample subset,
and selected an optimal number of 10 factors with NMF (Supplementary Fig. S22a). We merged
classes identified with CLIMB into 10 parent groups to match NMF.

CLIMB extracts factors of cell type-specific accessibility patterns. We used the class mean and
first two principal components (PCs) of the class covariance matrix to extract information from
each CLIMB class. These quantities can be interpreted similarly to factors identified with NMF,
capturing different cell type-specific accessibility patterns (Fig. 5a). For example, class 4 captures
signals specific to K562 cells, while class 5 captures signals specific to T2 helper cells, GM12865,
dendritic cells and classical monocytes. Class 7 contains accessible sites absent in differentiated
erythroid, K562, HAP1, and fetal liver hepatic cells, yet present in all others. Classes 1 and 3
both correspond to loci broadly accessible across cell populations, although interestingly they bear
striking differences in their PCs. Class 1 shares much with class 7, indicating sample-invariant
trends in the first PC. The second PC splits CD34+ hematopoietic progenitors, classical monocytes,
T helper cells, and regulatory T cells from CD4+ and CD8+ T cells and B cells. Meanwhile,
the first PC of class 2 indicates nearly half of the variance in this class is explained by signals in
lymphoid cells, while the second PC splits undifferentiated from differentiated CD34+ cells. Such
differences suggest the possibility for functional differences inherent in these two different classes of
accessible loci.

Because class 3 appeared distinct from classes 1 and 7 based on the PCs, we investigated these
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Figure 5: CLIMB identifies patterns of chromatin accessibility across hematopoietic
cells relating to different transcription factor binding signatures. a, CLIMB’s estimated
class means across all 38 cell populations are shown alongside the first two sets of eigenvector
coefficients of the estimated class covariance matrices. Cell samples are ordered based on their
similarity according to model output. b, Footprint signatures for the 5 shown classes in a subset of
examined cell populations. c-f, Top 4 enriched motifs in class 1. g, Most enriched motif in class 4
h, Enriched motif specific to class 5.

1 loci further. We classified each locus into a PC1 or PC2 group using the PC scores based on the
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first two PCs, which assess how well each PC describes the signal patterns across all samples
for each locus. These subgroups of class 3 contain 37,746 and 29,759 loci for PC1 and PC2,
respectively. We used GREAT to identify significant biological processes associated with each
set of loci. Interestingly, we found that all top terms in the PC1 group relate to either brain
stem morphogenesis or male gamete function. Many of the top terms from the PC2 group relate
to lymphoid cells, such as B cell adhesion (FDR=8.06 x 10~7), negative regulation of eosinophil
migration (FDR=1.79 x 107°) and T cell antigen processing and presentation (FDR=1.44 x 107%).
Additionally, the median signal among lymphoid cells in the PC2 group (1.06) is significantly
higher than that in the PC1 group (0.286, two-sided Wilcoxon signed rank test, P < 2.2 x 10716).
The difference in median signal between these two groups is much less for the non-lymphoid cells
(0.659 and 0.935 for PCs 1 and 2). This suggests that PC1 describes signals that are more variable
in lymphoid cells, while PC2 captures signals that are stronger and more consistent in those same
cells.

Classes of chromatin accessibility differentiate modes of TF occupancy. Vierstra et al.*? studied
functional changes in regulation by TFs using TF footprinting data. They showed that footprint
widths track closely with both the length of the contained canonical TF binding sequence(s)
as well as the number of bound TFs, identifying sources of cell type-specific regulation. We
interrogated whether classes of accessibility patterns identified by CLIMB and NMF relate to
functional differences as captured by TF footprinting.

CLIMB classes bear striking TF footprinting patterns across different cell populations (Fig. 5b).
For example, K562 shows a dramatic change in signal for class 4, aligning with the signal enrichment
in Fig. ba. As another example, class 5 has a relatively weak TF footprint signal in all shown cell
types except the CD14+ cell; though the mean signal is dominated by a single T2 helper cell for this
class, it is also specific to the myeloid CD14+ and dendritic cell populations. In contrast, though
NMF identified 10 biologically interpretable classes, several of which have a counterpart class
identified by CLIMB, differences between classes are not evident based on footprints (Supplementary
Fig. S22). This suggests a greater sensitivity by CLIMB to separate weak patterns from strong,
covarying ones.

We used STREME*? to interrogate enrichment for canonical TF recognition sequences in each
of these classes (Fig. bc—e). Given that classes 1, 3, and 7 each contain broadly accessible sites,
we expected to find enrichment for sequences associated with TFs important for general cellular
maintenance. As an example, the top 4 sequences from class 1 (Fig. 5¢) include the recognition
sequences for Spl and KLF families, CTCF, and the ETS and AP1 families (Fig. 5c-f, respectively),
though these motifs are enriched in all 3 classes. Further, the most significantly enriched motif
in class 4 is the recognition sequence for the GATA proteins (Fig. 5g), while class 5 is uniquely
enriched in the non-canonical recognition sequence for the octamer TFs (Fig. 5h). The presence of
class-specific motifs further suggests that classes of chromatin accessibility patterns identified by
CLIMB relate to differentially regulated genomic regions.
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Discussion

We present a new method, CLIMB, for joint analysis of genomic data collected from multiple
experimental conditions. CLIMB gains statistical power to uncover biologically relevant signals
by providing a means to extend typical pairwise analyses to higher dimensions. Moreover, when
compared against methods designed for a higher-dimensional setting, we demonstrated that CLIMB
remains powerful, flexible, and interpretable in many contexts.

A major benefit of CLIMB is its ability to describe various patterns of condition-specificty in
a mixture with corresponding association vectors that are estimated from the data. The model,
aided by these association vectors, is scientifically interpretable. Estimated model parameters
can elucidate similarity and interrelationships, and parsimoniously characterize representative
association patterns present across experimental conditions. Importantly, the association vectors
also serve as the basis for a novel and effective means of testing consistency of signals across several
conditions or biological experiments.

Since CLIMB’s mixture modeling framework is quite flexible, it is effective on a wide range
of input data, as long as the data can be reported as numerical scores that reflect strengths of
association. Though we have focused on specific molecular traits, CLIMB has the potential to
be effective in other applications, such as multi-omics molecular QTLs analysis?**. The current
implementation of CLIMB supports no more than a hundred conditions for genome-wide analyses
of the size similar to our DNase-seq analysis. Algorithmically faster implementations, such as
variational Bayes fitting for the final Bayesian mixture model, will be explored in future studies for
supporting larger numbers of conditions.

Methods

Constrained mixture model for estimating association vectors

To estimate the association vectors, we consider the following mixture model. Define

n := number of observations,
D := dimension of data,
H = (hpy, ..., hip)) := latent association vector
h[d] S {—1, 0, 1}, d e {1, o ,D},

such that the observed data follow the constrained normal mixture model

X | H = hm ~ ¢CD(IJ’m7Em7 hm)

a (3)
H ~ Mult(ry, ..., 7)), > =1
m=1
where h,, is the m' latent class, m € 1,..., M, and ¢% is a D-dimensional constrained normal

distribution. Note that the number of candidate latent classes M changes as our methodology
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prunes unsupported classes (see Pairwise fitting and subsequent methodological steps).

If an observation has association label hjg = 1 (hg = —1), this implies that it exhibits a
significant positive (negative) association with condition d. Otherwise, if an observations has
association label hyy = 0, this implied that it exhibits a null association with condition d. To
capture this relationship described by the association vectors, we set the following constrains on

o

1. Null associations in dimension d are assumed to follow the standard normal distribution
(,ud = O, Oq = 1)

2. Non-nulls that have a positive (negative) association in dimension d have a strictly positive
(negative) mean in dimension d.

3. Nulls in one dimension do not correlate with non-null associations in any other dimension
(ET‘t = 0 Vt ?é T lf eithel" h’[T’] == 0 or h‘[ﬂ fd O)

4. Non-nulls that show concordant (discordant) associations across dimensions—i.e., hy) = hy
(hp) = —hyy) where hy € {1, 1}—are positively (negatively) correlated, that is, ¥,; > 0
(X <0).

A 2-dimensional visualization of these constraints is in Fig. la. Though these constraints are de-
sirable for interpretability, imposing them through latent association vectors leads to computational
difficulties as the number of dimensions grows because there are 3 possible configurations of the
latent association vectors. We thus developed CLIMB, a modeling strategy designed to circumvent
the computational intractability that arises under these circumstances. We now describe the steps
of CLIMB in greater detail.

Detailed CLIMB procedure

Pairwise fitting

Composite likelihood (CL) methods?®, which have been reviewed extensively 6, are computationally
efficient modeling approaches that approximate the joint data model by making certain conditional
independence assumptions. CL methods are frequently utilized in statistical literature. For instance,
they can simplify a genetic model of recombination rates by assuming conditional independence
given nearest neighbors along the genome*”, or sidestep specifying a complex joint likelihood in
favor of a product of bivariate models*®. CL estimators are consistent, though they exhibit some
loss in efficiency.

We are seeking to reduce model complexity in the number of latent classes by limiting the
dimension of the data through pairwise CL. Let Q = {(X.1,X2),..., (X.p_1,X.p)} be the set of
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all pairs of dimensions of X, «p, giving |Q| = (?) The pairwise CL is

Lc(0) = (

1

Xpl|0)

7
Ll

I I
||::]
::]c I ::]G =

H Z 7m¢§(Xi,rt | 07“157 h%t))
i=1m=1

where X.,; is the n X 2 matrix of observations from dimensions r and ¢, hg,’;t) is the m*™ class in the
set of all possible 2-dimensional latent association vectors h,; between dimensions r and ¢, and
¢+ = {4, Lt} is the parameter vector describing the normal mixture between dimensions r and
t. The signs of all elements of 6,, are governed by h,;, as in Equation 2. Note that for each pair
in (), each pairwise model, f,;, is computationally tractable. This style of pairwise CL, termed
“pairwise fitting”, has been utilized most frequently to alleviate computational difficulty when
analyzing survey data with multivariate responses?%5%:5152:53 = Because each dimension appears in
D — 1 different pairwise fits, the mean and variance of each class are estimated D — 1 times, leading
to D — 1 not necessarily equal estimates for the same mean and variance. It has been shown that,
though these pairwise estimates are redundant and not necessarily concordant, they carry useful
information about the true parameters®. Thus we will recycle these estimates to inform the priors
in the final step of our procedure (see An empirical Bayesian model).
Fitting each pairwise model f,; amounts to fitting a finite normal mixture model arising from 9
classes described by latent association vectors h € H,; where

Ho = {(—1,-1), (=1,0), (=1,1), (0,—1), (0,0), (0,1), (1,-1), (1,0), (1,1)} Vr <t

However, since the total number of latent classes in the full model is less than 37, we expect that
the true number of latent classes in some, if not all of the pairwise fits, is less than 9. Accordingly,
for each pairwise fit, we perform model selection to filter out unsupported classes at the pairwise
level using a previously described penalized maximum likelihood approach!®. This method provides
an automated model selection procedure for normal mixture models with theoretical guarantees of
consistency in selecting the correct number of clusters (see Model selection details).

Construction of D-dimensional association labels

Next, we assemble the list of candidate D-dimensional latent association vectors by concatenating
all the pairwise association vectors of adjacent dimensions estimated in the previous step. Only
association vectors that are on this candidate list are retained for downstream analyses. Example 1
shows a simple example for a 3-dimensional dataset.

Example 1: Let H,; C H,; be the set of 2-dimensional latent association vectors present in a model
of dimensions r and ¢. Now, consider a three-dimensional dataset, where latent association vectors
(—1,0) € Hyp and (0,1) € Hys. These two association vectors suggest that some observations
belong to the null class in dimension 2, and that some of these observations exhibit negative signals
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in dimension 1 [since (—1,0) € His], and positive signals in dimension 3 [because (0,1) € Hys).
Thus, the data support that (—1,0, 1) remains a candidate D-dimensional latent association vector.

To perform this task computationally efficiently, we construct a directed acyclic graphical
representation of the pairwise classification results, designed in the spirit of a de Bruijn graph®*°°.
This novel representation allows one to efficiently enumerate all plausible candidate D—dimensional
latent association vectors in the concatenation by applying a standard graph search algorithm.

Specifically, we denote a vertex in the graph as (d, a), representing a possible association, a,
at a given dimension, d. For a model with D dimensions, the graph has D layers and 3 possible
associations at each layer: -1, 0, and 1. A pictorial view is in Supplementary Fig. S23. We write
the vertex set as the collection of all ordered pairs

V'={(d, a): de{l,...,D},a € {-1,0, 1}}.
The edge set is defined as

E = {[(d; al)a <d+ 17 Cl2)} s de {17 . '7D - 1}7 ap, az € {_1’ O’ 1}’ <a1’ a2) € g{d’d—i_l}'

The final graph also contains dummy source and target nodes S and T, such that the final
vertex set V =V’ U{S,T}. The source node has edges pointing to all nodes in layer 1, while each
node in layer D has an edge pointing to the target node. The final edge set is then defined as

E=BU {[s, -], [s. @ o), [s. @ vl [0, -1), 7], (0, 0), 7], [(D, 1), T}}.

Once the graph is constructed, depth-first search with backtracking®®, a graph search algorithm
that enumerates all paths in a graph from a given source node to a given target node, is used to
enumerate all paths from S to 7. Each path contains one node from each of the D layers plus the
source and target nodes, and has D + 1 edges of the form

{[5, (1, a1)|, [(1, @), (2, a2)], |(2, 02), (3, a3)],..., (D=1, ap1), (D, ap)|, [(D, ap), T}}
(5)

This path corresponds to the latent association vector (ay,...,ap).

Pairwise fit-based pruning

The initial construction of the graph in Construction of D-dimensional association labels only uses
output from the D — 1 pairwise fits between dimensions d and d+ 1 for d € {1,..., D —1}. Certain
paths may be incompatible with the remaining (g ) — (D —1) fits. We next remove these paths
from the candidate list by checking for incompatabilities, in a manner similar to the continuation
of Example 1 below.
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Example 1 (continued): As shown previously, (—1, 0, 1) was identified as a candidate D-dimensional
latent association vector. If (—1,1) ¢ H;s, then the latent class (—1,0,1) is discarded from down-
stream analysis. This is because ;3 shows that (—1,0, 1) is incompatible with the pairwise findings.

The graph-based enumeration and pruning algorithm is a deterministic procedure that is
guaranteed to produce a list of candidate latent classes that includes all true underlying classes with
the possibility of additional empty classes, assuming the correct pairwise classes were estimated
(Proposition 1). Further, the results are not affected by reordering of the dimensions (Proposition 2,
see Supplementary Section 1 for formal proofs).

Mixing weight-based class pruning

Since the pairwise fit-based class pruning procedure is conservative, some remaining candidate
classes still may not be present in the data (e.g, the (0,0,0) latent association label in the toy
example in Fig. 1). To prune these classes, we estimate the weights of the remaining classes based
on the pairwise fitting, and remove those whose weights are near zero. To elucidate which classes
are unsupported, we devise an estimator that measures the concordance between the candidate list
of D-dimensional association labels against the pairwise labels for each observation. Intuitively,
our estimator is motivated by the assertion that if observation x belongs to a given class h, then
x’s pairwise latent class assignment A" should equal (hpp, hyyg) for most pairs » and ¢, r < ¢. Then,
the weight for a D-dimensional class can be estimated by computing the proportion of observations
that follow the pairwise labels of the D-dimensional association vector closely.

To construct such an estimator, let XZ(Tt) be the sub-vector of the i’* observation vector
corresponding to the pairwise fit between dimensions r and ¢. Then, let Hi(rt) be the pairwise
association vector assigned to observation XZ(Tt). Assuming there are M remaining candidate
D—dimensional latent classes h,,, m € {1,..., M}, let h"" be the sub-vector of h,, corresponding

to dimensions r and t. Then, for a given D—dimensional latent class h,,, define
> (2) - of
> (2) - of

as the normalized proportion of observations whose pairwise class labels are concordant, up to
tolerance 0, with h,,, where § € {0,1,..., (127 )}, which controls the permitted level of discordance
between an observation’s pairwise class labels and its D—dimensional latent class. We show that
& is a reasonable estimator of the proportion of observations belonging to each class h,, given the
data (see Proofs, Proposition 3).

When the list of remaining candidate latent classes is still large, even after the pruning steps in
previous section, &, may be very close or exactly equal to 0 for many m resulting in a degenerated
distribution for these classes in the mixture. This step will remove these classes, guaranteeing that
the number of remaining classes M is bounded above by the sample size n. In practice, we find
that this procedure often can reduce M to be less than 0.01n.

To estimate &,,, we first obtain each Hi(rt) by sampling the pairwise labels of the x;’s according
to their posterior probabilities of belonging to each class estimated from the pairwise fits:

) Il{ [qu H(Hz‘(rt) _ hggt))

Yoo i 1{ [th IL(Hi(Tt) = h,(;f))

A

Ay, —
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HZ.(”) ~ Categorical(P1,...,Dpee)) (7)

where p,, = Pr[xl(”) € hﬁ,’;t)], the estimated posterior probability that observation XE”) belongs

to class h") for m € {1,... M} and M is the number of pairwise latent classes estimated
to be present in pairwise fit between dimensions r and t. Because & := {1, ..., ay} estimates
the proportion of observations belonging to each class h,,,m =1,..., M, we treat & as the prior
probabilities for the class mixing weights in the D—dimensional model in the next and final step of
CLIMB (see next section).

The number of observations needed to obtain a good estimate & is affected both by the
dimension of the data and the accuracy of estimates made during pairwise fitting. For datasets

with well-separated clusters, a more stringent ¢ (i.e. 6 < .15 X (2) )) is recommended, whereas a

relaxed 0 (i.e. 6 € [.15 X ([2) ), 30 x (?)]) is more suited for datasets with less separated clusters to
avoid removing true classes that are small in size. This heuristic guide may be refined by then
selecting 0 within this range where M remains constant for ¢’ € {d, 6+1,...,d + ¢} for some ¢ > 1.
While this step of our methodology requires user input, it requires similar levels of user input as in
existing methods.

An empirical Bayesian model

With the steps described thus far, we are able to pare down the number of latent classes to a
more computationally manageable size for regular mixture modeling. Next we reestimate the
parameters in the D-dimensional model (1) using an empirical Bayesian approach, recycling the
pairwise estimates as prior hyperparameters. We employ the following hierarchical structure to
represent the constrained mixture model:

X | ppy, L, Hi = h ~ ¢5(py,, B, h) (8a)
o | Sy Hy = h ~ ¢p(py, Sn/rn) (8b)

S | Hi = h ~IWp(9}, vy) (8¢c)

H; | m ~ Mult(m) (8d)

7 ~ Dir(a) (8e)

Quantities pp, 33Vh and 7 are estimated using MCMC. The remaining terms xj, W9, and
vp,Vh and o are hyperparameters.

This sort of representation incorporates typical prior distributions and a constrained likelihood
model, and has been exploited frequently®”*%? for its desirable posterior structure which is suitable
for Gibbs sampling. Similarly here, by applying the necessary parameter constraints, defined
by the latent association vectors, into the data model (Equation 8a), the parameters (u;,, 25)
possess the correct constraints in the posterior. That is, p,;, follows a multivariate truncated normal
distribution with truncation points dictated by the constraints defined in (8a), while ¥, follows
the constrained inverse-Wishart distribution defined presently.

Let X be distributed according to a D—dimensional constrained inverse-Wishart ZW9, with
constraints imposed by latent class h, and let ZWp be an unconstrained D—dimensional inverse-
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Wishart density. Then

f(5 0, v, h) =TIWH(E; U, v, h)
= Cow - IWp(5; W, v) x [] 1 sen(Sp) = hyy - by ®)

r<t

where C7yy is a normalizing constant.

We do inference on this model using a Metropolis Hastings within Gibbs algorithm, the details
of which are in Supplementary File 1. With this procedure, we estimate w and p, and > Vh.
An important feature of the mixture model used by CLIMB is that, since the labels A explicitly
define constraints on the parameters for each class, label switching is not a concern during the
inference process. Output from the pairwise fits are used to calculate hyperparameters c, p?, and
UY: computation of @ was described in Equation 6, while u), and ¥ are aggregations of pairwise
parameter estimates constructed using a tactic described in MCMC' details. Parameters x; and
vy, &= nay, where ay, is the prior mixing weight for class h. We remove classes that satisty nay, < D,
since such classes are unlikely to have members, and an inverse-Wishart distribution is singular for
these classes.

Testing consistency of effects

The model fit output from CLIMB can be used to conduct hypothesis tests; in particular, we
are interested in identifying consistency of signals across conditions. We propose a new test
that generalizes the partial conjunction hypothesis test®, a standard hypothesis used for testing
consistency, defined as

’HZ;/ D= less than u out of D instances of the observed effect are non-null, versus

(10)

’qu/ D'.— at least u out of D instances of the observed effect are non-null

When seeking consistent signals, one may care not only about the significance of the signals,
but also the sign of the effect. That is, if an observation is significantly positive in one experiment
but significantly negative in another, then the observation should not be considered as consistent.
Therefore, we propose a simple statistic for assessing the consistency of the sign of the effect across
dimensions that generalizes the partial conjunction hypothesis to consider sign:

7{5‘/ D= less than u out of D instances of the observed effect are concordant
with a specified association pattern, versus 1
7-[?/ D= at least u out of D instances of the observed effect are concordant ()
with a specified association pattern
To describe the rejection region (RR) for this hypothesis, first define h@] as the d"* element of
latent association vector h,,. Then,
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=
=
>
=3
I
=
\Y
LS

M
pu/b+ . — Z Pr(x; € hy, | x) -1

m=1

.
Il
—

pu/DO . — ZPr X; € by | x)- 1

Eu

1(hfy = 0) > u] (12)

.
Il
—_

Ms

p¥/D- .= Z Pr(x; € by, | x) - 1

m=1

L(hy = —1) > ul

ir
I

where Pr(x; € h,, | x) is the posterior probability of belonging to the class described by
association vector h,,. We define P*P = max {P“/D+, pu/bo, P“/D_}, and RR := {x . pu/P > b},
where b is the confidence threshold of at least 0.5. For each observation, this calculation sums
over its posterior probabilities of belonging to classes with association vectors indicating sufficient
consistency.

Letting 7" be the number of MCMC iterations retained after burn-in, the quantities in (12) are
estimated as

ps 1[N “ D
Pt = L3 L3 < 1[0 = 1 2]
i=1 Um=1 d=1
T I Sy el (t) D
e = IS Sha? =) 13105 200 o] 13)
i=1 Um=1 d=1
A/ D 1 T M ® D
P S S a1 1005 = 1) 2
=1 Um=1 d=1
for each observation 4, leading to P/ = max {Pu/ b pu/bo - pul Di}, and we reject those x;

with Piu/ > b. Large values of PZ u/D correspond to consistent effects.
This test is flexible, and can be adapted to several purposes. For example, to test the typical
partial conjunction hypothesis, one could modify the quantities in Equation 13 to

PP = Z{Zﬂﬂ“ [211 hiy #0) >u}} (14)

t 1

In the analysis of VISION RNA-seq data, we tested for consistency in all -1, 0, and 1 groups.
Thus, we applied our statistical test using all quantities in Equation 12 and letting u = 5, such
that P°/® = max {P5/ 5+ p5/50 pb/ 5_}. Then, a consistently expressed gene is one that falls within

the RR := {X . PS5 > 0.5}, and all others were called differentially expressed.

Simulations and comparisons

We used simulations to compare CLIMB to SCREEN'® and mash!*, two methods designed for
a similar purpose as CLIMB, as well as DESeq2?!, a popular method for pairwise differential
expression analysis. SCREEN was designed specifically to test for consistent signals across many
experiments. Like CLIMB, SCREEN employs a mixture model with classes governed by latent
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association vectors. SCREEN tackles the issue of computational intractability associated with
these classes in two ways. First, it assumes the association vectors to be binary, rather than ternary.
This reduces the growth rate of candidate latent classes to 2P, but comes at the cost of eliminating
the method’s ability to detect inverse associations and signs of effects. Second, SCREEN partitions
the data’s original conditions into clusters using a network community detection algorithm as an
initial step, fitting separate models to each cluster. SCREEN next uses a heuristic to test for
consistent signals across all conditions.

Mash, on the other hand, captures the relationship between observations across conditions
through the covariances of each cluster in the mixture. Mash assumes the data come from a
multivariate normal mixture, restricting each cluster to have zero mean. It sidesteps computational
issues by not explicitly specifying the latent association vectors; instead, it models different clusters
by specifying a list of candidate covariances which are generated a priori. Since the assumed
distribution is symmetric and unimodal, model fitting is simplified to a convex optimization problem
that can be computed efficiently. Unlike CLIMB, SCREEN, and mash, DESeq2 was not designed
for joint testing of conditions, but for testing differential expression pairwise between conditions.

In order to simulate data that mimic empirical data, we first fit CLIMB to real datasets
(ChIP-seq, differential analysis of RNA-seq, and erythroid lineage RNA-seq data described in
VISION CTCF ChIP-seq, Shukla et al.®*, and VISION RNA-seq, respectively). Parameter estimates
similar to those obtained from these model fits were used to simulate n = 15,000, 15,000, and
21,303 observations with 18, 11, and 5 dimensions, respectively, according to the constrained
normal mixture model in Equation 2 (see Supplementary Tables S4 — S12 and Supplementary
Figs. 524 — S26 for specific parameter settings for all simulations). Since DESeq2 requires replicates
for each experimental condition, for Simulation 3 we simulated 2 replicates per condition under the
same model, but with a correlation of 0.96 between replicates. Since CLIMB is more appropriate
for log-transformed RNA-seq data, while DESeq2 is used on counts, i.e. untransformed data, we
inputted a rounded 2%, where X is the simulated data, to DESeq2 for analysis. The simulated
replicates were averaged before passing to CLIMB.

Like the real datasets, all simulated data contain shared effects that are positively or negatively
correlated across dimensions and effects that are unique to one dimension. We applied CLIMB,
SCREEN;, and mash to Simulations 1 and 2, since these analyses focus on identifying signal patterns
across all conditions. We applied CLIMB and DESeq2 to Simulation 3, since the goal of this
analysis is specifically to detect differential expression.

Though a usual goal of analyzing these types of data is to uncover the true association patterns
of observations across conditions, of all methods, only CLIMB can report the full latent association
vectors. To provide a fair comparison among CLIMB, mash, and SCREEN, we test the partial
conjunction hypothesis across a series of levels u. We do this as SCREEN’s sole functionality is
to test this hypothesis, while CLIMB and mash can be utilized for this purpose. By evaluating
a range of u, we can obtain a comprehensive assessment of each method’s ability to identify
consistent signals at different levels of condition-specificity. To compare against DESeq2 in the
case of multi-condition differential expression, we identified genes that were differentially expressed
along the lineage using the same procedure as in the section VISION RNA-seq.

We assessed the performance of each method by comparing the identified consistent signals with
the truth and computing the precision and recall at these thresholds (Supplementary Fig. S3 — S5).
Precision and recall were computed as
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|significant effects N true effects N correctly signed|

precision = P
|significant effects|

|significant effects N true effects N correctly signed|

1l =
reca |true effects|

where significant effects are observations that have been estimated to be consistent, true effects
are observations that truly are consistent, and correctly signed effects are observations whose true
and estimated associations have the same sign. This computation is designed such that an effect
correctly identified by an algorithm as significant, but whose effect was missigned, is considered a
false positive. The sign requirement was omitted for DESeq2. Analogous precision-recall curves for
simulations 1 and 2 that do not incorporate sign information are in Supplementary Fig. S6 and S7.

Separately, we sought to evaluate how accurate CLIMB is at the pairwise fitting step. While
the pairwise modeling need not be perfect, it should retain true classes at the pairwise level and
have reasonable classification accuracy, such that true classes are likely to be retained in the final
model. We assessed CLIMB’s performance during pairwise fitting by calculating classification
accuracy and counting the number of missed classes and superfluous classes for each pairwise fit
and each simulation (Supplementary Fig. S8). Indeed, CLIMB’s pairwise fitting was more likely to
retain extra classes than it was to remove true classes from the model.

Data availability

The data are available at NCBI's Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/)
under accession code GSE156074.

Code availability

CLIMB is implemented in an R package, freely available on GitHub under an Artistic-2.0 license
(https://github.com/hillarykoch/CLIMB).
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