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ABSTRACT

Despite extensive efforts, reproducible assessment of pancreatic ductal adenocarcinoma (PDA)
heterogeneity and plasticity at the single cell level remains elusive. Systematic, network-based
analysis of regulatory protein activity in single cells identified three PDA Developmental Lineages
(PDLs), coexisting in virtually all tumors, whose transcriptional states are mechanistically driven
by aberrant activation of Master Regulator (MR) proteins associated with gastrointestinal lineages
(GLS state), morphogen and EMT pathways (MOS state), and acinar-to-ductal metaplasia (ALS
state), respectively. Each PDL is further subdivided into sub-states characterized by low vs. high
MAPK pathway activity. This taxonomy was remarkably conserved across multiple cohorts, cell
lines, and PDX models, and harmonized with bulk profile analyses. Cross-state plasticity and MR
essentiality was confirmed by barcode-based lineage tracing and CRISPR/Cas9 assays,
respectively, while MR ectopic expression induced PDL transdifferentiation. Together these data
provide a mechanistic foundation for PDA heterogeneity and a roadmap for targeting PDA cellular

subtypes.
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Introduction

Pancreatic ductal adenocarcinoma (PDA) is the third-leading cause of cancer-related mortality
and is highly resistant to cytotoxic, targeted, and immune therapies (Rahib et al., 2014).
Compared to the heterogeneous mutational repertoire of other cancers, PDA is remarkable for its
relatively uniform complement of DNA alterations, with frequent mutations in KRAS, CDKNZ2A,
TP53, and SMAD4. Unfortunately, these hallmark events are not yet targeted by approved
therapies and additional mutations known to confer specific drugs are uncommon. Consequently,
cytotoxic combinations remain the standard of care, with most patients quickly exhibiting primary

or secondary chemoresistance.

Cellular heterogeneity has emerged as a major contributor to cancer chemoresistance, due to
potential coexistence of malignant subpopulations with distinct transcriptional states (i.e.,
subtypes) and equally distinct drug sensitivities (Neftel et al., 2019), as well as to the contribution
of diverse stromal subpopulations (Elyada et al., 2019). It is thus reasonable to expect that, as
observed in other tumors, chemoresistant states may provide effective reservoirs whose plasticity
will eventually regenerate the full tumor heterogeneity (Neftel et al., 2019), thus frustrating efforts
to delineate therapeutic vulnerabilities through bulk tissue analyses. Stromal cells further

complicate matters as they often represent the dominant compartment in bulk PDA samples.

Multiple studies, in large PDA cohorts, agree on the presence of at least two transcriptional PDA
subtypes, with more differentiated tumors—corresponding to Classical or Progenitor subtypes in
prior studies—showing association with better outcome, compared to poorly differentiated ones—
termed Quasi-mesenchymal, Basal-like, or Squamous (Bailey et al., 2016; Collisson et al., 2011;
Maurer et al., 2019; Moffitt et al., 2015; Network., 2017; Puleo et al., 2018). However, the
molecular signatures of these subtypes were derived from a mixture of both tumor and stroma

related transcriptional states, which are not consistent across individual tumors and datasets
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(Birnbaum et al., 2017) and may also average across multiple coexisting malignant states. Indeed,
published classifiers present limited overlap when applied across available cohorts (Birnbaum et
al., 2017). While removing stromal contributions from expression signatures helps harmonize
discrepancies (Maurer et al., 2019) a comprehensive assessment of heterogeneity of malignant

cell states in PDA remains elusive and represents an important next step for the field.

To address this challenge, we used metaVIPER (Ding et al., 2018), a single-cell implementation
of the extensively validated VIPER (Virtual Inference of Protein activity by Enriched Regulon
analysis) algorithm (Alvarez et al., 2016). This regulatory network-based algorithm can be used
to accurately quantitate the transcriptional activity of any regulatory protein—such as transcription
factors, cofactors, and other proteins that participate in direct regulation of a cell’s transcriptional
state—from single cell RNA-Seq (scRNAseq) data; this is accomplished by leveraging the
expression of its transcriptional targets as a multiplexed reporter assay. For this study,
transcriptional targets were identified using the Algorithm for the Accurate Reconstruction of
Cellular Networks (ARACNe) (Basso et al., 2005) (Figure S1A). We have previously shown that
VIPER-assessed regulatory protein activity effectively overcomes a major limitation of single cell
profiles, where = 80% of genes typically fail to produce any reads (“gene dropout”), and compares
favorably with flow cytometry and other antibody-based single cell assays (Elyada et al., 2019;
Laise et al., 2022; Obradovic et al., 2021), without the typical limitations due to availability and
optimization of such reagents. VIPER has proven effective in identifying Master Regulator (MR)
proteins whose activities drives cell transcriptional state (Alvarez et al., 2016), as confirmed by a
comprehensive body of literature, see for instance (Alvarez et al., 2018; Aytes et al., 2014; Carro

et al., 2010; Rajbhandari et al., 2018).

VIPER analysis of scRNA-seq profiles from transformed single cells dissociated from a total of 35
PDA patients (scRNA-seq), across three public datasets, reproducibly identified six

transcriptionally-distinct cell states. These comprise three developmental cell lineages, each one
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further subdivided into two sub-states distinguished by either high or low RAS/MAPK effector
protein activity. We named the three developmental cell lineages Gastrointestinal Lineage State
(GLS), Morphogenic State (MOS), and ADM-Like State (ALS), based on functional associations
of their activated proteins with early gastrointestinal identity, epithelial-to-mesenchymal transition,
and acinar-to-ductal metaplasia drivers, respectively. Within each developmental lineage state,
we denote as M* (MAPK active) or M- (MAPK inactive) the sub-states associated with high or low
Raf-MEK-ERK signaling. Barcode-based lineage tracing in PDA cell lines representing either a
GLS or MOS state provided clear evidence of widespread, plasticity between the M* and M-
states, across both lineages, while MEK inhibition, using multiple pharmacological agents,
effectively induced M* — M~ transition in multiple cell lines, with potential implication for new
therapeutics targeting RAS. The six states identified by our analysis were recapitulated in single
cell profiles from multiple human PDA cohorts, cell lines, and PDX models. Furthermore, bulk
tumor analysis showed that patients with tumors enriched for MRs activated in MOS state
(Morphogenic tumors) presented with poorer prognosis and less differentiated tumors compared

to patients with tumor enriched for MRs activated in GLS state (Lineage tumors).

To validate VIPER-predicted subtype-specific candidate MRs (i.e., most aberrantly activated, and
inactivated proteins), we performed pooled CRISPR/Cas9-mediated viability screens for Lineage
and Morphogenic MRs (which were well represented among cell lines) and confirmed they were
enriched in proteins essential for viability in subtype-specific fashion. Finally, to validate the role
of top VIPER-inferred MRs in mechanistically determining PDA cell state, we showed that ectopic
expression of Lineage MRs in Morphogenic tumors effectively transdifferentiated them to the
Lineage-like tumors, both at the bulk and at the single cell level. Analysis of perturbed profiles

from these assays confirmed the intra-connected and autoregulated nature of the MR modules
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controlling the Lineage/Morphogenic transition. A conceptual workflow of our overall approach is

depicted in Figure 1A.

Results

Regulatory Network Reverse Engineering: To accurately infer PDA-specific transcriptional
targets (regulons) for 1835 regulatory proteins (i.e., the PDA regulatory network) from gene
expression data, we used the ARACNe algorithm (Basso et al., 2005) (Table S1). ARACNe is an
information theory-based algorithm with a strong history of experimental validation, see (Califano
and Alvarez, 2017) for a review. PDA-specific regulons were independently generated from four
cohorts, including the ICGC (Bailey et al., 2016), TCGA (TCGA Research Network:

https://www.cancer.gov/tcga), UNC (Moffitt et al., 2015) , and CUMC-E. The latter comprises

RNA-seq profiles generated from the epithelial compartment of 200 laser microdissected PDA
samples collected at Columbia University, representing the expansion of a previously published
68-profile dataset (Maurer et al., 2019). Taken together, the integration of these four networks
provides a balanced, consensus-based representation of human PDA, including RNA-seq and
microarray-based profiles, varying patient demographics and selection criteria, and differences in

stromal infiltration.

Single Cell Protein Activity Analysis: MetaVIPER was designed to integrate the analysis of
multiple networks at the individual protein level (Ding et al., 2018); this is especially useful in single
cell analyses, where multiple cell types may co-exist, see for instance (Elyada et al., 2019;
Obradovic et al., 2021; Obradovic et al., 2022). We used metaVIPER to measure the activity of
the 1,835 regulatory proteins in each of 1856 malignant epithelial cells from six PDA patients
using published scRNA-seq profiles (Elyada et al., 2019). Following quality control, malignant
cells were affirmed by ploidy (Yuan et al., 2018) and genomic instability analyses, based on

inferred-CNVs ,(Laise and Alvarez, 2022; Patel et al., 2014) (Figure S1 B-E). Regulatory protein
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activity profiles were then used in all downstream analyses, including cell states identification,

cross-cohort analysis, and functional validations assays.

Identification of Molecularly Distinct PDA Cell States: We have previously shown that protein
activity-based cluster analysis is more robust than gene expression-based clustering, including in
single cell analyses (Elyada et al., 2019; Obradovic et al., 2021; Paull et al., 2021). Consistently,
activity-based Louvain clustering (Stuart et al., 2019) of malignant PDAC cells revealed an optimal
solution—based on silhouette analysis (Rousseeuw, 1987)—comprising six molecularly distinct

cell states (Figure 1B-C) that were not apparent by gene expression analysis (Figure S1F).

Protein activity-based pseudotime trajectory analysis, as computed by Monocle (Qiu et al., 2017),
produced a branched structure with six transcriptionally distinct states organized into three distinct
branches of PDA-specific Developmental Lineages (PDLs) (Figure 1D). These predictions were
consistent with single cell stratification by principal component analysis (PCA) (Figure 1B),
showing clear separation of the three PDLs along the second principal component (PC2), with

the first principal component (PC1) separating each PDL into two sub-states.

Differential regulatory protein activity analysis was instrumental in characterizing the three PDLs
as (a) a Gastrointestinal Lineage State (GLS), associated with activation of established
gastrointestinal (Gl) lineage markers (e.g., GATA4, GATA6, HNF1A, HNF4A, HNF4G) (Figure
1E), (b) a Morphogenic State (MOS), associated with GI marker inactivation and activation of
morphogen pathway and Epithelial to Mesenchymal Transition (EMT) markers (e.g., NOTCH1,
GLI3, and ZEB2, SNAI1 SNAI2, respectively), and, finally, (c) an ADM-Like State (ALS),
associated with activation and overexpression of acinar-to-ductal metaplasia (ADM) markers
(e.g., ONECTUT1, SOX9, SPP1) (Figure 1E and S1G). Ploidy and inferred CNV analyses

confirmed that ALS cells harbor the same complement of chromosomal copy-number variations


https://doi.org/10.1101/2020.10.27.357269
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.27.357269; this version posted November 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

as assessed in the other subtypes (Laise and Alvarez, 2022; Patel et al., 2014; Yuan et al., 2018)

confirming their bona fide malignant nature.

We then focused on characterizing differences between the two molecularly distinct
transcriptional states comprising each PDL. This analysis revealed strong conservation of the MR
proteins associated with the M* and M- states across all three PDLs (p < 1.5.X10""3, by two-tailed
GSEA test with 1000 permutations) (Figure 1F-G). Among the most differentially activated MRs,
we found TFs associated with RAS signaling, such as YY1 and YBX1, while the most inactivated
MRs included PTF1A and RBPJL, established acinar cell regulators that are typically inactivated

upon RAS activation (Lin et al., 2020; Yin et al., 2022; Yuan et al., 2017).

Given the dominant role of mutant KRAS in PDA biology, these analyses implied that the two
transcriptional substates of each PDL may be related to differential RAS signaling activity. This
was supported by the highly significant enrichment of MAPK pathway genes in genes differentially
expressed between the M* vs. M- sub-states across all PDLs (p = 3.2 X105, by GSEA one-tailed
test, with 1000 permutations) (Figure S1H). To further test this hypothesis, we generated an
experimental, PDA-specific MAPK activity signature by integrating the regulatory protein activity
signatures of two cell lines (PANC1 and ASPC1, characterized as representative of the MOS and
GLS PDLs, respectively, see Figure S4A) following treatment with 14 different RAF, MEK, or
ERK inhibitors (see methods). As expected, we observed highly significant enrichment of such
consensus MAPK activity signature in MRs differentially active in the M* vs. M- sub-state of each
PDL, across all samples (Figure 1H, p-value= 1.8 X10°, by GSEA two-tailed test, with 1000
permutations). Consistent with the established role of RAS/MAPK signaling in cellular metabolism
control, we observed lower expression of numerous metabolic enzymes in the M- vs. M* state of
PDA cells (Figure S1l). Finally, we performed single cell analysis on six human PDA cell lines
and found that in five of the six, treatment with serum-free media significantly decreased the ratio

of cells in M* vs. M states (Figure S2A). The same effect was observed in an independent
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experiment in ten out eleven PDA cell lines treated with the MEK inhibitor trametinib (Figure S2B).
Taken together, these observations support the naming of these sub-states as either “MAPK-
active” (M*) or “MAPK-inactive” (M~). Thus, each PDA cell state is regulated by a combination of

MR proteins controlling either developmental lineage or MAPK activity.

Cross-Cohort Reproducibility: To assess the reproducibility (i.e., cross-cohort classification
consistency) of the six cell states identified in the Elyada dataset (Elyada et al., 2019), we
analyzed single cells from two additional, independent cohorts comprising 8,300 and 11,300
transformed epithelial cells, dissociated from 5 (Chan-Seng-Yue et al., 2020) and 24 (Peng et al.,
2019) human PDA samples, respectively. The analysis revealed statistically significant
enrichment of state-specific MRs in proteins differentially active in single cells from the two
additional cohorts, thus confirming high cross-cohort cell state reproducibility, with 98% and 96%
of the cells matching the six PDL states from the Elyada set, respectively (Figure S2 C-E,
p < 0.05, Bonferroni-corrected by two-tailed aREA test (Alvarez et al., 2016)). Furthermore, the
six PDL states were also confirmed in epithelial cells dissociated from 7 human PDA cell lines
(Figure S2F) and from a PDX model (Figure S2G). Of note, in contrast to patient-derived
samples, virtually all PDA cell lines presented with a majority of the cells in either a GLS (M*) or
MOS (M*) state (Figure S2F), while tumor samples from patients presented with a majority of the

cells in M- states (Figure S2D-E).

Lineage tracing demonstrates rapid interconversion between the M* and M~ states: Pseudo-
trajectory analysis predicted a continuum of PDA cells spanning between the M* and M~ state in
each PDL, suggesting potential plasticity between these states. To address this question, we
performed barcode-based lineage-tracing assays (Weinreb et al.,, 2020) in cell lines
representative of the GLS and MOS PDLs (we could not identify cell lines with a sufficient ALS
fraction for analysis). For this purpose, we first generated a single-cell reference map of 7 PDA

cell lines (Figure S3A-B). Among these cells we selected the PATU8988S and KP4 lines for
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lineage tracing experiment, since they were among the most specifically GLS and MOS cell-state

enriched, respectively (Figure S2F).

We transduced these two cell lines with an average of ~3 million random 27-nucleotide barcodes,
such that the probability of transducing barcodes with fewer than 4 nucleotide differences in two
distinct cells would be vanishingly small (p = 1.4x10-'*). scRNA-seq profiles from a total of 35,547
PATUB8988S and 19,778 KP4 cells were generated, supporting cell fate tracing of 259 KP4 (1.3%)
and 512 PATUB8988S cells (1.4%), identified by 145 and 325 unique barcodes, respectively (see

methods).

Following classification of PATU8988S and KP4 cells into M* and M- states (Figure 2A-B, see
methods), we assessed barcode representation in the M* and M~ states within each cell line, at
both an early (To = 6d for KP4 and T, = 10d for PATU8988S) and a late (71 = 17d for KP4 and
T1 = 38d for PATUB988S, i.e., 10 population doublings) time point following transduction. Among
KP4 and PATUB8988S cells, 52% and 54% of the barcodes were unequivocally observed in cells
that were in two different states at the two time points, indicating plastic interconversion between
these states. Specifically, for the PATU8988S line, 106 of 275 M* cells (transduced with 88 of 325
unique barcodes (27%)) spontaneously transdifferentiated to the M- state, while 113 of 237 M-
cells (transduced with 89 of 325 unique barcodes (27%)) transdifferentiated to the M* state
(Figure 2C). For the KP4 line, 78 of 151 M* cells (transduced with 54 of 149 unique barcodes
(36%)) spontaneously transdifferentiated to the M- state, while 26 of 108 M- cells (transduced with
24 of 149 unique barcodes (16%)) transdifferentiated to the M* state (Figure 2D), see methods.

Taken together, these results indicate high M* < M plasticity in both the GLS and MOS PDLs.
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Differential GLS and MOS Representation Drives Bulk-tissue-based Clustering:

We next sought to explore whether cell states identified at the single cell level could recapitulate
the subtypes identified by metaVIPER-based bulk PDA sample clustering across four publicly
available cohorts—including TCGA, ICGC, UNC, and Collisson et al. Further, to avoid stromal
contributions, we also analyzed the epithelial compartment of 200 LCM samples from the CUMC-
E cohort. These are richly annotated with survival data, demographic information, clinical
variables, and histopathological annotations of adjacent tissue sections (manuscript in
preparation). Using metaVIPER to transform each expression profile to regulatory protein activity
profiles, we identified two optimal clusters each (using k-medoids) in the well-established ICGC

and TCGA cohorts (Bailey et al., 2016)(TCGA Research Network: https://www.cancer.gov/tcga).

The MR proteins whose differential activity optimally stratifies the two clusters were nearly
identical between the two independently analyzed cohorts (p = 104°, by two-tailed aREA analysis,
Bonferroni corrected) (Figure S3C). Given such remarkable overlap, we used Stouffer's method
(Stouffer, 1949) to integrate the MR activity p-values across the two cohorts to create a single,
high-confidence, bulk sample-based MR activity signature (TCGA/ICGC MR signature) (Figure

3A).

We then asked whether the results of this analysis recapitulated the cell state MRs identified at
the single cell level. MR enrichment analysis confirmed that the clusters from bulk PDA samples
closely recapitulated the GLS and MOS single cell states (p < 1.2x10° and p < 2.4x10%, by two-
tailed aREA analysis, respectively) leading to their designation as “Lineage” and “Morphogenic”
bulk clusters/subtypes, respectively. We did not observe differential enrichment of MOS and GLS
MRs specifically active in M* or M~ cell states, probably due to limited molecular resolution of the
bulk profiles. ALS state MRs were less enriched in either bulk subtype (p = 1.4x102). This was
expected since the ALS M- state is rather ubiquitously represented in patient derived samples,

thus failing to contribute to sample differences, while ALS M* cells are too rare to produce a
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dominant signature (Figure 3B). Indeed, phospho-ERK IHC performed on 48 human PDA
samples found that most tumors have very low fractions of active RAS/MAPK signaling within the
malignant epithelial compartment, consistent with the observed predominance of M~ cells in most
human PDA datasets (Figure 3C-F). Taken together, these data confirm that bulk sample
analyses can only recapitulate two out of the six molecularly distinct subtypes identified at the

single cell level.

To further assess reproducibility of the Lineage and Morphogenic clusters identified by the
integrated TCGA/ICGC cohort analysis, we assessed whether differential MR activity could be
recapitulated in additional cohorts. Indeed, our analyses show that Lineage and Morphogenic MR
activity effectively stratified samples in (a) the CUMC-E cohort (Figure 4A), (b) three additional
publicly available bulk-level cohorts—including the Moffitt (Moffitt et al., 2015) and Collisson
(Collisson et al., 2011) cohorts (Figure S3D)—as well as (c) an additional LCM cohort (CSY)

(Chan-Seng-Yue et al., 2020) (Figure S3E).

Compared to published gene expression-based analyses, there was significant overlap of the
Morphogenic subtype with aggressive subtypes associated with poor survival (p <0.05, by one-
tailed Fisher Exact Test), including the Quasi-mesenchymal (Collisson et al., 2011), basal-like
(Moffitt et al., 2015), Squamous (Bailey et al., 2016) and basal-like A and B (Chan-Seng-Yue et
al., 2020) (Figure S3F). Consistent with this observation, Morphogenic tumors had significantly
worse survival than Lineage tumors in the CUMC-E cohort (p = 0.0005) (Figure 4B), with a
hazard ratio HR = 1.8. Moreover, blind histopathological analysis of adjacent sections from
CUMC-E sample blocks showed that Morphogenic tumors were much more likely to be poorly
differentiated compared to Lineage tumors (p = 1x103, by X? test) (Figure 4C). Furthermore,
analysis of 190 patients in the CSY set LCM cohort (Chan-Seng-Yue et al., 2020) showed that
Morphogenic tumors were significantly enriched for major mutant KRAS imbalance (p = 2x10%,

by two-tail X? test) (Figure S3G). Finally, while genetic alterations failed to co-segregate with
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either expression or activity-based subtypes (Figure S3H), suggesting an isogenic nature of
identified subtypes, epigenetic analysis of TCGA samples revealed a strikingly distinct DNA
methylation pattern in Lineage versus Morphogenic tumors (Figure S3l). These differences
specifically affected key PDL MRs, such as GLS MRs (e.g., GATA6 and HNF1A), which were
aberrantly methylated in Morphogenic tumors, and MOS MRs (e.g., ZEB1 and ZNF423), which
were aberrantly methylated in Lineage tumors. Taken together these data suggest that bulk
cluster-subtypes are mostly driven by differential representation of individual cells in a GLS and
MOS states, which are associated with patient outcome, histology, epigenetic state, and KRAS
imbalance. Indeed, classification of PDA cell lines in Lineage and Morphogenic based on bulk
profiles almost perfectly recapitulates their differential enrichment in MOS and GLS cells at the

single cell level (Figure S4A and S2E).

Lineage and Morphogenic MRs represent state-specific dependencies: we then tested
whether cell state specific MRs represent critical non-oncogene dependencies essential for cell
viability. For this, we focused on the GLS and MOS cell states for two reasons: (a) these states
appear to have complete opposite MR activity—i.e., the most activated GLS MRs are among the
most inactivated in MOS and vice-versa—and (b) cell lines predominantly representative of the
ALS state were not readily available. To assess PDA cell line dependency on state-specific MRs,
we performed pooled CRISPR/Cas9 screens in six cell lines—including three recapitulating
GLS/Lineage MRs (PATU-8988S, HPAFII, and CAPAN1) and three recapitulating
MOS/Morphogenic MRs (PANC1, KP4, and PK45H), using both knock-out (CRISPRko) and
inhibition (CRISPRI) systems (Figure 5A). Cells were transduced with a pooled guide-RNA library
targeting 3,179 genes (4 sgRNA/gene), including 1835 regulatory proteins (Alvarez et al., 2016)
and 759 selected core essential and non-essential genes, as positive and negative controls,
respectively (Hart et al., 2017; Palin et al., 2018) (Figure S4B-C). Cells were harvested and

sequenced at To = 3d and T; = 33d, following sgRNA transduction and sgRNA counts were
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integrated across both technical and biological replicates to assess their differential
representation over time and then compared between subtypes to generate a differential,
subtype-specific, essential signature. We found that sgRNAs associated with viability reduction in
GLS/Lineage and MOS/Morphogenic cell lines were highly enriched in top 200 most differentially
active proteins (i.e., 100 most active in GLS and 100 most active in MOS), as produced by
metaVIPER analysis of the genes differentially expressed in GLS vs. MOS cells (p = 9.1 x10°, by
two-tailed GSEA analysis), as well as in the top 200 MRs obtained by metaVIPER analysis of
genes differentially expressed in Lineage vs. Morphogenic samples (p = 2.5x10*) (Figure S4D).
This was not surprising since GLS and MOS MRs were highly overlapping with Lineage and
Morphogenic MRs, respectively (Figure 3B). For GLS/Lineage cell lines, the analysis identified
CDX2, GATA6 and HNF1A among the most essential MRs, while for MOS/Morphogenic cell lines
it identified MYBL1, ZEB1 and GLI2 (Figure 5B-C). The demonstrated genetic dependence of
PDAC cell states on state-specific MR proteins offers a potential path for the future identification

of drugs that selectively target individual cell types in PDA.

We then reasoned that if MAPK signaling is an important differentiator in all PDLs (with M* states
representing the dominant fraction in cell lines), MAPK MRs should be enriched in essential genes
that are common across all six PDA cell lines. To test this hypothesis, we generated a CRISPR-
based essentiality signature by integrating the signatures of both the CRISPRko and CRISPRI
screens across the six PDA cell lines, using Stouffer's method. As expected, MR generated by
VIPER analysis of M* vs. M- cells, integrated across each PDL, were highly enriched in essential

genes (p < 4.9x107%) (Figure 5D-E).

Finally, we used VIPER to identify MRs associated with PDA tumorigenesis by metaVIPER
analysis of malignant PDA epithelium (from the CUMC-E dataset), independent of subtype,
versus the average of normal tissue samples in GTEx (Consortium, 2013). As expected, PDA

tumorigenesis MRs were also significantly enriched in essential genes, as assessed by
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CRISPRKkKo, integrated across all six PDA cell lines (p=5.5%x103, by one-tailed GSEA 1000
permutations) (Figure 5 F-G). Indeed, GSEA analysis confirmed significant overlap between
MAPK and tumorigenesis MRs (p=7.8 X10*, by one-tailed GSEA test with 1000 permutations),
thus yielding a subset of MAPK MRs that represent experimentally validated drivers of PDA

tumorigenesis (Figure S4F, Table S23).

MR proteins represent mechanistic cell state determinants: While we observed rapid
interchange between the M* and M~ states in cultured PDA cell lines, the predominance of a single
PDL (typically GLS or MOS) in most PDA cell lines limits our ability to assess spontaneous cross-
PDL plasticity via barcode-based lineage tracing. Instead, we assessed whether ectopic
expression of Lineage-specific MRs could transdifferentiate PDA cell lines from the more
aggressive Morphogenic state into the less aggressive Lineage state, thus supporting their
mechanistic role in PDL specification. This was assessed by lentiviral-mediated transduction of
cDNAs encoding for the 8 most significant Lineage MRs—also among the most activated in the
single cell-based GLS state (Figure S5A)—in the Morphogenic KP4 cell line using the tetracycline
inducible M2rtTA system (Hockemeyer et al., 2008). On an individual basis, ectopic expression
of each Lineage MR was effective in increasing the activity of the other Lineage MRs (Figure 6A).
Yet, ectopic expression of OVOL2 was also uniquely effective in repressing the activity of the top
Morphogenic MRs, thus producing virtually complete transdifferentiation of KP4 cells from a

Morphogenic to a Lineage state (p = 4.3x10"%, by 2-tailed aREA test) (Figure 6A, S5B-C).

Analysis of RNA-seq profiles following ectopic expression of Lineage MRs in KP4 cells supported
reconstructing both transcriptional and post-translational MR — MR interactions. These were
assessed by analyzing the differential expression and differential VIPER-measured activity of

each MR following ectopic expression of every other MR (see methods). The analysis revealed a
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complex on/off modular structure where the top 8 Lineage MRs positively regulate each other and
repress the top 8 Morphogenic MRs (Figure 6B). This modular structure was rich in
autoregulatory interactions (loops) contributing to the stability of the two states it regulates, thus
providing a mechanistic rationale for the role of these MRs in homeostatic PDL state control.
Among the Lineage MRs, OVOL2 emerged at the top of the regulatory hierarchy, due to its ability
to directly activate or repress the expression or activity of the vast majority of other Lineage and
Morphogenic MRs, respectively, explaining its singular ability to individually control
transdifferentiation. Western blotting confirmed OVOL2 cDNA-mediated inactivation of its
established transcriptional targets such as ZEB1 and Vimentin (Kang et al., 2018; Zeisberg and
Neilson, 2009)—known effectors of EMT, a hallmark of the Morphogenic subtype—and
upregulation of established epithelial markers, such as E-cadherin, which is undetectable in KP4
cells (Figure 6C). The ability of OVOL2 to transdifferentiate cells to the Lineage state was

replicated in in two additional Morphogenic cell lines (PANC1 and PK45H) (Figure S5D).

To further dissect the combinatorial logic that drives this Lineage MR module, we performed
ectopic cDNA expression of the same top 8 Lineage MRs in individual KP4 cells at MOI = 1,
followed by single-cell RNASeq profiling (Son et al., 2021). At this MOI, most cells received one
or more cDNAs with co-expression of 11 MR pairs and 14 higher-order MR combinations in = 30
cells (a threshold suitable for transdifferentiation assessment). Consistent with the initial
experiment, ectopic OVOL2 expression strongly transdifferentiated cells to the Lineage state.
However, the OVOL2/HNF1A pair significantly improved transdifferentiation efficiency by an
additional 13% (i.e., 32% to 45.1%) confirming their functional interaction. More importantly,
several individual MRs and MR combinations that did not include OVOL2 were also quite effective
in inducing Morphogenic — Lineage transdifferentiation in combination but not individually, albeit
in a smaller cellular fraction (Figure 7A-B). For instance, the FOXA2/HNF1A pair was the third

most efficient Morphogenic — Lineage MR combination, even though neither FOXA2 nor HNF1A
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had a significant effect individually (Figure 7A). These results demonstrate the ability of VIPER-
inferred Lineage MRs to mechanistically induce the Lineage state, via their transcriptional targets,

including as a result of synergistic functional interactions.

Discussion

The parsing of molecular states from bulk PDA expression data has proven extremely challenging
due to the wildly heterogeneous composition of these tumors as well as significant variation in
patient composition, enrollment criteria, treatment status, and technical variables of available
public cohorts. Nevertheless, some consistent top-level messages have emerged, such as the
distinction of well-versus poorly differentiated tumors, leading to a growing consideration of
subtypes in clinical studies and practice. The assessment of molecular states at the cellular level
stands to mitigate issues of intratumoral heterogeneity while revealing the potential contributions
of coexisting cellular states to tumor progression and therapeutic resistance. However, two
challenges loom before single cell states can be effectively leveraged for therapeutic purposes.
First, current techniques for single cell expression analysis suffer from “gene dropout” as low read
depth per cell precludes detection of most genes in individual cells. Second, the identification of
distinct expression states yields little information regarding the causal drivers that mechanistically
implement them. In the current work, we overcome both these challenges using single cell
regulatory network analysis, yielding a novel cellular taxonomy, experimental evidence of the
mechanisms that implement the respective states, and an understanding of their genetic

dependencies for cellular survival.

Enzyme activity assays require assay to quantify products and reactants. For the specific case of
enzymes that regulate the abundance of RNA transcripts (e.g., transcription factors, cofactors,

chromatin modifiers, and other regulatory proteins), RNA sequencing serves as an ideal assay
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for activity measurements—provided the specific positive and negative target genes of a
regulatory protein are known. We rely on ARACNe, an extremely well-validated algorithm based
on principles of information theory, to accurately reconstruct the sets of target genes for every
regulatory protein in the genome in the specific context of PDA. To avoid the potential biases
introduced by reliance on a single dataset, we generated distinct PDA networks from four
expression cohorts representing over 500 tumors, including a novel epithelium-enriched cohort
from laser capture microdissected samples. Preditions by these networks are then integrated by
the metaVIPER algorithm to transform individual expression profiles into regulatory protein activity
profiles, yielding powerful benefits such as dimensionality reduction (~1800 regulatory proteins
vs. >20,000 detectable genes), variance stabilization due to the integration of hundreds of gene
expression values into one regulatory protein activity value, and virtual elimination of the gene
dropout effect. Indeed, a key effect of VIPER analyses is that protein activity can be measured
for every regulatory protein on a cell-by-cell basis, even if the gene encoding for the protein cannot
be detected in scRNAseq profile, making regulatory network analysis ideally suited to single cell
datasets. Most critically, the identification of differentially active regulatory proteins explicitly
identifies candidate mechanistic drivers of phenotypes, as confiirmed by MR-mediated

transdifferentiation and CRISPR-ko/CRISPRI studies.

We used this approach to study the malignant epithelial cells of human PDA, leading to
identification of six states that were consistently reproduced across multiple single cell expression
cohorts. These consisted of three pairs of states that were distinguished by the activities of groups
of developmental transcription factors associated with gastrointestinal fate, with acinar-to-ductal
metaplasia, or with EMT and morphogen pathway signaling. At the bulk tissue level, the relative
abundance of two of these developmental subtypes (GLS and MOS) effectively captured the
biology of differentiation state, with the less differentiated Morphogenic tumors exhibiting worse

clinical prognosis across multiple independent datasets. Indeed, the conservation of these
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subtypes across multiple independent datasets with divergent patient and technical properties is

a key advantage of this approach.

Critically, the regulatory proteins identified by our work constitute a set of testable predictions
concerning the role of each candidate MR in maintaining the identity and viability of their
respective cell state. Our experimental validation of these predictions, using ectopic expression
assays, represents a critical demonstration of the genetic determinants of cellular plasticity in
PDA. Moreover, functional screening confirmed that GLS and MOS MRs are often necessary for
maintaining the viability of their respective cell states. These state-specific genetic dependencies

provide a roadmap for the future therapeutic targeting of PDA cellular heterogeneity.

Within each pair of developmental states, we identified two substates that were distinguished by
their relative level of RAS/MAPK activity. This finding, which was not apparent through the
analysis of simple gene expression, is striking considering the nearly universal presence of
activating KRAS mutations in human PDA, which might lead to the expectation that all malignant
PDA cells have high MAPK signaling. Yet this is clearly not the case as the large majority of
malignant epithelial cells in human PDA express low or undetectable levels of the RAF/MEK
activity biomarker phospho-ERK by immunohistochemistry. It is well established that mutant
KRAS s still ligand-dependent on signaling from upstream receptor tyrosine kinases such as
EGFR (Boguski and McCormick, 1993). Local exposure to growth factors, nutrients, and oxygen
likely limit the growth and proliferation of malignant PDA cell in vivo, leading to far slower
proliferative rates compared to replete in vitro culture conditions where PDA cells typically divide
daily. We hypothesize that the M* and M- states reflect this proliferative heterogeneity. Consistent
with this, the large majority of malignant PDA cells are found in the M- state in human tumors,

whereas the M* state dominates PDA cells in culture. Treatment with either RAF/MEK/ERK
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inhibitors or the withdrawal of growth factors (serum free medium), both of which induce cell cycle
arrest, effectively shifts PDA cells from the M* to M- state even in the presence of ample nutrients.
Nevertheless, the M- state should not be confused with long-term quiescence as our barcode-
based single cell fate mapping experiment demonstrates rapid switching between these two
states normal growth conditions. Rather, we infer that RAS/MAPK may rapidly toggles during
proliferative cycles perhaps in accordance with the metabolic needs of the cell in each cell cycle

phase.

The divergence in MAPK state between malignant PDA cells in patients and their counterparts in
vitro has profound implications for the development of effective therapies. The vast majority of
drug screens are performed, at least initially, in cultured cells, potentially biasing for the
identification of drugs that selectively target only a small fraction of the malignant cells present in
vivo. Future screens performed in cells pushed into the M- state may prove more fruitful.
Additionally, drugs that selectively impact MRs of just one or two developmental subtypes may
produce rapid, non-genetic adaptation to the remaining state. The consideration of regulatory
protein activity states may therefore facilitate the development of multi-drug regimens that

collectively impact the large majority of malignant cells in PDA.
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Figure Legends

Figure 1: PDA transcriptional cell states. A) Conceptual workflow of this work. B) Principal
Component Aanalys (PCA) based on VIPER-inferred protein activity profiles showing the six cell
cell states identified by cluster analysis. C) Silhouette plot showing the silhouette score of each
individual cell in the assigned cluster. D) Pseudo-trajectory plot generated by the Monocle
algorithm on the VIPER-inferred protein activity profiles. E) Heatmap showing the VIPER-inferred
most differentially activated 25 proteins of each cluster compared to all the other clusters,
including the GLS and MOS markers (HNF1A, GATAG6, NOTCH1, SNAI1, SNAI2,GLI3 GATA4,
SOX9,HNF4A). F) msViper plot of the MAPK signature identified across PDLs. Each row shows
the distribution of the target genes (vertical lines) of a given regulatory protein in the gene
expression signature distinguishing M+ vs M- cells (top bar). Only target genes with highest
likelihood across the 4 PDA networks used for metaVIPER are shown in the plot. Blue vertical
lines represent negatively regulated target genes, red vertical lines represent positively regulated
target genes. The top bar represents the integrated gene expression signature across the three
PDLs distinguishinng M* vs M- states, with differentially expressed genes ranked from most
downregulated in M- (blue) to the most upregulated in the M* (orange). The three columns on the
right indicate the activation status of each regulatroy protein in the M* state compared to M- state
within each PDL. Red indicates activation in M* state, blue indicates inactivation in the M*. G)
GSEA plots showing the conservation of VIPER-inferred MRs between M* and M- states across
the three PDLs. Top, GSEA plot shows the 2-tailed enrichment analysis of the top 50 MRs (hits)

(the 25 most activated and 25 most inactivated) distinguishing M* and M- states of the GLS PDL
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in the protein activity signature (refence signature, x-axis) distinguishing M* and M- states in MOS
PDL. Same analysis was done to perfom a pairwise comparisons across all the PDLs. NES and
p-value were estimated by 2-tailed enrichment analysis with 1000 permutations. H) GSEA plot
showing the conservation of the MAPK MRs (the 25 most activated and 25 most inactivated)
inferred from patients, in the VIPER MAPK signature experimentally inferred by perturbing Raf-
MEK-ERK in PDA cell lines. NES and p-value were estimated by 2-tailed enrichment analysis

with 1000 permutations.

Figure 2: Single-cell lineage tracing of PDA epithelial cells. A) Reference map (UMAP)
showing the single cells of seven PDA cell lines used as reference (see methods). The black line
highlights the area of the reference map enriched for PATU8988S cells. Red dots represent the
PATU8988S cells classified as GLS (M*) and purple dots represent PATU8988S cells classified
as GLS (M"). Grey dots represent the cells of all the other cell lines used to generate the refence
map. The GSEA plot shows the conservation of the top 50 differentially activated proteins (the 25
most activated and the 25 most inactivated) computed by comparing PATU8988S GLS (M) vs
PATUB8988S GLS (M) in the experimentally-inferred MAPK VIPER signature in PDA cell lines
(reference signature). NES and p-value were estinated by 2-tailed enrichemt analysis with 1000
permutations. B) Reference map (UMAP) showing single cells of the seven PDA cell lines used
as reference. The black line highlights the area enriched for KP4 cells. Blue dots represent the
KP4 cells classified as MOS (M*) and purple dots represent KP4 cells classified as MOS (M").
Grey dots represent cells of all the other cell lines used to generate the refence map. The GSEA
plot shows the conservation of the top 50 differentially activated proteins (the 25 most activated
and the 25 most inactivated) computed by comparing KP4 MOS (M*) vs KP4 MOS (M") cells in
the experimentally-inferred MAPK VIPER signature in PDA cell lines (reference signature). NES
and p-value were estinated by two-tailed enrichemt analysis with 1000 permutations. C) Top,

reference map showing the transition of PATU8988S cells from M* to M- state in the single-cell
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lineage tracing experiment. Bottom, reference map showing the transition of PATU8988S cells
from M- to M* state. D) Top, reference map showing the transition of KP4 cells from M* to M-
state in the single-cell lineage tracing experiment. Bottom, reference map showing the transition

showig the transition of KP4 cells from M- to M* state.

Figure 3: Bulk-based cluster analysis and Immunohistochemistry for phospho-ERK on
human PDA cells. A) Heatmap showing clusters of TCGA and ICGC patients based on the most
differentially active MRs (Tumour Checkpoint) generated by the integration of ICGC and TCGA
analyses. One cluster was enriched for GLS MRs and one cluster was enriched for MOS MRs (
see figure 3B). B) GSEA plots showing the enrichement of the cell state-specific master
regulators identified by single-cell analysis in the VIPER-inferred MR signature generated by
integrating ICGC and TCGA analyses. NES and p-values were estimated by two tailed
enrichement analysis with 1000 permutations. C) Table showing blinded scoring of percent pERK
positive epithelial cells in a series of 46 human PDA samples from surgical resections. D) Example
of absent pERK staining in malignant epithelia (*) despite positive stromal cells (S). E) Rare
positive cells intermixed in a largely negative malignant epithelium. F) Malignant epithelium with

a majority of pERK positive cells. Scalebars = 50um.

Figure 4: Master Regulator-based classification of CUMC-E cohort. A) Heatmap and patients
stratification of the CUMC-E cohort based on the MR Tumour Checkpoint derived by the
integration of ICGC and TCGA analyses. B) Kaplan-meier curve showing that patient stratification
of CUMC-E cohort in Morphogenic and Lineage based on MR Tumour Checkpoint correlates
with patient's survival (p-value was computed by log-rank test). C) Barplot showing that
Morphogenic tumors are enriched for poorly differentiated tumors. The p-value was computed by

Chi-square test.
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Figure 5: PDA Master Regulators are enriched in essential genes. A) Schematic workflow
used for the pooled CRISRP/dCas9 (CRISPRi and CRISPRko) screens. B) Scatter plots showing
differential gene essentiality signature between Lineage and Morphogenic cell lines
(Lineage/Morphogenic «ss), as produced by CRISPRko (left) and CRISPRI (right). Genes are
ranked according to their differential essentiality score (z-score), from the most Morphogenic-
essential (left) to the most Lineage-essential (right). VIPER-inferred Lineage and Morphogenic
MRs are shown in red and blue, respectively. C) GSEA analysis shows statistically significant
enrichment of the 50 most differentially active Lineage and Morphogenic MRs in genes assessed
as differentially essential between Morphogenic and Lineage cell lines, by integration of
CRISPRko and CRIPSRI data (p-value and NES estimated by GSEA 2-tailed test, with 1,000
permutations). D) GSEA analyses showing statistically significant enrichment of the 50 most
differentially active MAPK MRs experimentally inferred by perturbation in PDA cell lines (clines)
in the subtype-independent essentiality signatature as determined by integrating CRISPRko and
CRISPRI signatures across all the cell lines (p-value and NES estimated by GSEA 1-tailed test,
with 1,000 permutations). E) GSEA analyses showing statistically significant enrichment of the 50
most differentially active MAPK MRs inferred by single-cell analysis of PDA patients in the
subtype-independent essentiality signatature as determined by integrating CRISPRko and
CRISPRI signatures across all the cell lines (p-value and NES estimated by GSEA 1-tailed test,
with 1,000 permutations). F) Scatter plot ranking genes based on their PDA subtype-independent
essentiality as determined by CRISPRko, with VIPER-inferred, subtype-independent Master
Regulators highlighted. G) GSEA of PDA MRs subtype-independent, computed by comparing the
200 LCM CUMC-E samples against the gene expression centroid all normal tissue samples in
GTEXx (Consortium, 2013), in subtype-independent essential genes, as assessed by the pooled
CRISPRko screen (p-value and NES were estimated by GSEA 1-tailed test, with 1,000

permutations).
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Figure 6: Lineage reprogramming of Morphogenic tumors.

A) Heatmap showing activity of top Lineage and Morphogenic MRs in the KP4 morphogenic cell
line following ectopic expression (+/- M2rtTA) of the top 8 Lineage MRs (n=8). As a reference, to
better assess reprogramming, the first and last columns show activity of top Lineage and
Morphogenic MRs in KP4 cells (Morphogenic, left) and averaged over HPAFII and PATU cells
(Lineage, right). B) Mechanistic regulatory network showing transcriptional and post-
transcriptional regulation of the 8 top Morphogenic and 8 top Lineage MRs by the latter, as
assessed based on their differential expression and differential protein activity analysis following
ectopic expression of each MR, respectively. Additional Protein-Protein interactions are reported
from the STRING (81) and PrePPI (82) databases. C) Western blot showing inhibition of
mesenchymal markers (ZEB1 and Vimentin) and expression of epithelial markers (E-cadherin)
following ectopic OVOL2 expression (+/- transcriptional activator M2rtTA) in KP4 cells, compared

to negative controls (mCherry).

Figure 7: Lineage reprogramming of Morphogenic tumors at single-cell level . A) Bar plot
showing the fraction of reprogrammed cells following ectopic expression of the top 8 GLS MRs
and their combinations in single KP4 cells. P-values were assessed by Fisher Exact Test of the
number of statistically significant Lineage cells (FDR<0.05) in KP4 cells, following ectopic
expression of individual Lineage MRs and their combination (MR set) vs. negative controls
expressing mMCHERRY (+/- M2rtTA). B) Heatmap showing the average activity profile of Lineage
and Morphogenic RPs in the fraction of cells assessed as statistically significantly reprogramed
following ectopic expression of each MR set, integrated by the Stouffer ‘s method. Columns

represent Lineage and Morphogenic regulators with some notable MRs highlighted.
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Figure S1: A) Conceptual workflow illustrating VIPER-based inference of protein activity. B) PCA
of single PDA cells based on chromosomal gene expression analysis effectively distinguishes
aberrant ploidy tumour cells (yellow) vs. normal-ploidy cells (purple). C) Differentially expressed
genes between non transfromed (normal) and transformed (cancer) single cells, as predicted by
PCA of chromosomal expression. D) Density plot showing genetic instability score between
predicted PDA cancer cells by PCA on chromosomal expression compared to non transformed
pancreatic cells (see methods). E) Heatmap showing CNVs and genomic instability score (G.I.
score), as computed from the gene expression profiles of PDA cells compared to non transformed
pancreatic cells. F) Box plots showing the distribution of silhoutte scores of individual cells
clustered by their VIPER-inferred protein actvity profiles and by gene expression at different
resolution values of Louvain algorithm. G) Plot showing differential gene expression of Spp1 in
the first two principal components computed by PCA on protein activity profiles. H) Heatmap
showing the differential expression of genes associated to MAPK pathways in Biocarta database
across the cell states. Differential gene expression is expressed as z-score on the pseudobulk
profiles computed by averaging the normalized gene expression profiles (log2(CPM+1)) of
individual cells within the same cell state (i.e.cluster). 1) Heatmap showing the differential
expression of genes associated to Metabolic pathways in Reactome database across the cell

states.

Figure S2: A) Plot showing the percent of M* and M- cells in six PDA cell lines after replacing
reccomended media (control) with serum-free media. Serum-free media was replaced after 4
hours. Cells were profiled by scRNASeq, transformed to protein activty profiles, and classified as

M* or M- based on the enrichment of the experimentally inferred MAPK protein actvity signature.
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B) Plot showing the percent of M* and M- in ten PDA cell lines after treatment with Trametinib
with respect the DMSO. Cells were profiled by scRNASeq, transformed to protein activty profiles,
and classified as M* or M- based on the enrichment of the experimentally inferred MAPK protein
actvity signature C) Heatmap showing the differental enrichment of cell state specific protein
activity signature (25 most activated and 25 most inactivated) in a PDA patient from CSY set.
Enrichment analysis was performd using the aREA algorithm (2-tailed aREA test). D) Barplots
showing the classification of PDA cells in each patient of the CSY set (single-cell set), based on
the enrichment of cell state specific protein activity signature. E) Barplots showing the
classification of PDA cells in each patient of the Peng set, based on the enrichment of cell state
specific protein activity signature. F) Barplots showing the classification of PDA cells in seven
PDA cell lines, based on the enrichment of cell state specific protein activity signature. G) Barplot
showing the classification of PDA cells derived from a PDX model, based on the enrichment of

cell state specific protein activity signature.

Figure S3: A) Reference map (UMAP) based on the protein activity profiles of PDA cells from 7
PDA cell lines. Each dot represents a cell and colors represent different PDA cell lines. B)
Reference map (UMAP) showing three clusters identified by unsupervised cluster analysis. C)
GSEA plot showing the enrichment of TCGA MRs (50 most overactivated and 50 most inactivated
proteins) in the ICGC protein activity signature (p-value and NES were estimated by GSEA 2-
tailed test, with 1,000 permutations). D) Heatmaps showing the activity of 25 most activated
Lineage and Morphogenic MRs—as obtained by Stouffer integration of ICGC and TCGA sample
analysis in the UNC and Collisson cohorts. Only samples with a silhouette scores >0.25 are
shown in the heatmaps, which correspond to 102/125 samples (82%) in the UNC cohort and
23/27 samples (85%) in the cohort of Collisson et al.,2011. E) Heatmap showing the conservation
of 25 most activated Lineage and Morphogenic MRs in a large cohort of 197 laser capture

microdissecetd samples from CSY set. F) PieDonut charts showing overlap between protein
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activity-based Lineage and Morphogenic classification and previously published classification
schemes. G) Barplot showing the enrichment of KRAS inmabalance in Morphogenic patients, in
the CSY set. H) Oncoprint plot showing genetic alterations in TCGA Lineage and Morphogenic
samples from cBioportal (Cerami et al., 2012). 1) Heatmap showing differentially methylated sites

in Lineage vs. Morphogenic TCGA samples (n=58).

Figure S4: A) Heatmap showing the enrichment of the 50 most differentially activated proteins
(25 most activated and 25 most inactivated), as inferred by VIPER analysis of Lineage vs.
Morphogenic subtype samples, integrated across TCGA and ICGC cohorts, in PDA cell lines from
the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012). The three cell lines labeled in
red and blue were selected as Lineage- and Morphogenic specific models, respectively, for a
pooled CRISPR/Cas9 screen to validate predicted MR proteins. They were re-sequenced to
ensure fidelity compared to their CCLE profiles. Specifically, re-sequenced Lineage cell lines
HPAFII, CAPAN1, and PATU8988S were labeled as AM01, AM005, and AMO004, respectively,
while re-sequenced Morphogenic cell lines PK45H, PANC1, and KP4 were labeled as AM0O07,
AMO003, and AM002, respectively. The re-sequenced PANCO0403 cell lines (AM006) was classified
as neither Lineage nor Morphogenic and was thus selected as control for the cell line selection.
B-C) For quality control purposes, the ECDF plots show the z-score distribution for established
core-essential genes (positive controls) vs. non core-essential genes (negative controls)
assessed in the pooled CRISPRko and CRISPRI screens.This shows that the pooled screens
were highly effective in identifying core-essential genes, thus supporting the quality of the results.
D) GSEA plots showing the enrichment of the top 200 differentialy activated proteins (100 most
differentially activated and 100 most differentially inactivated) inferred from single cells by
comparing GLS vs MOS states, in the Lineage vs. Morphogenic essential genes. P-value and
NES were estimated by two-tailed GSEA test with 1000 permutations. E) GSEA plots showing

the enrichment of the top 200 differentialy activated proteins (100 most differentially activated
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and 100 most differentially inactivated) between Lineage and Morphogenic subtypes inferred from
bulk anlysis ( ICGC-TCGA signature), in the Lineage vs. Morphogenic essential genes. P-value
and NES were estimated by two-tailed GSEA test with 1000 permutations. F) GSEA plot showing
the enrichment of the 50 most overactivated RPs of the PDA tumorigenic signature (inferred by
VIPER analyss by comparing CUMC-E vs GTEXx) in the MAPK signature inferred by VIPER
analysis from single cells of PDA patients. NES and p-value were estimated by one-tailed GSEA

test with 1000 permutations.

Figure S5: A) GSEA plots shwoing the enrichment of the top eight most over-activated Lineage
RPs in the single-cell PDL signatures computed by comparing each PDL against the other two.
These plots show the conservation of the top eight Lineage RPs in the GLS signature. NES and
p-value were estimated by two-tailed GSEA test with 1000 permutations. B) GSEA plot showing
the enrichment of the top 50 Lineage (red) and top 50 Morphogenic (blue) MRs in proteins
differentially activated following ectopic OVOL2 expression in KP4 cells. P-value and NES were
assessed by two-tailed GSEA test with 1000 permutations. C) GSEA plot showing the enrichment
of 200 most over- (yellow) and under-expressed (purple) genes following ectopic OVOL2
expression in KP4 cells in genes differentially expressed in Lineage vs. Morphogenic cell lines (p-
value and NES assessed by two-tail GSEA analysis with 1000 permutations). D) Heatmap
showing reproducibility of OVOL2-mediated Morphogenic — Lineage cell state reprogramming

(+/- M2rtTA), across three distinct Morphogenic cell lines (KP4, PANC1 and PK45H).

METHODS

ARACNe networks: PDA networks were generated from CUMC, ICGC and UNC cohorts using
the ARACNe-AP algorithm (Lachmann et al., 2016) with 100 bootstrap iterations and a mutual

information (MI) p-value threshold of 108, corrected for multiple hypothesis testing, as originally
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described (Basso et al., 2005; Margolin et al., 2006). TCGA networks, including the PDA TCGA
network, were downloaded from the aracne.networks package (Federico M. Giorgi). ARACNe
networks included transcriptional targets (regulons) of a set of Regulatory Proteins comprising

TFs, co-TFs, and chromatin regulators was used for this study (Table S1).

Single-cell analysis of the Elyada PDA set: The single-cell UMI-count matrix from Elyada et
al.(Elyada et al., 2019) (Elyada set) was filtered to remove cells with <1,000 UMI-counts and
genes with zero counts across all cells. UMI counts were normalized to counts per million (CPM).
Epithelial cells were computationally selected from each sample using a GSEA clustering
procedure based on enrichment of cell type specific markers, including those for epithelial,
endothelial, immune, fibroblasts and pericytes cells (see supplementary methods) as also
discussed in (Elyada et al., 2019). 1886 cells from six patient-derived samples were identified as
epithelial. Of these, 30 cells were further removed as putative non cancer cells as predicted by
genomic instability (Laise and Alvarez, 2022) and aneuploidy analyses(Yuan et al., 2018). For
genomic instability analysis single cells derived from normal pancreas were used as a reference
(Han et al., 2020). 1856 cells were identified as putative cancer epithelial cells. A representative
subset of 500 cells—selected at random from the 1,856 available PDA epithelial cells—was used
to build a single-cell ARACNe network (scNET). CPM normalized counts were used with 100
bootstrap iterations and a Bonferroni corrected statistical significance threshold, p < 103,
ARACNEe inferred adequately sized regulons (i.e., >50 targets) for 506 of 1,835 regulatory
proteins. For the remaining regulatory proteins (n = 1,329), activity was inferred by integrating
four PDA networks (CUMC-net, TCGA-net, ICGC-net and UNC-net) via the metaVIPER
algorithm. All ARACNe regulons were pruned to the 50 most-statistically significant targets before
metaVIPER analysis, to avoid bias associated with different regulon sizes being used in the
analysis. To compute a differential gene expression signature for each individual single-cell (for

metaVIPER analysis) we used the “mad” method—similar to a robust z-score (Malo et al., 2006)—
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as implemented in the VIPER package (Alvarez et al., 2016), on the rank transformed single cell
RNASeq (scRNASeq) profiles. Cluster analysis was performed on the metaVIPER inferred protein
activity profiles using the Louvain algorithm as implemented in the Seurat package (Stuart et al.,
2019) in the viper space computed using the viperSimilarity function of the VIPER package
(Alvarez et al., 2016) The viperSimilarity function computes the distance between each pair of
cells by performing the reciprocal enrichment analysis (two-tailed aREA test (Alvarez et al., 2016))
of the protein activity signatures, and generates a distance matrix based on the similarity of the
protein activity signatures. This distance matrix was used as input to construct a Shared Nearest
Neighbor (SNN) graph using the “FindNeighbors® function of the Seurat package with the
‘k.param”=50. The optimal number of clusters was estimated by optimizing the resolution
parameter (from 0.1 to 1 with intervals 0.05) of the “FindNeighbors” function with silhouette
analysis (Rousseeuw, 1987) This analysis estimated 0.2 as optimal resolution value, which
generated 6 clusters. A differential protein activity analysis was then performed to generate a
protein activity signature for each cluster. This was done using the most representative cells of
each cluster selected based on the silhouette scores (n=100 cells with the highest silhouette score
in each cluster were selected). The differential protein activity analysis was performed by
metaVIPER on the differential gene expression signatures computed by comparing the most
representative cells of each cluster against the most representative cells of all the other clusters
(one vs. all) using the Student T.test on the Log2 (CPM+1) normalized gene expression profiles.
Pseudo trajectory analysis was performed on the VIPER-inferred protein activity profiles
(computed using the robust z-score as previously described) of all cancer cells using the Monocle

algorithm (Trapnell et al., 2014).
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Drug perturbation assays: PLATE-Seq experiment was performed in collaboration with
Columbia University’s Genome Center. Panc1 and Aspc1 pancreatic cancer cells were cultured
in white 96-well tissue culture-treated plates at optimized density, in 100 pl of Dulbecco's Modified
Eagle Medium (DMEM) media supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin/ streptomycin. After 24 h of incubation, the plates were treated with following drugs: RAF
inhibitors — Sorafenib, Dabrafenib, RAF709, PLX8394, GDC-0879; MEK inhibitors — Trametinib,
Cobimetinib, Binimetinib, Selumetinib, Rafametinib; and ERK inhibitors — SCH772984, Ulixertinib,
AZDO0364, Ravoxertinib. Each drug was dosed at the concentration at which the cells were 80%
viable after 48 h of treatment. After 24 h of treatment, the medium was replaced with 100 ml of
FBS supplemented with 10% DMSO and the plates were frozen at —80 °C prior to PLATE-Seq.
Detailed protocol for preparation of the automated PLATE-SEQ experiment was described by
Bush et al. (Bush et al., 2017). The PLATE-Seq FASTQ files were pseudoaligned to the GRCh38
human transcriptome (MRNA & ncRNA) and gene expression was quantified using kallisto
(version 0.44.0), tximport package (Soneson et al., 2015), and biomaRt package (Durinck et al.,
2009). The gene expression was quantified as both raw counts (i.e. sequencing fragments per
genomic locus) and transcripts per million (i.e. sequencing fragments per genomic locus
normalized for transcript/gene length and sample sequencing depth). ShortRead
package(Morgan et al., 2009) was used to assess the quality of sequencing data for each sample.
The number of total sequenced reads, the number of aligned sequencing reads, and the read
alignment proportion for each sample were assessed. Single sample differential gene expression
signatures were computed independently for each one of the two cell lines. The z-score method
was used to generate differential gene expression signatures of each drug-treated sample with
respect to the DMSO-treated samples (reference). Protein activity profiles were computed using

the metaVIPER approach as in“ Single-cell analysis of the Elyada PDA set”.
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Serum Free media treatment: Six human PDA cell lines (KP4, SW1990, PK45H, Panc1,
MiapaCa2 and Patu8902) were seeded in a 6-well plate (Falcon, ref. 353046) using
recommended media. 4h later, media was changed or replaced for serum-free media and culture
them for 48h. Cells were then processed for single cell RNAseq as described in (Peng et al.,
2019) using Total Seq B antibodies and the recommended protocol from Biolegend. Briefly, a
digestion buffer that contained trypsin, DNAse and enzymatic cocktail (Miltenyi, Cat. No. 130-095-
929) and the gentleMACS Octo Dissociator (Milteny Biotec, Cat. No. 130-095-937) were made
for initial tumor disruption using manufacture’s protocol. Cell suspensions were then filtered using
a 40um cell strainer (Falcon, Cat. No. 352340) and red blood cells (RBC) were removed by RBC
lysis buffer (Invitrogen, Cat. No. 1966634). Dissociated cells were washed twice with PBS 0.1%
BSA buffer with cold centrifuging at 500rpm and 5. Finally, cells were stained with 0.4% Trypan
blue (Invitrogen, Cat. No. T10282) to check the viability and diluted with PBS 0.1% BSA to about
1E106 cells/ml for single cell sequencing. For each single cell run, 6 samples were combined.
Single cell data were filtered for low quality cells and normalized as previously described in the
“Single-cell analysis of the Elyada PDA set”. To assess the effect of serum free media on the M*
and M- PDA cells, we first computed the number of M* and M- cells in the control cells (cells in
the recommended media). This was done by applying the metaVIPER approach on the single cell
gene expression signatures (z-score transformed gene expression profiles) of the control cells
computed using as reference the gene expression profiles of seven PDA cell lines (see single-
cell cross cohort analysis). The count data of the seven PDA cell lines were downsampled to
make the probability distributions of the number of UMIs per cell comparable across different
experiments. The number of M* and M- cells was computed by assessing the enrichment of the
top 100 MRs (top 50 most activated and top 50 most inactivated) of the MAPK signature inferred
in the perturbation assay. Then, we assessed the effect of the Serum free media by comparing

single cells of each cell line between the two experimental conditions (i.e., serum free media vs
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control cells), using the metaVIPER approach. Cells were classified as M+ or M- base on the

enrichment of the MAPK MRs as described above.

Trametinib treatment: For single cell analysis of MAPK pathway inhibition, 11 PDA cell lines
were used. Optimal concentrations to inhibit MAPK pathway were specific to each cell line and
they were optimized using pERK Western Blot analysis (not shown). Cells were seeded on 6 well
plates, and on the next day treated with Trametnib. After 24h of incubation cells were collected
for single cell analysis. Cells were then processed for single cell RNAseq as described in (Peng
et al., 2019). For each single cell run, 8 samples were combined. Each pre-incubated with a
human specific barcode. Vehicle and treated for each cell line were run in the same lane. Viability
for each sample was above 80%. Single cell data were filtered for low quality cells and normalized
as previously described in the “Single-cell analysis of the Elyada PDA set”. To assess the effect
of Trametinib treatment on the M* and M- PDA cells we used the same approach described for

the analysis of serum free media treatment, with DMSO treated cells as control cells.

Single cell cross-cohort analysis: Cross cohort consistency of the protein activity signatures
identified in the Elyada set was performed in two independent PDA human cohorts, including the
CSY-scSet (Chan-Seng-Yue et al., 2020)(n=5 patients) and Peng set (Peng et al., 2019) (n=24
patients), in 7 PDA cell lines (CAPAN1, HPAFII, HS766T, KP4, MIAPACA2, PANC0403,
PATUB8988S), and in a PDA PDX model. The counts matrices for all the data sets were filtered
for low quality cells as described in the analysis of Elayada set. For the CSY-scSet, the count
matrix was made available by the Notta lab. The Peng data were downloaded from the Genome
sequencing Archive as reported by the authors. Single cell RNAseq data for the 7 PDA cell lines

were generated as following: Cell lines were trypsinized and resuspended in Cell Staining Buffer
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(Biolegend, Cat. No. 420201) and incubated with proper Total Seq B antibodies using
recommended protocol from Biolegend. Cells were washed twice with PBS-0.5%BSA solution
and mixed them together aiming at even cell numbers for each cell line. To assess whether the
confluence state of cell line would affect its protein activity profiles and, consequently, its
classification, the KP4 cell line was profiled at high-confluence states (KP4-HC) and low-
confluence (KP4-LC). Single-cell sequencing data were processed using the Cell Ranger pipeline

(v.5.0.1) from 10X GENOMICS (https://www.10xgenomics.com/). FASTQ files were aligned using

the human genome as a reference (v. GRCh38-2020-A). The combination of Cite-seq-Count
(https://github.com/Hoohm/CITE-seq-Count) and the HTODemux pipeline of the Seurat package
was used to demultiplex the data and assign each single-cell to corresponding cell line of origin,

as explained in (Stoeckius et al., 2018).

All the cells that resulted to be positive to more than 1 antibody or negative for all of them were
not included in the downstream steps of the analysis. The barcode sequences of the BioLegend

antibodies that were used to tag each cell line are listed supplemental methods .

PDA tumors from PDX mice were dissociated using the protocol described in (Peng et al., 2019)
(see “Serum Free Media Treatment” for more details). For the PDX model, single-cell sequencing
data were processed using the Cell Ranger pipeline (v.3) from 10X GENOMIC
(https://www.10xgenomics.com/). FASTQ files were aligned on both GRCh38-3.0.0 and gex-
mm10-2020-A transcriptomes. Differential mapping analysis was performed for each cell, by
comparing the number of reads mapped to the human vs. mouse transcriptome. Cells that had =
25% more reads mapped on human transcriptome than mouse transcriptome were considered
as human tumor cells and used for downstream analyses.All the count matrices were filtered for
low quality cells, normalized to CPM and analyzed independently. The normalized gene
expression matrix of the PDA cell lines was transformed into a gene expression signatures matrix

using the z-score transformation and then transformed into protein activity profiles using the
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metaVIPER approach as described in the analysis of the Elyada set. The count matrix of the PDX
model was transformed in a gene expression signature matrix by z-score transformation using
the Elayda set as reference and then transformed into protein activity profiles using the
metaVIPER approach as described in the analysis of the Elyada set. The
reproducibility/conservation the protein activity signatures identified in the Elyada set in the other
independent data sets was computed by performing a two-tailed enrichment analysis using the
aREA algorithm(Alvarez et al., 2016; Alvarez et al., 2019) of the 50 most differentially activated
regulatory proteins (25 most overactivated and 25 most inactivated) in the protein activity profile

of each individual cell.

Single-cell Lineage Tracing: We modified the lentiviral vector also used in our transcription
factor overexpression assays (modified Tet-O-FUW EGFP-puro, addgene #30130) by using
mCherry instead of EGFP, and cloned a UMI-barcode (UMI-bc), which consists a random 28-mer,
200 bp upstream of the lentiviral 3’-long terminal repeat (LTR) region. This way the UMI-bc site
will get polyadenylated and barcode can be specifically amplified in the end of scRNA-seq library
preps. In total we cloned a plasmid library which contains approx. 6 million distinct UMI-barcodes.
The basic principle for lineage tracing experiments was similar as in (PMID 31974159)._Briefly,
the UMI-bc containing lentiviral constructs were transduced into KP4 and PATU8988S cell lines
(to approx. 15-30 million cells) with MOI <0.1 followed by puromycin selection. After all the non-
transduced cells were dead, we seeded 8000 cells / well, followed by incubation which lasted
approx. 1-2 population doublings (daughter cells were created for each UMI-BC containing cell).
At this point we performed the 15t chromium run (time point 1) so that 50% of the cells were used
for this this initial time point run, and the remaining 50% of the cells were cultured further for the
2" time point. The 2" time point chromium run was done approx. 10 population doublings later.
For both the time points and both the cell lines, the entire pool of UMI-BCs was processed using

UMiI-tools (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340976/) to collapse clusters of UMI-
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BCs with less than 4 mismatches. Through this procedure, a reference list of all detected UMI-

BCs was generated, and it allowed us to identify all the cells associated to one unique UMI-BC.

Analysis of Single-cell Lineage Tracing data: Single-cell sequencing data of the PATU8988S
and the KP4 cell lines were processed using the Cell Ranger pipeline (v.3.0.2) from 10X
GENOMICS (https://www.10xgenomics.com/). FASTQ files were aligned using the human
genome as a reference (v. GRCh38-2020-A). In order to avoid differences in sequencing depth
across cells sequenced in different runs, which could significantly affect gene detection, the UMI
counts of PATU8988S, KP4 and the other 7 PDA cell lines were downsampled to make the

probability distributions of the number of UMIs per cell comparable across different experiments.

Single-cell gene expression profiles generated from PATU8988S and KP4 cell lines were
normalized to CPM and transformed to gene expression signatures using the gene expression
centroid of the 7 PDA cell lines as reference (z-score transformation). Gene expression signatures
were transformed into protein activity signatures using the metaVIPER approach as described in
“Single-cell analysis of the Elyada PDA set”. All the downstream analyses were then performed
on the metaVIPER inferred protein activity profiles. A PCA followed K-means clustering, with
silhouette analysis for estimating the optimal number of clusters, was performed on the refence
cells. The top 30 PCA components were then used to generate a reference map (UMAP). The
reference map showed a clear bifurcation separating GLS and MOS cells, while cluster analysis
identified 3 centroid-based clusters with two clusters clearly separating GLS (M*) and MOS (M*)
cells and one cluster representing the bifurcation point comprising of M- cells committed toward
the MOS (M*) or GLS (M*) clusters. Then, allowing us to separate KP4 MOS (M*) from MOS
(M), and PATU8988S (M*) from PATU8988S (M- ). Protein activity profiles of KP4 and
PATUB8988S cells generated for lineage tracing were mapped in the PCA space of reference
cells using the “predict” function of “stats” library of R programming language, and classified as

(M*) or (M) based on a KNN algorithm trained on the first two principal components (PCA
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components) of the reference cells using the “train.knn” function of the traineR package

(available on https://cran.r-project.org/). The top two components were selected based on the

elbow method. The predict function was used to project the KP4 and PATUB8988S single cells

from lineage tracing experiments in the UMAP space of the reference cells.

Laser Capture Microdissection data set (CUMC-E): Freshly frozen tissue samples were
obtained from patients who underwent surgical resection at the Pancreas Center at Columbia
University Medical Center as previously described (Maurer et al., 2019). Prior to surgery, all
patients had given surgical informed consent, which was approved by the institutional review
board. Immediately after surgical removal, the specimens were cryopreserved, sectioned and
microscopically evaluated by the Columbia University Tumor Bank (IRB AAAB2667). Suitable
samples were transferred into OCT medium (Tissue Tek) and snap frozen in a 2-methylbutane
dry ice slurry. The tissue blocks were stored at -80°C for later processing. H&E stained sections
of frozen PDA samples from the Tumor Bank were initially screened to confirm diagnosis and
overall sample RNA quality was assessed by the Pancreas Center supported Next Generation
Tumor Banking program using gel electrophoresis, with samples exhibiting high RNA quality
utilized for subsequent analyses, including: Laser Capture Microdissection (LCM), RNA
sequencing and gene expression quantification. LCM-RNASeq was performed as previously
described (Maurer et al., 2019; Maurer and Olive, 2019). Briefly, Cryosections of OCT-embedded
tissue blocks were transferred to PEN membrane glass slides and stained with cresyl violet
acetate. Adjacent sections were H&E stained for pathology review. Laser capture microdissection

was performed on a PALM MicroBeam microscope (Zeiss), collecting at least 1000 cells per
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compartment. RNA was extracted and libraries prepared using the Ovation RNASeq System V2
kit (NUGEN). Libraries were sequenced to a depth of 30 million, 100bp, single-end reads on an

lllumina HiSeq 2000 platform.

Analysis of publicly available PDA RNASeq data sets and of CUMC-E datset: RNASeq gene

counts from CUMC, ICGC (Bailey et al., 2016) and TCGA (https://www.cancer.gov/icga) cohorts

were normalized by variance stabilization transformation (VST), as implemented in DESeq2
package (Love et al., 2014). To avoid excessive stromal contamination as a confounding factor,
we selected only samples annotated as “high purity” in the TCGA cohort. Microarray data from
Collisson et al.,(Collisson et al., 2011) and Moffitt et al.,(Moffitt et al., 2015) were downloaded as
normalized gene expression profiles. A differential gene expression signature for each
sample/patient was generated independently for each cohort from the normalized gene
expression profiles using the “scale” method (z-score) implemented in the VIPER package
(Alvarez et al., 2016). Differential gene expression signatures of CUMC cohort samples were
transformed into protein activity profiles using the VIPER algorithm (Alvarez et al., 2016),
leveraging a PDA specific ARACNe regulatory network generated from the epithelial compartment
gene expression profiles of CUMC-E samples (CUMC-net). The rationale was to generate a
reference data set of protein activity profiles from pure epithelial samples to asses whether the
findings obtained by applying the more generalizable metaVIPER approach would be
recapitulated in the less generable but biologically relevant CUMC-E cohort. The same network
was used to generate the protein activity profiles of a second PDA LCM epithelial gene
expression data set profiled in, (Chan-Seng-Yue et al., 2020) and made available as count
matrix by Notta lab. Differential gene expression signatures for the other PDA cohorts and PDA
cell lines were transformed into protein activity profiles using the metaVIPER approach (Ding et
al.,, 2018) Cluster analysis was performed independently in each cohort by applying the

Partitioning Around Medoids algorithm (PAM) as implemented in the cluster package (Martin
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Maechler, 2019), using a VIPER-based distance metric. Specifically, the VIPER distance between
two samples is computed using the reciprocal (i.e., integration of both direct and reverse)
enrichment analysis (Kruithof-de Julio et al., 2011) of the Tumor Checkpoint proteins (i.e., 25 most
activated and 25 most inactivated) in one sample in proteins differentially activated in the second
sample, as implemented by the viperSimilarity function in the VIPER package (Alvarez et al.,
2016). Use of 50 proteins (defined as Tumor Checkpoint protein) for sample similarity analysis is
based on recent results showing that, on average, across all TCGA cohorts, the top 50 most
aberrantly differentially activated proteins (candidate Master Regulators) are sufficient to canalize
the effect of >90% of somatic mutations, on a sample by sample basis (Paull et al., 2020). Optimal
cluster number was then estimated based on the global similarity of all samples in a cluster
(cluster membership strength)—as computed based on the conservation of differential protein
activities across all samples in the cluster—and evaluated by an Area Under the Curve (AUC)
metric (Till, 2001). The optimal number of clusters was also evaluated as by Silhouette analysis

(see supplementary methods for details).

Immunohistochemistry for phospho-ERK: All staining was performed on 4um paraffin sections
of human tissue. For immunohistochemistry, sections were deparaffinized and antigen retrieval
was performed in a pressure cooker for 5 min in 1X sodium citrate buffer, pH 6.0 (Abcam). 3%
H202 was used to block endogenous peroxidases. Slides were then blocked in 2.5% horse serum
for 1hr and then incubated in anti-phosphoERK primary antibody (Cell signalling, 1:200) overnight
at 4C. The next day, slides were washed in 1X PBS-T and incubated with anti-rabbit secondary
antibody for 30 min (Vector Laboratories). Following incubation, slides were washed with 1X PBS-
T, developed with ImmPACT DAB peroxidase (Vector Laboratories), and counterstained with

hematoxylin.
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Survival analysis: Survival analysis was performed by comparing samples in different protein
activity-based clusters, using the Kaplan-Meier method, as implemented in the R “survival’
software package (Therneau, 2020). P-values were computed by log-rank test. Kaplan-Meier

curves were generated using the “survminer” software package(Alboukadel Kassambara, 2019)

DNA methylation analysis: 450K DNA methylation profiles were downloaded from TCGA using
TCGADbiolinks package (Colaprico et al., 2016). Beta values were converted to M-values using
the “beta2m” function implemented in the Minfi package (Aryee et al., 2014). Differential
methylation analysis between Lineage and Morphogenic samples was performed on M-values
using the limma package (Ritchie et al., 2015). All probes with a FDR<0.05 were considered as
differentially methylated. A cluster analysis based on differentially methylated sites was performed
using PAM algorithm and evaluated by silhouette analysis. Only samples with a positive silhouette

score were represented in the DNA methylation heatmap (n=58/76).

Identification of cell lines representative of Lineage and Morphogenic PDA subtypes:
RNASeq count data were downloaded from the Cancer Cell Line Encyclopedia (CCLE) portal
(https://portals.broadinstitute.org/ccle) and normalized using the VST method (Love et al., 2014).
Differential gene expression signatures for each cell line vs. the average of all cell lines was first
computed using the “scale” method in the VIPER package (Alvarez et al., 2016) and then
transformed into differential protein activity signatures using metaVIPER (Ding et al., 2018). Cell
lines representative of Lineage and Morphogenic subtypes were identified based on the
enrichment of Lineage-Morphogenic Tumor Checkpoint proteins in protein differentially active in

each cell line, by two-tailed aREA test (Alvarez et al., 2016).

RNA extractions and re-sequencing of PDA cell lines representative of Lineage and
Morphogenic subtypes: Selected PDA cell lines were cultured in 6-well plates such that

confluency at 48h-72h post seeding was < 50%. Total RNA was extracted with the RNeasy Plus
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mini kit (Qiagen) and sequenced on the NovaSeq 6000 (PE 20million reads). Reads were

processed using the Kallisto pipeline(Bray et al., 2016), with GRCh38 as reference.

Protein activity analysis of re-sequenced Lineage and Morphogenic representative cell
lines: First, RNASeq count profiles of re-sequenced cell lines were added to the CCLE count
matrix; then, the count matrix was VST normalized (Love et al., 2014) and differential gene
expression signatures were generated with the “scale” method (z-score) in the VIPER package;
finally, differential gene expression signatures were transformed to differential protein activity
profiles using metaVIPER (Ding et al., 2018). Cell line subtype was assessed based on the
enrichment of Lineage-Morphogenic Tumor Checkpoint proteins in proteins differentially active in

each cell line, by two tailed aREA test (Alvarez et al., 2016).

CRISPRko and CRISPRI screening: sgRNA containing lentiviruses were transduced into Cas9
expressing PDA cell lines in duplicates (in presence of 8ug/ml polybrene), at an estimated
MOI = 0.2 - 0.3. After 24h, the lentivirus containing media was removed, cells were washed with
PBS, and puromycin-containing media (2ug/ml) was added to the cells for 48-72h until all control
cells (not virus-infected) were dead. Half of the cells were harvested at this time point (day0) and
sequenced to assess sgRNA representation baseline. Cells were then maintained at >1,500 cells
per guide throughout the screens (see Supplementary methods for more details) and finally

harvested at 33-day (day33) post puromycin selection to assess gene essentiality.

Computational analysis of CRISPRko and CRISPRi data: FASTQ files were analyzed with
MAGeCK version 0.5.6 (Li et al., 2014), using RRA and total read count normalization, with default
settings. Each replicate was analyzed independently by comparing guide RNA at day33 against
day0. CRISPRko and CRISPRI essentiality signatures for each replicate were computed by
transforming the p-value to z-score (the sign was inferred from fold change). Lineage and

Morphogenic essentiality signatures were computed by integrating the z-scores of the three,
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same-subtype cell lines, using Stouffer's method (Stouffer, 1949). Finally, a differential Lineage
vs. Morphogenic essentiality signature was computed by comparing the essentiality in

Morphogenic vs. Lineage cells.

To define a subtype-independent essentiality signature we integrated the essentiality signatures
as assessed by CRISPRko and CRISPRI, across all six cell lines, independent of subtype, using

Stouffer's z-score method (Stouffer, 1949).

Transcription factor overexpression assay (PLATE-Seq): Full-length open reading frame
(ORF) clones for the top 8 Lineage MRs were ordered from ClonelD (Harvard Medical School)
and cloned into modified Tet-O-FUW lentiviral expression vector (addgene #30130), which
include the puromycin resistance gene. MCherry and EGFP ORFs were used as negative controls
in the assay. All clones were sequence verified. For each ORF we introduced a unique 20 bp
barcode sequence located 200 bp upstream of the lentiviral 3’-long terminal repeat (LTR) region,
as reported in Parekh, U., et al (Parekh et al., 2018). This produces a polyadenylated transcript,
which contains the barcode proximal to its 3’ end. All viruses were produced and viral titers were
measured individually for each virus. ORF containing lentivirus were transduced into KP4
morphogenic cell lines at MOI = 2 in triplicate (6-well format in the presence of polybrene). In a
second friplicates set, lentiviral ORFs were co-transduced with M2rtTA (FUW-M2rtTA, addgene
#20342), a tetracycline-inducible transcriptional amplifier, allowing monitoring of MR
overexpression at higher and lower levels (Hockemeyer et al., 2008). At 24h following viral
transduction, media was changed and puromycin (2.5ug/ml) and doxycycline (0.6ug/ml) were
added to the cells, followed by a 5-day incubation period before total RNA was collected by Direct-
zol RNA MiniPrep Plus kit (Zymo Research). 69 RNASeq profiles, corresponding to 23 different
conditions in triplicate were generated by PLATE-Seq(Bush et al., 2017) using 100ng of total RNA

as template in each well.


https://doi.org/10.1101/2020.10.27.357269
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.27.357269; this version posted November 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Analysis of transcription factor overexpression (Plate-Seq) data: Single-end PLATE-Seq
reads were pseudoaligned to the GRCh38 transcriptome (MRNA and ncRNA) and quantified
using Kallisto version 0.44.0 (Bray et al., 2016), with sequence-specific bias correction.
Transcript-level counts were aggregated by Entrez-IDs and compared between unperturbed
Lineage cells (PATU8988S and HPAFII) and unperturbed Morphogenic cells (KP4). The
corresponding gene expression signature was transformed into a protein activity signature and
compared to the Lineage-Morphogenic protein activity signature (TCGA-ICGC signature) inferred
from patient profiles, to ensure conservation of protein activity signatures. This was done by
computing a differential gene expression signature between Lineage and Morphogenic
unperturbed cell lines using the Student’s T.test, as implemented in the VIPER package (Alvarez
et al., 2016) on the normalized gene expression profiles. The metaVIPER approach has been
used to transform this differential gene expression signature into a protein activity signature. The
conservation between this protein activity signature (inferred by comparing the unperturbed
Lineage and Morphogenic cell lines) and the Lineage-Morphogenic protein activity signature
computed from the patients was assessed by two-tailed aREA test (Alvarez et al., 2016).
Specifically by assessing the conservation of the 50 most differentially activated and 50 most
differentially inactivated proteins of the TCGA-ICGC signature in the protein activity signature

inferred from the cell lines.

Evaluation of cell reprogramming in PLATE-Seq overexpression assay: A differential gene
expression signature for each experimental condition (perturbation) was computed by comparing
the gene expression profiles of perturbed vs. unperturbed (negative control) cells, in the same
experimental background. Specifically, cells transduced with mCherry and EGFP, with or without
M2rtTA (negative controls), were used as controls for cells ectopically expressing each TFs, with

or without M2rtTA, respectively. Each differential gene expression signature was then
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transformed into a protein activity signature by metaVIPER approach (Ding et al., 2018). The
extent of reprogramming induced by ectopic expression of each MR protein was assessed by
measuring the enrichment of cell line specific Lineage-Morphogenic Tumor Checkpoint MRs—as
computed by comparing Lineage (HPAFII and PATU8988S) and morphogenic (KP4) cell lines—
in protein differentially activated following ectopic expression of each MR, with or without M2rtTA

expression, by a two-tailed aREA test.

MR Interaction Network reconstruction: MR interaction networks were assembled by
combining transcriptional/post-transcriptional (i.e., VIPER-inferred) interactions, as assessed by
Student’s T-test of the differential expression/activity of a target MR (Lineage or Morphogenic)
following ectopic expression of a different Lineage MR, using the VST-normalized log. counts of
each perturbation, in triplicate, vs. the pool of three mCherry and three EGFP-transduced KP4
cells (controls). Protein-protein interactions were added from the STRING (Szklarczyk et al.,
2017) and PREPPI (Zhang et al., 2012) databases. This provides mechanistic insight into how
each of the top 8 Lineage MRs regulates the other Lineage and the top 8 Morphogenic MRs, thus
supporting their highly modular structure. MR genes (proteins) whose expression (activity)
changes were statistically significant (p < 0.05, by one-tailed Student’s T-test) were considered
as putative transcriptional (post-transcriptional) targets and included in the network. Molecular
interactions from PREPPI and STRING databases were selected based on confidence-score.
Specifically, we sorted all the interactions based on their confidence score and reported only the
interactions ranking in the top 25%. Network representation was done using Cytoscape (version

3.8.2) (Shannon et al., 2003).
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Pooled TF overexpression assay (scRNASeq): The same barcoded constructs discussed in
the previous section, representing the top 8 Lineage Master Regulator proteins (and mCherry as
neg. control), were used in the single cell overexpression assays. ORF viruses were pooled into
two viral pools, such that, on average, 2-3 ORFs were randomly transduced into each single cell
(MOI = 0.288 / each virus). The M2rtTA construct was added to the second pool to increase the
transcriptional ORFs output. KP4 cells were transduced with the two viral pools in 6-well format
in the presence of polybrene. Media was changed at 24h post-infection and puromycin (2.5ug/ml)
and doxocycline (0.6ug/ml) were added to the cultures. Cells were incubated for a total of 11 days,
before trypsinization, addition of Multiseq barcodes(McGinnis et al., 2019) and 10X chromium
library preparation and sequencing. Non-transduced (control) KP4, HPAFIl and PATU8988S cells
were also included at this stage to represent the pre-treatment Morphogenic cell state (KP4),
while non-transduced (control) Lineage cell lines (HPAFII and PATU8988S) were used as a proxy
for the desired Lineage endpoint state. All cells (normal KP4, HPAFII, PATU8988S and KP4
transduced pools, +/- M2rtTA, were MultiSeq barcoded and mixed prior to the Chromium-run.After
the Chromium-run, the cDNA was amplified with 1ul of 2.5uM MultiSeq additive primer added to
the cDNA amplification mastermix. After this the material was divided into 3 portions, the whole
transcriptome, MultiSeq barcode and the ORF barcode. MultiSeq barcode and ORF barcode
portions were amplified with specific primers (MULTI-seq_TruSeq RPIX & MULTI-seq_Universal
15 for MultiSeq and ORF_BC_amplif _oligo_F & ORF_BC_amplif R for ORF barcode) and spiked
in the final NGS library at 1% and 10% total amounts respectively. For the final analysis

MultiSeq barcode data was not used (see supplementary methods).

Single-cells Demultiplexing Analysis: Single-cell BAM files were generated with the cell ranger
pipeline (version 3.0.2), using GRCh38 as reference genome. Variant calling was performed with

SamTools (Li et al., 2009) and captured in .vcf file, containing the genomic variations of three
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PDA cell lines processed by RNASeq (HPAFII, KP4 and PATU8988S). Bam files and vcf files

were used as input for Demuxlet (Kang et al., 2018) for demultiplexing analysis.

Protein activity analysis of Pooled TFs overexpression assay (scRNASeq): Single-cell UMI-
counts were filtered based on the previously described QC-metrics and normalized to CPM. A
differential gene expression signature was first computed, by comparing single cells from
unperturbed Lineage (PATU8988S and HPAFII) and Morphogenic (KP4) cell lines, and then
transformed into a differential protein activity signature using metaVIPER, as previously described
in the protein activity analysis of Elyada data set. Finally, enrichment of Linage-Morphogenic
Tumor Checkpoint proteins in proteins differentially active in this signature was assessed by two-

tailed aREA test, assess reprogramming of Morphogenic cells into a Lineage state.

Cell reprogramming efficiency assessment in pooled TFs overexpression assays
(scRNASeq): scRNASeq profiles representing cells transduced with the same MR or MR
combination were considered as independent isogenic-MR sets. To robustly asses

reprogramming efficiency, isogenic-MR sets comprising fewer than 30 cells were removed.

To assess the reprogramming potential of independent MRs and MR combinations, we first
computed differential gene expression signatures by comparing the pool of scRNASeq profiles
for each isogenic-MR set to the pool of unperturbed KP4 cells. These signatures were then

transformed to differential protein activity signatures using metaVIPER, as previously described.

For each single cell in a specific isogenic-MR set, reprogramming was assessed based on the
enrichment of Lineage-Morphogenic Tumor Checkpoint proteins—as assessed from the
differential expression signature of unperturbed Lineage (HPAFII and PATU) vs. Morphogenic
(KP4) single cells—in proteins differentially active in that cell, by two-tailed aREA test. Perturbed
KP4 single cells showing statistically significant enrichment in the Lineage-Morphogenic signature

(FDR < 5% by two-tailed aREA test) were considered reprogrammed.
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Isogenic-MR sets were then sorted based on the fraction of cells assessed as significantly
reprogrammed and p-value was assessed using Fisher's Exact test (two-tailed test), adjusted for
multiple hypothesis testing (FDR), by comparing the fraction of reprogrammed cells in the

isogenic-MR sets vs. the negative control set (mCherry +/- M2rtTa).

Western Blots: Full-length ORF constructs for OVOL2 or mCherry (+/- M2RTTA), as described
for the overexpression assays, were used for Western Blots. OVOL2 or mCherry (+/- M2RTTA)
were lentivirally transduced in KP4 cells, at MOI = 2, in triplicate, followed by puromycin selection
and 5 days incubation in the presence of doxycycline (0.6ug/ml) before reprogramming was
assessed. Cells were then lysed, total protein levels were measured with BCA Protein Assay Kit

(Pierce), and samples were Western Blotted (see supplementary methods for the antibodies)

Data availability: RNASeq data generated at CUMC from laser capture micro-dissected samples
have been deposited on Gene Expression Omnibus data based with the following GEO ID:
GSE143584. CRISPR data and RNASeq data related to cell lines, overexpression assay, single-
cell PDXLineag model and single-cell overexpression assay have been deposited on Gene
Expression omnibus database with the following GEO ID: GSE161369. scRNASeq profiles from
the Elyada Set are available at NCBI dbGaP under the accession number phs001840.v1.p1.,
while scRNASeq profiles from the Chan-Shen-Yue Set are available on the EGA database (EGA

ID=EGADO00010001811; sample names: 100070, 91610, 91706, 95092, 96460).

Code availability: No unique computational code has been generated for this manuscript. All
the computational tools have been indicated in the methods or supplementary methods. The
genomic instability package used to infer copy number variation (CNV) from single cell gene

expression profiles is made available on Bioconductor (Laise and Alvarez, 2022) .
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