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ABSTRACT  

Despite extensive efforts, reproducible assessment of pancreatic ductal adenocarcinoma (PDA) 

heterogeneity and plasticity at the single cell level remains elusive. Systematic, network-based 

analysis of regulatory protein activity in single cells identified three PDA Developmental Lineages 

(PDLs), coexisting in virtually all tumors, whose transcriptional states are mechanistically driven 

by aberrant activation of Master Regulator (MR) proteins associated with gastrointestinal lineages 

(GLS state), morphogen and EMT pathways (MOS state), and acinar-to-ductal metaplasia (ALS 

state), respectively. Each PDL is further subdivided into sub-states characterized by low vs. high 

MAPK pathway activity. This taxonomy was remarkably conserved across multiple cohorts, cell 

lines, and PDX models, and harmonized with bulk profile analyses. Cross-state plasticity and MR 

essentiality was confirmed by barcode-based lineage tracing and CRISPR/Cas9 assays, 

respectively, while MR ectopic expression induced PDL transdifferentiation. Together these data 

provide a mechanistic foundation for PDA heterogeneity and a roadmap for targeting PDA  cellular 

subtypes. 
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Introduction 

Pancreatic ductal adenocarcinoma (PDA) is the third-leading cause of cancer-related mortality 

and is highly resistant to cytotoxic, targeted, and immune therapies (Rahib et al., 2014). 

Compared to the heterogeneous mutational repertoire of other cancers, PDA is remarkable for its 

relatively uniform complement of DNA alterations, with frequent mutations in KRAS, CDKN2A, 

TP53, and SMAD4. Unfortunately, these hallmark events are not yet targeted by approved 

therapies and additional mutations known to confer specific drugs are uncommon. Consequently, 

cytotoxic combinations remain the standard of care, with most patients quickly exhibiting primary 

or secondary chemoresistance. 

Cellular heterogeneity has emerged as a major contributor to cancer chemoresistance, due to 

potential coexistence of malignant subpopulations with distinct transcriptional states (i.e., 

subtypes) and equally distinct drug sensitivities (Neftel et al., 2019), as well as to the contribution 

of diverse stromal subpopulations (Elyada et al., 2019). It is thus reasonable to expect that, as 

observed in other tumors, chemoresistant states may provide effective reservoirs whose plasticity 

will eventually regenerate the full tumor heterogeneity (Neftel et al., 2019), thus frustrating efforts 

to delineate therapeutic vulnerabilities through bulk tissue analyses. Stromal cells further 

complicate matters as they often represent the dominant compartment in bulk PDA samples.  

Multiple studies, in large PDA cohorts, agree on the presence of at least two transcriptional PDA 

subtypes, with more differentiated tumors—corresponding to Classical or Progenitor subtypes in 

prior studies—showing association with better outcome, compared to poorly differentiated ones—

termed Quasi-mesenchymal, Basal-like, or Squamous (Bailey et al., 2016; Collisson et al., 2011; 

Maurer et al., 2019; Moffitt et al., 2015; Network., 2017; Puleo et al., 2018). However, the 

molecular signatures of these subtypes were derived from a mixture of both tumor and stroma 

related transcriptional states, which are not consistent across individual tumors and datasets 
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(Birnbaum et al., 2017) and may also average across multiple coexisting malignant states. Indeed, 

published classifiers present limited overlap when applied across available cohorts (Birnbaum et 

al., 2017). While removing stromal contributions from expression signatures helps harmonize 

discrepancies (Maurer et al., 2019) a comprehensive assessment of heterogeneity of malignant 

cell states in PDA remains elusive and represents an important next step for the field. 

To address this challenge, we used metaVIPER (Ding et al., 2018), a single-cell implementation 

of the extensively validated VIPER (Virtual Inference of Protein activity by Enriched Regulon 

analysis) algorithm (Alvarez et al., 2016). This regulatory network-based algorithm can be used 

to accurately quantitate the transcriptional activity of any regulatory protein—such as transcription 

factors, cofactors, and other proteins that participate in direct regulation of a cell’s transcriptional 

state—from single cell RNA-Seq (scRNAseq) data; this is accomplished by leveraging the 

expression of its transcriptional targets as a multiplexed reporter assay. For this study, 

transcriptional targets were identified using the Algorithm for the Accurate Reconstruction of 

Cellular Networks (ARACNe) (Basso et al., 2005) (Figure S1A). We have previously shown that 

VIPER–assessed regulatory protein activity effectively overcomes a major limitation of single cell 

profiles, where ≥ 80% of genes typically fail to produce any reads (“gene dropout”), and compares 

favorably with flow cytometry and other antibody-based single cell assays (Elyada et al., 2019; 

Laise et al., 2022; Obradovic et al., 2021), without the typical limitations due to availability and 

optimization of such reagents. VIPER has proven effective in identifying Master Regulator (MR) 

proteins whose activities drives cell transcriptional state (Alvarez et al., 2016), as confirmed by a 

comprehensive body of literature, see for instance (Alvarez et al., 2018; Aytes et al., 2014; Carro 

et al., 2010; Rajbhandari et al., 2018). 

VIPER analysis of scRNA-seq profiles from transformed single cells dissociated from a total of 35 

PDA patients (scRNA-seq), across three public datasets, reproducibly identified six 

transcriptionally-distinct cell states. These comprise three developmental cell lineages, each one 
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further subdivided into two sub-states distinguished by either high or low RAS/MAPK effector 

protein activity. We named the three developmental cell lineages Gastrointestinal Lineage State 

(GLS), Morphogenic State (MOS), and ADM-Like State (ALS), based on functional associations 

of their activated proteins with early gastrointestinal identity, epithelial-to-mesenchymal transition, 

and acinar-to-ductal metaplasia drivers, respectively. Within each developmental lineage state, 

we denote as M+ (MAPK active) or M- (MAPK inactive) the sub-states associated with high or low 

Raf-MEK-ERK signaling. Barcode-based lineage tracing in PDA cell lines representing either a 

GLS or MOS state provided clear evidence of widespread, plasticity between the M+ and M– 

states, across both lineages, while MEK inhibition, using multiple pharmacological agents, 

effectively induced M+ → M– transition in multiple cell lines, with potential implication for new 

therapeutics targeting RAS. The six states identified by our analysis were recapitulated in single 

cell profiles from multiple human PDA cohorts, cell lines, and PDX models. Furthermore, bulk 

tumor analysis showed that patients with tumors enriched for MRs activated in MOS state 

(Morphogenic tumors) presented with poorer prognosis and less differentiated tumors compared 

to patients with tumor enriched for MRs  activated in GLS state (Lineage tumors). 

 

To validate VIPER-predicted subtype-specific candidate MRs (i.e., most aberrantly activated, and 

inactivated proteins), we performed pooled CRISPR/Cas9-mediated viability screens for Lineage 

and Morphogenic MRs (which were well represented among cell lines) and confirmed they were 

enriched in proteins essential for viability in subtype-specific fashion. Finally, to validate the role 

of top VIPER-inferred MRs in mechanistically determining PDA cell state, we showed that ectopic 

expression of Lineage MRs in Morphogenic tumors effectively transdifferentiated them to the 

Lineage-like tumors, both at the bulk and at the single cell level. Analysis of perturbed profiles 

from these assays confirmed the intra-connected and autoregulated nature of the MR modules 
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controlling the Lineage/Morphogenic transition. A conceptual workflow of our overall approach is 

depicted in Figure 1A. 

Results 

Regulatory Network Reverse Engineering: To accurately infer PDA-specific transcriptional 

targets (regulons) for 1835 regulatory proteins (i.e., the PDA regulatory network) from gene 

expression data, we used the ARACNe algorithm (Basso et al., 2005) (Table S1). ARACNe is an 

information theory-based algorithm with a strong history of experimental validation, see (Califano 

and Alvarez, 2017) for a review. PDA-specific regulons were independently generated from four 

cohorts, including the ICGC (Bailey et al., 2016), TCGA (TCGA Research Network: 

https://www.cancer.gov/tcga), UNC (Moffitt et al., 2015) , and CUMC-E. The latter comprises 

RNA-seq profiles generated from the epithelial compartment of 200 laser microdissected PDA 

samples collected at Columbia University, representing the expansion of a previously published 

68-profile dataset (Maurer et al., 2019). Taken together, the integration of these four networks 

provides a balanced, consensus-based representation of human PDA, including RNA-seq and 

microarray-based profiles, varying patient demographics and selection criteria, and differences in 

stromal infiltration. 

Single Cell Protein Activity Analysis: MetaVIPER was designed to integrate the analysis of 

multiple networks at the individual protein level (Ding et al., 2018); this is especially useful in single 

cell analyses, where multiple cell types may co-exist, see for instance (Elyada et al., 2019; 

Obradovic et al., 2021; Obradovic et al., 2022). We used metaVIPER to measure the activity of 

the 1,835 regulatory proteins in each of 1856 malignant epithelial cells from six PDA patients 

using published scRNA-seq profiles (Elyada et al., 2019). Following quality control, malignant 

cells were affirmed by ploidy (Yuan et al., 2018) and genomic instability analyses, based on 

inferred-CNVs ,(Laise and Alvarez, 2022; Patel et al., 2014) (Figure S1 B-E). Regulatory protein 
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activity profiles were then used in all downstream analyses, including cell states identification, 

cross-cohort analysis, and functional validations assays. 

Identification of Molecularly Distinct PDA Cell States: We have previously shown that protein 

activity-based cluster analysis is more robust than gene expression-based clustering, including in 

single cell analyses (Elyada et al., 2019; Obradovic et al., 2021; Paull et al., 2021). Consistently, 

activity-based Louvain clustering (Stuart et al., 2019) of malignant PDAC cells revealed an optimal 

solution—based on silhouette analysis (Rousseeuw, 1987)—comprising six molecularly distinct 

cell states (Figure 1B-C) that were not apparent by gene expression analysis (Figure S1F).  

Protein activity-based pseudotime trajectory analysis, as computed by Monocle (Qiu et al., 2017), 

produced a branched structure with six transcriptionally distinct states organized into three distinct 

branches of PDA-specific Developmental Lineages (PDLs) (Figure 1D). These predictions were 

consistent with single cell stratification by principal component analysis (PCA) (Figure 1B), 

showing clear separation of the three PDLs along the second principal component (PC2), with 

the first principal component (PC1) separating each PDL into two sub-states. 

Differential regulatory protein activity analysis was instrumental in characterizing the three PDLs 

as (a) a Gastrointestinal Lineage State (GLS), associated with activation of established 

gastrointestinal (GI) lineage markers (e.g., GATA4, GATA6, HNF1A, HNF4A, HNF4G) (Figure 

1E), (b) a Morphogenic State (MOS), associated with GI marker inactivation and activation of 

morphogen pathway and Epithelial to Mesenchymal Transition (EMT) markers (e.g., NOTCH1, 

GLI3, and ZEB2, SNAI1 SNAI2, respectively), and, finally, (c) an ADM-Like State (ALS), 

associated with activation and overexpression of acinar-to-ductal metaplasia (ADM) markers 

(e.g., ONECTUT1, SOX9, SPP1) (Figure 1E and S1G). Ploidy and inferred CNV analyses 

confirmed that ALS cells harbor the same complement of chromosomal copy-number variations 
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as assessed in the other subtypes (Laise and Alvarez, 2022; Patel et al., 2014; Yuan et al., 2018) 

confirming their bona fide malignant nature.  

We then focused on characterizing differences between the two molecularly distinct 

transcriptional states comprising each PDL. This analysis revealed strong conservation of the MR 

proteins associated with the M+ and M- states across all three PDLs (p ≤ 1.5.X10-13, by two-tailed 

GSEA test with 1000 permutations) (Figure 1F-G). Among the most differentially activated MRs, 

we found TFs associated with RAS signaling, such as YY1 and YBX1, while the most inactivated 

MRs included PTF1A and RBPJL, established acinar cell regulators that are typically inactivated 

upon RAS activation (Lin et al., 2020; Yin et al., 2022; Yuan et al., 2017).  

Given the dominant role of mutant KRAS in PDA biology, these analyses implied that the two 

transcriptional substates of each PDL may be related to differential RAS signaling activity. This 

was supported by the highly significant enrichment of MAPK pathway genes in genes differentially 

expressed between the M+ vs. M- sub-states across all PDLs (p = 3.2 X10-5, by GSEA one-tailed 

test, with 1000 permutations) (Figure S1H). To further test this hypothesis, we generated an 

experimental, PDA-specific MAPK activity signature by integrating the regulatory protein activity 

signatures of two cell lines (PANC1 and ASPC1, characterized as representative of the MOS and 

GLS PDLs, respectively, see Figure S4A) following treatment with 14 different RAF, MEK, or 

ERK inhibitors (see methods). As expected, we observed highly significant enrichment of such 

consensus MAPK activity signature in MRs differentially active in the M+ vs. M- sub-state of each 

PDL, across all samples (Figure 1H, p-value= 1.8 X10-9, by GSEA two-tailed test, with 1000 

permutations). Consistent with the established role of RAS/MAPK signaling in cellular metabolism 

control, we observed lower expression of numerous metabolic enzymes in the M- vs. M+ state of 

PDA cells (Figure S1I). Finally, we performed single cell analysis on six human PDA cell lines 

and found that in five of the six, treatment with serum-free media significantly decreased the ratio 

of cells in M+ vs. M- states (Figure S2A). The same effect was observed in an independent 
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experiment in ten out eleven PDA cell lines treated with the MEK inhibitor trametinib (Figure S2B). 

Taken together, these observations support the naming of these sub-states as either “MAPK-

active” (M+) or “MAPK-inactive” (M–). Thus, each PDA cell state is regulated by a combination of 

MR proteins controlling either developmental lineage or MAPK activity. 

Cross-Cohort Reproducibility: To assess the reproducibility (i.e., cross-cohort classification 

consistency) of the six cell states identified in the Elyada dataset (Elyada et al., 2019), we 

analyzed single cells from two additional, independent cohorts comprising 8,300 and 11,300 

transformed epithelial cells, dissociated from 5 (Chan-Seng-Yue et al., 2020) and 24 (Peng et al., 

2019) human PDA samples, respectively. The analysis revealed statistically significant 

enrichment of state-specific MRs in proteins differentially active in single cells from the two 

additional cohorts, thus confirming high cross-cohort cell state reproducibility, with 98% and 96% 

of the cells matching the six PDL states from the Elyada set, respectively (Figure S2 C-E, 

p ≤ 0.05, Bonferroni-corrected by two-tailed aREA test (Alvarez et al., 2016)). Furthermore, the 

six PDL states were also confirmed in epithelial cells dissociated from 7 human PDA cell lines 

(Figure S2F) and from a PDX model (Figure S2G). Of note, in contrast to patient-derived 

samples, virtually all PDA cell lines presented with a majority of the cells in either a GLS (M+) or 

MOS (M+) state (Figure S2F), while tumor samples from patients presented with a majority of the 

cells in M- states (Figure S2D-E). 

Lineage tracing demonstrates rapid interconversion between the M+ and M– states: Pseudo-

trajectory analysis predicted a continuum of PDA cells spanning between the M+ and M– state in 

each PDL, suggesting potential plasticity between these states. To address this question, we 

performed barcode-based lineage-tracing assays (Weinreb et al., 2020) in cell lines 

representative of the GLS and MOS PDLs (we could not identify cell lines with a sufficient ALS 

fraction for analysis). For this purpose, we first generated a single-cell reference map of 7 PDA 

cell lines (Figure S3A-B). Among these cells we selected the PATU8988S and KP4 lines for 
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lineage tracing experiment, since they were among the most specifically GLS and MOS cell-state 

enriched, respectively (Figure S2F). 

We transduced these two cell lines with an average of ~3 million random 27-nucleotide barcodes, 

such that the probability of transducing barcodes with fewer than 4 nucleotide differences in two 

distinct cells would be vanishingly small (p = 1.4×10-14). scRNA-seq profiles from a total of 35,547 

PATU8988S and 19,778 KP4 cells were generated, supporting cell fate tracing of 259 KP4 (1.3%) 

and 512 PATU8988S cells (1.4%), identified by 145 and 325 unique barcodes, respectively (see 

methods). 

Following classification of PATU8988S and KP4 cells into M+ and M- states (Figure 2A-B, see 

methods), we assessed barcode representation in the M+ and M– states within each cell line, at 

both an early (T0 = 6d for KP4 and T0 = 10d for PATU8988S) and a late (T1 = 17d for KP4 and 

T1 = 38d for PATU8988S, i.e., 10 population doublings) time point following transduction.  Among 

KP4 and PATU8988S cells, 52% and 54% of the barcodes were unequivocally observed in cells 

that were in two different states at the two time points, indicating plastic interconversion between 

these states. Specifically, for the PATU8988S line, 106 of 275 M+ cells (transduced with 88 of 325 

unique barcodes (27%)) spontaneously transdifferentiated to the M- state, while 113 of 237 M- 

cells (transduced with 89 of 325 unique barcodes (27%)) transdifferentiated to the M+ state 

(Figure 2C). For the KP4 line, 78 of 151 M+ cells (transduced with 54 of 149 unique barcodes 

(36%)) spontaneously transdifferentiated to the M- state, while 26 of 108 M- cells (transduced with 

24 of 149 unique barcodes (16%)) transdifferentiated to the M+ state (Figure 2D), see methods. 

Taken together, these results indicate high M+ ↔ M- plasticity in both the GLS and MOS PDLs. 
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Differential GLS and MOS Representation Drives Bulk-tissue-based Clustering:  

We next sought to explore whether cell states identified at the single cell level could recapitulate 

the subtypes identified by metaVIPER-based bulk PDA sample clustering across four publicly 

available cohorts—including TCGA, ICGC, UNC, and Collisson et al. Further, to avoid stromal 

contributions, we also analyzed the epithelial compartment of 200 LCM samples from the CUMC-

E cohort. These are richly annotated with survival data, demographic information, clinical 

variables, and histopathological annotations of adjacent tissue sections (manuscript in 

preparation). Using metaVIPER to transform each expression profile to regulatory protein activity 

profiles, we identified two optimal clusters each (using k-medoids) in the well-established ICGC 

and TCGA cohorts (Bailey et al., 2016)(TCGA Research Network: https://www.cancer.gov/tcga). 

The MR proteins whose differential activity optimally stratifies the two clusters were nearly 

identical between the two independently analyzed cohorts (p = 10-40, by two-tailed aREA analysis, 

Bonferroni corrected) (Figure S3C). Given such remarkable overlap, we used Stouffer’s method 

(Stouffer, 1949) to integrate the MR activity p-values across the two cohorts to create a single, 

high-confidence, bulk sample-based MR activity signature (TCGA/ICGC MR signature) (Figure 

3A). 

We then asked whether the results of this analysis recapitulated the cell state MRs identified at 

the single cell level. MR enrichment analysis confirmed that the clusters from bulk PDA samples 

closely recapitulated the GLS and MOS single cell states (p ≤ 1.2×10-5 and p ≤ 2.4×10-6, by two-

tailed aREA analysis, respectively) leading to their designation as “Lineage” and “Morphogenic” 

bulk clusters/subtypes, respectively. We did not observe differential enrichment of MOS and GLS 

MRs specifically active in M+ or M– cell states, probably due to limited molecular resolution of the 

bulk profiles. ALS state MRs were less enriched in either bulk subtype (p = 1.4×10-2). This was 

expected since the ALS M- state is rather ubiquitously represented in patient derived samples, 

thus failing to contribute to sample differences, while ALS M+ cells are too rare to produce a 
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dominant signature (Figure 3B). Indeed, phospho-ERK IHC performed on 48 human PDA 

samples found that most tumors have very low fractions of active RAS/MAPK signaling within the 

malignant epithelial compartment, consistent with the observed predominance of M– cells in most 

human PDA datasets (Figure 3C-F). Taken together, these data confirm that bulk sample 

analyses can only recapitulate two out of the six molecularly distinct subtypes identified at the 

single cell level. 

To further assess reproducibility of the Lineage and Morphogenic clusters identified by the 

integrated TCGA/ICGC cohort analysis, we assessed whether differential MR activity could be 

recapitulated in additional cohorts. Indeed, our analyses show that Lineage and Morphogenic MR 

activity effectively stratified samples in (a) the CUMC-E cohort (Figure 4A), (b) three additional 

publicly available bulk-level cohorts—including the Moffitt (Moffitt et al., 2015) and Collisson 

(Collisson et al., 2011) cohorts (Figure S3D)—as well as (c) an additional LCM cohort (CSY) 

(Chan-Seng-Yue et al., 2020) (Figure S3E).  

Compared to published gene expression-based analyses, there was significant overlap of the 

Morphogenic subtype with aggressive subtypes associated with poor survival (p <0.05, by one-

tailed Fisher Exact Test), including the Quasi-mesenchymal (Collisson et al., 2011), basal-like 

(Moffitt et al., 2015), Squamous (Bailey et al., 2016) and basal-like A and B (Chan-Seng-Yue et 

al., 2020) (Figure S3F). Consistent with this observation, Morphogenic tumors had significantly 

worse survival than Lineage tumors in the CUMC-E cohort (p = 0.0005) (Figure 4B), with a 

hazard ratio  HR = 1.8.  Moreover, blind histopathological analysis of adjacent sections from 

CUMC-E sample blocks showed that Morphogenic tumors were much more likely to be poorly 

differentiated compared to Lineage tumors (p = 1×10-3, by X2 test) (Figure 4C). Furthermore, 

analysis of 190 patients in the CSY set LCM cohort (Chan-Seng-Yue et al., 2020) showed that 

Morphogenic tumors were significantly enriched for major mutant KRAS imbalance (p = 2×10-4, 

by two-tail Χ2 test) (Figure S3G). Finally, while genetic alterations failed to co-segregate with 
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either expression or activity-based subtypes (Figure S3H), suggesting an isogenic nature of 

identified subtypes, epigenetic analysis of TCGA samples revealed a strikingly distinct DNA 

methylation pattern in Lineage versus Morphogenic tumors (Figure S3I). These differences 

specifically affected key PDL MRs, such as GLS MRs (e.g., GATA6 and HNF1A), which were 

aberrantly methylated in Morphogenic tumors, and MOS MRs (e.g., ZEB1 and ZNF423), which 

were aberrantly methylated in Lineage tumors. Taken together these data suggest that bulk 

cluster-subtypes are mostly driven by differential representation of individual cells in a GLS and 

MOS states, which are associated with patient outcome, histology, epigenetic state, and KRAS 

imbalance. Indeed, classification of PDA cell lines in Lineage and Morphogenic based on bulk 

profiles almost perfectly recapitulates their differential enrichment in MOS and GLS cells at the 

single cell level (Figure S4A and S2E). 

Lineage and Morphogenic MRs represent state-specific dependencies: we then tested 

whether cell state specific MRs represent critical non-oncogene dependencies essential for cell 

viability. For this, we focused on the GLS and MOS cell states for two reasons: (a) these states 

appear to have complete opposite MR activity—i.e., the most activated GLS MRs are among the 

most inactivated in MOS and vice-versa—and (b) cell lines predominantly representative of the 

ALS state were  not readily available. To assess PDA cell line dependency on state-specific MRs, 

we performed pooled CRISPR/Cas9 screens in six cell lines—including three recapitulating 

GLS/Lineage MRs (PATU-8988S, HPAFII, and CAPAN1) and three recapitulating 

MOS/Morphogenic MRs (PANC1, KP4, and PK45H), using both knock-out (CRISPRko) and 

inhibition (CRISPRi) systems (Figure 5A). Cells were transduced with a pooled guide-RNA library 

targeting 3,179 genes (4 sgRNA/gene), including 1835 regulatory proteins (Alvarez et al., 2016) 

and 759 selected core essential and non-essential genes, as positive and negative controls, 

respectively (Hart et al., 2017; Palin et al., 2018) (Figure S4B-C). Cells were harvested and 

sequenced at T0 = 3d and T1 = 33d, following sgRNA transduction and sgRNA counts were 
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integrated across both technical and biological replicates to assess their differential 

representation over time and then compared between subtypes to generate a differential, 

subtype-specific, essential signature. We found that sgRNAs associated with viability reduction in 

GLS/Lineage and MOS/Morphogenic cell lines were highly enriched in top 200 most differentially 

active proteins (i.e., 100 most active in GLS and 100 most active in MOS), as produced by 

metaVIPER analysis of the genes differentially expressed in GLS vs. MOS cells (p = 9.1 ×10-5, by 

two-tailed GSEA analysis), as well as in the top 200 MRs obtained by metaVIPER analysis of 

genes differentially expressed in Lineage vs. Morphogenic samples (p = 2.5×10-4) (Figure S4D). 

This was not surprising since GLS and MOS MRs were highly overlapping with Lineage and 

Morphogenic MRs, respectively (Figure 3B). For GLS/Lineage cell lines, the analysis identified 

CDX2, GATA6 and HNF1A among the most essential MRs, while for MOS/Morphogenic cell lines 

it identified MYBL1, ZEB1 and GLI2 (Figure 5B-C). The demonstrated genetic dependence of 

PDAC cell states on state-specific MR proteins offers a potential path for the future identification 

of drugs that selectively target individual cell types in PDA. 

We then reasoned that if MAPK signaling is an important differentiator in all PDLs (with M+ states 

representing the dominant fraction in cell lines), MAPK MRs should be enriched in essential genes 

that are common across all six PDA cell lines. To test this hypothesis, we generated a CRISPR-

based essentiality signature by integrating the signatures of both the CRISPRko and CRISPRi 

screens across the six PDA cell lines, using Stouffer’s method. As expected, MR generated by 

VIPER analysis of M+ vs. M- cells, integrated across each PDL, were highly enriched in essential 

genes (p ≤ 4.9×10−5) (Figure 5D-E).  

Finally, we used VIPER to identify MRs associated with PDA tumorigenesis by metaVIPER 

analysis of malignant PDA epithelium (from the CUMC-E dataset), independent of subtype, 

versus the average of normal tissue samples in GTEx (Consortium, 2013). As expected, PDA 

tumorigenesis MRs were also significantly enriched in essential genes, as assessed by 
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CRISPRko, integrated across all six PDA cell lines (p = 5.5×10-3, by one-tailed GSEA 1000 

permutations) (Figure 5 F-G). Indeed, GSEA analysis confirmed significant overlap between 

MAPK and tumorigenesis MRs  (p=7.8 X10-4, by one-tailed GSEA test with 1000 permutations), 

thus yielding a subset of MAPK MRs that represent experimentally validated drivers of PDA 

tumorigenesis (Figure S4F, Table S23). 

 

MR proteins represent mechanistic cell state determinants: While we observed rapid 

interchange between the M+ and M– states in cultured PDA cell lines, the predominance of a single 

PDL (typically GLS or MOS) in most PDA cell lines limits our ability to assess spontaneous cross-

PDL plasticity via barcode-based lineage tracing. Instead, we assessed whether ectopic 

expression of Lineage-specific MRs could transdifferentiate PDA cell lines from the more 

aggressive Morphogenic state into the less aggressive Lineage state, thus supporting their 

mechanistic role in PDL specification. This was assessed by lentiviral-mediated transduction of 

cDNAs encoding for the 8 most significant Lineage MRs—also among the most activated in the 

single cell-based GLS state (Figure S5A)—in the Morphogenic KP4 cell line using the tetracycline 

inducible M2rtTA system (Hockemeyer et al., 2008). On an individual basis, ectopic expression 

of each Lineage MR was effective in increasing the activity of the other Lineage MRs (Figure 6A). 

Yet, ectopic expression of OVOL2 was also uniquely effective in repressing the activity of the top 

Morphogenic MRs, thus producing virtually complete transdifferentiation of KP4 cells from a 

Morphogenic to a Lineage state (p = 4.3×10-15, by 2-tailed aREA test) (Figure 6A, S5B-C). 

Analysis of RNA-seq profiles following ectopic expression of Lineage MRs in KP4 cells supported 

reconstructing both transcriptional and post-translational MR → MR interactions. These were 

assessed by analyzing the differential expression and differential VIPER-measured activity of 

each MR following ectopic expression of every other MR (see methods). The analysis revealed a 
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complex on/off modular structure where the top 8 Lineage MRs positively regulate each other and 

repress the top 8 Morphogenic MRs (Figure 6B). This modular structure was rich in 

autoregulatory interactions (loops) contributing to the stability of the two states it regulates, thus 

providing a mechanistic rationale for the role of these MRs in homeostatic PDL state control. 

Among the Lineage MRs, OVOL2 emerged at the top of the regulatory hierarchy, due to its ability 

to directly activate or repress the expression or activity of the vast majority of other Lineage and 

Morphogenic MRs, respectively, explaining its singular ability to individually control 

transdifferentiation. Western blotting confirmed OVOL2 cDNA-mediated inactivation of its 

established transcriptional targets such as ZEB1 and Vimentin (Kang et al., 2018; Zeisberg and 

Neilson, 2009)—known effectors of EMT, a hallmark of the Morphogenic subtype—and 

upregulation of established epithelial markers, such as E-cadherin, which is undetectable in KP4 

cells (Figure 6C). The ability of OVOL2 to transdifferentiate cells to the Lineage state was 

replicated in in two additional Morphogenic cell lines (PANC1 and PK45H) (Figure S5D).  

To further dissect the combinatorial logic that drives this Lineage MR module, we performed 

ectopic cDNA expression of the  same top 8 Lineage MRs in individual KP4 cells at MOI = 1, 

followed by single-cell RNASeq profiling (Son et al., 2021). At this MOI, most cells received one 

or more cDNAs with co-expression of 11 MR pairs and 14 higher-order MR combinations in ≥ 30 

cells (a threshold suitable for transdifferentiation assessment). Consistent with the initial 

experiment, ectopic OVOL2 expression strongly transdifferentiated cells to the Lineage state. 

However, the OVOL2/HNF1A pair significantly improved transdifferentiation efficiency by an 

additional 13% (i.e., 32% to 45.1%) confirming their functional interaction. More importantly, 

several individual MRs and MR combinations that did not include OVOL2 were also quite effective 

in inducing Morphogenic → Lineage transdifferentiation in combination but not individually, albeit 

in a smaller cellular fraction (Figure 7A-B). For instance, the FOXA2/HNF1A pair was the third 

most efficient Morphogenic → Lineage MR combination, even though neither FOXA2 nor HNF1A 
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had a significant effect individually (Figure 7A). These results demonstrate the ability of VIPER-

inferred Lineage MRs to mechanistically induce the Lineage state, via their transcriptional targets, 

including as a result of synergistic functional interactions.  

 

Discussion 

The parsing of molecular states from bulk PDA expression data has proven extremely challenging 

due to the wildly heterogeneous composition of these tumors as well as significant variation in 

patient composition, enrollment criteria, treatment status, and technical variables of available 

public cohorts. Nevertheless, some consistent top-level messages have emerged, such as the 

distinction of well-versus poorly differentiated tumors, leading to a growing consideration of 

subtypes in clinical studies and practice. The assessment of molecular states at the cellular level 

stands to mitigate issues of intratumoral heterogeneity while revealing the potential contributions 

of coexisting cellular states to tumor progression and therapeutic resistance. However, two 

challenges loom before single cell states can be effectively leveraged for therapeutic purposes. 

First, current techniques for single cell expression analysis suffer from “gene dropout” as low read 

depth per cell precludes detection of most genes in individual cells. Second, the identification of 

distinct expression states yields little information regarding the causal drivers that mechanistically 

implement them. In the current work, we overcome both these challenges using single cell 

regulatory network analysis, yielding a novel cellular taxonomy, experimental evidence of the 

mechanisms that implement the respective states, and an understanding of their genetic 

dependencies for cellular survival.  

Enzyme activity assays require assay to quantify products and reactants. For the specific case of 

enzymes that regulate the abundance of RNA transcripts (e.g., transcription factors, cofactors, 

chromatin modifiers, and other regulatory proteins), RNA sequencing serves as an ideal assay 
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for activity measurements—provided the specific positive and negative target genes of a 

regulatory protein are known. We rely on ARACNe, an extremely well-validated algorithm based 

on principles of information theory, to accurately reconstruct the sets of target genes for every 

regulatory protein in the genome in the specific context of PDA. To avoid the potential biases 

introduced by reliance on a single dataset, we generated distinct PDA networks from four 

expression cohorts representing over 500 tumors, including a novel epithelium-enriched cohort 

from laser capture microdissected samples. Preditions by these networks are then integrated by 

the metaVIPER algorithm to transform individual expression profiles into regulatory protein activity 

profiles, yielding powerful benefits such as dimensionality reduction (~1800 regulatory proteins 

vs. >20,000 detectable genes), variance stabilization due to the integration of hundreds of gene 

expression values into one regulatory protein activity value, and virtual elimination of the gene 

dropout effect. Indeed, a key effect of VIPER analyses is that protein activity can be measured 

for every regulatory protein on a cell-by-cell basis, even if the gene encoding for the protein cannot 

be detected in scRNAseq profile, making regulatory network analysis ideally suited to single cell 

datasets. Most critically, the identification of differentially active regulatory proteins explicitly 

identifies candidate mechanistic drivers of phenotypes, as confirmed by MR-mediated 

transdifferentiation and CRISPR-ko/CRISPRi studies. 

We used this approach to study the malignant epithelial cells of human PDA, leading to 

identification of six states that were consistently reproduced across multiple single cell expression 

cohorts. These consisted of three pairs of states that were distinguished by the activities of groups 

of developmental transcription factors associated with gastrointestinal fate, with acinar-to-ductal 

metaplasia, or with EMT and morphogen pathway signaling. At the bulk tissue level, the relative 

abundance of two of these developmental subtypes (GLS and MOS) effectively captured the 

biology of differentiation state, with the less differentiated Morphogenic tumors exhibiting worse 

clinical prognosis across multiple independent datasets. Indeed, the conservation of these 
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subtypes across multiple independent datasets with divergent patient and technical properties is 

a key advantage of this approach.  

 

Critically, the regulatory proteins identified by our work constitute a set of testable predictions 

concerning the role of each candidate MR in maintaining the identity and viability of their 

respective cell state. Our experimental validation of these predictions, using ectopic expression 

assays, represents a critical demonstration of the genetic determinants of cellular plasticity in 

PDA. Moreover, functional screening confirmed that GLS and MOS MRs are often necessary for 

maintaining the viability of their respective cell states. These state-specific genetic dependencies 

provide a roadmap for the future therapeutic targeting of PDA cellular heterogeneity.  

Within each pair of developmental states, we identified two substates that were distinguished by 

their relative level of RAS/MAPK activity. This finding, which was not apparent through the 

analysis of simple gene expression, is striking considering the nearly universal presence of 

activating KRAS mutations in human PDA, which might lead to the expectation that all malignant 

PDA cells have high MAPK signaling. Yet this is clearly not the case as the large majority of 

malignant epithelial cells in human PDA express low or undetectable levels of the RAF/MEK 

activity biomarker phospho-ERK by immunohistochemistry. It is well established that mutant 

KRAS is still ligand-dependent on signaling from upstream receptor tyrosine kinases such as 

EGFR (Boguski and McCormick, 1993). Local exposure to growth factors, nutrients, and oxygen 

likely limit the growth and proliferation of malignant PDA cell in vivo, leading to far slower 

proliferative rates compared to replete in vitro culture conditions where PDA cells typically divide 

daily. We hypothesize that the M+ and M- states reflect this proliferative heterogeneity. Consistent 

with this, the large majority of malignant PDA cells are found in the M- state in human tumors, 

whereas the M+ state dominates PDA cells in culture. Treatment with either RAF/MEK/ERK 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 14, 2022. ; https://doi.org/10.1101/2020.10.27.357269doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.27.357269
http://creativecommons.org/licenses/by-nc-nd/4.0/


inhibitors or the withdrawal of growth factors (serum free medium), both of which induce cell cycle 

arrest, effectively shifts PDA cells from the M+ to M- state even in the presence of ample nutrients. 

Nevertheless, the M- state should not be confused with long-term quiescence as our barcode-

based single cell fate mapping experiment demonstrates rapid switching between these two 

states normal growth conditions. Rather, we infer that RAS/MAPK may rapidly toggles during 

proliferative cycles perhaps in accordance with the metabolic needs of the cell in each cell cycle 

phase.  

The divergence in MAPK state between malignant PDA cells in patients and their counterparts in 

vitro has profound implications for the development of effective therapies. The vast majority of 

drug screens are performed, at least initially, in cultured cells, potentially biasing for the 

identification of drugs that selectively target only a small fraction of the malignant cells present in 

vivo. Future screens performed in cells pushed into the M- state may prove more fruitful. 

Additionally, drugs that selectively impact MRs of just one or two developmental subtypes may 

produce rapid, non-genetic adaptation to the remaining state. The consideration of regulatory 

protein activity states may therefore facilitate the development of multi-drug regimens that 

collectively impact the large majority of malignant cells in PDA. 
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Figure Legends 

Figure 1: PDA transcriptional cell states. A) Conceptual workflow of this work. B) Principal 

Component Aanalys (PCA)  based on VIPER-inferred protein activity profiles showing the six cell 

cell states  identified  by cluster analysis. C) Silhouette plot showing the silhouette score of each 

individual cell in the assigned cluster. D)  Pseudo-trajectory plot  generated by the  Monocle 

algorithm on the VIPER-inferred protein activity profiles. E) Heatmap showing the VIPER-inferred 

most differentially activated  25 proteins of each cluster compared to all the other clusters, 

including the GLS and MOS markers (HNF1A, GATA6, NOTCH1, SNAI1, SNAI2,GLI3 GATA4, 

SOX9,HNF4A). F) msViper plot  of the MAPK signature  identified across PDLs. Each row shows 

the distribution of the target genes (vertical lines) of a given regulatory protein  in the gene 

expression signature distinguishing M+ vs M- cells (top bar).  Only target genes with highest 

likelihood across the 4 PDA networks used for metaVIPER are shown in the plot. Blue vertical 

lines represent negatively regulated target genes, red  vertical lines represent positively regulated 

target genes. The top bar represents the integrated gene expression signature across the three 

PDLs distinguishinng M+ vs M- states, with differentially expressed genes ranked from most 

downregulated in M- (blue) to the most upregulated in the M+ (orange). The three columns on the 

right indicate the activation status of each regulatroy protein in the M+ state compared to M- state  

within  each PDL. Red indicates activation in M+ state, blue indicates inactivation in the M+. G) 

GSEA plots showing the conservation of VIPER-inferred MRs between M+ and M- states across 

the three PDLs. Top, GSEA plot  shows the 2-tailed enrichment analysis of the top 50 MRs (hits) 

(the 25 most activated and 25 most inactivated) distinguishing M+ and M- states of the GLS PDL 
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in the protein activity signature (refence signature, x-axis) distinguishing M+ and M- states in MOS 

PDL.  Same analysis was done to perfom a pairwise comparisons across  all the PDLs. NES and 

p-value were estimated by 2-tailed enrichment analysis with 1000 permutations. H) GSEA plot 

showing the conservation of the MAPK MRs (the 25 most activated and 25 most inactivated) 

inferred from patients,  in the VIPER  MAPK signature experimentally inferred by perturbing Raf-

MEK-ERK in PDA cell lines. NES and p-value were estimated by 2-tailed enrichment analysis 

with 1000 permutations. 

Figure 2: Single-cell lineage tracing of PDA epithelial cells. A) Reference map (UMAP) 

showing the single cells of seven PDA cell lines used as reference (see methods).  The black line 

highlights the area  of the reference map enriched for PATU8988S cells. Red dots represent the 

PATU8988S  cells classified as GLS (M+) and purple dots represent PATU8988S cells classified 

as GLS (M-). Grey dots represent the cells of all the other cell lines used to generate the refence 

map. The GSEA plot shows the conservation of the top 50 differentially activated proteins (the 25 

most activated and the 25 most inactivated)  computed by comparing PATU8988S GLS (M+) vs  

PATU8988S GLS (M-) in  the experimentally-inferred MAPK VIPER signature in PDA cell lines 

(reference signature). NES and p-value were estinated by 2-tailed enrichemt analysis with 1000 

permutations. B) Reference map (UMAP) showing single cells of the seven PDA cell lines used 

as reference.   The black line highlights the area enriched for KP4  cells. Blue dots represent the 

KP4  cells classified as MOS (M+) and purple dots represent KP4 cells classified as MOS (M-). 

Grey dots represent cells of all the other cell lines used to generate the refence map. The GSEA 

plot shows the conservation of the top 50 differentially activated proteins (the 25 most activated 

and the 25 most inactivated)  computed by comparing KP4 MOS (M+) vs  KP4 MOS (M-)  cells in  

the experimentally-inferred MAPK VIPER signature in PDA cell lines (reference signature). NES 

and p-value were estinated by two-tailed enrichemt analysis with 1000 permutations. C) Top, 

reference map  showing the transition of PATU8988S cells from M+ to M- state in the single-cell 
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lineage tracing experiment. Bottom, reference map showing the transition of PATU8988S cells 

from M- to M+ state. D) Top, reference map  showing the transition of KP4 cells from M+ to M- 

state in the single-cell lineage tracing experiment. Bottom, reference map showing the transition 

showig the transition of KP4 cells from M- to M+ state. 

 

Figure 3: Bulk-based cluster analysis  and Immunohistochemistry for phospho-ERK on 

human PDA cells. A) Heatmap showing clusters of TCGA and ICGC patients based on  the most 

differentially active MRs (Tumour Checkpoint) generated by the integration of ICGC and TCGA 

analyses.  One cluster was enriched for GLS MRs and one cluster was enriched for MOS MRs ( 

see figure 3B).  B) GSEA plots showing the enrichement of the cell state-specific  master 

regulators identified by single-cell analysis in the VIPER-inferred MR signature generated by 

integrating  ICGC and TCGA analyses. NES and p-values were estimated by two tailed 

enrichement analysis with 1000 permutations. C) Table showing blinded scoring of percent pERK 

positive epithelial cells in a series of 46 human PDA samples from surgical resections. D) Example 

of absent pERK staining in malignant epithelia (*) despite positive stromal cells (S). E) Rare 

positive cells intermixed in a largely negative malignant epithelium. F) Malignant epithelium with 

a majority of pERK positive cells. Scalebars = 50μm. 

Figure 4: Master Regulator-based classification of CUMC-E cohort. A) Heatmap and patients 

stratification of the  CUMC-E cohort  based on the MR Tumour Checkpoint derived  by the 

integration of ICGC and TCGA analyses. B) Kaplan-meier curve showing that patient stratification 

of CUMC-E cohort  in Morphogenic and Lineage  based on MR Tumour Checkpoint  correlates 

with patient's survival (p-value was computed by log-rank test). C) Barplot showing that 

Morphogenic tumors are enriched for poorly differentiated tumors. The p-value  was computed by 

Chi-square test.  
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Figure 5: PDA Master Regulators are enriched in essential genes. A) Schematic workflow 

used for the pooled CRISRP/dCas9 (CRISPRi and CRISPRko) screens. B)  Scatter plots showing 

differential gene essentiality signature between Lineage and Morphogenic cell lines 

(Lineage/Morphogenic ess), as produced by CRISPRko (left) and CRISPRi (right). Genes are 

ranked according to their differential essentiality score (z-score), from the most Morphogenic-

essential (left) to the most Lineage-essential (right). VIPER-inferred Lineage and Morphogenic 

MRs are shown in red and blue, respectively. C) GSEA analysis shows statistically significant 

enrichment of the 50 most differentially active Lineage and Morphogenic MRs in genes assessed 

as differentially essential between Morphogenic and Lineage cell lines, by integration of 

CRISPRko and CRIPSRi data (p-value and NES estimated by GSEA 2-tailed test, with 1,000 

permutations). D) GSEA analyses showing statistically significant enrichment of the 50 most 

differentially active MAPK MRs experimentally  inferred by perturbation in PDA cell lines (clines)  

in the subtype-independent essentiality signatature as determined by  integrating CRISPRko and  

CRISPRi  signatures across all the cell lines (p-value and NES estimated by GSEA 1-tailed test, 

with 1,000 permutations). E) GSEA analyses showing statistically significant enrichment of the 50 

most differentially active MAPK MRs inferred by single-cell analysis of PDA patients in the 

subtype-independent essentiality signatature as determined by  integrating CRISPRko and  

CRISPRi  signatures across all the cell lines (p-value and NES estimated by GSEA 1-tailed test, 

with 1,000 permutations). F) Scatter plot ranking genes based on their PDA subtype-independent 

essentiality as determined by CRISPRko, with VIPER-inferred, subtype-independent Master 

Regulators highlighted. G) GSEA of PDA MRs subtype-independent, computed by comparing  the 

200 LCM CUMC-E samples  against the gene expression centroid all normal tissue samples in 

GTEx (Consortium, 2013),   in subtype-independent essential genes, as assessed by the pooled 

CRISPRko screen (p-value and NES  were estimated by GSEA 1-tailed test, with 1,000 

permutations). 
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Figure 6: Lineage reprogramming of Morphogenic tumors.  

A) Heatmap showing activity of top Lineage and Morphogenic MRs in the KP4 morphogenic cell 

line following ectopic expression (+/- M2rtTA) of the top 8 Lineage MRs (n=8). As a reference, to 

better assess reprogramming, the first and last columns show activity of top Lineage and 

Morphogenic MRs in KP4 cells (Morphogenic, left) and averaged over HPAFII and PATU cells 

(Lineage, right). B) Mechanistic regulatory network showing transcriptional and post-

transcriptional regulation of the 8 top Morphogenic and 8 top Lineage MRs by the latter, as 

assessed based on their differential expression and differential protein activity analysis following 

ectopic expression of each MR, respectively. Additional Protein-Protein interactions are reported 

from the STRING (81) and PrePPI (82) databases. C) Western blot showing inhibition of 

mesenchymal markers (ZEB1 and Vimentin) and expression of epithelial markers (E-cadherin) 

following ectopic OVOL2 expression (+/- transcriptional activator M2rtTA) in KP4 cells, compared 

to negative controls (mCherry). 

 Figure 7: Lineage reprogramming of Morphogenic tumors at single-cell level . A) Bar plot  

showing the fraction of reprogrammed cells following ectopic expression of the top 8 GLS MRs 

and their combinations in single KP4 cells. P-values were assessed by Fisher Exact Test of the 

number of statistically significant Lineage cells (FDR<0.05) in KP4 cells, following ectopic 

expression of individual Lineage MRs and their combination (MR set) vs. negative controls 

expressing mCHERRY (+/- M2rtTA). B) Heatmap showing the average activity profile of Lineage 

and Morphogenic RPs in the fraction of cells assessed as statistically significantly reprogramed 

following ectopic expression of each MR set, integrated by the Stouffer ‘s method. Columns 

represent Lineage and Morphogenic regulators with some notable MRs highlighted. 
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Figure S1: A) Conceptual workflow illustrating VIPER-based inference of protein activity. B) PCA 

of single PDA cells based on chromosomal gene expression analysis effectively distinguishes 

aberrant ploidy tumour cells (yellow) vs. normal-ploidy cells (purple). C) Differentially expressed 

genes between non transfromed (normal) and  transformed (cancer)  single cells, as predicted by 

PCA of chromosomal expression. D) Density plot showing genetic instability score between 

predicted  PDA cancer cells by PCA on chromosomal expression   compared to non transformed 

pancreatic cells (see methods).  E) Heatmap showing CNVs and genomic instability score (G.I. 

score), as computed from the gene expression profiles of PDA cells compared to non transformed 

pancreatic cells. F) Box plots showing the distribution of silhoutte scores of individual cells 

clustered by their VIPER-inferred protein actvity profiles  and by gene expression at different 

resolution values of Louvain algorithm. G) Plot showing  differential gene expression of Spp1 in 

the first two principal components computed by PCA on protein activity profiles.  H)  Heatmap 

showing the differential expression of genes associated to MAPK pathways in  Biocarta database 

across the cell states. Differential gene expression is expressed as z-score on the pseudobulk 

profiles computed  by averaging the normalized gene expression profiles (log2(CPM+1))  of 

individual cells within the same cell state (i.e.cluster). I) Heatmap showing the differential 

expression of genes associated to Metabolic pathways in  Reactome database across the cell 

states. 

Figure S2: A) Plot showing the percent of M+  and M- cells  in six PDA cell lines after replacing 

reccomended media (control) with serum-free media. Serum-free media was replaced after 4 

hours. Cells were profiled by scRNASeq, transformed to protein activty profiles, and  classified as  

M+ or  M- based on the enrichment of the experimentally inferred MAPK  protein actvity signature. 
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B) Plot showing the percent of M+  and M-  in ten PDA cell lines   after treatment with Trametinib 

with respect the DMSO. Cells were profiled by scRNASeq, transformed to protein activty profiles, 

and  classified as  M+ or  M- based on the enrichment of the experimentally inferred MAPK  protein 

actvity signature  C) Heatmap showing the differental enrichment of cell state specific protein 

activity signature (25 most activated and 25 most inactivated) in a PDA patient from CSY set. 

Enrichment analysis was performd using the aREA algorithm (2-tailed aREA test). D)  Barplots 

showing the classification of PDA  cells  in each patient of the CSY set (single-cell set), based on 

the enrichment of cell state specific protein activity signature. E) Barplots showing the 

classification of PDA  cells  in each patient of the Peng set, based on the enrichment of cell state 

specific protein activity signature. F) Barplots showing the classification of PDA  cells  in seven 

PDA cell lines, based on the enrichment of cell state specific protein activity signature. G)  Barplot 

showing the classification of PDA  cells  derived from a PDX model, based on the enrichment of 

cell state specific protein activity signature. 

Figure S3: A) Reference map (UMAP)  based on the protein activity profiles of PDA cells from 7 

PDA cell lines. Each dot represents a cell and colors represent different PDA cell lines. B) 

Reference map (UMAP)  showing three clusters identified by unsupervised cluster analysis.  C) 

GSEA  plot showing the enrichment of TCGA MRs (50 most overactivated and 50 most inactivated  

proteins) in the ICGC protein  activity signature (p-value and NES  were estimated by GSEA 2-

tailed test, with 1,000 permutations). D) Heatmaps showing the activity of 25 most activated 

Lineage and Morphogenic MRs—as obtained by Stouffer integration of ICGC and TCGA sample 

analysis in the UNC and Collisson cohorts. Only samples with a silhouette scores >0.25 are 

shown in the heatmaps, which correspond to 102/125 samples (82%) in the UNC cohort and 

23/27 samples (85%) in the cohort of Collisson et al.,2011. E) Heatmap showing the conservation 

of  25 most activated Lineage and Morphogenic MRs in a large cohort of 197 laser capture 

microdissecetd samples from CSY set. F) PieDonut charts showing overlap between protein 
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activity-based Lineage  and Morphogenic  classification and previously published classification 

schemes. G) Barplot showing the enrichment of KRAS inmabalance in Morphogenic patients, in 

the CSY set.  H) Oncoprint plot showing genetic alterations in TCGA Lineage and Morphogenic 

samples from cBioportal (Cerami et al., 2012). I) Heatmap showing differentially methylated sites 

in Lineage vs. Morphogenic  TCGA samples (n=58). 

Figure S4: A) Heatmap showing the enrichment of the 50 most differentially activated proteins 

(25 most activated and 25 most inactivated), as inferred by VIPER analysis of Lineage vs. 

Morphogenic subtype samples, integrated across TCGA and ICGC cohorts, in PDA cell lines from 

the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012). The three cell lines labeled in 

red and blue were selected as Lineage- and Morphogenic specific models, respectively, for a 

pooled CRISPR/Cas9 screen to validate predicted MR proteins. They were re-sequenced to 

ensure fidelity compared to their CCLE profiles. Specifically, re-sequenced Lineage cell lines 

HPAFII, CAPAN1, and PATU8988S were labeled as AM01, AM005, and AM004, respectively, 

while re-sequenced Morphogenic cell lines PK45H, PANC1, and KP4 were labeled as AM007, 

AM003, and AM002, respectively. The re-sequenced PANC0403 cell lines (AM006) was classified 

as neither Lineage nor Morphogenic and was thus selected as control for the cell line selection. 

B-C) For quality control purposes, the ECDF plots show the z-score distribution for established 

core-essential genes (positive controls) vs. non core-essential genes (negative controls) 

assessed in the pooled CRISPRko and CRISPRi screens.This shows that the pooled screens 

were highly effective in identifying core-essential genes, thus supporting the quality of the results. 

D) GSEA plots showing the enrichment of the top 200  differentialy activated proteins (100 most 

differentially activated and 100 most differentially inactivated) inferred from single cells by 

comparing GLS vs MOS states, in the Lineage vs. Morphogenic  essential genes. P-value and 

NES were estimated by two-tailed GSEA test with 1000 permutations. E) GSEA plots showing 

the enrichment of the top 200  differentialy activated proteins (100 most differentially activated 
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and 100 most differentially inactivated) between Lineage and Morphogenic subtypes inferred from 

bulk anlysis ( ICGC-TCGA signature), in the Lineage vs. Morphogenic  essential genes. P-value 

and NES were estimated by two-tailed GSEA test with 1000 permutations. F) GSEA plot showing 

the enrichment of the 50 most overactivated RPs of the PDA tumorigenic signature (inferred by 

VIPER analyss by comparing CUMC-E vs GTEx) in the MAPK signature inferred by VIPER 

analysis from single cells of PDA patients. NES and p-value were estimated by one-tailed GSEA 

test with 1000 permutations. 

Figure S5: A) GSEA plots shwoing the enrichment of the  top eight most over-activated Lineage 

RPs in the  single-cell PDL signatures computed by comparing each PDL against the other two. 

These plots show the conservation of the top eight Lineage RPs in the GLS signature. NES and 

p-value were estimated by two-tailed GSEA test with 1000 permutations. B) GSEA plot showing 

the  enrichment of the top 50 Lineage (red) and top 50 Morphogenic (blue) MRs in proteins 

differentially activated following ectopic OVOL2 expression in KP4 cells. P-value and NES were 

assessed by two-tailed GSEA test with 1000 permutations. C) GSEA plot showing the enrichment 

of 200 most over- (yellow) and under-expressed (purple) genes following ectopic OVOL2 

expression in KP4 cells in genes differentially expressed in Lineage vs. Morphogenic cell lines (p-

value and NES assessed by two-tail GSEA analysis with 1000 permutations). D) Heatmap 

showing reproducibility of OVOL2-mediated Morphogenic → Lineage cell state reprogramming 

(+/- M2rtTA), across three distinct Morphogenic cell lines (KP4, PANC1 and PK45H). 

 

METHODS 

ARACNe networks: PDA networks were generated from CUMC, ICGC and UNC cohorts using 

the ARACNe-AP algorithm (Lachmann et al., 2016) with 100 bootstrap iterations and a mutual 

information (MI) p-value threshold of 10-8,  corrected for multiple hypothesis testing, as originally 
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described (Basso et al., 2005; Margolin et al., 2006). TCGA networks, including the PDA TCGA 

network, were downloaded from the aracne.networks package (Federico M. Giorgi). ARACNe 

networks included transcriptional targets (regulons) of a  set of Regulatory Proteins comprising 

TFs, co-TFs, and chromatin regulators was used for this study (Table S1). 

Single-cell analysis of the Elyada PDA set: The single-cell UMI-count matrix from Elyada et 

al.(Elyada et al., 2019) (Elyada set) was filtered to remove cells with <1,000 UMI-counts and 

genes with zero counts across all cells. UMI counts were   normalized to counts per million (CPM). 

Epithelial cells were computationally selected from each sample using a GSEA clustering 

procedure based on enrichment of cell type specific markers, including those for epithelial, 

endothelial, immune, fibroblasts and pericytes cells (see supplementary methods) as also 

discussed in (Elyada et al., 2019). 1886 cells from six patient-derived samples were identified as 

epithelial.  Of these, 30 cells were further removed as putative non cancer cells as predicted by 

genomic instability (Laise and Alvarez, 2022) and  aneuploidy analyses(Yuan et al., 2018). For 

genomic instability analysis single cells derived from normal pancreas were used as a reference 

(Han et al., 2020). 1856 cells were identified as putative cancer epithelial cells. A representative 

subset of 500 cells—selected at random from the 1,856 available PDA epithelial cells—was used 

to build a single-cell ARACNe network (scNET). CPM normalized counts were used with 100 

bootstrap iterations and a Bonferroni corrected statistical significance threshold, p ≤ 10-8. 

ARACNe inferred adequately sized regulons (i.e., >50 targets) for 506 of 1,835 regulatory 

proteins. For the remaining regulatory proteins (n = 1,329), activity was inferred by integrating 

four PDA networks (CUMC-net, TCGA-net, ICGC-net and UNC-net) via the metaVIPER 

algorithm. All ARACNe regulons were pruned to the 50 most-statistically significant targets before 

metaVIPER analysis, to avoid bias associated with different regulon sizes being used in the 

analysis.  To compute a differential gene expression signature for each  individual  single-cell (for 

metaVIPER analysis) we used the “mad” method—similar to a robust z-score (Malo et al., 2006)—
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as implemented in the VIPER package (Alvarez et al., 2016), on the rank transformed single cell 

RNASeq (scRNASeq) profiles. Cluster analysis was performed on the metaVIPER inferred protein 

activity profiles using the Louvain algorithm as implemented in the Seurat package (Stuart et al., 

2019) in the viper space computed using the viperSimilarity function of the VIPER package 

(Alvarez et al., 2016)  The viperSimilarity function computes the distance between each pair of 

cells by performing the reciprocal enrichment analysis (two-tailed aREA test (Alvarez et al., 2016)) 

of the protein activity signatures, and generates a distance matrix based on the similarity of the 

protein activity signatures. This distance matrix was used as input to construct a Shared Nearest 

Neighbor (SNN) graph using the “FindNeighbors“ function of the Seurat package with the 

“k.param”=50. The optimal number of clusters was estimated by optimizing the resolution 

parameter (from 0.1 to 1 with intervals 0.05) of  the “FindNeighbors” function with silhouette 

analysis (Rousseeuw, 1987) This analysis estimated 0.2 as optimal resolution value, which 

generated 6 clusters.   A differential protein activity analysis was then performed to generate a 

protein activity signature for each cluster. This was done using the most representative cells of 

each cluster selected based on the silhouette scores (n=100 cells with the highest silhouette score 

in each cluster were selected).  The differential protein activity analysis was performed by 

metaVIPER on the differential gene expression signatures computed by comparing the most 

representative cells of each cluster against the most representative cells of all the other clusters  

(one vs. all) using the  Student T.test on the Log2 (CPM+1) normalized gene expression profiles. 

Pseudo trajectory analysis was performed on the VIPER-inferred protein activity profiles  

(computed using the robust z-score as previously described) of all cancer cells using the Monocle 

algorithm (Trapnell et al., 2014). 
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Drug perturbation assays: PLATE-Seq experiment was performed in collaboration with 

Columbia University’s Genome Center. Panc1 and Aspc1 pancreatic cancer cells were cultured 

in white 96-well tissue culture-treated plates at optimized density, in 100 μl of Dulbecco's Modified 

Eagle Medium (DMEM) media supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin/ streptomycin. After 24 h of incubation, the plates were treated with following drugs: RAF 

inhibitors – Sorafenib, Dabrafenib, RAF709, PLX8394, GDC-0879; MEK inhibitors – Trametinib, 

Cobimetinib, Binimetinib, Selumetinib, Rafametinib; and ERK inhibitors – SCH772984, Ulixertinib, 

AZD0364, Ravoxertinib. Each drug was dosed at the concentration at which the cells were 80% 

viable after 48 h of treatment. After 24 h of treatment, the medium was replaced with 100 ml of 

FBS supplemented with 10% DMSO and the plates were frozen at −80 °C prior to PLATE-Seq. 

Detailed protocol for preparation of the automated PLATE-SEQ experiment was described by 

Bush et al. (Bush et al., 2017). The PLATE-Seq FASTQ files were pseudoaligned to the GRCh38 

human transcriptome (mRNA & ncRNA) and gene expression was quantified using kallisto 

(version 0.44.0), tximport package (Soneson et al., 2015), and biomaRt package (Durinck et al., 

2009). The gene expression was quantified as both raw counts (i.e. sequencing fragments per 

genomic locus) and transcripts per million (i.e. sequencing fragments per genomic locus 

normalized for transcript/gene length and sample sequencing depth). ShortRead 

package(Morgan et al., 2009)  was used to assess the quality of sequencing data for each sample. 

The number of total sequenced reads, the number of aligned sequencing reads, and the read 

alignment proportion for each sample were assessed. Single sample differential gene expression 

signatures were computed independently for each one of the two cell lines. The z-score method 

was used to generate differential gene expression signatures of each drug-treated sample with 

respect to the DMSO-treated samples (reference). Protein activity profiles were computed using 

the metaVIPER approach as in“ Single-cell analysis of the Elyada PDA set”. 
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Serum Free media treatment: Six human PDA cell lines (KP4, SW1990, PK45H, Panc1, 

MiapaCa2 and Patu8902) were seeded in a 6-well plate (Falcon, ref. 353046) using 

recommended media. 4h later, media was changed or replaced for serum-free media and culture 

them for 48h. Cells were then processed for single cell RNAseq  as described in  (Peng et al., 

2019) using Total Seq B antibodies and the recommended protocol from Biolegend. Briefly, a 

digestion buffer that contained trypsin, DNAse and enzymatic cocktail (Miltenyi, Cat. No. 130-095-

929) and the gentleMACS Octo Dissociator (Milteny Biotec, Cat. No. 130-095-937) were made 

for initial tumor disruption using manufacture’s protocol. Cell suspensions were then filtered using 

a 40μm cell strainer (Falcon, Cat. No. 352340) and red blood cells (RBC) were removed by RBC 

lysis buffer (Invitrogen, Cat. No. 1966634). Dissociated cells were washed twice with PBS 0.1% 

BSA  buffer with cold centrifuging at 500rpm and 5’. Finally, cells were stained with 0.4% Trypan 

blue (Invitrogen, Cat. No. T10282) to check the viability and diluted with PBS 0.1% BSA to about 

1E106 cells/ml for single cell sequencing. For each single cell run, 6 samples were combined. 

Single cell data were filtered for low quality cells and normalized as previously described in the 

“Single-cell analysis of the Elyada PDA set”. To assess the effect of serum free media on the M+ 

and M- PDA cells, we first computed  the number of M+ and M- cells in the control cells (cells in 

the recommended media). This was done by applying the metaVIPER approach on the single cell 

gene  expression signatures (z-score transformed gene expression profiles) of the control cells 

computed using as reference the gene expression profiles of seven PDA cell lines (see  single-

cell cross cohort analysis). The count data of the seven PDA cell lines were downsampled to 

make the probability distributions of the number of UMIs per cell comparable across different 

experiments.  The number of M+  and M- cells  was computed by assessing the enrichment of the 

top 100 MRs (top 50 most activated and top 50 most inactivated) of the MAPK signature inferred 

in the perturbation assay. Then, we assessed the effect of the Serum free media by comparing 

single cells of each cell line between the two experimental conditions (i.e., serum free media vs 
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control cells), using the metaVIPER approach. Cells were classified as M+ or M- base on the 

enrichment of the MAPK MRs as described above. 

Trametinib treatment: For single cell analysis of MAPK pathway inhibition, 11 PDA cell lines 

were used. Optimal concentrations to inhibit MAPK pathway were specific to each cell line and 

they were optimized using pERK Western Blot analysis (not shown). Cells were seeded on 6 well 

plates, and on the next day treated with Trametnib. After 24h of incubation cells were collected 

for single cell analysis. Cells were then processed for single cell RNAseq  as described in (Peng 

et al., 2019).  For each single cell run, 8 samples were combined. Each pre-incubated with a 

human specific barcode. Vehicle and treated for each cell line were run in the same lane. Viability 

for each sample was above 80%. Single cell data were filtered for low quality cells and normalized 

as previously described in the “Single-cell analysis of the Elyada PDA set”.  To assess the effect 

of Trametinib treatment on the M+ and M- PDA cells we used the same approach described for 

the analysis of serum free media treatment, with DMSO treated cells as control cells. 

 

 

Single cell cross-cohort analysis: Cross cohort consistency of the protein activity signatures 

identified in the Elyada set was performed in two independent PDA human cohorts, including the 

CSY-scSet (Chan-Seng-Yue et al., 2020)(n=5 patients) and Peng set (Peng et al., 2019) (n=24 

patients), in 7 PDA cell lines (CAPAN1, HPAFII, HS766T, KP4, MIAPACA2, PANC0403, 

PATU8988S), and in a PDA PDX model. The counts matrices for all the data sets were filtered 

for low quality cells as described in the analysis of Elayada set. For the CSY-scSet, the count 

matrix was made available by the Notta lab. The Peng data were downloaded from the Genome 

sequencing Archive as reported by the authors. Single cell RNAseq data for the 7 PDA cell lines  

were  generated as following: Cell lines were trypsinized and resuspended in Cell Staining Buffer 
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(Biolegend, Cat. No. 420201) and incubated with proper Total Seq B antibodies using 

recommended protocol from Biolegend. Cells were washed twice with PBS-0.5%BSA solution 

and mixed them together aiming at even cell numbers for each cell line. To assess whether the 

confluence state of cell line would affect its protein activity profiles and, consequently, its 

classification,  the  KP4 cell line  was profiled at high-confluence states  (KP4-HC) and  low-

confluence (KP4-LC).  Single-cell sequencing data were processed using the Cell Ranger pipeline 

(v.5.0.1) from 10X GENOMICS (https://www.10xgenomics.com/). FASTQ files were aligned using 

the human genome as a reference (v. GRCh38-2020-A). The combination of Cite-seq-Count 

(https://github.com/Hoohm/CITE-seq-Count) and the HTODemux pipeline of the Seurat package 

was used to demultiplex the data and assign each single-cell to corresponding cell line of origin, 

as explained in (Stoeckius et al., 2018). 

All the cells that resulted to be positive to more than 1 antibody or negative for all of them were 

not included in the downstream steps of the analysis. The barcode sequences of the BioLegend 

antibodies that were used to tag each cell line are listed  supplemental  methods . 

PDA tumors from PDX mice were dissociated using the protocol described in (Peng et al., 2019) 

(see “Serum Free Media Treatment” for more details).  For the PDX model, single-cell sequencing 

data were processed using the Cell Ranger pipeline (v.3) from 10X GENOMIC 

(https://www.10xgenomics.com/). FASTQ files were aligned on both GRCh38-3.0.0 and gex-

mm10-2020-A transcriptomes. Differential mapping analysis was performed for each cell, by 

comparing the number of reads mapped to the human vs. mouse transcriptome. Cells that had ≥ 

25% more reads mapped on human transcriptome  than mouse transcriptome were considered 

as human tumor cells and used for downstream analyses.All the count matrices were filtered for 

low quality cells, normalized to CPM and analyzed independently. The normalized gene 

expression matrix of the PDA cell lines was transformed into a gene expression signatures matrix  

using the z-score transformation  and then transformed into protein activity profiles using the 
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metaVIPER approach as described in the analysis of the Elyada set. The count matrix of the PDX 

model was transformed in  a gene expression signature matrix by z-score transformation using 

the Elayda set as reference and then transformed into protein activity profiles using the 

metaVIPER approach as described in the analysis of the Elyada set. The 

reproducibility/conservation the protein activity  signatures identified in the Elyada set in the other 

independent data sets was computed by performing a two-tailed enrichment analysis using the 

aREA algorithm(Alvarez et al., 2016; Alvarez et al., 2019) of the 50 most differentially activated 

regulatory proteins (25 most overactivated and 25 most inactivated) in the protein activity profile 

of each individual cell. 

Single-cell Lineage Tracing: We modified the lentiviral vector also used in our transcription 

factor overexpression assays (modified Tet-O-FUW EGFP-puro, addgene #30130) by using 

mCherry instead of EGFP, and cloned a UMI-barcode (UMI-bc), which consists a random 28-mer, 

200 bp upstream of the lentiviral 3’-long terminal repeat (LTR) region. This way the UMI-bc site 

will get polyadenylated and barcode can be specifically amplified in the end of scRNA-seq library 

preps. In total we cloned a plasmid library which contains approx. 6 million distinct UMI-barcodes. 

The basic principle for lineage tracing experiments was similar as in (PMID 31974159). Briefly, 

the UMI-bc containing lentiviral constructs were transduced into KP4 and PATU8988S cell lines 

(to approx. 15-30 million cells) with MOI <0.1 followed by puromycin selection. After all the non-

transduced cells were dead, we seeded 8000 cells / well, followed by incubation which lasted 

approx. 1-2 population doublings (daughter cells were created for each UMI-BC containing cell). 

At this point we performed the 1st chromium run (time point 1) so that 50% of the cells were used 

for this this initial time point run, and the remaining 50% of the cells were cultured further for the 

2nd time point. The 2nd time point chromium run was done approx. 10 population doublings later. 

For both the time points and both the cell lines, the entire pool of UMI-BCs was processed using 

UMI-tools (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340976/) to collapse clusters of UMI-
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BCs with less than 4 mismatches. Through this procedure, a reference list of all detected UMI-

BCs was generated, and it allowed us to identify all the cells associated to one unique UMI-BC. 

Analysis of Single-cell Lineage Tracing data: Single-cell sequencing data of the PATU8988S 

and the KP4 cell lines were processed using the Cell Ranger pipeline (v.3.0.2) from 10X 

GENOMICS (https://www.10xgenomics.com/). FASTQ files were aligned using the human 

genome as a reference (v. GRCh38-2020-A). In order to avoid differences in sequencing depth 

across cells sequenced in different runs, which could significantly affect gene detection, the UMI 

counts of PATU8988S, KP4 and the other 7 PDA cell lines were downsampled to make the 

probability distributions of the number of UMIs per cell comparable across different experiments.  

Single-cell gene expression profiles generated from PATU8988S and KP4 cell lines were 

normalized to CPM and transformed to gene expression signatures using the gene expression 

centroid of the 7 PDA cell lines as reference (z-score transformation). Gene expression signatures 

were transformed into protein activity signatures using the metaVIPER approach as described in 

“Single-cell analysis of the Elyada PDA set”.  All the downstream analyses were then performed 

on the metaVIPER inferred protein activity profiles. A PCA followed K-means clustering, with 

silhouette analysis for estimating the optimal number of clusters, was performed on the refence 

cells. The top 30 PCA components were then used to generate a reference map (UMAP). The 

reference map showed a clear bifurcation separating GLS and MOS cells, while cluster analysis  

identified 3 centroid-based clusters with two clusters  clearly separating GLS (M+) and MOS (M+) 

cells and one cluster representing the bifurcation point  comprising of M- cells committed toward 

the  MOS (M+)  or GLS (M+ ) clusters. Then, allowing us to separate KP4  MOS (M+) from MOS 

(M- ), and PATU8988S (M+ ) from PATU8988S  (M- ).  Protein activity profiles of KP4 and 

PATU8988S cells generated for lineage tracing were mapped in the PCA space of  reference 

cells using the “predict” function of “stats” library of R programming language, and classified as 

(M+)  or (M-) based on a KNN algorithm trained on the first two principal components (PCA 
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components) of the reference  cells  using the “train.knn” function of the traineR package 

(available on https://cran.r-project.org/).  The top two components were selected based on the 

elbow method. The predict function was used to project the KP4 and PATU8988S single cells 

from lineage tracing experiments in the UMAP space of the reference cells. 

 

 

 

Laser Capture Microdissection data set (CUMC-E): Freshly frozen tissue samples were 

obtained from patients who underwent surgical resection at the Pancreas Center at Columbia 

University Medical Center as previously described (Maurer et al., 2019). Prior to surgery, all 

patients had given surgical informed consent, which was approved by the institutional review 

board. Immediately after surgical removal, the specimens were cryopreserved, sectioned and 

microscopically evaluated by the Columbia University Tumor Bank (IRB AAAB2667). Suitable 

samples were transferred into OCT medium (Tissue Tek) and snap frozen in a 2-methylbutane 

dry ice slurry. The tissue blocks were stored at -80°C for later processing. H&E stained sections 

of frozen PDA samples from the Tumor Bank were initially screened to confirm diagnosis and 

overall sample RNA quality was assessed by the Pancreas Center supported Next Generation 

Tumor Banking program using gel electrophoresis, with samples exhibiting high RNA quality 

utilized for subsequent analyses, including: Laser Capture Microdissection (LCM), RNA 

sequencing and gene expression quantification. LCM-RNASeq was performed as previously 

described (Maurer et al., 2019; Maurer and Olive, 2019). Briefly, Cryosections of OCT-embedded 

tissue blocks were transferred to PEN membrane glass slides and stained with cresyl violet 

acetate. Adjacent sections were H&E stained for pathology review. Laser capture microdissection 

was performed on a PALM MicroBeam microscope (Zeiss), collecting at least 1000 cells per 
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compartment. RNA was extracted and libraries prepared using the Ovation RNASeq System V2 

kit (NuGEN). Libraries were sequenced to a depth of 30 million, 100bp, single-end reads on an 

Illumina HiSeq 2000 platform. 

Analysis of publicly available PDA RNASeq data sets and of CUMC-E datset: RNASeq gene 

counts from CUMC, ICGC (Bailey et al., 2016) and TCGA (https://www.cancer.gov/tcga) cohorts 

were normalized by variance stabilization transformation (VST), as implemented in DESeq2 

package (Love et al., 2014). To avoid excessive stromal contamination as a confounding factor, 

we selected only samples annotated as “high purity” in the TCGA cohort. Microarray data from 

Collisson et al.,(Collisson et al., 2011) and Moffitt et al.,(Moffitt et al., 2015) were downloaded as 

normalized gene expression profiles. A differential gene expression signature for each 

sample/patient  was generated independently for each cohort from the normalized gene 

expression profiles using the “scale” method (z-score) implemented in the VIPER package 

(Alvarez et al., 2016). Differential gene expression signatures of CUMC cohort samples were 

transformed into protein activity profiles using the VIPER algorithm (Alvarez et al., 2016), 

leveraging a PDA specific ARACNe regulatory network generated from the epithelial compartment 

gene expression profiles of CUMC-E samples (CUMC-net). The rationale was to generate a 

reference data set of protein activity profiles from  pure epithelial samples to asses whether the 

findings obtained by applying the more generalizable metaVIPER approach would be 

recapitulated  in the less generable but biologically relevant CUMC-E  cohort.  The same network 

was used to generate the protein activity profiles of a second PDA  LCM  epithelial gene 

expression data set   profiled  in, (Chan-Seng-Yue et al., 2020)  and made available  as count 

matrix by Notta lab. Differential gene expression signatures for the other PDA cohorts and PDA 

cell lines were transformed into protein activity profiles using the metaVIPER approach (Ding et 

al., 2018)  Cluster analysis was performed independently in each cohort by applying the 

Partitioning Around Medoids algorithm (PAM) as implemented in the cluster package (Martin 
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Maechler, 2019), using a VIPER-based distance metric. Specifically, the VIPER distance between 

two samples is computed using the reciprocal (i.e., integration of both direct and reverse) 

enrichment analysis (Kruithof-de Julio et al., 2011) of the Tumor Checkpoint proteins (i.e., 25 most 

activated and 25 most inactivated) in one sample in proteins differentially activated in the second 

sample, as implemented by the viperSimilarity function in the VIPER package (Alvarez et al., 

2016). Use of 50 proteins (defined as Tumor Checkpoint protein) for sample similarity analysis is 

based on recent results showing that, on average, across all TCGA cohorts, the top 50 most 

aberrantly differentially activated proteins (candidate Master Regulators) are sufficient to canalize 

the effect of >90% of somatic mutations, on a sample by sample basis (Paull et al., 2020). Optimal 

cluster number was then estimated based on the global similarity of all samples in a cluster 

(cluster membership strength)—as computed based on the conservation of differential protein 

activities across all samples in the cluster—and evaluated by an Area Under the Curve (AUC) 

metric (Till, 2001). The optimal number of clusters was also evaluated as by Silhouette analysis 

(see supplementary methods for details). 

Immunohistochemistry for phospho-ERK: All staining was performed on 4µm paraffin sections 

of human tissue. For immunohistochemistry, sections were deparaffinized and antigen retrieval 

was performed in a pressure cooker for 5 min in 1X sodium citrate buffer, pH 6.0 (Abcam). 3% 

H2O2 was used to block endogenous peroxidases. Slides were then blocked in 2.5% horse serum 

for 1hr and then incubated in anti-phosphoERK primary antibody (Cell signalling, 1:200) overnight 

at 4C. The next day, slides were washed in 1X PBS-T and incubated with anti-rabbit secondary 

antibody for 30 min (Vector Laboratories). Following incubation, slides were washed with 1X PBS-

T, developed with ImmPACT DAB peroxidase (Vector Laboratories), and counterstained with 

hematoxylin. 
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Survival analysis: Survival analysis was performed by comparing samples in different protein 

activity-based clusters, using the Kaplan-Meier method, as implemented in the R “survival” 

software package (Therneau, 2020). P-values were computed by log-rank test. Kaplan-Meier 

curves were generated using the “survminer” software package(Alboukadel Kassambara, 2019)  

DNA methylation analysis: 450K DNA methylation profiles were downloaded from TCGA using 

TCGAbiolinks package (Colaprico et al., 2016). Beta values were converted to M-values using 

the “beta2m” function implemented in the Minfi package (Aryee et al., 2014). Differential 

methylation analysis between Lineage and Morphogenic samples was performed on M-values 

using the limma package (Ritchie et al., 2015). All probes with a FDR<0.05 were considered as 

differentially methylated. A cluster analysis based on differentially methylated sites was performed 

using PAM algorithm and evaluated by silhouette analysis. Only samples with a positive silhouette 

score were represented in the DNA methylation heatmap (n=58/76). 

Identification of cell lines representative of Lineage and Morphogenic PDA subtypes: 

RNASeq count data were downloaded from the Cancer Cell Line Encyclopedia (CCLE) portal 

(https://portals.broadinstitute.org/ccle) and normalized using the VST method (Love et al., 2014). 

Differential gene expression signatures for each cell line vs. the average of all cell lines was first 

computed using the “scale” method in the VIPER package (Alvarez et al., 2016) and then 

transformed into differential protein activity signatures using metaVIPER (Ding et al., 2018). Cell 

lines representative of Lineage and Morphogenic subtypes were identified based on the 

enrichment of Lineage-Morphogenic Tumor Checkpoint proteins in protein differentially active in 

each cell line, by two-tailed aREA test (Alvarez et al., 2016). 

RNA extractions and re-sequencing of PDA cell lines representative of Lineage and 

Morphogenic subtypes: Selected PDA cell lines were cultured in 6-well plates such that 

confluency at 48h-72h post seeding was < 50%. Total RNA was extracted with the RNeasy Plus 
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mini kit (Qiagen) and sequenced on the NovaSeq 6000 (PE 20million reads). Reads were 

processed using the Kallisto pipeline(Bray et al., 2016), with GRCh38 as reference.  

Protein activity analysis of re-sequenced Lineage and Morphogenic representative cell 

lines: First, RNASeq count profiles  of re-sequenced cell lines were added to the CCLE count 

matrix; then, the count matrix was VST normalized (Love et al., 2014) and differential gene 

expression signatures were generated with the “scale” method (z-score) in the VIPER package; 

finally, differential gene expression signatures were transformed to differential protein activity 

profiles using metaVIPER (Ding et al., 2018). Cell line subtype was assessed based on the 

enrichment of Lineage-Morphogenic Tumor Checkpoint proteins in proteins differentially active in 

each cell line, by two tailed aREA test (Alvarez et al., 2016). 

CRISPRko and CRISPRi screening: sgRNA containing lentiviruses were transduced into Cas9 

expressing PDA cell lines in duplicates (in presence of 8ug/ml polybrene), at an estimated 

MOI = 0.2 - 0.3. After 24h, the lentivirus containing media was removed, cells were washed with 

PBS, and puromycin-containing media (2ug/ml) was added to the cells for 48-72h until all control 

cells (not virus-infected) were dead. Half of the cells were harvested at this time point (day0) and 

sequenced to assess sgRNA representation baseline. Cells were then maintained at >1,500 cells 

per guide throughout the screens (see Supplementary methods for more details) and finally 

harvested at 33-day (day33) post puromycin selection to assess gene essentiality.  

Computational analysis of CRISPRko and CRISPRi data: FASTQ files were analyzed with 

MAGeCK version 0.5.6 (Li et al., 2014), using RRA and total read count normalization, with default 

settings. Each replicate was analyzed independently by comparing guide RNA at day33 against 

day0. CRISPRko and CRISPRi essentiality signatures for each replicate were computed by 

transforming the p-value to z-score (the sign was inferred from fold change). Lineage and 

Morphogenic essentiality signatures were computed by integrating the z-scores of the three, 
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same-subtype cell lines, using Stouffer’s method (Stouffer, 1949). Finally, a differential Lineage 

vs. Morphogenic essentiality signature was computed by comparing the essentiality in 

Morphogenic vs. Lineage cells. 

To define a subtype-independent essentiality signature we integrated the essentiality signatures 

as assessed by CRISPRko and CRISPRi, across all six cell lines, independent of subtype, using 

Stouffer‘s z-score method (Stouffer, 1949). 

Transcription factor overexpression assay (PLATE-Seq): Full-length open reading frame 

(ORF) clones for the top 8 Lineage MRs were ordered from CloneID (Harvard Medical School) 

and cloned into modified Tet-O-FUW lentiviral expression vector (addgene #30130), which 

include the puromycin resistance gene. MCherry and EGFP ORFs were used as negative controls 

in the assay. All clones were sequence verified. For each ORF we introduced a unique 20 bp 

barcode sequence located 200 bp upstream of the lentiviral 3’-long terminal repeat (LTR) region, 

as reported in Parekh, U., et al (Parekh et al., 2018). This produces a polyadenylated transcript, 

which contains the barcode proximal to its 3’ end. All viruses were produced and viral titers were 

measured individually for each virus. ORF containing lentivirus were transduced into KP4 

morphogenic cell lines at MOI = 2 in triplicate (6-well format in the presence of polybrene). In a 

second triplicates set, lentiviral ORFs were co-transduced with M2rtTA (FUW-M2rtTA, addgene 

#20342), a tetracycline-inducible transcriptional amplifier, allowing monitoring of MR 

overexpression at higher and lower levels (Hockemeyer et al., 2008). At 24h following viral 

transduction, media was changed and puromycin (2.5ug/ml) and doxycycline (0.6ug/ml) were 

added to the cells, followed by a 5-day incubation period before total RNA was collected by Direct-

zol RNA MiniPrep Plus kit (Zymo Research). 69 RNASeq profiles, corresponding to 23 different 

conditions in triplicate were generated by PLATE-Seq(Bush et al., 2017) using 100ng of total RNA 

as template in each well. 
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Analysis of transcription factor overexpression (Plate-Seq) data: Single-end PLATE-Seq 

reads were pseudoaligned to the GRCh38 transcriptome (mRNA and ncRNA) and quantified 

using Kallisto version 0.44.0 (Bray et al., 2016), with sequence-specific bias correction. 

Transcript-level counts were aggregated by Entrez-IDs and compared between unperturbed 

Lineage cells (PATU8988S and HPAFII) and unperturbed Morphogenic cells (KP4). The 

corresponding gene expression signature was transformed into a protein activity signature and 

compared to the Lineage-Morphogenic protein activity signature (TCGA-ICGC signature) inferred 

from patient profiles, to ensure conservation of protein activity signatures. This was done  by 

computing a differential gene expression signature between Lineage and Morphogenic  

unperturbed cell lines using the Student’s T.test, as implemented in the VIPER package (Alvarez 

et al., 2016) on the normalized gene expression profiles. The metaVIPER approach has been 

used to transform this differential gene expression signature into a protein activity signature. The 

conservation between this protein activity signature (inferred by comparing the unperturbed 

Lineage and Morphogenic cell lines) and the  Lineage-Morphogenic protein activity signature 

computed from the patients was assessed by  two-tailed aREA test (Alvarez et al., 2016). 

Specifically by assessing the conservation of the 50 most differentially activated and 50 most 

differentially inactivated proteins of the TCGA-ICGC signature in the protein activity signature 

inferred from the cell lines.  

Evaluation of cell reprogramming in PLATE-Seq overexpression assay: A differential gene 

expression signature for each experimental condition (perturbation) was computed by comparing 

the gene expression profiles of perturbed vs. unperturbed (negative control) cells, in the same 

experimental background. Specifically, cells transduced with mCherry and EGFP, with or without 

M2rtTA (negative controls), were used as controls for cells ectopically expressing each TFs, with 

or without M2rtTA, respectively. Each differential gene expression signature was then 
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transformed into a protein activity signature by metaVIPER approach (Ding et al., 2018). The 

extent of reprogramming induced by ectopic expression of each MR protein was assessed by 

measuring the enrichment of cell line specific Lineage-Morphogenic Tumor Checkpoint MRs—as 

computed by comparing Lineage (HPAFII and PATU8988S) and morphogenic (KP4) cell lines— 

in protein differentially activated following ectopic expression of each MR, with or without M2rtTA 

expression, by a two-tailed aREA test.  

MR Interaction Network reconstruction: MR interaction networks were assembled by 

combining transcriptional/post-transcriptional (i.e., VIPER-inferred) interactions, as assessed by 

Student’s T-test  of the differential expression/activity of a target MR (Lineage or Morphogenic) 

following ectopic expression of a different Lineage MR, using the VST-normalized log2 counts of 

each perturbation, in triplicate, vs. the pool of three mCherry and three EGFP-transduced KP4 

cells (controls). Protein-protein interactions were added from the STRING (Szklarczyk et al., 

2017) and PREPPi (Zhang et al., 2012) databases. This provides mechanistic insight into how 

each of the top 8 Lineage MRs regulates the other Lineage and the top 8 Morphogenic MRs, thus 

supporting their highly modular structure.  MR genes (proteins) whose expression (activity) 

changes were statistically significant (p ≤ 0.05, by one-tailed Student’s T-test) were considered 

as putative transcriptional (post-transcriptional) targets and included in the network. Molecular 

interactions from PREPPI and STRING databases were selected based on confidence-score. 

Specifically, we sorted all the interactions based on their confidence score and reported only the 

interactions ranking in the top 25%. Network representation was done using Cytoscape (version 

3.8.2) (Shannon et al., 2003). 
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Pooled TF overexpression assay (scRNASeq): The same barcoded constructs discussed in 

the previous section, representing the top 8 Lineage Master Regulator proteins (and mCherry as 

neg. control), were used in the single cell overexpression assays. ORF viruses were pooled into 

two viral pools, such that, on average, 2-3 ORFs were randomly transduced into each single cell 

(MOI = 0.288 / each virus). The M2rtTA construct was added to the second pool to increase the 

transcriptional ORFs output. KP4 cells were transduced with the two viral pools in 6-well format 

in the presence of polybrene. Media was changed at 24h post-infection and puromycin (2.5ug/ml) 

and doxocycline (0.6ug/ml) were added to the cultures. Cells were incubated for a total of 11 days, 

before trypsinization, addition of Multiseq barcodes(McGinnis et al., 2019) and 10X chromium 

library preparation and sequencing. Non-transduced (control) KP4, HPAFII and PATU8988S cells 

were also included at this stage to represent the pre-treatment Morphogenic cell state (KP4), 

while non-transduced (control) Lineage cell lines (HPAFII and PATU8988S) were used as a proxy 

for the desired Lineage endpoint state. All cells (normal KP4, HPAFII, PATU8988S and KP4 

transduced pools, +/- M2rtTA, were MultiSeq barcoded and mixed prior to the Chromium-run.After 

the Chromium-run, the cDNA was amplified with 1ul of 2.5uM MultiSeq additive primer added to 

the cDNA amplification mastermix. After this the material was divided into 3 portions, the whole 

transcriptome, MultiSeq barcode and the ORF barcode. MultiSeq barcode and ORF barcode 

portions were amplified with specific primers (MULTI-seq_TruSeq RPIX & MULTI-seq_Universal 

I5 for MultiSeq and ORF_BC_amplif_oligo_F & ORF_BC_amplif_R for ORF barcode) and spiked 

in the final NGS library at 1% and 10% total amounts respectively.                  For the final analysis 

MultiSeq barcode data was not used  (see supplementary methods). 

Single-cells Demultiplexing Analysis: Single-cell BAM files were generated with the cell ranger 

pipeline (version 3.0.2), using GRCh38 as reference genome. Variant calling was performed with 

SamTools (Li et al., 2009) and captured in .vcf file, containing the genomic variations of three 
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PDA cell lines processed by RNASeq (HPAFII, KP4 and PATU8988S). Bam files and vcf files 

were used as input for Demuxlet (Kang et al., 2018) for demultiplexing analysis. 

Protein activity analysis of Pooled TFs overexpression assay (scRNASeq): Single-cell UMI-

counts were filtered based on the previously described QC-metrics and normalized to CPM. A 

differential gene expression signature was first computed, by comparing single cells from 

unperturbed Lineage (PATU8988S and HPAFII) and Morphogenic (KP4) cell lines, and then 

transformed into a differential protein activity signature using metaVIPER, as previously described 

in the protein activity analysis of Elyada data set. Finally, enrichment of Linage-Morphogenic 

Tumor Checkpoint proteins in proteins differentially active in this signature was assessed by two-

tailed aREA test, assess reprogramming of Morphogenic cells into a Lineage state. 

Cell reprogramming efficiency assessment in pooled TFs overexpression assays 

(scRNASeq): scRNASeq profiles representing cells transduced with the same MR or MR 

combination were considered as independent isogenic-MR sets. To robustly asses 

reprogramming efficiency, isogenic-MR sets comprising fewer than 30 cells were removed. 

To assess the reprogramming potential of independent MRs and MR combinations, we first 

computed differential gene expression signatures by comparing the pool of scRNASeq profiles 

for each isogenic-MR set to the pool of unperturbed KP4 cells. These signatures were then 

transformed to differential protein activity signatures using metaVIPER, as previously described.  

For each single cell in a specific isogenic-MR set, reprogramming was assessed based on the 

enrichment of Lineage-Morphogenic Tumor Checkpoint proteins—as assessed from the 

differential expression signature of unperturbed Lineage (HPAFII and PATU) vs. Morphogenic 

(KP4) single cells—in proteins differentially active in that cell, by two-tailed aREA test. Perturbed 

KP4 single cells showing statistically significant enrichment in the Lineage-Morphogenic signature 

(FDR < 5% by two-tailed aREA test) were considered reprogrammed.  
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Isogenic-MR sets were then sorted based on the fraction of cells assessed as significantly 

reprogrammed and p-value was assessed using Fisher’s Exact test (two-tailed test), adjusted for 

multiple hypothesis testing (FDR), by comparing the fraction of reprogrammed cells in the 

isogenic-MR sets vs. the negative control set (mCherry +/- M2rtTa). 

Western Blots: Full-length ORF constructs for OVOL2 or mCherry (+/- M2RTTA), as described 

for the overexpression assays, were used for Western Blots. OVOL2 or mCherry (+/- M2RTTA) 

were lentivirally transduced in KP4 cells, at MOI = 2, in triplicate, followed by puromycin selection 

and 5 days incubation in the presence of doxycycline (0.6ug/ml) before reprogramming was 

assessed. Cells were then lysed, total protein levels were measured with BCA Protein Assay Kit 

(Pierce), and samples were Western Blotted (see supplementary methods for the antibodies) 

 

Data availability: RNASeq data generated at CUMC from laser capture micro-dissected samples 

have been deposited on Gene Expression Omnibus data based with the following GEO ID: 

GSE143584.  CRISPR data and RNASeq data related to cell lines, overexpression assay, single-

cell PDXLineag model and single-cell overexpression assay have been deposited on Gene 

Expression omnibus database with the following GEO ID: GSE161369. scRNASeq profiles from 

the Elyada Set are available at NCBI dbGaP under the accession number phs001840.v1.p1., 

while scRNASeq profiles from the Chan-Shen-Yue Set are available on the EGA database (EGA 

ID=EGAD00010001811; sample names: 100070, 91610, 91706, 95092, 96460). 

 

Code availability:  No unique computational code has been generated for this manuscript. All 

the computational tools have been indicated in the methods or supplementary methods. The 

genomic instability package used to infer copy number variation (CNV) from single cell gene 

expression profiles is  made available on Bioconductor (Laise and Alvarez, 2022) . 
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FIGURE S2
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FIGURE S3
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