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Abstract

To estimate microstructure-related parameters from diffusion MRI data, biophysical models make strong,
simplifying assumptions about the underlying tissue. The extent to which many of these assumptions are
valid remains an open research question. This study was inspired by the disparity between the estimated
intra-axonal axial diffusivity from literature and that typically assumed by the Neurite Orientation Dis-
persion and Density Imaging (NODDI) model (dj = 1.7 pm?/ms). We first demonstrate how changing the
assumed axial diffusivity results in considerably different NODDI parameter estimates. Second, we illustrate
the ability to estimate axial diffusivity as a free parameter of the model using high b-value data and an
adapted NODDI framework. Using both simulated and in vivo data we investigate the impact of fitting
to either real-valued or magnitude data, with Gaussian and Rician noise characteristics respectively, and
what happens if we get the noise assumptions wrong in this high b-value and thus low SNR regime. Our
results from real-valued human data estimate intra-axonal axial diffusivities of ~ 2 — 2.51m?/ms, in line
with current literature. Crucially, our results demonstrate the importance of accounting for both a rectified
noise floor and/or a signal offset to avoid biased parameter estimates when dealing with low SNR data.
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1. Introduction

In diffusion MRI, biophysical models aim to relate macroscopic diffusion signals to microscopic, biologically
meaningful tissue parameters such as fibre orientation, dispersion or diameter. The primary challenge for
biophysical models is being able to describe the complex tissue microstructure in only a handful of param-
eters that can be estimated reliably from the diffusion signal. Consequently, the model must make strong,
simplifying assumptions about the underlying architecture and/or diffusion properties of the tissue. Some
parameters are often constrained or set to a single value which is either taken from the literature or decided
by some other means (e.g. by fitting the model multiple times with different values for some assumed param-
eter, and taking the result which maximises the quality of the fit across voxels or specimens[1]). Though these
assumptions make the estimation of otherwise degenerate parameters tractable, if the modelling constraints
are inaccurate, the estimation of the remaining model parameters will be biased [2, 3].

Neurite Orientation Dispersion and Density Imaging (NODDI) [4] is a commonly used biophysical model in
diffusion MRI which, due to its clinically feasible scan times requirements, has been reported in numerous
studies of patient populations [5, 6, 7, 8, 9]. NODDI is a variant of the white matter ‘standard model’ [10]
in which specific assumptions about the tissue diffusivity allow for voxelwise estimation of fibre dispersion
and neurite ‘density’ or signal fraction. One assumption is that the intra-axonal axial diffusivity, i.e. the
diffusion of water molecules inside the axon as they travel along the primary axis or orientation, is a fixed,
global value known a priori and typically set to 1.7 pm?/ms. However, there now exists a body of work
in which the intra-axonal axial diffusivity is generally estimated to be higher, typically in the range of
~ 2 —25um?/ms [11, 12, 2, 13, 14, 15, 16, 17, 18, 19]. Notably, these studies use different methods to
achieve compartment specific selectivity (including high b-value data [16, 20], gadolinium injection [15] and
planar filtering [17]), as well as different microstructure models and/or parameter constraints to estimate
axial diffusivity.

Inspired by the difference between the reported and assumed intra-axonal axial diffusivity, this study first
aims to explore how changing the predefined axial diffusivity in the NODDI model affected the remaining
estimated parameters. A second aim of this study was to investigate whether, by utilising high b-value
data, we could simultaneously estimate axial diffusivity within the NODDI framework. Here it is useful
to estimate axial diffusivity within the NODDI framework (rather than e.g, from the voxels with highest
fractional anisotropy [21]) as it facilitates estimation of both axial diffusivity and fibre dispersion on a
voxelwise basis. Were the fibres instead assumed to be coherently aligned, the axial diffusivity estimates
would be biased [3, 17]. Crucial to our second aim was the use of ultra-high b-value data, where it can
be assumed that the higher-diffusivity extra-axonal water is eliminated such that only the intra-axonal
compartment contributes signal [22, 23, 16, 24, 20, 25, 26], thus overcoming known degeneracies between
diffusion characteristics of the intra- and extra-axonal space [3]. However, high b-value data also posed
several challenges. In particular, we found that in this low SNR regime, the model had to account for both
the rectified noise floor and/or a signal offset to avoid parameter degeneracy and bias. We demonstrate how,
with appropriate modifications, the NODDI framework can be applied to both magnitude and real-valued
data to estimate axial diffusivities in line with previous literature.

2. Methods

This paper is organised as follows. First we demonstrate how changing the assumed intra-axonal axial
diffusivity affects the output of the ‘standard NODDI model’ (described below), highlighting the importance
of the discrepancy between the assumed axial diffusivity of NODDI and many estimates of axial diffusivity
found in literature. We then investigate how a ‘modified NODDI model’ can be used to estimate both the
axial diffusivity and ODI concurrently from high b-value data. Specifically, this modified NODDI model (i)
considers the intra-axonal compartment only and (ii) explicitly accounts for Rician noise floor and a signal
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offset. Finally, the modified model was applied to in vivo, human data, where we explore how noise can bias
model estimates in this high b-value and thus low SNR regime.

2.1. NODDI output sensitivity to the assumed azial diffusivity

To evaluate how the NODDI output changed with respect to the assumed axial diffusivity, the standard
NODDI model [4] was applied to the diffusion data with dj = 1.7, 2.3 or 3nm?/ms. Briefly, the NODDI
model consists of a Watson-like fibre orientation distribution which is convolved with three compartments
that are typically associated with the CSF, extra-axonal and intra-axonal space. The first compartment
has isotropic, free diffusion, the second compartment describes tensor-like diffusion, and the third com-
partment describes stick-like diffusion. The model fitting involves 5 parameters being estimated (the
intra-axonal signal fraction, the isotropic signal fraction, the fibre orientation and orientation dispersion
index, [fin, fiso,0, ¢, ODI]) whilst assuming some fixed, global axial diffusivity which may differ from
dy = 1.7 nm?/ms, that the radial diffusivity of the tensor-like compartment is given by the tortuosity
model d; = dj(1 — fin) and that the diffusivity of the isotropic compartment is that of free diffusion
diso = 1.7pm? /ms.

Here we utilised preprocessed T1-weighted and diffusion-weighted data for the first 10 subjects of the WU-
Minn Human Connectom Project (HCP); for details of the acquisition protocol and preprocessing pipeline,
please see [27, 28, 29]. Briefly, the diffusion-weighted data included 90 gradient directions each at b-values
of b = 1,2 and 3ms/ nm? and 18 interspersed volumes with negligible diffusion weighting. The distortion
corrected (”pre-processed”) b 0 ms/ pm2 data were linearly registered to each subject’s T'1-weighted structural
scan (FLIRT [30, 31]), and the T1 non-linearly registered to the MNI standard space (FNIRT [32, 33]). The
NODDI fitting [4] was performed in subject space using the cuDIMOT framework [34] for GPU acceleration
with Rician noise modelling.

2.2. Modified NODDI for high b-value data

The NODDI model was modified for high b-value data where we assume the entirety of the diffusion signal
can be attributed to the intra-axonal compartment [22, 23, 16, 24, 20, 25, 26]. Here, the diffusion signal
along gradient direction g is given by the convolution of the fibre orientation distribution, which was assumed
to be a Watson distribution [35, 4], and a fibre response function for stick-like fibres with Gaussian axial
diffusion and no radial diffusion:

Sho ® finSo g [ expln(uT )] expl by (g7 @)? . &

The integrand is over & € S?%; f;, being the signal fraction of the intra-axonal compartment; (6, ¢), the
direction of the fibre; d), the intra-axonal axial diffusivity; @, a unit vector on the sphere S2: b, the b-value
and Sy, the non-diffusion weighted signal. Cyy is the normalising constant, where,

Cw = /52 exp[r(p ' x)? ] de = 4m F1(1/2;3/2; kpup ), (2)

and 1F1(«a; 8; X) is the confluent hypergeometric function of the first kind with a matrix argument X.
The dispersion parameter s is typically rewritten in terms of the orientation dispersion index, ODI =
2/marctan(1/k) [4] which ranges from 0 to 1, representing perfectly aligned and isotropic fibre distributions
respectively.

The integral in Equation 1 can also be written in terms of the confluent hypergeometric function of the first
kind with matrix argument X = kup’ — bd) gg " . Consequently, Equation 1 becomes [36]:

VFu(1/2;3/2; k™ — bdygg ™)

1F1(1/2;3/2; kppe ™)
3

Sb,g = finSo (3)
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By taking the ratio of Sy ;/S, (rather than Sy ;/S) we can derive an analytic solution where the model is
independent of both f;, and Sp, and described by only four parameters S(ODI,d), 0, ¢). Sp, represents the
powder averaged signal, i.e. the average signal across all diffusion gradients for a given b-value, where at
high b-value, for stick-like diffusion convolved with an arbitrary fibre orientation distribution [13],

Vrert(/od))

57% inS
b ~ finSo N

(4)

Dividing S, (Equation 3) by S, (Equation 4), the diffusion signal has an analytic form given by:

2,/bd 1 Fi(1/2:3/2kpp’ —bdigg ")
Verf(/bd)) 1F1(1/2;3/2; ke T)

Sh.g = Sp (5)

Here the model depends on only two free parameters, dy and ODI (or ). During fitting, Sy was calculated
for each shell in turn.

In our initial investigations we aimed to simultaneously estimate the three parameters d|, x and Fi, = finSo
on a voxelwise basis according to Equation 3. However, upon closer examination, the parameters were
found to be degenerate, leading to an overestimation of dj. Here we used simulated data (shown later) to
investigate the model parameter degeneracy and bias in relation to the noise characteristics of the data.
Crucially, we found that the parameter degeneracies and bias could be overcome if we fitted to high SNR
data, and explicitly model both a signal offset and the Rician noise floor. The presence of a signal offset
in the in vivo data was supported by the presence of non-zero signal in the ventricles at high b-value.
Consequently, we accounted for a signal offset i.e. some background signal that was independent of diffusion
weighting, where

Y=58+c¢, (6)

Y being the data, S the diffusion signal and ¢ the offset, which is sometimes referred to as a dot compart-
ment. Then in magnitude data, we also accounted for the rectified Rician noise floor using Koay’s inversion

technique [37]:
Y =+/(S+¢)?+ €. (7)

€ being the Rician scaling parameter, which is equivalent to the standard deviation of Gaussian noise for
complex data. Typically, € is estimated a priori from noise estimation methods [38]. However, as shown
below, a priori estimation might not be ideal as even a small misestimation of € could lead to large parameter
biases. An alternative way of circumventing Rician noise floor effects is to consider real-valued data with
Gaussian noise characteristics [39]. Using complex data, the signal phase is first removed from each voxel
after which the real component of the signal is extracted [39]. In this study, the model was fitted to both
real valued data (where ¢ was estimated) and magnitude data (where both ¢ and € were estimated) from
the same subjects. As even a small misestimation of ¢ or € can lead to a large parameter bias, both were
estimated as parameters of the model that were fitted voxelwise during model optimisation.

2.2.1. The final model & optimisation

Combining Equation 5 with either Equation 6 (real-valued data) or 7 (magnitude data) and assuming a
known fibre orientation p = Vi (the primary eigenvector of the diffusion tensor [21]), the final model was
dependent on only three or four parameters: the orientation dispersion index ODI, the axial diffusivity d,
the signal offset ¢, and, in magnitude data only, the noise floor parameter €. Figure 1 shows a graphical
depiction of the model.

During optimisation, the parameters were bounded such that ODI € [0,1] and d| € [0,4] pm?/ms where the
diffusivity in free water at 37°C is ~ 3 — 3.1 pm? /ms. Due to the observed possible degeneracy between the
two noise parameters ¢ and €, when both were estimated in magnitude data, they were constrained to be
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signal for a given b-value.
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Figure 1: The modified NODDI model for co-estimation axial diffusivity and orientation dispersion in high b-value data. The
fibre response function (F'RF) and fibre orientation distribution (FOD) can be first convolved and then multiplied by the
non-attenuated diffusion signal associated with the intra-axonal compartment (F = f;, - So) to produce the diffusion signal
S. A signal offset ¢, and (in magnitude data only) rectified noise floor ¢, were then added to the signal to produce the real or
magnitude data, Y as required. Here we use the powder averaged signal Sj, to avoid estimating F as a parameter of the model.
See the main text for full definition of parameters.
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50 — 150% of ¢ and € as estimated from high b-value data in the ventricles (a Rician distribution was fitted
to b= 17.8ms/ pm2 data, where ¢ = the non-centrality parameter and ¢ = the scale parameter). When only
one noise parameter was estimated (in real-valued data or simulations with ¢ = 0), the noise parameter was
constrained such that ¢ € [0,0.5 - Sp] or € € [0,0.5 - Sy]. The powder averaged signal S, was calculated for
each shell in turn, where the data Y were for first corrected for any signal offset ¢ or noise floor € according
to Equation 6 or 7 (i.e. Y was converted to S prior to signal averaging). The model was optimised using the
Metropolis Hastings (MH) algorithm, which afforded estimation of each parameter’s posterior distribution.
The initial parameters for MH were found by grid search.

Our investigations using simulated data demonstrated how higher SNR leads to more precise estimates
of ODI and d. Consequently, for in vivo data, the model was fitted to the concatenated signal across
many (N) voxels to boost SNR. Here, the signal from each voxel was first rotated such that the primary
eigenvector of the diffusion tensor was aligned and the secondary eigenvector was randomly orientated, since
the Watson distribution describes symmetric dispersion about the primary fibre orientation. As NODDI
assumes a single-fibre population per voxel, we fitted to high FA voxels from the corpus callosum which, to
enforce some data consistency, were selected to have similar Sy (Sp + 10%). Instead of concatenating the
signal, we could have averaged the signal across voxels (as we did using simulated data below). However, this
would require 1) the diffusion signal from each voxel to first be rotated so that the primary fibre orientations
align, and 2) the rotated signal to be resampled along consistent gradient orientations g. Consequently,
signal concatenation was deemed preferable to signal averaging across voxels, as our results would not be
biased by interpolation effects which can introduce smoothing and effect noise properties in non-trivial ways.

2.3. Simulated data

Data were simulated with a known ground truth to investigate the precision and accuracy of the parameter
estimates. The Sy, b-values and gradient directions were chosen to mimic the in vivo data below. The
ground truth parameter values were d| = 2.2, ODI = 0.03, fi, = 0.6 and ¢ = 10 unless otherwise stated.
The SNR of a single voxel was defined as SNR,,,, = Sp/o = 16.5, which is similar to the lower bound of
the SNR in the in vivo data used later in this study, where o represents the standard deviation of Gaussian
noise in the complex data. As in in vivo data, the model was fitted to data from N simulated voxels. The
SNR across many voxels was then approximated as SNR ~ SNRypz X V' N.

Note, for in vivo data we fitted the model to the concatenated signal across voxels, whilst for simulated data
we fitted to the averaged signal. In simulated data, we fixed the fibre orientation and could thus compute
the average signal across voxels without interpolation. Furthermore, by averaging the signal, we fitted to
fewer gradient directions and minimised computation time.

2.4. In vivo human data

The modified NODDI model was applied to pre-existing data from 6 healthy participants where both mag-
nitude and real-valued diffusion images were reconstructed from the complex MR data.

Diffusion MRI data were previously acquired, reconstructed and pre-processed according to Tian et al. [40]
and Fan et al. [39]. Briefly, complex diffusion data were acquired on the 3T MGH Connectom scanner
(Siemens Healthcare, Erlangen, Germany) using gradients up to 300mT/m [41, 42] and a pulsed gradient,
spin echo EPI sequence [43]: TR/TE = 4000/77 ms, 2mm isotropic resolution, 17 b-values from 0 to
17.8ms/pm”, two different diffusion times §/A = 8/19 ms and §/A = 8/49 ms. The complex images
were first corrected for background phase contamination after which the real component of the diffusion
images was extracted and the imaginary part discarded [39]. The magnitude images were also extracted.
The data were pre-processed using tools from FSL and bespoke code. The real-valued and magnitude data
were separately corrected for gradient nonlinearities as well as susceptibility and eddy current distortions
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Figure 2: Left: Example magnitude and real-valued diffusion images from a single subject. Here we show the mean signal
across all gradient directions. We observe a considerable rectified noise floor in the magnitude images, which appears greatly
reduced in the real valued data. Right: The distribution of signal from voxels in the ventricles at b = 17.8 ms/me, where
we assume the signal to be purely noise. In both cases, the signal is not zero-mean: the magnitude data follows a Rician
distribution with the non-centrality parameter v = 13.7, and o = 8.4; the real-valued data has Gaussian noise with a positive
offset, u = 10.4, 0 = 9.2. Consequently a signal offset and, in the case of magnitude data, rectified noise floor were estimated
as parameters of the model.

[44, 45, 46, 47]. Here we fitted the modified NODDI model to data from 6 subjects with A = 49 ms,
b = 6.75, 9.85 and 13.5 ms/pm2 and 64 gradient directions per shell. The b = OmS/pm2 (30 repeats) and

b = 0.95ms/ pm2 images with 32 gradient directions were used for fitting the diffusion tensor model only
[21] .

T1-weighted structural images were also acquired and here used for white matter segmentation [48] and to
register a corpus callosum mask from MNI standard space to subject space [32, 33].

Figure 2 shows example preprocessed diffusion images. In Figure 2 right we see how the images retain
good signal at very high b-values. Figures 2 left shows the distribution of high b-value (b = 17.8 ms/ pmz)
signal from voxels in the ventricles for a single subject. The noise from the magnitude images follows a
Rician distribution, whilst that from real-valued data is Gaussian distributed as expected. The Rician non-
centrality parameter and Gaussian mean are both non-zero and indicative of a positive signal offset. The
data SNR, here taken to be Sy/o, where o was taken to be the Guassian standard deviation or Rician scaling
parameter, was found to be SNR € [17,30] with a median SNR of 21.

3. Results

3.1. Changes in the NODDI output for different axial diffusivity

Figures 3 and 4 show how the parameters of NODDI [4] change when the assumed axial diffusivity is set to
dy =17 nm?/ms - as is typically assumed - or 2.3 pm?/ms, or 3um? /ms, the latter being the approximate
diffusivity of free water.
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Figure 3: The dependence of NODDI parameters on the assumed axial diffusivity. The NODDI model [4] was fitted to 10
subjects from the HCP dataset with various assumed axial diffusivities 4 =17, 2.3, 3pm?/ms. The parameter maps were
co-registered after which the average map across subjects was calculated. The distribution of these parameters is shown for
all voxels in the brain (top) and for the white matter (middle, dashed) and grey matter (bottom, dotted) separately. fansio
describes the signal fraction of the anisotropic compartment, where fonsio = 1 — fiso. d is in units of pm?/ms.

Figure 3 shows an increase in the gross signal fraction associated with the intra-axonal compartment (f;, %
faniso) and a decrease of the extra-axonal compartment (fe, X faniso) when the assumed axial diffusivity is
increased from 1.7 to 3um?/ms. Interestingly, when d = 3nm?/ms, both the extra-axonal signal fraction
and radial diffusivity (d1 ) show two distinct distributions associated with the white and grey matter. As d
is increased, the ODI is seen to increase in both the grey and white matter, and the signal fraction associated
with isotropic diffusion, f;s, is reduced close to zero across most of the brain and particularly in the white
matter where we would not typically expect to find isotropic, free diffusion.

In Figure 4 we see the NODDI parameter maps with axial diffusivity d = 3num?/ms as a percentage of
equivalent maps for dj = 1.7 nm? /ms. Since dy =3 nm? /ms represents the upper bound of water diffusion in
vivo, this comparison represents the maximum difference we may obtain when increasing the assumed axial
diffusivity from d; = 1.7 nm? /ms. When dy=3 nm? /ms, the isotropic signal fraction and extra-axonal signal
fraction decrease on average to 30 — 50% and 50 — 60% respectively of their value when dj = 1.7 nm? /ms.
Concurrently, the signal fraction associated with the intra-axonal compartment and the ODI increase on
average to ~ 150% and ~ 120%. Here we do not see a global, step change, but rather one which varies
across the tissue. In particular, the ODI is substantially increased in the corticospinal tract as well as by
200 — 250% in areas of the optic radiation and corpus callosum. We see a large ODI change across much
of the the corpus callosum, though not at the midline along the left-right axis, a known region of increased
fibre dispersion.
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Figure 4: Estimated NODDI parameter maps with axial diffusivity d; = 3um?/ms as a percentage of equivalent maps for
4, =17 nm?/ms, as is typically assumed. The blue shows where parameters decrease, and the red where they increase, as

we change d) from 1.7 to 3um?. The signal fraction associated with isotropic diffusivity and the extra-axonal compartment is
substantially reduced, as is the radial diffusivity. The intra-axonal signal fraction is largely increased as is the ODI, though to
a broadly lesser extent. a) The extra-axonal signal fraction is reduced substantially in the cerebellum. b,c) The ODI increased
to < 250% in areas of the optic radiation and corpus callosum.
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3.2. Modified NODDI model for high b-value data: simulated data

A second aim of this study was to investigate whether, by applying NODDI to high b-value data, it was
possible to also estimate axial diffusivity. Crucially, at high b-value, signal contributions from extra-axonal
water are assumed negligible and thus the observed signal can be attributed to the intra-axonal compartment,
here described by diffusion along dispersed sticks. To examine the accuracy and precision with which
this high b-value 'modified” model could simultaneously estimate axial diffusivity and ODI, we began by
examining simulated data, with known ground truth parameters.

3.2.1. Parameter distributions and model fits

To investigate degeneracy, Figure 5 shows the estimated parameter distributions (left) and model fit (right)
for high SNR data (N = 100, SNR ~ 165). The model was fitted to data simulated with both a Gaussian
and Rician noise model, to mimic real-valued and magnitude diffusion data. In both datasets, the model
appeared to fit the data well, where the residuals between the data and the predicted signal were small.

Upon inspection (Figure 2), the in vivo data used in this study appeared to contain a signal offset (i.e the
complex noise was not zero-mean), that was subsequently included as a parameter of the model (c). Figure
5 shows how, in real-valued simulated data, the signal offset can be estimated with ease: it is not correlated
to the other model parameters and does not appear to affect their estimation. In magnitude data, the signal
offset is highly correlated with the noise floor parameter ¢, causing difficulties in parameter fitting where
multiple minima may exist. In comparison, for data with Gaussian noise (meaning that ¢ = 0) the parameter
distributions are approximately Gaussian and close to the ground truth values, demonstrating that axial
diffusivity and ODI can be estimated reliably and without degeneracy from real-valued data. Supplementary
Figure 1 shows similar plots for magnitude data without a signal offset (¢ = 0) where parameter estimation
is again improved.

3.2.2. Parameter estimation as a function of SNR

Figure 5 examines parameter estimation in relatively high SNR data. As most in vivo data have an SNR <
165, Figure 6 shows how the precision and accuracy of the model parameters vary as a function of SNR.
To produce data of varying SNR, here the model was fitted to the signal averaged over 1-1000 voxels,
producing an SNR range of ~ 16.5 — 520. The fitting was repeated 20 times per SNR. At low SNR, the
parameter estimation is highly sensitive to noise and the parameters are degenerate, as indicated by a large
spread (standard deviation) in the parameter distributions (see also green box). The precision of the model
parameters increases with SNR, and the parameter degeneracies are largely overcome when SNR 2 100.
Although an SNR of > 100 is often not realised in vivo (where the in vivo data in this study have an SNR
of ~ 20), Figure 6 motivates parameter estimation through signal averaging or, as is done for the in vivo
data in this study, the concatenation of signal across voxels.

In magnitude data, the axial diffusivities appear biased and overestimated with respect to the ground truth.
This may be related to the calculation of the spherical mean whilst correcting for the rectified noise floor

Sy = Re (\/Y,? — 62> — ¢, where the positivity constraint can lead to an overestimation of S;. In comparison,

parameter accuracy is increased in real-valued data, where the mean axial diffusivity is generally more aligned
with the ground truth value.

Together, Figures 5 and 6 motivate the use of real-valued data for more reliable and accurate estimation of
axial diffusivity and orientation dispersion via the modified NODDI model.
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Figure 5: Left: Parameter distributions output from MCMC. Each data point in the density plots represents a combination
of parameters that fits the signal equally well. Grey dashed lines represent ground truth values. Right: Model fit (line) to
simulated data (dots) and the associated error (prediction-data). g is the gradient direction, p the fibre orientation and b the
b-value in ms/}lmQ. The diffusivities are given in units of pm?/ms. The signal is averaged over 100 voxels, each with SNR=16.5.
Note, as the noise floor parameter is an approximation, we do not plot its ’ground truth’ value.
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Figure 6: The precision and accuracy of parameter estimates as a function of SNR. The modified NODDI model was fitted to
simulated data with a known ground truth (grey dashed line). In high SNR real-valued data, the estimated parameters are
estimated more precisely (smaller standard deviation) and tend towards the ground truth values. In magnitude data, the axial
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3.2.83. Assuming incorrect noise characteristics biases parameter estimates

In low SNR regimes, assuming the wrong noise distribution (Rician/Gaussian), or neglecting the presence
of a signal offset, could have a considerable effect on the estimated model parameters. Consequently, Figure
7 uses simulated data to examine the effect of getting either of the noise parameters ¢ and € wrong. We
examine both what happens when we neglect the Rician noise floor and signal offset completely (¢, e = 0),
but also what happens when we get them only slightly incorrect. The latter could illustrate a situation
where the noise parameters are set to global, predefined values, rather than estimating them on a voxelwise
basis to account for local parameter fluctuations. In Figure 7a,b, data were simulated with a signal offset
¢ =10 and the model was fitted assuming some fixed offset. In Figure 7c,d, magnitude data were simulated
with ¢ = 0 and fitted for a fixed noise floor. Note, when the assumed noise floor = 0, this is equivalent to
assuming Gaussian noise (Figure 7d). In Figure 7 a,c, even a small error in the noise parameter leads to
biased estimates of axial diffusivity (overestimation) and ODI. This is concurrent with increased parameter
degeneracy, as indicated by the high standard deviation in the parameter distributions (bottom). In Figure
7c, the ground truth noise floor indicates the standard deviation of the complex Gaussian noise. This value
is equivalent to what would be typically measured using de-noising methods and input to Koay inversion
method to account for Rician bias. In contrast, the noise floor value which produces an axial diffusivity
and ODI closest to the ground truth values is higher. This difference is likely related to Koay’s inversion
method being only well suited to data with SNR> 2, where the diffusion signal along many gradients at
high b-value will likely not meet this requirement. Again, these results point to potential pitfalls when using
Koay’s inversion method to correct for Rician bias using a priori estimates of the noise. In Figure 7b, where
c is fixed but € estimated in magnitude data, a small error in the signal offset ¢ does not have a large effect
on the other parameters. This is likely due to the correlation between ¢ and e (Figure 5), where € can be
adjusted to account for the error in c.

Under the wrong noise model (Figure 7d), the ODI and axial diffusivity estimates are both highly biased
(overestimated) and correlated (degenerate), even though the SNR of the data is high (SNR ~ 165). When
considering the opposite situation i.e. assuming a Rician noise model when fitting to real-valued data, the
Rician noise floor € tended to zero as expected, and parameter estimation was otherwise largely unaffected.

3.8. Modified NODDI model for high b-value data: in vivo data

The modified NODDI model was then fitted to high b-value in vivo data from 6 healthy subjects. Here we
fitted to both magnitude and real-valued images reconstructed from the same complex data. To increase
the SNR, data was concatenated across IV voxels from the corpus callosum, chosen to have similar Sy and
high FA. The results are shown in Figure 8, where the colours indicate data from different subjects.

As in simulated data (Figure 6), the spread of the ODI/diffusivity standard deviation decreases as a function
of N where in single voxel data the parameters appear degenerate, but can be estimated with increased
precision for larger V. Note, whereas in simulated data, each voxel was simulated with identical ODI
and axial diffusivity, in in vivo data, each voxel is likely to exhibit slightly different diffusivity and fibre
orientation distribution. Thus, concatenating signal across many voxels has both the advantage of increasing
SNR, and some disadvantage, where the estimated axial diffusivity and ODI are likely some average across
the voxel population. The latter was minimised by selecting voxels from within the corpus callosum with
similar Sy and FA. Nonetheless, we generally obtain fairly similar axial diffusivity values when fitting to
either N=50 or 100 voxels, giving some confidence to these results.

Both magnitude and real-valued data estimate somewhat similar axial diffusivities and ODI, though the
spread of axial diffusivities across subjects is higher for the magnitude data. The mean intra-axonal axial
diffusivity across subjects for N = 100 was d = 2.26 nm?/ms and dj =242 nm? /ms for real-valued and
magnitude data respectively. Crucially, these values are much higher than the d; = 1.7 nm?/ms typically
assumed when fitting NODDI, suggesting that many current studies may be producing biased NODDI
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Figure 7: Assuming inaccurate noise parameters biases the estimated axial diffusivity and ODI. Top: data were simulated with
¢ =10 and fitted assuming some fixed offset. Bottom: Simulated data with offset ¢ = 0 was fitted assuming a fixed noise floor
€. The plots show the mean (top) and standard deviation (std, bottom) of the parameter distribution output from MCMC.
The model was fitted to high SNR data with N = 100 and the diffusivities are given in units of pm?2/ms.
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parameter estimates.

4. Discussion

To describe the complex tissue microstructure in only a handful of modelling parameters, biophysical dif-
fusion models make strong, simplifying assumptions about the underlying tissue architecture. The extent
to which many of these assumptions are valid in both healthy and diseased tissue remains an open research
question. This study was inspired by the disparity between the estimated intra-axonal axial diffusivity from
literature (~ 2 — 2.5 pm?/ms [11, 13, 14, 15, 16, 17, 18, 12, 19]) and that typically assumed by the NODDI
model and often utilised in simulations (d = 1.7 nm?/ms). We first demonstrate the extent to which the
NODDI output is dependent on the assumed axial diffusivity. Second, we illustrate how the NODDI frame-
work can be adapted for high b-value data and overcome known parameter degeneracies [2] to estimate axial
diffusivity as a free parameter of the model. Crucially, by utilising the NODDI framework and high b-value
data, we can forgo modelling of the extra-axonal space and attribute the diffusion attenuation to only two
parameters, the intra-axonal axial diffusivity and fibre dispersion, which are simultaneously estimated on a
voxelwise basis. Were we to estimate axial diffusivity without accounting for dispersion, our axial diffusivity
estimates would be biased [3].

Our results cannot ascertain the ”correct” axial diffusivity for the NODDI model, nor do the changes in
the NODDI outputs reported here necessarily negate group differences in NODDI parameters. Instead they
challenge the interpretation of the NODDI outputs as accurate, biophysical parameters, rather than biased
indices which are dependent on many modelling assumptions, including the input axial diffusivity. In Figure
4 - when d = 3nm?/ms (the most extreme case) is compared to dy =17 nm?/ms - we frequently see the
parameter estimates rise or fall by ~ 50%, where in some cases the parameter may be as little as 20% or as
much as 250% of its former value. Notably, both the ODI and the signal fractions associated with each of
the three compartments change. With higher axial diffusivities, a substantially larger fraction of the white
matter signal is associated with the intra-axonal compartment and the associated isotropic compartment is
reduced, which may be more in line with our microstructural expectations. This is coupled with an overall
~ 20% increase in the orientation dispersion index, with regions of the corpus callosum and optic tract
sometimes doubling. Here, more signal attenuation perpendicular to the fibre is explained by the interplay
of intra-axonal diffusion and fibre orientation dispersion, rather than the radial diffusivity associated with
the extra-axonal compartment via the tortuosity model.

The change in estimated ODI invites future ODI validation against microscopy gold standards. However,
validation is complicated by having to select an appropriate axial diffusivity, a choice that is especially
challenging in postmortem tissue where the diffusivities are considerably reduced when compared to their in
vivo values. In previous work, Schilling et al. [49] found the NODDI ODI to correlate well with dispersion
values derived from histology (r=0.66), though the ODI was consistently higher than that from histology.
In comparison, Grussu et al. [1] compared the NODDI outputs to histological data from the human spinal
cord to find an approximate one-to-one mapping (r=0.84 in controls, r=0.64 in MS cases). The discrepancy
between the results from the two studies may indeed be related to the choice of assumed axial diffusivity.
In postmortem spinal cord, Grussu et al. assume an axial diffusivity of 1.5 pm?/ms which was found to
optimise the fitting across all samples. Schilling et al. imaged postmortem squirrel monkey brain, though
the assumed axial diffusivity wasn’t reported.

Though Figures 3 and 4 assume a single, global diffusivity across the brain and subjects, there is likely
great value in being able to account for both between-subject and across-brain variations in intra-axonal
axial diffusivity. Recent, promising work by Nilsson et al. [19] utilises data with multiple b-tensor encodings
to estimate intra-axonal axial diffusivity on a voxelwise basis, and demonstrate considerable across brain
variability, with particularly high axial diffusivities of d|| ~ 2.7 nm? /ms in the corticospinal tract. Studies
of intra-axonal axial diffusivity are typically limited to analysing data from relatively few, healthy subjects,
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Figure 8: Fitting the modified NODDI model to both magnitude and real-valued in vivo data. The model was fitted to the
concatenated signal across N=1, 25, 50 or 100 voxels. This corresponds to an approximate SNR given on the x-axis (lower
bound, assuming SNRy0,=16.5). Plotted are the mean and standard deviation (std) of the parameter distributions output
from MCMC. Each colour represents data from a single subject. The diffusivities are given in units of pm? /ms.
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making characterisation of normative values or between brain variations challenging. This challenge is likely
further exacerbated when considering either development, ageing or pathology which likely either directly
or indirectly alter the observed axial diffusivity. Indeed, although the values of axial diffusivity presented
here should not be over-interpreted, our results do potentially indicate some across subject variation in
intra-axonal axial diffusivity across a series of six healthy participants. Together, these arguments challenge
the assumption of a fixed, predefined axial diffusivity and instead advocate for the co-estimation of both
architectural features and diffusion characteristics on a voxelwise or subjectwise basis.

A second aim of the study was to demonstrate how by modifying the NODDI model for high b-value
data, the framework could be used to simultaneously estimate axial diffusivity and orientation dispersion.
Though the NODDI model here explicitly considers only macroscopic fibre orientation, it is likely that
microscopic fibre dispersion, including but not limited to axon undulations, also affects intra-axonal axial
diffusivity. Indeed Andersson et al. [50] and Lee et al. [51] combine Mote Carlo simulations of diffusion with
realistic axon morphologies from 3D X-ray nano-holotomography and electron microscopy data respectively,
to demonstrate how complex axon morphology, including axon micro-dispersion, caliber variations, and
the presence of mitochondria, all likely influence the observed diffusivities of the tissue. Andersson et al.
explicitly show a reduction in the apparent axial diffusivity as a function of the complexity in morphological
complexity, with micro-dispersion a key contributing factor.

One of the primary limitations of the NODDI framework is the description of the fibre orientation distribution
as that of a single fibre population with symmetric dispersion. Future work should consider modelling
multiple fibre populations per voxel and replacing the Watson with a Bingham distribution to account for
dispersion asymmetry. Nonetheless, it is reassuring how, even within this restrictive framework, we estimate
axial diffusivities from real-valued data in the range dj ~ 2 — 2.5pm? /ms, with an across subject mean of
2.26pm? /ms, in line with current literature [11, 12, 2, 13, 14, 15, 16, 17, 18].

A third aim of this study was to examine the effect of getting the noise characteristics of the data wrong in
low SNR data. This is of particular importance as many studies aim to acquire data at high b-value, high
spatial resolution, or short scan times - all of which are typically low SNR regimes. When working with our
high b-value data, both the presence of a rectified noise floor or signal offset had to be carefully considered
to avoid parameter degeneracy and bias. Figure 7 demonstrates the effect of assuming Gaussian noise in
magnitude data, as may be often naively done. When the rectified Rician noise floor is not accounted for,
the parameter estimates are both biased and correlated (degenerate). This challenges the idea that it is valid
to naively apply biophysical models that assume Gaussian noise to low SNR magnitude images. Careful
consideration should be taken when transferring models to data with different noise characteristics to what
they have been designed and tested on.

Finally, Figure 7 further advocates for estimating noise parameters within the model, rather than as fixed,
predefined properties that are e.g. first measured from background voxels and assumed constant across the
brain. There are various methods to remove the Rician noise bias that include but are not limited to a)
utilising real-valued rather than magnitude images [40, 39], b) approximating the Rician signal as Gaussian
via e.g. the Koay inversion technique [37] and, as was not explicitly done in this study, ¢) applying a Rician
noise model during optimisation. Note, the latter requires knowledge of the fibre orientation distribution and
so cannot be applied in models fitted to the spherical mean, or powder averaged signal, which explicitly aim
to circumvent modelling of the fibre orientation distribution [39]. Further, as the Koay inversion technique
is an approximation that breaks down for low SNR data (which likely causes the discrepancy between the
ground truth € and that estimated from simulated data in Figures 6,7), this study suggests that it may be
preferable to use Rician noise modelling rather than Koay’s inversion where possible in low SNR data.

The data used in this study is openly available via http://www.humanconnectomeproject.org/ and [40]. At
https://git.fmrib.ox.ac.uk/amyh /noddi-axialdiffusivity we provide a cuDIMOT implementation of NODDI
[34] where the assumed diffusivities d| and d;s, are user-defined at runtime and MATLAB scripts to im-
plement the modified NODDI model. Interesting avenues for future work include: applying the model to
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data with both high b-value and high SNR (e.g. from animal models) to explore spatial variations in axial
diffusivity; the relationship between axial diffusivity and features of the tissue architecture such as axon
diameter; whether intra-axonal axial diffusivity is affected by tissue degradation or disease; the relationship
between axial diffusivity and brain development; as well as the estimation of axial diffusivity in postmortem
tissue, both in situ and after perfusion or immersion fixation. Furthermore, the model could be extended
to estimate multiple fibre populations per voxel and applied brain-wide to provide maps of axial diffusivity
across the brain. Finally, co-registered MRI and microscopy data should be used to validate the orientation
dispersion estimates reported here. This will likely require the acquisition of a bespoke postmortem dataset
which combines data from multiple shells at ultra-high b-values (accounting for the reduced diffusivity of
fixed postmortem tissue) with corresponding microscopy imaging of the white matter fibres.

5. Conclusion

This study focuses on the assumption of a fixed axial diffusivity in the NODDI model in diffusion MRI.
We first demonstrate a considerable dependency of the NODDI parameters on the assumed axial diffusivity,
which challenges the interpretation of the NODDI parameters as biophysical metrics, rather than biased
indices which are dependent on the modelling assumptions. Second, we demonstrate how the axial diffusivity
could be estimated within the NODDI framework by utilising high b-value data. In this challenging, low
SNR regime, we demonstrate the importance of locally estimating a rectified noise floor and signal offset
i.e. background signal independent of diffusion weighting, both of which could otherwise result in parameter
degeneracy or bias. Our results show an axial diffusivity of d|j ~ 2— 2.51m? /ms in real-valued in vivo human
data, which is both in line with current literature and substantially above that typically assumed by NODDI
(dj = 1.7pm?/ms). This motivates the use of more advanced diffusion acquisitions and/or modelling that
can resolve parameter degeneracies whilst making minimal assumptions about the tissue microstructure.
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