

1 A Modular Approach to Active Focus 2 Stabilization for Fluorescence Microscopy

3 **BIRTHE VAN DEN BERG,¹ ROBIN VAN DEN EYNDE,² BAPTISTE
4 AMOUROUX,^{2,4}, MARCEL MÜLLER,³, PETER DEDECKER² AND WIM
5 VANDENBERG^{2,*}**

6 ¹*Department of Computer Science, KU Leuven, Belgium*

7 ²*Department of Chemistry, KU Leuven, Belgium*

8 ³*Faculty of Physics, Bielefeld University, Germany*

9 ⁴*University Paris-Saclay, France*

10 ^{*}wim.vandenbergh@kuleuven.be

11 **Abstract:** Fluorescent time-lapse experiments often suffer from focus drift, regularly rendering
12 long measurements partially unusable. Frequently, this instability can be traced back to the
13 specific mechanical components of the setup, but even in highly robust implementations z-drift
14 occurs due to small temperature fluctuations which are hard to avoid. To resolve this issue,
15 microscope manufacturers often offer their own interpretation of out-of-focus correction modules
16 for their flagship instruments. However, self-assembled or older systems typically have to fend
17 for their own or adapt their measurements to circumvent drift effects. In this manuscript, we
18 propose a cost-efficient z-drift detection- and correction system that, due to its modular design,
19 can be attached to any fluorescence microscope with an actuated stage or objective, be it in a
20 custom or commercial setup. The reason for this wide applicability is specific to the design,
21 which has a straightforward alignment procedure and allows sharing optics with the fluorescent
22 emission path. Our system employs an infrared (IR) laser that is passed through a double-hole
23 mask to achieve two parallel beams which are made to reflect on the coverslip and subsequently
24 detected on an industrial sCMOS camera. The relative position of these beams is then uniquely
25 linked to the z-position of a microscope-mounted sample. The system was benchmarked by
26 introducing temperature perturbations, where it was shown to achieve a stable focus, and by
27 scanning different positions while simulating a perturbation in the z-position of the stage, where
28 we show that a lost focus can be recovered within seconds.

29 © 2023 Optica Publishing Group under the terms of the [Optica Publishing Group Publishing Agreement](#)

30 1. Introduction

31 Keeping a sample in focus remains a challenging, yet essential, task in optical microscopy.
32 Typically, this is most problematic in high-resolution imaging experiments where there is a limited
33 depth of focus and a minimal discrepancy in the z-position can effectively render the collected data
34 unusable. However, even low-resolution imaging can be impacted when time-lapse experiments
35 are performed over longer time periods. Focus drift arises from a range of sources of which the
36 most common ones are vibrations (e.g., fans), mechanical instabilities (e.g., loose gear), and
37 thermal fluctuations (e.g., room temperature, laser heating up the sample). Although microscope
38 designs have become increasingly more stable, and good practices have been developed, focus
39 drift remains a practical, omnipresent and notable issue. Various techniques and systems have
40 been proposed to detect and correct focus drift. While image-based detection methods [1, 2] rely
41 on complex software that analyzes images and compares them with in-focus images captured
42 beforehand, sensor-based detection methods have generally been more popular, using additional
43 sensing circuits to detect drift and compensate for it using a control loop [3, 4].

44 Microscope manufacturers often build a z-drift compensation module into their instruments,
45 such as Olympus' TruFocus system [5], Leica's Adaptive Focus Control (AFC) [6] and Nikon's

46 Perfect Focus System (PFS) [7]. These systems are rapidly becoming standard equipment on new
47 motorized microscopes. However, as they are specific to the underlying microscope system, these
48 commercial solutions may be more challenging to add to existing systems. For example, older
49 systems, microscopes bought with a limited budget, and self-assembled systems that are often
50 used in research environments are by default not equipped with an automated focus detection- and
51 correction system. Several attempts have been made to control focus drift in those state-of-the-art
52 microscope systems. However, most of these solutions suffer from ailments such as high cost,
53 complex construction, lack of precision, slow detection and correction, and specificity to a
54 particular context or technique [8–10].

55 In this manuscript, we present an automated focus detection- and correction system that is
56 cost-efficient, easy to build and modular by design. Our setup is an optical z-drift detection-
57 and correction system that uses an infrared light source split by a double-hole mask into two
58 parallel beams. These beams are reflected on the interface between cover glass and sample,
59 and captured by an industrial sCMOS camera. Software reads the data from the detector and
60 computes the compensation necessary to maintain the focus position. The combination of the
61 camera with the double-hole mask offers a smart approach for mitigating imperfections in the
62 captured reflections [11], being less sensitive to flaws than quadrant detectors [9, 12] or line
63 sensors [7].

64 Our automated z-drift detection- and correction system is implemented on a popular commercial
65 microscope body (Olympus IX-71). However, due to its modularity and cost-effectiveness, it
66 also opens up opportunities to mount it on other popular and conventional microscope systems.
67 In particular, the system is optimized for microscopes in which the optical infrared path and the
68 fluorescence path are shared, maximally eliminating reflections and noise. We show that our
69 method works well through experiments with beads and a varying temperature, and on COS-7
70 cells with manual z-dispositioning.

71 **2. Conceptual System Description**

72 The idea of this work is to use a detection technique similar to that of Binh et al. [11] to
73 automatically find the focus position for our microscope. This focus detection method uses
74 a collimated infrared laser to determine the sample position. In front of the laser, we put a
75 double-hole mask, which divides the collimated laser light into two parallel beams. These beams
76 are sent through the microscope body onto the sample, which is carried by a glass coverslip. It is
77 exactly this glass-sample interface that reflects the laser beams. The reflected beams are captured
78 by an industrial sCMOS camera.

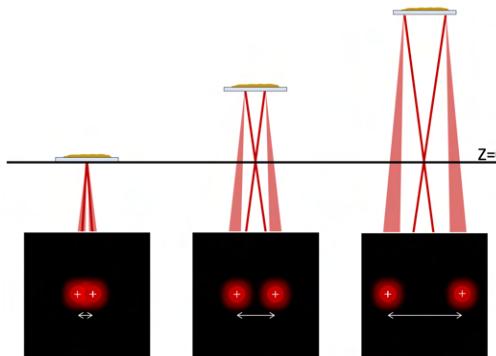


Fig. 1. Correlation between z-position of sample and camera view.

79 Figure 1 shows the possible ways for the laser beams to be reflected. The sCMOS camera detects

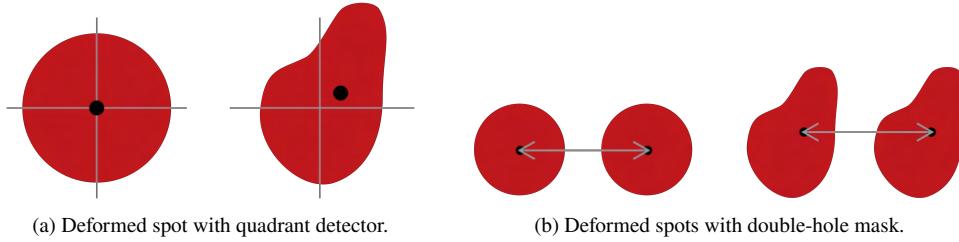


Fig. 2. The influence of deformed spots on the focus for different detectors.

80 two reflected laser spots. The horizontal distance between the detected spots is proportional to
81 the z-position of the cover glass. The bigger the distance between the two detected spots, the
82 further away is the sample from the zero of the z-position. Before starting an experiment, the
83 user can define the perfect focus position of the sample on the microscope. The distance between
84 the spots on that position determines the focusing distance. Control software then continuously
85 adjusts the z-position to retain or regain focus, even when it is lost, by tuning the distance between
86 the detected spots using a motorized stage or a mechanically actuated objective.

87 The system has several advantages over existing approaches. Firstly, whereas other systems
88 [7, 9, 12] typically have a dedicated path for the z-tracking laser, our system is designed to
89 share their fluorescence path with the z-tracking laser path, which involves including dedicated
90 components to filter out spurious reflections on intermediary components (e.g., tube lens).
91 Secondly, for the implementation given in Appendix A, the total price of the system comes to less
92 than €2000, a fraction of the cost of a commercial system. Thirdly, as the system focuses the two
93 beams on the glass-sample interface, it presents a relatively safe way of using infrared light as any
94 infrared light emanating from the objective is highly dispersed at eye height. Finally, the use of a
95 two-spot design is beneficial. In techniques that employ a single back-reflected beam, the shape
96 of the spot is of utmost importance, as in most cases a circular spot is assumed [9, 12–15] and any
97 distortions of this beam profile directly result in a focusing error. To overcome this delicate issue,
98 computing the centroid or center-of-mass was proposed [16]. However, even this algorithm is
99 still influenced by imperfections at the border of the spot (Figure 2a). With a double-spot design,
100 deviations are avoided, as long as the disturbance influences both beams in a similar way, leaving
101 the distance between the two spots more or less the same (Figure 2b).

102 3. Practical System Description

103 3.1. Setup

104 Figure 3 gives a schematic overview of our automated focus detection- and correction system.
105 The infrared light beam path is visualized in red, and the fluorescence path in blue. The detailed
106 configuration is referenced in Appendix A.

107 **Fluorescence Path** The sample is excited using a Spectra X light engine (Lumencor) (named
108 “laser” in Figure 3). The excitation light is reflected by a dichroic mirror (D3) and passes the
109 objective, illuminating the sample. The fluorescence path (blue) then initiates at the sample
110 and travels through the objective and the dichroic mirror (D3), reflecting on the mirror M5 and
111 passing the tube lens (TL) of the microscope body. In this setup, this part of the optical layout is
112 implemented using a commercial olympus IX71 inverted fluorescence microscope, where in the
113 scheme, the black dashed line indicates enclosure in the commercial microscope body. Beyond
114 this commercial body, the fluorescence light travels further through a lens (L6), a dichroic filter
115 (D1), an emission filter (ND3) and is finally focussed on a Hamamatsu ORCA-Flash4.0 LT+
116 Digital sCMOS camera using a lens (L7).

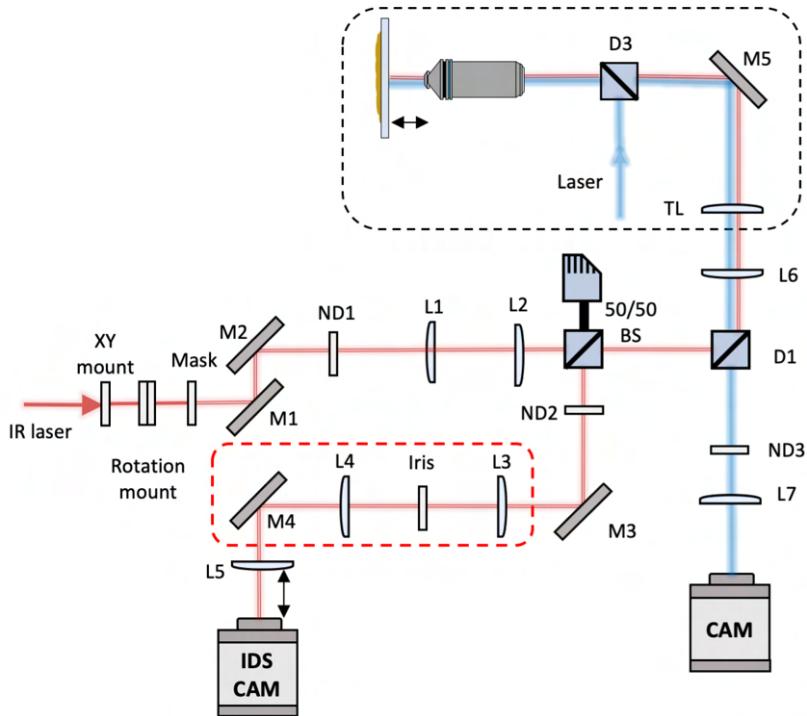


Fig. 3. Schematic overview of the system. The blue line represents the fluorescence path, and the red line the path of the two parallel infrared beams. The beams are initiated at the IR laser (left).

117 **Infrared Beam Path** The infrared beam path starts from the infrared laser (the leftmost
118 component in Figure 3). This laser is a 3.0 mW, 830 nm infrared laser, chosen to avoid overlap
119 with the color channels used for fluorescence detection. This laser is mounted in a pitch/yaw
120 adapter which, with addition of an XY-mount and a rotation mount, allows for full freedom in
121 aligning the laser beam on a double-hole mask containing drilled holes that are 600 μm apart and
122 500 μm wide (Figure 4 shows the mask and its dimensions).

123 Next, two mirrors M1 and M2 guide the two beams toward the objective-sample interface while
124 a neutral density filter (ND1) reduces their power to less than 1 mW (safety category 2). Lenses
125 L1 and L2 are set up as a 2F relay. A 50/50 beam splitter (BS) passes half the light coming from
126 the laser into the direction of the microscope, while the reflected half is disposed in a beam dump.
127 At this point, the tracking laser is reflected by D1 (separating the fluorescence and tracking path).
128 After passing L6, the tube lens, and the objective, the two beams are reflected on the glass-sample
129 interface and retrace their path up to the 50/50 beam splitter. There, the reflected light passes a
130 laser-line clean-up filter (ND2) to remove any (fluorescent) background signal. Next, the light
131 passes a spurious reflection filter (the red dashed frame in Figure 3). This extension filters out
132 extra reflections that might disturb or overwhelm the spots to be measured. These reflections
133 may originate from different sources, such as imperfections in optical components (beam splitter,
134 dichroics), but in our case mostly consist of infrared light reflected from lenses shared with the
135 fluorescence path. In this additional filter, mirror M3 is used to position the beams on the spatial
136 filter (iris) to maximally filter out light noise, and lenses L3 and L4 are set up as a 2F relay.
137 Finally, lens L5 focuses the two parallel infrared laser beams on the IDS camera sensor. The
138 distance between this lens and the sensor chip of the IDS camera influences the shape of the spots
139 and the distance between them. Figure 5 shows what the reflected laser beams look like when

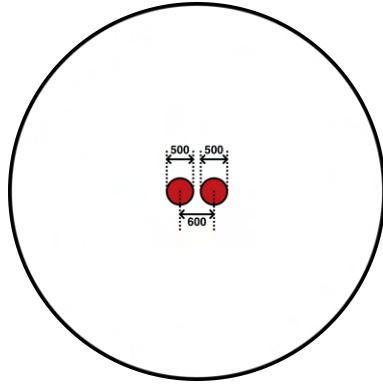


Fig. 4. Cross-section of the double-hole mask with technical dimensions (μm).

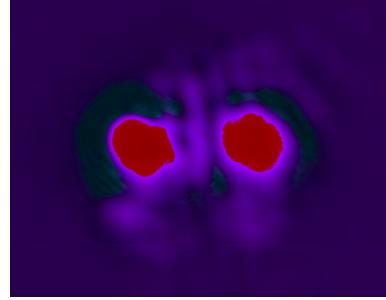


Fig. 5. IDS camera view.

140 detected by the camera.

141 **3.2. Software**

142 The system is accompanied by supporting software, that determines the spot distances and adapts
 143 the z-position of the motorized stage when focus is lost. Briefly, as the IDS camera captures
 144 images, the software computes the center of the two spots using a center-of-mass algorithm based
 145 on the pixel intensities and calculates the distance between the centers of the two spots (using
 146 Figure 6). When, during an experiment, the automatic focus system is enabled and the calculated
 147 distance between the centers of the two spots changes, the algorithm sends an instruction to the
 148 actuated stage or objective to adapt its z-position proportional to the distortion of the computed
 149 distance. The software supports any motorized stage or objective positioner compatible with
 150 Micromanager [17, 18]. Currently, IDS cameras are used for spot detection but others can be
 151 added easily. Figure 7 shows the graphical user interface (GUI) of the software.

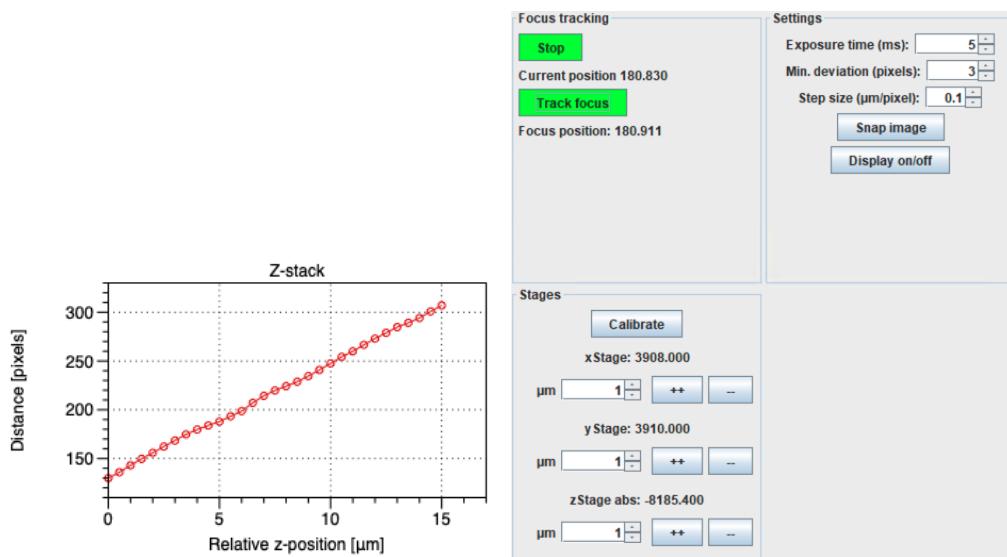


Fig. 6. Z-stack of the autofocus system.

Fig. 7. Graphical User Interface (GUI).

152 4. Experiments and Results

153 4.1. Stability Against Drift

154 We have validated our z-drift correction system by visualizing the mitigation of temperature-
155 dependent drift on a fluorescence microscope. As a sample, we have used sparsely dispersed 200
156 nm Tetraspeck beads. We use an UMPlanFI 50 \times objective, with a numerical aperture of 0.80.
157 The Spectra X light source is set to 50% at a band centered around 542 nm, a Chroma ZT561RDC
158 dichroic filter(D3) and Chroma HQ572lp emission filter(ND3) are used. The exposure time is
159 0.1 s, and the maximal allowable deviation is set to 0.2 μ m. In order to study Z-drift we use a
160 time-lapse experiment, imaging every second, while the temperature is varied between 32°C and
161 45°C using the Okolab H301-T-UNIT-BL-PLUS stage top incubator. When the automated focus
162 detection- and correction system is disabled, we clearly see the impact of the varying temperature
163 on the z-position and the related focus of the sample: Figure 8 shows that the sample moves out
164 of focus when the temperature is changing. The z-position and focusing distance change similarly
165 and do not stay between the bounds (green and purple) that were set for the sample to be in focus.

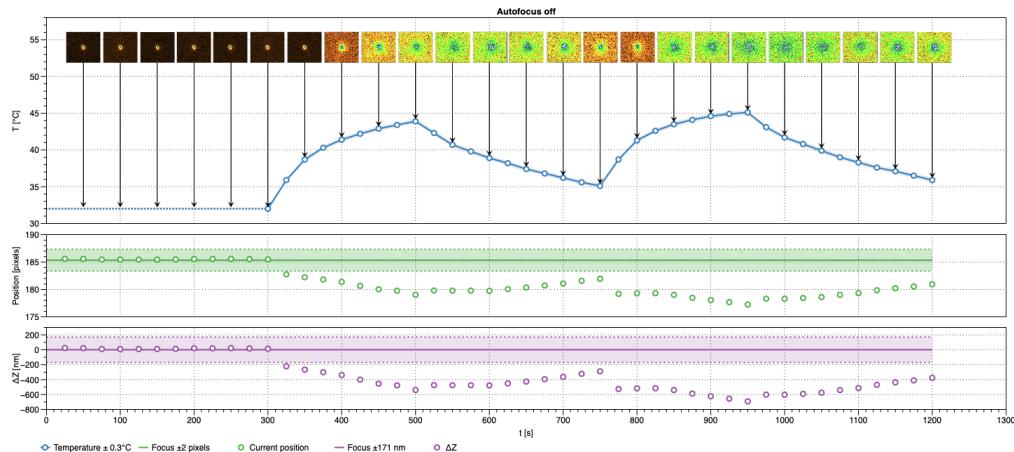


Fig. 8. Time-lapse experiment with autofocus deactivated.

166 When we repeat the same experiment with the focus detection- and correction system enabled,
167 Figure 9 shows that the images remain in focus. The focusing distance and z-position also stay
168 between the predefined desired bounds. Similar results were achieved with a UPlanSApo 10 \times
169 objective with a numerical aperture of 0.40 and a working distance of 3.1mm (data not shown).

170 4.2. Stability Against Focus Perturbations

171 To study the stability of our system on focus perturbations, we image COS-7 cells expressing
172 a fluorescent protein (detailed in Appendix B). We use an UMPlanFI 50 \times objective, with a
173 numerical aperture of 0.80. During fluorescent imaging, the Spectra X light source is set to 10%
174 at a band centered around 438 nm and a Chroma ZT561RDC dichroic filter (D3) and Chroma
175 HQ572LP emission filter (ND1) are used. During focus tracking, the Chroma T455LP dichroic
176 filter (D3) is used instead. The exposure time is set to 5s, and the maximal allowable deviation to
177 0.25 μ m. Next, we loop over four distinct positions (Figure 11) and at each position we perturb
178 the z-focus by a known amount. Then, we give the automatic focus detection- and correction
179 system 20s to re-find focus. After these 20s, we change the dichroic filter (D3) and acquire
180 an image of the cells. For each of the positions, we defined the ideal focusing distance before
181 starting the experiment.

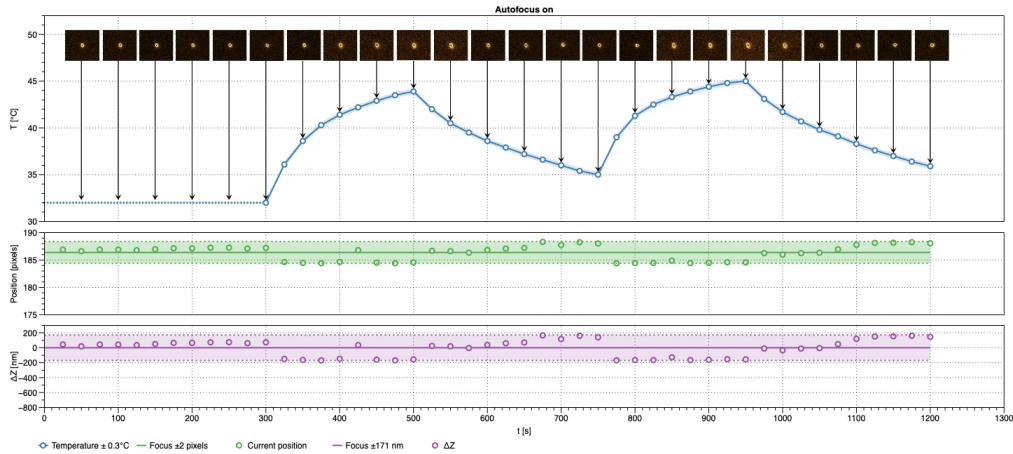


Fig. 9. Time-lapse experiment with autofocus activated.

182 The results for one position are summarized in Figure 10 and Figure 12. The top row of
 183 Figure 10 shows the acquired images for different amounts of defocus with the focus detection-
 184 and correction system disabled. In the lower row, the automatic focus detection- and correction
 185 system is enabled and the sample nicely stays in focus, even when moving a 500 μm away from
 186 the desired focusing position.

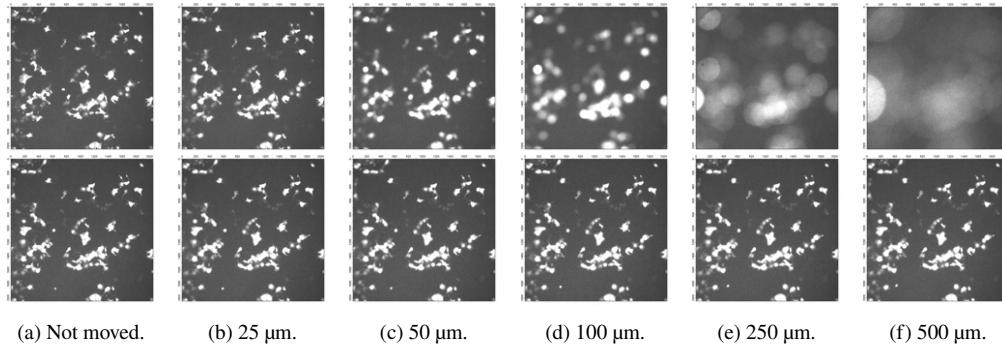


Fig. 10. Acquired images for the experiment with cos7 cells for a single position. The first row shows the images when the automatic focusing system is off; in the second row it is on. In the respective images, we have moved down the z-position of the sample with the indicated amount.

187 Figure 12 shows the distance measured between the detected spots from the infrared beams as
 188 a function of time after a perturbation in units of camera pixels (one camera pixel corresponds to
 189 0.85 μm in the sample). The red dotted horizontal bars show the desired range for the distance
 190 between the spots for which the sample is considered to be in focus. The desired focusing distance
 191 is 244.0 pixels with a minimal deviation of 0.5 pixels. The blue line shows the movement of the
 192 spots when adapting to the desired focusing distance. The first local minimum in the curve is
 193 caused by the delay of the stage moving to the desired position. The second local minimum in
 194 the curve occurs when we perturb the z-focus (here by 50 μm) and give the autofocus system
 195 time to adapt. It finds back its desired focus within about 5 seconds.

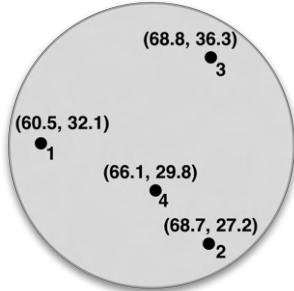


Fig. 11. Four positions on the coverslip for imaging the COS-7 cells.

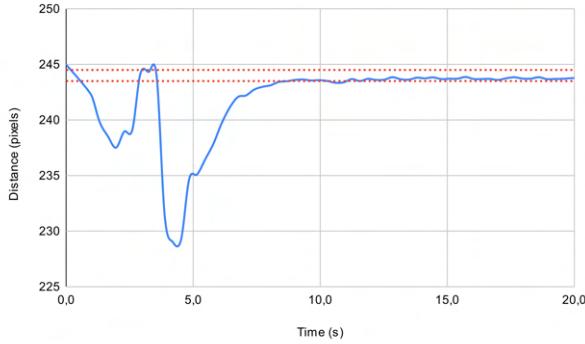


Fig. 12. Focusing distance in function of time for position 1 (move 50 μ m).

196 5. Conclusion

197 We have described and built an automated out-of-focus detection- and correction system that is
198 compatible with any microscope that has an actuated stage or objective. This automatic focusing
199 system keeps a sample in focus during time-lapse experiments where z-drift occurs. The proposed
200 system is cost-effective and robust, using a back-reflected infrared beam to detect the z-position
201 of the stage or objective. The system is modular and can be easily extended with additional
202 hardware components or added to a different microscope. In this case it is implemented as an
203 aftermarket non-invasive add-on for a microscope where it shares the conventional detection
204 path.

205 Acknowledgements

206 Robin Van den Eynde thanks the FWO for a doctoral fellowship.

207 References

1. S. Yazdanfar, K. B. Kenny, K. Tasimi, A. D. Corwin, E. L. Dixon, and R. J. Filkins, "Simple and robust image-based autofocusing for digital microscopy," *Opt. Express* **16**, 8670–8677 (2008).
2. S. Li, X. Cui, and W. Huang, "High resolution autofocus for spatial temporal biomedical research," *The Rev. scientific instruments* **84**, 114302 (2013).
3. Y. Liron, Y. Paran, N. Zatorsky, B. Geiger, and Z. Kam, "Laser autofocus system for high-resolution cell biological imaging," *J. microscopy* **221**, 145–51 (2006).
4. A. Pertsinidis, Y. Zhang, and S. Chu, "Subnanometre single-molecule localization, registration and distance measurements," *Nature* **466**, 647–51 (2010).
5. "TruFocus z drift compensator," [https://www.olympus-lifescience.com/en/microscopes/inverted/ix83/trufocus/#!cms\[focus\]=cmsContent6373](https://www.olympus-lifescience.com/en/microscopes/inverted/ix83/trufocus/#!cms[focus]=cmsContent6373). Accessed: 2021-12-15.
6. "Leica adaptive focus control (afc)," <http://major2020.syis.com.tw/webfiles/40a7c99d-a81e-4617-9fd4-87531a9b59c8.pdf>. Accessed: 2021-12-15.
7. "The nikon perfect focus system (pfs)," <https://www.microscopyu.com/tutorials/the-nikon-perfect-focus-system-pfs>. Accessed: 2021-12-15.
8. W. Liu, Z. Zhong, and J. Ma, "Simple way to correct the drift in surface-coupled optical tweezers using the laser reflection pattern," *Opt. Express* **29**, 18769–18780 (2021).
9. M. Bathe-Peters, P. Annibale, and M. J. Lohse, "All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected ir laser," *Opt. Express* **26**, 2359–2368 (2018).
10. J. Luo, Y. Liang, and G. Yang, "Dynamic scan detection of focal spot on nonplanar surfaces: Theoretical analysis and realization," *Opt. Eng. - OPT ENG* **50** (2011).
11. B. Cao, P. Hoang, S. Ahn, J.-O. Kim, H. Kang, and J. Noh, "In-situ real-time focus detection during laser processing using double-hole masks and advanced image sensor software," *Sensors* **17** (2017).
12. W.-Y. Hsu, C.-S. Lee, P.-J. Chen, N.-T. Chen, F.-Z. Chen, Z.-R. Yu, C.-H. Kuo, and C.-H. Hwang, "Development of the fast astigmatic auto-focus microscope system," *Meas. Sci. Technol.* **20**, 045902 (2009).

232 13. C.-S. Liu, P.-H. Hu, Y.-H. Wang, S.-S. Ke, Y.-C. Lin, Y.-H. Chang, and J.-B. Horng, “Novel fast laser-based
233 auto-focusing microscope,” in *SENSORS, 2010 IEEE*, (IEEE, 2010), pp. 481–485.

234 14. C.-S. Liu, P.-H. Hu, and Y.-C. Lin, “Design and experimental validation of novel optics-based autofocus
235 microscope,” *Appl. Phys. B* **109**, 259–268 (2012).

236 15. C. Gu, H. Cheng, K. Wu, L.-J. Zhang, and X.-P. Guan, “A high precision laser-based autofocus method using biased
237 image plane for microscopy,” *J. Sensors* **2018**, 8542680:1–8542680:6 (2018).

238 16. C.-S. Liu, K.-W. Lin, and S.-H. Jiang, “Development of precise autofocus microscope based on reduction of
239 geometrical fluctuations,” in *2012 Proceedings of SICE Annual Conference (SICE)*, (IEEE, 2012), pp. 967–972.

240 17. A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of
241 microscope control using μ manager software.” *J. biological methods* **1** 2 (2014).

242 18. A. D. Edelstein, N. Amodaj, K. Hoover, R. D. Vale, and N. Stuurman, “Computer control of microscopes using
243 μ manager,” *Curr. Protoc. Mol. Biol.* **92** (2010).

244 19. J. Fischer, D. Renn, F. Quitterer, A. K. Radhakrishnan, M. Liu, A. A. Makki, A. Rajjaka, S. A. Ghoprade, M. Rueping,
245 T. Arold, M. Groll, and J. Eppinger, “A robust and versatile host protein for the design and evaluation of artificial
246 metal centers,” *ACS Catal.* **9**, 11371–11380 (2019).