

1 **Title:** Induction of AmpC-mediated β -lactam resistance requires a single lytic transglycosylase
2 in *Agrobacterium tumefaciens*
3

4 **Authors:**

5 Wanda M. Figueroa-Cuilan^{1*}, Matthew Howell^{1&}, Christopher Richards¹, Amelia Randich^{1^#},
6 Akhilesh K. Yadav^{2\$}, Felipe Cava², and Pamela J.B. Brown^{1#}

7

8 **Affiliations:**

9 ¹Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, 65202

10 ²Laboratory for Molecular Infection Medicine, Department of Molecular Biology, Umeå University,
11 Umeå, Sweden

12

13 **Running title:** AmpC-mediated β -lactam resistance of *A. tumefaciens*

14

15 **#Corresponding author:**

16 brownpb@missouri.edu

17 (573) 884-0384

18

19 **Present addresses:**

20 *Department of Biological Chemistry, Johns Hopkins University School of Medicine,
21 Baltimore, Maryland 21205

22 [&]Department of Biology, Westminster College, Fulton, Missouri 65251

23 ^{\$}Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, India

24 [^]Department of Biology, The University of Scranton, Scranton, Pennsylvania, 18510

25 **ABSTRACT**

26 The remarkable ability of *Agrobacterium tumefaciens* to transfer DNA to plant cells has
27 allowed the generation of important transgenic crops. One challenge of *A. tumefaciens*-
28 mediated transformation is eliminating the bacteria after plant transformation to prevent
29 detrimental effects to plants and the release of engineered bacteria to the environment. Here
30 we use a reverse genetics approach to identify genes involved in ampicillin resistance with the
31 goal of utilizing these antibiotic-sensitive strains for plant transformations. We show that
32 treating *A. tumefaciens* C58 with ampicillin led to increased β -lactamase production, a
33 response dependent on the broad-spectrum β -lactamase AmpC and its transcription factor
34 AmpR. Loss of the putative *ampD* orthologue, *atu2113*, led to constitutive production of
35 AmpC-dependent β -lactamase activity and ampicillin resistance. Finally, one cell wall
36 remodeling enzyme, MltB3, was necessary for the AmpC-dependent β -lactamase activity and
37 its loss elicited ampicillin and carbenicillin sensitivity in the *A. tumefaciens* C58 and GV3101
38 strains. Furthermore, GV3101 $\Delta mltB3$ transforms plants with comparable efficiency to
39 wildtype but can be cleared with sub-lethal concentrations of ampicillin. The functional
40 characterization of the genes involved in the inducible ampicillin resistance pathway of *A.*
41 *tumefaciens* constitutes a major step forward in efforts to reduce the intrinsic antibiotic
42 resistance of this bacterium.

43

44 **IMPORTANCE**

45 *Agrobacterium tumefaciens*, a significant biotechnological tool for production of transgenic
46 plant lines, is highly resistant to a wide variety of antibiotics, posing challenges for various
47 applications. One challenge is the efficient elimination of *A. tumefaciens* from transformed

48 plant tissue without using levels of antibiotics that are toxic to the plants. Here, we present the
49 functional characterization of genes involved in β -lactam resistance in *A. tumefaciens*.
50 Knowledge about proteins that promote or inhibit β -lactam resistance will enable the
51 development of strains to improve the efficiency of *Agrobacterium*-mediated plant genetic
52 transformations. Effective removal of *Agrobacterium* from transformed plant tissue has the
53 potential to maximize crop yield and food production, improving the outlook for global food
54 security.

55

56 **Keywords**

57 Antibiotic resistance, *Agrobacterium tumefaciens*, β -lactamases, anhydro amidases,
58 membrane-bound lytic transglycosylases, ampicillin, plant transformation

59

60 **INTRODUCTION**

61 Rhizobiaceae is a family of bacteria that include soil-dwelling and plant associated bacteria.
62 While some species of this family have the ability to establish symbiotic relationships with
63 plants, others are pathogenic such as the genus *Agrobacterium*. Members of this genus are
64 responsible for a number of diseases, including the cane gall disease (*Agrobacterium rubi*),
65 hairy root disease (*Agrobacterium rhizogenes*), crown gall disease of grapes (*Agrobacterium*
66 *vitis*), and crown gall disease to flowering plants and woody shrubs (*Agrobacterium*
67 *tumefaciens*) (1–5). In nature, *A. tumefaciens* causes crown gall by adhering to wounded
68 plants and injecting a section of a bacterial DNA plasmid (Transfer DNA [T-DNA]) that
69 integrates into the plant chromosomes (1–3, 6–11). Expression of genes on the T-DNA
70 segment causes the plant to produce custom energy sources that only *Agrobacterium* can

71 use (9, 10). The increased abundance of energy sources within plant cells leads to their over-
72 proliferation and eventual gall formation (6). Gall formation on plants and trees leads to crop
73 damage, and significant economic losses have been attributed to this issue every year (2, 3).

74 While the genus *Agrobacterium* exhibits pathogenicity against plants, the natural ability
75 of *Agrobacterium* to transfer DNA to plants has been exploited to produce transgenic plants
76 through genetic engineering (6, 9, 11–13). However, one challenge for *A. tumefaciens*-
77 mediated plant transformations is the elimination of the bacteria from the transformed plant
78 tissue. Elimination of recombinant *A. tumefaciens* from plant tissues is crucial to prevent
79 detrimental effects to plants and to reduce the risk of releasing engineered bacteria into the
80 environment (14–16). β -lactam antibiotics are frequently applied during plant transformations
81 to eliminate *A. tumefaciens* from plant tissues and are preferred over other classes of
82 antibiotics (17–19). Because β -lactams target cell wall synthesis, a process unique to
83 bacteria, and they are less toxic to eukaryotic plant cells than antibiotics that inhibit protein or
84 nucleic acid synthesis (20, 21). However, the natural resistance of *A. tumefaciens* to β -
85 lactams can be only overcome with toxic levels (~200-1000 mg/L), which has been shown to
86 cause embryogenic tissue necrosis, or to affect plant tissue growth and regeneration rates in
87 a wide variety of plants (17, 18, 22–28). Moreover, depending on the concentration and class
88 of β -lactam, clearing *Agrobacterium* from embryos can take up to 60 days, yet, in some
89 cases, complete elimination of *A. tumefaciens* is not achieved (29). Thus, currently, there is a
90 need for the identification and understanding of regulatory pathways and enzymes involved in
91 β -lactam resistance in *A. tumefaciens*. Functional characterization of bacterial enzymes
92 involved in β -lactam resistance will permit the development of tools that could improve the

93 efficiency of plant genetic transformations, and therefore maximize crop yields and food
94 production.

95 β -lactam antibiotics target the bacterial cell wall by inhibiting the activity of Penicillin
96 Binding Proteins (PBPs); the enzymes involved in the synthesis of the bacterial peptidoglycan
97 (PG) cell wall (30–38). The bacterial PG cell wall is an essential polymer consisting of
98 alternating *N*-acetylglucosamine (GlcNAc) and *N*-acetylmuramic acid (MurNAc) sugars
99 crosslinked through peptide bridges (39–44). Because the PG cell wall is a covalently-
100 enclosed polymer, its expansion not only requires cell wall synthesis but also remodeling. Cell
101 wall remodeling is mediated by PG degradation enzymes such as the lytic transglycosylases
102 (LT) (45–48). To allow cell wall expansion, LTs cleave between the MurNAc and GlcNAc
103 sugar strands resulting in the formation of 1,6-anhydroMurNAc GlcNAc on glycan strands and
104 the liberation of 1,6-anhydromuropeptides (AnhMP) cell wall degradation fragments. The
105 liberated AnhMP fragments are transported to the bacterial cytoplasm for cell wall recycling
106 (42, 49, 50). In the cytoplasm, the recycling of AnhMP fragments keeps the concentration of
107 these products low (51, 52). However, cell wall stressors such as treatment with β -lactam
108 antibiotics or mutations that inhibit the cell wall recycling pathway result in the accumulation of
109 AnhMP cell wall degradation fragments and derepression of β -lactamases (34, 50, 53–56). In
110 bacteria including *Pseudomonas aeruginosa* and *Enterobacter cloaceae*, the AnhMP cell wall
111 degradation fragments are transcriptional activators of inducible β -lactamases, which are
112 enzymes that cleave and inactivate β -lactam antibiotics (57–63).

113 In the soil environment, many soil microorganisms produce antibiotics to compete for
114 survival, selecting for intrinsic resistance pathways in soil pathogens. For example, the
115 genomes of many soil bacteria contain β -lactamases, such as the cephalosporinase AmpC

116 (34, 64). As a cephalosporinase, AmpC is known to destroy β -lactam antibiotics including
117 monobactams, cephalosporins, and penicillins (34). The AmpC consensus protein sequence
118 consists of a signal sequence for periplasmic transport and a β -lactamase catalytic domain
119 (**Fig. S1A**). The regulation of AmpC expression varies across bacteria. In *Escherichia coli*,
120 AmpC is a non-inducible β -lactamase that is expressed at low levels and regulated by a
121 promoter and a growth rate-dependent attenuator mechanism (65–67). In contrast, in *P.*
122 *aeruginosa* and some enterobacteria, AmpC is normally expressed at low levels, but is
123 inducible and can be derepressed during exposure to β -lactams (34, 60, 68). In these cases,
124 AmpC expression is regulated by AmpR, a LysR-type transcriptional regulator found in an
125 operon with AmpC (60). AmpR consists of two domains; a Helix-Turn-Helix DNA-binding
126 domain (DBD) that binds the intergenic region between AmpC and AmpR, and a LysR
127 effector-binding domain (EBD), which contains the regulatory region of AmpR (**Fig. 1A, Fig.**
128 **S1A**) (57). AmpR is a bifunctional transcriptional regulator that controls both the activation
129 and repression of AmpC (60). The induction mechanism of AmpC by AmpR in response to β -
130 lactams is linked to bacterial cell wall synthesis, remodeling, and recycling (34, 50, 53, 57, 62,
131 69). Indeed, the AnhMur cell wall degradation fragments released by LTs during cell growth,
132 are AmpR-activating molecules. In contrast, cell wall building blocks such as UDP-GlcNAc
133 MurNAc pentapeptides bind to AmpR and repress *ampC* transcription (**Fig. 1A**). A block in
134 bacterial cell wall synthesis after exposure to β -lactams results in accumulation of AnhMur cell
135 wall degradation products in the bacterial cytoplasm, displacement of the AmpR repressor
136 UDP-GlcNAc MurNAc pentapeptide, activation of AmpR, and transcription of *ampC* (**Fig. 1A**).
137 The genus *Agrobacterium* is naturally resistant to β -lactams and the molecular basis for
138 this resistance is poorly understood. A study that screened for β -lactamase production in *A.*

139 *tumefaciens* detected cephalosporinase production (70) and identified one putative
140 cephalosporinase, an AmpC homolog (*atu3077*), in the *A. tumefaciens* genome. In addition,
141 similar to *Enterobacteriaceae* and *Pseudomonadales*, *ampC* is found in an operon with *ampR*
142 in most *Agrobacterium* genomes (**Fig. 1A**). Here, we sought to determine if AmpC is a
143 functional β -lactamase, if AmpC is inducible, and if the natural ampicillin resistance observed
144 in *A. tumefaciens* is dependent on AmpC.

145 We present a functional characterization of proteins involved in intrinsic ampicillin
146 resistance in *A. tumefaciens*. We find that AmpR is required for AmpC-dependent β -
147 lactamase activity and that loss of the anhydro-amidase AmpD (*atu2113*, misannotated as an
148 AmiD homolog in the genome (71)) leads to increased resistance to ampicillin, a process
149 dependent on AmpC. We suggest that AmpD is required for proper recycling of cell wall
150 degradation products and its loss results in the accumulation of cell wall degradation products
151 and activation of AmpC by AmpR. Furthermore, we find that a single LT, the membrane-
152 bound lytic transglycosylase B3 (MltB3), is necessary for AmpC-dependent β -lactamase
153 activity and its loss leads to ampicillin sensitivity in the *A. tumefaciens* C58 and GV3101
154 strains. Finally, transformation of *Arabidopsis thaliana* utilizing a $\Delta mltB3$ GV3101 strain
155 requires significantly lower concentrations of ampicillin while exhibiting similar WT
156 transformation efficiency. This work underscores the significance of understanding the β -
157 lactam resistance pathway of *A. tumefaciens* with the aim of expanding tools for the *A.*
158 *tumefaciens*-mediated transformations.

159

160 **RESULTS AND DISCUSSION**

161 **The AmpC-AmpR operon is responsible for inducible ampicillin resistance in *A.***

162 ***tumefaciens* C58**

163 To begin our characterization, we first assessed the susceptibility of *A. tumefaciens* to
164 different concentrations of ampicillin near the minimum inhibitory concentration (MIC) reported
165 for *A. tumefaciens* on solid and liquid media (72). We found that cells grown in LB with 25 or
166 50 µg/mL ampicillin (AMP 25 or AMP 50, respectively) for 24 h displayed slow growth in liquid
167 medium in comparison to cells grown in LB without ampicillin (No AMP) (**Fig. 1B**). To better
168 understand the cause of this growth defect, we performed phase-contrast microscopy of cells
169 treated with AMP 25 for 2 h (**Fig. S1B**). We found that treatment with AMP 25 causes a
170 significant increase in the median cell length (**Fig. S1C**) and that 23.5% of the cells were
171 undergoing cell lysis (**Fig. 1C, Fig. S1B**), confirming that the bactericidal effect of AMP 25 on
172 WT *A. tumefaciens* is the cause of the overall decrease in optical density. Similarly, WT cells
173 grown on AMP 25 solid medium for 36 h have a viability defect in comparison to WT cells
174 grown in LB No AMP (**Fig. 1D**). The increased sensitivity of WT *A. tumefaciens* to ampicillin in
175 the presence of sulbactam, a broad spectrum β -lactamase inhibitor, suggests that β -
176 lactamase production is responsible for the observed ampicillin resistance (**Fig. 1E**). Finally,
177 to determine if β -lactamase production is induced, we treated WT cells with AMP 25 for 2 h,
178 generated whole cell lysates, and performed nitrocefin assays on total protein content (**Fig.**
179 **1F**). Nitrocefin is a chromogenic substrate related to the cephalosporins that undergoes a
180 color change when is hydrolyzed by β -lactamases (73). After treatment of WT cells with AMP
181 25 for 2 h, the activity of β -lactamases is readily detected in lysates using nitrocefin assays
182 (**Fig. 1F**). Together, these results suggest that *A. tumefaciens* C58 β -lactamase production is
183 induced in the presence of β -lactams such as ampicillin. To assess the contributions of
184 putative enzymes involved in ampicillin resistance, we employed a reverse genetics approach

185 (74).

186 The *ampC* ortholog of *A. tumefaciens* C58 (*atu3077*) is present on the linear
187 chromosome and encodes the only putative inducible β -lactamase in the genome of *A.*
188 *tumefaciens* C58 (34). *ampC* is syntenic with *ampR* and the *A. tumefaciens* AmpC and AmpR
189 proteins are 74.7% and 85.9% similar to their respective orthologs from *P. aeruginosa*. To
190 determine the role of AmpC, we deleted *ampC* (*atu3077*) from the *A. tumefaciens* C58
191 genome. Deletion of *ampC* does not impact cell growth and cell viability (**Fig. 1B, 1D**) or cell
192 morphology (**Fig. S1B**), beyond a slight increase in cell length (**Fig. S1C**). To pinpoint the
193 contribution of *ampC* to ampicillin resistance, we assessed the growth dynamics of Δ *ampC*
194 cells in the presence of AMP in liquid (**Fig. 1B**). Δ *ampC* cells treated with AMP 25 or AMP 50
195 for 24 h show a severe growth defect indicating that AmpC contributes to ampicillin
196 resistance. Similarly, deletion of *ampC* results in severe growth viability defect on solid
197 medium containing AMP 25 (**Fig 1D**). Production of plasmid-encoded AmpC in Δ *ampC*
198 restores growth and viability in the presence of AMP 25 (**Fig 1D**). In addition, Δ *ampC* cells
199 treated with AMP 25 exhibit cell division defects (34.8%) and cell lysis (15.8%) (**Fig. 1C, Fig.**
200 **S1B**). The increased cell length of Δ *ampC* treated with AMP 25 is likely due to the observed
201 cell division defects (**Fig. S1B-C, Fig 1C**).

202 To confirm that ampicillin resistance is mediated by the AmpC β -lactamase, we used
203 the disc diffusion assay to compare resistance levels to ampicillin in the presence and
204 absence of the broad-spectrum β -lactamase inhibitor, sulbactam (**Fig. 1E**). As expected,
205 Δ *ampC* leads to increased sensitivity to ampicillin and the presence of sulbactam does not
206 result in large increases in the zone of growth inhibition (**Fig. 1E**). Furthermore, monitoring the
207 rates of nitrocefin hydrolysis show that production of β -lactamase is readily detected in WT

208 cells treated with AMP 25 but is undetectable in $\Delta ampC$ following AMP25 treatment (**Fig. 1F**).
209 Together, these observations suggest that the natural resistance to ampicillin depends on the
210 presence of AmpC, which functions as an inducible β -lactamase.

211 We hypothesized that if transcription of *ampC* is strictly controlled by AmpR, deletion of
212 *ampR* should mimic deletion of *ampC*. To test this hypothesis, we deleted *ampR* (*atu3078*)
213 from the genome of *A. tumefaciens* C58. Deletion of *ampR* does not impact cell growth (**Fig.**
214 **1B**), morphology (**Fig. S1B**), cell length (**Fig. S1C**) or cell viability (**Fig. 1D**) in LB. Low
215 concentrations of ampicillin in either liquid or solid medium are lethal to $\Delta ampR$ and results in
216 similar cell division defects and cell lysis as $\Delta ampC$ (**Fig. 1B-C**, **Fig. S1B**). Production of
217 plasmid encoded AmpR restores the viability of $\Delta ampR$ on solid medium with AMP25 (**Fig**
218 **1D**). Like $\Delta ampC$, $\Delta ampR$ fails to produce detectable β -lactamase activity when treated with
219 AMP 25 (**Fig. 1F**). Together, these results suggest that AmpR and AmpC contribute to
220 ampicillin resistance in *A. tumefaciens*. Based on agreement with the general mechanism of
221 characterized AmpR-AmpC pathways, we hypothesize that AmpR is necessary for induction
222 of the AmpC β -lactamase in the presence of ampicillin.

223
224 **Loss of AmpD derepresses β -lactamases in *A. tumefaciens* C58.**
225 The finding that AmpC and AmpR are necessary for ampicillin resistance in *A. tumefaciens*
226 C58 led us to explore how the pools of different cell wall fragments would alter the AmpC-
227 mediated β -lactamase induction. Similar to exposure to β -lactams, loss of cell wall recycling
228 amidases has been shown to increase the AmpR-activating fragments (cell wall degradation
229 fragments) in the cytoplasm, resulting in the transcriptional derepression of *ampC* and β -
230 lactam resistance (48, 75–78). The genome of *A. tumefaciens* contains one 1,6-anhydro

231 amidase ortholog, *atu2113*, reannotated here as AmpD. The domain organization of AmpD
232 consists of the Amidase_2 (Ami_2) catalytic domain and a PG-binding domain (PBD) that
233 facilitates the interaction with cell wall products (**Fig. S2A**) (45, 48). *A. tumefaciens* AmpD
234 exhibits 64.4% sequence similarity to AmpDh2, one of three broad-spectrum 1,6-anhydro
235 amidase AmpDh paralogs found in *Pseudomonas aeruginosa* (54, 56, 77, 79).

236 Given that in *A. tumefaciens* ampicillin triggers the AmpC-dependent production of β -
237 lactamases, we hypothesized that if AmpD was an anhydro amidase involved in the recycling
238 of cell wall degradation fragments, its loss should result in increased AmpR-activating
239 fragments in the cytoplasm, β -lactamase induction, and ampicillin resistance. First, we found
240 that Δ *ampD* cells exhibit normal cell viability (**Fig. 2A**), cell growth (**Fig. 2B**), and morphology
241 (**Fig. S2B-C**). Δ *ampD* is highly resistant to ampicillin (**Fig. 2A**). Indeed, WT cells spotted on
242 AMP 160 are not viable, whereas Δ *ampD* spotted on AMP 160 only displays a ~10-fold
243 decrease in viability compared to untreated cells. In contrast, production of *ampD* from an
244 IPTG-inducible plasmid (+pAmpD) resulted in a 100,000-fold decrease in viability in the
245 presence of AMP 100 (**Fig. 2A**). In liquid, Δ *ampD* cells continue to grow normally, even in the
246 presence of AMP 100 (**Fig. 2B**) and ampicillin treatment does not trigger obvious
247 morphological changes or cell lysis (**Fig. S2B-C, Fig. 2C**). Δ *ampD* produces readily
248 detectable amounts of β -lactamase production in both the presence and absence of ampicillin
249 (**Fig. S2D**). The increased zone of inhibition observed in the presence of ampicillin and
250 sulbactam is consistent with the high level of ampicillin resistance observed in Δ *ampD* being
251 mediated by a β -lactamase (**Fig. 2D**). Together, these results indicate loss of AmpD leads to
252 derepression and increased β -lactamase activity. Our findings are consistent with other
253 bacterial models such as *P. aeruginosa*, where deletion of 1,6-anhydro amidases involved in

254 the recycling of AmpR-activating ligands leads to increased β -lactamase expression (53–56)
255 due to the build-up of activating ligands in the cytoplasm.

256

257 **AmpC is constitutively produced in $\Delta ampD$**

258 We have shown that AmpC and AmpR are required for ampicillin resistance (**Fig. 1**), and loss
259 of AmpD leads to elevated β -lactamase activity and ampicillin resistance in *A. tumefaciens*
260 C58 (**Fig 2**). To confirm that AmpC is the β -lactamase produced by the $\Delta ampD$ strain, we
261 deleted *ampC* or *ampR* in the $\Delta ampD$ background (**Fig. 3**). In the absence of ampicillin, we
262 found that $\Delta ampC\Delta ampD$ and $\Delta ampR\Delta ampD$ display normal cell viability, growth, and
263 morphology (**Fig. 3A-B, Fig S3A-B**). We found that treatment with AMP 25, on either solid
264 medium or liquid medium, is lethal to $\Delta ampC\Delta ampD$ or $\Delta ampR\Delta ampD$ (**Fig. 3A, Fig. S3A**).
265 Treatment of $\Delta ampC\Delta ampD$ or $\Delta ampR\Delta ampD$ with AMP 25 for 2 h results in lysis of 22.9%
266 and 33.8% of the cells in comparison to untreated cells (No AMP), where lysis is not readily
267 observed (**Fig. 3B, Fig S3B**). In comparison to $\Delta ampC$ or $\Delta ampR$, where cell division defects
268 are observed in >20% of the population, very few $\Delta ampC\Delta ampD$ or $\Delta ampR\Delta ampD$ cells
269 exhibit cell division defects when treated with AMP 25 (**Fig. 3B**). The low incidence of cell
270 division defects observed in $\Delta ampC\Delta ampD$ or $\Delta ampR\Delta ampD$ suggests that the activity of
271 AmpD contributes to the inefficient cell division of $\Delta ampC$ and $\Delta ampR$ cells following
272 ampicillin treatment. Finally, to assess whether the $\Delta ampD$ strain could induce β -lactamase
273 production in the absence of *ampC* or *ampR*, we performed nitrocefin assays. $\Delta ampC\Delta ampD$
274 and $\Delta ampR\Delta ampD$ fail to produce detectable levels of β -lactamase in the absence or
275 presence of AMP 25 (**Fig. 3C**). Together, these results suggest that induction of AmpC is the
276 main cause for the elevated resistance to ampicillin observed in $\Delta ampD$. This data is

277 consistent with the current model for β -lactam resistance in *P. aeruginosa*, where the loss of
278 anhydro amidases leads to accumulation of cell wall degradation products that activate AmpR
279 leading to derepression of AmpC (54–56, 69).

280

281 **Absence of MltB3 (Δ atu3779) leads to a failure of AmpC-dependent induction of β -
282 lactamases**

283 Lytic transglycosylases (LTs) are likely to function as the enzymes that generate the AmpR-
284 activating fragments. Different families of LTs have been linked to β -lactam resistance in
285 several bacterial organisms (80, 81). For instance, in *Caulobacter crescentus* deletion of
286 *sdpA*, a soluble LT, led to increased sensitivity to ampicillin (82). In *P. aeruginosa*, loss of
287 several *mltBs* and/or *slt* led to a decrease in the β -lactam MIC, cell viability, and increased
288 outer membrane permeability (83, 84). Thus, we sought to determine if LTs contribute to β -
289 lactam resistance of *A. tumefaciens*. The *A. tumefaciens* genome consists of 8 putative LTs
290 belonging to 3 families: family 1) the soluble lytic transglycosylases (Slt), 2) membrane-bound
291 lytic transglycosylase A (MltA), and 3) membrane-bound lytic transglycosylase B (MltB) (**Fig.**
292 **S4A**). We found that single deletions of LTs did not affect cell viability, suggesting a wide
293 redundancy of functions between LTs (**Fig. S4B**).

294 Despite the potential for functional redundancy, we found that deletion of a single, family 3,
295 membrane-bound lytic transglycosylase, MltB3 (*atu3779*), causes ampicillin hypersensitivity
296 (**Fig. S4B**). Treatment of Δ *mltB3* with AMP 25 for 2 h causes cell lysis defect (28.8%) (**Fig.**
297 **4A-B**) and results in a severe growth defect (**Fig. 4C**) indicating that MltB3 is required for
298 ampicillin resistance. Production MltB3 from an IPTG-inducible plasmid (+pMltB3) in Δ *mltB3*
299 restores viability in the presence of AMP 25 (**Fig S4B**) confirming that MltB is responsible for

300 this phenotype. Finally, $\Delta mltB3$ exhibits reduced production of β -lactamase after AMP 25
301 treatment for 2 hours (**Fig. 4D**). Together, these results suggest that in *A. tumefaciens*, MltB3
302 is a specialized enzyme that functions in the AmpR-AmpC β -lactamase pathway. These
303 observations contrast with the *P. aeruginosa* model, in which the β -lactam sensitivity of LT
304 mutants is due to increased outer membrane permeability rather than β -lactamase production
305 (83).

306

307 **Plant transformation with $\Delta mltb3$ cells requires a low concentration of ampicillin for**
308 **the elimination of bacteria**

309 Next, we sought to determine if the ampicillin sensitive strains of *A. tumefaciens*
310 constructed in this work are competent for plant transformation. While the $\Delta ampC$ strain
311 appears to be the ideal mutant for these studies, we took into consideration the impact of the
312 mutation on the overall fitness of our ampicillin sensitive strains. $\Delta ampC$ and $\Delta ampR$ growth
313 dynamics are very similar to WT in liquid; however, these strains exhibit a 10-fold viability
314 defect on solid medium. In contrast, $\Delta mltB3$ cells growth dynamics mimic that to WT and lyse
315 quickly in the presence of low concentrations of ampicillin. Thus, we reasoned that the $\Delta mltB3$
316 allele would enable us to test the transformation efficiency of an otherwise fit but ampicillin
317 sensitive *A. tumefaciens* strain. To this end, we deleted *mltB3* in *A. tumefaciens* GV3103 and
318 find that this mutation causes susceptibility to AMP 25 and carbenicillin 15 (CARB 15) (**Fig.**
319 **5A**). To confirm that the absence of MltB3 ($\Delta mltB3$) prevented the induction of β -lactamase
320 production in the GV3101 strain after ampicillin treatment, we performed nitrocefin assays
321 using lysates of cells treated with AMP 25 for 2 h. While β -lactamase activity is readily
322 detected from WT GV3101-treated cells with AMP 25, the $\Delta mltB3$ mutant produces relatively

323 low levels of inducible β -lactamase (**Fig. 5B**). Together, we conclude that MltB3 is the major
324 LT in *A. tumefaciens* C58 and GV3101 that contributes to *A. tumefaciens* natural resistance to
325 ampicillin and other β -lactam antibiotics.

326

327 Next, we confirmed that $\Delta mltB3$ *A. tumefaciens* GV3101 effectively transforms *Arabidopsis*
328 *thaliana* using the standard floral dip technique (85) with an efficiency comparable to WT (**Fig.**
329 **5C**). Next, we asked whether elimination of the bacteria could be performed using low
330 concentrations of ampicillin (AMP 25). Seeds transformed with WT *A. tumefaciens* GV3101
331 contain similar bacterial loads compared to seeds transformed with $\Delta mltb3$ *A. tumefaciens*
332 GV3101 when plated on solid media without ampicillin (**Fig. 5D**). When plated on media
333 containing AMP 25, seeds transformed with $\Delta mltb3$ exhibit a significant drop in bacterial load.
334 In contrast, this low level of ampicillin does not reduce the bacterial load of seeds transformed
335 with WT GV3101 (**Fig. 5D**). These results demonstrate that the $\Delta mltb3$ GV3101 strain is
336 useful for the transformation of *Arabidopsis thaliana* and elimination of the bacteria can be
337 performed using lower concentrations of ampicillin. While ampicillin or carbenicillin are
338 occasionally used for clearing *Agrobacterium* after transformation, many labs routinely use
339 expensive antibiotics such as the proprietary blends of Timenin and Augmentin (86, 87). Our
340 work highlights the ability to clear $\Delta mltB$ cells using ampicillin, a cost-effective and readily
341 available antibiotic. Furthermore, the increased sensitivity of this strain to carbenicillin
342 suggests that bacterial clearance following plant transformation can likely be achieved using
343 other β -lactam antibiotics. Overall, these data show the potential impact of improved
344 understanding the cell biology of *A. tumefaciens* to improve genetic engineering approaches.

345

346 CONCLUDING REMARKS AND FUTURE PERSPECTIVES

347 The natural ability of *A. tumefaciens* to transform plants has allowed the production of
348 transgenic crops of incredible economic importance for the past four decades. One challenge
349 of the *A. tumefaciens*-mediated plant transformation is natural resistance of *A. tumefaciens* to
350 antibiotics, which requires toxic concentrations of antibiotics to eliminate *A. tumefaciens* from
351 transformed tissues. Here we show that *A. tumefaciens* induces β -lactamase activity in
352 response to ampicillin exposure. Indeed, induction of β -lactamase activity upon exposure to
353 ampicillin is dependent on the β -lactamase AmpC and the transcription factor AmpR.
354 Moreover, we found that deletion of a single LT, MltB3, sensitizes *A. tumefaciens* to the β -
355 lactams.

356 We propose that during *A. tumefaciens* growth and remodeling, there is a delicate balance
357 between the synthesis and degradation of the bacterial cell wall. PBPs insert precursor
358 cytoplasmic monomers into the growing cell wall polymer (**Fig 6, steps 1-2**). During
359 remodeling, cell wall hydrolytic enzymes such as such as endopeptidases and LTs, including
360 MltB3, liberate cell wall degradation products, which are transported back into the cytoplasm
361 of *A. tumefaciens* for their recycling (**Fig 6, steps 3-4**). In the cytoplasm, hydrolytic enzymes
362 including L,D-carboxypeptidases (LD-CPases), amidases such as AmpD, and glycosidases
363 limit the pool of cell wall fragments by allowing their recycling (**Fig 6, steps 5-8**). When cell
364 wall degradation fragments accumulate during β -lactam treatment, the AmpR-dependent
365 production of the AmpC β -lactamase is increased (**Fig 6, step 9**). Overall, the identification

366 and contributions of genes conferring ampicillin resistance in *A. tumefaciens* will be beneficial
367 for improving the design of *A. tumefaciens*-mediated genetic engineering.

368

369 MATERIALS AND METHODS

370 **Bacterial strains and growth conditions.** Unless otherwise indicated, *Agrobacterium*
371 *tumefaciens* GV3101, C58, and derived strains were grown in LB medium (10 g/l tryptone, 10
372 g/l yeast extract and 5 g/l NaCl) at 28°C with shaking and the antibiotic kanamycin was added
373 at a concentration of 100 µg/ml to maintain plasmids in complementing strains. For
374 determining bacterial loads after transformation, *Agrobacterium tumefaciens* GV3101 was
375 grown in minimal medium ATGN (88). *E. coli* DH5α and S17.1 were routinely cultivated in LB
376 medium at 37°C with shaking and the antibiotic kanamycin was added at a concentration of
377 50 µg/ml and 25 µg/ml to maintain plasmids in DH5α and S17-1 strains, respectively.

378

379 **Construction of plasmids and strains.** All strains and plasmids used are listed in **Table 1**.
380 Synthesized DNA primers are listed in **Table 2**.

381

382 Gene deletions were achieved by allelic exchange and vectors were constructed as
383 previously described (89). Briefly, 500 base pairs (bp) fragments upstream and downstream
384 of the gene of interest were amplified from purified C58 genomic DNA using primer pairs
385 P1/P2; which amplify 500 bp upstream of the gene of interest, and P3/P4; which amplify the
386 500 bp downstream of the gene of interest. Overlapping PCR was used to merge and amplify
387 the amplicons generated by P1/P2 and P3/P4, using primer pair P1/P4. The 1,000 bp
388 amplicon was digested and ligated into the deletion plasmid, pNTPS139. The deletion

389 plasmids were introduced into *A. tumefaciens* by mating using an *E. coli* S17.1 conjugation
390 strain to create kanamycin (KAN) resistant, sucrose sensitive primary exconjugants. Deletion
391 strains were constructed as described previously (74). Briefly, primary exconjugants were
392 grown overnight at 28°C in ATGN with no selection and plated in ATGN KAN 300 for 48 h at
393 28°C. Colonies were screened by patching for KAN resistance and sucrose sensitivity. Colony
394 PCR using primers P5/P4 were used to confirm that recombination took place and at the
395 region of interest. Next, positive colonies are grown in ATGN at 28°C overnight and plated in
396 ATSN 5% sucrose. Secondary recombinants were screened by patching for sucrose
397 resistance and KAN sensitivity. Colony PCR with primers P5/P6 for the respective gene target
398 was used to confirm deletion. PCR products from P5/P6 primer sets were sequenced to
399 further confirm deletions.

400
401 For the construction of replicating plasmids, the amplicons and pSRKKM-Plac-sfgfp, were
402 digested overnight and ligated overnight at 4°C using NEB T4 DNA ligase and transformed
403 into *E. coli* DH5α. Plasmids were sequenced to verify content and were introduced into *A.*
404 *tumefaciens* by mating using an *E. coli* S17.1 harboring the appropriate plasmid.

405
406
407 **Cell viability spot assays.** The cell viability assay was performed as described (90). For cell
408 viability spot assays, cultures were grown overnight and diluted to an OD₆₀₀ of 0.05 and
409 serially diluted in LB up to 10⁻⁶. 4 µl of each dilution was spotted onto LB plates and incubated
410 at 28°C for 36-40 h before imaging. To determine ampicillin antibiotic resistance, *A.*
411 *tumefaciens* cultures were grown overnight and diluted to an optical density at 600 nm (OD₆₀₀)

412 of 0.05 and serially diluted and spotted onto LB plates containing AMP 25, AMP 100, or AMP
413 160. IPTG-inducible complementing strains were grown overnight in the absence of IPTG and
414 diluted to an OD₆₀₀ of 0.05 and serially diluted and spotted onto LB plates containing 1µM
415 IPTG, Kan 150 µg/ml and AMP 25 or AMP 100.

416

417 **Phase-contrast microscopy.** For phase-contrast microscopy, 0.8 µl of exponentially-grown
418 cultures were spotted onto a 1.25% agarose pad as previously described (90) using a Nikon
419 Eclipse Ti inverted microscope and imaged using a Nikon Plan 60X oil Ph3 objective. Cell
420 length analysis was performed using the MicrobeJ plug-in for Fiji (91). A One-Way analysis of
421 variance (ANOVA) Kruskal-Wallis test with Dunn's post-test was used to compare the
422 indicated strains. Images were prepared using Adobe Photoshop, Adobe Illustrator, and
423 Prism.

424

425 **Growth curves.** For growth curves, exponentially growing cultures were diluted to an OD₆₀₀ =
426 0.2 and 100 µl of dilute culture was added to wells of a 96-well plate. OD₆₀₀ reading were
427 recording using a plate reader at 28°C with shaking every 5-10 min. When indicated,
428 ampicillin was added to a final concentration of AMP 25 or AMP 100. Plots of OD₆₀₀ data
429 represent two technical replicates for each culture measured every 5 minutes for 24-48 h.

430

431 **Disc diffusion assay.** The disc-diffusion assay was used to determine the resistance of
432 *Agrobacterium* to various antibiotics. Cells were grown on LB agar plates. Sterile discs (6.5
433 mm in diameter) were placed on the surface of LB agar plates seeded with overnight culture
434 of indicated strains. We used three different discs: Blank (sterile disc containing no antibiotic),

435 AMP 10 (ampicillin 10 μ g/ml), and AMP 10/SUL 10 (ampicillin 10 μ g/ml sulbactam 10 μ g/ml).
436 The LB agar assay plates used for testing *A. tumefaciens* susceptibility were incubated at
437 28°C for 24-36 h. The assessment of antibacterial activity was based on the measurement of
438 diameter of the zone of inhibition formed around the disc minus the size of the disc. Three
439 independent trials were conducted for each concentration of each antibiotic. A two-way
440 analysis of variance (ANOVA) was used to compare the means.

441

442 **Nitrocefin Assay.** Nitrocefin is a chromogenic substrate for measuring β -lactamase activity.
443 Nitrocefin has an absorbance maximum of 390 nm. Upon hydrolysis of the β -lactam ring by a
444 β -lactamase, the absorbance shifts from 390 nm to 486 nm. By monitoring absorbance at 486
445 nm over time and using Beer's law ($A=\epsilon lc$), we directly measured the rate of β -lactamase
446 hydrolytic activity. In two separate experiments, indicated strains were grown in LB until
447 desired optical densities (OD600) of 0.6 were reached. The cells were then pelleted by
448 centrifugation at 25,900 x g (rotor: Fiberlite F14-6x250y) for 5 minutes and the supernatant
449 collected and washed three times with PBS. Cell lysates were generated by adding the cell
450 lysis buffer BugBuster and sonicating. No lysozyme or protease inhibitors were added. Cell
451 lysates were normalized based on total protein content (7.5 μ g/ml) and volume before
452 incubation in 100 μ M nitrocefin solution in a 200 μ l reaction volume at room temperature in 20
453 mM HEPES, 300 mM NaCl, pH 7.5. BugBuster lysis buffer was used as a blank. $\Delta ampD$
454 lysates were normalized based on total protein content (7.5 μ g/ml) and subsequently diluted
455 to 1:5 as the rate of nitrocefin hydrolysis was significantly faster than the controls (WT, WT
456 AMP 25). Absorbance was immediately measured at 486 nm in 5 second intervals for 300
457 seconds (5 minutes). The change in absorbance (A) was converted to change in

458 concentration (c) of hydrolyzed product by using Beer's law ($A=\epsilon lc$) where the molar extinction
459 coefficient (ϵ) = 20500 M⁻¹ cm⁻¹ and path length (l) = 1 cm. Data plots of one experiment
460 appears in the main figures and the other in the supplementary figures respectively.

461

462 **Construction of *Agrobacterium* strain for plant transformation experiments.** *mltB3* was
463 deleted from the genome of WT *Agrobacterium tumefaciens* GV3101 using the same plasmid
464 and technique used to delete the gene in the strain C58. The resulting strain,
465 GV3101 $\Delta mltB3$, was next transformed by introduction of the empty binary vector, pUBQ10-
466 GW (92) via electroporation. This plasmid confers KAN resistance to
467 the *Agrobacterium* strain, and also contains T-DNA repeat blocks which allow the transfer of
468 BASTA resistance to transformed into *Arabidopsis thaliana*. pUBQ10-GW was also
469 electroporated into wildtype GV3101 as a control.

470

471 ***Arabidopsis thaliana* transformation efficiency.** Plants with a bolt height between 2 and 7
472 centimeters were transformed via the floral dip method (85). 5 plants were transformed on
473 separate days from independent colonies for each C58 and GV3101. Plants were grown in
474 Promix BX (Premier Tech Horticulture) at 23°C, 16 h light/8 h dark, 100–150 $\mu\text{E m}^{-2} \text{s}^{-1}$, and
475 50–70% humidity until seeds were fully developed. Seeds were collected from fully matured
476 plants and store at 4°C at low humidity for one week. Seeds were then surface sterilized in
477 15% bleach containing 0.1% Triton X-100 with gentle rocking for 5 minutes. Seeds were then
478 washed 3 times using sterile water. Seeds were then imbibed in sterile water at 4°C for 3
479 days. Seeds were then sown into soil using conditions listed above. Once seeds developed

480 true leaves BASTA (glufosinate ammonium) was applied via spray at a concentration of
481 10mg/L. After 4 days BASTA was re-applied ensuring only transformed plants survived.

482

483 **Determining bacterial load of transformed *Arabidopsis thaliana* seeds.** Seeds were
484 collected from fully matured transformed plants and stored at 4°C for 1 week with low
485 humidity. Seeds were then surface sterilized in 15% bleach containing 0.1% Triton X-100 with
486 gentle rocking for 5 minutes. Seeds were then washed 3 times using sterile water. 10mg of
487 seeds for each experimental condition were ground with a sterile mortar and pestle. Ground
488 seeds were then suspended in 1mL of sterile water, and serially diluted. 200 μ l of 10⁻¹ dilution
489 was plated on minimal medium ATGN No AMP and AMP 25. Plates were then incubated at
490 28°C before colonies were counted.

491

492 **ACKNOWLEDGEMENTS**

493 We thank the Brown lab for helpful discussions. Research in the Brown lab on *A. tumefaciens*
494 cell growth is supported by the National Science Foundation (IOS1557806). WFC was
495 supported by a Gus T. Ridgel Fellowship.

496

497 **AUTHOR CONTRIBUTIONS**

498 WFC and PJBB conceptualized this work; WFC and CR developed methods; WFC, MH,
499 CR, AMR and AKY performed the experiments and completed data analysis; WFC, AMR, and
500 PJBB wrote the manuscript; WFC, AMR, AKY, FC, and PJBB edited the manuscript; PJBB

501 acquired funding for this work.

502

503 **REFERENCES**

- 504 1. Valentine L, Crops GM. 2003. *Agrobacterium tumefaciens* and the plant: The David and
505 Goliath of modern genetics. *Plant Physiol* 133:948–955.
- 506 2. Escobar MA, Dandekar AM. 2003. *Agrobacterium tumefaciens* as an agent of disease.
507 *Trends Plant Sci* 8:380–386.
- 508 3. Pulawska J. 2010. Crown gall of stone fruits and nuts, economic significance and
509 diversity of its causal agents: Tumorigenic *Agrobacterium* spp. *J Plant Pathol* 92:S87–
510 S98.
- 511 4. Otten L, Burr T, Szegedi E. 2008. *Agrobacterium*: A disease-causing bacterium. Tzfira
512 T, Citovsky V (eds) *Agrobacterium from Biol to Biotechnol* Springer 1–46.
- 513 5. Gelvin SB. 2003. *Agrobacterium*-mediated plant transformation: the biology behind the
514 “gene-jockeying” tool. *Microbiol Mol Biol Rev* 67:16–37.
- 515 6. Nester EW. 2015. *Agrobacterium*: Nature’s genetic engineer. *Front Plant Sci* 5:1–16.
- 516 7. Dessaix Y, Faure D. 2018. Niche construction and exploitation by *Agrobacterium*: How
517 to survive and face competition in soil and plant habitats. *Curr Top Microbiol Immunol*
518 Springer 418.
- 519 8. Singer K. 2018. The mechanism of T-DNA integration: Some major unresolved
520 questions. *Curr Top Microbiol Immunol* 418:287–317.
- 521 9. Tzfira T, Citovsky V. 2000. From host recognition to T-DNA integration: the function of
522 bacterial and plant genes in the *Agrobacterium*-plant cell interaction. *Mol Plant Pathol*
523 1:201–212.

524 10. Gelvin S. 2000. *Agrobacterium* and plant genes involved in T-DNA transfer and
525 integration. *Annu Rev Plant Biol* 51:223–256.

526 11. Tzfira T, Citovsky V. 2006. *Agrobacterium*-mediated genetic transformation of plants:
527 biology and biotechnology. *Curr Opin Biotechnol* 17:147–154.

528 12. Gelvin SB. 2003. *Agrobacterium*-mediated plant transformation: the biology behind the
529 “gene-jockeying” tool. *Society* 67:16–37.

530 13. De La Riva GA, González-Cabrera J, Vázquez-Padrón R, Ayra-Pardo C. 1998.
531 *Agrobacterium tumefaciens*: A natural tool for plant transformation. *Electron J
532 Biotechnol* 1:25–48.

533 14. Leifert C, Cassells AC. 2000. Microbial hazards in plant tissue and cell cultures. *Vitr Cell
534 Dev Biol* 37:133–138.

535 15. Mogilner N, Zutra D, Gafny R, Bar-Joseph M. 1993. The persistence of engineered
536 *Agrobacterium tumefaciens* in agroinfected plants. *Mol plant-microbe Interact MPMI*.

537 16. Matzk A, Mantell S, Schiemann J. 1996. Localization of persisting agrobacteria in
538 transgenic tobacco plants. *Mol Plant-Microbe Interact*.

539 17. Hammerschlag FA, Zimmerman RH, Yadava UL, Hunsucker S, Gercheva P. 1997.
540 Effect of antibiotics and exposure to an acidified medium on the elimination of
541 *Agrobacterium tumefaciens* from apple leaf explants and on shoot regeneration. *J Am
542 Soc Hortic Sci.*

543 18. Mohana Priya A, Karutha Pandian S, Manikandan R. 2012. The effect of different
544 antibiotics on the elimination of *Agrobacterium* and high frequency *Agrobacterium*-
545 mediated transformation of indica rice (*Oryza sativa* L.). *Czech J Genet Plant Breed*
546 48:120–130.

547 19. Demain AL, Blander RP. 1999. The β -lactam antibiotics: Past, present, and future.

548 Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 75:5–19.

549 20. Okkels FT, Pedersen MG. 1988. The toxicity to plant tissue and to *Agrobacterium*

550 *tumefaciens* of some antibiotics. Acta Hortic 225:199–208.

551 21. Shackelford NJ, Chlan CA. 1996. Identification of antibiotics that are effective in

552 eliminating *Agrobacterium tumefaciens*. Plant Mol Biol Report 14:50–57.

553 22. Estopà M, Marfà V, Melé E, Messeguer J. 2001. Study of different antibiotic

554 combinations for use in the elimination of *Agrobacterium* with kanamycin selection in

555 carnation. Plant Cell Tissue Organ Cult 65:211–220.

556 23. Holford P, Newbury HJ. 1992. The effects of antibiotics and their breakdown products

557 on the *in vitro* growth of *Antirrhinum majus*. Plant Cell Rep 11:93–96.

558 24. Minden V, Deloy A, Volkert AM, Leonhardt SD, Pufal G. 2017. Antibiotics impact plant

559 traits, even at small concentrations. AoB Plants 9.

560 25. Jiang C, Brown PJB, Ducret A, Brun Y V. 2014. Sequential evolution of bacterial

561 morphology by co-option of a developmental regulator. Nature 506:489–493.

562 26. Wiebke B, Ferreira F, Pasquali G, Bodanese-Zanettini MH, Droste A. 2006. Influence of

563 antibiotics on embryogenic tissue and *Agrobacterium tumefaciens* suppression in

564 soybean genetic transformation. Bragantia 65:543–551.

565 27. Obembe O, Adesoye A, Machuka J. 2005. Evaluation of the effectiveness of selected

566 antibiotics in the suppression of *Agrobacterium* from Cowpea (*Vigna Unguiculata* L.

567 Walp.) embryo explants and as potential selective agents in *Agrobacterium*-mediated

568 transformation. J Trop Microbiol Biotechnol 1:27–33.

569 28. Haddadi F, Aziz MA, Abdullah SNA, Tan SG, Kamaladini H. 2015. An efficient

570 *Agrobacterium*-mediated transformation of Strawberry cv. Camarosa by a dual plasmid
571 system. *Molecules* 20:3647–3666.

572 29. Tang H, Ren Z, Krczal G, Glimelius K. 2000. An evaluation of antibiotics for the
573 elimination of *Agrobacterium tumefaciens* from walnut somatic embryos and for the
574 effects on the proliferation of somatic embryos and regeneration of transgenic plants.
575 *Plant Cell Rep* 19:881–887.

576 30. Waxman DJ, Strominger JL. 1983. Penicillin-binding proteins and the mechanism of
577 action of β -lactam antibiotics. *Annu Rev Biochem* 52:825–869.

578 31. Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. 2008. The Penicillin-binding
579 proteins: Structure and role in peptidoglycan biosynthesis. *FEMS Microbiol Rev* 32:234–
580 258.

581 32. Spratt BG. 2006. Distinct Penicillin-binding proteins involved in the division, elongation,
582 and shape of *Escherichia coli* K12. *Proc Natl Acad Sci* 72:2999–3003.

583 33. Rolinson GN. 1980. Effect of β -lactam antibiotics on bacterial cell growth rate.
584 *Microbiology* 120:317–323.

585 34. Jacoby GA. 2009. AmpC β -lactamases. *Clin Microbiol Rev* 22:161–182.

586 35. Egan AJF, Cleverley RM, Peters K, Lewis RJ, Vollmer W. 2017. Regulation of bacterial
587 cell wall growth. *FEBS J* 284:851–867.

588 36. Den Blaauwen T, Andreu JM, Monasterio O. 2014. Bacterial cell division proteins as
589 antibiotic targets. *Bioorg Chem* 55:27–38.

590 37. Egan AJF, Biboy J, van't Veer I, Breukink E, Vollmer W. 2015. Activities and regulation
591 of peptidoglycan synthases. *Philos Trans R Soc B Biol Sci* 370.

592 38. Typas A, Banzhaf M, Gross CA, Vollmer W. 2012. From the regulation of peptidoglycan

593 synthesis to bacterial growth and morphology. *Nat Rev Microbiol* 10:123–136.

594 39. Vollmer W, Blanot D, De Pedro MA. 2008. Peptidoglycan structure and architecture.

595 *FEMS Microbiol Rev* 32:149–167.

596 40. de Pedro MA, Cava F. 2015. Structural constraints and dynamics of bacterial cell wall

597 architecture. *Front Microbiol*.

598 41. Margolin W. 2009. Sculpting the bacterial cell. *Curr Biol* 19:812–822.

599 42. Park JT, Uehara T. 2008. How bacteria consume their own exoskeletons (turnover and

600 recycling of cell wall peptidoglycan). *Microbiol Mol Biol Rev* 72:211–227.

601 43. Silhavy TJ, Kahne D, Walker S. 2010. The bacterial cell envelope. *Cold Spring Harb*

602 *Perspect Biol* 2:1–16.

603 44. Scheffers D, Pinho MG. 2005. Bacterial cell wall synthesis: New insights from

604 localization studies. *Microbiol Mol Bio Rev* 69:585–607.

605 45. Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. 2019. Cell wall

606 hydrolases in bacteria: Insight on the diversity of cell wall amidases, glycosidases and

607 peptidases toward peptidoglycan. *Front Microbiol* 10:331.

608 46. Frirdich E, Gaynor EC. 2013. Peptidoglycan hydrolases, bacterial shape, and

609 pathogenesis. *Curr Opin Microbiol* 16:767–778.

610 47. Vollmer W, Joris B, Charlier P, Foster S. 2008. Bacterial peptidoglycan (murein)

611 hydrolases. *FEMS Microbiol Rev* 32:259–286.

612 48. van Heijenoort J. 2011. Peptidoglycan hydrolases of *Escherichia coli*. *Microbiol Mol Biol*

613 *Rev* 75:636–663.

614 49. Dhar S, Kumari H, Balasubramanian D, Mathee K. 2018. Cell-wall recycling and

615 synthesis in *Escherichia coli* and *Pseudomonas aeruginosa* – their role in the

616 development of resistance. *J Med Microbiol* 67:1–21.

617 50. Dik DA, Fisher JF, Mobashery S. 2018. Cell-wall recycling of the Gram-negative
618 bacteria and the nexus to antibiotic resistance. *Chem Rev.* review-article, American
619 Chemical Society.

620 51. Lee TK, Huang KC. 2013. The role of hydrolases in bacterial cell-wall growth. *Curr Opin
621 Microbiol* 16:760–766.

622 52. Vollmer W. 2012. Bacterial growth does require peptidoglycan hydrolases. *Mol
623 Microbiol* 86:1031–1035.

624 53. Fisher JF, Mobashery S. 2014. The sentinel role of peptidoglycan recycling in the β -
625 lactam resistance of the Gram-negative Enterobacteriaceae and *Pseudomonas*
626 *aeruginosa*. *Bioorg Chem* 56:41–48.

627 54. Jacobs C, Joris B, Jamin M, Klarsov K, van Beeumen J, Mengin-Lecreux D, van
628 Heijenoort J, Park JT, Normark S, Frère J-M. 1995. AmpD, essential for both β -
629 lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-L-
630 alanine amidase. *Mol Microbiol* 15:553–559.

631 55. Langae TY, Gagnon L, Huletsky A. 2000. Inactivation of the *ampD* gene in
632 *Pseudomonas aeruginosa* leads to moderate-basal-level and hyperinducible AmpC β -
633 lactamase expression. *Antimicrob Agents Chemother* 44:583–589.

634 56. Schmidtke AJ, Hanson ND. 2008. Role of *ampD* homologs in overproduction of AmpC
635 in clinical isolates of *Pseudomonas aeruginosa*. *Antimicrob Agents Chemother*
636 52:3922–3927.

637 57. Jacobs C, Fre J. 1997. Cytosolic intermediates for cell wall biosynthesis and
638 degradation control inducible β -lactam resistance in Gram-negative bacteria 88:823–

639 832.

640 58. Dik DA, Domínguez-Gil T, Lee M, Hesek D, Byun B, Fishovitz J, Boggess B, Hellman
641 LM, Fisher JF, Hermoso JA, Mobashery S. 2017. Muropeptide binding and the X-ray
642 structure of the effector domain of the transcriptional regulator AmpR of *Pseudomonas*
643 *aeruginosa*. *J Am Chem Soc* 139:1448–1451.

644 59. Johnson JW, Fisher JF, Mobashery S. 2013. Bacterial cell-wall recycling. *Ann N Y Acad*
645 *Sci* 1277:54–75.

646 60. Balasubramanian D, Kumari H, Mathee K. 2014. *Pseudomonas aeruginosa* AmpR: An
647 acute-chronic switch regulator. *Pathog Dis* 73:1–14.

648 61. Vadlamani G, Thomas MD, Patel TR, Donald LJ, Reeve TM, Stetefeld J, Standing KG,
649 Vocadlo DJ, Mark BL. 2015. The β -lactamase gene regulator AmpR is a tetramer that
650 recognizes and binds the D-Ala-D-Ala motif of its repressor UDP-N-acetylmuramic acid
651 (MurNAc)-pentapeptide. *J Biol Chem* 290:2630–2643.

652 62. Lindberg F, Normark S. 1987. Common mechanism of *ampC* β -lactamase induction in
653 enterobacteria: Regulation of the cloned *Enterobacter cloacae* P99 β -lactamase gene. *J*
654 *Bacteriol* 169:758–763.

655 63. Torrens, G, Hernández S, Alfonso Ayala J, Moya B, Juan C, Cava F, Oliver A. 2019.
656 Regulation of AmpC-driven β -lactam resistance in *Pseudomonas aeruginosa*: Different
657 pathways, different signaling 4:1–14.

658 64. Juan C, Torrens G, González-Nicolau M, Oliver A. 2017. Diversity and regulation of
659 intrinsic β -lactamases from non-fermenting and other Gram-negative opportunistic
660 pathogens. *FEMS Microbiol Rev* 41:781–815.

661 65. Bajaj P, Singh NS, Virdi JS. 2016. *Escherichia coli* β -lactamases: What really matters.

662 Front Microbiol 7:1–14.

663 66. Jaurin BA, Normark S. 1979. *In vivo* regulation of chromosomal β -lactamase in
664 *Escherichia coli*. J Bacteriol 138:896–902.

665 67. Jaurin B, Grundström T, Edlund T, Normark S. 1981. The *E. coli* β -lactamase attenuator
666 mediates growth rate-dependent regulation. Nature 290:221–225.

667 68. Honoré N, Nicolas MH, Cole ST. 1986. Inducible cephalosporinase production in clinical
668 isolates of *Enterobacter cloacae* is controlled by a regulatory gene that has been
669 deleted from *Escherichia coli*. EMBO J 5:3709–3714.

670 69. Jacobs C, Huang LJ, Bartowsky E, Normark S, Park JT. 1994. Bacterial cell wall
671 recycling provides cytosolic muropeptides as effectors for β -lactamase induction. EMBO
672 J 13:4684–4694.

673 70. Ogawa Y, Mii M. 2004. Screening for highly active β -lactam antibiotics against
674 *Agrobacterium tumefaciens*. Arch Microbiol 181:331–336.

675 71. Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Quroollo B, Goldman BS, Cao
676 Y, Askenazi M, Halling C, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A,
677 Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C,
678 Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S. 2001. Genome
679 Sequence of the Plant Pathogen and Biotechnology Agent *Agrobacterium tumefaciens*
680 C58. Science (80-) 294:2323 LP – 2328.

681 72. CAO Y, Niimi Y, HU S lian. 2006. Meropenem as an alternative antibiotic agent for
682 suppression of *Agrobacterium* in genetic transformation of orchid. Agric Sci China
683 5:839–846.

684 73. O'Callaghan CH, Morris A, Kirby SM, Shingler AH. 1972. Novel method for detection of

685 β -lactamases by using a chromogenic cephalosporin substrate. *Antimicrob Agents*
686 *Chemother* 1:283–288.

687 74. Morton ER, Fuqua C. 2012. Genetic manipulation of *Agrobacterium*. *Curr Protoc*
688 *Microbiol Chapter 3:Unit-3D.2.*

689 75. Uehara T, Park JT. 2007. An anhydro-N-acetylmuramyl-L-alanine amidase with broad
690 specificity tethered to the outer membrane of *Escherichia coli*. *J Bacteriol* 189:5634–
691 5641.

692 76. Pennartz A, Généreux C, Parquet C, Mengin-Lecreulx D, Joris B. 2009. Substrate-
693 induced inactivation of the *Escherichia coli* AmiD N-acetylmuramoyl-L-alanine amidase
694 highlights a new strategy to inhibit this class of enzyme. *Antimicrob Agents Chemother*
695 53:2991–2997.

696 77. Langae TY, Gagnon L, Huletsky A. 2000. Inactivation of the *ampD* gene in
697 *Pseudomonas aeruginosa* leads to moderate-basal-level and hyperinducible AmpC β -
698 lactamase expression. *Antimicrob Agents Chemother* 44:583–589.

699 78. Mercier F, Zervosen A, Teller N, Frre JM, Herman R, Pennartz A, Joris B, Luxen A.
700 2010. 1,6-AnhMurNAc derivatives for assay development of amidase AmiD. *Bioorganic*
701 *Med Chem* 18:7422–7431.

702 79. Juan C, Moyá B, Pérez JL, Oliver A. 2006. Stepwise upregulation of the *Pseudomonas*
703 *aeruginosa* chromosomal cephalosporinase conferring high-level β -lactam resistance
704 involves three AmpD homologues. *Antimicrob Agents Chemother* 50:1780–1787.

705 80. Wu C, Huang Y, Lin Y, Yang T. 2016. Inactivation of lytic transglycosylases increases
706 susceptibility to aminoglycosides and macrolides by altering the outer membrane
707 permeability of *Stenotrophomonas maltophilia*. *Antimicrob Agents Chemother* 60:3236–

708 3239.

709 81. Yin J, Sun Y, Sun Y, Yu Z, Qiu J, Gao H, Oliver A. 2018. Deletion of lytic
710 transglycosylases increases β -lactam resistance in *Shewanella oneidensis*. *Front
711 Microbiol* 9:1–10.

712 82. Zielińska A, Billini M, Möll A, Kremer K, Briegel A, Izquierdo Martinez A, Jensen GJ,
713 Thanbichler M. 2017. LytM factors affect the recruitment of autolysins to the cell division
714 site in *Caulobacter crescentus*. *Mol Microbiol* 106:419–438.

715 83. Lamers RP, Nguyen UT, Nguyen Y, Buensuceso R, Burrows LL. 2015. Loss of
716 membrane-bound lytic transglycosylases increases outer membrane permeability and
717 β -lactam sensitivity in *Pseudomonas aeruginosa*. *Microbiology* 6:879–895.

718 84. Cho H, Uehara T, Bernhardt TG. 2014. Beta-lactam antibiotics induce a lethal
719 malfunctioning of the bacterial cell wall synthesis machinery. *Cell* 159:1300–1311.

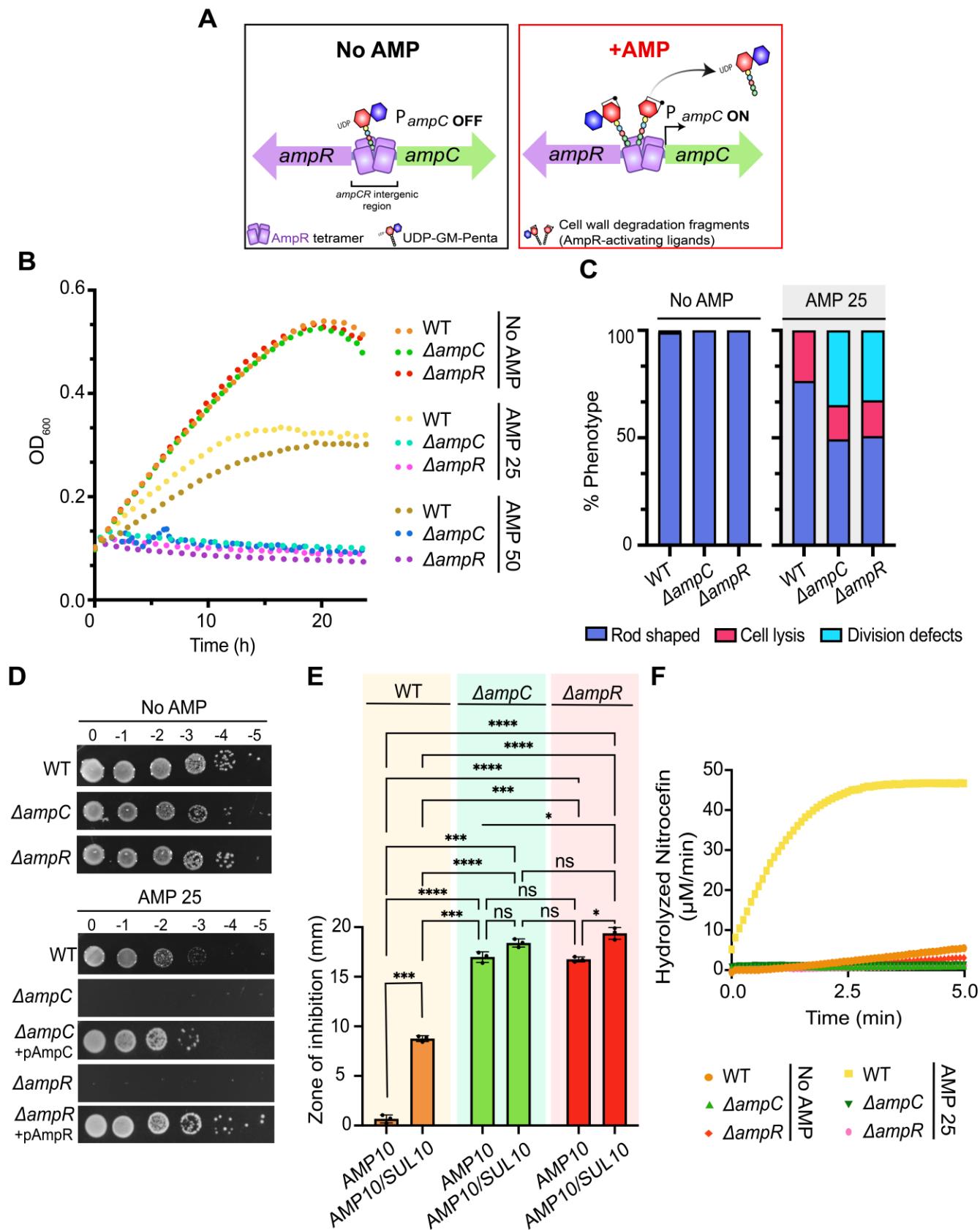
720 85. Clough SJ, Bent AF. 1998. Floral dip: A simplified method for *Agrobacterium*-mediated
721 transformation of *Arabidopsis thaliana*. *Plant J* 16:735–743.

722 86. Cheng ZM, Schnurr JA, Kapaun JA. 1998. Timentin as an alternative antibiotic for
723 suppression of *Agrobacterium tumefaciens* in genetic transformation. *Plant Cell Rep*
724 17:646–649.

725 87. Ieamkhang S, Chatshawankphanich O. 2005. Augmentin® as an alternative antibiotic
726 for growth suppression of *Agrobacterium* for tomato (*Lycopersicon esculentum*)
727 transformation. *Plant Cell Tissue Organ Cult* 82:213–220.

728 88. Morton ER, Fuqua C. 2012. Laboratory Maintenance of *Agrobacterium*. *Curr Protoc
729 Microbiol* 6–11.

730 89. Howell M, Aliashkevich A, Sundararajan K, Daniel JJ, Lariviere PJ, Goley ED, Cava F,


731 Brown PJB. 2019. *Agrobacterium tumefaciens* divisome proteins regulate the transition
732 from polar growth to cell division. Mol Microbiol 111:1074–1092.

733 90. Howell M, Daniel JJ, Brown PJB. 2017. Live cell fluorescence microscopy to observe
734 essential processes during microbial cell growth. JoVE e56497.

735 91. Ducret A, Quardokus EM, Brun Y V. 2016. MicrobeJ, a tool for high throughput bacterial
736 cell detection and quantitative analysis. Nat Microbiol 1:16077.

737 92. Michniewicz M, Frick EM, Strader LC. 2015. Gateway-compatible tissue-specific vectors
738 for plant transformation Plant Biology. BMC Res Notes 8:6–13.

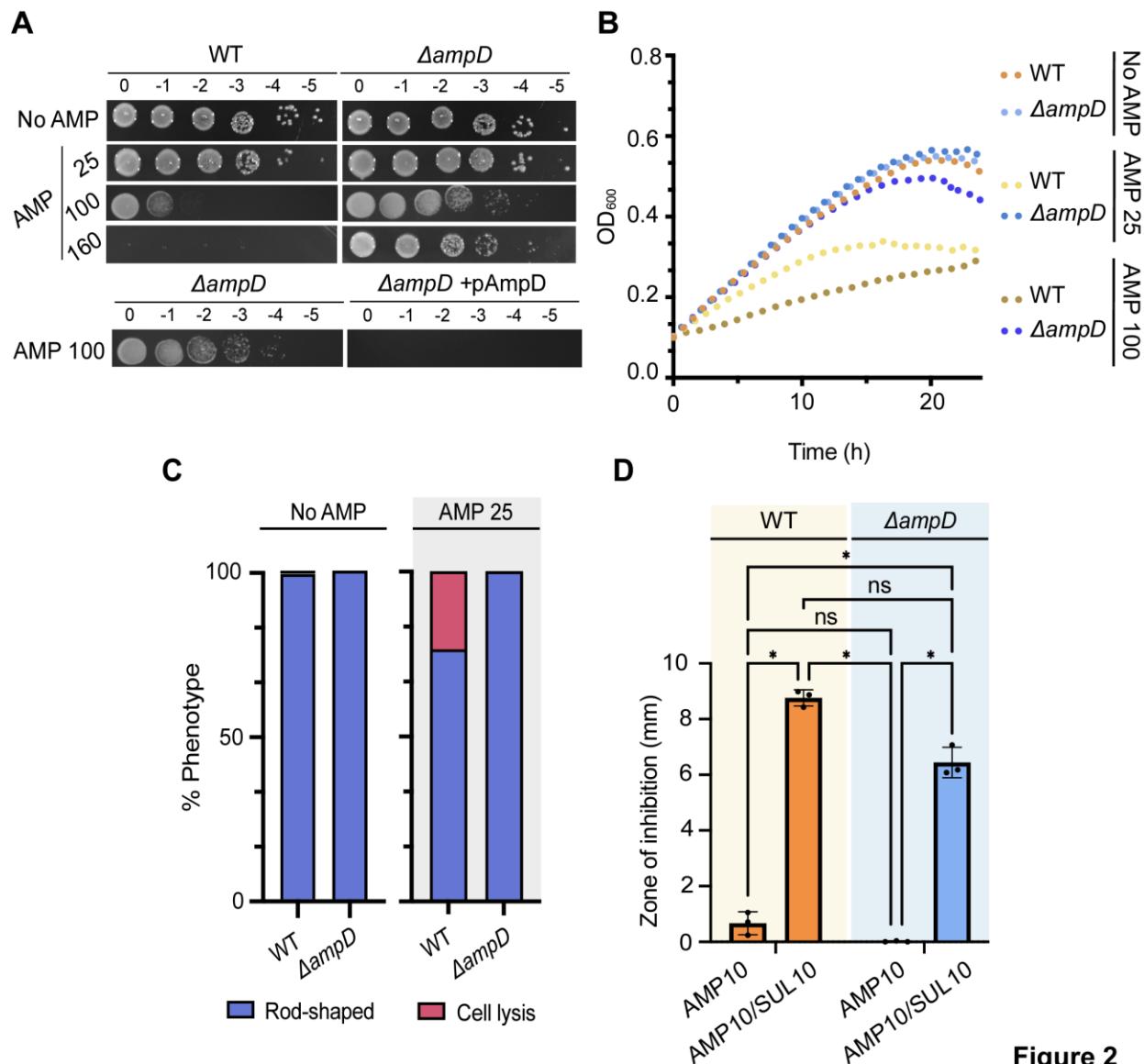

739

Figure 1

741 **FIG 1. The AmpC-AmpR operon is responsible for induced ampicillin resistance in**
742 ***Agrobacterium tumefaciens* C58.** **(A)** Operon organization and proposed ampicillin
743 resistance mechanism (53). Briefly, in the absence of β -lactams such as ampicillin (AMP),
744 *ampC* expression is repressed by AmpR. AmpR-mediated repression is maintained as long
745 as the AmpR-inactivating ligand, UDP-GM-Pentapeptide, is bound to AmpR (“PampC OFF”).
746 In contrast, the presence of ampicillin (AMP) increases the pools of AmpR-activating ligands,
747 or the cell wall degradation fragments (anhydro modification is depicted by ring), which are
748 known to displace AmpR-inactivating ligands. As a result, the increase of AmpR-activating
749 ligands activates AmpR and *ampC* is transcribed (“PampC ON”). **(B)** Growth of WT *A.*
750 *tumefaciens*, Δ *ampC*, and Δ *ampR* in the absence (No AMP) and presence of ampicillin 25 or
751 50 μ g/ml (AMP 25, AMP 50) for 24 h (n = 1, 2 replicates). **(C)** Quantitative analysis of phase-
752 contrast microscopy of exponentially-growing strains in absence (No AMP) or presence of
753 ampicillin 25 μ g/ml (AMP 25). % Phenotype was calculated by counting the number of cells
754 displaying one of the phenotypes indicated (1 cell = 1 phenotype) and dividing by the total
755 number of cells per strain. **(D)** Ampicillin susceptibility assay performed via spotting dilutions.
756 Briefly, indicated strains were cultured overnight (ON) on LB medium, serially diluted, spotted
757 on LB solid medium containing no ampicillin (No AMP) or ampicillin 25 μ g/ml (AMP 25), and
758 incubated at 28°C for 36 h before imaging. **(E)** Disc susceptibility was performed on lawns of
759 indicated strains grown on LB plates for 24 h at 28°C (n = 2). AMP 10 = disc containing 10
760 μ g/ml ampicillin, AMP 10/SUL 10 = disc containing 10 μ g/ml ampicillin and 10 μ g/ml
761 sulbactam, a broad-spectrum β -lactamase inhibitor. Data represent the mean (\pm standard
762 deviation, SD) of three independent experiments. **** = P < 0.0001; *** = P < 0.001; ** = P <
763 0.01; * = P < 0.1; ns = not significant. **(F)** Determination of β -lactamase production performed
764 via a nitrocefin assay using cell lysates. “No AMP” or “AMP 25” indicates cells untreated or
765 treated, respectively, with ampicillin 25 μ g/ml for 2 h before the generation of cell lysates.
766 Data shown represents one out of two biological replicates.

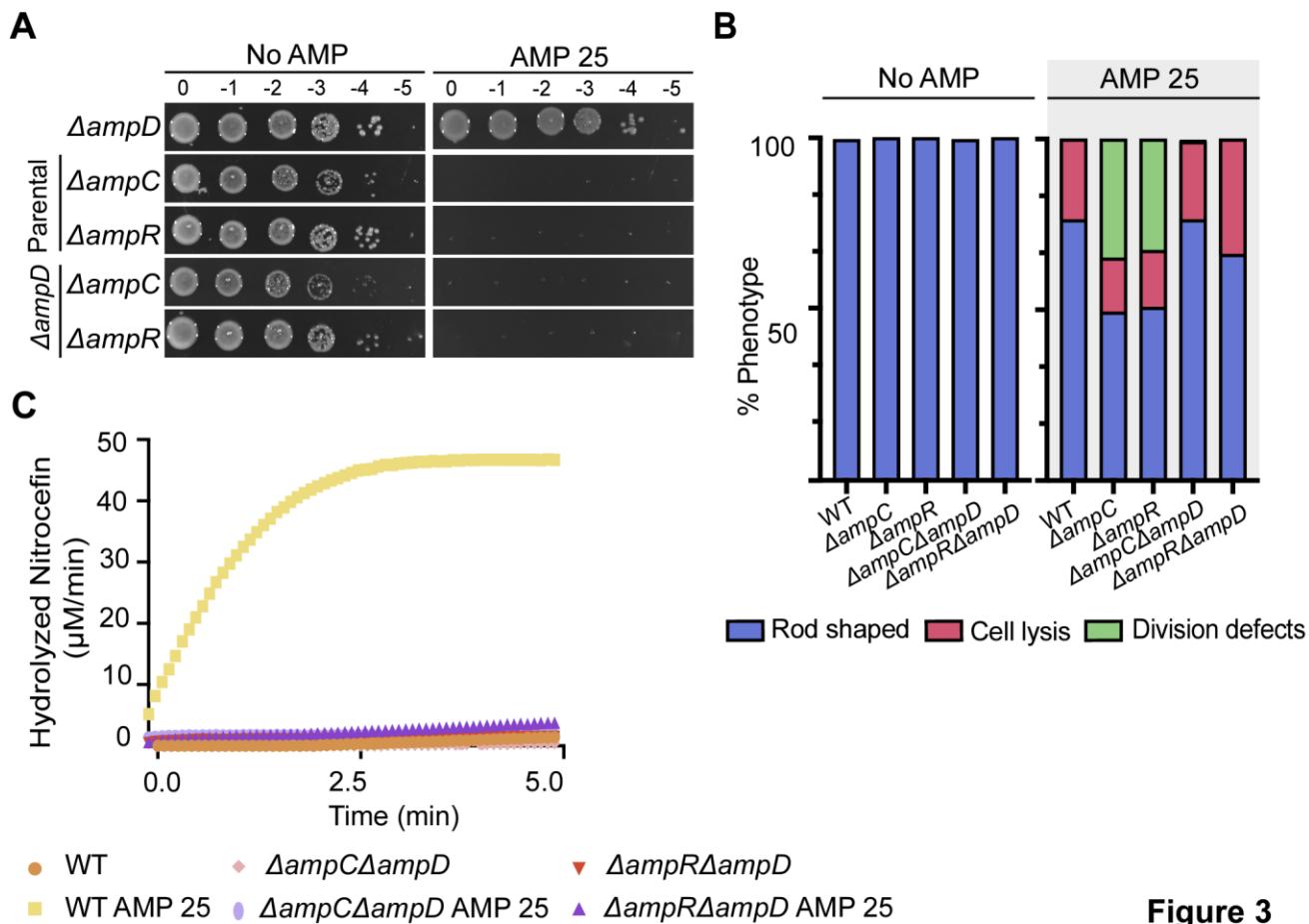
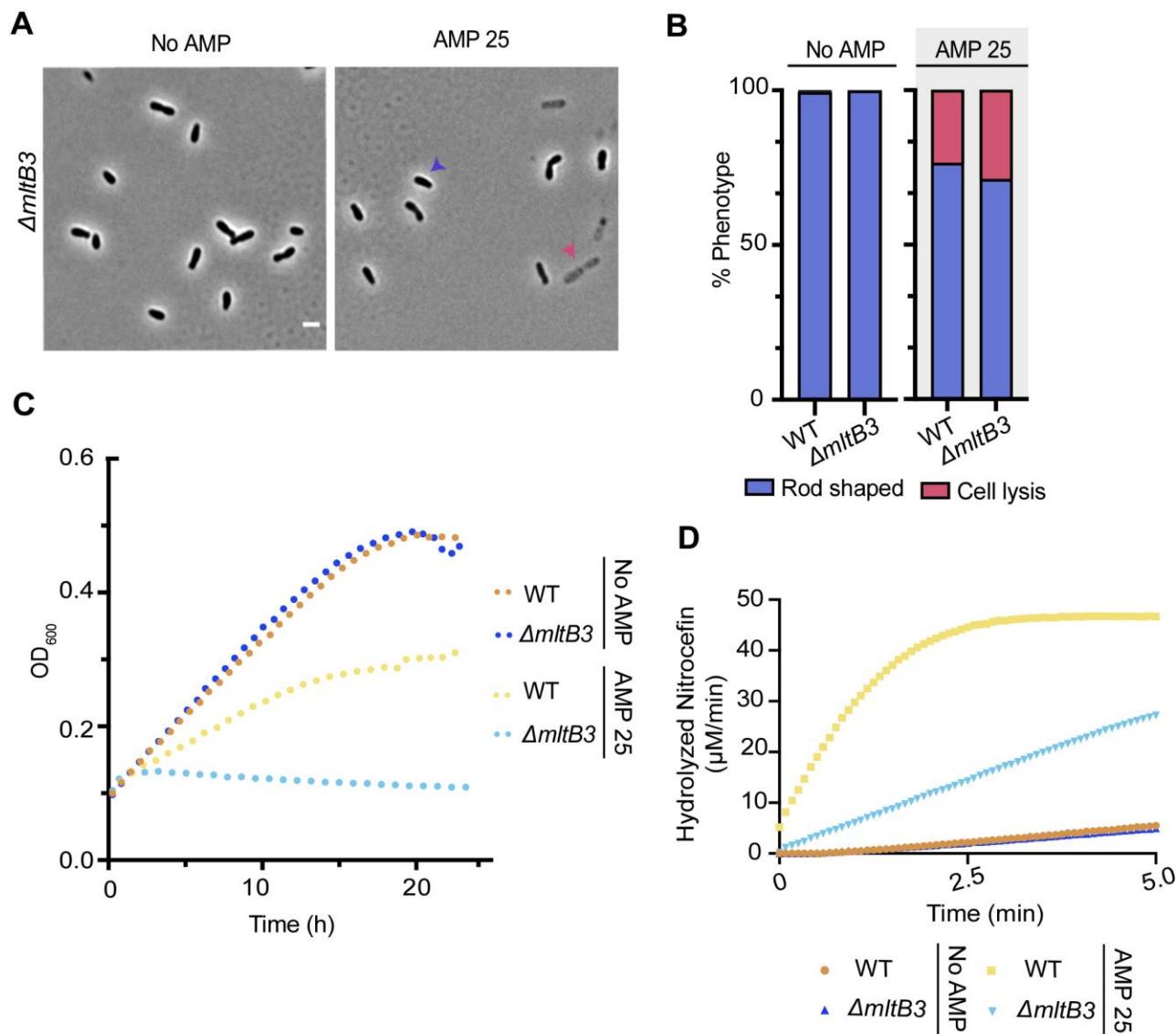

767
768

Figure 2

769
770 **FIG 2. Loss of AmpD results in constitutive β-lactamase activity and elevated ampicillin**
771 **resistance.** **(A)** Ampicillin susceptibility assay performed via spotting dilutions. Briefly,
772 indicated strains were cultured ON at 28°C, serially diluted, spotted on solid medium
773 containing no ampicillin (No AMP) or ampicillin 25, 100, or 160 µg/ml (AMP 25, 100, 160), and
774 incubated at 28°C for ~40 h before imaging. **(B)** Growth of WT *A. tumefaciens* and Δ ampD in
775 the absence (No AMP) and presence (AMP) of various concentrations of ampicillin 25, 100
776 µg/ml (AMP 25, AMP 100) for 24 h (n=1, 2 replicates). **(C)** Quantitative analysis of phase-
777 contrast microscopy of exponentially-growing strains treated with ampicillin 25 µg/ml (AMP
778 25). % Phenotype was calculated by counting the number of cells displaying one of the
779 indicated phenotypes (1 cell = 1 phenotype) and dividing by the total number of cells per
780 strain. **(D)** Disc susceptibility performed on lawn of indicated strains grown on LB plates for 24
781 h at 28°C. Blank = no antibiotic disc, AMP 10 = disc containing 10 µg/ml ampicillin, AMP
782 10/SUL 10 = disc containing 10 µg/ml ampicillin and 10 µg/ml sulbactam, a broad-spectrum β-
783 lactamase inhibitor. Data represent the mean (\pm standard deviation, SD) of three independent


784 experiments. **** = $P < 0.0001$; *** = $P < 0.001$; ** = $P < 0.01$; * = $P < 0.1$; ns = not significant.
785

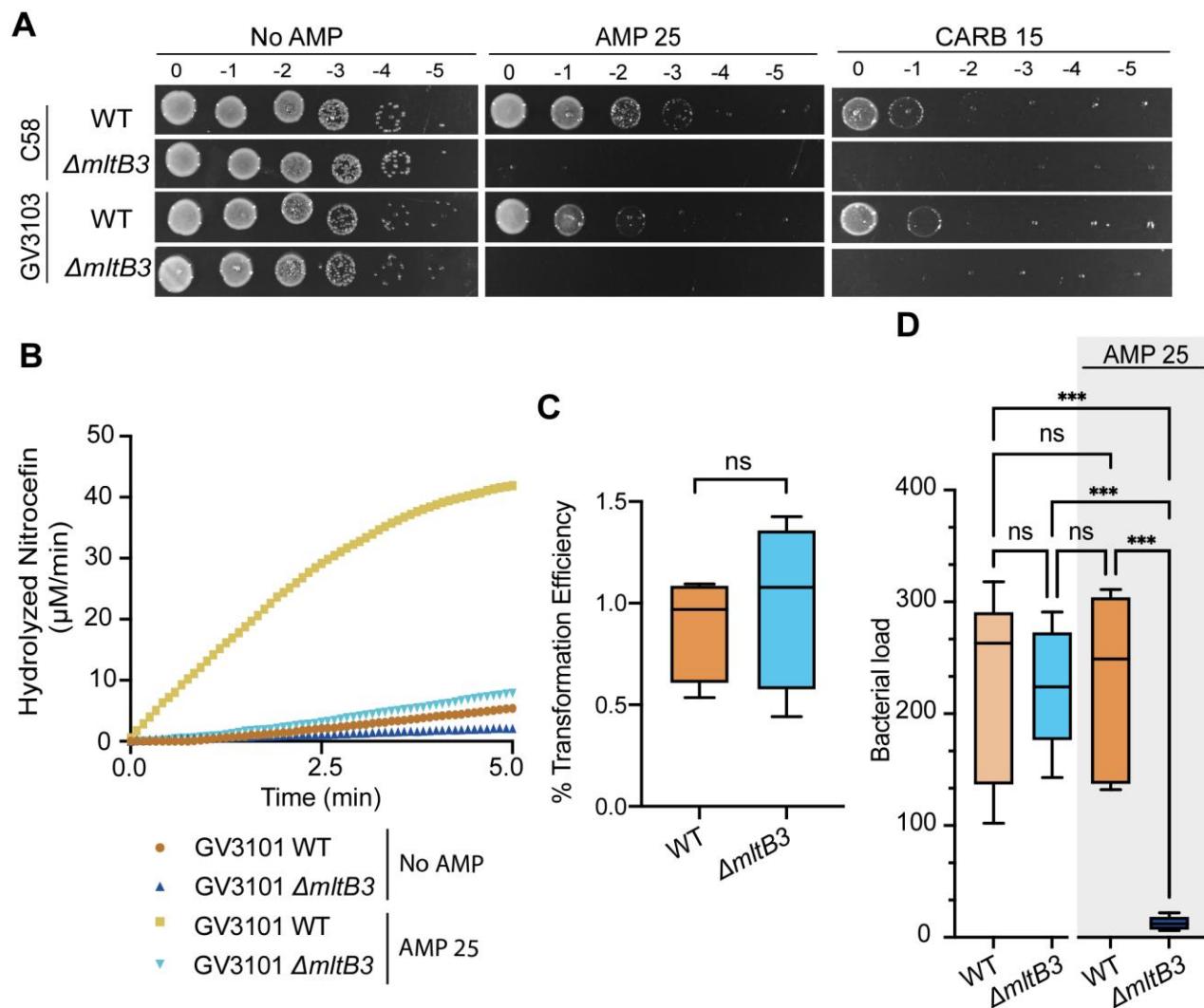

Figure 3

FIG 3. AmpC is the β -lactamase that confers $\Delta\text{amp}D$ elevated ampicillin resistance. (A) Ampicillin susceptibility assay was performed via spotting dilutions. Briefly, indicated strains were cultured ON at 28°C, serially diluted, spotted on solid medium containing no ampicillin (No AMP) or ampicillin 25 $\mu\text{g}/\text{ml}$ (AMP 25) and incubated at 28°C for ~40 h before imaging. **(B)** Quantitative analysis of phase-contrast microscopy of exponentially-growing strains untreated (No AMP) or treated with ampicillin 25 $\mu\text{g}/\text{ml}$ (AMP 25). % Phenotype was calculated by counting the number of cells displaying one of the indicated phenotypes (1 cell = 1 phenotype). **(C)** Determination of β -lactamase production was performed via a nitrocefin assay using cell lysates. “No AMP” or “AMP 25” indicates cells untreated or treated, respectively, with ampicillin 25 $\mu\text{g}/\text{ml}$ for 2 h before the generation of cell lysates. Data shown represents one out of two biological replicates.

786
787
788
789
790
791
792
793
794
795
796
797
798

799
800 **FIG 4. MtIB3 is required for ampicillin resistance in *A. tumefaciens*.** (A) Phase-contrast
801 microscopy of exponentially-growing strains treated with ampicillin 25 μ g/ml (AMP 25) for 2 h.
802 (B) Quantitative analysis of phase-contrast microscopy of exponentially-growing strains
803 treated with ampicillin 25 μ g/ml (AMP 25) for 2 h. % Phenotype was calculated by counting
804 the number of cells displaying one of the phenotypes indicated (1 cell = 1 phenotype) and
805 dividing it by the total number of cells per strain. (C) Growth of WT *A. tumefaciens* and $\Delta mIB3$
806 in the absence (No AMP) and presence of ampicillin 25 μ g/ml (AMP 25) for 24 h (n = 1, 2
807 replicates). (D) Determination of β -lactamase production was performed via a nitrocefin assay
808 using cell lysates. “No AMP” or “AMP 25” indicates cells untreated or treated, respectively,
809 with ampicillin 25 μ g/ml for 2 h before the generation of cell lysates. Data shown represents
810 one out of two biological replicates.
811

Figure 5

812
 813
 814 **FIG 5. *A. tumefaciens* GV3103 $\Delta mltB3$ can be used to transform plants efficiently and**
 815 **bacteria can be removed using low concentrations of ampicillin. (A)** Ampicillin
 816 **susceptibility assay was performed via spotting dilutions. Briefly, indicated strains were**
 817 **cultured ON at 28°C, serially diluted, spotted on solid medium containing no ampicillin (No**
 818 **AMP), ampicillin 25 $\mu\text{g}/\text{ml}$ (AMP 25), or carbenicillin 15 $\mu\text{g}/\text{ml}$ (CARB 15), and incubated at**
 819 **28°C for ~40 h before imaging. (B)** Determination of β -lactamase production was performed
 820 **via a nitrocefin assay using cell lysates. Data shown represents one out of two biological**
 821 **replicates. “No AMP” or “AMP 25” indicates cells untreated or treated, respectively, with**
 822 **ampicillin 25 $\mu\text{g}/\text{ml}$ for 2 h before the generation of cell lysates. (C)** Transformation efficiency
 823 **and (D)** bacterial loads of seeds transformed with WT *A. tumefaciens* GV3101 and GV3101
 824 **$\Delta mltB3$ using the floral dip assay technique (85).**

825
 826

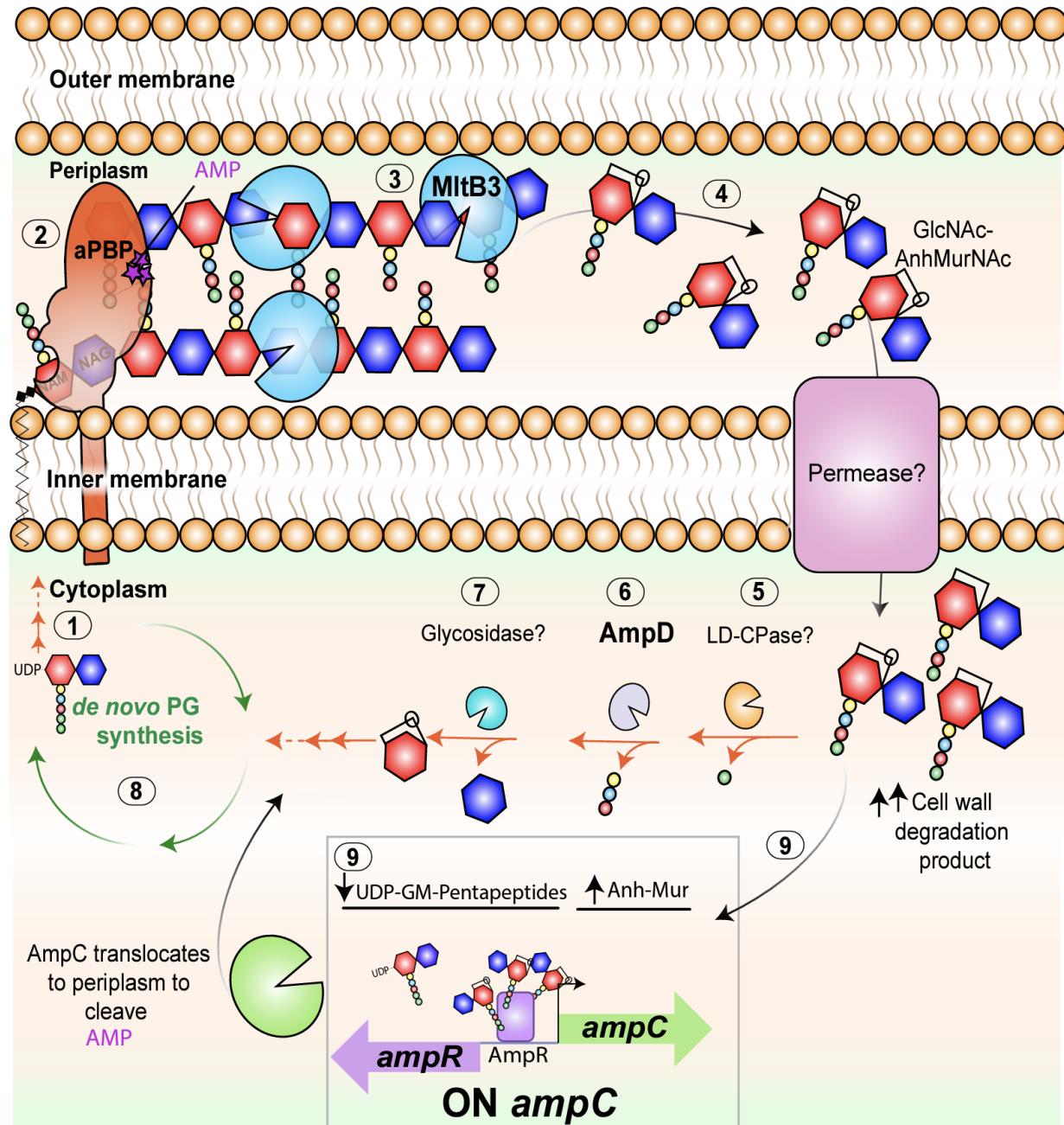


Figure 6

827
828 **FIG 6. Working model for *A. tumefaciens* ampicillin resistance.** Bifunctional PBPs extend
829 the cell wall through the transglycosylation (linking of carbohydrates) and transpeptidation
830 reactions (linking of peptide stems). β -lactams such as ampicillin (purple stars) target the
831 transpeptidase domain of Penicillin-Binding Proteins (PBPs) (Fig S6, Step 1-2), leading to a
832 block in bacterial cell growth. In *A. tumefaciens*, treatment with ampicillin leads to induction of
833 β -lactamases. Inactivation of the lytic transglycosylase MltB3 results in inhibition of β -lactamase
834 derepression and lysis suggesting that MltB3 is likely required for the generation of cell wall
835 degradation products (Fig S6, Step 3). Similar to treatment with β -lactams, where a block in
836 cell growth leads to an increase in cell wall degradation products (Fig S6, Step 5), inactivation
837 of anhydro amidases such as AmpD increases the pool of these molecules leading to β -lactam

838 resistance. In *A. tumefaciens* inactivation of AmpD leads to derepression of β -lactamases and
839 ampicillin resistance (**Fig S6**, Step 9). Both AmpC, an inducible β -lactamase that is under the
840 transcriptional control of AmpR, and AmpR seem to be responsible for the derepression
841 observed in Δ ampD. Thus, our working model suggests that upon ampicillin exposure, a block
842 in growth leads to increased activity of MltB3. An increase in cell wall degradation products
843 leads to induction of AmpC expression by AmpR and the presumed translocation of AmpC to
844 the periplasm resulting in ampicillin resistance.
845